Science.gov

Sample records for matrix metalloproteinase-7 activity

  1. Active matrix metalloproteinase-7 is associated with invasion in buccal squamous cell carcinoma.

    PubMed

    Chuang, Hui-Ching; Su, Chih-Ying; Huang, Hsuang-Ying; Huang, Chao-Cheng; Chien, Chih-Yen; Du, Yung-Ying; Chuang, Jiin-Haur

    2008-12-01

    Protein microarrays have shown that matrix metalloproteinase-7 is upregulated in head and neck squamous cell carcinomas, but its role in local tissue invasion is still uncertain. We investigated the expression of active matrix metalloproteinase-7, using tissue microarray, immunohistochemistry, and western blotting, in oral tissues from 24 patients with buccal squamous cell carcinoma, and correlated the findings with clinicopathological features. Normal buccal tissue samples from the same patients, obtained at sites at least 1 cm from tumor tissue, served as normal controls. Total matrix metalloproteinase-7 was detected on western blots in 9 of 15 (60%) tumor tissue samples and in 2 of 15 (13%) normal mucosal samples; this difference was significant (P=0.008). Moreover, the active matrix metalloproteinase-7 was expressed only in eight of the nine (89%) tumor samples that expressed matrix metalloproteinase-7, and in none of the normal tissue samples, regardless of the expression status of the pro-matrix metalloproteinase-7. Immunostaining of matrix metalloproteinase-7 was observed histologically in both tumor and nonneoplastic epithelium, but immunostaining of active matrix metalloproteinase-7 was present only in tumor nests. Expression of active matrix metalloproteinase-7 was associated with larger tumor size (P=0.022) and was significantly higher in buccal squamous cell carcinoma with adjacent skin or bone invasion (P=0.036). In conclusion, active matrix metalloproteinase-7 expression was associated with more aggressive buccal squamous cell carcinomas. PMID:18931651

  2. Proliferative effects of apical, but not basal, matrix metalloproteinase-7 activity in polarized MDCK cells

    SciTech Connect

    Harrell, Permila C.; McCawley, Lisa J.; Fingleton, Barbara; McIntyre, J. Oliver; Matrisian, Lynn M. . E-mail: lynn.matrisian@vanderbilt.edu

    2005-02-15

    Matrix metalloproteinase-7 (MMP-7) is primarily expressed in glandular epithelium. Therefore, its mechanism of action may be influenced by its regulated vectorial release to either the apical and/or basolateral compartments, where it would act on its various substrates. To gain a better understanding of where MMP-7 is released in polarized epithelium, we have analyzed its pattern of secretion in polarized MDCK cells expressing stably transfected human MMP-7 (MDCK-MMP-7), and HCA-7 and Caco2 human colon cancer cell lines. In all cell lines, latent MMP-7 was secreted to both cellular compartments, but was 1.5- to 3-fold more abundant in the basolateral compartment as compared to the apical. However, studies in the MDCK system demonstrated that MMP-7 activity was 2-fold greater in the apical compartment of MDCK-MMP-7{sup HIGH}-polarized monolayers, which suggests the apical co-release of an MMP-7 activator. In functional assays, MMP-7 over-expression increased cell saturation density as a result of increased cell proliferation with no effect on apoptosis. Apical MMP-7 activity was shown to be responsible for the proliferative effect, which occurred, as demonstrated by media transfer experiments, through cleavage of an apical substrate and not through the generation of a soluble factor. Taken together, our findings demonstrate the importance of MMP-7 secretion in relation to its mechanism of action when expressed in a polarized epithelium.

  3. Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity.

    PubMed Central

    McIntyre, J Oliver; Fingleton, Barbara; Wells, K Sam; Piston, David W; Lynch, Conor C; Gautam, Shiva; Matrisian, Lynn M

    2004-01-01

    The present study describes the in vivo detection and imaging of tumour-associated MMP-7 (matrix metalloproteinase-7 or matrilysin) activity using a novel polymer-based fluorogenic substrate PB-M7VIS, which serves as a selective 'proteolytic beacon' (PB) for this metalloproteinase. PB-M7VIS is built on a PAMAM (polyamido amino) dendrimer core of 14.2 kDa, covalently coupled with an Fl (fluorescein)-labelled peptide Fl(AHX)RPLALWRS(AHX)C (where AHX stands for aminohexanoic acid) and with TMR (tetramethylrhodamine). PB-M7VIS is efficiently and selectively cleaved by MMP-7 with a k (cat)/ K (m) value of 1.9x10(5) M(-1).s(-1) as measured by the rate of increase in Fl fluorescence (up to 17-fold for the cleavage of an optimized PB-M7VIS) with minimal change in the TMR fluorescence. The K (m) value for PB-M7VIS is approx. 0.5 microM, which is approx. two orders of magnitude lower when compared with that for an analogous soluble peptide, indicating efficient interaction of MMP-7 with the synthetic polymeric substrate. With MMP-2 or -3, the k (cat)/ K (m) value for PB-M7VIS is approx. 56- or 13-fold lower respectively, when compared with MMP-7. In PB-M7VIS, Fl(AHX)RPLALWRS(AHX)C is a selective optical sensor of MMP-7 activity and TMR serves to detect both the uncleaved and cleaved reagents. Each of these can be visualized as subcutaneous fluorescent phantoms in a mouse and optically discriminated based on the ratio of green/red (Fl/TMR) fluorescence. The in vivo specificity of PB-M7VIS was tested in a mouse xenograft model. Intravenous administration of PB-M7VIS gave significantly enhanced Fl fluorescence from MMP-7-positive tumours, but not from control tumours ( P <0.0001), both originally derived from SW480 human colon cancer cells. Prior systemic treatment of the tumour-bearing mice with an MMP inhibitor BB-94 ([4-( N -hydroxyamino)-2 R -isobutyl-3 S -(thienylthiomethyl)-succinyl]-L-phenylalanine- N -methylamide), markedly decreased the Fl fluorescence over the MMP-7

  4. Charge-Triggered Membrane Insertion of Matrix Metalloproteinase-7, Supporter of Innate Immunity and Tumors.

    PubMed

    Prior, Stephen H; Fulcher, Yan G; Koppisetti, Rama K; Jurkevich, Alexander; Van Doren, Steven R

    2015-11-01

    Matrix metalloproteinase-7 (MMP-7) sheds signaling proteins from cell surfaces to activate bacterial killing, wound healing, and tumorigenesis. The mechanism targeting soluble MMP-7 to membranes has been investigated. Nuclear magnetic resonance structures of the zymogen, free and bound to membrane mimics without and with anionic lipid, reveal peripheral binding to bilayers through paramagnetic relaxation enhancements. Addition of cholesterol sulfate partially embeds the protease in the bilayer, restricts its diffusion, and tips the active site away from the bilayer. Its insertion of hydrophobic residues organizes the lipids, pushing the head groups and sterol sulfate outward toward the enzyme's positive charge on the periphery of the enlarged interface. Fluorescence probing demonstrates a similar mode of binding to plasma membranes and internalized vesicles of colon cancer cells. Binding of bilayered micelles induces allosteric activation and conformational change in the auto-inhibitory peptide and the adjacent scissile site, illustrating a potential intermediate in the activation of the zymogen. PMID:26439767

  5. The matrix metalloproteinase-7 regulates the extracellular shedding of syndecan-2 from colon cancer cells.

    PubMed

    Choi, Sojoong; Kim, Jin-Yung; Park, Jun Hyoung; Lee, Seung-Teak; Han, Inn-Oc; Oh, Eok-Soo

    2012-01-27

    The cell surface heparan sulfate proteoglycan syndecan-2 regulates the activation of matrix metalloproteinase-7 (MMP-7) as a docking receptor. Here, we demonstrate the role of MMP-7 on syndecan-2 shedding in colon cancer cells. Western blot analysis showed that shed syndecan-2 was found in the culture media from various colon cancer cells. Overexpression of MMP-7 enhanced syndecan-2 shedding, whereas the opposite was true when MMP-7 levels were knocked-down using small inhibitory RNAs. Consistently, HT29 cells treated with MMP-7, but neither MMP-2 nor MMP-9, showed increased shed syndecan-2 in a time- and concentration-dependent manner. Furthermore, MALDI-TOF MS analysis and N-terminal amino acid sequencing revealed that MMP-7 cleaved both recombinant syndecan-2 and an endogenously glycosylated syndecan-2 ectodomain in the N-terminus at Leu(149) residue in vitro. Taken together, the data suggest that MMP-7 directly mediates shedding of syndecan-2 from colon cancer cells. PMID:22227189

  6. Matrilysin (Matrix Metalloproteinase-7) Mediates E-Cadherin Ectodomain Shedding in Injured Lung Epithelium

    PubMed Central

    McGuire, John K.; Li, Qinglang; Parks, William C.

    2003-01-01

    Matrilysin (matrix metalloproteinase-7) is highly expressed in lungs of patients with pulmonary fibrosis and other conditions associated with airway and alveolar injury. Although matrilysin is required for closure of epithelial wounds ex vivo, the mechanism of its action in repair is unknown. We demonstrate that matrilysin mediates shedding of E-cadherin ectodomain from injured lung epithelium both in vitro and in vivo. In alveolar-like epithelial cells, transfection of activated matrilysin resulted in shedding of E-cadherin and accelerated cell migration. In vivo, matrilysin co-localized with E-cadherin at the basolateral surfaces of migrating tracheal epithelium, and the reorganization of cell-cell junctions seen in wild-type injured tissue was absent in matrilysin-null samples. E-cadherin ectodomain was shed into the bronchoalveolar lavage fluid of bleomycin-injured wild-type mice, but was not shed in matrilysin-null mice. These findings identify E-cadherin as a novel substrate for matrilysin and indicate that shedding of E-cadherin ectodomain is required for epithelial repair. PMID:12759241

  7. Estrogen Decrease in Tight Junctional Resistance Involves Matrix-Metalloproteinase-7-Mediated Remodeling of Occludin

    PubMed Central

    Gorodeski, George I.

    2008-01-01

    Estrogen modulates tight junctional resistance through estrogen receptor-α-mediated remodeling of occludin. The objective of the study was to understand the mechanisms involved. Experiments using human normal vaginal-cervical epithelial cells showed that human normal vaginal-cervical epithelial cells secrete constitutively matrix-metalloproteinase-7 (MMP-7) into the luminal solution and that MMP-7 is necessary and sufficient to produce estrogen decrease of tight junctional resistance and remodeling of occludin. Treatment with estrogen stimulated activation of the pro-MMP-7 intracellularly and augmented secretion of the activated MMP-7 form. Steady-state levels of MMP-7 mRNA and protein were not affected by estrogen. Estrogen modulated phosphorylation of the MMP-7, but the changes were most likely secondary to changes in cellular MMP-7 mass. Estrogen increased coimmunoreactivity of MMP-7 with the Golgi protein GPP130. Tunicamycin and brefeldin-A had no effect on cellular MMP-7 but monensin (inhibitor of Golgi traffic) blocked estrogen effects, suggesting estrogen site of action is at the Golgi system. Estrogen increased generalized secretory activity, including of luminal exocytosis of polycarbohydrates. However, estrogen increased coimmunoreactivity of MMP-7 with synaptosomal-associated protein of 25 kDa in apical membranes, suggesting soluble N-ethylmaleimide sensitive fusion factor attachment protein receptor-facilitated exocytosis of MMP-7. Treatment with the vesicular-ATPase inhibitor bafilomycin A1 inhibited activation of MMP-7. These data suggest that estrogen up-regulates activation of the MMP-7 intracellularly, at the level of Golgi, and augments secretion of activated MMP-7 through soluble N-ethylmaleimide sensitive fusion factor attachment protein receptor-dependent exocytosis. On the other hand, estrogen acidification of the luminal solution would tend to alkalinize exocytotic vesicles and may lead to decreased activation of the MMP-7. These mechanisms

  8. Differential Processing of α- and β-Defensin Precursors by Matrix Metalloproteinase-7 (MMP-7)*

    PubMed Central

    Wilson, Carole L.; Schmidt, Amy P.; Pirilä, Emma; Valore, Erika V.; Ferri, Nicola; Sorsa, Timo; Ganz, Tomas; Parks, William C.

    2009-01-01

    Proteolytic processing of defensins is a critical mode of posttranslational regulation of peptide activity. Because mouse α-defensin precursors are cleaved and activated by matrix metalloproteinase-7 (MMP-7), we determined if additional defensin molecules, namely human neutrophil defensin pro-HNP-1 and β-defensins, are targets for MMP-7. We found that MMP-7 cleaves within the pro-domain of the HNP-1 precursor, a reaction that does not generate the mature peptide but produces a 59-amino acid intermediate. This intermediate, which retains the carboxyl-terminal end of the pro-domain, had antimicrobial activity, indicating that the residues important for masking defensin activity reside in the amino terminus of this domain. Mature HNP-1 was resistant to processing by MMP-7 unless the peptide was reduced and alkylated, demonstrating that only the pro-domain of α-defensins is normally accessible for cleavage by this enzyme. From the 47-residue HBD-1 precursor, MMP-7 catalyzed removal of 6 amino acids from the amino terminus. Neither a 39-residue intermediate form of HBD-1 nor the mature 36-residue form of HBD-1 was cleaved by MMP-7. In addition, both pro-HBD-2, with its shorter amino-terminal extension, and pro-HBD-3 were resistant to MMP-7. However, human and mouse β-defensin precursors that lack disulfide bonding contain a cryptic MMP-7-sensitive site within the mature peptide moiety. These findings support and extend accumulating evidence that the native three-dimensional structure of both α- and β-defensins protects the mature peptides against proteolytic processing by MMP-7. We also conclude that sites for MMP-7 cleavage are more common at the amino termini of α-defensin rather than β-defensin precursors, and that catalysis at these sites in α-defensin pro-domains results in acquisition of defensin activity. PMID:19181662

  9. Prognostic significance of matrix metalloproteinase 7 immunohistochemical expression in colorectal cancer: a meta-analysis

    PubMed Central

    Chen, Haiyan; Hu, Yeting; Xiang, Weibo; Cai, Yibo; Wang, Zhanhuai; Xiao, Qian; Liu, Yue; Li, Qiong; Ding, Kefeng

    2015-01-01

    Matrix metalloproteinase 7 (MMP-7) was speculated to have a key role in the development and progression of human cancer. Considerable studies investigated the relationship between its expression and survival in colorectal cancer (CRC), but inconsistent results were obtained. The clinical significance of MMP-7 overexpression in CRC remains controversial. Therefore, in this article, we conducted a meta-analysis to analyze the prognostic value of MMP-7 in CRC. We searched studies in PubMed, Medline, and Web of Science databases until August 2014 to find relevant studies. A total of six high-quality studies met the inclusion criteria and 1631 patients were included in our study. Combined hazard ratios (HRs) suggested that MMP-7 overexpression had an unfavorable impact on overall survival (HR = 1.83, 95% CI: 1.24-2.71). Subgroup and sensitivity analyses further validated the role of MMP-7 as a predictor for prognosis. In conclusion, MMP-7 overexpression detected by immunohistochemistry indicated worse prognosis in CRC and may help to guide clinical therapy. PMID:26064217

  10. The Matrix Metalloproteinase-7 Polymorphism Rs10895304 Is Associated With Increased Recurrence Risk in Patients With Clinically Localized Prostate Cancer

    SciTech Connect

    Jaboin, Jerry J.; Hwang, Misun; Lopater, Zachary; Chen Heidi; Ray, Geoffrey L.; Perez, Carmen; Cai Qiuyin; Wills, Marcia L.; Lu Bo

    2011-04-01

    Purpose: To evaluate whether selected high-risk matrix metalloproteinase-7 single nucleotide polymorphisms influence clinicopathologic outcomes in patients with early-stage prostate cancer. Methods and Materials: Two hundred twelve prostate cancer patients treated with radical prostatectomy were evaluated with a median follow-up of 9.8 years. Genotyping was performed using hybridization with custom-designed allele-specific probes. Three single nucleotide polymorphisms within the matrix metalloproteinase-7 gene were assessed with respect to age at diagnosis, margin status, extracapsular extension, lymph node involvement, recurrence-free survival, and overall survival in paraffin-embedded prostate tissue specimens from patients with early-stage prostate cancer who underwent radical prostatectomy. Results: Rs10895304 was the sole significant polymorphism. The A/G genotype of rs10895304 had a statistically significant association with recurrence-free survival in postprostatectomy patients (p = 0.0061, log-rank test). The frequency of the risk-reducing genotype (A/A) was 74%, whereas that of the risk-enhancing genotypes (A/G and G/G) were 20% and 6%, respectively. Multivariable Cox regression analyses detected a significant association between rs10895304 and recurrences after adjustment for known prognostic factors. The G allele of this polymorphism was associated with increased risk of prostate cancer recurrence (adjusted hazards ratio, 3.375; 95% confidence interval 1.567-7.269; p < 0.001). The other assayed polymorphisms were not significant, and no correlations were made to other clinical variables. Conclusions: The A/G genotype of rs10895304 is predictive of decreased recurrence-free survival in patients with clinically localized prostate cancer. Our data suggest that for this subset of patients, prostatectomy alone may not be adequate for local control. This is a novel and relevant marker that should be evaluated for improved risk stratification of patients who

  11. Matrix Metalloproteinase 7 Is Associated with Symptomatic Lesions and Adverse Events in Patients with Carotid Atherosclerosis

    PubMed Central

    Abbas, Azhar; Aukrust, Pål; Russell, David; Krohg-Sørensen, Kirsten; Almås, Trine; Bundgaard, Dorte; Bjerkeli, Vigdis; Sagen, Ellen Lund; Michelsen, Annika E.; Dahl, Tuva B.; Holm, Sverre; Ueland, Thor

    2014-01-01

    Background Atherosclerosis is a major cause of cerebrovascular disease. Matrix metalloproteinases (MMPs) play an important role in matrix degradation within the atherosclerotic lesion leading to plaque destabilization and ischemic stroke. We hypothesized that MMP-7 could be involved in this process. Methods Plasma levels of MMP-7 were measured in 182 consecutive patients with moderate (50–69%) or severe (≥70%) internal carotid artery stenosis, and in 23 healthy controls. The mRNA levels of MMP-7 were measured in atherosclerotic carotid plaques with different symptomatology, and based on its localization to macrophages, the in vitro regulation of MMP-7 in primary monocytes was examined. Results Our major findings were (i) Patients with carotid atherosclerosis had markedly increased plasma levels of MMP-7 compared to healthy controls, with particularly high levels in patients with recent symptoms (i.e., within the last 2 months). (ii) A similar pattern was found within carotid plaques with markedly higher mRNA levels of MMP-7 than in non-atherosclerotic vessels. Particularly high protein levels of MMP-7 levels were found in those with the most recent symptoms. (iii) Immunhistochemistry showed that MMP-7 was localized to macrophages, and in vitro studies in primary monocytes showed that the inflammatory cytokine tumor necrosis factor-α in combination with hypoxia and oxidized LDL markedly increased MMP-7 expression. (iv) During the follow-up of patients with carotid atherosclerosis, high plasma levels of MMP-7 were independently associated with total mortality. Conclusion Our findings suggest that MMP-7 could contribute to plaque instability in carotid atherosclerosis, potentially involving macrophage-related mechanisms. PMID:24400123

  12. Roles of osteopontin and matrix metalloproteinase-7 in occurrence, progression, and prognosis of nonsmall cell lung cancer

    PubMed Central

    Sun, Ying; Li, Dan; Lv, Xiao-Hong; Hua, Shu-Cheng; Han, Ji-Chang; Xu, Feng; Li, Xian-Dong

    2015-01-01

    Background: This study detected osteopontin (OPN) and matrix metalloproteinase-7 (MMP-7) expressions to explore the roles of OPN and MMP-7 in the occurrence, progression, and prognosis of nonsmall cell lung cancer (NSCLC). Materials and Methods: A retrospective study was conducted on NSCLC tissues (n = 152; case group) and adjacent nonneoplastic lung parenchyma (adjacent to tumor >5 cm; n = 152; control group) collected from 152 NSCLC patients. The protein expressions of OPN and MMP-7 were detected by immunohistochemistry. OPN and MMP-7 messenger RNA (mRNA) expressions were detected by reverse transcription polymerase chain reaction (RT-PCR). Results: The protein and mRNA expressions of OPN and MMP-7 in NSCLC tissues were evidently higher than those in adjacent nonneoplastic lung parenchyma (all P < 0.05). OPN protein and mRNA expression were associated with the degree of differentiation, tumor node metastasis (TNM) staging, and lymph node metastasis in NSCLC (all P < 0.05). MMP-7 protein expression was associated with TNM staging and lymph node metastasis (both P < 0.05) while MMP-7 mRNA expression was associated with the degree of differentiation, TNM staging, and lymph node metastasis (all P < 0.05). A significantly positive relativity was revealed between OPN expression and MMP-7 expression (protein: r = 0.789, P < 0.001; mRNA: r = 0.377, P < 0.001). Lymph node metastasis, TNM staging, OPN, and MMP-7 protein expressions were independent risk factors for the prognosis of NSCLC (all P < 0.05). Conclusion: High MMP-7 and OPN protein expressions are closely related to the occurrence, progression, and prognosis of NSCLC, and can be served as unfavorable prognostic factors for NSCLC. PMID:26958047

  13. Matrilysin/Matrix Metalloproteinase-7(MMP7) Cleavage of Perlecan/HSPG2 Creates A Molecular Switch to Alter Prostate Cancer Cell Behavior

    PubMed Central

    Grindel, B.J.; Martinez, J.R.; Pennington, C.L.; Muldoon, M.; Stave, J.; Chung, L.W.; Farach-Carson, M.C.

    2015-01-01

    Perlecan/HSPG2, a large heparan sulfate (HS) proteoglycan, normally is expressed in the basement membrane (BM) underlying epithelial and endothelial cells. During prostate cancer (PCa) cell invasion, a variety of proteolytic enzymes are expressed that digest BM components including perlecan. An enzyme upregulated in invasive PCa cells, matrilysin/matrix metalloproteinase-7 (MMP-7), was examined as a candidate for perlecan proteolysis both in silico and in vitro. Purified perlecan showed high sensitivity to MMP-7 digestion even when fully decorated with HS or when presented in native context connected with other BM proteins. In both conditions, MMP-7 produced discrete perlecan fragments corresponding to an origin in immunoglobulin (Ig) repeat region domain IV. While not predicted by in silico analysis, MMP-7 cleaved every subpart of recombinantly generated perlecan domain IV. Other enzymes relevant to PCa that were tested had limited ability to cleave perlecan including prostate specific antigen, hepsin, or fibroblast activation protein α. A long C-terminal portion of perlecan domain IV, Dm IV-3, induced a strong clustering phenotype in the metastatic PCa cell lines, PC-3 and C4-2. MMP-7 digestion of Dm IV-3 reverses the clustering effect into one favoring cell dispersion. In a C4-2 Transwell® invasion assay, perlecan-rich human BM extract that was pre-digested with MMP-7 showed loss of barrier function and permitted a greater level of cell penetration than untreated BM extract. We conclude that enzymatic processing of perlecan in the BM or territorial matrix by MMP-7 as occurs in the invasive tumor microenvironment acts as a molecular switch to alter PCa cell behavior and favor cell dispersion and invasiveness. PMID:24833109

  14. Tauroursodeoxycholic acid reduces the invasion of MDA-MB-231 cells by modulating matrix metalloproteinases 7 and 13

    PubMed Central

    Park, Ga-Young; Han, Yu Kyeong; Han, Jeong Yoon; Lee, Chang Geun

    2016-01-01

    Tauroursodeoxycholic acid (TUDCA) is a conjugated form of UDCA that modulates several signaling pathways and acts as a chemical chaperone to relieve endoplasmic reticulum (ER) stress. The present study showed that TUDCA reduced the invasion of the MDA-MB-231 metastatic breast cancer cell line under normoxic and hypoxic conditions using an in vitro invasion assay. Quantitative polymerase chain reaction assay revealed that the reduced invasion following TUDCA treatment was associated with a decreased expression of matrix metalloproteinase (MMP)-7 and −13, which play important roles in invasion and metastasis. Inhibitors and short hairpin RNAs were used to show that the effect of TUDCA in the reduction of invasion appeared to be dependent on the protein kinase RNA-like ER kinase pathway, a downstream ER stress signaling pathway. Thus, TUDCA is a candidate anti-metastatic agent to target the ER stress pathway. PMID:27602168

  15. Association of Matrix Metalloproteinases -7, -8 and -9 and TIMP -1 with Disease Severity in Acute Pancreatitis. A Cohort Study

    PubMed Central

    Nukarinen, Eija; Lindström, Outi; Kuuliala, Krista; Kylänpää, Leena; Pettilä, Ville; Puolakkainen, Pauli; Kuuliala, Antti; Hämäläinen, Mari; Moilanen, Eeva; Repo, Heikki; Hästbacka, Johanna

    2016-01-01

    Objectives Several biomarkers for early detection of severe acute pancreatitis (SAP) have been presented. Matrix metalloproteinases (MMP) and their tissue inhibitors (TIMP) are released early in inflammation. We aimed to assess levels of MMP-7, -8, -9 and TIMP-1 in acute pancreatitis (AP) and explore their ability to detect disease severity. Our second aim was to find an association between MMPs, TIMP and creatinine. Methods We collected plasma samples for MMP-7, -8, -9 and TIMP-1 analyses from 176 patients presenting within 96 h from onset of acute pancreatitis (AP) symptoms. We used samples from 32 control subjects as comparison. The revised Atlanta Classification was utilised to assess severity of disease. Receiver operating characteristic curve analysis and Spearman´s Rho-test were utilised for statistical calculations. Results Compared with controls, patients showed higher levels of all studied markers. MMP-8 was higher in moderately severe AP than in mild AP (p = 0.005) and MMP-8, -9 and TIMP-1 were higher in severe than in mild AP (p<0.001, p = 0.005 and p = 0.019). MMP-8 detected SAP with an AUC of 0.939 [95% CI 0.894–0.984], LR+ 9.03 [5.30–15.39]. MMP-8, -9 and TIMP-1 failed to discern moderately severe AP from SAP. MMP-7 was not different between patient groups. MMP-7 and TIMP-1 correlated weakly with creatinine (Rho = 0.221 and 0.243). MMP-8 might be a useful biomarker in early detection of SAP. PMID:27561093

  16. Measurement of serum carcinoembryonic antigen, carbohydrate antigen 19-9, cytokeratin-19 fragment and matrix metalloproteinase-7 for detecting cholangiocarcinoma: a preliminary case-control study.

    PubMed

    Lumachi, Franco; Lo Re, Giovanni; Tozzoli, Renato; D'Aurizio, Federica; Facomer, Flavio; Chiara, Giordano B; Basso, Stefano M M

    2014-11-01

    Cholangiocarcinoma is a malignant tumor of the liver arising from the bile duct epithelium, accounting for 10-25% of all primary hepatic cancers. The clinical presentation of this tumor is not specific and the diagnosis of early cholangiocarcinoma is difficult, especially in patients with other biliary diseases. Measurement of serum carbohydrate antigen (CA) 19-9 and carcinoembryonic antigen (CEA) are commonly used to monitor response to therapy, but are also useful for confirming the presence of a cholangiocarcinoma. In this setting, other biomarkers have been previously tested, including cytokeratin-19 fragment (CYFRA 21-1) and the matrix metalloproteinase-7 (MMP7). The purpose of this retrospective study was to determine the clinical usefulness of the assay of serum CEA, CA 19-9, CYFRA 21-1 and MMP7, individually and together, as tumor markers for the diagnosis of cholangiocarcinoma. Twenty-four patients (14 men, 10 women, 62.6±8.2 years of age) with histologically-confirmed cholangiocarcinoma (cases) and 25 age- and sex-matched patients with benign liver disease (controls) underwent measurement of these biomarkers. The mean values of all serum markers of patients with cholangiocarcinoma were significantly higher (p<0.01) than that of the controls. No correlation was found between serum tumor markers and total bilirubin, aspartate aminotransferase (AST) and alkaline phosphatase (ALP). The sensitivity, specificity and accuracy were: CEA: 52%, 55%, and 58%; CA 19-9: 74%, 82% and 78%; CYFRA 21-1: 76%, 79% and 78%; MMP7: 78%, 77% and 80%, respectively. The combination of all serum markers afforded 92.0% sensitivity and 96% specificity in detecting cholangiocarcinoma, showing the highest diagnostic accuracy (94%). In conclusion, our preliminary results suggest that the measurement of all four biomarkers together can help in the early detection of cholangiocarcinoma. PMID:25368272

  17. Inhibitory effects of green tea catechins on the activity of human matrix metalloproteinase 7 (matrilysin).

    PubMed

    Oneda, Hiroshi; Shiihara, Misa; Inouye, Kuniyo

    2003-05-01

    Inhibitory effects of green tea catechins and their derivatives on the matrilysin-catalyzed hydrolysis of a synthetic substrate, (7-methoxycoumarin-4-yl)acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2,4-dinitrophenyl)-L-2,3-diamino-propionyl]-L-Ala-L-Arg-NH(2) [MOCAc-PLGL(Dpa)AR], were examined. The 10 catechins examined were classified into three groups according to their inhibition potency. Catechins with a galloyl group at the 3 position, including a major component of green tea catechin, (-)-epigallo-3-catechin gallate [(-)-EGCG], were the most potent inhibitors and inhibited matrilysin in a non-competitive manner with K(i) values of 0.47-1.65 micro M. The inhibitory potency of (-)-EGCG was not influenced by the presence of an inhibitor, ZnCl(2), suggesting that the inhibitions of matrilysin by (-)-EGCG and by ZnCl(2) might be independent of each other. The inhibitory effects of green tea catechins suggest that a high intake of green tea might be effective for the prevention of tumor metastasis and invasion in which matrilysin is concerned. PMID:12801907

  18. Transforming growth factor-B1 and matrix metalloproteinase-7 promoter variants induce risk for Helicobacter pylori-associated gastric precancerous lesions.

    PubMed

    Achyut, B R; Ghoshal, Uday C; Moorchung, Nikhil; Mittal, Balraj

    2009-06-01

    The expression of growth factors, proteolytic enzymes, fibrogenic factors, and cytokines is altered in the Helicobacter pylori-infected gastric mucosa. Therefore, we aimed to evaluate the association of functional promoter variants of transforming growth factor (TGF)-B1 and matrix metalloproteinase (MMP)-7 genes with gastritis and gastric precancerous lesions. After upper gastrointestinal endoscopy, a total of 130 rapid urease test-positive patients with nonulcer dyspepsia were examined for H. pylori infection using modified Giemsa stain and IgG anti-CagA ELISA. All patients and 200 asymptomatic controls were genotyped for TGF-B1 (-509 C>T) and MMP-7 (-181 A>G) substitutions using PCR-RFLP. The genotype and allele frequencies of TGF-B1 and MMP-7 polymorphisms did not differ between patients and controls (p > 0.05). However, the CagA-positive patients with TGF-B1 -509 T allele had higher risk for gastric atrophy (p = 0.026, odds ratio [OR] = 2.38) and lymphoid follicle development (p = 0.028, OR = 2.29). In addition, CagA-positive patients carrying MMP-7 -181 G allele had risk for lymphoid follicle formation (p = 0.027, OR = 2.30). Thus, the present study revealed significant association of functional MMP-7 and TGF-B1 gene variants toward susceptibility to H. pylori-induced precancerous gastric lesions. PMID:19317620

  19. Electrochemical Proteolytic Beacon for Detection of Matrix Metalloproteinase Activities

    SciTech Connect

    Liu, Guodong; Wang, Jun; Wunschel, David S.; Lin, Yuehe

    2006-09-27

    This communication describes a novel method for detecting of matrix metalloproteinase-7 activity using a peptide substrate labeled with a ferrocene reporter. The substrate serves as a selective ‘electrochemical proteolytic beacon’ (EPB) for this metalloproteinase. The EPB is immobilized on a gold electrode surface to enable ‘on-off’ electrochemical signaling capability for uncleaved and cleaved events. The EPB is efficiently and selectively cleaved by MMP-7 as measured by the rate of decrease in redox current of ferrocene. Direct transduction of a signal corresponding to peptide cleavage events into an electronic signal thus provides a simple, sensitive route for detecting the MMP activity. The new method allows for identification of the activity of MMP-7 in concentrations as low as 3.4 pM. The concept can be extended to design multiple peptide substrate labeled with different electroactive reporters for assaying multiple MMPs activities.

  20. Serum Matrix Metalloproteinase-7 is an independent prognostic biomarker in advanced bladder cancer

    PubMed Central

    2014-01-01

    Background Urine markers have been studied extensively but there is a lack of blood prognostic markers in bladder cancer. MMP-7 is produced by stromal cells and by tumor cells and is overexpressed in a variety of epithelial and mesenchymal tumors. In this study, we assessed with an immunoassay we developed, the prognostic value of serum MMP-7 in a series of patients with advanced bladder cancer. Methods Serum samples were collected from 56 patients with advanced bladder cancer who were treated at the Montpellier Cancer Institute between March 2003 and December 2004. MMP-7 was quantified in serum samples by using a homogeneous sandwich fluoroimmunoassay we developed based on the time resolved amplified cryptate emission (TRACE) technology. Results The median overall survival of the study population was 2.2 years (95% CI, 1.4 to 3.0) with 1- and 5-year survival rates of 73% (95% CI, 59% to 82%) and 25% (95% CI, 14% to 37%), respectively. High MMP-7 serum levels were associated with poor survival. Using a cut-off value of 11.5 ng/mL, the median overall survival was 3.0 years (95% CI, 1.5 to 5.1) for patients with MMP-7 serum level <11.5 ng/mL and 1.3 years (95% CI, 0.8 to 2.5) for patients with serum level ?11.5 ng/mL. Multivariate analysis identified high MMP-7 serum concentration as an independent prognostic factor for survival in patients with advanced bladder cancer (R?=?2.1, 95% CI, 1.1 to 4.4). Conclusions Our results show that the MMP-7 serum concentration is an independent prognostic factor in patients with locally advanced and or metastatic bladder cancer. PMID:25984271

  1. Active Matrix OLED Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  2. Enzymatic activation of a matrix metalloproteinase inhibitor†

    PubMed Central

    Major Jourden, Jody L.; Cohen, Seth M.

    2010-01-01

    Matrix metalloproteinase inhibitors (MMPi) possessing a glucose protecting group on the zinc-binding group (ZBG) show a dramatic increase in inhibitory activity upon cleavage by β-glucosidase. PMID:20449263

  3. Low-power SXGA active matrix OLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2009-05-01

    This paper presents the design and first evaluation of a full-color 1280×3×1024 pixel, active matrix organic light emitting diode (AMOLED) microdisplay that operates at a low power of 200mW under typical operating conditions of 35fL, and offers a precision 30-bit RGB digital interface in a compact size (0.78-inch diagonal active area). The new system architecture developed by eMagin for the SXGA microdisplay, based on a separate FPGA driver and AMOLED display chip, offers several benefits, including better power efficiency, cost-effectiveness, more features for improved performance, and increased system flexibility.

  4. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination. PMID:17086359

  5. Modeling Active Mechanosensing in Cell-Matrix Interactions.

    PubMed

    Chen, Bin; Ji, Baohua; Gao, Huajian

    2015-01-01

    Cells actively sense the mechanical properties of the extracellular matrix, such as its rigidity, morphology, and deformation. The cell-matrix interaction influences a range of cellular processes, including cell adhesion, migration, and differentiation, among others. This article aims to review some of the recent progress that has been made in modeling mechanosensing in cell-matrix interactions at different length scales. The issues discussed include specific interactions between proteins, the structure and mechanosensitivity of focal adhesions, the cluster effects of the specific binding, the structure and behavior of stress fibers, cells' sensing of substrate stiffness, and cell reorientation on cyclically stretched substrates. The review concludes by looking toward future opportunities in the field and at the challenges to understanding active cell-matrix interactions. PMID:26098510

  6. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  7. Laminated active matrix organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Sun, Runguang

    2008-02-01

    Laminated active matrix organic light-emitting device (AMOLED) realizing top emission by using bottom-emitting organic light-emitting diode (OLED) structure was proposed. The multilayer structure of OLED deposited in the conventional sequence is not on the thin film transistor (TFT) backplane but on the OLED plane. The contact between the indium tin oxide (ITO) electrode of TFT backplane and metal cathode of OLED plane is implemented by using transfer electrode. The stringent pixel design for aperture ratio of the bottom-emitting AMOLED, as well as special technology for the top ITO electrode of top-emitting AMOLED, is unnecessary in the laminated AMOLED.

  8. Lumican: a new inhibitor of matrix metalloproteinase-14 activity.

    PubMed

    Pietraszek, Katarzyna; Chatron-Colliet, Aurore; Brézillon, Stéphane; Perreau, Corinne; Jakubiak-Augustyn, Anna; Krotkiewski, Hubert; Maquart, François-Xavier; Wegrowski, Yanusz

    2014-11-28

    We previously showed that lumican regulates MMP-14 expression. The aim of this study was to compare the effect of lumican and decorin on MMP-14 activity. In contrast to decorin, the glycosylated form of lumican was able to significantly decrease MMP-14 activity in B16F1 melanoma cells. Our results suggest that a direct interaction occurs between lumican and MMP-14. Lumican behaves as a competitive inhibitor which leads to a complete blocking of the activity of MMP-14. It binds to the catalytic domain of MMP-14 with moderate affinity (KD∼275 nM). Lumican may protect collagen against MMP-14 proteolysis, thus influencing cell-matrix interaction in tumor progression. PMID:25304424

  9. Modeling mechanophore activation within a crosslinked glassy matrix

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith N.; Min, Kyoungmin; Cremar, Lee D.; Degen, Cassandra M.; Martinez, Todd J.; Aluru, Narayana R.; White, Scott R.; Sottos, Nancy R.

    2013-07-01

    Mechanically induced reactivity is a promising means for designing self-reporting materials. Mechanically sensitive chemical groups called mechanophores are covalently linked into polymers in order to trigger specific chemical reactions upon mechanical loading. These mechanophores can be linked either within the backbone or as crosslinks between backbone segments. Mechanophore response is sensitive to both the matrix properties and placement within the matrix, providing two avenues for material design. A model framework is developed to describe reactivity of mechanophores located as crosslinks in a glassy polymer matrix. Simulations are conducted at the molecular and macromolecular scales in order to develop macroscale constitutive relations. The model is developed specifically for the case of spiropyran (SP) in lightly crosslinked polymethylmethacrylate (PMMA). This optically trackable mechanophore (fluorescent when activated) allows the model to be assessed in terms of observed experimental behavior. The force modified potential energy surface (FMPES) framework is used in conjunction with ab initio steered molecular dynamics (MD) simulations of SP to determine the mechanophore kinetics. MD simulations of the crosslinked PMMA structure under shear deformation are used to determine the relationship between macroscale stress and local force on the crosslinks. A continuum model implemented in a finite element framework synthesizes these mechanochemical relations with the mechanical behavior. The continuum model with parameters taken directly from the FMPES and MD analyses under predicts stress-driven activation relative to experimental data. The continuum model, with the physically motivated modification of force fluctuations, provides an accurate prediction for monotonic loading across three decades of strain rate and creep loading, suggesting that the fundamental physics are captured.

  10. Matrix metalloproteinase-1 inhibitory activity of Kaempferia pandurata Roxb.

    PubMed

    Shim, Jae-Seok; Choi, Eun-Jung; Lee, Chan-Woo; Kim, Han-Sung; Hwang, Jae-Kwan

    2009-06-01

    Matrix metalloproteinase (MMP)-1 is a superfamily of zinc-dependent endopeptidases that are capable of degrading all components of the extracellular matrix. Kaempferia pandurata extract (0.01-0.5 microg/mL) significantly reduced the expression of MMP-1 and induced the expression of type 1 procollagen at the protein and mRNA levels in a dose-dependent manner. Ultraviolet (UV)-induced MMP-1 initiates cleavage of fibrillar collagen. Once cleaved by MMP-1, collagen can be further degraded by elevated levels of MMP-3 and MMP-9. It was found that increased MMP-1 expression due to UV irradiation was mediated by activation of mitogen-activated protein kinases such as extracellular-regulated kinase (ERK), Jun N-terminal kinase (JNK), and p38 kinase. Treatment of K. pandurata extract in the range of 0.01-0.5 microg/mL inhibited the UV-induced phosphorylations of ERK, JNK, and p38, respectively. Moreover, inhibition of phosphorylated ERK, JNK, and p38 by K. pandurata extract resulted in decreased c-Fos expression and c-Jun phosphorylation induced by UV light. The results strongly suggest that K. pandurata is potentially useful for the prevention and treatment of skin aging. PMID:19627209

  11. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    PubMed

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  12. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    PubMed Central

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A.; Banerji, Asoke; Perry, J. Jefferson P.

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1′ pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  13. Residual matrix from different separation techniques impacts exosome biological activity

    PubMed Central

    Paolini, Lucia; Zendrini, Andrea; Noto, Giuseppe Di; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales. PMID:27009329

  14. Active-matrix polymer displays made with electroluminescent polymers

    NASA Astrophysics Data System (ADS)

    Yu, Gang; Srdanov, Gordana; Zhang, Belinda; Stevenson, Matthew; Wang, Jian; Chen, Peter; Baggao, Erlinda; Macias, Johnny; Sun, Runguang; McPherson, Charlie; Sant, Paul; Innocenzo, Jeffrey; Stainer, Matthew; O'Regan, Marie B.

    2003-09-01

    Active-matrix organic/polyeric light emitting displays (AMOLEDs/AMPLEDs) are of great potentials for high information content display applications. They offer high brightness, fast response time, high image quality (high contrast, high gray levels and small pixel pitch size) and low power consumption. AMPLEDs are ideal for portable electronic devices such as web-phones, personal data assistants, GPS and handhold computers. AMPLEDs are especially suitable for motion picture applications. Since the image pixels consume power only when they are turned on, and only consume the power necessary for their corresponding brightness, video displays made with AMOLED/AMPLED reduce power consumption and extend display lifetime considerably. Motion picture applications also minimize image retention and optimize display homogeneity. In this presentation, we discuss our recent progress on AMPLEDs and compare their performance with that of AMLCD.

  15. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  16. AMOLED (active matrix OLED) functionality and usable lifetime at temperature

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Prache, Olivier; Jones, Susan

    2005-05-01

    Active Matrix Organic Light Emitting Diode (AMOLED) displays are known to exhibit high levels of performance, and these levels of performance have continually been improved over time with new materials and electronics design. eMagin Corporation developed a manually adjustable temperature compensation circuit with brightness control to allow for excellent performance over a wide temperature range. Night Vision and Electronic Sensors Directorate (US Army) tested the performance and survivability of a number of AMOLED displays in a temperature chamber over a range from -55°C to +85°C. Although device performance of AMOLEDs has always been its strong suit, the issue of usable display lifetimes for military applications continues to be an area of discussion and research. eMagin has made improvements in OLED materials and worked towards the development of a better understanding of usable lifetime for operation in a military system. NVESD ran luminance degradation tests of AMOLED panels at 50°C and at ambient to characterize the lifetime of AMOLED devices. The result is a better understanding of the applicability of AMOLEDs in military systems: where good fits are made, and where further development is needed.

  17. Active matrix OLED for rugged HMD and viewfinder applications

    NASA Astrophysics Data System (ADS)

    Low, Kia; Jones, Susan K.; Prache, Olivier; Fellowes, David A.

    2004-09-01

    We present characterization of a full-color 852x3x600-pixel, active matrix organic light emitting diode (AMOLED) color microdisplay (eMagin Corporation's SVGA+ display) for environmentally demanding applications. The results show that the AMOLED microdisplay can provide cold-start turn-on and operate at extreme temperature conditions, far in excess of non-emissive displays. Correction factors for gamma response of the AMOLED microdisplay as a function of temperature have been determined to permit consistent luminance and contrast from -40°C to over +80°C. Gamma adjustments are made by a simple temperature compensation adjustment of the reference voltages of the AMOLED. The typical room temperature full-on luminance half-life of the SVGA+ full color display organic light emitting diode (OLED) display at over 3,000 hr at a starting luminance at approx. 100 cd/m2, translates to more than 15,000 hr of continuous full-motion video usage, based on a 25% duty cycle at a typical 50-60 cd/m2 commercial luminance level, or over 60,000 hr half-life in monochrome white usage, or over 100,000 hr luminance half-life in monochrome yellow usage at similar operating conditions. Half life at typical night vision luminance levels would be much longer.

  18. Monolithic Active Pixel Matrix with Binary Counters (MAMBO) ASIC

    SciTech Connect

    Khalid, Farah F.; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond J.; /Fermilab

    2010-11-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12 keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  19. Monolithic active pixel matrix with binary counters (MAMBO III) ASIC

    SciTech Connect

    Khalid, Farah; Deptuch, Grzegorz; Shenai, Alpana; Yarema, Raymond; /Fermilab

    2010-01-01

    Monolithic Active Matrix with Binary Counters (MAMBO) is a counting ASIC designed for detecting and measuring low energy X-rays from 6-12keV. Each pixel contains analogue functionality implemented with a charge preamplifier, CR-RC{sup 2} shaper and a baseline restorer. It also contains a window comparator which can be trimmed by 4 bit DACs to remove systematic offsets. The hits are registered by a 12 bit ripple counter which is reconfigured as a shift register to serially output the data from the entire ASIC. Each pixel can be tested individually. Two diverse approaches have been used to prevent coupling between the detector and electronics in MAMBO III and MAMBO IV. MAMBO III is a 3D ASIC, the bottom ASIC consists of diodes which are connected to the top ASIC using {mu}-bump bonds. The detector is decoupled from the electronics by physically separating them on two tiers and using several metal layers as a shield. MAMBO IV is a monolithic structure which uses a nested well approach to isolate the detector from the electronics. The ASICs are being fabricated using the SOI 0.2 {micro}m OKI process, MAMBO III is 3D bonded at T-Micro and MAMBO IV nested well structure was developed in collaboration between OKI and Fermilab.

  20. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus

    PubMed Central

    Dabo, Abdoulaye J.; Cummins, Neville; Eden, Edward; Geraghty, Patrick

    2015-01-01

    Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR. PMID:26284919

  1. Skills, Activities, Matrixing System: Project SAMS. A Curriculum Process for Students with Profound Disabilities. Final Report.

    ERIC Educational Resources Information Center

    Logan, Kent R.; And Others

    Project SAMS (Skills, Activities, Matrixing System) was designed to develop and validate a curriculum process for educating students with profound disabilities. Central to the 3-year curriculum process was matrixing, or integrating, basic developmental skills across multiple functional, age-appropriate, and integrated activities. Components…

  2. Active Matrix Organic Light Emitting Diode (AMOLED) Environmental Test Report

    NASA Technical Reports Server (NTRS)

    Salazar, George A.

    2013-01-01

    This report focuses on the limited environmental testing of the AMOLED display performed as an engineering evaluation by The NASA Johnson Space Center (JSC)-specifically. EMI. Thermal Vac, and radiation tests. The AMOLED display is an active-matrix Organic Light Emitting Diode (OLED) technology. The testing provided an initial understanding of the technology and its suitability for space applications. Relative to light emitting diode (LED) displays or liquid crystal displays (LCDs), AMOLED displays provide a superior viewing experience even though they are much lighter and smaller, produce higher contrast ratio and richer colors, and require less power to operate than LCDs. However, AMOLED technology has not been demonstrated in a space environment. Therefore, some risks with the technology must be addressed before they can be seriously considered for human spaceflight. The environmental tests provided preliminary performance data on the ability of the display technology to handle some of the simulated induced space/spacecraft environments that an AMOLED display will see during a spacecraft certification test program. This engineering evaluation is part of a Space Act Agreement (SM) between The NASA/JSC and Honeywell International (HI) as a collaborative effort to evaluate the potential use of AMOLED technology for future human spaceflight missions- both government-led and commercial. Under this SM, HI is responsible for doing optical performance evaluation, as well as temperature and touch screen studies. The NASA/JSC is responsible for performing environmental testing comprised of EMI, Thermal Vac, and radiation tests. Additionally, as part of the testing, limited optical data was acquired to assess performance as the display was subjected to the induced environments. The NASA will benefit from this engineering evaluation by understanding AMOLED suitability for future use in space as well as becoming a smarter buyer (or developer) of the technology. HI benefits

  3. Interaction matrix uncertainty in active (and adaptive) optics.

    PubMed

    Macmynowski, Douglas G

    2009-04-10

    Uncertainty in the interaction matrix between sensors and actuators can lead to performance degradation or instability in control of segmented mirrors (typically the telescope primary). The interaction matrix is ill conditioned, and thus the position estimate required for control can be highly sensitive to small errors in knowledge of the matrix, due to uncertainty or temporal variations. The robustness to different types of uncertainty is bounded here using the small gain theorem and structured singular values. The control is quite robust to moderate uncertainty in actuator gain, sensor gain, or the ratio of sensor dihedral and height sensitivity. However, the control is extremely sensitive to small errors in geometry, with the maximum error that can be tolerated scaling inversely with the number of segments. The same tools can be applied to adaptive optics; however, the interaction matrix here is better conditioned and so uncertainty is less of an issue, with the tolerable error scaling inversely with the square root of the number of actuators. PMID:19363549

  4. Follow-up: Prospective compound design using the 'SAR Matrix' method and matrix-derived conditional probabilities of activity.

    PubMed

    Gupta-Ostermann, Disha; Hirose, Yoichiro; Odagami, Takenao; Kouji, Hiroyuki; Bajorath, Jürgen

    2015-01-01

    In a previous Method Article, we have presented the 'Structure-Activity Relationship (SAR) Matrix' (SARM) approach. The SARM methodology is designed to systematically extract structurally related compound series from screening or chemical optimization data and organize these series and associated SAR information in matrices reminiscent of R-group tables. SARM calculations also yield many virtual candidate compounds that form a "chemical space envelope" around related series. To further extend the SARM approach, different methods are developed to predict the activity of virtual compounds. In this follow-up contribution, we describe an activity prediction method that derives conditional probabilities of activity from SARMs and report representative results of first prospective applications of this approach. PMID:25949808

  5. Analytical Model of Water Flow in Coal with Active Matrix

    NASA Astrophysics Data System (ADS)

    Siemek, Jakub; Stopa, Jerzy

    2014-12-01

    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  6. Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3.

    PubMed Central

    Cowell, S; Knäuper, V; Stewart, M L; D'Ortho, M P; Stanton, H; Hembry, R M; López-Otín, C; Reynolds, J J; Murphy, G

    1998-01-01

    SW1353 chondrosarcoma cells cultured in the presence of interleukin-1, concanavalin A or PMA secreted procollagenase 3 (matrix metalloproteinase-13). The enzyme was detected in the culture medium by Western blotting using a specific polyclonal antibody raised against recombinant human procollagenase 3. Oncostatin M enhanced the interleukin-1-induced production of procollagenase 3, whereas interleukin-4 decreased procollagenase 3 synthesis. The enzyme was latent except when the cells had been treated with concanavalin A, when a processed form of 48 kDa, which corresponds to the active form, was found in the culture medium and collagenolytic activity was detected by degradation of 14C-labelled type I collagen. The concanavalin A-induced activation of procollagenase 3 coincided with the processing of progelatinase A (matrix metalloproteinase-2) by the cells, as measured by gelatin zymography. In addition, progelatinase B (matrix metalloproteinase-9) was activated when gelatinase A and collagenase 3 were in their active forms. Concanavalin A treatment of SW1353 cells increased the amount of membrane-type-1 matrix metalloproteinase protein in the cell membranes, suggesting that this membrane-bound enzyme participates in an activation cascade involving collagenase 3 and the gelatinases. This cascade was effectively inhibited by tissue inhibitors of metalloproteinases-2 and -3. Tissue inhibitor of metalloproteinases-1, which is a much weaker inhibitor of membrane-type 1 matrix metalloproteinase than tissue inhibitors of metalloproteinases-2 and -3 [Will, Atkinson, Butler, Smith and Murphy (1996) J. Biol. Chem. 271, 17119-17123], was a weaker inhibitor of the activation cascade. PMID:9531484

  7. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    PubMed

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance. PMID:23667866

  8. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. PMID:26706769

  9. pH-Sensitive Microparticles with Matrix-Dispersed Active Agent

    NASA Technical Reports Server (NTRS)

    Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor); Calle, Luz M. (Inventor)

    2014-01-01

    Methods to produce pH-sensitive microparticles that have an active agent dispersed in a polymer matrix have certain advantages over microcapsules with an active agent encapsulated in an interior compartment/core inside of a polymer wall. The current invention relates to pH-sensitive microparticles that have a corrosion-detecting or corrosion-inhibiting active agent or active agents dispersed within a polymer matrix of the microparticles. The pH-sensitive microparticles can be used in various coating compositions on metal objects for corrosion detecting and/or inhibiting.

  10. Mechanophore activation in a crosslinked polymer matrix via instrumented indentation

    NASA Astrophysics Data System (ADS)

    Davis, Chelsea; Forster, Aaron; Woodcock, Jeremiah; Wang, Muzhou; Gilman, Jeffrey; Material Measurement Laboratory Team

    Recent advances in mechanically-activated fluorophores will enable a host of unique scientific challenges and opportunities to be addressed. Several mechanophores (MPs) in polymers have been reported, yet the specific deformation required to activate these molecules in a bulk polymer network has not been sufficiently specified. In an effort to develop the mechano-activation/deformation relationship of a spirolactam-based MP, scratches were applied to a MP-functionalized glassy crosslinked material at varying normal loads and lateral displacement rates. This experimental design allowed strain and strain rate effects to be decoupled. The fluorescence activation was then observed with a laser scanning confocal microscope. Areas of elastic and plastic deformation as well as brittle fracture were observed within each scratch as the normal loading of the indenter increased. The fluorescence intensity increased with increasing strain. Contact mechanics models are employed to demonstrate that relatively high degrees of strain are required to initiate the ring-opening activation transition within the spirolactam-based MP. These self-reporting damage sensors can be incorporated within polymeric coatings to allow real time structural health monitoring for a myriad of applications.

  11. Matrix Rigidity Activates Wnt Signaling through Down-regulation of Dickkopf-1 Protein*

    PubMed Central

    Barbolina, Maria V.; Liu, Yiuying; Gurler, Hilal; Kim, Mijung; Kajdacsy-Balla, Andre A.; Rooper, Lisa; Shepard, Jaclyn; Weiss, Michael; Shea, Lonnie D.; Penzes, Peter; Ravosa, Matthew J.; Stack, M. Sharon

    2013-01-01

    Cells respond to changes in the physical properties of the extracellular matrix with altered behavior and gene expression, highlighting the important role of the microenvironment in the regulation of cell function. In the current study, culture of epithelial ovarian cancer cells on three-dimensional collagen I gels led to a dramatic down-regulation of the Wnt signaling inhibitor dickkopf-1 with a concomitant increase in nuclear β-catenin and enhanced β-catenin/Tcf/Lef transcriptional activity. Increased three-dimensional collagen gel invasion was accompanied by transcriptional up-regulation of the membrane-tethered collagenase membrane type 1 matrix metalloproteinase, and an inverse relationship between dickkopf-1 and membrane type 1 matrix metalloproteinase was observed in human epithelial ovarian cancer specimens. Similar results were obtained in other tissue-invasive cells such as vascular endothelial cells, suggesting a novel mechanism for functional coupling of matrix adhesion with Wnt signaling. PMID:23152495

  12. Extracellular matrix is a source of mitogenically active platelet-derived growth factor.

    PubMed

    Field, S L; Khachigian, L M; Sleigh, M J; Yang, G; Vandermark, S E; Hogg, P J; Chesterman, C N

    1996-08-01

    Platelet-derived growth factor (PDGF) is a chemotactic and mitogenic agent for fibroblasts and smooth muscle cells and plays a key role in the development of atherosclerotic lesions. PDGF is produced by a number of normal and transformed cell types and occurs as homo- or heterodimers of A and B polypeptide chains. Using Chinese hamster ovary (CHO) cells transfected with various forms of PDGF, we have previously shown that PDGF A(s) (short splice version) is secreted, PDGF A(l) (long splice version) predominantly extracellular matrix-associated, and PDGF B divided between medium, cells, and matrix. In the present study we have demonstrated the mitogenic activity of matrix-localized PDGF in artificial and more physiologically relevant models by culturing Balb/c-3T3 cells (3T3), human foreskin fibroblasts (HFF), and rabbit aortic smooth muscle cells (SMC) on extracellular matrix (ECM) laid down by PDGF-expressing CHO cells and human umbilical vein endothelial cells (HUVEC). These cells responded to the local growth stimulus of PDGF-containing CHO ECM and HUVEC ECM. We showed that 3T3 cells required proteolytic activity to utilize matrix-localized PDGF, as aprotinin and epsilon-ACA inhibited growth and 3T3 cells were shown to possess plasminogen activator activity. HFF and SMC did not appear to require proteolytic activity (including metalloproteinase and serine protease activity) as a prerequisite for mitogenesis but were able to access immobilized PDGF by contact with the matrix. An understanding of the mechanisms whereby the utilization of stored PDGF is controlled in situations of excessive cellular proliferation will aid in the development of therapy for these conditions. PMID:8707868

  13. Matrix fibronectin disruption and altered endothelial cell adhesion induced by activated leukocytes

    SciTech Connect

    Vincent, P.; Richards, P.; Saba, T.; DelVecchio, P.

    1986-03-01

    Sequestration of activated leukocytes (PMN) within the lung may contribute to pulmonary vascular injury following trauma, sepsis, or intravascular coagulation. Monolayers of cultured rat endothelial cells were utilized to evaluate the effect of activated PMNs on endothelial cell attachment and the extracellular fibronectin matrix over a 4 hr incubation interval. Rat endothelial cells were identified by immunofluorescent staining of Factor VIII R:Ag. Endothelial cells were labeled with /sup 51/Cr in order to establish a cell injury assay in which the release of pelletable (cell associated) or non-pelletable activity was measured in the media. PMN activation was verified by chemiluminescence activity. Following phorbol myristate acetate (PMA) the leukocytes aggregated, chemiluminesced, and caused detachment of /sup 51/Cr endothelial cells. Endothelial detachment increased as a function of time with a plateau by 3 hrs. Immunofluorescent analysis of extracellular fibronectin in endothelial cell cultures revealed disruption of the fibrillar matrix fibronectin in association with endothelial cell disadhesion. Matrix fibronectin disruption was not seen with PMNs or PMA alone. Thus, disruption of the fibronectin matrix by released proteases may contribute to endothelial cell detachment.

  14. Kinematic matrix theory and universalities in self-propellers and active swimmers.

    PubMed

    Nourhani, Amir; Lammert, Paul E; Borhan, Ali; Crespi, Vincent H

    2014-06-01

    We describe an efficient and parsimonious matrix-based theory for studying the ensemble behavior of self-propellers and active swimmers, such as nanomotors or motile bacteria, that are typically studied by differential-equation-based Langevin or Fokker-Planck formalisms. The kinematic effects for elementary processes of motion are incorporated into a matrix, called the "kinematrix," from which we immediately obtain correlators and the mean and variance of angular and position variables (and thus effective diffusivity) by simple matrix algebra. The kinematrix formalism enables us recast the behaviors of a diverse range of self-propellers into a unified form, revealing universalities in their ensemble behavior in terms of new emergent time scales. Active fluctuations and hydrodynamic interactions can be expressed as an additive composition of separate self-propellers. PMID:25019773

  15. Fluorescent and Bioluminescent Nanoprobes for In Vitro and In Vivo Detection of Matrix Metalloproteinase Activity.

    PubMed

    Lee, Hawon; Kim, Young-Pil

    2015-06-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade the extracellular matrix (ECM) and regulate the extracellular microenvironment. Despite the significant role that MMP activity plays in cell-cell and cell-ECM interactions, migration, and differentiation, analyses of MMPs in vitro and in vivo have relied upon their abundance using conventional immunoassays, rather than their enzymatic activities. To resolve this issue, diverse nanoprobes have emerged and proven useful as effective activity-based detection tools. Here, we review the recent advances in luminescent nanoprobes and their applications in in vitro diagnosis and in vivo imaging of MMP activity. Nanoprobes with the purpose of sensing MMP activity consist of recognition and detection units, which include MMP-specific substrates and luminescent (fluorescent or bioluminescent) nanoparticles, respectively. With further research into improvement of the optical performance, it is anticipated that luminescent nanoprobes will have great potential for the study of the functional roles of proteases in cancer biology and nanomedicine. PMID:25817215

  16. Optimisation of gain matrix with UZAWA algorithm—theory and application to an active panel

    NASA Astrophysics Data System (ADS)

    Arrouf, Mhamed; Charon, Willy; Peyraut, François

    2004-03-01

    This paper deals with the gain matrix optimisation in the framework of adaptive mechanical systems with LQG control. The purpose of this optimisation is to provide to the engineer the theoretical tools enabling him to position actuators as well as possible on a structure. It was carried out using a conventional UZAWA algorithm which was adapted to the active system context.

  17. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2.

    PubMed

    Jerrell, Rachel J; Parekh, Aron

    2016-04-01

    ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis. PMID:26826790

  18. Lightweight, Actively Cooled Ceramic Matrix Composite Thrustcells Successfully Tested in Rocket Combustion Lab

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Elam, Sandra K.; Effinger, Michael R.

    2002-01-01

    In a joint effort between the NASA Glenn Research Center and the NASA Marshall Space Flight Center, regeneratively cooled ceramic matrix composite (CMC) thrustcells were developed and successfully tested in Glenn's Rocket Combustion Lab. Cooled CMC's offer the potential for substantial weight savings over more traditional metallic parts. Two CMC concepts were investigated. In the first of these concepts, an innovative processing approach utilized by Hyper-Therm, Inc., allowed woven CMC coolant containment tubes to be incorporated into the complex thruster design. In this unique design, the coolant passages had varying cross-sectional shapes but maintained a constant cross-sectional area along the length of the thruster. These thrusters were silicon carbide matrix composites reinforced with silicon carbide fibers. The second concept, which was supplied by Ceramic Composites, Inc., utilized copper cooling coils surrounding a carbon-fiber-reinforced carbon matrix composite. In this design, a protective gradient coating was applied to the inner thruster wall. Ceramic Composites, Inc.'s, method of incorporating the coating into the fiber and matrix eliminated the spallation problem often observed with thermal barrier coatings during hotfire testing. The focus of the testing effort was on screening the CMC material's capabilities as well as evaluating the performance of the thermal barrier or fiber-matrix interfacial coatings. Both concepts were hot-fire tested in gaseous O2/H2 environments. The test matrix included oxygen-to-fuel ratios ranging from 1.5 to 7 with chamber pressures to 400 psi. Steady-state internal wall temperatures in excess of 4300 F were measured in situ for successful 30-sec test runs. Photograph of actively cooled composite thrustcell fabricated by Hyper-Therm is shown. The thrustcell is a silicon-carbide-fiber-reinforced silicon carbide matrix composite with woven cooling channels. The matrix is formed via chemical vapor infiltration. Photograph of

  19. Dimerization of matrix metalloproteinase-2 (MMP-2): functional implication in MMP-2 activation.

    PubMed

    Koo, Bon-Hun; Kim, Yeon Hyang; Han, Jung Ho; Kim, Doo-Sik

    2012-06-29

    Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2. PMID:22577146

  20. Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis.

    PubMed

    Garratt, Luke W; Sutanto, Erika N; Ling, Kak-Ming; Looi, Kevin; Iosifidis, Thomas; Martinovich, Kelly M; Shaw, Nicole C; Kicic-Starcevich, Elizabeth; Knight, Darryl A; Ranganathan, Sarath; Stick, Stephen M; Kicic, Anthony

    2015-08-01

    Neutrophil elastase is the most significant predictor of bronchiectasis in early-life cystic fibrosis; however, the causal link between neutrophil elastase and airway damage is not well understood. Matrix metalloproteinases (MMPs) play a crucial role in extracellular matrix modelling and are activated by neutrophil elastase. The aim of this study was to assess if MMP activation positively correlates with neutrophil elastase activity, disease severity and bronchiectasis in young children with cystic fibrosis.Total MMP-1, MMP-2, MMP-7, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 levels were measured in bronchoalveolar lavage fluid collected from young children with cystic fibrosis during annual clinical assessment. Active/pro-enzyme ratio of MMP-9 was determined by gelatin zymography. Annual chest computed tomography imaging was scored for bronchiectasis.A higher MMP-9/TIMP-1 ratio was associated with free neutrophil elastase activity. In contrast, MMP-2/TIMP-2 ratio decreased and MMP-1 and MMP-7 were not detected in the majority of samples. Ratio of active/pro-enzyme MMP-9 was also higher in the presence of free neutrophil elastase activity, but not infection. Across the study cohort, both MMP-9/TIMP-1 and active MMP-9 were associated with progression of bronchiectasis.Both MMP-9/TIMP-1 and active MMP-9 increased with free neutrophil elastase and were associated with bronchiectasis, further demonstrating that free neutrophil elastase activity should be considered an important precursor to cystic fibrosis structural disease. PMID:25929954

  1. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders

    PubMed Central

    MURAKAMI, Kohei; MAEDA, Shingo; YONEZAWA, Tomohiro; MATSUKI, Naoaki

    2016-01-01

    The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes. PMID:26902805

  2. A nutrient mixture reduces the expression of matrix metalloproteinases in an animal model of spinal cord injury by modulating matrix metalloproteinase-2 and matrix metalloproteinase-9 promoter activities

    PubMed Central

    ZHANG, HONGQI; CHU, GE; PAN, CHAO; HU, JIANZHONG; GUO, CHAOFENG; LIU, JINYANG; WANG, YUXIANG; WU, JIANHUANG

    2014-01-01

    This study aimed to determine whether a novel nutrient mixture (NM), composed of lysine, ascorbic acid, proline, green tea extracts and other micronutrients, attenuates impairments induced by spinal cord injury (SCI) and to investigate the related molecular mechanisms. A mouse model of SCI was established. Thirty-two mice were divided into four groups. The sham group received vehicle only. The SCI groups were treated orally with saline (saline group), a low dose (500 μg 3 times/day) of NM (NM-LD group) or a high dose (2,000 μg 3 times/day) of NM (NM-HD group). The levels of mouse hindlimb movement were determined every day in the first week post-surgery. The protein expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by western blotting. Wild-type and mutant MMP-2- and MMP-9-directed luciferase constructs were generated and their luciferase activities were determined. NM significantly facilitated the recovery of hindlimb movement of the mice in comparison to that in the saline group. The expression levels of MMP-2 in the NM-LD and NM-HD groups were decreased by ~50% compared with the saline group as indicated by western blotting results. The expression levels of MMP-9 in the NM-LD and NM-HD groups were decreased to ~25 and ~10%, respectively. These results suggest that NM significantly inhibits the expression of MMP-2 and MMP-9 proteins. Reverse transcription quantitative polymerase chain reaction results indicated that NM reduced the levels of MMP-2 and MMP-9 mRNA. Furthermore, the luciferase results indicated that site-directed mutagenesis comprising a −1306 C to T (C/T) base change in the MMP-2 promoter and a −1562 C/T base change in the MMP-9 promoter abolished the inhibitory effects of NM on MMP-2 and MMP-9 promoters. These results suggest that NM attenuates SCI-induced impairments in mice movement by negatively affecting the promoter activity of MMP-2 and MMP-9 genes and thus decreasing the expression of MMP-2 and MMP-9

  3. Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation.

    PubMed Central

    Stack, M S; Gately, S; Bafetti, L M; Enghild, J J; Soff, G A

    1999-01-01

    Angiostatin, a kringle-containing fragment of plasminogen, is a potent inhibitor of angiogenesis. The mechanism(s) responsible for the anti-angiogenic properties of angiostatin are unknown. We now report that human angiostatin blocks plasmin(ogen)-enhanced in vitro invasion of tissue plasminogen activator (t-PA)-producing endothelial and melanoma cells. Kinetic analyses demonstrated that angiostatin functions as a non-competitive inhibitor of extracellular-matrix (ECM)-enhanced, t-PA-catalysed plasminogen activation, with a Ki of 0.9+/-0.03 microM. This mechanism suggests that t-PA has a binding site for the inhibitor angiostatin, as well as for its substrate plasminogen that, when occupied, prevents ternary complex formation between t-PA, plasminogen and matrix protein. Direct binding experiments confirmed that angiostatin bound to t-PA with an apparent Kd [Kd(app)] of 6.7+/-0.7 nM, but did not bind with high affinity to ECM proteins. Together, these data suggest that angiostatin in the cellular micro-environment can inhibit matrix-enhanced plasminogen activation, resulting in reduced invasive activity, and suggest a biochemical mechanism whereby angiostatin-mediated regulation of plasmin formation could influence cellular migration and invasion. PMID:10229661

  4. Virus activated filopodia promote human papillomavirus type 31 uptake from the extracellular matrix

    PubMed Central

    Smith, Jessica L.; Lidke, Diane S.; Ozbun, Michelle A.

    2011-01-01

    Human papillomaviruses (HPVs), etiological agents of epithelial tumors and cancers, initiate infection of basal human keratinocytes (HKs) facilitated by wounding. Virions bind to HKs and their secreted extracellular matrix (ECM), but molecular roles for wounding or ECM binding during infection are unclear. Herein we demonstrate HPV31 activates signals promoting cytoskeletal rearrangements and virion transport required for internalization and infection. Activation of tyrosine and PI3 kinases precedes induction of filopodia whereon virions are transported toward the cell body. Coupled with loss of ECM bound virions this supports a model whereby virus activated filopodial transport contributes to increased and protracted virion uptake into susceptible cells. PMID:18834609

  5. Communication: Active space decomposition with multiple sites: Density matrix renormalization group algorithm

    SciTech Connect

    Parker, Shane M.; Shiozaki, Toru

    2014-12-07

    We extend the active space decomposition method, recently developed by us, to more than two active sites using the density matrix renormalization group algorithm. The fragment wave functions are described by complete or restricted active-space wave functions. Numerical results are shown on a benzene pentamer and a perylene diimide trimer. It is found that the truncation errors in our method decrease almost exponentially with respect to the number of renormalization states M, allowing for numerically exact calculations (to a few μE{sub h} or less) with M = 128 in both cases. This rapid convergence is because the renormalization steps are used only for the interfragment electron correlation.

  6. Urinary matrix metalloproteinase activities: biomarkers for plaque angiogenesis and nephropathy in diabetes.

    PubMed

    McKittrick, Ian B; Bogaert, Yolanda; Nadeau, Kristen; Snell-Bergeon, Janet; Hull, Amber; Jiang, Tao; Wang, Xiaoxin; Levi, Moshe; Moulton, Karen S

    2011-12-01

    Diabetic complications of nephropathy and accelerated atherosclerosis are associated with vascular remodeling and dysregulated angiogenesis. Matrix metalloproteinases (MMP) modify extracellular matrix during vascular remodeling and are excreted in urine of patients with vascular malformation or tumor angiogenesis. We hypothesized that urinary MMP activities would be sensitive biomarkers for vascular remodeling in diabetic complications. Activities of MMP-2, MMP-9, and its complex with neutrophil gelatinase-associated lipocalin (NGAL/MMP-9) were measured by substrate gel zymography in urine from nondiabetic (ND) and type 1 diabetic (T1D) rodents that were susceptible to both T1D-induced plaque angiogenesis and nephropathy, or nephropathy alone. Additionally, these urine activities were measured in ND and T1D adolescents. Urinary MMP-9, MMP-2, and NGAL/MMP-9 activities were increased and more prevalent in T1D compared with ND controls. Urinary MMP-2 activity was detected in mice with T1D-induced plaque neovascularization. In nephropathy models, urinary NGAL/MMP-9 and MMP-9 activities appeared before onset of albuminuria, whereas MMP-2 was absent or delayed. Finally, urinary MMP activities were increased in adolescents with early stages of T1D. Urinary MMP activities may be sensitive, noninvasive, and clinically useful biomarkers for predicting vascular remodeling in diabetic renal and vascular complications. PMID:21921021

  7. Urinary matrix metalloproteinase activities: biomarkers for plaque angiogenesis and nephropathy in diabetes

    PubMed Central

    McKittrick, Ian B.; Bogaert, Yolanda; Nadeau, Kristen; Snell-Bergeon, Janet; Hull, Amber; Jiang, Tao; Wang, Xiaoxin; Levi, Moshe

    2011-01-01

    Diabetic complications of nephropathy and accelerated atherosclerosis are associated with vascular remodeling and dysregulated angiogenesis. Matrix metalloproteinases (MMP) modify extracellular matrix during vascular remodeling and are excreted in urine of patients with vascular malformation or tumor angiogenesis. We hypothesized that urinary MMP activities would be sensitive biomarkers for vascular remodeling in diabetic complications. Activities of MMP-2, MMP-9, and its complex with neutrophil gelatinase-associated lipocalin (NGAL/MMP-9) were measured by substrate gel zymography in urine from nondiabetic (ND) and type 1 diabetic (T1D) rodents that were susceptible to both T1D-induced plaque angiogenesis and nephropathy, or nephropathy alone. Additionally, these urine activities were measured in ND and T1D adolescents. Urinary MMP-9, MMP-2, and NGAL/MMP-9 activities were increased and more prevalent in T1D compared with ND controls. Urinary MMP-2 activity was detected in mice with T1D-induced plaque neovascularization. In nephropathy models, urinary NGAL/MMP-9 and MMP-9 activities appeared before onset of albuminuria, whereas MMP-2 was absent or delayed. Finally, urinary MMP activities were increased in adolescents with early stages of T1D. Urinary MMP activities may be sensitive, noninvasive, and clinically useful biomarkers for predicting vascular remodeling in diabetic renal and vascular complications. PMID:21921021

  8. Activation of AMPK Prevents Monocrotaline-Induced Extracellular Matrix Remodeling of Pulmonary Artery

    PubMed Central

    Li, Shaojun; Han, Dong; Zhang, Yonghong; Xie, Xinming; Ke, Rui; Zhu, Yanting; Liu, Lu; Song, Yang; Yang, Lan; Li, Manxiang

    2016-01-01

    Background The current study was performed to investigate the effect of adenosine monophosphate (AMP) – activated protein kinase (AMPK) activation on the extracellular matrix (ECM) remodeling of pulmonary arteries in pulmonary arterial hypertension (PAH) and to address its potential mechanisms. Material/Methods PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) into Sprague-Dawley rats. Metformin (MET) was administered to activate AMPK. Immunoblotting was used to determine the phosphorylation and expression of AMPK and expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Gelatin zymography was performed to determine the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9. Results Activation of AMPK by MET significantly reduced the right ventricle systolic pressure and the right ventricular hypertrophy in MCT-induced rat PAH model, and partially inhibited the ECM remodeling of pulmonary arteries. These effects were coupled with the decrease of MMP-2/9 activity and TIMP-1 expression. Conclusions This study suggests that activation of AMPK benefits PAH by inhibiting ECM remodeling of pulmonary arteries. Enhancing AMPK activity might have potential value in clinical treatment of PAH. PMID:26978596

  9. Responsibility modulates pain-matrix activation elicited by the expressions of others in pain

    PubMed Central

    Cui, Fang; Abdelgabar, Abdel-Rahman; Keysers, Christian; Gazzola, Valeria

    2015-01-01

    Here we examine whether brain responses to dynamic facial expressions of pain are influenced by our responsibility for the observed pain. Participants played a flanker task with a confederate. Whenever either erred, the confederate was seen to receive a noxious shock. Using functional magnetic resonance imaging, we found that regions of the functionally localized pain-matrix of the participants (the anterior insula in particular) were activated most strongly when seeing the confederate receive a noxious shock when only the participant had erred (and hence had full responsibility). When both or only the confederate had erred (i.e. participant's shared or no responsibility), significantly weaker vicarious pain-matrix activations were measured. PMID:25800210

  10. Flexible active-matrix displays and shift registers based on solution-processed organic transistors.

    PubMed

    Gelinck, Gerwin H; Huitema, H Edzer A; van Veenendaal, Erik; Cantatore, Eugenio; Schrijnemakers, Laurens; van der Putten, Jan B P H; Geuns, Tom C T; Beenhakkers, Monique; Giesbers, Jacobus B; Huisman, Bart-Hendrik; Meijer, Eduard J; Benito, Estrella Mena; Touwslager, Fred J; Marsman, Albert W; van Rens, Bas J E; de Leeuw, Dago M

    2004-02-01

    At present, flexible displays are an important focus of research. Further development of large, flexible displays requires a cost-effective manufacturing process for the active-matrix backplane, which contains one transistor per pixel. One way to further reduce costs is to integrate (part of) the display drive circuitry, such as row shift registers, directly on the display substrate. Here, we demonstrate flexible active-matrix monochrome electrophoretic displays based on solution-processed organic transistors on 25-microm-thick polyimide substrates. The displays can be bent to a radius of 1 cm without significant loss in performance. Using the same process flow we prepared row shift registers. With 1,888 transistors, these are the largest organic integrated circuits reported to date. More importantly, the operating frequency of 5 kHz is sufficiently high to allow integration with the display operating at video speed. This work therefore represents a major step towards 'system-on-plastic'. PMID:14743215

  11. In vivo detecting matrix metalloproteinase (MMP) activity by a genetically engineered fluorescent probe

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Zhihong; Su, Ting; Luo, Qingming

    2007-02-01

    Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) enhances tumor invasion and metastasis. To monitor MMP activity, we constructed plasmid that encoded a fluorescent sensor DC, in which an MMP substrate site (MSS) is sandwiched between DsRed2 and ECFP. MMPs are secretory proteins, only acting on the outside of cells; hence, an expressing vector was used that displayed the fluorescent sensor on the cellular surface. The DC was expressed in cells with high secretory MMP, so MSS was cleaved by MMP. Also, GM6001, an MMP inhibitor, causes DsRed2 signals to increase in living cells and on the chick embryo chorioallantoic membrane (CAM). Thus, this fluorescent sensor was able to sensitively monitor MMP activation in vivo. Potential applications for this sensor include high-throughput screening for MMP inhibitors for anti-cancer research, and detailed analysis of the effects of MMP inhibitors.

  12. Proton Channel Activity of Influenza A Virus Matrix Protein 2 Contributes to Autophagy Arrest

    PubMed Central

    Ren, Yizhong; Feng, Liqiang; Pan, Weiqi; Li, Liang; Wang, Qian; Li, Jiashun; Li, Na; Han, Ling; Zheng, Xuehua; Niu, Xuefeng; Sun, Caijun

    2015-01-01

    Influenza A virus infection can arrest autophagy, as evidenced by autophagosome accumulation in infected cells. Here, we report that this autophagosome accumulation can be inhibited by amantadine, an antiviral proton channel inhibitor, in amantadine-sensitive virus infected cells or cells expressing influenza A virus matrix protein 2 (M2). Thus, M2 proton channel activity plays a role in blocking the fusion of autophagosomes with lysosomes, which might be a key mechanism for arresting autophagy. PMID:26468520

  13. Implementation of advanced matrix corrections for active interrogation of waste drums using the CTEN instrument

    SciTech Connect

    Melton, S.; Estep, R.; Hollas, C.

    1998-12-31

    The combined thermal/epithermal neutron instrument (CTEN) was designed at Los Alamos to improve measurement accuracy and mitigate self shielding effects inherent in the differential dieaway technique (DDT). A major goal in this research effort has been the development of a calibration technique that incorporates recently developed matrix and self-shielding corrections using data generated from additional detectors and new acquisition techniques. A comprehensive data set containing both active and passive measurements was generated using 26 different matrices and comprising a total of 1,400 measurements. In all, 31 flux-and-matrix-dependent parameters, 24 positional parameters, two dieaway times, and a correlated ratio were determined from each of the over 1,400 measurements. A reduced list of matrix indicators, prioritized using the alternating conditional expectation (ACE) algorithm, was used to train a neural network using a generalized regression technique (GRNN) to determine matrix- and position-corrected calibration factors. This paper describes the experimental, analytical, and empirical techniques used to determine the corrected calibration factor for an unknown waste drum. Results from a range of cases are compared with those obtained using a mobile DDT instrument and traditional DDT algorithms.

  14. Transcriptional Activation of Human Matrix Metalloproteinase-9 Gene Expression by Multiple Coactivators

    PubMed Central

    Zhao, Xueyan; Benveniste, Etty N.

    2008-01-01

    Summary Matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme for matrix proteins, chemokines and cytokines, is a major target in cancer and autoimmune diseases since it is aberrantly upregulated. To control MMP-9 expression in pathological conditions, it is necessary to understand the regulatory mechanisms of MMP-9 expression. MMP-9 gene expression is regulated primarily at the transcriptional level. In this study, we investigated the role of multiple coactivators in regulating MMP-9 transcription. We demonstrate that multiple transcriptional coactivators are involved in MMP-9 promoter activation, including CBP/p300, PCAF, CARM1 and GRIP1. Furthermore, enhancement of MMP-9 promoter activity requires the histone acetyltransferase activity of PCAF but not that of CBP/p300, and the methyltransferase activity of CARM1. More importantly, these coactivators are not only able to activate MMP-9 promoter activity independently, but also function in a synergistic manner. Significant synergy was observed among CARM1, p300 and GRIP1, which is dependent on the interaction of p300 and CARM1 with the AD1 and AD2 domains of GRIP1, respectively. This suggests the formation of a ternary coactivator complex on the MMP-9 promoter. Chromatin immunoprecipitation assays demonstrate that these coactivators associate with the endogenous MMP-9 promoter, and that siRNA knockdown of expression of these coactivators reduces endogenous MMP-9 expression. Taken together, these studies demonstrate a new level of transcriptional regulation of MMP-9 expression by the cooperative action of coactivators. PMID:18790699

  15. Effects of ultrasound on the catalytic activity of matrix-bound glucoamylase.

    PubMed

    Schmidt, P; Rosenfeld, E; Millner, R; Schellenberger, A

    1987-09-01

    The effect of ultrasonic waves on the activity of glucoamylase bound to a porous polystyrene matrix is investigated in this Paper. The immobilized enzyme was sonated in a flow cuvette at frequencies between 1 and 11 MHz and sound intensities up to 5 kW m-2. The effect was measured as a function of the type and concentration of the substrate, carrier particle size, flow rate of the substrate solution and ultrasonic frequency. The activity increase is discussed in terms of a possible ultrasonic mechanism. PMID:3116735

  16. Fluorescent and bioluminescent nanoprobes for in vitro and in vivo detection of matrix metalloproteinase activity

    PubMed Central

    Lee, Hawon; Kim, Young-Pil

    2015-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that degrade the extracellular matrix (ECM) and regulate the extracellular microenvironment. Despite the significant role that MMP activity plays in cell-cell and cell-ECM interactions, migration, and differentiation, analyses of MMPs in vitro and in vivo have relied upon their abundance using conventional immunoassays, rather than their enzymatic activities. To resolve this issue, diverse nanoprobes have emerged and proven useful as effective activity-based detection tools. Here, we review the recent advances in luminescent nanoprobes and their applications in in vitro diagnosis and in vivo imaging of MMP activity. Nanoprobes with the purpose of sensing MMP activity consist of recognition and detection units, which include MMP-specific substrates and luminescent (fluorescent or bioluminescent) nanoparticles, respectively. With further research into improvement of the optical performance, it is anticipated that luminescent nanoprobes will have great potential for the study of the functional roles of proteases in cancer biology and nanomedicine. [BMB Reports 2015; 48(6): 313-318] PMID:25817215

  17. Near Infrared Optical Proteolytic Beacons for In Vivo Imaging of Matrix Metalloproteinase Activity

    PubMed Central

    McIntyre, J. Oliver; Scherer, Randy L.; Matrisian, Lynn M.

    2010-01-01

    The exuberant expression of proteinases by tumor cells has long been associated with the breakdown of the extracellular matrix, tumor invasion, and metastasis to distant organs. There is both epidemiological and experimental data that support a causative role for proteinases of the matrix metalloproteinase (MMP) family in tumor progression. Optical imaging techniques provide an extraordinary opportunity for non-invasive “molecular imaging” of tumor-associated proteolytic activity. The application of optical proteolytic beacons for the detection of specific proteinase activities associated with tumors has several potential purposes: 1) Detection of small, early-stage tumors with increased sensitivity due to the catalytic nature of proteolytic activity, 2) Diagnosis and Prognosis to distinguished tumors that require particularly aggressive therapy or those that will not benefit from therapy, 3) Identification of tumors appropriate for specific anti-proteinase therapeutics and optimization of drug and dose based on determination of target modulation, and 4) as an indicator of efficacy of proteolytically-activated pro-drugs. This chapter describes the synthesis, characterization, and application of reagents that use visible and near infrared fluorescence resonance energy transfer (FRET) fluorophore pairs to detect and measure MMP-referable proteolytic activity in tumors in mouse models of cancer. PMID:20135290

  18. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma.

    PubMed

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine osteosarcomas, whereas cat samples more often displayed moderate levels. High levels of pro-MMP9, pro-MMP2, and active MMP2 were detected by gelatin zymography in both species, with significantly higher values for active MMP2 in canine osteosarcoma. These findings indicate that MMP2 is probably involved in canine and feline osteosarcoma and their expression and activity could be associated with the different metastatic behavior of canine and feline osteosarcoma. PMID:26733734

  19. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma

    PubMed Central

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine osteosarcomas, whereas cat samples more often displayed moderate levels. High levels of pro-MMP9, pro-MMP2, and active MMP2 were detected by gelatin zymography in both species, with significantly higher values for active MMP2 in canine osteosarcoma. These findings indicate that MMP2 is probably involved in canine and feline osteosarcoma and their expression and activity could be associated with the different metastatic behavior of canine and feline osteosarcoma. PMID:26733734

  20. Classically Activated Macrophages Use Stable Microtubules for Matrix Metalloproteinase-9 (MMP-9) Secretion*

    PubMed Central

    Hanania, Raed; Song Sun, He; Xu, Kewei; Pustylnik, Sofia; Jeganathan, Sujeeve; Harrison, Rene E.

    2012-01-01

    As major effector cells of the innate immune response, macrophages must adeptly migrate from blood to infected tissues. Endothelial transmigration is accomplished by matrix metalloproteinase (MMP)-induced degradation of basement membrane and extracellular matrix components. The classical activation of macrophages with LPS and IFN-γ causes enhanced microtubule (MT) stabilization and secretion of MMPs. Macrophages up-regulate MMP-9 expression and secretion upon immunological challenge and require its activity for migration during the inflammatory response. However, the dynamics of MMP-9 production and intracellular distribution as well as the mechanisms responsible for its trafficking are unknown. Using immunofluorescent imaging, we localized intracellular MMP-9 to small Golgi-derived cytoplasmic vesicles that contained calreticulin and protein-disulfide isomerase in activated RAW 264.7 macrophages. We demonstrated vesicular organelles of MMP-9 aligned along stable subsets of MTs and showed that selective modulation of MT dynamics contributes to the enhanced trafficking of MMP-9 extracellularly. We found a Rab3D-dependent association of MMP-9 vesicles with the molecular motor kinesin, whose association with the MT network was greatly enhanced after macrophage activation. Finally, we implicated kinesin 5B and 3B isoforms in the effective trafficking of MMP-9 extracellularly. PMID:22270361

  1. Active metal-matrix composites with embedded smart materials by ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Hahnlen, Ryan; Dapino, Marcelo J.

    2010-04-01

    This paper presents the development of active aluminum-matrix composites manufactured by Ultrasonic Additive Manufacturing (UAM), an emerging rapid prototyping process based on ultrasonic metal welding. Composites created through this process experience temperatures as low as 25 °C during fabrication, in contrast to current metal-matrix fabrication processes which require temperatures of 500 °C and above. UAM thus provides unprecedented opportunities to develop adaptive structures with seamlessly embedded smart materials and electronic components without degrading the properties that make these materials and components attractive. This research focuses on developing UAM composites with aluminum matrices and embedded shape memory NiTi, magnetostrictive Galfenol, and electroactive PVDF phases. The research on these composites will focus on: (i) electrical insulation between NiTi and Al phases for strain sensors, investigation and modeling of NiTi-Al composites as tunable stiffness materials and thermally invariant structures based on the shape memory effect; (ii) process development and composite testing for Galfenol-Al composites; and (iii) development of PVDF-Al composites for embedded sensing applications. We demonstrate a method to electrically insulate embedded materials from the UAM matrix, the ability create composites containing up to 22.3% NiTi, and their resulting dimensional stability and thermal actuation characteristics. Also demonstrated is Galfenol-Al composite magnetic actuation of up to 54 μ(see manuscript), and creation of a PVDF-Al composite sensor.

  2. Inhibition of matrix metalloproteinase activity in human dentin via novel antibacterial monomer

    PubMed Central

    Li, Fang; Majd, Hessam; Weir, Michael D.; Arola, Dwayne D.; Xu, Hockin H.K.

    2015-01-01

    Objectives Dentin-composite bond failure is caused by factors including hybrid layer degradation, which in turn can be caused by hydrolysis and enzymatic degradation of the exposed collagen in the dentin. The objectives of this study were to investigate a new antibacterial monomer (dimethylaminododecyl methacrylate, DMADDM) as an inhibitor for matrix metalloproteinases (MMPs), and to determine the effects of DMADDM on both soluble recombinant human MMPs (rhMMPs) and dentin matrix-bound endogenous MMPs. Methods Inhibitory effects of DMADDM at six mass% (0.1% to 10%) on soluble rhMMP-8 and rhMMP-9 were measured using a colorimetic assay. Matrix-bound endogenous MMP activity was evaluated in demineralized human dentin. Dentin beams were divided into four groups (n = 10) and incubated in calcium- and zinc-containing media (control medium); or control medium + 0.2% chlorhexidine (CHX); 5% 12-methacryloyloxydodecylpyridinium bromide (MDPB); or 5% DMADDM. Dissolution of dentin collagen peptides was evaluated by mechanical testing in three-point flexure, loss of dentin mass, and a hydroxyproline assay. Results Use of 0.1% to 10% DMADDM exhibited a strong concentration-dependent anti-MMP effect, reaching 90% of inhibition on rhMMP-8 and rhMMP-9 at 5% DMADDM concentration. Dentin beams in medium with 5% DMADDM showed 34% decrease in elastic modulus (vs. 73% decrease for control), 3% loss of dry dentin mass (vs. 28% loss for control), and significantly less solubilized hydroxyproline when compared with control (p < 0.05). Significance The new antibacterial monomer DMADDM was effective in inhibiting both soluble rhMMPs and matrix-bound human dentin MMPs. These results, together with previous studies showing that adhesives containing DMADDM inhibited biofilms without compromising dentin bond strength, suggest that DMADDM is promising for use in adhesives to prevent collagen degradation in hybrid layer and protect the resin-dentin bond. PMID:25595564

  3. Active polarization imaging system to discriminate adaptively with diagonal Mueller matrix

    NASA Astrophysics Data System (ADS)

    Geng, Lixiang; Chen, Qian; Qian, Weixian; Gu, Guohua

    2015-11-01

    A promising method to optimize the polarization state of two-channel active polarization imaging system is presented. In this method, it is seminal that the detecting function of the imaging system is regarded as a discriminant projection of the observed objects' polarization features (elements of the Mueller matrix). The polarization state can be seen as a physical classifier which can be obtained by training samples. The image acquired with the system that has the designed optimal polarization state become discriminative results directly. The effectiveness of the proposed method and the discriminative ability of the optimal polarization state are demonstrated by the experimental results.

  4. Improved AC pixel electrode circuit for active matrix of organic light-emitting display

    NASA Astrophysics Data System (ADS)

    Si, Yujuan; Lang, Liuqi; Chen, Wanzhong; Liu, Shiyong

    2004-05-01

    In this paper, a modified four-transistor pixel circuit for active-matrix organic light-emitting displays (AMOLED) was developed to improve the performance of OLED device. This modified pixel circuit can provide an AC driving mode to make the OLED working in a reversed-biased voltage during the certain cycle. The optimized values of the reversed-biased voltage and the characteristics of the pixel circuit were investigated using AIM-SPICE. The simulated results reveal that this circuit can provide a suitable output current and voltage characteristic, and little change was made in luminance current.

  5. Active Matrix Organic light Emitting Diode Display Based on “Super Top Emission” Technology

    NASA Astrophysics Data System (ADS)

    Ishibashi, Tadashi; Yamada, Jiro; Hirano, Takashi; Iwase, Yuichi; Sato, Yukio; Nakagawa, Ryo; Sekiya, Mitsunobu; Sasaoka, Tatsuya; Urabe, Tetsuo

    2006-05-01

    We developed an original “Super Top Emission” technology, which enables us to optimize the distinctive features of an organic light emitting diode (OLED) display. With this technology, the following characteristics can be obtained: (1) high color reproduction of a 100% NTSC gamut ratio, (2) wide viewing angle, (3) high contrast of 1000:1 maintaining high luminous efficiency with a color filter, (4) original all-solid sealing structure. In addition, Super Top Emission technology was demonstrated by developing a 3.8-type size half video graphics array (HVGA) active matrix organic light emitting diode (AM-OLED) display by the shadow mask patterning process.

  6. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  7. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing.

    PubMed Central

    Saarialho-Kere, U K; Kovacs, S O; Pentland, A P; Olerud, J E; Welgus, H G; Parks, W C

    1993-01-01

    We reported that interstitial collagenase is produced by keratinocytes at the edge of ulcers in pyogenic granuloma, and in this report, we assessed if production of this metalloproteinase is a common feature of the epidermal response in a variety of wounds. In all samples of chronic ulcers, regardless of etiology, and in incision wounds, collagenase mRNA, localized by in situ hybridization, was prominently expressed by basal keratinocytes bordering the sites of active re-epithelialization indicating that collagenolytic activity is a characteristic response of the epidermis to wounding. No expression of mRNAs for 72- and 92-kD gelatinases or matrilysin was seen in keratinocytes, and no signal for any metalloproteinase was detected in normal epidermis. Immunostaining for type IV collagen showed that collagenase-positive keratinocytes were not in contact with an intact basement membrane and, unlike normal keratinocytes, expressed alpha 5 beta 1 receptors. These observations suggest that cell-matrix interactions influence collagenase expression by epidermal cells. Indeed, as determined by ELISA, primary cultures of human keratinocytes grown on basement membrane proteins (Matrigel; Collaborative Research Inc., Bedford, MA) did not express significant levels of collagenase, whereas cells grown on type I collagen produced markedly increased levels. These results suggest that migrating keratinocytes actively involved in re-epithelialization acquire a collagenolytic phenotype upon contact with the dermal matrix. Images PMID:8254040

  8. Prostate Cancer-Associated Kallikrein-Related Peptidase 4 Activates Matrix Metalloproteinase-1 and Thrombospondin-1.

    PubMed

    Fuhrman-Luck, Ruth A; Stansfield, Scott H; Stephens, Carson R; Loessner, Daniela; Clements, Judith A

    2016-08-01

    Prostate cancer metastasis to bone is terminal; thus, novel therapies are required to prevent end-stage disease. Kallikrein-related peptidase 4 (KLK4) is a serine protease that is overproduced in localized prostate cancer and is abundant in prostate cancer bone metastases. In vitro, KLK4 induces tumor-promoting phenotypes; however, the underlying proteolytic mechanism is undefined. The protein topography and migration analysis platform (PROTOMAP) was used for high-depth identification of KLK4 substrates secreted by prostate cancer bone metastasis-derived PC-3 cells to delineate the mechanism of KLK4 action in advanced prostate cancer. Thirty-six putative novel substrates were determined from the PROTOMAP analysis. In addition, KLK4 cleaved the established substrate, urokinase-type plasminogen activator, thus validating the approach. KLK4 activated matrix metalloproteinase-1 (MMP1), a protease that promotes prostate tumor growth and metastasis. MMP1 was produced in the tumor compartment of prostate cancer bone metastases, highlighting its accessibility to KLK4 at this site. KLK4 further liberated an N-terminal product, with purported angiogenic activity, from thrombospondin-1 (TSP1) and cleaved TSP1 in an osteoblast-derived matrix. This is the most comprehensive analysis of the proteolytic action of KLK4 in an advanced prostate cancer model to date, highlighting KLK4 as a potential multifunctional regulator of prostate cancer progression. PMID:27378148

  9. Antimicrobial and antioxidant activities of Cichorium intybus root extract using orthogonal matrix design.

    PubMed

    Liu, Haitao; Wang, Quanzhen; Liu, Yuyan; Chen, Guo; Cui, Jian

    2013-02-01

    Solvent, impregnation time, sonication repetitions, and ultrasonic power were important factors in the process of ultrasound-assisted extraction from chicory (Cichorium intybus) root, while there were no studies about optimizing these 4 factors for extract yield, total phenolic content (TPC), antioxidant, antibacterial, and antifungal activity of the extracts using orthogonal matrix design. The present research demonstrated that the solvent composition played a significant role in the improving extract yield, TPC, antioxidant, and antibacterial activities. The other 3 factors had inequable effect on different purposes, ultrasonic power could improve TPC and antioxidant activity, but long time of extraction lowered antioxidant activity. The TPC increased from 22.34 to 27.87 mg GAE (gallic acid equivalents)/100 g (dry extracts) with increasing solvent polarity. The half inhibition concentration (IC(50,) μg/mL) of the radical scavenging activity of the chicory extracts ranged from 281.00 to 983.33 μg/mL. The content of caffeoylquinic acids of root extract, which was extracted by the optimal combination was 0.104%. Several extracts displayed antibacterial activities against Escherichia coli, Staphylococcus aureus, Bacillus thuringiensis, Bacillus subtilis, and Salmonella typhi, while Penicillium sp. and Aspergillus sp. resisted against all the extracts. Combination of 70% ethanol v/v, 24-h impregnation time, 3 sonication rounds, and 300-W ultrasonic input power was found to be the optimal combination for the chicory extract yield, TPC, antioxidant activity, and antibacterial activity. PMID:23387896

  10. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  11. Alpha1-antichymotrypsin activity correlates with and may modulate matrix metalloproteinase-9 in human acute wounds.

    PubMed

    Reiss, Matthew J; Han, Yuan-Ping; Garner, Warren L

    2009-01-01

    Matrix metalloproteinase-9 (MMP-9) plays a central role in many physiologic processes including acute and the chronic wounds. MMP-9 is not routinely expressed in healthy tissues but is promptly expressed as a proenzyme and converted into active enzyme after tissue injury. The mechanisms involved, including the activators and inhibitors for this enzyme in human tissue remain largely obscure. We recently identified alpha1-antichymotrypsin (alpha1-ACT), an acute phase factor, as a potent inhibitor controlling activation of pro-MMP-9 by human skin. The aim of this study is to establish the clinical relevance of the inhibitor in cutaneous wound healing. Fluids from acute burn blisters and conditioned media from skin explants of burn patients were analyzed. We observed that the presence pro-MMP-9 and its activation correlated with the proximity to and degree of injury. Early after trauma, massive levels of wound alpha1-ACT were associated with an absence of pro-MMP-9 activation. Conversely, the active MMP-9 occurs simultaneously with inactivation of alpha1-ACT. Our results suggest a role for alpha1-ACT as a physiologic inhibitor of MMP-9 activation in human wound healing. PMID:19660051

  12. Amorphous silicon thin film transistor active-matrix organic light-emitting diode displays fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Nichols, Jonathan A.

    Organic light-emitting diode (OLED) displays are of immense interest because they have several advantages over liquid crystal displays, the current dominant flat panel display technology. OLED displays are emissive and therefore are brighter, have a larger viewing angle, and do not require backlights and filters, allowing thinner, lighter, and more power efficient displays. The goal of this work was to advance the state-of-the-art in active-matrix OLED display technology. First, hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) active-matrix OLED pixels and arrays were designed and fabricated on glass substrates. The devices operated at low voltages and demonstrated that lower performance TFTs could be utilized in active-matrix OLED displays, possibly allowing lower cost processing and the use of polymeric substrates. Attempts at designing more control into the display at the pixel level were also made. Bistable (one bit gray scale) active-matrix OLED pixels and arrays were designed and fabricated. Such pixels could be used in novel applications and eventually help reduce the bandwidth requirements in high-resolution and large-area displays. Finally, a-Si:H TFT active-matrix OLED pixels and arrays were fabricated on a polymeric substrate. Displays fabricated on a polymeric substrates would be lightweight; flexible, more rugged, and potentially less expensive to fabricate. Many of the difficulties associated with fabricating active-matrix backplanes on flexible substrates were studied and addressed.

  13. Chromium liquid waste inertization in an inorganic alkali activated matrix: leaching and NMR multinuclear approach.

    PubMed

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-04-01

    A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈ 2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process--from the precursor dissolution to the final geopolymer matrix hardening--of different geopolymers containing a waste amount ranging from 3 to 20%wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of TOT bonds (where T is Al or Si) by (29)Si and (27)Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers containing high amounts of waste (10-20%wt). The results show the formation of a stable matrix after only 15 days independently on the waste amount introduced; the longer curing times increase the matrices stabilities and their ability to immobilize chromium cations. The maximum amount of waste that can be inertized is around 10 wt% after a curing time of 28 days

  14. Serum matrix metalloproteinase‐3 levels correlate with disease activity in relapsing‐remitting multiple sclerosis

    PubMed Central

    Kanesaka, T; Mori, M; Hattori, T; Oki, T; Kuwabara, S

    2006-01-01

    Background Adhesion molecules and matrix metalloproteinases (MMPs) are known to be relevant to the ongoing development and disappearance of areas of demyelination in the white matter of the CNS of multiple sclerosis (MS) patients. This study examined whether serum matrix metalloproteinase‐3 (MMP‐3) levels correlate with disease activity in MS. Methods Serum MMP‐3 levels in 47 consecutive patients with relapsing‐remitting MS were measured by immunoassay every 4 weeks over a 15 month period. Results During the study period, 48 clinical relapses occurred. Serum MMP‐3 levels within 1 month of relapse were significantly higher than during the remission phase. Sequential analysis showed that serum MMP‐3 levels had increased transiently at the time of clinical relapse but returned to the normal range within a month. Conclusions Circulatory MMP‐3 levels are correlated with disease activity in relapsing‐remitting MS. This may contribute to the breakdown of the blood‐brain barrier at the time of relapse. PMID:16421119

  15. Active-matrix organic light-emitting displays on flexible metal foils

    NASA Astrophysics Data System (ADS)

    Chuang, T. K.; Jamshidi Roudbari, A.; Troccoli, M. N.; Chang, Y. L.; Reed, G.; Hatalis, M.; Spirko, J.; Klier, K.; Preis, S.; Pearson, R.; Najafov, H.; Biaggio, I.; Afentakis, T.; Voutsas, A.; Forsythe, E.; Shi, J.; Blomquist, S.

    2005-05-01

    This paper describes the development of a 3.5 inch diagonal Active Matrix Organic Light Emitting Diode Display on flexible metal foils. The active matrix array had the VGA format and was fabricated using the polysilicon TFT technology. The advantages that the metal foil substrates offer for flexible display applications will first be discussed, followed by a discussion on the multilayer coatings that were investigated in order to achieve a high quality insulating layer on the metal foil substrate prior to TFT fabrication. Then the polysilicon TFT device performance will be presented as a function of the polysilicon crystallization method. Both laser crystallized polysilicon and solid phased crystallized polysilicon films were investigated for the TFT device fabrication. Due to the opaque nature of the metal foil substrates the display had a top emission structure. Both small molecule and polymer based organic material were investigated for the display emissive part. The former were evaporated while the latter were applied by spin-cast. Various transparent multi-layer metal films were investigated as the top cathode. The approach used to package the finished AMOLED display in order to protect the organic layers from environmental degradation will be described. The display had integrated polysilicon TFT scan drivers consisting of shift registers and buffers but external data drivers. The driving approach of the display will be discussed in detail. The performance of the finished display will be discussed as a function of the various materials and fabrication processes that were investigated.

  16. Gelatinase activity of matrix metalloproteinases in the cerebrospinal fluid of various patient populations.

    PubMed

    Valenzuela, M A; Cartier, L; Collados, L; Kettlun, A M; Araya, F; Concha, C; Flores, L; Wolf, M E; Mosnaim, A D

    1999-01-01

    We have studied the enzymatic gelatinolytic activity of matrix metalloproteinases (MMPs) present in cerebrospinal fluid (CSF) of samples obtained from 67 individuals, twenty-one nonneurological patients (considered controls) and 46 subjects with various neurological disorders e.g., vascular lesions, demyelination, inflammatory, degenerative and prion diseases. Biochemical characterization of MMPs, a family of neutral proteolytic enzymes involved in extracellular matrix modeling, included determination of substrate specificity and Ca+2 dependency, as well as the effects of protease inactivators, carboxylic and His (histidine) residue modifiers, and antibiotics. Whereas all CSF samples expressed MMP-2 (gelatinase A) activity, it corresponded in most cases (normal and pathological samples) to its latent form (proenzyme; pMMP-2). In general, inflammatory neurological diseases (especially meningitis and neurocisticercosis) were associated with the presence of a second enzyme, MMP-9 (or gelatinase B). Whereas MMP-9 was found in the CSF of every tropical spastic paraparesis patient studied, its presence in samples from individuals with vascular lesions was uncommon. Patients blood-brain barrier damage was ascertained by determining total CSF protein content using both, the conventional polyacrylamide gel electrophoresis procedure under denaturing conditions and capillary zone electrophoresis. PMID:10604277

  17. Regulation of membrane-type 1 matrix metalloproteinase activity by vacuolar H+-ATPases.

    PubMed Central

    Maquoi, Erik; Peyrollier, Karine; Noël, Agnès; Foidart, Jean-Michel; Frankenne, Francis

    2003-01-01

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a key enzyme in normal development and malignant processes. The regulation of MT1-MMP activity on the cell surface is a complex process involving autocatalytic processing, tissue inhibitor of MMPs (TIMP) binding and constitutive internalization. However, the fate of internalized MT1-MMP is not known. Acidification of intracellular vacuolar compartments is essential for membrane trafficking, protein sorting and degradation. This acidification is controlled by vacuolar H(+)-ATPases, which can be selectively inhibited by bafilomycin-A(1). Here, we treated human tumour cell lines expressing MT1-MMP with bafilomycin-A(1), and analysed its effects on MT1-MMP activity, internalization and processing. We show that the activity of MT1-MMP on the cell surface is constitutively down-regulated through a vacuolar H(+)-ATPase-dependent degradation process. Blockade of this degradation caused the accumulation of TIMP-free active MT1-MMP molecules on the cell surface, although internalization was not affected. As a consequence of this impaired degradation, pro-MMP-2 activation was strongly enhanced. This study demonstrates that the catalytic activity of MT1-MMP on the cell surface is regulated through a vacuolar H(+)-ATPase-dependent degradation process. PMID:12667140

  18. Hospital acquired pneumonia with high-risk bacteria is associated with increased pulmonary matrix metalloproteinase activity

    PubMed Central

    Schaaf, Bernhard; Liebau, Cornelia; Kurowski, Volkhard; Droemann, Daniel; Dalhoff, Klaus

    2008-01-01

    Background Neutrophil products like matrix metalloproteinases (MMP), involved in bacterial defence mechanisms, possibly induce lung damage and are elevated locally during hospital- acquired pneumonia (HAP). In HAP the virulence of bacterial species is known to be different. The aim of this study was to investigate the influence of high-risk bacteria like S. aureus and pseudomonas species on pulmonary MMPconcentration in human pneumonia. Methods In 37 patients with HAP and 16 controls, MMP-8, MMP-9 and tissue inhibitors of MMP (TIMP) were analysed by ELISA and MMP-9 activity using zymography in bronchoalveolar lavage (BAL). Results MMP-9 activity in mini-BAL was increased in HAP patients versus controls (149 ± 41 vs. 34 ± 11, p < 0.0001). In subgroup analysis, the highest MMP concentrations and activity were seen in patients with high-risk bacteria: patients with high-risk bacteria MMP-9 1168 ± 266 vs. patients with low-risk bacteria 224 ± 119 ng/ml p < 0.0001, MMP-9 gelatinolytic activity 325 ± 106 vs. 67 ± 14, p < 0.0002. In addition, the MMP-8 and MMP-9 concentration was associated with the state of ventilation and systemic inflammatory marker like CRP. Conclusion Pulmonary MMP concentrations and MMP activity are elevated in patients with HAP. This effect is most pronounced in patients with high-risk bacteria. Artificial ventilation may play an additional role in protease activation. PMID:18700005

  19. Nascent Integrin Adhesions Form on All Matrix Rigidities after Integrin Activation.

    PubMed

    Changede, Rishita; Xu, Xiaochun; Margadant, Felix; Sheetz, Michael P

    2015-12-01

    Integrin adhesions assemble and mature in response to ligand binding and mechanical factors, but the molecular-level organization is not known. We report that ∼100-nm clusters of ∼50 β3-activated integrins form very early adhesions under a wide variety of conditions on RGD surfaces. These adhesions form similarly on fluid and rigid substrates, but most adhesions are transient on rigid substrates. Without talin or actin polymerization, few early adhesions form, but expression of either the talin head or rod domain in talin-depleted cells restores early adhesion formation. Mutation of the integrin binding site in the talin rod decreases cluster size. We suggest that the integrin clusters constitute universal early adhesions and that they are the modular units of cell matrix adhesions. They require the association of activated integrins with cytoplasmic proteins, in particular talin and actin, and cytoskeletal contraction on them causes adhesion maturation for cell motility and growth. PMID:26625956

  20. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach

    NASA Astrophysics Data System (ADS)

    Roos, Björn O.; Taylor, Peter R.; Si≐gbahn, Per E. M.

    1980-05-01

    A density matrix formulation of the super-CI MCSCF method is presented. The MC expansion is assumed to be complete in an active subset of the orbital space, and the corresponding CI secular problem is solved by a direct scheme using the unitary group approach. With a density matrix formulation the orbital optimization step becomes independent of the size of the CI expansion. It is possible to formulate the super-CI in terms of density matrices defined only in the small active subspace; the doubly occupied orbitals (the inactive subspace) do not enter. Further, in the unitary group formalism it is straightforward and simple to obtain the necessary density matrices from the symbolic formula list. It then becomes possible to treat very long MC expansions, the largest so far comprising 726 configurations. The method is demonstrated in a calculation of the potential curves for the three lowest states ( 1Σ +g, 3Σ +u and 3Π g) of the N 2 molecule, using a medium-sized gaussian basis set. Seven active orbitals were used yielding the following results: De: 8.76 (9.90), 2.43 (3.68) and 3.39 (4.90) eV; re: 1.108 (1.098), 1.309 (1.287) and 1.230 (1.213) Å; ω e: 2333 (2359), 1385 (1461) and 1680 (1733) cm -1, for the three states (experimental values within parentheses). The results of these calculations indicate that it is important to consider not only the dissociation limit but also the united atom limit in partitioning the occupied orbital space into an active and an inactive part.

  1. [Regulation of biochar on matrix enzyme activities and microorganisms around cucumber roots under continuous cropping].

    PubMed

    Zou, Chun-jiao; Zhang, Yong-yong; Zhang, Yi-ming; Guo, Xiao-ou; Li, Ming-jing; Li, Tian-lai

    2015-06-01

    The effects of addition of biochar on the matrix enzymes activity, microorganisms population and microbial community structure were evaluated under cucumber continuous cropping for 6 years (11 rotations). Cucumbers were grown in pots in greenhouse with 5% or 3% of medium (by mass) substituted with biochar. The control consisted of medium alone without biochar. The results showed that the activity of peroxidase was significantly improved to the level of the first rotation crop form 30 to 120 d after planting in both biochar treatments, with the effect of 5% biochar being more significant than that of 3% biochar. However, the neutral phosphatase activity was markedly reduced after biochar treatment. The addition of 5% biochar had significant regulation effect on the activities of invertase and urease from 30 to 90 d after planting, while the addition of 3% biochar had little effect. The populations of bacteria and actinomycetes were increased and the fungi population was reduced in both biochar treatments from 30 to 90 d after planting, and the effect of 5% biochar was more significant than that of 3% biochar. Meanwhile, the addition of biochar significantly increased the diversity of the bacterial community structure. In summary, biochar had obvious regulation effect on soil enzyme activity, microorganism quantity and microbial community in continuous cropping nutrition medium. PMID:26572031

  2. Exploration of the Zinc Finger Motif in Controlling Activity of Matrix Metalloproteinases

    PubMed Central

    2015-01-01

    Discovering ways to control the activity of matrix metalloproteinases (MMPs), zinc-dependent enzymes capable of degrading extracellular matrix proteins, is an important field of cancer research. We report here a novel strategy for assembling MMP inhibitors on the basis of oligopeptide ligands by exploring the pattern known as the zinc finger motif. Advanced molecular modeling tools were used to characterize the structural binding motifs of experimentally tested MMP inhibitors, as well as those of newly proposed peptidomimetics, in their zinc-containing active sites. The results of simulations based on the quantum mechanics/molecular mechanics (QM/MM) approach and Car–Parrinello molecular dynamics with QM/MM potentials demonstrate that, upon binding of Regasepin1, a known MMP-9 inhibitor, the Zn2+(His3) structural element is rearranged to the Zn2+(Cys2His2) zinc finger motif, in which two Cys residues are borrowed from the ligand. Following consideration of the crystal structure of MMP-2 with its inhibitor, the oligopeptide APP-IP, we proposed a new peptidomimetic with two replacements in the substrate, Tyr3Cys and Asp6Cys. Simulations show that this peptide variant blocks an enzyme active site by the Zn2+(Cys2His2) zinc finger construct. Similarly, a natural substrate of MMP-2, Ace-Gln-Gly ∼ Ile-Ala-Gly-Nme, can be converted to an inhibiting compound by two replacements, Ile by Cys and Gly by the d isomer of Cys, favoring formation of the zinc finger motif. PMID:25375834

  3. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the pathogenesis of stroke: therapeutic strategies.

    PubMed

    Adibhatla, Rao Muralikrishna; Hatcher, James F

    2008-06-01

    Today there exists only one FDA-approved treatment for ischemic stroke; i.e., the serine protease tissue-type plasminogen activator (tPA). In the aftermath of the failed stroke clinical trials with the nitrone spin trap/radical scavenger, NXY-059, a number of articles raised the question: are we doing the right thing? Is the animal research truly translational in identifying new agents for stroke treatment? This review summarizes the current state of affairs with plasminogen activators in thrombolytic therapy. In addition to therapeutic value, potential side effects of tPA also exist that aggravate stroke injury and offset the benefits provided by reperfusion of the occluded artery. Thus, combinational options (ultrasound alone or with microspheres/nanobubbles, mechanical dissociation of clot, activated protein C (APC), plasminogen activator inhibitor-1 (PAI-1), neuroserpin and CDP-choline) that could offset tPA toxic side effects and improve efficacy are also discussed here. Desmoteplase, a plasminogen activator derived from the saliva of Desmodus rotundus vampire bat, antagonizes vascular tPA-induced neurotoxicity by competitively binding to low-density lipoprotein related-receptors (LPR) at the blood-brain barrier (BBB) interface, minimizing the tPA uptake into brain parenchyma. tPA can also activate matrix metalloproteinases (MMPs), a family of endopeptidases comprised of 24 mammalian enzymes that primarily catalyze the turnover and degradation of the extracellular matrix (ECM). MMPs have been implicated in BBB breakdown and neuronal injury in the early times after stroke, but also contribute to vascular remodeling, angiogenesis, neurogenesis and axonal regeneration during the later repair phase after stroke. tPA, directly or by activation of MMP-9, could have beneficial effects on recovery after stroke by promoting neurovascular repair through vascular endothelial growth factor (VEGF). However, any treatment regimen directed at MMPs must consider their

  4. Physical activity of children: a global matrix of grades comparing 15 countries.

    PubMed

    Tremblay, Mark S; Gray, Casey E; Akinroye, Kingsley; Harrington, Dierdre M; Katzmarzyk, Peter T; Lambert, Estelle V; Liukkonen, Jarmo; Maddison, Ralph; Ocansey, Reginald T; Onywera, Vincent O; Prista, Antonio; Reilly, John J; Rodríguez Martínez, María Pilar; Sarmiento Duenas, Olga L; Standage, Martyn; Tomkinson, Grant

    2014-05-01

    The Active Healthy Kids Canada (AHKC) Report Card on Physical Activity for Children and Youth has been effective in powering the movement to get kids moving by influencing priorities, policies, and practice in Canada. The AHKC Report Card process was replicated in 14 additional countries from 5 continents using 9 common indicators (Overall Physical Activity, Organized Sport Participation, Active Play, Active Transportation, Sedentary Behavior, Family and Peers, School, Community and Built Environment, and Government Strategies and Investments), a harmonized process and a standardized grading framework. The 15 Report Cards were presented at the Global Summit on the Physical Activity of Children in Toronto on May 20, 2014. The consolidated findings are summarized here in the form of a global matrix of grades. There is a large spread in grades across countries for most indicators. Countries that lead in certain indicators lag in others. Overall, the grades for indicators of physical activity (PA) around the world are low/poor. Many countries have insufficient information to assign a grade, particularly for the Active Play and Family and Peers indicators. Grades for Sedentary Behaviors are, in general, better in low income countries. The Community and Built Environment indicator received high grades in high income countries and notably lower grades in low income countries. There was a pattern of higher PA and lower sedentary behavior in countries reporting poorer infrastructure, and lower PA and higher sedentary behavior in countries reporting better infrastructure, which presents an interesting paradox. Many surveillance and research gaps and weaknesses were apparent. International cooperation and cross-fertilization is encouraged to tackle existing challenges, understand underlying mechanisms, derive innovative solutions, and overcome the expanding childhood inactivity crisis. PMID:25426906

  5. Differential effects of mechanical and biological stimuli on matrix metalloproteinase promoter activation in the thoracic aorta

    PubMed Central

    Ruddy, Jean Marie; Jones, Jeffrey A.; Stroud, Robert E.; Mukherjee, Rupak; Spinale, Francis G.; Ikonomidis, John S.

    2009-01-01

    Background The effect of multiple integrated stimuli on vascular wall expression of matrix metalloproteinases (MMPs) remains unknown. Accordingly, this study has examined the influence of the vasoactive peptide angiotensin II (AngII) on wall tension-induced promoter activation of MMP-2, MMP-9, and membrane type-1 MMP (MT1-MMP). Methods and Results Thoracic aortic rings harvested from transgenic reporter mice containing the MMP-2, MMP-9, or MT1-MMP promoter sequence fused to a reporter gene were subjected to three hours of wall tension at 70, 85, or 100 mmHg with or without 100nM AngII. Total RNA was harvested from the aortic rings, and reporter gene transcripts were quantified by QPCR to measure MMP promoter activity. MT1-MMP promoter activity was increased at both 85 and 100 mmHg compared to baseline tension of 70 mmHg, while treatment with AngII stimulated MT1-MMP promoter activity to the same degree at all tension levels (p<0.05). Elevated tension and AngII displayed a potential synergistic enhancement of MMP-2 promoter activation at 85 and 100mmHg, while the same stimuli caused a decrease in MMP-9 promoter activity (p<0.05) at 100 mmHg. Conclusions This study has demonstrated that exposure to a relevant biological stimulus (AngII) in the presence of elevated tension modulated MMP promoter activation. Furthermore, these data suggest that a mechanical-molecular set point exists for the induction of MMP promoter activation, and that this set point can be adjusted up or down by a secondary biological stimulus. Together, these results may have significant clinical implications toward the regulation of hypertensive vascular remodeling. PMID:19752377

  6. Whey peptide Isoleucine-Tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta.

    PubMed

    Kopaliani, Irakli; Martin, Melanie; Zatschler, Birgit; Müller, Bianca; Deussen, Andreas

    2016-08-01

    Aortic stiffness is an independent risk factor for development of cardiovascular diseases. Activation of renin-angiotensin-aldosterone system (RAAS) including angiotensin converting enzyme (ACE) activity leads to overproduction of angiotensin II (ANGII) from its precursor angiotensin I (ANGI). ANGII leads to overexpression and activation of matrix metalloproteinase-2 (MMP2), which is critically associated with pathophysiology of aortic stiffness. We previously reported that the whey peptide Isoleucine-Tryptophan (IW) acts as a potent ACE inhibitor. Herein, we critically elucidate the mechanism of action by which IW causes inhibition of expression and activity of MMP2 in aortic tissue. Effects of IW on expression and activity of MMP2 were assessed on endothelial and smooth muscle cells (ECs and SMCs) in vitro and ex vivo (isolated rat aorta). As controls we used the pharmaceutical ACE inhibitor - captopril and the ANGII type 1 receptor blocker - losartan. In vitro, both ANGII and ANGI stimulation significantly (P<0.01) increased expression of MMP2 assessed with western blot. Similarly, to captopril IW significantly (P<0.05) inhibited ANGI, but not ANGII mediated increase in expression of MMP2, while losartan also blocked effects of ANGII. Signaling pathways regulating MMP2 expression in ECs and SMCs were similarly inhibited after treatment with IW or captopril. In ECs IW significantly (P<0.05) inhibited JNK pathway, whereas in SMCs JAK2/STAT3 pathway, assessed with western blot. In vitro findings were fully consistent with results in isolated rat aorta ex vivo. Moreover, IW not only inhibited the MMP2 expression, but also its activation assessed with gelatin zymography. Our findings demonstrate that IW effectively inhibits expression and activation of MMP2 in rat aorta by decreasing local conversion of ANGI to ANGII. Thus, similar to pharmaceutical ACE inhibitor captopril the dipeptide IW may effectively inhibit ACE activity and prevent the age and hypertension

  7. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease.

    PubMed

    Burns, E H; Marciel, A M; Musser, J M

    1996-11-01

    Human umbilical vein endothelial cells (HUVECs) were used to gain insight into the molecular mechanism whereby the major extracellular protease from group A streptococci damages host tissue. HUVECs exposed to streptococcal cysteine protease (SCP) for various times exhibited cytopathic effect and cell detachment from the culture vessel. Gelatin substrate zymography showed that a time- and concentration-dependent increase in the level of activity of an approximately 66-kDa gelatinase occurred in culture medium taken from cells exposed to enzymatically active SCP. This gelatinase comigrated in gelatin zymograms with the activated form of purified recombinant matrix metalloprotease 2 (MMP-2) and had type IV collagenase activity. In contrast, medium taken from cells exposed to inactivated (boiled) SCP and cells exposed to SCP inhibited by treatment with N-benzyloxycarbonyl-leucyl-valyl-glycine diazomethyl ketone lacked the 66-kDa gelatinase. Appearance of the 66-kDa gelatinase activity was also prevented by 1,10-phenanthroline, a zinc chelator and MMP inhibitor. Inasmuch as proteolytically active SCP is required for the emergence of this gelatinase and MMP activation occurs by proteolytic processing, the 66-kDa gelatinase may be a proteolytic cleavage product of a latent MMP expressed extracellularly by HUVECs. Direct SCP treatment of culture supernatant taken from HUVECs not exposed to SCP also produced the 66-kDa gelatinase. The data show that SCP activates an MMP produced by human endothelial cells, a process that may contribute to endothelial cell damage, tissue destruction, and hemodynamic derangement observed in some patients with severe, invasive group A streptococcal infection. PMID:8890235

  8. Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease.

    PubMed Central

    Burns, E H; Marciel, A M; Musser, J M

    1996-01-01

    Human umbilical vein endothelial cells (HUVECs) were used to gain insight into the molecular mechanism whereby the major extracellular protease from group A streptococci damages host tissue. HUVECs exposed to streptococcal cysteine protease (SCP) for various times exhibited cytopathic effect and cell detachment from the culture vessel. Gelatin substrate zymography showed that a time- and concentration-dependent increase in the level of activity of an approximately 66-kDa gelatinase occurred in culture medium taken from cells exposed to enzymatically active SCP. This gelatinase comigrated in gelatin zymograms with the activated form of purified recombinant matrix metalloprotease 2 (MMP-2) and had type IV collagenase activity. In contrast, medium taken from cells exposed to inactivated (boiled) SCP and cells exposed to SCP inhibited by treatment with N-benzyloxycarbonyl-leucyl-valyl-glycine diazomethyl ketone lacked the 66-kDa gelatinase. Appearance of the 66-kDa gelatinase activity was also prevented by 1,10-phenanthroline, a zinc chelator and MMP inhibitor. Inasmuch as proteolytically active SCP is required for the emergence of this gelatinase and MMP activation occurs by proteolytic processing, the 66-kDa gelatinase may be a proteolytic cleavage product of a latent MMP expressed extracellularly by HUVECs. Direct SCP treatment of culture supernatant taken from HUVECs not exposed to SCP also produced the 66-kDa gelatinase. The data show that SCP activates an MMP produced by human endothelial cells, a process that may contribute to endothelial cell damage, tissue destruction, and hemodynamic derangement observed in some patients with severe, invasive group A streptococcal infection. PMID:8890235

  9. Detecting seismic activity with a covariance matrix analysis of data recorded on seismic arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N. M.; de Rosny, J.; Brenguier, F.; Landès, M.

    2016-03-01

    Modern seismic networks are recording the ground motion continuously at the Earth's surface, providing dense spatial samples of the seismic wavefield. The aim of our study is to analyse these records with statistical array-based approaches to identify coherent time-series as a function of time and frequency. Using ideas mainly brought from the random matrix theory, we analyse the spatial coherence of the seismic wavefield from the width of the covariance matrix eigenvalue distribution. We propose a robust detection method that could be used for the analysis of weak and emergent signals embedded in background noise, such as the volcanic or tectonic tremors and local microseismicity, without any prior knowledge about the studied wavefields. We apply our algorithm to the records of the seismic monitoring network of the Piton de la Fournaise volcano located at La Réunion Island and composed of 21 receivers with an aperture of ˜15 km. This array recorded many teleseismic earthquakes as well as seismovolcanic events during the year 2010. We show that the analysis of the wavefield at frequencies smaller than ˜0.1 Hz results in detection of the majority of teleseismic events from the Global Centroid Moment Tensor database. The seismic activity related to the Piton de la Fournaise volcano is well detected at frequencies above 1 Hz.

  10. Toward Active-Matrix Lab-On-A-Chip: Programmable Electrofluidic control Enaled by Arrayed Oxide Thin Film Transistors

    SciTech Connect

    Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D

    2012-01-01

    Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m x n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm{sup 2} V{sup -1} s{sup -1}, low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 x 5 electrode array connected to a 2 x 5 IGZO thin film transistor array with the semiconductor channel width of 50 {mu}m and mobility of 6.3 cm{sup 2} V{sup -1} s{sup -1}. Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.

  11. ACROLEIN ACTIVATES MATRIX METALLOPROTEINASES BY INCREASING REACTIVE OXYGEN SPECIES IN MACROPHAGES

    PubMed Central

    O’Toole, Timothy E.; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+]i), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+]I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+]I, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure. PMID:19371603

  12. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages.

    PubMed

    O'Toole, Timothy E; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure. PMID:19371603

  13. [Regulation of cell activity by the extracellular matrix: the concept of matrikines].

    PubMed

    Maquart, F X; Siméon, A; Pasco, S; Monboisse, J C

    1999-01-01

    The activity of connective tissue cells is modulated by a number of factors present in their environment. In addition to the soluble factors such as hormones, cytokines or growth factors, cells also receive signals from the surrounding extracellular matrix (ECM) macromolecules. Moreover, they may degrade the ECM proteins and liberate peptides which may by themselves constitute new signals for the surrounding cells. Therefore, an actual regulation loop exists in connective tissue, constituted by peptides generated by ECM degradation and connective tissue cells. The term of "matrikine" has been proposed to designate such ECM-derived peptides able to regulate cell activity. In this review, we summarize some data obtained in our laboratory with two different matrikines: the tripeptide glycyl-histidyl-lysine (GHK) and the heptapeptide cysteinyl-asparaginyl-tyrosyl-tyrosyl-seryl-asparaginyl-serine (CNYYSNS). GHK is a potent activator of ECM synthesis and remodeling, whereas CNYYSNS is able to inhibit polymorphonuclear leukocytes activation and decrease the invasive capacities of cancer cells. PMID:10689625

  14. Matrix metalloproteinase levels and gelatinolytic activity in clinically healthy and inflamed human dental pulps.

    PubMed

    Gusman, Heloisa; Santana, Ronaldo B; Zehnder, Matthias

    2002-10-01

    The role of matrix metalloproteinases (MMPs) in the breakdown of pulp tissue of teeth with severe caries has not yet been directly elucidated. This study was to determine the levels of selected MMPs and the overall gelatinolytic activity in clinically healthy and inflamed human dental pulps of 29 healthy subjects, aged 10-19 yr. Seventeen pulps were collected from subjects diagnosed with symptomatic pulpitis, and 18 control pulps were obtained from 12 subjects following premolar extraction for orthodontic reasons. The levels of MMP-1, MMP-2, MMP-3 and MMP-9 were determined with enzyme-linked immunosorbent assay. Densitometric analysis of gelatin zymograms was used to assay gelatinolytic activity in pulp supernatants. The MMP-1 levels were below the detection limit for both groups. Levels of MMP-2 and MMP-3 were significantly lower in symptomatic vs. clinically healthy pulps. In contrast, levels of MMP-9 in inflamed pulps were significantly higher than those recorded in clinically normal pulps. The overall gelatinolytic activity was elevated in inflamed pulps compared with healthy counterparts. Further, the gelatinolytic activity was positively correlated with MMP-9 levels. The data obtained suggest a key role of MMP-9 in the breakdown of inflamed human dental pulp tissue. PMID:12664465

  15. Matrix metalloproteinase-2 of human carotid atherosclerotic plaques promotes platelet activation. Correlation with ischaemic events.

    PubMed

    Lenti, Massimo; Falcinelli, Emanuela; Pompili, Marcella; de Rango, Paola; Conti, Valentina; Guglielmini, Giuseppe; Momi, Stefania; Corazzi, Teresa; Giordano, Giuseppe; Gresele, Paolo

    2014-06-01

    Purified active matrix metalloproteinase-2 (MMP-2) is able to promote platelet aggregation. We aimed to assess the role of MMP-2 expressed in atherosclerotic plaques in the platelet-activating potential of human carotid plaques and its correlation with ischaemic events. Carotid plaques from 81 patients undergoing endarterectomy were tested for pro-MMP-2 and TIMP-2 content by zymography and ELISA. Plaque extracts were incubated with gel-filtered platelets from healthy volunteers for 2 minutes before the addition of a subthreshold concentration of thrombin receptor activating peptide-6 (TRAP-6) and aggregation was assessed. Moreover, platelet deposition on plaque extracts immobilised on plastic coverslips under high shear-rate flow conditions was measured. Forty-three plaque extracts (53%) potentiated platelet aggregation (+233 ± 26.8%), an effect prevented by three different specific MMP-2 inhibitors (inhibitor II, TIMP-2, moAb anti-MMP-2). The pro-MMP-2/TIMP-2 ratio of plaques potentiating platelet aggregation was significantly higher than that of plaques not potentiating it (3.67 ± 1.21 vs 1.01 ± 0.43, p<0.05). Moreover, the platelet aggregation-potentiating effect, the active-MMP-2 content and the active MMP-2/pro-MMP-2 ratio of plaque extracts were significantly higher in plaques from patients who developed a subsequent major cardiovascular event. In conclusion, atherosclerotic plaques exert a prothrombotic effect by potentiating platelet activation due to their content of MMP-2; an elevated MMP-2 activity in plaques is associated with a higher rate of subsequent ischaemic cerebrovascular events. PMID:24499865

  16. Successful implantation after reducing matrix metalloproteinase activity in the uterine cavity

    PubMed Central

    2013-01-01

    Background Recently, the concept of recurrent implantation failure (RIF) in assisted reproductive technology has been enlarged. Chronic uterine inflammation is a known cause of implantation failure and is associated with high matrix metalloproteinase (MMP) activity in uterine cavity flushing. MMP activity of women with RIF has been reported to be higher than that of fertile women. In the present retrospective study we evaluated the efficacy of treatment for high MMP activity in the uterine cavity of patients with RIF. Methods Of the 597 patients recruited to the study, 360 patients underwent MMP measurements and 237 patients did not (control group). All patients had failed to become pregnant, despite at least two transfers of good-quality embryos. Gelatinase MMP-2 and MMP-9 activity in uterine flushing fluid was detected by enzymology (MMP test). All samples were classified into two groups (positive or negative) based on the intensity of the bands on the enzyme zymogram, which represents the degree of MMP activity. Patients who tested positive on the initial test were treated for 2 weeks with a quinolone antibiotic and a corticosteroid, and subsequently underwent a second MMP test. Negative results on the second MMP tests after treatment and subsequent rates of pregnancy and miscarriage were used to evaluate the efficacy of treatment. Data were analyzed by the Mann–Whitney U-test and the chi-square test. Results Of the patients who underwent the MMP test, 15.6% had positive results (high MMP activity). After treatment, 89.3% of patients had negative results on the second MMP test. These patients had a significantly better pregnancy rate (42.0%) than the control group (26.6%), as well as a lower miscarriage rate (28.5% vs 36.5%, respectively). Conclusions A 2-week course of antibiotics and corticosteroids effectively improves the uterine environment underlying RIF by reducing MMP activity. PMID:23663265

  17. MONOLITHIC ACTIVE PIXEL MATRIX WITH BINARY COUNTERS IN AN SOI PROCESS.

    SciTech Connect

    DUPTUCH,G.; YAREMA, R.

    2007-06-07

    The design of a Prototype monolithic active pixel matrix, designed in a 0.15 {micro}m CMOS SOI Process, is presented. The process allowed connection between the electronics and the silicon volume under the layer of buried oxide (BOX). The small size vias traversing through the BOX and implantation of small p-type islands in the n-type bulk result in a monolithic imager. During the acquisition time, all pixels register individual radiation events incrementing the counters. The counting rate is up to 1 MHz per pixel. The contents of counters are shifted out during the readout phase. The designed prototype is an array of 64 x 64 pixels and the pixel size is 26 x 26 {micro}m{sup 2}.

  18. Reduction in Power Consumption for Full-Color Active Matrix Organic Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Kanno, Hiroshi; Hamada, Yuji; Nishimura, Kazuki; Okumoto, Kenji; Saito, Nobuo; Mameno, Kazunobu; Shibata, Kenichi

    2006-09-01

    The active matrix organic light-emitting diode (AMOLED) is expected to serve as next generation flat panels display with the outstanding features of wide viewing angle, vivid images, and quick response. For practical use of full-color AMOLEDs in mobile devices, it is essential to reduce the power consumption, which is generally higher than that of liquid crystal displays (LCDs). For this aim, a red, green, blue, and white (RGBW) pixel format combined with an RGB color filter array (RGBW format) with a common white emission layer (EML) has been developed. We find that the RGBW format can successfully reduce the power consumption of a full-color AMOLED by nearly half that of a conventionally filtered RGB pixel format. This improved power consumption is almost equal to the power consumption of a same-sized LCD. The RGBW format is a promising technique for the further reduction of the power consumption of a full-color AMOLED.

  19. Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels.

    PubMed

    Gong, Rui; Xu, Haisong; Tong, Qingfen

    2012-10-20

    The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well. PMID:23089779

  20. ZnO:H indium-free transparent conductive electrodes for active-matrix display applications

    SciTech Connect

    Chen, Shuming Wang, Sisi

    2014-12-01

    Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.

  1. ZnO:H indium-free transparent conductive electrodes for active-matrix display applications

    NASA Astrophysics Data System (ADS)

    Chen, Shuming; Wang, Sisi

    2014-12-01

    Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.

  2. Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yu-Sheng; Liu, Yan-Wei

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth =± 0.33V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO =+0.33V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  3. DP-b99 modulates matrix metalloproteinase activity and neuronal plasticity.

    PubMed

    Yeghiazaryan, Marine; Rutkowska-Wlodarczyk, Izabela; Konopka, Anna; Wilczyński, Grzegorz M; Melikyan, Armenuhi; Korkotian, Eduard; Kaczmarek, Leszek; Figiel, Izabela

    2014-01-01

    DP-b99 is a membrane-activated chelator of zinc and calcium ions, recently proposed as a therapeutic agent. Matrix metalloproteinases (MMPs) are zinc-dependent extracellularly operating proteases that might contribute to synaptic plasticity, learning and memory under physiological conditions. In excessive amounts these enzymes contribute to a number of neuronal pathologies ranging from the stroke to neurodegeneration and epileptogenesis. In the present study, we report that DP-b99 delays onset and severity of PTZ-induced seizures in mice, as well as displays neuroprotective effect on kainate excitotoxicity in hippocampal organotypic slices and furthermore blocks morphological reorganization of the dendritic spines evoked by a major neuronal MMP, MMP-9. Taken together, our findings suggest that DP-b99 may inhibit neuronal plasticity driven by MMPs, in particular MMP-9, and thus may be considered as a therapeutic agent under conditions of aberrant plasticity, such as those subserving epileptogenesis. PMID:24918931

  4. Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Jones, Michael W.; Kulick, Jeffrey H.; Lindquist, Robert G.; Kowel, Stephen T.

    1996-12-01

    We describe the design, construction, and performance of the first real-time autostereoscopic 3D display based on the partial pixel 3D display architecture. The primary optical components of the 3D display are an active-matrix liquid crystal display and a diffractive optical element (DOE). The display operates at video frame rates and is driven with a conventional VGA signal. 3D animations with horizontal motion parallax are readily viewable as sets of stereo images. Formation of the virtual viewing slits by diffraction from the partial pixel apertures is experimentally verified. The measured contrast and perceived brightness of the display are excellent, but there are minor flaws in image quality due to secondary images. The source of these images and how they may be eliminated is discussed. The effects of manufacturing-related systematic errors in the DOE are also analyzed.

  5. High performance organic transistor active-matrix driver developed on paper substrate

    NASA Astrophysics Data System (ADS)

    Peng, Boyu; Ren, Xiaochen; Wang, Zongrong; Wang, Xinyu; Roberts, Robert C.; Chan, Paddy K. L.

    2014-09-01

    The fabrication of electronic circuits on unconventional substrates largely broadens their application areas. For example, green electronics achieved through utilization of biodegradable or recyclable substrates, can mitigate the solid waste problems that arise at the end of their lifespan. Here, we combine screen-printing, high precision laser drilling and thermal evaporation, to fabricate organic field effect transistor (OFET) active-matrix (AM) arrays onto standard printer paper. The devices show a mobility and on/off ratio as high as 0.56 cm2V-1s-1 and 109 respectively. Small electrode overlap gives rise to a cut-off frequency of 39 kHz, which supports that our AM array is suitable for novel practical applications. We demonstrate an 8 × 8 AM light emitting diode (LED) driver with programmable scanning and information display functions. The AM array structure has excellent potential for scaling up.

  6. Low-voltage, low-power, organic light-emitting transistors for active matrix displays.

    PubMed

    McCarthy, M A; Liu, B; Donoghue, E P; Kravchenko, I; Kim, D Y; So, F; Rinzler, A G

    2011-04-29

    Intrinsic nonuniformity in the polycrystalline-silicon backplane transistors of active matrix organic light-emitting diode displays severely limits display size. Organic semiconductors might provide an alternative, but their mobility remains too low to be useful in the conventional thin-film transistor design. Here we demonstrate an organic channel light-emitting transistor operating at low voltage, with low power dissipation, and high aperture ratio, in the three primary colors. The high level of performance is enabled by a single-wall carbon nanotube network source electrode that permits integration of the drive transistor and the light emitter into an efficient single stacked device. The performance demonstrated is comparable to that of polycrystalline-silicon backplane transistor-driven display pixels. PMID:21527708

  7. Density-matrix renormalization-group study of current and activity fluctuations near nonequilibrium phase transitions.

    PubMed

    Gorissen, Mieke; Hooyberghs, Jef; Vanderzande, Carlo

    2009-02-01

    Cumulants of a fluctuating current can be obtained from a free-energy-like generating function, which for Markov processes equals the largest eigenvalue of a generalized generator. We determine this eigenvalue with the density-matrix renormalization group for stochastic systems. We calculate the variance of the current in the different phases, and at the phase transitions, of the totally asymmetric exclusion process. Our results can be described in the terms of a scaling ansatz that involves the dynamical exponent z . We also calculate the generating function of the dynamical activity (total number of configuration changes) near the absorbing-state transition of the contact process. Its scaling properties can be expressed in terms of known critical exponents. PMID:19391693

  8. Coordinate regulation of fibronectin matrix assembly by the plasminogen activator system and vitronectin in human osteosarcoma cells

    PubMed Central

    Vial, Daniel; Monaghan-Benson, Elizabeth; McKeown-Longo, Paula J

    2006-01-01

    Background Plasminogen activators are known to play a key role in the remodeling of bone matrix which occurs during tumor progression, bone metastasis and bone growth. Dysfunctional remodeling of bone matrix gives rise to the osteoblastic and osteolytic lesions seen in association with metastatic cancers. The molecular mechanisms responsible for the development of these lesions are not well understood. Studies were undertaken to address the role of the plasminogen activator system in the regulation of fibronectin matrix assembly in the osteoblast-like cell line, MG-63. Results Treatment of MG-63 cells with P25, a peptide ligand for uPAR, resulted in an increase in assembly of fibronectin matrix which was associated with an increase in the number of activated β1 integrins on the cell surface. Overexpression of uPAR in MG-63 cells increased the effect of P25 on fibronectin matrix assembly and β1 integrin activation. P25 had no effect on uPAR null fibroblasts, confirming a role for uPAR in this process. The addition of plasminogen activator inhibitor Type I (PAI-1) to cells increased the P25-induced fibronectin polymerization, as well as the number of activated integrins. This positive regulation of PAI-1 on fibronectin assembly was independent of PAI-1's anti-proteinase activity, but acted through PAI-1 binding to the somatomedin B domain of vitronectin. Conclusion These results indicate that vitronectin modulates fibronectin matrix assembly in osteosarcoma cells through a novel mechanism involving cross-talk through the plasminogen activator system. PMID:16569238

  9. Matrix metalloproteinases 2 and 9 and MMP9/NGAL complex activity in women with PCOS.

    PubMed

    Ranjbaran, Javad; Farimani, Marzieh; Tavilani, Heidar; Ghorbani, Marzieh; Karimi, Jamshid; Poormonsefi, Faranak; Khodadadi, Iraj

    2016-04-01

    It is believed that matrix metalloproteinases (MMPs) play important roles in follicular development and pathogenesis of polycystic ovary syndrome (PCOS). However, conflicting results are available about the alteration of MMP2 and MMP9 concentrations or activities in PCOS. In fact, there is no study entirely investigating both concentration and activity of these MMPs and serum levels of their tissue inhibitors TIMP2 and TIMP1, as well as lipocalin-bound form of MMP9 (MMP9/NGAL). Therefore, the thoroughness of previous studies is questionable. This study was conducted to determine circulatory concentration of MMP2, MMP9, MMP9/NGAL complex, TIMP1 and TIMP2 as well as gelatinase activities of MMP2, MMP9 and MMP9/NGAL complex in women with PCOS and controls. Mean age and BMI as well as serum levels of total cholesterol, triacylglycerol, HDL-C, LDL-C, fasting blood sugar (FBS), insulin, estradiol and sex hormone-binding globulin did not differ between groups, whereas a marked decrease in FSH and significant increases in LH, LH/FSH ratio, testosterone and free androgen index were observed. Women with PCOS and controls showed closed concentrations of MMP2, MMP9, MMP9/NGAL, TIMP1 and TIMP2. Gelatinase activity of MMP9 was found significantly higher in PCOS than in controls (64.53±15.32 vs 44.61±18.95 respectively) while patients and healthy subjects showed similar activities of MMP2 and MMP9/NGAL complex. Additionally, PCOS patients showed a higher MMP9/TIMP1 ratio compared with control women. Direct correlations were also observed between circulatory MMP9 level and the concentration and activity of MMP9/NGAL complex. In conclusion, based on the results of present study, we believe that MMP9 may be involved in the pathogenesis of PCOS. PMID:26733727

  10. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke

    PubMed Central

    Zinnhardt, Bastian; Viel, Thomas; Wachsmuth, Lydia; Vrachimis, Alexis; Wagner, Stefan; Breyholz, Hans-Jörg; Faust, Andreas; Hermann, Sven; Kopka, Klaus; Faber, Cornelius; Dollé, Frédéric; Pappata, Sabina; Planas, Anna M; Tavitian, Bertrand; Schäfers, Michael; Sorokin, Lydia M; Kuhlmann, Michael T; Jacobs, Andreas H

    2015-01-01

    Stroke is the most common cause of death and disability from neurologic disease in humans. Activation of microglia and matrix metalloproteinases (MMPs) is involved in positively and negatively affecting stroke outcome. Novel, noninvasive, multimodal imaging methods visualizing microglial and MMP alterations were employed. The spatio-temporal dynamics of these parameters were studied in relation to blood flow changes. Micro positron emission tomography (μPET) using [18F]BR-351 showed MMP activity within the first days after transient middle cerebral artery occlusion (tMCAo), followed by increased [18F]DPA-714 uptake as a marker for microglia activation with a maximum at 14 days after tMCAo. The inflammatory response was spatially located in the infarct core and in adjacent (penumbral) tissue. For the first time, multimodal imaging based on PET, single photon emission computed tomography, and magnetic resonance imaging revealed insight into the spatio-temporal distribution of critical parameters of poststroke inflammation. This allows further evaluation of novel treatment paradigms targeting the postischemic inflammation. PMID:26126867

  11. Activity of lung neutrophils and matrix metalloproteinases in cyclophosphamide-treated mice with experimental sepsis

    PubMed Central

    Hirsh, Mark; Carmel, Julie; Kaplan, Viktoria; Livne, Erella; Krausz, Michael M

    2004-01-01

    Sepsis in patients receiving chemotherapy may result in acute respiratory distress syndrome, despite decreased number of blood neutrophils [polymorphonuclear neutrophils (PMNs)]. In the present study, we investigated the correlation of cyclophosphamide (CY)-induced neutropenia with the destructive potential of lung PMN in respect to formation of septic acute lung injury (ALI). Mice were treated with 250 mg/kg of CY or saline (control) and subjected to cecal ligation and puncture (CLP) or sham operation. ALI was verified by histological examination. Lung PMNs and matrix metalloproteinases (MMPs) were assessed by flow cytometry and gelatin zymography. CLP in CY-treated mice induced a typical lung injury. Despite profound neutropenia, CY treatment did not attenuate CLP-induced ALI. This might relate to only a partial suppression of PMN: CY has significantly reduced PMN influx into the lungs (P = 0.008) and suppressed their oxidative metabolism, but had no suppressive effect on degranulation (P = 0.227) and even induced MMP-9 activity (P = 0.0003). In CY-untreated animals, peak of CLP-induced ALI coincided with massive PMN influx (P = 0.013), their maximal degranulation (P = 0.014) and activation of lung MMP-9 (P = 0.002). These findings may indicate an important role of the residual lung PMN and activation of MMP-9 in septic lung injury during CY chemotherapy. PMID:15255968

  12. Multimodal imaging reveals temporal and spatial microglia and matrix metalloproteinase activity after experimental stroke.

    PubMed

    Zinnhardt, Bastian; Viel, Thomas; Wachsmuth, Lydia; Vrachimis, Alexis; Wagner, Stefan; Breyholz, Hans-Jörg; Faust, Andreas; Hermann, Sven; Kopka, Klaus; Faber, Cornelius; Dollé, Frédéric; Pappata, Sabina; Planas, Anna M; Tavitian, Bertrand; Schäfers, Michael; Sorokin, Lydia M; Kuhlmann, Michael T; Jacobs, Andreas H

    2015-11-01

    Stroke is the most common cause of death and disability from neurologic disease in humans. Activation of microglia and matrix metalloproteinases (MMPs) is involved in positively and negatively affecting stroke outcome. Novel, noninvasive, multimodal imaging methods visualizing microglial and MMP alterations were employed. The spatio-temporal dynamics of these parameters were studied in relation to blood flow changes. Micro positron emission tomography (μPET) using [(18)F]BR-351 showed MMP activity within the first days after transient middle cerebral artery occlusion (tMCAo), followed by increased [(18)F]DPA-714 uptake as a marker for microglia activation with a maximum at 14 days after tMCAo. The inflammatory response was spatially located in the infarct core and in adjacent (penumbral) tissue. For the first time, multimodal imaging based on PET, single photon emission computed tomography, and magnetic resonance imaging revealed insight into the spatio-temporal distribution of critical parameters of poststroke inflammation. This allows further evaluation of novel treatment paradigms targeting the postischemic inflammation. PMID:26126867

  13. Distribution and relative activity of matrix metalloproteinase-2 in human coronal dentin

    PubMed Central

    Boushell, Lee W; Kaku, Masaru; Mochida, Yoshiyuki; Yamauchi, Mitsuo

    2011-01-01

    The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determine the MMP-2 distribution and relative activity in demineralized dentin. Crowns of twenty eight human molars were sectioned into inner (ID), middle (MD), and outer dentin (OD) regions and demineralized. MMP-2 was extracted with 0.33 mol·L−1 EDTA/2 mol·L−1 guanidine-HCl, pH 7.4, and MMP-2 concentration was estimated with enzyme-linked immunoabsorbant assay (ELISA). Further characterization was accomplished by Western blotting analysis and gelatin zymography. The mean concentrations of MMP-2 per mg dentin protein in the dentin regions were significantly different (P=0.043): 0.9 ng (ID), 0.4 ng (MD), and 2.2 ng (OD), respectively. The pattern of MMP-2 concentration was OD>ID>MD. Western blotting analysis detected ∼66 and ∼72 kDa immunopositive proteins corresponding to pro- and mature MMP-2, respectively, in the ID and MD, and a ∼66 kDa protein in the OD. Gelatinolytic activity consistent with MMP-2 was detected in all regions. Interestingly, the pattern of levels of Western blot immunodetection and gelatinolytic activity was MD>ID>OD. The concentration of MMP-2 in human coronal dentin was highest in the region of dentin that contains the dentinoenamel junction and least in the middle region of dentin. However, levels of Western blot immunodetection and gelatinolytic activity did not correlate with the estimated regional concentrations of MMP-2, potentially indicating region specific protein interactions. PMID:22010577

  14. AMP-activated protein kinase suppresses matrix metalloproteinase-9 expression in mouse embryonic fibroblasts.

    PubMed

    Morizane, Yuki; Thanos, Aristomenis; Takeuchi, Kimio; Murakami, Yusuke; Kayama, Maki; Trichonas, George; Miller, Joan; Foretz, Marc; Viollet, Benoit; Vavvas, Demetrios G

    2011-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tissue remodeling under both physiological and pathological conditions. Although MMP-9 expression is low in most cells and is tightly controlled, the mechanism of its regulation is poorly understood. We utilized mouse embryonic fibroblasts (MEFs) that were nullizygous for the catalytic α subunit of AMP-activated protein kinase (AMPK), which is a key regulator of energy homeostasis, to identify AMPK as a suppressor of MMP-9 expression. Total AMPKα deletion significantly elevated MMP-9 expression compared with wild-type (WT) MEFs, whereas single knock-out of the isoforms AMPKα1 and AMPKα2 caused minimal change in the level of MMP-9 expression. The suppressive role of AMPK on MMP-9 expression was mediated through both its activity and presence. The AMPK activators 5-amino-4-imidazole carboxamide riboside and A769662 suppressed MMP-9 expression in WT MEFs, and AMPK inhibition by the overexpression of dominant negative (DN) AMPKα elevated MMP-9 expression. However, in AMPKα(-/-) MEFs transduced with DN AMPKα, MMP-9 expression was suppressed. AMPKα(-/-) MEFs showed increased phosphorylation of IκBα, expression of IκBα mRNA, nuclear localization of nuclear factor-κB (NF-κB), and DNA-binding activity of NF-κB compared with WT. Consistently, selective NF-κB inhibitors BMS345541 and SM7368 decreased MMP-9 expression in AMPKα(-/-) MEFs. Overall, our results suggest that both AMPKα isoforms suppress MMP-9 expression and that both the activity and presence of AMPKα contribute to its function as a regulator of MMP-9 expression by inhibiting the NF-κB pathway. PMID:21402702

  15. Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells

    PubMed Central

    Kim, Seung Joon; Wan, Qiaoqiao; Cho, Eunhye; Han, Bumsoo; Yoder, Mervin C.; Voytik-Harbin, Sherry L.; Na, Sungsoo

    2014-01-01

    Recent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs. Collagen matrix stiffness was modulated by varying the collagen concentration and therefore fibril density. The results showed that soft (150 Pa) matrices induced an increased level of Cdc42 activity compared to stiff (1 kPa) matrices. Time-course imaging and colocalization analysis of Cdc42 activity and vacuole formation revealed that Cdc42 activity was colocalized to the periphery of cytoplasmic vacuoles. Moreover, soft matrices generated faster and larger vacuoles than stiff matrices. The matrix-driven vacuole formation was enhanced by a constitutively active Cdc42 mutant, but significantly inhibited by a dominant-negative Cdc42 mutant. Collectively, the results suggest that matrix rigidity is a strong regulator of Cdc42 activity and vacuole formation kinetics, and that enhanced activity of Cdc42 is an important step in early vacuole formation in ECFCs. PMID:24393843

  16. Osteoblast-released Matrix Vesicles, Regulation of Activity and Composition by Sulfated and Non-sulfated Glycosaminoglycans.

    PubMed

    Schmidt, Johannes R; Kliemt, Stefanie; Preissler, Carolin; Moeller, Stephanie; von Bergen, Martin; Hempel, Ute; Kalkhof, Stefan

    2016-02-01

    Our aging population has to deal with the increasing threat of age-related diseases that impair bone healing. One promising therapeutic approach involves the coating of implants with modified glycosaminoglycans (GAGs) that mimic the native bone environment and actively facilitate skeletogenesis. In previous studies, we reported that coatings containing GAGs, such as hyaluronic acid (HA) and its synthetically sulfated derivative (sHA1) as well as the naturally low-sulfated GAG chondroitin sulfate (CS1), reduce the activity of bone-resorbing osteoclasts, but they also induce functions of the bone-forming cells, the osteoblasts. However, it remained open whether GAGs influence the osteoblasts alone or whether they also directly affect the formation, composition, activity, and distribution of osteoblast-released matrix vesicles (MV), which are supposed to be the active machinery for bone formation. Here, we studied the molecular effects of sHA1, HA, and CS1 on MV activity and on the distribution of marker proteins. Furthermore, we used comparative proteomic methods to study the relative protein compositions of isolated MVs and MV-releasing osteoblasts. The MV proteome is much more strongly regulated by GAGs than the cellular proteome. GAGs, especially sHA1, were found to severely impact vesicle-extracellular matrix interaction and matrix vesicle activity, leading to stronger extracellular matrix formation and mineralization. This study shows that the regulation of MV activity is one important mode of action of GAGs and provides information on underlying molecular mechanisms. PMID:26598647

  17. Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith.

    PubMed

    Glazer, Lilah; Tom, Moshe; Weil, Simy; Roth, Ziv; Khalaila, Isam; Mittelman, Binyamin; Sagi, Amir

    2013-05-15

    Gastroliths are transient extracellular calcium deposits formed by the crayfish Cherax quadricarinatus von Martens on both sides of the stomach wall during pre-molt. Gastroliths are made of a rigid chitinous organic matrix, constructed as sclerotized chitin-protein microfibrils within which calcium carbonate is deposited. Although gastroliths share many characteristics with the exoskeleton, they are simpler in structure and relatively homogeneous in composition, making them an excellent cuticle-like model for the study of cuticular proteins. In searching for molt-related proteins involved in gastrolith formation, two integrated approaches were employed, namely the isolation and mass spectrometric analysis of proteins from the gastrolith matrix, and 454-sequencing of mRNAs from both the gastrolith-forming and sub-cuticular epithelia. SDS-PAGE separation of gastrolith proteins revealed a set of bands at apparent molecular masses of 75-85 kDa; mass spectrometry data matched peptide sequences from the deduced amino acid sequences of seven hemocyanin transcripts. This assignment was then examined by immunoblot analysis using anti-hemocyanin antibodies, also used to determine the spatial distribution of the proteins in situ. Apart from contributing to oxygen transport, crustacean hemocyanins were previously suggested to be involved in several aspects of the molt cycle, including hardening of the new post-molt exoskeleton via phenoloxidation. The phenoloxidase activity of gastrolith hemocyanins was demonstrated. It was also noted that hemocyanin transcript expression during pre-molt was specific to the hepatopancreas. Our results thus reflect a set of functionally versatile proteins, expressed in a remote metabolic tissue and dispersed via the hemolymph to perform different roles in various organs and structures. PMID:23393281

  18. Biomimetic Mineralization of the Alginate/Gelatin/Calcium Oxalate Matrix for Immobilization of Pectinase: Influence of Matrix on the Pectinolytic Activity.

    PubMed

    Bustamante-Vargas, Cindy Elena; de Oliveira, Débora; Valduga, Eunice; Venquiaruto, Luciana Dornelles; Paroul, Natalia; Backes, Geciane Toniazzo; Dallago, Rogério Marcos

    2016-07-01

    Pectinases catalyze the degradation of pectic substances and are used in several processes, mainly in food and textile industries. In this study, a biomimetic matrix of alginate/gelatin/calcium oxalate (AGOCa) was synthesized for the in situ immobilization via encapsulation of crude pectinase from Aspergillus niger ATCC 9642, obtaining an immobilization efficiency of about 61.7 %. To determine the performance of AGOCa matrix, this was compared to control matrices of alginate/calcium oxalate (AOxal) and alginate/water (ACa). By the evaluation of pH and temperature effects on the enzyme activity, it was observed an increase on pectinolytic activity for both three tested matrices with an increase on pH and temperature. The kinetic parameters for pectinase immobilized in the three matrices were determined using citric pectin as substrate. Values of K m of 0.003, 0.0013, and 0.0022 g mL(-1) and V max of 3.85, 4.32, and 3.17 μmol min(-1) g(-1) for AGOCa, AOxal, and ACa matrices were obtained, respectively. After 33 days of storage, the pectinase immobilized in the three different matrices kept its initial activity, but that immobilized in AGOCa presented high stability to the storage with a relative activity of about 160 %. The enzyme immobilized in AGOCa, AOxal, and ACa could be used in 10, 8, and 7 cycles, respectively, keeping 40 % of its initial activity. PMID:27040530

  19. Dexamethasone-Mediated Activation of Fibronectin Matrix Assembly Reduces Dispersal of Primary Human Glioblastoma Cells

    PubMed Central

    Shannon, Stephen; Vaca, Connan; Jia, Dongxuan; Entersz, Ildiko; Schaer, Andrew; Carcione, Jonathan; Weaver, Michael; Avidar, Yoav; Pettit, Ryan; Nair, Mohan; Khan, Atif; Foty, Ramsey A.

    2015-01-01

    Despite resection and adjuvant therapy, the 5-year survival for patients with Glioblastoma multiforme (GBM) is less than 10%. This poor outcome is largely attributed to rapid tumor growth and early dispersal of cells, factors that contribute to a high recurrence rate and poor prognosis. An understanding of the cellular and molecular machinery that drive growth and dispersal is essential if we are to impact long-term survival. Our previous studies utilizing a series of immortalized GBM cell lines established a functional causation between activation of fibronectin matrix assembly (FNMA), increased tumor cohesion, and decreased dispersal. Activation of FNMA was accomplished by treatment with Dexamethasone (Dex), a drug routinely used to treat brain tumor related edema. Here, we utilize a broad range of qualitative and quantitative assays and the use of a human GBM tissue microarray and freshly-isolated primary human GBM cells grown both as conventional 2D cultures and as 3D spheroids to explore the role of Dex and FNMA in modulating various parameters that can significantly influence tumor cell dispersal. We show that the expression and processing of fibronectin in a human GBM tissue-microarray is variable, with 90% of tumors displaying some abnormality or lack in capacity to secrete fibronectin or assemble it into a matrix. We also show that low-passage primary GBM cells vary in their capacity for FNMA and that Dex treatment reactivates this process. Activation of FNMA effectively “glues” cells together and prevents cells from detaching from the primary mass. Dex treatment also significantly increases the strength of cell-ECM adhesion and decreases motility. The combination of increased cohesion and decreased motility discourages in vitro and ex vivo dispersal. By increasing cell-cell cohesion, Dex also decreases growth rate of 3D spheroids. These effects could all be reversed by an inhibitor of FNMA and by the glucocorticoid receptor antagonist, RU-486. Our

  20. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity.

    PubMed

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  1. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix.

    PubMed

    Babu, Ranjith; Zhang, Jianying; Beckman, Eric J; Virji, Mohammed; Pasculle, William A; Wells, Alan

    2006-08-01

    Wound healing is a complex and orchestrated process that re-establishes the barrier and other functions of the skin. While wound healing proceeds apace in healthy individual, bacterial overgrowth and infection disrupts this process with significant morbidity and mortality. As such, any artificial matrix to promote wound healing must also control infecting microbes. We had earlier developed a two-part space-conforming gel backbone based on polyethyleneglycol (PEG) or lactose, which used ionic silver as the catalyst for gelation. As silver is widely used as an in vitro antimicrobial, use of silver as a catalyst for gelation provided the opportunity to assess its function as an anti-microbial agent in the gels. We found that these gels show bacteriostatic and bactericidal activity for a range of Gram-negative and Gram-positive organisms, including aerobic as well as anaerobic bacteria. This activity lasted for days, as silver leached out of the formed gels over a day in the manner of second-order decay. Importantly the gels did not limit either cell growth or viability, though cell migration was affected. Adding collagen I fragments to the gels corrected this effect on cell migration. We also found that the PEG gel did not interfere with hemostasis. These observations provide the basis for use of the gel backbones for incorporation of anesthetic agents and factors that promote wound repair. In conclusion, silver ions can serve dual functions of catalyzing gelation and providing anti-microbial properties to a biocompatible polymer. PMID:16635526

  2. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix

    PubMed Central

    Babu, Ranjith; Zhang, Jianying; Beckman, Eric J.; Virji, Mohammed; Pasculle, William A.; Wells, Alan

    2007-01-01

    Wound healing is a complex and orchestrated process that re-establishes the barrier and other functions of the skin. While wound healing proceeds apace in healthy individual, bacterial overgrowth and infection disrupts this process with significant morbidity and mortality. As such, any artificial matrix to promote wound healing must also control infecting microbes. We had earlier developed a two-part space-conforming gel backbone based on polyethyleneglycol (PEG) or lactose, which used ionic silver as the catalyst for gelation. As silver is widely used as an in vitro antimicrobial, use of silver as a catalyst for gelation provided the opportunity to assess its function as an anti-microbial agent in the gels. We found that these gels show bacteriostatic and bactericidal activity for a range of Gram-negative and Gram-positive organisms, including aerobic as well as anaerobic bacteria. This activity lasted for days, as silver leached out of the formed gels over a day in the manner of second-order decay. Importantly the gels did not limit either cell growth or viability, though cell migration was affected. Adding collagen I fragments to the gels corrected this effect on cell migration. We also found that the PEG gel did not interfere with hemostasis. These observations provide the basis for use of the gel backbones for incorporation of anesthetic agents and factors that promote wound repair. In conclusion, silver ions can serve dual functions of catalyzing gelation and providing anti-microbial properties to a biocompatible polymer. PMID:16635526

  3. Bilayer Membrane Modulation of Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Structure and Proteolytic Activity

    PubMed Central

    Cerofolini, Linda; Amar, Sabrina; Lauer, Janelle L.; Martelli, Tommaso; Fragai, Marco; Luchinat, Claudio; Fields, Gregg B.

    2016-01-01

    Cell surface proteolysis is an integral yet poorly understood physiological process. The present study has examined how the pericellular collagenase membrane-type 1 matrix metalloproteinase (MT1-MMP) and membrane-mimicking environments interplay in substrate binding and processing. NMR derived structural models indicate that MT1-MMP transiently associates with bicelles and cells through distinct residues in blades III and IV of its hemopexin-like domain, while binding of collagen-like triple-helices occurs within blades I and II of this domain. Examination of simultaneous membrane interaction and triple-helix binding revealed a possible regulation of proteolysis due to steric effects of the membrane. At bicelle concentrations of 1%, enzymatic activity towards triple-helices was increased 1.5-fold. A single mutation in the putative membrane interaction region of MT1-MMP (Ser466Pro) resulted in lower enzyme activation by bicelles. An initial structural framework has thus been developed to define the role(s) of cell membranes in modulating proteolysis. PMID:27405411

  4. Influence of neutron activation factors on matrix tablets for site specific delivery to the colon.

    PubMed

    Ahrabi, S F; Heinämäki, J; Sande, S A; Graffner, C

    2000-05-01

    The impact of the neutron activation procedure, i.e. incorporation of samarium oxide (Sm(2)O(3)) and neutron irradiation, on the compression properties (including the crushing strength) and in vitro dissolution of potential colonic delivery systems based on matrix tablets of amidated pectin (Am.P) or two types of hydroxypropyl methylcellulose (HPMC) was investigated. The neutron activation factors did not influence the compression properties of the tablets. Replacement of magnesium stearate with samarium stearate in directly compressed Am.P tablets to achieve both radiolabelling and lubrication resulted in a greater extent of concentration-dependent reduction of the crushing strength. Dissolution tests demonstrated that irradiation increased the release of the model drug ropivacaine from the tablets. The extent of this increase was unexpectedly low considering the previously observed degradation of the polymer expressed as an irradiation-induced viscosity reduction in solutions prepared from the polymers. Delayed-release coating with Eudragit L 100 protected the HPMC tablets against the release-increasing effect of irradiation until the late phases of release. Sm(2)O(3) retarded the release to a varying extent depending on particle characteristics. Incorporation of Sm(2)O(3) in the coating layer did not influence the release. However, one-third of the radioactivity leached from the coating within 60 min in 0.1 M HCl. PMID:10767600

  5. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

    SciTech Connect

    O'Toole, Timothy E. Zheng Yuting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-04-15

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca{sup 2+}]{sub i}), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca{sup 2+}]{sub I} with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca{sup 2+}]{sub I}, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.

  6. Sync Matrix

    Energy Science and Technology Software Center (ESTSC)

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  7. Modulation of matrix metalloproteinase activity by EDTA prevents posterior capsular opacification

    PubMed Central

    Guha, Rajdeep; Jongkey, Geram; Palui, Himangshu; Mishra, Akhilesh; Vemuganti, Geeta K.; Basak, Samar K.; Mandal, Tapan Kumar; Konar, Aditya

    2012-01-01

    Purpose To evaluate the effect of ethylenediaminetetraacetic acid (EDTA) on posterior capsular opacification (PCO) of rabbits and to assess its effect on intraocular tissues. Methods Modulation of matrix metalloproteinase (MMP) activity in the aqueous following cataract surgery in rabbits and its prevention by different doses of EDTA was determined by zymography. For evaluation of PCO, lensectomized rabbits were intracamerally injected with single dose of either 5 mg EDTA or normal saline. After one month, the degree of PCO was determined by slitlamp biomicroscopy, Miyake-Apple view, and histology of the lens capsule. The effect of EDTA on intra ocular pressure (IOP), corneal endothelial cells, and the retina was evaluated by tonometry, specular microscopy and scanning electron microscopy, and electroretinography. The concentration of EDTA in the aqueous was determined by high performance liquid chromatography (HPLC) at different time points. Results The MMP activity was significantly increased in the aqueous of the operated eyes, and EDTA reduced the degree of increase in a dose-dependent manner. EDTA treatment significantly reduced the degree of PCO (p<0.05). Histopathology of the lens capsule showed a reduction in the number of proliferating and migrating cells as well as MMP2 expression in the EDTA-treated eyes. EDTA treatment did not change the IOP; density, morphology and ultrastructure of the corneal endothelial cells; and electroretinography (ERG). EDTA was detectable in the aqueous humor up to 72 h following a single intracameral injection. Conclusions EDTA reduces the degree of PCO by suppressing the MMP activity and it is not toxic to intra ocular structures at the concentration used. PMID:22815623

  8. Airway mucus obstruction triggers macrophage activation and matrix metalloproteinase 12-dependent emphysema.

    PubMed

    Trojanek, Joanna B; Cobos-Correa, Amanda; Diemer, Stefanie; Kormann, Michael; Schubert, Susanne C; Zhou-Suckow, Zhe; Agrawal, Raman; Duerr, Julia; Wagner, Claudius J; Schatterny, Jolanthe; Hirtz, Stephanie; Sommerburg, Olaf; Hartl, Dominik; Schultz, Carsten; Mall, Marcus A

    2014-11-01

    Whereas cigarette smoking remains the main risk factor for emphysema, recent studies in β-epithelial Na(+) channel-transgenic (βENaC-Tg) mice demonstrated that airway surface dehydration, a key pathophysiological mechanism in cystic fibrosis (CF), caused emphysema in the absence of cigarette smoke exposure. However, the underlying mechanisms remain unknown. The aim of this study was to elucidate mechanisms of emphysema formation triggered by airway surface dehydration. We therefore used expression profiling, genetic and pharmacological inhibition, Foerster resonance energy transfer (FRET)-based activity assays, and genetic association studies to identify and validate emphysema candidate genes in βENaC-Tg mice and patients with CF. We identified matrix metalloproteinase 12 (Mmp12) as a highly up-regulated gene in lungs from βENaC-Tg mice, and demonstrate that elevated Mmp12 expression was associated with progressive emphysema formation, which was reduced by genetic deletion and pharmacological inhibition of MMP12 in vivo. By using FRET reporters, we show that MMP12 activity was elevated on the surface of airway macrophages in bronchoalveolar lavage from βENaC-Tg mice and patients with CF. Furthermore, we demonstrate that a functional polymorphism in MMP12 (rs2276109) was associated with severity of lung disease in CF. Our results suggest that MMP12 released by macrophages activated on dehydrated airway surfaces may play an important role in emphysema formation in the absence of cigarette smoke exposure, and may serve as a therapeutic target in CF and potentially other chronic lung diseases associated with airway mucus dehydration and obstruction. PMID:24828142

  9. Atmospheric-Pressure Cold Plasmas Used to Embed Bioactive Compounds in Matrix Material for Active Packaging of Fruits and Vegetables

    NASA Astrophysics Data System (ADS)

    Fernandez, Sulmer; Pedrow, Patrick; Powers, Joseph; Pitts, Marvin

    2009-10-01

    Active thin film packaging is a technology with the potential to provide consumers with new fruit and vegetable products-if the film can be applied without deactivating bioactive compounds.Atmospheric pressure cold plasma (APCP) processing can be used to activate monomer with concomitant deposition of an organic plasma polymerized matrix material and to immobilize a bioactive compound all at or below room temperature.Aims of this work include: 1) immobilize an antimicrobial in the matrix; 2) determine if the antimicrobial retains its functionality and 3) optimize the reactor design.The plasma zone will be obtained by increasing the voltage on an electrode structure until the electric field in the feed material (argon + monomer) yields electron avalanches. Results will be described using Red Delicious apples.Prospective matrix precursors are vanillin and cinnamic acid.A prospective bioactive compound is benzoic acid.

  10. Separated Carbon Nanotube Macroelectronics for Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Fu, Yue; Zhang, Jialu; Wang, Chuan; Chen, Pochiang; Zhou, Chongwu

    2012-02-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Pre-separated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics.

  11. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays.

    PubMed

    Zhang, Jialu; Fu, Yue; Wang, Chuan; Chen, Po-Chiang; Liu, Zhiwei; Wei, Wei; Wu, Chao; Thompson, Mark E; Zhou, Chongwu

    2011-11-01

    Active matrix organic light-emitting diode (AMOLED) display holds great potential for the next generation visual technologies due to its high light efficiency, flexibility, lightweight, and low-temperature processing. However, suitable thin-film transistors (TFTs) are required to realize the advantages of AMOLED. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose because of their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report, for the first time, the demonstration of AMOLED displays driven by separated nanotube thin-film transistors (SN-TFTs) including key technology components, such as large-scale high-yield fabrication of devices with superior performance, carbon nanotube film density optimization, bilayer gate dielectric for improved substrate adhesion to the deposited nanotube film, and the demonstration of monolithically integrated AMOLED display elements with 500 pixels driven by 1000 SN-TFTs. Our approach can serve as the critical foundation for future nanotube-based thin-film display electronics. PMID:21942351

  12. Active matrix organic light emitting diode (OLED)-XL life test results

    NASA Astrophysics Data System (ADS)

    Fellowes, David A.; Wood, Michael V.; Hastings, Arthur R., Jr.; Ghosh, Amalkumar P.; Prache, Olivier

    2008-04-01

    OLED displays have been known to exhibit high levels of performance with regards to contrast, response time, uniformity, and viewing angle, but a lifetime improvement has been perceived to be essential for broadening the applications of OLED's in the military and in the commercial market. As a result of this need, the US Army and eMagin Corporation established a Cooperative Research and Development Agreement (CRADA) to improve the lifetime of OLED displays. In 2006, eMagin Corporation developed long-life OLED-XL devices for use in their AMOLED microdisplays for head-worn applications, and RDECOM CERDEC NVESD ran life tests on these displays, finding over 200% lifetime improvement for the XL devices over the standard displays. Early results were published at the 2007 SPIE Defense and Security Symposium. Further life testing of XL and standard devices at ambient conditions and at high temperatures will be presented this year along with a recap of previous data. This should result in a better understanding of the applicability of AMOLEDs in military and commercial head mounted systems: where good fits are made, and where further development might be needed. This is a continuation of the paper "Life test results of OLED-XL long-life devices for use in active matrix organic light emitting diode (AMOLED) displays for head mounted applications" presented at SPIE DSS in 2007.

  13. Trivalent metal ions based on inorganic compounds with in vitro inhibitory activity of matrix metalloproteinase 13.

    PubMed

    Wen, Hanyu; Qin, Yuan; Zhong, Weilong; Li, Cong; Liu, Xiang; Shen, Yehua

    2016-10-01

    Collagenase-3 (MMP-13) inhibitors have attracted considerable attention in recent years and have been developed as a therapeutic target for a variety of diseases, including cancer. Matrix metalloproteinases (MMPs) can be inhibited by a multitude of compounds, including hydroxamic acids. Studies have shown that materials and compounds containing trivalent metal ions, particularly potassium hexacyanoferrate (III) (K3[Fe(CN)6]), exhibit cdMMP-13 inhibitory potential with a half maximal inhibitory concentration (IC50) of 1.3μM. The target protein was obtained by refolding the recombinant histidine-tagged cdMMP-13 using size exclusion chromatography (SEC). The secondary structures of the refolded cdMMP-13 with or without metal ions were further analyzed via circular dichroism and the results indicate that upon binding with metal ions, an altered structure with increased domain stability was obtained. Furthermore, isothermal titration calorimetry (ITC) experiments demonstrated that K3[Fe(CN)6]is able to bind to MMP-13 and endothelial cell tube formation tests provide further evidence for this interaction to exhibit anti-angiogenesis potential. To the best of our knowledge, no previous report of an inorganic compound featuring a MMP-13 inhibitory activity has ever been reported in the literature. Our results demonstrate that K3[Fe(CN)6] is useful as a new effective and specific inhibitor for cdMMP-13 which may be of great potential for future drug screening applications. PMID:27542739

  14. Matrix Effects on the Stability and Antioxidant Activity of Red Cabbage Anthocyanins under Simulated Gastrointestinal Digestion

    PubMed Central

    Podsędek, Anna; Koziołkiewicz, Maria

    2014-01-01

    Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method) and antioxidant capacity (ABTS and FRAP assays) strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay) in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage. PMID:24575407

  15. Estimating nonnegative matrix model activations with deep neural networks to increase perceptual speech quality.

    PubMed

    Williamson, Donald S; Wang, Yuxuan; Wang, DeLiang

    2015-09-01

    As a means of speech separation, time-frequency masking applies a gain function to the time-frequency representation of noisy speech. On the other hand, nonnegative matrix factorization (NMF) addresses separation by linearly combining basis vectors from speech and noise models to approximate noisy speech. This paper presents an approach for improving the perceptual quality of speech separated from background noise at low signal-to-noise ratios. An ideal ratio mask is estimated, which separates speech from noise with reasonable sound quality. A deep neural network then approximates clean speech by estimating activation weights from the ratio-masked speech, where the weights linearly combine elements from a NMF speech model. Systematic comparisons using objective metrics, including the perceptual evaluation of speech quality, show that the proposed algorithm achieves higher speech quality than related masking and NMF methods. In addition, a listening test was performed and its results show that the output of the proposed algorithm is preferred over the comparison systems in terms of speech quality. PMID:26428778

  16. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    NASA Astrophysics Data System (ADS)

    Parali, Levent; Şabikoğlu, İsrafil; Kurbanov, Mirza A.

    2014-11-01

    A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO3, SiO2 to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO3 or SiO2), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT-PVDF) and the hybrid structure (PZT-PVDF-BaTiO3) composite are compared. The d33 value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d33 value and the coupling factor of the hybrid structure (PZT-HDPE-SiO2) have exhibited about 68 and 52% increase according to microstructure composite (PZT-HDPE), respectively.

  17. Probing matrix and tumor mechanics with in situ calibrated optical trap based active microrheology

    NASA Astrophysics Data System (ADS)

    Staunton, Jack Rory; Vieira, Wilfred; Tanner, Kandice; Tissue Morphodynamics Unit Team

    Aberrant extracellular matrix deposition and vascularization, concomitant with proliferation and phenotypic changes undergone by cancer cells, alter mechanical properties in the tumor microenvironment during cancer progression. Tumor mechanics conversely influence progression, and the identification of physical biomarkers promise improved diagnostic and prognostic power. Optical trap based active microrheology enables measurement of forces up to 0.5 mm within a sample, allowing interrogation of in vitro biomaterials, ex vivo tissue sections, and small organisms in vivo. We fabricated collagen I hydrogels exhibiting distinct structural properties by tuning polymerization temperature Tp, and measured their shear storage and loss moduli at frequencies 1-15k Hz at multiple amplitudes. Lower Tp gels, with larger pore size but thicker, longer fibers, were stiffer than higher Tp gels; decreasing strain increased loss moduli and decreased storage moduli at low frequencies. We subcutanously injected probes with metastatic murine melanoma cells into mice. The excised tumors displayed storage and loss moduli 40 Pa and 10 Pa at 1 Hz, increasing to 500 Pa and 1 kPa at 15 kHz, respectively.

  18. Lag measurement in an a-Se active matrix flat-panel imager.

    PubMed

    Schroeder, C; Stanescu, T; Rathee, S; Fallone, B G

    2004-05-01

    Lag and residual contrast have been quantified in an amorphous selenium (a-Se) active-matrix flat-panel imager (AMFPI) as a function of frame time, kilovoltage (kV) and megavoltage (MV) x-ray photon energies and amount of radiation incident on the detector. The AMFPI contains a 200 microm thick a-Se layer deposited on a thin film transistor (TFT) array of size 8.7 cm x 8.7 cm with an 85-microm pixel pitch. For all energies, the lag (signal normalized to the signal due to exposure) for the first (n = 1) and second (n = 2) frame after exposure ranges from 0.45% to 0.91% and from 0.29% to 0.51%, respectively. The amount of lag was determined to be a function of the time after the x-ray exposure irrespective of frame time or the magnitude of exposure. The lag for MV photon energies was slightly less than that for kV photon energies. The residual contrast for all energies studied ranges from 0.41% to 0.75% and from 0.219% to 0.41% for the n = 1 and n = 2 frames, respectively. These results show that lag and residual contrast in kV and MV radiographic applications are always less than 1% for the detection system used and only depend on the time after x-ray exposure. PMID:15191310

  19. Design and feasibility of active matrix flat panel detector using avalanche amorphous selenium for protein crystallography.

    PubMed

    Sultana, Afrin; Reznik, Alla; Karim, Karim S; Rowlands, J A

    2008-10-01

    Protein crystallography is the most important technique for resolving the three-dimensional atomic structure of protein by measuring the intensity of its x-ray diffraction pattern. This work proposes a large area flat panel detector for protein crystallography based on direct conversion x-ray detection technique using avalanche amorphous selenium (a-Se) as the high gain photoconductor, and active matrix readout using amorphous silicon (a-Si:H) thin film transistors. The detector employs avalanche multiplication phenomenon of a-Se to make the detector sensitive to each incident x ray. The advantages of the proposed detector over the existing imaging plate and charge coupled device detectors are large area, high dynamic range coupled to single x-ray detection capability, fast readout, high spatial resolution, and inexpensive manufacturing process. The optimal detector design parameters (such as detector size, pixel size, and thickness of a-Se layer), and operating parameters (such as electric field across the a-Se layer) are determined based on the requirements for protein crystallography application. The performance of the detector is evaluated in terms of readout time (<1 s), dynamic range (approximately 10(5)), and sensitivity (approximately 1 x-ray photon), thus validating the detector's efficacy for protein crystallography. PMID:18975678

  20. Transglutaminase activity arising from Factor XIIIA is required for stabilization and conversion of plasma fibronectin into matrix in osteoblast cultures.

    PubMed

    Cui, Cui; Wang, Shuai; Myneni, Vamsee D; Hitomi, Kiyotaka; Kaartinen, Mari T

    2014-02-01

    Circulating plasma fibronectin (pFN), produced by hepatocytes, is a major component of the noncollagenous bone matrix where it was recently shown in vivo in mice to control the biomechanical quality as well as the mineral-to-matrix ratio in bone. FN fibrillogenesis is a process generally requiring FN binding to cellular integrins, and cellular tension to elongate and assemble the molecule. Whether soluble pFN undergoes cell-mediated assembly in bone is not fully established. FN is a well-known substrate for transglutaminases (TGs), which are protein-crosslinking enzymes capable of stabilizing macromolecular structures. The role of this modification regarding the function of FN in bone matrix has remained unknown. Osteoblasts express two TGs-transglutaminase 2 and Factor XIIIA-and we have shown that Factor XIIIA is the main TG active during osteoblast differentiation. In the present study, conducted using MC3T3-E1 osteoblast cultures and bone marrow stromal cells, we demonstrate that pFN requires a TG-mediated crosslinking step to form osteoblast matrix in vitro. This modification step is specific for pFN; cellular FN (EDA-FN) does not serve as a TG substrate. Inhibition of pFN assembly using a TG inhibitor, or depletion of pFN from cell culture serum, dramatically decreased total FN matrix assembly in the osteoblast cultures and affected both the quantity and quality of the type I collagen matrix, and decreased lysyl oxidase and alkaline phosphatase levels, resulting in decreased mineralization. Experiments with isozyme-specific substrate peptides showed that FXIIIA is responsible for the crosslinking of pFN. Addition of exogenous preactivated FXIIIA to osteoblast cultures promoted pFN assembly from the media into matrix. Exogenous TG2 had no effect. Analysis of pFN and EDA-FN fibrils by immunofluorescence microscopy demonstrated that they form distinct matrix network, albeit with minor overlap, suggesting different functions for the two FN forms. Further analysis

  1. Biosensing of matrix metalloproteinase activity with Cd-free quantum dots

    NASA Astrophysics Data System (ADS)

    Plumley, John Bryan

    Quantum dots (QDs) have become attractive in the biomedical field on account of their superior optical properties and stability, in comparison to traditional fluorophores. QDs also have properties which make them ideal for complex in vivo conditions. However, toxicity has been a chief concern in the eventual implementation of QDs for in vivo applications such as biosensing and tumor imaging. Commercially available QDs contain a notoriously noxious Cd component and therefore continuous research has gone into developing QDs without toxic heavy metals, generally Cd, that would still yield comparable performance in terms of their optical properties. Nonetheless, even in the case of Cd-free QDs, toxicity should be evaluated on a case by case basis, as other properties such as size, coating, stability, and charge can affect toxicity of nanomaterials as well, making it a very complex issue. With the high promise of QDs in the field of biomedical development as a motivation, this work strives to develop the efficient and repeatable synthesis of Cd-free QDs with high stability and luminescence, with proven low toxicity, and the ability to detect active matrix metalloproteinase (MMP) in a biosensing system, designed to identify direct biomarkers for pathological conditions, which in turn would enable early disease diagnosis and better treatment development. In this work, highly luminescent ZnSe:Mn/ZnS QDs have been synthesized, characterized, and modified with peptides with a bioconjugation procedure that utilized thiol-metal affinity. Experiments aiming at MMP detection were conducted using the peptide/QD conjugates. In addition, the ApoTox-Glo(TM) Triplex assay was utilized to evaluate cytotoxicity, and a safe concentration below 0.125 microM was identified for peptide-coated ZnSe:Mn/ZnS QDs in water. Finally, in contribution to developing an in vivo fiberoptic system for sensing MMP activity, the QDs were successfully tethered to silica and MMP detection was demonstrated

  2. EGF AND TGF-{alpha} motogenic activities are mediated by the EGF receptor via distinct matrix-dependent mechanisms

    SciTech Connect

    Ellis, Ian R.; Schor, Ana M.; Schor, Seth L. . E-mail: s.l.schor@dundee.ac.uk

    2007-02-15

    EGF and TGF-{alpha} induce an equipotent stimulation of fibroblast migration and proliferation. In spite of their homologous structure and ligation by the same receptor (EGFR), we report that their respective motogenic activities are mediated by different signal transduction intermediates, with p70{sup S6K} participating in EGF signalling and phospholipase C{gamma} in TGF-{alpha} signalling. We additionally demonstrate that EGF and TGF-{alpha} motogenic activities may be resolved into two stages: (a) cell 'activation' by a transient exposure to either cytokine, and (b) the subsequent 'manifestation' of an enhanced migratory phenotype in the absence of cytokine. The cell activation and manifestation stages for each cytokine are mediated by distinct matrix-dependent mechanisms: motogenetic activation by EGF requires the concomitant functionality of EGFR and the hyaluronan receptor CD44, whereas activation by TGF-{alpha} requires EGFR and integrin {alpha}v{beta}3. Manifestation of elevated migration no longer requires the continued presence of exogenous cytokine and functional EGFR but does require the above mentioned matrix receptors, as well as their respective ligands, i.e., hyaluronan in the case of EGF, and vitronectin in the case of TGF-{alpha}. In contrast, the mitogenic activities of EGF and TGF-{alpha} are independent of CD44 and {alpha}v{beta}3 functionality. These results demonstrate clear qualitative differences between EGF and TGF-{alpha} pathways and highlight the importance of the extracellular matrix in regulating cytokine bioactivity.

  3. [Study on an actuation system for matrix control of the active catheter in a minimally-invasive intervention surgery].

    PubMed

    Fu, Yi-li; Ma, Hui-hui; Li, Xian-ling

    2006-11-01

    As it is impossible for an active catheter with a very small space to accommodate overmany lead wires in minimally-invasive surgery, a matrix network system is presented, in this paper, to control SMA actuators using minimum lead wires. Pulse current is adjusted by pulse width modulation (PWM) signals from the single-chip processor. In addition, multiple SMA actuators' cooperation helps the active catheter to succeed in guiding motion. PMID:17300007

  4. Secretion and Reversible Assembly of Extracellular-like Matrix by Enzyme-Active Colloidosome-Based Protocells.

    PubMed

    Akkarachaneeyakorn, Khrongkhwan; Li, Mei; Davis, Sean A; Mann, Stephen

    2016-03-29

    The secretion and reversible assembly of an extracellular-like matrix by enzyme-active inorganic protocells (colloidosomes) is described. Addition of N-fluorenyl-methoxycarbonyl-tyrosine-(O)-phosphate to an aqueous suspension of alkaline phosphatase-containing colloidosomes results in molecular uptake and dephosphorylation to produce a time-dependent sequence of supramolecular hydrogel motifs (outer membrane wall, cytoskeletal-like interior and extra-protocellular matrix) that are integrated and remodelled within the microcapsule architecture and surrounding environment. Heat-induced disassembly of the extra-protocellular matrix followed by cooling produces colloidosomes with a densely packed hydrogel interior. These procedures are exploited for the fabrication of nested colloidosomes with spatially delineated regions of hydrogelation. PMID:26981922

  5. Determination of fission neutron transmission through waste matrix material using neutron signal correlation from active assay of {sup 239}Pu

    SciTech Connect

    Hollas, C.L.; Arnone, G.; Brunson, G.; Coop, K.

    1996-09-01

    The accuracy of TRU (transuranic) waste assay using the differential die-away technique depends upon significant corrections to compensate for the effects of the matrix material in which the TRU waste is located. The authors have used a new instrument, the Combined Thermal/Epithermal Neutron (CTEN) instrument for the assay of TRU waste, to develop methods to improve the accuracy of these corrections. Neutrons from a pulsed 14-MeV neutron generator are moderated in the walls of the CTEN cavity and induce fission in the TRU material. The prompt neutrons from these fission events are detected in cadmium-wrapped {sup 3}He neutron detectors. They report new methods of data acquisition and analysis to extract correlation in the neutron signals resulting form fission during active interrogation. They use the correlation information in conjunction with the total number of neutrons to determine the fraction of fission neutrons transmitted through the matrix material into the {sup 3}He detectors. This determination allows them to cleanly separate the matrix effects into two processes: matrix modification upon the neutron interrogating flux and matrix modification upon the fraction of fission neutrons transmitted to the neutron detectors. This transmission information is also directly applied in a neutron multiplicity analysis in the passive assay of {sup 240}Pu.

  6. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ☆

    PubMed Central

    Jones, Eleanor R.; Jones, Gavin C.; Legerlotz, Kirsten; Riley, Graham P.

    2013-01-01

    Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1 Hz for 48 h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy. PMID:23830915

  7. Countering beam divergence effects with focused segmented scintillators for high DQE megavoltage active matrix imagers

    NASA Astrophysics Data System (ADS)

    Liu, Langechuan; Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Jiang, Hao

    2012-08-01

    The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ∼1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through the utilization of thick, two-dimensional, segmented scintillators with optically isolated crystals. However, this strategy is constrained by the degradation of high-frequency DQE resulting from spatial resolution loss at locations away from the central beam axis due to oblique incidence of radiation. To address this challenge, segmented scintillators constructed so that the crystals are individually focused toward the radiation source are proposed and theoretically investigated. The study was performed using Monte Carlo simulations of radiation transport to examine the modulation transfer function and DQE of focused segmented scintillators with thicknesses ranging from 5 to 60 mm. The results demonstrate that, independent of scintillator thickness, the introduction of focusing largely restores spatial resolution and DQE performance otherwise lost in thick, unfocused segmented scintillators. For the case of a 60 mm thick BGO scintillator and at a location 20 cm off the central beam axis, use of focusing improves DQE by up to a factor of ∼130 at non-zero spatial frequencies. The results also indicate relatively robust tolerance of such scintillators to positional displacements, of up to 10 cm in the source-to-detector direction and 2 cm in the lateral direction, from their optimal focusing position, which could potentially enhance practical clinical use of focused segmented scintillators in MV AMFPIs.

  8. Countering Beam Divergence Effects with Focused Segmented Scintillators for High DQE Megavoltage Active Matrix Imagers

    PubMed Central

    Liu, Langechuan; Antonuk, Larry E; Zhao, Qihua; El-Mohri, Youcef; Jiang, Hao

    2012-01-01

    The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ~1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through utilization of thick, two-dimensional, segmented scintillators with optically isolated crystals. However, this strategy is constrained by degradation of high-frequency DQE resulting from spatial resolution loss at locations away from the central beam axis due to oblique incidence of radiation. To address this challenge, segmented scintillators constructed so that the crystals are individually focused toward the radiation source are proposed and theoretically investigated. The study was performed using Monte Carlo simulations of radiation transport to examine the modulation transfer function and DQE of focused segmented scintillators with thicknesses ranging from 5 to 60 mm. The results demonstrate that, independent of scintillator thickness, the introduction of focusing largely restores spatial resolution and DQE performance otherwise lost in thick, unfocused segmented scintillators. For the case of a 60 mm thick BGO scintillator and at a location 20 cm off the central beam axis, use of focusing improves DQE by up to a factor of ~130 at non-zero spatial frequencies. The results also indicate relatively robust tolerance of such scintillators to positional displacements, of up to 10 cm in the source-to-detector direction and 2 cm in the lateral direction, from their optimal focusing position, which could potentially enhance practical clinical use of focused segmented scintillators in MV AMFPIs. PMID:22854009

  9. The Role of Collagen Charge Clusters in the Modulation of Matrix Metalloproteinase Activity*

    PubMed Central

    Lauer, Janelle L.; Bhowmick, Manishabrata; Tokmina-Roszyk, Dorota; Lin, Yan; Van Doren, Steven R.; Fields, Gregg B.

    2014-01-01

    Members of the matrix metalloproteinase (MMP) family selectively cleave collagens in vivo. Several substrate structural features that direct MMP collagenolysis have been identified. The present study evaluated the role of charged residue clusters in the regulation of MMP collagenolysis. A series of 10 triple-helical peptide (THP) substrates were constructed in which either Lys-Gly-Asp or Gly-Asp-Lys motifs replaced Gly-Pro-Hyp (where Hyp is 4-hydroxy-l-proline) repeats. The stabilities of THPs containing the two different motifs were analyzed, and kinetic parameters for substrate hydrolysis by six MMPs were determined. A general trend for virtually all enzymes was that, as Gly-Asp-Lys motifs were moved from the extreme N and C termini to the interior next to the cleavage site sequence, kcat/Km values increased. Additionally, all Gly-Asp-Lys THPs were as good or better substrates than the parent THP in which Gly-Asp-Lys was not present. In turn, the Lys-Gly-Asp THPs were also always better substrates than the parent THP, but the magnitude of the difference was considerably less compared with the Gly-Asp-Lys series. Of the MMPs tested, MMP-2 and MMP-9 most greatly favored the presence of charged residues with preference for the Gly-Asp-Lys series. Lys-Gly-(Asp/Glu) motifs are more commonly found near potential MMP cleavage sites than Gly-(Asp/Glu)-Lys motifs. As Lys-Gly-Asp is not as favored by MMPs as Gly-Asp-Lys, the Lys-Gly-Asp motif appears advantageous over the Gly-Asp-Lys motif by preventing unwanted MMP hydrolysis. More specifically, the lack of Gly-Asp-Lys clusters may diminish potential MMP-2 and MMP-9 collagenolytic activity. The present study indicates that MMPs have interactions spanning the P23–P23′ subsites of collagenous substrates. PMID:24297171

  10. Levels of Matrix Metalloproteinases in Arthroplasty Patients and Their Correlation With Inflammatory and Thrombotic Activation Processes.

    PubMed

    Alexander, Kyle; Banos, Andrew; Abro, Schuharazad; Hoppensteadt, Debra; Fareed, Jawed; Rees, Harold; Hopkinson, William

    2016-07-01

    An imbalance of matrix metalloproteinases (MMPs) and their inhibitors is thought to play a major role in the pathophysiology of joint diseases. The aim of this study is to provide additional insights into the relevance of MMP levels in arthroplasty patients in relation to inflammation and thrombosis. Deidentified plasma samples from 100 patients undergoing total hip arthroplasty or total knee arthroplasty were collected preoperatively, on postoperative day 1, and on postoperative day 3. Tissue inhibitor of MMP 4, tumor necrosis factor α (TNF-α), pro-MMP1, MMP3, MMP9, MMP13, and d-dimer were measured using enzyme-linked immunosorbent assay kits. A biochip array was used to profile interleukin (IL) 2, IL-4, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), interferon gamma, TNF-α, IL-1α, IL-1β, monocyte chemoattractant protein 1, and endothelial growth factor (EGF) levels. The levels of MMP1, MMP9, MMP13, and TNF-α were elevated preoperatively in arthroplasty patients when compared to healthy individuals. The concentrations of MMP1 and MMP9 increased slightly in postsurgical samples. d-Dimer levels were elevated preoperatively, increased postoperatively, and started decreasing on postoperative day 3. Significant correlations between MMP9 with TNF-α, IL-6, IL-8, VEGF, and EGF were identified. Elevated preoperative MMP1, MMP9, and MMP13 concentrations suggest that they may play a role in the pathogenesis of arthritis. There is also evidence of increased coagulation activity and possible upregulation of several MMPs postsurgically. Correlation analysis indicates that MMP9 levels may potentially be related to inflammation and thrombosis in arthroplasty patients. PMID:27052781

  11. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    PubMed Central

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  12. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation.

    PubMed

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  13. Expression and activation of matrix metalloproteinases in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+.

    PubMed

    Siméon, A; Monier, F; Emonard, H; Gillery, P; Birembaut, P; Hornebeck, W; Maquart, F X

    1999-06-01

    We investigated the expression and activation of matrix metalloproteinases in a model of experimental wounds in rats, and their modulation by glycyl-L-histidyl-L-lysine-Cu(II), a potent activator of wound repair. Wound chambers were inserted under the skin of Sprague-Dawley rats and received serial injections of either 2 mg glycyl-L-histidyl-L-lysine-Cu(II) or the same volume of saline. The wound fluid and the neosynthetized connective tissue deposited in the chambers were collected and analyzed for matrix metalloproteinase expression and/or activity. Interstitial collagenase increased progressively in the wound fluid throughout the experiment. Glycyl-L-histidyl-L-lysine-Cu(II) treatment did not alter its activity. Matrix metalloproteinase-9 (gelatinase B) and matrix metalloproteinase-2 (gelatinase A) were the two main gelatinolytic activities expressed during the healing process. Pro-matrix metalloproteinase (pro-form of matrix metalloproteinase)-9 was strongly expressed during the early stages of wound healing (day 3). In the wound fluid, it decreased rapidly and disappeared after day 18, whereas in the wound tissue, matrix metalloproteinase-9 expression persisted in the glycyl-L-histidyl-L-lysine-Cu(II) injected chamber until day 22. Pro-matrix metalloproteinase-2 was expressed at low levels at the beginning of the healing process, increased progressively until day 7, then decreased until day 18. Activated matrix metalloproteinase-2 was present in wound fluid and wound tissue. It increased until day 12, then decreased progressively. Glycyl-L-histidyl-L-lysine-Cu(II) injections increased pro-matrix metalloproteinase-2 and activated matrix metalloproteinase-2 during the later stages of healing (days 18 and/or 22). These results demonstrate that various types of matrix metalloproteinases are selectively expressed or activated at the various periods of wound healing. Glycyl-L-histidyl-L-lysine-Cu(II) is able to modulate their expression and might significantly alter

  14. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration.

    PubMed

    Pan, Haitao; Zheng, Qixin; Yang, Shuhua; Guo, Xiaodong; Wu, Bin; Zou, Zhenwei; Duan, Zhixia

    2014-08-01

    The osteogenic differentiation of bone marrow stromal cells (BMSCs) can be regulated by systemic or local growth factor, especially by transforming growth factor beta 1 (TGF-β1). However, how to maintain the bioactivity of exogenous TGF-β1 is a great challenge due to its short half-life time. The most promising solution is to transfer TGF-β1 gene into seed cells through transgenic technology and then transgenic cells to continuously secret endogenous TGF-β1 protein via gene expression. In this study, a novel non-viral vector (K)16GRGDSPC was chemically linked to bioactive bone matrices PLGA-[ASP-PEG]n using cross-linker to construct a novel non-viral gene transfer system. TGF-β1 gene was incubated with this system and subsequently rabbit-derived BMSCs were co-cultured with this gene-activated PLGA-[ASP-PEG]n, while co-cultured with PLGA-[ASP-PEG]n modified with (K)16GRGDSPC only and original PLGA-[ASP-PEG]n as control. Thus we fabricated three kinds of composites: Group A (BMSCs-TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); Group B (BMSCs-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); and Group C (BMSCs-PLGA-[ASP-PEG]n composite). TGF-β1 and other osteogenic phenotype markers of alkaline phosphatase, osteocalcin, osteopontin and type I collagen in Group A were all significantly higher than the other two groups ex vivo. In vivo, 15-mm long segmental rabbit bone defects were created and randomly implanted the aforementioned composites separately, and then fixed with plate-screws. The results demonstrated that the implants in Group A significantly accelerated bone regeneration compared with the other implants based on X-rays, histological and biomechanical examinations. Therefore, we conclude this novel peptide-modified and gene-activated biomimetic bone matrix of TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n is a very promising scaffold biomaterial for accelerating bone regeneration. PMID:24115366

  15. Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages.

    PubMed

    Rodríguez-Roque, María Janeth; de Ancos, Begoña; Sánchez-Vega, Rogelio; Sánchez-Moreno, Concepción; Cano, M Pilar; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2016-01-01

    The biological activity of carotenoids depends on their bioaccessibility and solubilization in the gastrointestinal tract. These compounds are poorly dispersed in the aqueous media of the digestive tract due to their lipophilic nature. Thus, it is important to analyze the extent to which some factors, such as the food matrix and food processing, may improve their bioaccessibility. Beverages formulated with a blend of fruit juices and water (WB), milk (MB) or soymilk (SB) were treated by high-intensity pulsed electric fields (HIPEF) (35 kV cm(-1) with 4 μs bipolar pulses at 200 Hz for 1800 μs), high-pressure processing (HPP) (400 MPa at 40 °C for 5 min) or thermal treatment (TT) (90 °C for 1 min) in order to evaluate the influence of food matrix and processing on the bioaccessibility of carotenoids and on the lipophilic antioxidant activity (LAA). The bioaccessibility of these compounds diminished after applying any treatment (HIPEF, HPP and TT), with the exception of cis-violaxanthin + neoxanthin, which increased by 79% in HIPEF and HPP beverages. The lowest carotenoid bioaccessibility was always obtained in TT beverages (losses up to 63%). MB was the best food matrix for improving the bioaccessibility of carotenoids, as well as the LAA. The results demonstrate that treatment and food matrix modulated the bioaccessibility of carotenoids as well as the lipophilic antioxidant potential of beverages. Additionally, HIPEF and HPP could be considered as promising technologies to obtain highly nutritional and functional beverages. PMID:26499515

  16. Antioxidant and antiproliferative activity of chokeberry juice phenolics during in vitro simulated digestion in the presence of food matrix.

    PubMed

    Stanisavljević, Nemanja; Samardžić, Jelena; Janković, Teodora; Šavikin, Katarina; Mojsin, Marija; Topalović, Vladanka; Stevanović, Milena

    2015-05-15

    Chokeberry juice was subjected to in vitro gastric digestion in the presence of food matrix in order to determine the changes in polyphenol content and antioxidant activity. Addition of food matrix immediately decreased the total phenolic content, anthocyanin content, DPPH scavenging activity as well as total reducing power by 36%, 90%, 45% and 44%, respectively. After in vitro digestion, total phenolic content, anthocyanin content and reducing power are slightly elevated, but they are still lower than in initial non-digested juice. The effect of digested juice on Caco-2 cells proliferation was also studied, and the reduction of proliferative rate by approximately 25% was determined. Our results suggested that although a large proportion of chokeberry phenolics undergo transformation during digestion they are still potent as antioxidant and antiproliferative agents. PMID:25577114

  17. X-RAY ACTIVE MATRIX PIXEL SENSORS BASEDON J-FET TECHNOLOGY DEVELOPED FOR THE LINAC COHERENT LIGHT SOURCE.

    SciTech Connect

    CARINI,G.A.; CHEN, W.; LI, Z.; REHAK, P.; SIDDONS, D.P.

    2007-10-29

    An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.

  18. Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays

    NASA Astrophysics Data System (ADS)

    Almanza-Workman, A. Marcia; Jeans, Albert; Braymen, Steve; Elder, Richard E.; Garcia, Robert A.; de la Fuente Vornbrock, Alejandro; Hauschildt, Jason; Holland, Edward; Jackson, Warren; Jam, Mehrban; Jeffrey, Frank; Junge, Kelly; Kim, Han-Jun; Kwon, Ohseung; Larson, Don; Luo, Hao; Maltabes, John; Mei, Ping; Perlov, Craig; Smith, Mark; Stieler, Dan; Taussig, Carl P.; Trovinger, Steve; Zhao, Lihua

    2012-03-01

    Good surface quality of plastic substrates is essential to reduce pixel defects during roll-to-roll fabrication of flexible display active matrix backplanes. Standard polyimide substrates have a high density of "bumps" from fillers and belt marks and other defects from dust and surface scratching. Some of these defects could be the source of shunts in dielectrics. The gate dielectric must prevent shorts between the source/drain and the gate in the transistors, resist shorts in the hold capacitor and stop shorts in the data/gate line crossovers in active matrix backplanes fabricated by self-aligned imprint lithography (SAIL) roll-to-roll processes. Otherwise data and gate lines will become shorted creating line or pixel defects. In this paper, we discuss the development of a proprietary UV curable planarization material that can be coated by roll-to-roll processes. This material was engineered to have low shrinkage, excellent adhesion to polyimide, high dry etch resistance, and great chemical and thermal stability. Results from PECVD deposition of an amorphous silicon stack on the planarized polyimide and compatibility with roll-to-roll processes to fabricate active matrix backplanes are also discussed. The effect of the planarization on defects in the stack, shunts in the dielectric and curvature of finished arrays will also be described.

  19. Digital radiology using active matrix readout of amorphous selenium: radiation hardness of cadmium selenide thin film transistors.

    PubMed

    Zhao, W; Waechter, D; Rowlands, J A

    1998-04-01

    A flat-panel x-ray imaging detector using active matrix readout of amorphous selenium (a-Se) is being investigated for digital radiography and fluoroscopy. The active matrix consists of a two-dimensional array of thin film transistors (TFTs). Radiation penetrating through the a-Se layer will interact with the TFTs and it is important to ensure that radiation induced changes will not affect the operation of the x-ray imaging detector. The methodology of the present work is to investigate the effects of radiation on the characteristic curves of the TFTs using individual TFT samples made with cadmium selenide (CdSe) semiconductor. Four characteristic parameters, i.e., threshold voltage, subthreshold swing, field effect mobility, and leakage current, were examined. This choice of parameters was based on the well established radiation damage mechanisms for crystalline silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), which have a similar principle of operation as CdSe TFTs. It was found that radiation had no measurable effect on the leakage current and the field effect mobility. However, radiation shifted the threshold voltage and increased the subthreshold swing. But even the estimated lifetime dose (50 Gy) of a diagnostic radiation detector will not affect the normal operation of an active matrix x-ray detector made with CdSe TFTs. The mechanisms of the effects of radiation will be discussed and compared with those for MOSFETs and hydrogenated amorphous silicon (a-Si:H) TFTs. PMID:9571621

  20. Roles of mitogen activated protein kinases and EGF receptor in arsenite-stimulated matrix metalloproteinase-9 production

    SciTech Connect

    Cooper, Karen L.; Myers, Terrance Alix; Rosenberg, Martina; Chavez, Miquella; Hudson, Laurie G. . E-mail: lghudson@unm.edu

    2004-11-01

    The dermatotoxicity of arsenic is well established and epidemiological studies identify an increased incidence of keratinocytic tumors (basal cell and squamous cell carcinoma) associated with arsenic exposure. Little is known about the underlying mechanisms of arsenic-mediated skin carcinogenesis, but activation of mitogen-activated protein (MAP) kinases and subsequent regulation of downstream target genes may contribute to tumor promotion and progression. In this study, we investigated activation of the extracellular signal regulated kinase (ERK) and the stress-associated kinase p38 by arsenite in HaCat cells, a spontaneously immortalized human keratinocyte cell line. Arsenite concentrations {>=}100 {mu}M stimulate rapid activation of p38 and ERK MAP kinases. However, upon extended exposure (24 h), persistent stimulation of p38 and ERK MAP kinases was detected at low micromolar concentrations of arsenite. Although ERK and p38 were activated with similar time and concentration dependence, the mechanism of activation differed for these two MAP kinases. ERK activation by arsenite was fully dependent on the catalytic activity of the epidermal growth factor (EGF) receptor and partially dependent on Src-family kinase activity. In contrast, p38 activation was independent of EGF receptor or Src-family kinase activity. Arsenite-stimulated MAP kinase signal transduction resulted in increased production of matrix metalloproteinase (MMP)-9, an AP-1 regulated gene product. MMP-9 induction by arsenite was prevented when EGF receptor or MAP kinase signaling was inhibited. These studies indicate that EGF receptor activation is a component of arsenite-mediated signal transduction and gene expression in keratinocytes and that low micromolar concentrations of arsenite stimulate key signaling pathways upon extended exposure. Stimulation of MAP kinase cascades by arsenic and subsequent regulation of genes including c-fos, c-jun, and the matrix degrading proteases may play an important

  1. Carbonate aquifers with hydraulically non-active matrix: A case study from Poland

    NASA Astrophysics Data System (ADS)

    Rzonca, Bartłomiej

    2008-06-01

    SummaryThe Devonian carbonate (karst) rocks of the Holy Cross Mountains (Góry Świętokrzyskie) in Poland, which constitute a major water supply for the region, are the subject of the presented study. Using standard laboratory methods, the matrix hydrogeological properties (open porosity, permeability and specific yield) of the limestones and dolomites were determined. The test results showed very low open porosities of the samples, as well as an extremely low permeability. The specific yield in all the cases was zero. There was a very slight correlation between the permeability (represented by the hydraulic conductivity) and the open porosity for limestones - and no correlation for dolomites. The measured parameters do not depend on the structure of the rock matrix (classified as pelite, sparite or crystalline) nor does the occurrence of fractures. Differences in open porosity (but not in hydraulic conductivity) were observed between the samples from different structural units.

  2. Detecting Seismic Activity with a Covariance Matrix Analysis of Data Recorded on Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Seydoux, L.; Shapiro, N.; de Rosny, J.; Brenguier, F.

    2014-12-01

    Modern seismic networks are recording the ground motion continuously all around the word, with very broadband and high-sensitivity sensors. The aim of our study is to apply statistical array-based approaches to processing of these records. We use the methods mainly brought from the random matrix theory in order to give a statistical description of seismic wavefields recorded at the Earth's surface. We estimate the array covariance matrix and explore the distribution of its eigenvalues that contains information about the coherency of the sources that generated the studied wavefields. With this approach, we can make distinctions between the signals generated by isolated deterministic sources and the "random" ambient noise. We design an algorithm that uses the distribution of the array covariance matrix eigenvalues to detect signals corresponding to coherent seismic events. We investigate the detection capacity of our methods at different scales and in different frequency ranges by applying it to the records of two networks: (1) the seismic monitoring network operating on the Piton de la Fournaise volcano at La Réunion island composed of 21 receivers and with an aperture of ~15 km, and (2) the transportable component of the USArray composed of ~400 receivers with ~70 km inter-station spacing.

  3. Relationship between activation volume and polymer matrix effects on photochromic performance: bridging molecular parameter to macroscale effect.

    PubMed

    Shima, Kentaro; Mutoh, Katsuya; Kobayashi, Yoichi; Abe, Jiro

    2015-02-19

    Photochromic compounds have attracted attention as ophthalmic lenses because of their reversible color modulation upon irradiation with light. However, the efficiency of the photochromism is strongly affected by their surrounding because of the structural changes concomitant with the photochromism, which causes the decrease in the photochromic performance in the polymer matrix. Therefore, the clarification of the degree of the structural changes is necessary to apply to the ophthalmic lenses. Bridged imidazole dimers are one of the fast photoswitch molecules possessing high photochromic quantum yield and durability. Although the enhancement of the photochromic properties of bridged imidazole dimers has been vigorously studied, the quantitative information about the structural changes has not been revealed in detail. In this study, we investigated the pressure effects on the photochromic properties of bridged imidazole dimers. The activation volume for the thermal back-reaction of the photogenerated biradical species becomes an effective measure to predict the degree of the structural change during the photochromic reaction. We revealed that the smaller activation volume is suitable for keeping the efficient photochromic reaction in the polymer matrix because the photochromic reaction is not affected by the surroundings. These fundamental insights into the molecular dynamics provide valuable information to develop fast photochromic compounds that are suitable for the use in the polymer matrix and pressure sensitive photochromic materials. PMID:25621415

  4. How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity

    PubMed Central

    Grass, G. Daniel; Toole, Bryan P.

    2015-01-01

    Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. PMID:26604323

  5. Biochemical and toxicological evaluation of nano-heparins in cell functional properties, proteasome activation and expression of key matrix molecules.

    PubMed

    Piperigkou, Zoi; Karamanou, Konstantina; Afratis, Nikolaos A; Bouris, Panagiotis; Gialeli, Chrysostomi; Belmiro, Celso L R; Pavão, Mauro S G; Vynios, Dimitrios H; Tsatsakis, Aristidis M

    2016-01-01

    The glycosaminoglycan heparin and its derivatives act strongly on blood coagulation, controlling the activity of serine protease inhibitors in plasma. Nonetheless, there is accumulating evidence highlighting different anticancer activities of these molecules in numerous types of cancer. Nano-heparins may have great biological significance since they can inhibit cell proliferation and invasion as well as inhibiting proteasome activation. Moreover, they can cause alterations in the expression of major modulators of the tumor microenvironment, regulating cancer cell behavior. In the present study, we evaluated the effects of two nano-heparin formulations: one isolated from porcine intestine and the other from the sea squirt Styela plicata, on a breast cancer cell model. We determined whether these nano-heparins are able to affect cell proliferation, apoptosis and invasion, as well as proteasome activity and the expression of extracellular matrix molecules. Specifically, we observed that nano-Styela compared to nano-Mammalian analogue has higher inhibitory role on cell proliferation, invasion and proteasome activity. Moreover, nano-Styela regulates cell apoptosis, expression of inflammatory molecules, such as IL-6 and IL-8 and reduces the expression levels of extracellular matrix macromolecules, such as the proteolytic enzymes MT1-MMP, uPA and the cell surface proteoglycans syndecan-1 and -2, but not on syndecan-4. The observations reported in the present article indicate that nano-heparins and especially ascidian heparin are effective agents for heparin-induced effects in critical cancer cell functions, providing an important possibility in pharmacological targeting. PMID:26476401

  6. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    SciTech Connect

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-07-20

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening

  7. (±)Equol inhibits invasion in prostate cancer DU145 cells possibly via down-regulation of matrix metalloproteinase-9, matrix metalloproteinase-2 and urokinase-type plasminogen activator by antioxidant activity

    PubMed Central

    Zheng, Wei; Zhang, Yumei; Ma, Defu; Shi, Yuhui; Liu, Changqiu; Wang, Peiyu

    2012-01-01

    Exposure to soy isoflavones has been associated with low mortality of prostate cancer. In this study, we examined the effects of (±)equol and two representative isoflavones, daidzein and genistein, on migration and invasion in human prostate cancer DU145 cells. First of all, the three regents did not show significant growth inhibitive effect in DU145 cells until the treatments last for 72 h. Treatment with 5 µM, 10 µM, 50 µM (±)equol, 0.5 µM, 1 µM, 5 µM daidzein and genistein for 24 h decreased cell migration and invasion significantly. (±)equol activated phosphatase and tensin homologue deleted on chromosome ten at protein level but not mRNA level, which activated antioxidants, including superoxide dismutase and nuclear factor (erythroid-derived 2)-like 2. A reduction of malondialdehyde concentration, the product of lipid per-oxidation, was observed as well. Moreover, matrix metalloproteinase-2, matrix metalloproteinase-9, and urokinase-type plasminogen activator, the crucial members in metastasis, were down-regulated. Overall, our data indicate that (±)equol, daidzein and genistein may have significant anti-invasion effect in DU145 cells (in vitro). The effects induced by (±)equol may relate to its anti-oxidant effect mediated by phosphatase and tensin homologue deleted on chromosome ten. PMID:22798715

  8. Src and FAK mediate cell-matrix adhesion-dependent activation of Met during transformation of breast epithelial cells.

    PubMed

    Hui, Angela Y; Meens, Jalna A; Schick, Colleen; Organ, Shawna L; Qiao, Hui; Tremblay, Eric A; Schaeffer, Erik; Uniyal, Shashi; Chan, Bosco M C; Elliott, Bruce E

    2009-08-15

    Cell-matrix adhesion has been shown to promote activation of the hepatocyte growth factor receptor, Met, in a ligand-independent manner. This process has been linked to transformation and tumorigenesis in a variety of cancer types. In the present report, we describe a key role of integrin signaling via the Src/FAK axis in the activation of Met in breast epithelial and carcinoma cells. Expression of an activated Src mutant in non-neoplastic breast epithelial cells or in carcinoma cells was found to increase phosphorylation of Met at regulatory tyrosines in the auto-activation loop domain, correlating with increased cell spreading and filopodia extensions. Furthermore, phosphorylated Met is complexed with beta1 integrins and is co-localized with vinculin and FAK at focal adhesions in epithelial cells expressing activated Src. Conversely, genetic or pharmacological inhibition of Src abrogates constitutive Met phosphorylation in carcinoma cells or epithelial cells expressing activated Src, and inhibits filopodia formation. Interestingly, Src-dependent phosphorylation of Met requires cell-matrix adhesion, as well as actin stress fiber assembly. Phosphorylation of FAK by Src is also required for Src-induced Met phosphorylation, emphasizing the importance of the Src/FAK signaling pathway. However, stimulation of Met phosphorylation by addition of exogenous HGF in epithelial cells is refractory to inhibition of Src family kinases, indicating that HGF-dependent and Src/integrin-dependent Met activation occur via distinct mechanisms. Together these findings demonstrate a novel mechanism by which the Src/FAK axis links signals from the integrin adhesion complex to promote Met activation in breast epithelial cells. PMID:19533669

  9. The extracellular matrix proteins laminin and fibronectin contain binding domains for human plasminogen and tissue plasminogen activator.

    PubMed

    Moser, T L; Enghild, J J; Pizzo, S V; Stack, M S

    1993-09-01

    This study describes the binding of plasminogen and tissue-type plasminogen activator (t-PA) to the extracellular matrix proteins fibronectin and laminin. Plasminogen bound specifically and saturably to both fibronectin and laminin immobilized on microtiter wells, with Kd(app) values of 115 and 18 nM, respectively. Limited proteolysis by endoproteinase V8 coupled with ligand blotting analysis showed that both plasminogen and t-PA preferentially bind to a 55-kDa fibronectin fragment and a 38-kDa laminin fragment. Amino acid sequence analysis demonstrated that the 5-kDa fragment originates with the fibronectin amino terminus whereas the laminin fragment was derived from the carboxyl-terminal globular domain of the laminin A chain. Ligand blotting experiments using isolated plasminogen domains were also used to identify distinct regions of the plasminogen molecule involved in fibronectin and laminin binding. Solution phase fibronectin binding to immobilized plasminogen was mediated primarily via lysine binding site-dependent interactions with plasminogen kringles 1-4. Lysine binding site-dependent binding of soluble laminin to immobilized plasminogen kringles 1-5 as well as an additional lysine binding site-independent interaction between mini-plasminogen and the 38-kDa laminin A chain fragment were also observed. These studies demonstrate binding of plasminogen and tissue-type plasminogen activator to specific regions of the extracellular matrix glycoproteins laminin and fibronectin and provide further insight into the mechanism of regulation of plasminogen activation by components of the extracellular matrix. PMID:8360181

  10. MicroRNA-375 Suppresses Extracellular Matrix Degradation and Invadopodial Activity in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Jimenez, Lizandra; Sharma, Ved P.; Condeelis, John; Harris, Thomas; Ow, Thomas J.; Prystowsky, Michael B.; Childs, Geoffrey; Segall, Jeffrey E.

    2015-01-01

    Context Head and neck squamous cell carcinoma (HNSCC) is a highly invasive cancer with an association with locoregional recurrence and lymph node metastasis. We have previously reported that low microRNA-375 (miR-375) expression levels correlate with poor patient survival, increased locoregional recurrence, and distant metastasis. Increasing miR-375 expression in HNSCC cell lines to levels found in normal cells results in suppressed invasive properties. HNSCC invasion is mediated in part by invadopodia-associated degradation of the extracellular matrix. Objective To determine whether elevated miR-375 expression in HNSCC cell lines also affects invadopodia formation and activity. Design For evaluation of the matrix degradation properties of the HNSCC lines, an invadopodial matrix degradation assay was used. The total protein levels of invadopodia-associated proteins were measured by Western blot analyses. Immunoprecipitation experiments were conducted to evaluate the tyrosine phosphorylation state of cortactin. Human Protease Arrays were used for the detection of the secreted proteases. Quantitative real time–polymerase chain reaction measurements were used to evaluate the messenger RNA (mRNA) expression of the commonly regulated proteases. Results Increased miR-375 expression in HNSCC cells suppresses extracellular matrix degradation and reduces the number of mature invadopodia. Higher miR-375 expression does not reduce cellular levels of selected invadopodia-associated proteins, nor is tyrosine phosphorylation of cortactin altered. However, HNSCC cells with higher miR-375 expression had significant reductions in the mRNA expression levels and secreted levels of specific proteases. Conclusions MicroRNA-375 regulates invadopodia maturation and function potentially by suppressing the expression and secretion of proteases. PMID:26172508

  11. NF-κB and Matrix-Dependent Regulation of Osteopontin Promoter Activity in Allylamine-Activated Vascular Smooth Muscle Cells

    PubMed Central

    Williams, E. Spencer; Wilson, Emily; Ramos, Kenneth S.

    2012-01-01

    Repeated cycles of oxidative injury by allylamine in vivo induce a proliferative rat vascular (aortic) smooth muscle cell (vSMC) phenotype characterized by matrix-dependent enhancement of mitogenic sensitivity, changes in cell surface integrin expression, and osteopontin (opn) overexpression. Here, we show that constitutive and mitogen-stimulated NF-κB DNA binding activity is enhanced in allylamine vSMCs. Matrix-specific changes in cellular Rel protein expression were observed in allylamine vSMCs. The NF-κB DNA binding element located at −1943 in the 5′-UTR strongly inhibited opn promoter activity in allylamine vSMCs, and this response was regulated by the extracellular matrix. Constitutive increases in opn promoter activity were only seen when allylamine cells were seeded on a fibronectin substrate, and this response was independent of the NF-κB DNA binding sequence within the regulatory region. Thus, NF-κB functions as a critical regulator of the allylamine-induced proliferative phenotype in vSMCs. PMID:22315656

  12. Solution-Processed Organic Thin-Film Transistor Array for Active-Matrix Organic Light-Emitting Diode

    NASA Astrophysics Data System (ADS)

    Harada, Chihiro; Hata, Takuya; Chuman, Takashi; Ishizuka, Shinichi; Yoshizawa, Atsushi

    2013-05-01

    We developed a 3-in. organic thin-film transistor (OTFT) array with an ink-jetted organic semiconductor. All layers except electrodes were fabricated by solution processes. The OTFT performed well without hysteresis, and the field-effect mobility in the saturation region was 0.45 cm2 V-1 s-1, the threshold voltage was 3.3 V, and the on/off current ratio was more than 106. We demonstrated a 3-in. active-matrix organic light-emitting diode (AMOLED) display driven by the OTFT array. The display could provide clear moving images. The peak luminance of the display was 170 cd/m2.

  13. Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays

    SciTech Connect

    McCarthy, M. A.; Liu, B.; Donoghue, E. P.; Kravchenko, Ivan I; Kim, D. Y.; So, Franky; Rinzler, A. G.

    2011-01-01

    Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

  14. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  15. Helicobacter pylori Activates Matrix Metalloproteinase 10 in Gastric Epithelial Cells via EGFR and ERK-mediated Pathways.

    PubMed

    Costa, Angela M; Ferreira, Rui M; Pinto-Ribeiro, Ines; Sougleri, Ioanna S; Oliveira, Maria J; Carreto, Laura; Santos, Manuel A; Sgouras, Dionyssios N; Carneiro, Fatima; Leite, Marina; Figueiredo, Ceu

    2016-06-01

    Helicobacter pylori colonizes the human stomach and increases the risk for peptic ulcer disease and gastric carcinoma. H. pylori upregulates the expression and activity of several matrix metalloproteinases (MMPs) in cell lines and in the gastric mucosa. The aim of this study was to explore the mechanisms leading to upregulation of MMP10 in gastric epithelial cells induced by H. pylori Infection of gastric cells with H. pylori led to an increase in levels of MMP-10 messenger RNA, protein secretion, and activity. cagA knockout mutants or CagA phosphorylation-defective mutants failed to increase MMP10 expression. These results were confirmed in infection experiments with clinical isolates with known cagA status and in human gastric biopsy specimens. Treatment of cells with chemical inhibitors of the receptor tyrosine kinase EGFR and the kinase Src abrogated H. pylori-induced MMP10 expression. Inhibitors of ERK1/2 and JNK kinases abolished and significantly decreased H. pylori-induced MMP10 expression, respectively, whereas inhibition of the kinase p38 had no effect. Finally, inhibition of MMP10 expression by small interfering RNA led to a decrease in the gastric cell-invasive phenotype mediated by the infection. In conclusion, CagA-positive H. pylori strains stimulate MMP10 expression. MMP-10 modulation occurs via EGFR activation in a process that involves Src, ERK, and JNK pathways. MMP-10 may be implicated in H. pylori-mediated extracellular matrix remodeling. PMID:26802142

  16. A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis.

    PubMed

    Munesue, Seiichi; Yoshitomi, Yasuo; Kusano, Yuri; Koyama, Yoshie; Nishiyama, Akiko; Nakanishi, Hayao; Miyazaki, Kaoru; Ishimaru, Takeshi; Miyaura, Shuichi; Okayama, Minoru; Oguri, Kayoko

    2007-09-21

    The syndecans comprise a family of cell surface heparan sulfate proteoglycans exhibiting complex biological functions involving the interaction of heparan sulfate side chains with a variety of soluble and insoluble heparin-binding extracellular ligands. Here we demonstrate an inverse correlation between the expression level of syndecan-2 and the metastatic potential of three clones derived from Lewis lung carcinoma 3LL. This correlation was proved to be a causal relationship, because transfection of syndecan-2 into the higher metastatic clone resulted in the suppression of both spontaneous and experimental metastases to the lung. Although the expression levels of matrix metalloproteinase-2 (MMP-2) and its cell surface activators, such as membrane-type 1 matrix metalloproteinase and tissue inhibitor of metalloproteinase-2, were similar regardless of the metastatic potentials of the clones, elevated activation of MMP-2 was observed in the higher metastatic clone. Removal of heparan sulfate from the cell surface of low metastatic cells by treatment with heparitinase-I promoted MMP-2 activation, and transfection of syndecan-2 into highly metastatic cells suppressed MMP-2 activation. Furthermore, transfection of mutated syndecan-2 lacking glycosaminoglycan attachment sites into highly metastatic cells did not have any suppressive effect on MMP-2 activation, suggesting that this suppression was mediated by the heparan sulfate side chains of syndecan-2. Actually, MMP-2 was found to exhibit a strong binding ability to heparin, the dissociation constant value being 62 nM. These results indicate a novel function of syndecan-2, which acts as a suppressor for MMP-2 activation, causing suppression of metastasis in at least the metastatic system used in the present study. PMID:17623663

  17. Thioredoxin fusion construct enables high-yield production of soluble, active matrix metalloproteinase-8 (MMP-8) in Escherichia coli.

    PubMed

    McNiff, M L; Haynes, E P; Dixit, N; Gao, F P; Laurence, J S

    2016-06-01

    Matrix metalloproteinases (MMPs) are crucial proteases in maintaining the health and integrity of many tissues, however their dysregulation often facilitates disease progression. In disease states these remodeling and repair functions support, for example, metastasis of cancer by both loosening the matrix around tumors to enable cellular invasion and by affecting proliferation and apoptosis, and they promote degradation of biological restorations by weakening the substrate to which the restoration is attached. As such, MMPs are important therapeutic targets. MMP-8 participates in cancer, arthritis, asthma and failure of dental fillings. MMP-8 differs from other MMPs in that it has an insertion that enlarges its active site. To elucidate the unique features of MMP-8 and develop selective inhibitors to this therapeutic target, a stable and active form of the enzyme is needed. MMP-8 has been difficult to express at high yield in a soluble, active form. Typically recombinant MMPs accumulate in inclusion bodies and complex methods are applied to refold and purify protein in acceptable yield. Presented here is a streamlined approach to produce in Escherichia coli a soluble, active, stable MMP-8 fusion protein in high yield. This fusion shows much greater retention of activity when stored refrigerated without glycerol. A variant of this construct that contains the metal binding claMP Tag was also examined to demonstrate the ability to use this tag with a metalloprotein. SDS-PAGE, densitometry, mass spectrometry, circular dichroism spectroscopy and an activity assay were used to analyze the chemical integrity and function of the enzyme. PMID:26923061

  18. Activation of matrix metalloproteinase-26 by HOXA10 promotes embryo adhesion in vitro.

    PubMed

    Jiang, Yue; Yan, Guijun; Zhang, Hui; Shan, Huizhi; Kong, Chengcai; Yan, Qiang; Xue, Bai; Diao, Zhenyu; Hu, Yali; Sun, Haixiang

    2014-03-14

    Successful embryonic implantation requires an effective maternal-embryonic molecular dialogue. However, the detailed mechanisms of epithelial-embryo adhesion remain poorly understood. Here, we report that matrix metalloproteinase-26 (MMP-26) is a novel downstream target gene of homeobox a 10 (HOXA10) in human endometrial cells. HOXA10 binds directly to a conserved TTAT unit (-442 to -439) located within the 5' regulatory region of the MMP-26 gene and regulates the expression and secretion of MMP-26 in a concentration-dependent manner. Moreover, the adenovirus-mediated overexpression of MMP-26 in Ishikawa cells markedly increased BeWo spheroid adhesion. An antibody blocking assay further demonstrated that the promotion of BeWo spheroid adhesion by HOXA10 and MMP-26 was significantly inhibited by pre-treatment with a specific antibody against MMP-26. These results demonstrate that the HOXA10-mediated expression of MMP-26 promotes embryo adhesion during the process of embryonic implantation. PMID:24565841

  19. Targeted SPECT/CT Imaging of Matrix Metalloproteinase Activity in the Evaluation of Remodeling Tissue-Engineered Vascular Grafts Implanted in a Growing Lamb Model

    PubMed Central

    Stacy, Mitchel R.; Naito, Yuji; Maxfield, Mark W.; Kurobe, Hirotsugu; Tara, Shuhei; Chan, Chung; Rocco, Kevin A.; Shinoka, Toshiharu; Sinusas, Albert J.; Breuer, Christopher K.

    2014-01-01

    Objective(s) The clinical translation of tissue-engineered vascular grafts has been demonstrated in children. The remodeling of biodegradable, cell-seeded scaffolds to functional neovessels is partially attributed to matrix metalloproteinases. Noninvasive assessment of matrix metalloproteinase activity may indicate graft remodeling and elucidate the progression of neovessel formation. Therefore, matrix metalloproteinase activity was evaluated in grafts implanted in lambs using in vivo and ex vivo hybrid imaging. Graft growth and remodeling was quantified using in vivo X-ray computed tomography angiography. Methods Cell-seeded and unseeded scaffolds were implanted in lambs (n=5) as inferior vena cava interposition grafts. At 2 and 6 months post-implantation, in vivo angiography assessed graft morphology. In vivo and ex vivo single photon emission tomography/X-ray computed tomography imaging was performed with a radiolabeled compound targeting matrix metalloproteinase activity at 6 months. Neotissue was examined at 6 months using qualitative histologic and immunohistochemical staining and quantitative biochemical analysis. Results Seeded grafts demonstrated significant luminal and longitudinal growth from 2 to 6 months. In vivo imaging revealed subjectively higher matrix metalloproteinase activity in grafts vs. native tissue. Ex vivo imaging confirmed a quantitative increase in matrix metalloproteinase activity and demonstrated higher activity in unseeded vs. seeded grafts. Glycosaminoglycan content was increased in seeded grafts vs. unseeded grafts, without significant differences in collagen content. Conclusions Matrix metalloproteinase activity remains elevated in tissue-engineered grafts 6 months post-implantation and may indicate remodeling. Optimization of in vivo imaging to noninvasively evaluate matrix metalloproteinase activity may assist in serial assessment of vascular graft remodeling. PMID:24952823

  20. Active mechanical coupling between the nucleus, cytoskeleton and the extracellular matrix, and the implications for perinuclear actomyosin organization.

    PubMed

    Zemel, Assaf

    2015-03-28

    Experimental and theoretical studies have demonstrated that the polarization of actomyosin forces in the cytoskeleton of adherent cells is governed by local elastic stresses. Based on this phenomenon, and the established observation that the nucleus is mechanically connected to the extracellular matrix (ECM) via the cytoskeleton, we theoretically analyze here the active mechanical coupling between the nucleus, cytoskeleton and the ECM. The cell is modeled as an active spherical inclusion, containing a round nucleus at its center, and embedded in a 3D elastic matrix. We investigate three sources of cellular stress: spreading-induced stress, actomyosin contractility and chromatin entropic forces. Formulating the coupling of actomyosin contractility to the local stress we predict the consequences that the nucleus, cytoskeleton and ECM mechanical properties may have on the overall force-balance in the cell and the perinuclear acto-myosin polarization. We demonstrate that the presence of the nucleus induces symmetry breaking of the elastic stress that, we predict, elastically tends to orient actomyosin alignment tangentially around the nucleus; the softer the nucleus or the matrix, the stronger is the preference for tangential alignment. Spreading induced stresses may induce radial actomyosin alignment near stiff nuclei. In addition, we show that in regions of high actomyosin density myosin motors have an elastic tendency to orient tangentially as often occurs near the cell periphery. These conclusions highlight the role of the nucleus in the regulation of cytoskeleton organization and may provide new insight into the mechanics of stem cell differentiation involving few fold increase in nucleus stiffness. PMID:25652010

  1. CAPN 7 promotes the migration and invasion of human endometrial stromal cell by regulating matrix metalloproteinase 2 activity

    PubMed Central

    2013-01-01

    Background Matrix metalloproteinase 2 (MMP-2) has been reported to be an important regulator of cell migration and invasion through degradation of the extracellular matrix (ECM) in many diseases, such as cancer and endometriosis. Here, we found calcium-activated neutral protease 7 (CAPN 7) expression was markedly upregulated in the eutopic endometrium and endometrial stromal cells of women diagnosed with endometriosis. Our studies were carried out to detect the effects of CAPN 7 on human endometrial stromal cell (hESC) migration and invasion. Methods Western blotting and quantitative real-time PCR were used to detect the expression of CAPN 7 in endometriosis patients and normal fertile women. Scratch-wound-healing and invasion chamber assay were used to investigate the role of CAPN 7 in hESC migration and invasion. Western blotting, quantitative real-time PCR and zymography were carried out to detect the effect of CAPN 7 on the expressions and activity of MMP-2. Results CAPN 7 was markedly up-regulated in endometriosis, thereby promoting the migration and invasion of hESC. CAPN 7 overexpression led to increased expression of MMP-2 and tissue inhibitor of metalloproteinases 2 (TIMP-2); CAPN 7 knockdown reversed these changes. CAPN 7 increased MMP-2 activity by increasing the ratio of MMP-2 to TIMP-2. We also found that OA-Hy (an MMP-2 inhibitor) decreased the effects of CAPN 7 overexpression on hESC migration and invasion by approximately 50% and 55%, respectively. Additionally, a coimmunoprecipitation assay demonstrated that CAPN 7 interacted with activator protein 2α (AP-2α): an important transcription factor of MMP-2. Conclusions CAPN 7 promotes hESC migration and invasion by increasing the activity of MMP-2 via an increased ratio of MMP-2 to TIMP-2. PMID:23855590

  2. Factor H–Related Protein 5 Interacts with Pentraxin 3 and the Extracellular Matrix and Modulates Complement Activation

    PubMed Central

    Csincsi, Ádám I.; Kopp, Anne; Zöldi, Miklós; Bánlaki, Zsófia; Uzonyi, Barbara; Hebecker, Mario; Caesar, Joseph J. E.; Pickering, Matthew C.; Daigo, Kenji; Hamakubo, Takao; Lea, Susan M.; Goicoechea de Jorge, Elena

    2015-01-01

    The physiological roles of the factor H (FH)-related proteins are controversial and poorly understood. Based on genetic studies, FH-related protein 5 (CFHR5) is implicated in glomerular diseases, such as atypical hemolytic uremic syndrome, dense deposit disease, and CFHR5 nephropathy. CFHR5 was also identified in glomerular immune deposits at the protein level. For CFHR5, weak complement regulatory activity and competition for C3b binding with the plasma complement inhibitor FH have been reported, but its function remains elusive. In this study, we identify pentraxin 3 (PTX3) as a novel ligand of CFHR5. Binding of native CFHR5 to PTX3 was detected in human plasma and the interaction was characterized using recombinant proteins. The binding of PTX3 to CFHR5 is of ∼2-fold higher affinity compared with that of FH. CFHR5 dose-dependently inhibited FH binding to PTX3 and also to the monomeric, denatured form of the short pentraxin C–reactive protein. Binding of PTX3 to CFHR5 resulted in increased C1q binding. Additionally, CFHR5 bound to extracellular matrix in vitro in a dose-dependent manner and competed with FH for binding. Altogether, CFHR5 reduced FH binding and its cofactor activity on pentraxins and the extracellular matrix, while at the same time allowed for enhanced C1q binding. Furthermore, CFHR5 allowed formation of the alternative pathway C3 convertase and supported complement activation. Thus, CFHR5 may locally enhance complement activation via interference with the complement-inhibiting function of FH, by enhancement of C1q binding, and by activating complement, thereby contributing to glomerular disease. PMID:25855355

  3. Expression and characterization of common carp (Cyprinus carpio) matrix metalloproteinase-2 and its activity against type I collagen.

    PubMed

    Wang, Ci; Zhan, Chun-Lan; Cai, Qiu-Feng; Du, Cui-Hong; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2014-05-10

    Matrix metalloproteinases (MMPs) play essential roles in the metabolism of animal collagen while few reports are available for MMPs in aquatic animals. In this study, we report the complete sequence of matrix metalloproteinase-2 (MMP-2) gene from common carp (Cyprinus carpio) skeletal muscle. The full-length cDNA of MMP-2 was 2792bp which contains an open reading frame of 1974bp, corresponding to a protein of 657 amino acid residues. Based on the structural feature of MMP-2, the gene of the catalytic domain containing 351 amino acid residues was cloned and expressed in Escherichia coli. SDS-PAGE showed that the truncated recombinant MMP-2 (trMMP-2) with molecular mass of approximately 38kDa was in the form of inclusion body. The trMMP-2 was further purified by immobilized metal ion affinity chromatography. After renaturation, similar to native MMP-2, the trMMP-2 exhibited high hydrolyzing activity toward gelatin as appeared on gelatin zymography and optimal activity was at pH 8.0 and 40°C. The activity of the trMMP-2 was completely suppressed by metalloproteinase inhibitors, including EDTA, EGTA and 1,10-phenanthroline while other proteinase inhibitors did not show any inhibitory effect. Divalent metal ion Ca(2+) was necessary for the gelatinolytic activity, suggesting it is a calcium-dependent metalloproteinase. Moreover, the trMMP-2 effectively hydrolyzed native type I collagen at 37°C and even at 4°C, implying its potential application value as a collagenase for preparation of biologically active oligopeptides. PMID:24613299

  4. Approach to In- Situ Producing Reinforcing Phase Within an Active-Transient Liquid Phase Bond Seam for Aluminum Matrix Composite

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Liao, Xianjin; Chen, Bo; Zhang, Linjie; Zhang, Jianxun

    2015-06-01

    To optimize the braze composition design route for aluminum matrix composite, the feasibility of in situ producing reinforcing phase within the transient liquid phase bond seam matrix, by adding active melting point increaser (MPI, e.g., Ti) together with general melting point depressant (MPD, e.g., Cu) into the interlayer, was demonstrated. For SiC p /A356 composite, by comparing the wettability, joint microstructure, joint shear strength, and fracture path for the developed Al-19Cu-1Ti, Al-19Cu, Al-33Cu-1Ti, Al-33Cu (wt pct), and commercial Cu foils as interlayer, the feasibility of in situ producing reinforcing phase within the bond seam by adding Ti was demonstrated. Especially for Al-19Cu-1Ti active braze, small and dispersed ternary aluminide of Al-Si-Ti phase was obtained within the bond seam as in situ reinforcement, leading to a favorable fracture path within SiC p /A356, not along the initial interface or within the bond seam. For the formation mechanism of the in situ reinforcing phase of MPI-containing intermetallic compound within the bond seam, a model of repeating concentration-precipitation-termination-engulfment during isothermal solidification is proposed.

  5. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity

    PubMed Central

    Londino, James D.; Lazrak, Ahmed; Jurkuvenaite, Asta; Collawn, James F.; Noah, James W.

    2013-01-01

    The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl−) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H+) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o−) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H+, did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection. PMID:23457187

  6. Ratio of Active Matrix Metalloproteinases and Proenzymes during Growth and Metastasizing of Mouse Lewis Lung Adenocarcinoma.

    PubMed

    Kisarova, Ya A; Kaledin, V I; Bogdanova, L A; Korolenko, T A

    2015-08-01

    Ratio between proMMP and active MMP was studied in the dynamics of growth of the Lewis lung adenocarcinoma with lung metastasis. It was shown that tumor growth is associated with an increase in the content of proMMP (day 20; terminal stage), but the level of active MMP in tumor tissue did not signifi cantly change. The development of lung metastasis was accompanied by accumulation of active MMP (days 7, 15, and 20) and a decrease in the content of pro-MMP (days 7, and 20) in comparison with the control. In the spleen of these mice (metastasis-free organ), an increase in the levels of proMMP (day 20) and especially active MMP (days 7, 15, and 20) were found. The results suggest that tumor development shifts the proportion between active MMP and proenzymes in the tumor, lungs with metastasis, and spleen without metastasis. PMID:26392281

  7. Enamel matrix proteins exhibit growth factor activity: A review of evidence at the cellular and molecular levels

    PubMed Central

    WYGANOWSKA-ŚWIĄTKOWSKA, MARZENA; URBANIAK, PAULINA; NOHAWICA, MICHAŁ MAREK; KOTWICKA, MAŁGORZATA; JANKUN, JERZY

    2015-01-01

    Enamel matrix derivative (EMD) is a commercially available protein extract, mainly comprising amelogenins. A number of other polypeptides have been identified in EMD, mostly growth factors, which promote cementogenesis and osteogenesis during the regeneration processes through the regulation of cell proliferation, differentiation and activity; however, not all of their functions are clear. Enamel extracts have been proposed to have numerous activities such as bone morphogenetic protein- and transforming growth factor β (TGF-β)-like activity, and activities similar to those of insulin-like growth factor, fibroblast growth factor, platelet-derived growth factor, vascular endothelial growth factor and epidermal growth factor. These activities have been observed at the molecular and cellular levels and in numerous animal models. Furthermore, it has been suggested that EMD contains an unidentified biologically active factor that acts in combination with TGF-β1, and several studies have reported functional similarities between growth factors and TGF-β in cellular processes. The effects of enamel extracts on the cell cycle and biology are summarized and discussed in this review. PMID:26161150

  8. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2.

    PubMed

    Ponedel'kina, Irina Yu; Gaskarova, Aigul R; Khaybrakhmanova, Elvira A; Lukina, Elena S; Odinokov, Victor N

    2016-06-25

    In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased. PMID:27083788

  9. Evolution of a supercooled Ice Shelf Water plume with an actively growing subice platelet matrix

    NASA Astrophysics Data System (ADS)

    Robinson, Natalie J.; Williams, Michael J. M.; Stevens, Craig L.; Langhorne, Patricia J.; Haskell, Timothy G.

    2014-06-01

    We use new observations in Western McMurdo Sound, combined with longitudinal hydrographic transects of the sound, to identify a northward-flowing Ice Shelf Water (ISW) plume exiting the cavity of the McMurdo-Ross Ice Shelf. We estimate the plume's net northward transport at 0.4 ± 0.1 Sv, carving out a corridor approximately 35 km wide aligned with the Victoria Land Coast. Basal topography of the McMurdo Ice Shelf is such that the plume is delivered to the surface without mixing with overlying warmer water, and is therefore able to remain below the surface freezing temperature at the point of observation beneath first-year ice. Thus, the upper ocean was supercooled, by up to 50 mK at the surface, due to pressure relief from recent rapid ascent of the steep basal slope. The 70 m thick supercooled layer supports the growth and maintenance of a thick, semirigid, and porous matrix of platelet ice, which is trapped by buoyancy at the ice-ocean interface. Continued growth of individual platelets in supercooled water creates significant brine rejection at the top of the water column which resulted in convection over the upper 200 m thick, homogeneous layer. By examining the diffusive nature of the intermediate water between layers of ISW and High Salinity Shelf Water, we conclude that the ISW plume must have originated beneath the Ross Ice Shelf and demonstrate that it is likely to expand eastward across McMurdo Sound with the progression of winter.

  10. Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice*

    PubMed Central

    Tyagi, Neetu; Givvimani, Srikanth; Qipshidze, Natia; Kundu, Soumi; Kapoor, Shray; Vacek, Jonathan C.; Tyagi, Suresh C.

    2010-01-01

    An elevated level of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), was associated with neurovascular diseases. At physiological levels, hydrogen sulfide (H2S) protected the neurovascular system. Because Hcy was also a precursor of hydrogen sulfide (H2S), we sought to test whether the H2S protected the brain during HHcy. Cystathionine-β-synthase heterozygous (CBS+/−) and wild type (WT) mice were supplemented with or without NaHS (30 µM/L, H2S donor) in drinking water. Blood flow and cerebral microvascular permeability in pial vessels were measured by intravital microscopy in WT, WT+NaHS, CBS−/+ and CBS−/+ + NaHS treated mice. The brain tissues were analyzed for matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) by Western blot and RT-PCR. The mRNA levels of CBS and cystathionine gamma lyase (CSE, enzyme responsible for conversion of Hcy to H2S) genes were measured by RT-PCR. The results showed a significant increase in MMP-2, MMP-9, TIMP-3 protein and mRNA in CBS (−/+) mice, while H2S treatment mitigated this increase. Interstitial localization of MMPs was also apparent through Immunohistochemistry. A decrease in protein and mRNA expression of TIMP-4 was observed in CBS (−/+) mice. Microscopy data revealed increase in permeability in CBS (−/+) mice. These effects were ameliorated by H2S and suggested that physiological levels of H2S supplementation may have therapeutic potential against HHcy-induced microvascular permeability, in part, by normalizing the MMP/TIMP ratio in the brain. PMID:19913585

  11. Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding ▿

    PubMed Central

    Jones, Christopher P.; Datta, Siddhartha A. K.; Rein, Alan; Rouzina, Ioulia; Musier-Forsyth, Karin

    2011-01-01

    Retroviruses replicate by reverse transcribing their single-stranded RNA genomes into double-stranded DNA using specific cellular tRNAs to prime cDNA synthesis. In HIV-1, human tRNA3Lys serves as the primer and is packaged into virions during assembly. The viral Gag protein is believed to chaperone tRNA3Lys placement onto the genomic RNA primer binding site; however, the timing and possible regulation of this event are currently unknown. Composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains, the multifunctional HIV-1 Gag polyprotein orchestrates the highly coordinated process of virion assembly, but the contribution of these domains to tRNA3Lys annealing is unclear. Here, we show that NC is absolutely essential for annealing and that the MA domain inhibits Gag's tRNA annealing capability. During assembly, MA specifically interacts with inositol phosphate (IP)-containing lipids in the plasma membrane (PM). Surprisingly, we find that IPs stimulate Gag-facilitated tRNA annealing but do not stimulate annealing in Gag variants lacking the MA domain or containing point mutations involved in PM binding. Moreover, we find that IPs prevent MA from binding to nucleic acids but have little effect on NC or Gag. We propose that Gag binds to RNA either with both NC and MA domains or with NC alone and that MA-IP interactions alter Gag's binding mode. We propose that MA's interactions with the PM trigger the switch between these two binding modes and stimulate Gag's chaperone function, which may be important for the regulation of events such as tRNA primer annealing. PMID:21123373

  12. Growth-inhibiting extracellular matrix proteins also inhibit electrical activity by reducing calcium and increasing potassium conductances.

    PubMed

    Vargas, J; De-Miguel, F F

    2009-01-23

    Inhibitionof neurite sprouting and electrical activity by extracellular matrix (ECM) glycoproteins was studied during neurite regeneration by using anterior pagoda (AP) neurons of the leech. Adult isolated neurons were plated in culture inside ganglion capsules, which among many ECM proteins, contain a group of inhibitory peanut lectin- (PNA) binding glycoproteins. These proteins inhibit neurite production and contribute to the formation of a bipolar outgrowth pattern by AP neurons. Addition of PNA lectin to the culture medium to block the inhibitory effects of ECM glycoproteins induced an increase of neurite sprouting, the loss of the bipolar pattern, and also an increase in the amplitude and duration of action potentials evoked by intracellular current injection. PNA lectin had independent effects on neurite sprouting and electrical activity, since there was no correlation between the total neurite length and the amplitude of the action potentials. Moreover, action potentials were increased by the presence of PNA lectin even in neurons that did not grow. The changes induced by PNA lectin on the active conductances underlying the action potentials were estimated by quantitative model simulations. We predict that the increases in the amplitude and duration of the action potential induced by PNA lectin were due to an increase in a calcium conductance and a reduction in the delayed rectifier potassium conductance. Our results suggest that inhibitory ECM glycoproteins may use independent signaling pathways to inhibit neurite sprouting and electrical activity. These proteins affect the action potential by changing the proportion of inward and outward active conductances. PMID:18976697

  13. Adhesion to hyphal matrix and antifungal activity of Pseudomonas strains isolated from Tuber borchii ascocarps.

    PubMed

    Sbrana, C; Bagnoli, G; Bedini, S; Filippi, C; Giovannetti, M; Nuti, M P

    2000-03-01

    Pseudomonas spp. isolates from Tuber borchii ascocarps, known to be able to produce phytoregulatory and biocontrol substances in pure culture, were used to perform studies on their possible physiological role in nature. Antimycotic activity was confirmed against fungal contaminants isolated from the ascocarps, suggesting that populations associated with Tuber borchii fruit bodies may play a role in the maintenance of ascocarp health. Fifty-five percent of strains tested were also able to release metabolites which affected T. borchii mycelial growth and morphogenesis in culture. On the contrary, growth of the arbuscular mycorrhizal fungus Glomus mosseae and the ectomycorrhizal fungus Laccaria bicolor, putative competitors of Tuber for mycorrhizal infection sites on roots, was not influenced by the presence of any bacterial strain. The possibility that these bacteria, which show antifungal activity and fungal growth modulation activities, might be incorporated in the developing ascocarp by means of their preferential adhesion to Tuber mycelium is discussed. PMID:10749539

  14. Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for Enhanced Antimicrobial Activity.

    PubMed

    Zhang, Mei; Zhao, Yanhua; Yan, Li; Peltier, Raoul; Hui, Wenli; Yao, Xi; Cui, Yali; Chen, Xianfeng; Sun, Hongyan; Wang, Zuankai

    2016-04-01

    Environmental biofouling caused by the formation of biofilm has been one of the most urgent global concerns. Silver nanoparticles (NPs), owing to their wide-spectrum antimicrobial property, have been widely explored to combat biofilm, but their extensive use has raised growing concern because they persist in the environment. Here we report a novel hybrid nanocomposite that imparts enhanced antimicrobial activity and low cytotoxicity yet with the advantage of reduced silver loading. The nanocomposite consists of Pt/Ag bimetallic NPs (BNPs) decorated on the porous reduced graphene oxide (rGO) nanosheets. We demonstrate that the enhanced antimicrobial property against Escherichia coli is ascribed to the intricate control of the interfaces between metal compositions, rGO matrix, and bacteria, where the BNPs lead to a rapid release of silver ions, and the trapping of bacteria by the porous rGO matrix further provides high concentration silver ion sites for efficient bacteria-bactericide interaction. We envision that our facile approach significantly expands the design space for the creation of silver-based antimicrobial materials to achieve a wide spectrum of functionalities. PMID:27007980

  15. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity.

    PubMed

    Ghosh, Somnath; Saraswathi, A; Indi, S S; Hoti, S L; Vasan, H N

    2012-06-01

    A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria. PMID:22582868

  16. Progesterone-induced blocking factor differentially regulates trophoblast and tumor invasion by altering matrix metalloproteinase activity.

    PubMed

    Halasz, Melinda; Polgar, Beata; Berta, Gergely; Czimbalek, Livia; Szekeres-Bartho, Julia

    2013-12-01

    Invasiveness is a common feature of trophoblast and tumors; however, while tumor invasion is uncontrolled, trophoblast invasion is strictly regulated. Both trophoblast and tumor cells express high levels of the immunomodulatory progesterone-induced blocking factor (PIBF), therefore, we aimed to test the possibility that PIBF might be involved in invasion. To this aim, we used PIBF-silenced or PIBF-treated trophoblast (HTR8/Svneo, and primary trophoblast) and tumor (HT-1080, A549, HCT116, PC3) cell lines. Silencing of PIBF increased invasiveness as well as MMP-2,-9 secretion of HTR8/SVneo, and decreased those of HT-1080 cells. PIBF induced immediate STAT6 activation in both cell lines. Silencing of IL-4Rα abrogated all the above effects of PIBF, suggesting that invasion-related signaling by PIBF is initiated through the IL-4Rα/PIBF-receptor complex. In HTR-8/SVneo, PIBF induced fast, but transient Akt and ERK phosphorylation, whereas in tumor cells, PIBF triggered sustained Akt, ERK, and late STAT3 activation. The late signaling events might be due to indirect action of PIBF. PIBF induced the expression of EGF and HB-EGF in HT-1080 cells. The STAT3-activating effect of PIBF was reduced in HB-EGF-deficient HT-1080 cells, suggesting that PIBF-induced HB-EGF contributes to late STAT3 activation. PIBF binds to the promoters of IL-6, EGF, and HB-EGF; however, the protein profile of the protein/DNA complex is different in the two cell lines. We conclude that in tumor cells, PIBF induces proteins, which activate invasion signaling, while-based on our previous data-PIBF might control trophoblast invasion by suppressing proinvasive genes. PMID:23807209

  17. Large-Scale Variational Two-Electron Reduced-Density-Matrix-Driven Complete Active Space Self-Consistent Field Methods.

    PubMed

    Fosso-Tande, Jacob; Nguyen, Truong-Son; Gidofalvi, Gergely; DePrince, A Eugene

    2016-05-10

    A large-scale implementation of the complete active space self-consistent field (CASSCF) method is presented. The active space is described using the variational two-electron reduced-density-matrix (v2RDM) approach, and the algorithm is applicable to much larger active spaces than can be treated using configuration-interaction-driven methods. Density fitting or Cholesky decomposition approximations to the electron repulsion integral tensor allow for the simultaneous optimization of large numbers of external orbitals. We have tested the implementation by evaluating singlet-triplet energy gaps in the linear polyacene series and two dinitrene biradical compounds. For the acene series, we report computations that involve active spaces consisting of as many as 50 electrons in 50 orbitals and the simultaneous optimization of 1892 orbitals. For the dinitrene compounds, we find that the singlet-triplet gaps obtained from v2RDM-driven CASSCF with partial three-electron N-representability conditions agree with those obtained from configuration-interaction-driven approaches to within one-third of 1 kcal mol(-1). When enforcing only the two-electron N-representability conditions, v2RDM-driven CASSCF yields less accurate singlet-triplet energy gaps in these systems, but the quality of the results is still far superior to those obtained from standard single-reference approaches. PMID:27065086

  18. Activity-based assay of matrix metalloproteinase on nonbiofouling surfaces using time-of-flight secondary ion mass spectrometry.

    PubMed

    Kim, Young-Pil; Lee, Bong Soo; Kim, Eunkyung; Choi, Insung S; Moon, Dae Won; Lee, Tae Geol; Kim, Hak-Sung

    2008-07-01

    A label-free, activity-based assay of matrix metalloproteinase (MMP) and its inhibition was demonstrated on peptide-conjugated gold nanoparticles (AuNPs) with nonbiofouling poly(oligo(ethylene glycol) methacrylate) (pOEGMA) films using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Following surface-initiated atom-transfer radical polymerization of OEGMA on a Si/SiO2 substrate, the MMP activity was determined by analyzing the cleaved peptide fragments using TOF-SIMS on the peptide-conjugated AuNPs. The use of nonbiofouling pOEGMA films in conjunction with AuNPs synergistically enhanced the sensitivity of assays for MMP activity and its inhibition in human serum. The detection sensitivity of MMP-7 in serum was as low as 20 ng mL(-1) (1 pmol mL(-1)), and the half-maximal inhibitory concentration (IC50) of minocycline, which is a MMP-7 inhibitor, was estimated to be 450 nM. It is anticipated that the developed system will be broadly useful for conducting activity-based assays of serum proteases, as well as for screening of their inhibitors, with high sensitivity in a high-throughput manner. PMID:18505270

  19. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells.

    PubMed

    Cohen, Keren; Flint, Nir; Shalev, Shachar; Erez, Daniel; Baharal, Tal; Davis, Paul J; Hercbergs, Aleck; Ellis, Martin; Ashur-Fabian, Osnat

    2014-08-15

    Thyroid hormone (3,5,3'-triiodothyronine, T3; L-thyroxine, T4) enhances cancer cell proliferation, invasion and angiogenesis via a discrete receptor located near the RGD recognition site on αvβ3 integrin. Tetraiodothyroacetic acid (tetrac) and its nanoparticulate formulation interfere with binding of T3/T4 to the integrin. This integrin is overexpressed in multiple myeloma (MM) and other cancers. MM cells interact with αvβ3 integrin to support growth and invasion. Matrix metalloproteinases (MMPs) are a family of enzymes active in tissue remodeling and cancer. The association between integrins and MMPs secretion and action is well established. In the current study, we examined the effects of thyroid hormone on myeloma cell adhesion, migration and MMP activity. We show that T3 and T4 increased myeloma adhesion to fibronectin and induced αvβ3 clustering. In addition, the hormones induced MMP-9 expression and activation via αvβ3 and MAPK induction. Bortezomib, a standard myeloma treatment, caused a decrease in activity/quantity of MMPs and thyroid hormone opposed this effect. RGD peptide and tetrac impaired the production of MMP-9 in cell lines and in primary BM cells from myeloma patients. In conclusion, thyroid hormone-dependent regulation via αvβ3 of myeloma cell adhesion and MMP-9 production may play a role in myeloma migration and progression. PMID:25071016

  20. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    PubMed

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity. PMID:27207538

  1. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells

    PubMed Central

    Cohen, Keren; Flint, Nir; Shalev, Shachar; Erez, Daniel; Baharal, Tal; Davis, Paul J.; Hercbergs, Aleck; Ellis, Martin; Ashur-Fabian, Osnat

    2014-01-01

    Thyroid hormone (3,5,3′-triiodothyronine, T3; L-thyroxine, T4) enhances cancer cell proliferation, invasion and angiogenesis via a discrete receptor located near the RGD recognition site on αvβ3 integrin. Tetraiodothyroacetic acid (tetrac) and its nanoparticulate formulation interfere with binding of T3/T4 to the integrin. This integrin is overexpressed in multiple myeloma (MM) and other cancers. MM cells interact with αvβ3 integrin to support growth and invasion. Matrix metalloproteinases (MMPs) are a family of enzymes active in tissue remodeling and cancer. The association between integrins and MMPs secretion and action is well established. In the current study, we examined the effects of thyroid hormone on myeloma cell adhesion, migration and MMP activity. We show that T3 and T4 increased myeloma adhesion to fibronectin and induced αvβ3 clustering. In addition, the hormones induced MMP-9 expression and activation via αvβ3 and MAPK induction. Bortezomib, a standard myeloma treatment, caused a decrease in activity/quantity of MMPs and thyroid hormone opposed this effect. RGD peptide and tetrac impaired the production of MMP-9 in cell lines and in primary BM cells from myeloma patients. In conclusion, thyroid hormone-dependent regulation via αvβ3 of myeloma cell adhesion and MMP-9 production may play a role in myeloma migration and progression. PMID:25071016

  2. Activity of matrix metalloproteinases 2 and 9 in cultured rabbit corneal epithelium cells stimulated by tumor necrosis factor alpha.

    PubMed

    Wu, Z-Q; Zhang, Z-L; Nie, S-W; Yuan, J; Yang, Y-N

    2015-01-01

    We studied the activity of matrix metalloproteinases (MMP) 2 and 9 generated by cultured rabbit corneal epithelium cells that had been stimulated with tumor necrosis factor alpha (TNF-α), to investigate the possible regulative mechanisms of MMP-2/9 and their potential effect on corneal inflammatory diseases. The rabbit corneal epithelium cells were cultured in vitro and incubated with different concentrations of TNF-α (0, 1, 10, and 100 ng/mL) for 24 h. The activity of MMP-2/9 was examined using gelatin zymography. The results were analyzed by computer image analysis and statistical tests. TNF-α stimulated the secretion of MMP-2/9 in a dose-dependent manner, and MMP-2 was activated by TNF-α. Inflammatory factors such as TNF-α can stimulate MMP-2/9 activity in corneal epithelium cells. This may be a potential manipulating mechanism of MMP expression in the pathogenesis of corneal diseases, and could play an important role in the prevention and treatment of corneal inflammatory diseases. PMID:26125840

  3. Effects of diosgenin on myometrial matrix metalloproteinase-2 and -9 activity and expression in ovariectomized rats.

    PubMed

    Chang, Chi-Chen; Kuan, Tang-Ching; Hsieh, Yao-Yuan; Ho, Ying-Jui; Sun, Yu-Ling; Lin, Chih-Sheng

    2011-01-01

    Diosgenin, a traditional Yam extraction, has been used in hormone replacement for menopausal women. We aimed to investigate the influences of diosgenin administration upon the MMP-2 and -9 activity and expression and reproductive hormones of ovariectomized (OVX) rats, a model of menopausal status. Seven-week old female Wistar rats with bilateral OVX or sham operation (controls) were divided and administered different dosages of diosgenin (0, 10, 50, or 100 mg/kg/day) for 8 weeks. Serum was then sampled for progesterone (P4) and estradiol (E2) assay and uterine horns harvested. Myometrial MMP-2 and -9 activity and expression were surveyed and myometrial collagen expression was also assayed. The results show higher body weight in OVX rats across the 8 weeks post surgery and no significant differences were noted among OVX or Sham rats with diosgenin supplements. There were lower P4 and E2 concentrations in OVX rats compared to Sham rats, and higher P4 concentration of Sham rats post diosgenin supplement. MMP-2 and -9 mRNA expression and activity was lower in OVX rats, although higher MMP-2 and lower MMP-9 activity/mRNA expression was observed in OVX rats post diosgenin supplementation. Collagen mRNA expression was higher in OVX rats compared to Sham controls, and diosgenin administration decreased collagen mRNA expression in OVX rats. In conclusion, diosgenin is associated with gelatinase expression and collagen metabolism in OVX rats. Diosgenin administration can partially reverse the effects of OVX upon MMP functions and hormone status. Adequate diosgenin supplement might modulate myometrial gelatinase expression and collagen metabolism in menopausal subjects. PMID:21814480

  4. Effects of Diosgenin on Myometrial Matrix Metalloproteinase-2 and -9 Activity and Expression in Ovariectomized Rats

    PubMed Central

    Chang, Chi-Chen; Kuan, Tang-Ching; Hsieh, Yao-Yuan; Ho, Ying-Jui; Sun, Yu-Ling; Lin, Chih-Sheng

    2011-01-01

    Diosgenin, a traditional Yam extraction, has been used in hormone replacement for menopausal women. We aimed to investigate the influences of diosgenin administration upon the MMP-2 and -9 activity and expression and reproductive hormones of ovariectomized (OVX) rats, a model of menopausal status. Seven-week old female Wistar rats with bilateral OVX or sham operation (controls) were divided and administered different dosages of diosgenin (0, 10, 50, or 100 mg/kg/day) for 8 weeks. Serum was then sampled for progesterone (P4) and estradiol (E2) assay and uterine horns harvested. Myometrial MMP-2 and -9 activity and expression were surveyed and myometrial collagen expression was also assayed. The results show higher body weight in OVX rats across the 8 weeks post surgery and no significant differences were noted among OVX or Sham rats with diosgenin supplements. There were lower P4 and E2 concentrations in OVX rats compared to Sham rats, and higher P4 concentration of Sham rats post diosgenin supplement. MMP-2 and -9 mRNA expression and activity was lower in OVX rats, although higher MMP-2 and lower MMP-9 activity/mRNA expression was observed in OVX rats post diosgenin supplementation. Collagen mRNA expression was higher in OVX rats compared to Sham controls, and diosgenin administration decreased collagen mRNA expression in OVX rats. In conclusion, diosgenin is associated with gelatinase expression and collagen metabolism in OVX rats. Diosgenin administration can partially reverse the effects of OVX upon MMP functions and hormone status. Adequate diosgenin supplement might modulate myometrial gelatinase expression and collagen metabolism in menopausal subjects. PMID:21814480

  5. Technology and design of an active-matrix OLED on crystalline silicon direct-view display for a wristwatch computer

    NASA Astrophysics Data System (ADS)

    Sanford, James L.; Schlig, Eugene S.; Prache, Olivier; Dove, Derek B.; Ali, Tariq A.; Howard, Webster E.

    2002-02-01

    The IBM Research Division and eMagin Corp. jointly have developed a low-power VGA direct view active matrix OLED display, fabricated on a crystalline silicon CMOS chip. The display is incorporated in IBM prototype wristwatch computers running the Linus operating system. IBM designed the silicon chip and eMagin developed the organic stack and performed the back-end-of line processing and packaging. Each pixel is driven by a constant current source controlled by a CMOS RAM cell, and the display receives its data from the processor memory bus. This paper describes the OLED technology and packaging, and outlines the design of the pixel and display electronics and the processor interface. Experimental results are presented.

  6. A signal processing approach for enhanced Acoustic Emission data analysis in high activity systems: Application to organic matrix composites

    NASA Astrophysics Data System (ADS)

    Kharrat, M.; Ramasso, E.; Placet, V.; Boubakar, M. L.

    2016-03-01

    Structural elements made of Organic Matrix Composites (OMC) under complex loading may suffer from high Acoustic Emission (AE) activity caused by the emergence of different emission sources at high rates with high noise level, which finally engender continuous emissions. The detection of hits in this situation becomes a challenge particularly during fatigue tests. This work suggests an approach based on the Discrete Wavelet Transform (DWT) denoising applied on signal segments. A particular attention is paid to the adjustment of the denoising parameters based on pencil lead breaks and their influence on the quality of the denoised AE signals. The validation of the proposed approach is performed on a ring-shaped Carbon Fiber Reinforced Plastics (CFRP) under in-service-like conditions involving continuous emissions with superimposed damage-related transients. It is demonstrated that errors in hit detection are greatly reduced leading to a better identification of the natural damage scenario based on AE signals.

  7. Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity

    PubMed Central

    Wang, Qian; Kang, Fuxing; Gao, Yanzheng; Mao, Xuewei; Hu, Xiaojie

    2016-01-01

    Most artificial nanomaterials are known to exhibit broad-spectrum bactericidal activity; however, the defence mechanisms that bacteria use based on extracellular polymeric substances (EPS) to detoxify nanoparticles (NPs) are not well known. We ruled out the possibility of ion-specific bactericidal activity by showing the lack of equivalent dissolved zinc and silicon toxicity and determined the particle-specific toxicity of ZnO and SiO2 nanoparticles (ZnONPs/SiO2NPs) through dialysis isolation experiments. Surprisingly, the manipulation of the E. coli EPS (i.e., no EPS manipulation or EPS removal by sonication/centrifugation) showed that their particle-specific bactericidal activity could be antagonized by NP-EPS sequestration. The survival rates of pristine E. coli (no EPS manipulation) reached 65% (ZnONPs, 500 mg L−1) and 79% (SiO2NPs, 500 mg L−1), whereas survival rates following EPS removal by sonication/centrifugation were 11% and 63%, respectively. Transmission electron microscopy (TEM) combined with fluorescence micro-titration analysis and Fourier-transform infrared spectroscopy (FTIR) showed that protein-like substances (N-H and C-N in amide II) and secondary carbonyl groups (C=O) in the carboxylic acids of EPS acted as important binding sites that were involved in NP sequestration. Accordingly, the amount and composition of EPS produced by bacteria have important implications for the bactericidal efficacy and potential environmental effects of NPs. PMID:26856606

  8. Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity.

    PubMed

    Wang, Qian; Kang, Fuxing; Gao, Yanzheng; Mao, Xuewei; Hu, Xiaojie

    2016-01-01

    Most artificial nanomaterials are known to exhibit broad-spectrum bactericidal activity; however, the defence mechanisms that bacteria use based on extracellular polymeric substances (EPS) to detoxify nanoparticles (NPs) are not well known. We ruled out the possibility of ion-specific bactericidal activity by showing the lack of equivalent dissolved zinc and silicon toxicity and determined the particle-specific toxicity of ZnO and SiO2 nanoparticles (ZnONPs/SiO2NPs) through dialysis isolation experiments. Surprisingly, the manipulation of the E. coli EPS (i.e., no EPS manipulation or EPS removal by sonication/centrifugation) showed that their particle-specific bactericidal activity could be antagonized by NP-EPS sequestration. The survival rates of pristine E. coli (no EPS manipulation) reached 65% (ZnONPs, 500 mg L(-1)) and 79% (SiO2NPs, 500 mg L(-1)), whereas survival rates following EPS removal by sonication/centrifugation were 11% and 63%, respectively. Transmission electron microscopy (TEM) combined with fluorescence micro-titration analysis and Fourier-transform infrared spectroscopy (FTIR) showed that protein-like substances (N-H and C-N in amide II) and secondary carbonyl groups (C=O) in the carboxylic acids of EPS acted as important binding sites that were involved in NP sequestration. Accordingly, the amount and composition of EPS produced by bacteria have important implications for the bactericidal efficacy and potential environmental effects of NPs. PMID:26856606

  9. CXCR4 regulates migration of lung alveolar epithelial cells through activation of Rac1 and matrix metalloproteinase-2

    PubMed Central

    Ghosh, Manik C.; Makena, Patrudu S.; Gorantla, Vijay; Sinclair, Scott E.

    2012-01-01

    Restoration of the epithelial barrier following acute lung injury is critical for recovery of lung homeostasis. After injury, alveolar type II epithelial (ATII) cells spread and migrate to cover the denuded surface and, eventually, proliferate and differentiate into type I cells. The chemokine CXCL12, also known as stromal cell-derived factor 1α, has well-recognized roles in organogenesis, hematopoiesis, and immune responses through its binding to the chemokine receptor CXCR4. While CXCL12/CXCR4 signaling is known to be important in immune cell migration, the role of this chemokine-receptor interaction has not been studied in alveolar epithelial repair mechanisms. In this study, we demonstrated that secretion of CXCL12 was increased in the bronchoalveolar lavage of rats ventilated with an injurious tidal volume (25 ml/kg). We also found that CXCL12 secretion was increased by primary rat ATII cells and a mouse alveolar epithelial (MLE12) cell line following scratch wounding and that both types of cells express CXCR4. CXCL12 significantly increased ATII cell migration in a scratch-wound assay. When we treated cells with a specific antagonist for CXCR4, AMD-3100, cell migration was significantly inhibited. Knockdown of CXCR4 by short hairpin RNA (shRNA) caused decreased cell migration compared with cells expressing a nonspecific shRNA. Treatment with AMD-3100 decreased matrix metalloproteinase-14 expression, increased tissue inhibitor of metalloproteinase-3 expression, decreased matrix metalloproteinase-2 activity, and prevented CXCL12-induced Rac1 activation. Similar results were obtained with shRNA knockdown of CXCR4. These findings may help identify a therapeutic target for augmenting epithelial repair following acute lung injury. PMID:22345572

  10. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases

    SciTech Connect

    Heljasvaara, Ritva; Nyberg, Pia; Luostarinen, Jani; Parikka, Mataleena; Heikkilae, Pia; Rehn, Marko; Sorsa, Timo; Salo, Tuula; Pihlajaniemi, Taina . E-mail: taina.pihlajaniemi@oulu.fi

    2005-07-15

    Endostatin, a potent inhibitor of endothelial cell proliferation, migration, angiogenesis and tumor growth, is proteolytically cleaved from the C-terminal noncollagenous NC1 domain of type XVIII collagen. We investigated the endostatin formation from human collagen XVIII by several MMPs in vitro. The generation of endostatin fragments differing in molecular size (24-30 kDa) and in N-terminal sequences was identified in the cases of MMP-3, -7, -9, -13 and -20. The cleavage sites were located in the protease-sensitive hinge region between the trimerization and endostatin domains of NC1. MMP-1, -2, -8 and -12 did not show any significant activity against the C-terminus of collagen XVIII. The anti-proliferative effect of the 20-kDa endostatin, three longer endostatin-containing fragments generated in vitro by distinct MMPs and the entire NC1 domain, on bFGF-stimulated human umbilical vein endothelial cells was established. The anti-migratory potential of some of these fragments was also studied. In addition, production of endostatin fragments between 24-30 kDa by human hepatoblastoma cells was shown to be due to MMP action on type XVIII collagen. Our results indicate that certain, especially cancer-related, MMP family members can generate biologically active endostatin-containing polypeptides from collagen XVIII and thus, by releasing endostatin fragments, may participate in the inhibition of endothelial cell proliferation, migration and angiogenesis.

  11. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain.

    PubMed

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2016-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. PMID:26609811

  12. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways.

    PubMed

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, D L; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-08-27

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm(2)) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  13. Optimal level activity of matrix metalloproteinases is critical for adult visual plasticity in the healthy and stroke-affected brain

    PubMed Central

    Pielecka-Fortuna, Justyna; Kalogeraki, Evgenia; Fortuna, Michal G; Löwel, Siegrid

    2015-01-01

    The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur. DOI: http://dx.doi.org/10.7554/eLife.11290.001 PMID:26609811

  14. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation

    PubMed Central

    Yeh, Chia-Ming; Lin, Chiao-Wen; Yang, Jia-Sin; Yang, Wei-En; Su, Shih-Chi; Yang, Shun-Fa

    2016-01-01

    Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation. PMID:26980735

  15. Minocycline Attenuates Neonatal Germinal-Matrix-Hemorrhage-Induced Neuroinflammation and Brain Edema by Activating Cannabinoid Receptor 2.

    PubMed

    Tang, Jun; Chen, Qianwei; Guo, Jing; Yang, Liming; Tao, Yihao; Li, Lin; Miao, Hongping; Feng, Hua; Chen, Zhi; Zhu, Gang

    2016-04-01

    Germinal matrix hemorrhage (GMH) is the most common neurological disease of premature newborns leading to detrimental neurological sequelae. Minocycline has been reported to play a key role in neurological inflammatory diseases by controlling some mechanisms that involve cannabinoid receptor 2 (CB2R). The current study investigated whether minocycline reduces neuroinflammation and protects the brain from injury in a rat model of collagenase-induced GMH by regulating CB2R activity. To test this hypothesis, the effects of minocycline and a CB2R antagonist (AM630) were evaluated in male rat pups that were post-natal day 7 (P7) after GMH. We found that minocycline can lead to increased CB2R mRNA expression and protein expression in microglia. Minocycline significantly reduced GMH-induced brain edema, microglial activation, and lateral ventricular volume. Additionally, minocycline enhanced cortical thickness after injury. All of these neuroprotective effects of minocycline were prevented by AM630. A cannabinoid CB2 agonist (JWH133) was used to strengthen the hypothesis, which showed the identical neuroprotective effects of minocycline. Our study demonstrates, for the first time, that minocycline attenuates neuroinflammation and brain injury in a rat model of GMH, and activation of CBR2 was partially involved in these processes. PMID:25833102

  16. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract

    NASA Astrophysics Data System (ADS)

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Moon-Moo; Nam, Ki Wan; Kim, Se-Kwon

    2009-02-01

    Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2',7'-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.

  17. Direct production of functional matrix metalloproteinase--14 without refolding or activation and its application for in vitro inhibition assays.

    PubMed

    Nam, Dong Hyun; Ge, Xin

    2016-04-01

    Human matrix metalloproteinase (MMP)-14, a membrane-bound zinc endopeptidase, is one of the most important cancer targets because it plays central roles in tumor growth and invasion. Large amounts of active MMP-14 are required for cancer research and the development of chemical or biological MMP-14 inhibitors. Current methods of MMP-14 production through refolding and activation are labor-intensive, time-consuming, and often associated with low recovery rates, lot-to-lot variation and heterogeneous products. Here, we report direct production of the catalytic domain of MMP-14 in the periplasmic space of Escherichia coli. 0.5 mg/L of functional MMP-14 was produced without tedious refolding or problematic activation process. MMP-14 prepared by simple periplasmic treatment can be readily utilized to evaluate the potencies of chemical and antibody-based inhibitors. Furthermore, co-expression of both MMP-14 and antibody Fab fragments in the periplasm facilitated inhibitory antibody screening by avoiding purification of MMP-14 or Fabs. We expect this MMP-14 expression strategy can expedite the development of therapeutic drugs targeting MMPs with biological significance. PMID:26416249

  18. Novel 19F Activatable Probe for the Detection of Matrix Metalloprotease-2 Activity by MRI/MRS

    PubMed Central

    2015-01-01

    Matrix metalloproteases (MMPs) have been found to be highly expressed in a variety of malignant tumor tissues. Noninvasive visualization of MMP activity may play an important role in the diagnosis of MMP associated diseases. Here we report the design and synthesis of a set of fluorine-19 dendron-based magnetic resonance imaging (MRI) probes for real-time imaging of MMP-2 activity. The probes have the following features: (a) symmetrical fluorine atoms; (b) the number of fluorine atoms can be increased through facile chemical modification; (c) readily accessible peptide sequence as the MMP-2 substrate; (d) activatable 19F signal (off/on mode) via paramagnetic metal ion incorporation. Following optimization for water solubility, one of the probes was selected to evaluate MMP-2 activity by 19F magnetic resonance spectroscopy (MRS). Our results showed that the fluorine signal increased by 8.5-fold in the presence of MMP-2. The specific cleavage site was verified by mass spectrometry. The selected probe was further applied to detect secreted MMP-2 activity of living SCC7 squamous cell carcinoma cells. The fluorine signal was increased by 4.8-fold by MRS analysis after 24 h incubation with SCC7 cells. This type of fluorine probe can be applied to evaluate other enzyme activities by simply tuning the substrate structures. This symmetrical fluorine dendron-based probe design extends the scope of the existing 19F MRI agents and provides a simple but robust method for real-time 19F MRI application. PMID:25271556

  19. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C

    PubMed Central

    Ruggiero, Sabrina; Cosgarea, Raluca; Potempa, Jan; Potempa, Barbara; Eick, Sigrun; Chiquet, Matthias

    2014-01-01

    Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease. PMID:23313574

  20. Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation.

    PubMed

    Kim, Hyun Ji; Kang, Gyeoung Jin; Kim, Eun Ji; Park, Mi Kyung; Byun, Hyun Jung; Nam, Seungyoon; Lee, Ho; Lee, Chang Hoon

    2016-09-01

    Sphingosylphosphorylcholine (SPC) participates in several cellular processes including metastasis. SPC induces keratin reorganization and regulates the viscoelasticity of metastatic cancer cells including PANC-1 cancer cells leading to enhanced migration and invasion. The role of SPC and the relevant mechanism in invasion of breast cell are as yet unknown. SPC dose-dependently induces invasion of breast cancer cells or breast immortalized cells. Reverse transcription polymerase chain reaction and Western blot analyses of MCF10A and ZR-75-1 cells indicated that SPC induces expression and secretion of matrix metalloproteinase-3 (MMP3). From online KMPLOT, relapse free survival is high in patients having low MMP3 expressed basal breast cancer (n=581, p=0.032). UK370106 (MMP3 inhibitor) or gene silencing of MMP3 markedly inhibited the SPC-induced invasion of MCF10A cells. An extracellular signal-regulated kinase (ERK) inhibitor, PD98059, significantly suppressed the secretion and the gelatinolytic activity of MMP3, and invasion in MCF10A cells. Over-expression of ERK1 and ERK2 promoted both the expression and secretion of MMP3. In contrast, gene silencing of ERK1 and ERK2 attenuated the secretion of MMP3 in MCF10A cells. The effects of SPC-induced MMP3 secretion on β-catenin and TCF/lymphoid enhancer factor (LEF) promoter activity were examined since MMP3 indirectly activates canonical Wnt signaling. SPC induced translocation of β-catenin to nucleus and increased TCF/LEF promoter activity. These events were suppressed by UK370106 or PD98059. Wnt inhibitor, FH535 inhibited SPC-induced MMP3 secretion and invasion. Taken together, these results suggest that SPC induces MMP3 expression and secretion via ERK leading to Wnt activation. PMID:27216977

  1. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C.

    PubMed

    Ruggiero, Sabrina; Cosgarea, Raluca; Potempa, Jan; Potempa, Barbara; Eick, Sigrun; Chiquet, Matthias

    2013-04-01

    Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease. PMID:23313574

  2. Full colour RGB OLEDs on CMOS for active-matrix OLED microdisplays

    NASA Astrophysics Data System (ADS)

    Kreye, D.; Toerker, M.; Vogel, U.; Amelung, J.

    2006-08-01

    Microdisplays are used in various optical devices such as headsets, viewfinders and helmet-mounted displays. The use of organic light emitting diodes (OLEDs) in a microdisplay on silicone substrate provides the opportunity of lower power consumption and higher optical performance compared to other near-to-eye display technologies. Highly efficient, low-voltage, top emitting OLEDs are well suitable for the integration into a CMOSprocess. By reducing the operating voltage for the OLEDs below 5V, the costs for the CMOS process can be reduced significantly, because a standard process without high-voltage option can be used. Various OLED stacks on silicone substrate are presented, suitable for full colour (RGB) applications. Red and green emitting phosphorescent OLEDs and blue emitting fluorescent OLEDs all with doped charge transport layers were prepared on a two metal layer CMOS test substrate without active transistor area. Afterwards, the different test displays were measured and compared with respect to their performance (current, luminance, voltage, luminance dependence on viewing angle, optical outcoupling etc.)

  3. Design, synthesis and biological activity of new polyenolic inhibitors of matrix metalloproteinases: a focus on chemically-modified curcumins.

    PubMed

    Zhang, Yu; Gu, Ying; Lee, Hsi-Ming; Hambardjieva, Elena; Vranková, Kveta; Golub, Lorne M; Johnson, Francis

    2012-01-01

    Matrix metalloproteinases (MMPs) are essential for the degradation and turnover of components of the extracellular matrix (ECM) and, when pathologically elevated, mediate connective tissue loss (including bone destruction) in various inflammatory and other diseases. Tetracyclines (TCs) are known inhibitors of mammalian-derived MMPs, and non-antibiotic formulations of Doxycycline are FDA-approved to treat periodontitis and the chronic inflammatory skin disease, rosacea. Because the C-11/ C-12 diketonic moiety of the tetracyclines is primarily responsible, through zinc-binding, for MMP inhibition, we have uniquely modified curcumin as a "core" molecule, since it contains a similar enolic system and is known to have beneficial effects in diseases where connective-tissue loss occurs. Specifically we have developed new congeners which exhibit improved zinc-binding and solubility, and potent reduction of excessive MMP levels and activity. We now describe a series of curcuminoid bi- and tri-carbonylmethanes in which all of these properties are substantially improved. An N-phenylaminocarbonyl derivative of bis-demethoxycurcumin (CMC2.24) was selected as the "lead" substance because it showed superior potency in vitro (i.e., the lowest IC(50)) against a series of neutral proteases (MMPs) associated with tissue erosion. Moreover, CMC2.24 administered to diabetic rats orally (30mg/kg), reduced the secretion of pathologically-excessive levels of MMP-9 to normal in cultured peritoneal macrophages with no evidence of toxicity. Thus, this (and other similar novel) compound(s) may be useful in various diseases of connective-tissue loss. PMID:22830350

  4. Matrix-addressable, active electrode arrays for neural stimulation using organic semiconductors—cytotoxicity and pilot experiments in vivo

    NASA Astrophysics Data System (ADS)

    Feili, Dara; Schuettler, Martin; Stieglitz, Thomas

    2008-03-01

    Organic field effect transistors can be integrated into micromachined polyimide-based neural stimulation electrode arrays in order to build active switching matrices. With this approach, a matrix of N × M electrode contacts requires only N + M interconnects to a stimulator when active switching elements are used instead of N × M interconnects. In this paper, we demonstrated that pentacene-based organic field effect transistors (OFETs) can be used to drive stimulation currents through neural electrodes in a physiological-like environment. In order to prove the general applicability as an implant material, the cytotoxicity of pentacene was evaluated with respect to potential effects on cell viability. The results of these tests indicate that extracts from pentacene inhibit neither proliferation nor metabolism of the tested mouse fibroblasts. However, some effect on cell spreading was observed when cells were in direct contact to pentacene for 48 h. In pilot experiments it was demonstrated for the very first time that pentacene transistors can be used as switching elements, acting as voltage-controlled current sources, capable of driving currents suitable for electrical stimulation of a peripheral nerve via a tripolar cuff electrode.

  5. Fumigaclavine C, an fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity.

    PubMed

    Wu, Xue-Feng; Fei, Ming-Jian; Shu, Ren-Geng; Tan, Ren-Xiang; Xu, Qiang

    2005-09-01

    In the present paper, the effect of Fumigaclavine C, a fungal metabolite, on experimental colitis was examined. Fumigaclavine C, when administered intraperitoneally once a day, significantly reduced the weight loss and mortality rate of mice with experimental colitis induced by intrarectally injection of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). This compound also markedly alleviated the macroscopic and microscopic appearances of colitis. Furthermore, Fumigaclavine C, given both in vivo and in vitro, showed a marked inhibition on the expression of several inflammatory cytokines, including IL-1beta, IL-2, IL-12alpha, IFN-gamma, TNF-alpha as well as MMP-9 in sacral lymph node cells, colonic patch lymphocytes and colitis tissues from the TNBS colitis mice. Meanwhile, the compound caused a dose-dependent reduction in IL-2 and IFN-gamma from the lymphocytes at the protein level and MMP-9 activity. These results suggest that Fumigaclavine C may alleviate experimental colitis mainly via down-regulating the production of Th1 cytokines and the activity of matrix metalloproteinase. PMID:16023606

  6. Fluid Shear Stress Regulates the Invasive Potential of Glioma Cells via Modulation of Migratory Activity and Matrix Metalloproteinase Expression

    PubMed Central

    Qazi, Henry; Shi, Zhong-Dong; Tarbell, John M.

    2011-01-01

    Background Glioma cells are exposed to elevated interstitial fluid flow during the onset of angiogenesis, at the tumor periphery while invading normal parenchyma, within white matter tracts, and during vascular normalization therapy. Glioma cell lines that have been exposed to fluid flow forces in vivo have much lower invasive potentials than in vitro cell motility assays without flow would indicate. Methodology/Principal Findings A 3D Modified Boyden chamber (Darcy flow through collagen/cell suspension) model was designed to mimic the fluid dynamic microenvironment to study the effects of fluid shear stress on the migratory activity of glioma cells. Novel methods for gel compaction and isolation of chemotactic migration from flow stimulation were utilized for three glioma cell lines: U87, CNS-1, and U251. All physiologic levels of fluid shear stress suppressed the migratory activity of U87 and CNS-1 cell lines. U251 motility remained unaltered within the 3D interstitial flow model. Matrix Metalloproteinase (MMP) inhibition experiments and assays demonstrated that the glioma cells depended on MMP activity to invade, and suppression in motility correlated with downregulation of MMP-1 and MMP-2 levels. This was confirmed by RT-PCR and with the aid of MMP-1 and MMP-2 shRNA constructs. Conclusions/Significance Fluid shear stress in the tumor microenvironment may explain reduced glioma invasion through modulation of cell motility and MMP levels. The flow-induced migration trends were consistent with reported invasive potentials of implanted gliomas. The models developed for this study imply that flow-modulated motility involves mechanotransduction of fluid shear stress affecting MMP activation and expression. These models should be useful for the continued study of interstitial flow effects on processes that affect tumor progression. PMID:21637818

  7. A Single Amino Acid Deletion in the Matrix Protein of Porcine Reproductive and Respiratory Syndrome Virus Confers Resistance to a Polyclonal Swine Antibody with Broadly Neutralizing Activity

    PubMed Central

    Popescu, Luca N.; Monday, Nicholas; Calvert, Jay G.; Rowland, Raymond R. R.

    2015-01-01

    Assessment of virus neutralization (VN) activity in 176 pigs infected with porcine reproductive and respiratory syndrome virus (PRRSV) identified one pig with broadly neutralizing activity. A Tyr-10 deletion in the matrix protein provided escape from broad neutralization without affecting homologous neutralizing activity. The role of the Tyr-10 deletion was confirmed through an infectious clone with a Tyr-10 deletion. The results demonstrate differences in the properties and specificities of VN responses elicited during PRRSV infection. PMID:25855739

  8. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  9. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  10. Liver X receptor regulates rheumatoid arthritis fibroblast-like synoviocyte invasiveness, matrix metalloproteinase 2 activation, interleukin-6 and CXCL10.

    PubMed

    Laragione, Teresina; Gulko, Pércio S

    2012-01-01

    Fibroblast-like synoviocyte (FLS) invasiveness correlates with articular damage in rheumatoid arthritis (RA), yet little is known about its regulation. In this study we aimed to determine the role of the nuclear receptor liver X receptor (LXR) in FLS invasion. FLS were isolated from synovial tissues obtained from RA patients and from DA rats with pristane-induced arthritis. Invasion was tested on Matrigel-coated chambers in the presence of the LXR agonist T0901317, or control vehicle. FLS were cultured in the presence or absence of T0901317, and supernatants were used to quantify matrix metalloproteinase 1 (MMP-1), MMP-2, MMP-3, interleukin-6 (IL-6), tumor necrosis factor-α and C-X-C motif chemokine ligand 10 (CXCL10). Nuclear factor-κB (NF-κB) (p65) and Akt activation, actin cytoskeleton, cell morphology and lamellipodia formation were also determined. The LXR agonist T0901317 significantly reduced DA FLS invasion by 99% (P ≤ 0.001), and RA FLS invasion by 96% (P ≤ 0.001), compared with control. T0901317-induced suppression of invasion was associated with reduced production of activated MMP-2, IL-6 and CXCL10 by RA FLS, and with reduction of actin filament reorganization and reduced polarized formation of lamellipodia. T0901317 also prevented both IL-1β-induced and IL-6-induced FLS invasion. NF-κB (p65) and Akt activation were not significantly affected by T0901317. This is the first description of a role for LXR in the regulation of FLS invasion and in processes and pathways implicated both in invasion as well as in inflammatory responses. These findings provide a new rationale for considering LXR agonists as therapeutic agents aimed at reducing both inflammation and FLS-mediated invasion and destruction in RA. PMID:22634718

  11. Activated hepatic stellate cells are dependent on self-collagen, cleaved by membrane type 1 matrix metalloproteinase for their growth.

    PubMed

    Birukawa, Naoko Kubo; Murase, Kazuyuki; Sato, Yasushi; Kosaka, Akemi; Yoneda, Akihiro; Nishita, Hiroki; Fujita, Ryosuke; Nishimura, Miyuki; Ninomiya, Takafumi; Kajiwara, Keiko; Miyazaki, Miyono; Nakashima, Yusuke; Ota, Sigenori; Murakami, Yuya; Tanaka, Yasunobu; Minomi, Kenjiro; Tamura, Yasuaki; Niitsu, Yoshiro

    2014-07-18

    Stellate cells are distributed throughout organs, where, upon chronic damage, they become activated and proliferate to secrete collagen, which results in organ fibrosis. An intriguing property of hepatic stellate cells (HSCs) is that they undergo apoptosis when collagen is resolved by stopping tissue damage or by treatment, even though the mechanisms are unknown. Here we disclose the fact that HSCs, normal diploid cells, acquired dependence on collagen for their growth during the transition from quiescent to active states. The intramolecular RGD motifs of collagen were exposed by cleavage with their own membrane type 1 matrix metalloproteinase (MT1-MMP). The following evidence supports this conclusion. When rat activated HSCs (aHSCs) were transduced with siRNA against the collagen-specific chaperone gp46 to inhibit collagen secretion, the cells underwent autophagy followed by apoptosis. Concomitantly, the growth of aHSCs was suppressed, whereas that of quiescent HSCs was not. These in vitro results are compatible with the in vivo observation that apoptosis of aHSCs was induced in cirrhotic livers of rats treated with siRNAgp46. siRNA against MT1-MMP and addition of tissue inhibitor of metalloproteinase 2 (TIMP-2), which mainly inhibits MT1-MMP, also significantly suppressed the growth of aHSCs in vitro. The RGD inhibitors echistatin and GRGDS peptide and siRNA against the RGD receptor αVβ1 resulted in the inhibition of aHSCs growth. Transduction of siRNAs against gp46, αVβ1, and MT1-MMP to aHSCs inhibited the survival signal of PI3K/AKT/IκB. These results could provide novel antifibrosis strategies. PMID:24867951

  12. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    SciTech Connect

    Zitta, Karina; Brandt, Berenice; Wuensch, Annegret; Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens; Albrecht, Martin

    2010-09-03

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  13. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-01-01

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases. PMID:27589705

  14. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  15. Effect of transparent film desiccant on the lifetime of top-emitting active matrix organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Duk; Cho, Yoon-Hyung; Kim, Won-Jong; Oh, Min Ho; Lee, Jong Hyuk; Zang, Dong Sik

    2007-03-01

    The effects of a transparent film desiccant on the lifetime of top-emitting active matrix organic light emitting diodes (AMOLEDs) were investigated. The transparent film desiccants were prepared by mixing solutions dispersed with calcium oxide powders and ultraviolet-curable resins. As the solid content in the solutions increased from 15to30wt%, the average particle size increased from 107to240nm, whereas the transmittance of the films decreased from 98% to 80% in the visible range. The devices encapsulated with the transparent film desiccants which contained 20wt% CaO exhibited no dark spots and 97% of the initial luminance, even after being stored for over 500h at 70°C and 90% relative humidity. Also, the operational lifetime of these devices was 1850h, ten times longer than that of a device without desiccant. These results confirmed that the transparent film desiccants, which absorbed the moisture that penetrated into the devices, could be applied to the encapsulation of top-emitting AMOLEDs.

  16. Orally administered betaine reduces photodamage caused by UVB irradiation through the regulation of matrix metalloproteinase-9 activity in hairless mice.

    PubMed

    Im, A-Rang; Lee, Hee Jeong; Youn, Ui Joung; Hyun, Jin Won; Chae, Sungwook

    2016-01-01

    Betaine is widely distributed in plants, microorganisms, in several types of food and in medical herbs, including Lycium chinense. The administration of 100 mg betaine/kg body weight/day is an effective strategy for preventing ultraviolet irradiation‑induced skin damage. The present study aimed to determine the preventive effects of betaine on ultraviolet B (UVB) irradiation‑induced skin damage in hairless mice. The mice were divided into three groups: Control (n=5), UVB‑treated vehicle (n=5) and UVB‑treated betaine (n=5) groups. The level of irradiation was progressively increased between 60 mJ/cm2 per exposure at week 1 (one minimal erythematous dose = 60 mJ/cm2) and 90 mJ/cm2 per exposure at week 7. The formation of wrinkles significantly increased following UVB exposure in the UVB‑treated vehicle group. However, treatment with betaine suppressed UVB‑induced wrinkle formation, as determined by the mean length, mean depth, number, epidermal thickness and collagen damage. Furthermore, oral administration of betaine also inhibited the UVB‑induced expression of mitogen‑activated protein kinase kinase (MEK), extracellular signal‑regulated kinase (ERK), and matrix metalloproteinase‑9 (MMP‑9). These findings suggested that betaine inhibits UVB‑induced skin damage by suppressing increased expression of MMP‑9 through the inhibition of MEK and ERK. PMID:26648401

  17. Optimal Topology and Experimental Evaluation of Piezoelectric Materials for Actively Shunted General Electric Polymer Matrix Fiber Composite Blades

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Duffy, Kirsten; Kauffman, Jeffrey L.; Kray, Nicholas

    2012-01-01

    NASA Glenn Research Center, in collaboration with GE Aviation, has begun the development of a smart adaptive structure system with piezoelectric (PE) transducers to improve composite fan blade damping at resonances. Traditional resonant damping approaches may not be realistic for rotating frame applications such as engine blades. The limited space in which the blades reside in the engine makes it impossible to accommodate the circuit size required to implement passive resonant damping. Thus, a novel digital shunt scheme has been developed to replace the conventional electric passive shunt circuits. The digital shunt dissipates strain energy through the load resistor on a power amplifier. General Electric (GE) designed and fabricated a variety of polymer matrix fiber composite (PMFC) test specimens. Investigating the optimal topology of PE sensors and actuators for each test specimen has revealed the best PE transducer location for each target mode. Also a variety of flexible patches, which can conform to the blade surface, have been tested to identify the best performing PE patch. The active damping control achieved significant performance at target modes. This work has been highlighted by successful spin testing up to 5000 rpm of subscale GEnx composite blades in Glenn s Dynamic Spin Rig.

  18. Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14

    PubMed Central

    Eckhard, Ulrich; Huesgen, Pitter F.; Schilling, Oliver; Bellac, Caroline L.; Butler, Georgina S.; Cox, Jennifer H.; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; auf dem Keller, Ulrich; Klein, Theo; Lange, Philipp F.; Marino, Giada; Morrison, Charlotte J.; Prudova, Anna; Rodriguez, David; Starr, Amanda E.; Wang, Yili; Overall, Christopher M.

    2016-01-01

    The data described provide a comprehensive resource for the family-wide active site specificity portrayal of the human matrix metalloproteinase family. We used the high-throughput proteomic technique PICS (Proteomic Identification of protease Cleavage Sites) to comprehensively assay 9 different MMPs. We identified more than 4300 peptide cleavage sites, spanning both the prime and non-prime sides of the scissile peptide bond allowing detailed subsite cooperativity analysis. The proteomic cleavage data were expanded by kinetic analysis using a set of 6 quenched-fluorescent peptide substrates designed using these results. These datasets represent one of the largest specificity profiling efforts with subsequent structural follow up for any protease family and put the spotlight on the specificity similarities and differences of the MMP family. A detailed analysis of this data may be found in Eckhard et al. (2015) [1]. The raw mass spectrometry data and the corresponding metadata have been deposited in PRIDE/ProteomeXchange with the accession number PXD002265. PMID:26981551

  19. Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14.

    PubMed

    Eckhard, Ulrich; Huesgen, Pitter F; Schilling, Oliver; Bellac, Caroline L; Butler, Georgina S; Cox, Jennifer H; Dufour, Antoine; Goebeler, Verena; Kappelhoff, Reinhild; Auf dem Keller, Ulrich; Klein, Theo; Lange, Philipp F; Marino, Giada; Morrison, Charlotte J; Prudova, Anna; Rodriguez, David; Starr, Amanda E; Wang, Yili; Overall, Christopher M

    2016-06-01

    The data described provide a comprehensive resource for the family-wide active site specificity portrayal of the human matrix metalloproteinase family. We used the high-throughput proteomic technique PICS (Proteomic Identification of protease Cleavage Sites) to comprehensively assay 9 different MMPs. We identified more than 4300 peptide cleavage sites, spanning both the prime and non-prime sides of the scissile peptide bond allowing detailed subsite cooperativity analysis. The proteomic cleavage data were expanded by kinetic analysis using a set of 6 quenched-fluorescent peptide substrates designed using these results. These datasets represent one of the largest specificity profiling efforts with subsequent structural follow up for any protease family and put the spotlight on the specificity similarities and differences of the MMP family. A detailed analysis of this data may be found in Eckhard et al. (2015) [1]. The raw mass spectrometry data and the corresponding metadata have been deposited in PRIDE/ProteomeXchange with the accession number PXD002265. PMID:26981551

  20. Activated matrix metalloproteinase-8 in saliva as diagnostic test for periodontal disease? A case-control study.

    PubMed

    Izadi Borujeni, Susan; Mayer, Matthias; Eickholz, Peter

    2015-12-01

    Untreated periodontal disease may influence general health. However, how may a physician, who is not trained in periodontal probing, detect untreated periodontitis? Activated matrix metalloproteinase-8 (aMMP-8) in saliva correlates with periodontal probing parameters. Thus, sensitivity and specificity of a chair-side test for aMMP-8 to detect periodontitis were evaluated. Thirty cases [untreated chronic periodontitis (ChP); 15 generalized moderate and 15 generalized severe] and 30 controls [probing depths (PD) ≤3 mm, vertical probing attachment level (PAL-V) ≤2 mm at <30 % of sites) were examined periodontally (PD, PAL-V, bleeding on probing). Subsequently, the aMMP-8 test was performed. The test kit becomes positive with ≥25 ng/ml aMMP-8 in the sample. The aMMP-8 test was positive in 87 % of ChP and in 40 % of controls. That corresponds to a sensitivity of 87 % and a specificity of 60 %. The sensitivity to detect generalized severe ChP was 93 % (60 % specificity). Backward stepwise logistic regression analysis to explain positive aMMP-8 tests identified exclusively ChP with an odds ratio of 9.8 (p < 0.001). Positive results of the aMMP-8 test significantly correlate with generalized ChP. The aMMP-8 test may be used by physicians to detect periodontitis in their patients. PMID:25841875

  1. Validation and interpretation of CALUX as a tool for the estimation of dioxin-like activity in marine biological matrixes.

    PubMed

    Windal, Isabelle; Van Wouwe, Nathalie; Eppe, Gauthier; Xhrouet, Céline; Debacker, Virginie; Baeyens, Willy; De Pauw, Edwin; Goeyens, Leo

    2005-03-15

    Among the different analytical tools proposed as an alternative to the very expensive gas chromatography high-resolution mass spectrometry (GC-HRMS) analyses of polychlorodibenzo-p-dioxin and polychlorodibenzofurans, Chemically Activated LUciferase gene eXpression (CALUX) in vitro cell bioassay is very promising. It allows the analyses of a high number of samples since it is relatively fast, inexpensive, and sensitive. However, this technique is not yet widely applied for screening or environmental monitoring. The main reasons are probably the lack of validation and the difficulty in interpreting the global biological response of the bioassay. In this paper, the strict quality control criteria set up for the validation of CALUX are described. The validation has shown good repeatability (relative standard deviation (RSD) = 9%) and good within-lab reproducibility (RSD = 15%) of the results. The quantification limit, in the conditions applied in this paper, is 1.25 pg CALUX-TEQ/g fat. Comparison of CALUX and GC-HRMS analysis was made forvarious marine matrixes (fishes, mussels, starfishes, sea birds, and marine mammals). Good correlations are usually observed, but there are systematic differences between the results. Attempts are made to identify the origin of the discrepancy between the two methods. PMID:15819233

  2. Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter.

    PubMed Central

    Bian, J; Sun, Y

    1997-01-01

    p53, a tumor suppressor and a transcription factor, has been shown to transcriptionally activate the expression of a number of important genes involved in the regulation of cell growth, DNA damage, angiogenesis, and apoptosis. In a computer search for other potential p53 target genes, we identified a perfect p53 binding site in the promoter of the human type IV collagenase (also called 72-kDa gelatinase or matrix metalloproteinase 2 [MMP-2]) gene. This p53 binding site was found to specifically bind to p53 protein in a gel shift assay. Transcription assays with luciferase reporters driven by the promoter or enhancer of the type IV collagenase gene revealed that (i) activation of the promoter activity is p53 binding site dependent in p53-positive cells but not in p53-negative cells and (ii) wild-type p53, but not p53 mutants commonly found in human cancers, transactivates luciferase expression driven by the type IV collagenase promoter as well as by a p53 site-containing enhancer element in the promoter. Significantly, expression of the endogenous type IV collagenase is also under the control of p53. Treatment of U2-OS cells, a wild-type p53-containing osteogenic sarcoma line, with a common p53 inducer, etoposide, induced p53 DNA binding and transactivation activities in a time-dependent manner. Induction of type IV collagenase expression followed the p53 activation pattern. No induction of type IV collagenase expression can be detected under the same experimental conditions in p53-negative Saos-2 cells. All these in vitro and in vivo assays strongly suggest that the type IV collagenase gene is a p53 target gene and that its expression is subject to p53 regulation. Our finding links p53 to a member of the MMP genes, a family of genes implicated in trophoblast implantation, wound healing, angiogenesis, arthritis, and tumor cell invasion. p53 may regulate these processes by upregulating expression of type IV collagenase. PMID:9343394

  3. High mobility group box-1 promotes hepatocellular carcinoma progression through miR-21-mediated matrix metalloproteinase activity

    PubMed Central

    Chen, Man; Liu, Yao; Varley, Patrick; Chang, Ying; He, Xing-xing; Huang, Hai; Tang, Daolin; Lotze, Michael T.; Lin, Jusheng; Tsung, Allan

    2015-01-01

    Liver inflammation plays a critical role in hepatocellular carcinoma (HCC) etiology. Damage associated molecular patterns (DAMPs), such as high mobility group box-1 (HMGB1), and dysregulated microRNAs (miRNAs) involved in inflammatory disease states, such as miR-21, may participate in the link between inflammation and cancer. We sought to determine the role of HMGB1 signaling in HCC tumor progression. We first document the concordant expression increase of HMGB1 and miR-21 in HCC cell lines and primary HCC tumor samples and subsequently show that HMGB1 stimulation results in over-expression of miR-21. These changes were found to be dependent on the IL-6/Stat3 signaling axis. Invasion and migration of HCC cells in vitro was inhibited by both Stat3 and miR-21 antagonists, suggesting a role for this pathway in HCC tumor progression. We verified that HMGB1-induced expression of miR-21 in HCC provides a post-transcriptional repression of the matrix metalloproteinase (MMP) inhibitors RECK and TIMP3, which are known to impact HCC progression and metastases. Finally, we found that inhibition of miR-21 in murine HMGB1-overexpressing HCC xenografts led to reduced tumor MMP activity through released repression of the miR-21 targets RECK and TIMP3, which ultimately impeded tumor progression. The prototypical DAMP, HMGB1, is released during liver inflammation and provides a favorable environment for HCC growth. HMGB1 signaling increases miR-21 expression to mediate the enhanced activity of MMPs through RECK and TIMP3. These findings provide a novel mechanism for HMGB1-mediated HCC progression through the IL-6/Stat3-miR-21 axis. PMID:25720799

  4. Transdermal delivery of Diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model

    PubMed Central

    Parhi, Rabinarayan; Suresh, Padilam

    2015-01-01

    The present investigation focused on the development of Diltiazem HCl (DTH) matrix film and its characterization by in-vitro, ex-vivo and in-vivo methods. Films were prepared by solvent casting method by taking different ratios of hydroxypropyl methylcellulose K4M (HPMC K4M) and Eudragit RS100. Various parameters of the films were analyzed such as mechanical property using tensile tester, interaction study by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA), in-vitro drug release through cellulose acetate membrane, ex-vivo permeation study using abdominal skin of rat employing Franz diffusion cell, and in-vivo antihypertensive activity using rabbit model. The FTIR studies confirmed the absence of interaction between DTH and selected polymers. Thermal analysis showed the shifting of endothermic peak of DTH in film, indicating the dispersion of DTH in molecular form throughout the film. Incorporation of 1,8-cineole showed highest flux (89.7 μg/cm2/h) of DTH compared to other penetration enhancers such as capsaicin, dimethyl sulfoxide (DMSO), and N-methyl pyrrolidone (NMP). Photomicrographs of histology study on optimized formulation (DF9) illustrated disruption of stratum corneum (SC) supporting the ex-vivo results. The in-vivo antihypertensive activity results demonstrated that formulation DF9 was effective in reducing arterial blood pressure in normotensive rabbits. SEM analysis of films kept for stability study (40 ± 2 °C/75% ± 5%RH for 3 months) revealed the formation of drug crystals which may be due to higher temperature. The findings of the study provide a better alternative dosage form of DTH for the effective treatment of hypertension with enhanced patient compliance. PMID:27222758

  5. Transdermal delivery of Diltiazem HCl from matrix film: Effect of penetration enhancers and study of antihypertensive activity in rabbit model.

    PubMed

    Parhi, Rabinarayan; Suresh, Padilam

    2016-05-01

    The present investigation focused on the development of Diltiazem HCl (DTH) matrix film and its characterization by in-vitro, ex-vivo and in-vivo methods. Films were prepared by solvent casting method by taking different ratios of hydroxypropyl methylcellulose K4M (HPMC K4M) and Eudragit RS100. Various parameters of the films were analyzed such as mechanical property using tensile tester, interaction study by Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA), in-vitro drug release through cellulose acetate membrane, ex-vivo permeation study using abdominal skin of rat employing Franz diffusion cell, and in-vivo antihypertensive activity using rabbit model. The FTIR studies confirmed the absence of interaction between DTH and selected polymers. Thermal analysis showed the shifting of endothermic peak of DTH in film, indicating the dispersion of DTH in molecular form throughout the film. Incorporation of 1,8-cineole showed highest flux (89.7 μg/cm(2)/h) of DTH compared to other penetration enhancers such as capsaicin, dimethyl sulfoxide (DMSO), and N-methyl pyrrolidone (NMP). Photomicrographs of histology study on optimized formulation (DF9) illustrated disruption of stratum corneum (SC) supporting the ex-vivo results. The in-vivo antihypertensive activity results demonstrated that formulation DF9 was effective in reducing arterial blood pressure in normotensive rabbits. SEM analysis of films kept for stability study (40 ± 2 °C/75% ± 5%RH for 3 months) revealed the formation of drug crystals which may be due to higher temperature. The findings of the study provide a better alternative dosage form of DTH for the effective treatment of hypertension with enhanced patient compliance. PMID:27222758

  6. Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager.

    PubMed

    El-Mohri, Y; Jee, K W; Antonuk, L E; Maolinbay, M; Zhao, Q

    2001-12-01

    After years of aggressive development, active matrix flat-panel imagers (AMFPIs) have recently become commercially available for radiotherapy imaging. In this paper we report on a comprehensive evaluation of the signal and noise performance of a large-area prototype AMFPI specifically developed for this application. The imager is based on an array of 512 x 512 pixels incorporating amorphous silicon photodiodes and thin-film transistors offering a 26 x 26 cm2 active area at a pixel pitch of 508 microm. This indirect detection array was coupled to various x-ray converters consisting of a commercial phosphor screen (Lanex Fast B, Lanex Regular, or Lanex Fine) and a 1 mm thick copper plate. Performance of the imager in terms of measured sensitivity, modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) is reported at beam energies of 6 and 15 MV and at doses of 1 and 2 monitor units (MU). In addition, calculations of system performance (NPS, DQE) based on cascaded-system formalism were reported and compared to empirical results. In these calculations, the Swank factor and spatial energy distributions of secondary electrons within the converter were modeled by means of EGS4 Monte Carlo simulations. Measured MTFs of the system show a weak dependence on screen type (i.e., thickness), which is partially due to the spreading of secondary radiation. Measured DQE was found to be independent of dose for the Fast B screen, implying that the imager is input-quantum-limited at 1 MU, even at an extended source-to-detector distance of 200 cm. The maximum DQE obtained is around 1%--a limit imposed by the low detection efficiency of the converter. For thinner phosphor screens, the DQE is lower due to their lower detection efficiencies. Finally, for the Fast B screen, good agreement between calculated and measured DQE was observed. PMID:11797959

  7. Pesticide-Exposure Matrix

    Cancer.gov

    The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.

  8. Diesel Exhaust Particles Activate the Matrix-Metalloproteinase-1 Gene in Human Bronchial Epithelia in a β-Arrestin–Dependent Manner via Activation of RAS

    PubMed Central

    Li, Jinju; Ghio, Andrew J.; Cho, Seung-Hyun; Brinckerhoff, Constance E.; Simon, Sidney A.; Liedtke, Wolfgang

    2009-01-01

    Background Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. Objective We elucidated the molecular mechanisms of DEPs’ up-regulation of MMP-1. Methods/Results Using permanent and primary human bronchial epithelial (HBE) cells at air–liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by β-arrestins. Short interfering RNA mediated β-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the –1607GG polymorphism, present in 60–80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. Conclusion Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human –1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of β-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2. PMID:19337515

  9. Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown.

    PubMed

    Scaini, Giselli; Morais, Meline O S; Galant, Leticia S; Vuolo, Francieli; Dall'Igna, Dhébora M; Pasquali, Matheus A B; Ramos, Vitor M; Gelain, Daniel P; Moreira, Jose Claudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Soriano, Francisco G; Dal-Pizzol, Felipe; Streck, Emilio L

    2014-10-01

    Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by a severe deficiency in the activity of the branched-chain α-keto acid dehydrogenase complex, leading to accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine. Infections have a significant role in precipitating acute metabolic decompensation in patients with MSUD; however, the mechanisms underlying the neurotoxicity in this disorder are poorly understood. In this study, we subjected rats to the coadministration of lipopolysaccharide (LPS), which is a major component of gram-negative bacteria cell walls, and high concentrations of BCAA (H-BCAA) to determine their effects on the permeability of the blood-brain barrier (BBB) and on the levels of matrix metalloproteinases (MMP-2 and MMP-9). Our results demonstrated that the coadministration of H-BCAA and LPS causes breakdown of the BBB and increases the levels of MMP-2 and MMP-9 in the hippocampus of these rats. On the other hand, examination of the cerebral cortex of the 10- and 30-day-old rats revealed a significant difference in Evan's Blue content after coadministration of H-BCAA and LPS, as MMP-9 levels only increased in the cerebral cortex of the 10-day-old rats. In conclusion, these results suggest that the inflammatory process associated with high levels of BCAA causes BBB breakdown. Thus, we suggest that BBB breakdown is relevant to the perpetuation of brain inflammation and may be related to the brain dysfunction observed in MSUD patients. PMID:24390570

  10. The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

    SciTech Connect

    Zhuo, Ye

    2011-01-01

    In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this

  11. Activated Notch1 signaling cooperates with papillomavirus oncogenes in transformation and generates resistance to apoptosis on matrix withdrawal through PKB/Akt.

    PubMed

    Rangarajan, A; Syal, R; Selvarajah, S; Chakrabarti, O; Sarin, A; Krishna, S

    2001-07-20

    Invasive cervical tumors, a major subset of human epithelial neoplasms, are characterized by the consistent presence of papillomavirus oncogenes 16 or 18 E6 and E7 products. Cervical tumors also consistently exhibit cytosolic and nuclear forms of Notch1, suggesting the possible persistent activation of the Notch pathway. Here we show that activated Notch1 synergizes with papillomavirus oncogenes in transformation of immortalized epithelial cells and leads to the generation of resistance to anoikis, an apoptotic response induced on matrix withdrawal. This resistance to anoikis by activated Notch1 is mediated through the activation of PKB/Akt, a key effector of activated Ras in transformation. We suggest that activated Notch signaling may serve to substitute for the lack of activated Ras mutations in the majority of human cervical neoplasms. PMID:11448155

  12. 2-Photon Characterization of Optical Proteolytic Beacons for Imaging Changes in Matrix-Metalloprotease Activity in a Mouse Model of Aneurysm

    PubMed Central

    Haskett, Darren G.; Maestas, David; Howerton, Stephen J.; Smith, Tyler; Ardila, D. Catalina; Doetschman, Tom; Utzinger, Urs; McGrath, Dominic; McIntyre, J. Oliver; Vande Geest, Jonathan P.

    2016-01-01

    Abdominal aortic aneurysm is a multifactorial disease that is a leading cause of death in developed countries. Matrix-metalloproteases (MMPs) are part of the disease process, however, assessing their role in disease initiation and progression has been difficult and animal models have become essential. Combining Förster resonance energy transfer (FRET) proteolytic beacons activated in the presence of MMPs with 2-photon microscopy allows for a novel method of evaluating MMP activity within the extracellular matrix (ECM). Single and 2-photon spectra for proteolytic beacons were determined in vitro. Ex vivo experiments using the apolipoprotein E knockout angiotensin II-infused mouse model of aneurysm imaged ECM architecture simultaneously with the MMP-activated FRET beacons. 2-photon spectra of the two-color proteolytic beacons showed peaks for the individual fluorophores that enable imaging of MMP activity through proteolytic cleavage. Ex vivo imaging of the beacons within the ECM revealed both microstructure and MMP activity. 2-photon imaging of the beacons in aneurysmal tissue showed an increase in proteolytic cleavage within the ECM (p < 0.001), thus indicating an increase in MMP activity. Our data suggest that FRET-based proteolytic beacons show promise in assessing MMP activity within the ECM and will therefore allow future studies to identify the heterogeneous distribution of simultaneous ECM remodeling and protease activity in aneurysmal disease. PMID:26903264

  13. 2-Photon Characterization of Optical Proteolytic Beacons for Imaging Changes in Matrix-Metalloprotease Activity in a Mouse Model of Aneurysm.

    PubMed

    Haskett, Darren G; Maestas, David; Howerton, Stephen J; Smith, Tyler; Ardila, D Catalina; Doetschman, Tom; Utzinger, Urs; McGrath, Dominic; McIntyre, J Oliver; Vande Geest, Jonathan P

    2016-04-01

    Abdominal aortic aneurysm is a multifactorial disease that is a leading cause of death in developed countries. Matrix-metalloproteases (MMPs) are part of the disease process, however, assessing their role in disease initiation and progression has been difficult and animal models have become essential. Combining Förster resonance energy transfer (FRET) proteolytic beacons activated in the presence of MMPs with 2-photon microscopy allows for a novel method of evaluating MMP activity within the extracellular matrix (ECM). Single and 2-photon spectra for proteolytic beacons were determined in vitro. Ex vivo experiments using the apolipoprotein E knockout angiotensin II-infused mouse model of aneurysm imaged ECM architecture simultaneously with the MMP-activated FRET beacons. 2-photon spectra of the two-color proteolytic beacons showed peaks for the individual fluorophores that enable imaging of MMP activity through proteolytic cleavage. Ex vivo imaging of the beacons within the ECM revealed both microstructure and MMP activity. 2-photon imaging of the beacons in aneurysmal tissue showed an increase in proteolytic cleavage within the ECM (p<0.001), thus indicating an increase in MMP activity. Our data suggest that FRET-based proteolytic beacons show promise in assessing MMP activity within the ECM and will therefore allow future studies to identify the heterogeneous distribution of simultaneous ECM remodeling and protease activity in aneurysmal disease. PMID:26903264

  14. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  15. Capillary-induced Homogenization of Matrix in Paper: A Powerful Approach for the Quantification of Active Pharmaceutical Ingredients Using Mass Spectrometry Imaging

    PubMed Central

    de Menezes, Maico; de Oliveira, Diogo Noin; Catharino, Rodrigo Ramos

    2016-01-01

    Herein we present a novel approach for the quantification of active pharmaceutical ingredients (APIs) using mass spectrometry imaging. This strategy uses a filter paper previously “eluted” with a MALDI matrix solution as a support for analyte application. Samples are submitted to mass spectrometry imaging (MSI) and quantification through characteristic fingerprints is ultimately performed. Results for the content of rosuvastatin from a known formulation are comparable to those obtained with a validated HPLC method. PMID:27439589

  16. Capillary-induced Homogenization of Matrix in Paper: A Powerful Approach for the Quantification of Active Pharmaceutical Ingredients Using Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    de Menezes, Maico; de Oliveira, Diogo Noin; Catharino, Rodrigo Ramos

    2016-07-01

    Herein we present a novel approach for the quantification of active pharmaceutical ingredients (APIs) using mass spectrometry imaging. This strategy uses a filter paper previously “eluted” with a MALDI matrix solution as a support for analyte application. Samples are submitted to mass spectrometry imaging (MSI) and quantification through characteristic fingerprints is ultimately performed. Results for the content of rosuvastatin from a known formulation are comparable to those obtained with a validated HPLC method.

  17. Capillary-induced Homogenization of Matrix in Paper: A Powerful Approach for the Quantification of Active Pharmaceutical Ingredients Using Mass Spectrometry Imaging.

    PubMed

    de Menezes, Maico; de Oliveira, Diogo Noin; Catharino, Rodrigo Ramos

    2016-01-01

    Herein we present a novel approach for the quantification of active pharmaceutical ingredients (APIs) using mass spectrometry imaging. This strategy uses a filter paper previously "eluted" with a MALDI matrix solution as a support for analyte application. Samples are submitted to mass spectrometry imaging (MSI) and quantification through characteristic fingerprints is ultimately performed. Results for the content of rosuvastatin from a known formulation are comparable to those obtained with a validated HPLC method. PMID:27439589

  18. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  19. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    SciTech Connect

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi

    2010-06-11

    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21{sup WAF1} and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin {alpha}{sub v}{beta}{sub 3} were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  20. Metal-organic framework-derived bamboo-like nitrogen-doped graphene tubes as an active matrix for hybrid oxygen-reduction electrocatalysts.

    PubMed

    Li, Qing; Pan, Hengyu; Higgins, Drew; Cao, Ruiguo; Zhang, Guoqi; Lv, Haifeng; Wu, Kangbing; Cho, Jaephil; Wu, Gang

    2015-03-25

    In this work, large size (i.e., diameter > 100 nm) graphene tubes with nitrogen-doping are prepared through a high-temperature graphitization process of dicyandiamide (DCDA) and Iron(II) acetate templated by a novel metal-organic framework (MIL-100(Fe)). The nitrogen-doped graphene tube (N-GT)-rich iron-nitrogen-carbon (Fe-N-C) catalysts exhibit inherently high activity towards the oxygen reduction reaction (ORR) in more challenging acidic media. Furthermore, aiming to improve the activity and stability of conventional Pt catalysts, the ORR active N-GT is used as a matrix to disperse Pt nanoparticles in order to build a unique hybrid Pt cathode catalyst. This is the first demonstration of the integration of a highly active Fe-N-C catalyst with Pt nanoparticles. The synthesized 20% Pt/N-GT composite catalysts demonstrate significantly enhanced ORR activity and H(2) -air fuel cell performance relative to those of 20% Pt/C, which is mainly attributed to the intrinsically active N-GT matrix along with possible synergistic effects between the non-precious metal active sites and the Pt nanoparticles. Unlike traditional Pt/C, the hybrid catalysts exhibit excellent stability during the accelerated durability testing, likely due to the unique highly graphitized graphene tube morphologies, capable of providing strong interaction with Pt nanoparticles and then preventing their agglomeration. PMID:25400088

  1. Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix.

    PubMed

    Briggs, David C; Birchenough, Holly L; Ali, Tariq; Rugg, Marilyn S; Waltho, Jon P; Ievoli, Elena; Jowitt, Thomas A; Enghild, Jan J; Richter, Ralf P; Salustri, Antonietta; Milner, Caroline M; Day, Anthony J

    2015-11-27

    The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix. PMID:26468290

  2. Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix*

    PubMed Central

    Briggs, David C.; Birchenough, Holly L.; Ali, Tariq; Rugg, Marilyn S.; Waltho, Jon P.; Ievoli, Elena; Jowitt, Thomas A.; Enghild, Jan J.; Richter, Ralf P.; Salustri, Antonietta; Milner, Caroline M.; Day, Anthony J.

    2015-01-01

    The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix. PMID:26468290

  3. Matrine inhibits IL-1β-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-κB in human chondrocytes in vitro

    PubMed Central

    Lu, Shijin; Xiao, Xungang; Cheng, Minghua

    2015-01-01

    Interleukin (IL)-1β plays an important role in promoting osteoarthritis (OA) lesions by inducing chondrocytes to secrete matrix metalloproteinases (MMPs), which degrade the extracellular matrix and facilitate chondrocyte apoptosis. Matrine was shown to exert anti-inflammatory effects. However, the role of matrine in OA is still unclear. Therefore, in this study, we investigated the effects of matrine on the expression of MMPs in IL-1β-treated human chondrocytes and the underlying mechanism. The cell viability of chondrocytes was detected by MTT assay. The cell apoptosis of chondrocytes was measured by flow cytometric analysis. The protein production of MMPs was determined by ELISA. The protein expression of phosphorylation of mitogen-activated protein kinases (MAPKs) and the inhibitor of kappaB alpha (IκBα) was determined by Western blot. Matrine significantly inhibited the IL-1β-induced apoptosis in chondrocytes. It also significantly inhibited the IL-1β-induced release of MMP-3 and MMP-13, and increased the production of TIMP-1. Furthermore, matrine inhibits the phosphorylation of p-38, extracellular regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and IκBα degradation induced by IL-1β in chondrocytes. Taken together, our results show that matrine inhibits IL-1β-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-κB in human chondrocytes in vitro. Therefore,-matrine may be beneficial in the treatment of OA. PMID:26191166

  4. Activity concentration measurements of 137Cs, 90Sr and 40K in a wild food matrix reference material (Wild Berries) CCRI(II)-S8

    NASA Astrophysics Data System (ADS)

    Wätjen, U.; Altzitzogloa, T.; Ceccatelli, A.; Dikmen, H.; Ferreux, L.; Frechou, C.; García, L.; Gündogdu, G.; Kis-Benedek, G.; La Rosa, J.; Luca, A.; Moreno, Y.; Oropesa, P.; Pierre, S.; Schmiedel, M.; Spasova, Y.; Szücs, L.; Vasile, M.; Wershofen, H.; Yücel, Ü.

    2014-01-01

    In 2009, the CCRI approved a supplementary comparison to be organized by the IRMM as pilot laboratory for the activity concentrations of 137Cs, 90Sr and 40K in a matrix material of dried bilberries. The organization of this comparison and the material and measurement methods used are described. The supplementary comparison reference values (SCRV) for each of the three radionuclides are given together with the degrees of equivalence of each participating laboratory with the SCRV for the specific radionuclide. The results of this supplementary comparison allow the participating NMIs/designated institutes to declare calibration and measurement capabilities (CMCs) for the given radionuclides in a similar type of food matrix, an important aspect given the relatively few supplementary comparisons for activity in matrix materials organized so far. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Non-invasive dual fluorescence in vivo imaging for detection of macrophage infiltration and matrix metalloproteinase (MMP) activity in inflammatory arthritic joints

    PubMed Central

    Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Yoon, Tae Won; Hasty, Karen A.; Stuart, John M.; Yi, Ae-Kyung

    2016-01-01

    Detection and intervention at an early stage is a critical factor to impede arthritis progress. Here we present a non-invasive method to detect inflammatory changes in joints of arthritic mice. Inflammation was monitored by dual fluorescence optical imaging for near-infrared fluorescent (750F) matrix-metalloproteinase activatable agent and allophycocyanin-conjugated anti-mouse CD11b. Increased intensity of allophycocyanin (indication of macrophage accumulation) and 750F (indication of matrix-metalloproteinase activity) showed a biological relationship with the arthritis severity score and the histopathology score of arthritic joints. Our results demonstrate that this method can be used to detect early stages of arthritis with minimum intervention in small animal models. PMID:27231625

  6. Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro.

    PubMed

    Zheng, Shizhong; Chen, Anping

    2004-11-15

    During liver fibrogenesis, quiescent HSC (hepatic stellate cells) become active, a transformation that is associated with enhanced cell proliferation and overproduction of ECM (extracellular matrix). Inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSC for the prevention and treatment of liver fibrosis. Levels of PPARgamma (peroxisome proliferator-activated receptor gamma) are dramatically diminished in parallel with HSC activation. Stimulation of PPARgamma by its agonists inhibits HSC activation in vitro and in vivo. We demonstrated recently that curcumin, the yellow pigment in curry, inhibited HSC activation in vitro, reducing cell proliferation, inducing apoptosis and inhibiting ECM gene expression. Further studies indicated that curcumin induced the gene expression of PPARgamma and stimulated its activity in activated HSC in vitro, which was required for curcumin to inhibit HSC proliferation. The aims of the present study were to evaluate the roles of PPARgamma activation in the induction of apoptosis and suppression of ECM gene expression by curcumin in activated HSC, and to elucidate the underlying mechanisms. Our results demonstrated that blocking PPARgamma activation abrogated the effects of curcumin on the induction of apoptosis and inhibition of the expression of ECM genes in activated HSC in vitro. Further experiments demonstrated that curcumin suppressed the gene expression of TGF-beta (transforming growth factor-beta) receptors and interrupted the TGF-beta signalling pathway in activated HSC, which was mediated by PPARgamma activation. Taken together, our results demonstrate that curcumin stimulated PPARgamma activity in activated HSC in vitro, which was required for curcumin to reduce cell proliferation, induce apoptosis and suppress ECM gene expression. These results provide novel insight into the mechanisms responsible for the inhibition of HSC activation by curcumin. The characteristics

  7. Methane activation by laser-ablated Th atoms: matrix infrared spectra and theoretical investigations of CH₃-Th-H and CH₂═ThH₂.

    PubMed

    Cho, Han-Gook; Andrews, Lester

    2015-03-19

    Methane activation by laser-ablated Th atoms on the triplet potential energy surface produces the methylthorium hydride, CH3-Th-H, that converts smoothly by α-H transfer to CH2-ThH2, which relaxes in the matrix to the more stable singlet methylidene, CH2═ThH2. This first actinide methylidene was characterized from argon matrix infrared spectra and B3LYP calculations in our laboratory. We now report neon matrix investigations, which include the methylthorium hydride and the Th-D stretching modes of CD2═ThD2 that are blue-shifted in neon from under the intense CD4 precursor absorption, and reactions with CH2D2 that give rise to the CHD═ThHD modifications and their α-H and α-D transfer counterparts CD2═ThH2 and CH2═ThD2. New intrinsic reaction coordinate calculations show that this reaction proceeds smoothly on the triplet potential energy surface. PMID:25054638

  8. Modeling the Effect of Active Fiber Cooling on the Microstructure of Fiber-Reinforced Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Nguyen, Nguyen Q.; Peterson, Sean D.; Gupta, Nikhil; Rohatgi, Pradeep K.

    2009-08-01

    A modified pressure infiltration process was recently developed to synthesize carbon-fiber-reinforced aluminum matrix composites. In the modified process, the ends of carbon fibers are extended out of the crucible to induce selective cooling. The process is found to be effective in improving the quality of composites. The present work is focused on determining the effect of the induced conductive heat transfer on the composite system through numerical methods. Due to the axisymmetry of the system, a two-dimensional (2-D) model is studied that can be expanded into three dimensions. The variables in this transient analysis include the fiber radius, fiber length, and melt superheat temperature. The results show that the composite system can be tailored to have a temperature on the fiber surface that is lower than the melt, to promote nucleation on the fiber surface. It is also observed that there is a point of inflection in the temperature profile along the particle/melt interface at which there is no temperature gradient in the radial direction. The information about the inflection point can be used to control the diffusion of solute atoms in the system. The result can be used in determining the optimum fiber volume fraction in metal matrix composite (MMC) materials to obtain the desired microstructure.

  9. Application of matrix calculation 1: Design and adjustment of a tandem mass spectrometer for Collision-Activated Dissociation (CAD)

    NASA Astrophysics Data System (ADS)

    1982-02-01

    A matrix representation of the ion optics of the analyzing stage has been used in a computer model of a tandem mass spectrometer with simultaneous detection for CAD. The matrix algorithm of this model is discussed here as an elegant way of describing the ion optics in a first-order approximation. The accuracy of the calculations is illustrated by comparing calculated and measured adjustments of the instrument under normal experiment conditions. The ion-optical possibilities with respect to transmission, mass resolution influence of several ion optical parameters on the shape and position of the mass focal plane is discussed. The experimental values of mass range, mass resolution and ion transmission agree very well with the calculations. Moreover, the computer model appears to be a useful tool for giving clear insight into the operation of the rather complex ion optics of the instrument. The calculations have been further developed towards higher accuracy, making possible automatic focusing of the mass focal plane onto the detector.

  10. Thermal activated energy transfer between luminescent states of Mn2+-doped ZnTe nanoparticles embedded in a glass matrix.

    PubMed

    Dantas, Noelio O; Silva, Alessandra S; Freitas Neto, Ernesto S; Lourenço, Sidney A

    2012-03-14

    Zn(1-x)Mn(x)Te nanocrystals (NCs), at various concentrations x, were successfully grown in a host glass matrix by the fusion method after appropriate annealing. Growth of these NCs was evidenced by optical absorption (OA), X-Ray Diffraction (XRD), magnetic force microscopy (MFM) and photoluminescence (PL) measurements. From the room temperature OA spectra, it was possible to observe the formation of two well defined, different sized groups of NCs, one attributed to quantum dots (QDs) and the other to bulk-like nanocrystals (NCs). XRD results have confirmed that the cubic zincblend structure of nanoparticles is not altered by the substitutional incorporation of Mn(2+) ions into the ZnTe NCs. MFM images supported the OA spectra results and thus provided additional confirmation of the formation of Zn(1-x)Mn(x)Te magnetic nanoparticles in the host glass matrix. The two groups of NCs were also observed in the PL spectra as well as deep defects attributed to the presence of oxygen centers in the electronic structure of the Zn(1-x)Mn(x)Te NCs. Strong agreement between the fitting model, based on rate equation, and experimental PL intensity data at different temperatures demonstrates that this model adequately describes the energy transfer processes between the NCs and the defects of the Zn(1-x)Mn(x)Te system at different temperatures. PMID:22307452

  11. Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba.

    PubMed

    Pabel, Christian T; Vater, Joachim; Wilde, Christopher; Franke, Peter; Hofemeister, Jürgen; Adler, Barbara; Bringmann, Gerhard; Hacker, Jörg; Hentschel, Ute

    2003-01-01

    The aim of this study was to isolate bacteria that are resistant to the strong antimicrobial metabolites characteristic of Aplysina aerophoba. For this purpose, bacterial isolation was performed on agar plates to which sponge tissue extract had been added. Following screening for antifungal and antimicrobial activities, 5 strains were chosen for more detailed analyses. 16S ribosomal DNA sequencing revealed that all isolates belonged to the genus Bacillus, specifically B. subtilis and B. pumilus. Using a combination of matrix-assisted laser desorption/ ionization mass spectrometry typing of whole cells and antimicrobial bioassays against selected reference strains, the bioactive metabolites were identified as lipopeptides. PMID:14730425

  12. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment

    PubMed Central

    Jeong, Su-Yeong; Lee, Ji-Hyun; Shin, Yoojin; Chung, Seok; Kuh, Hyo-Jeong

    2016-01-01

    Multicellular 3D culture and interaction with stromal components are considered essential elements in establishing a ‘more clinically relevant’ tumor model. Matrix-embedded 3D cultures using a microfluidic chip platform can recapitulate the microscale interaction within tumor microenvironments. As a major component of tumor microenvironment, cancer-associated fibroblasts (CAFs) play a role in cancer progression and drug resistance. Here, we present a microfluidic chip-based tumor tissue culture model that integrates 3D tumor spheroids (TSs) with CAF in proximity within a hydrogel scaffold. HT-29 human colorectal carcinoma cells grew into 3D TSs and the growth was stimulated when co-cultured with fibroblasts as shown by 1.5-folds increase of % changes in diameter over 5 days. TS cultured for 6 days showed a reduced expression of Ki-67 along with increased expression of fibronectin when co-cultured with fibroblasts compared to mono-cultured TSs. Fibroblasts were activated under co-culture conditions, as demonstrated by increases in α-SMA expression and migratory activity. When exposed to paclitaxel, a survival advantage was observed in TSs co-cultured with activated fibroblasts. Overall, we demonstrated the reciprocal interaction between TSs and fibroblasts in our 7-channel microfluidic chip. The co-culture of 3D TS-CAF in a collagen matrix-incorporated microfluidic chip may be useful to study the tumor microenvironment and for evaluation of drug screening and evaluation. PMID:27391808

  13. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    PubMed Central

    Cheng, Xiaofei; Ni, Bin; Zhang, Feng; Hu, Ying

    2016-01-01

    Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs) and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM). Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM) were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS) production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9), matrix metalloproteinase 3 (MMP-3), and tissue inhibitor of metalloproteinase 1 (TIMP-1), was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  14. Cumulative influence of elastin peptides and plasminogen on matrix metalloproteinase activation and type I collagen invasion by HT-1080 fibrosarcoma cells.

    PubMed

    Huet, Eric; Brassart, Bertrand; Cauchard, Jean-Hubert; Debelle, Laurent; Birembaut, Philippe; Wallach, Jean; Emonard, Herve; Polette, Myriam; Hornebeck, William

    2002-01-01

    HT-1080 fibrosarcoma cells express at their plasma membrane the elastin-binding protein (EBP). Occupancy of EBP by elastin fragments, tropoelastin or XGVAPG peptides was found to trigger procollagenase-1 (proMMP-1) overproduction by HT-1080 cells at the protein and enzyme levels. RT-PCR analysis indicated that elastin peptides did not modify the MMP-1 mRNA steady state levels, suggesting the involvement of a post-transcriptional mechanism. We previously reported that binding of elastin peptides to EBP induced other matrix metalloproteinases (MMP-2 and MT1-MMP) expression. Since those peptides were here found to also accelerate the secretion of urokinase from HT-1080 cells, culture medium was supplemented with plasminogen together with elastin peptides at aims to induce or potentiate MMPs activation cascades. In such conditions, plasmin activity was generated and exacerbate proMMP-1 and proMMP-2 activation. As a consequence, elastin peptides and plasminogen-treated HT-1080 cells displayed a significant type I collagen matrix invasive capacity. PMID:11964074

  15. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment.

    PubMed

    Jeong, Su-Yeong; Lee, Ji-Hyun; Shin, Yoojin; Chung, Seok; Kuh, Hyo-Jeong

    2016-01-01

    Multicellular 3D culture and interaction with stromal components are considered essential elements in establishing a 'more clinically relevant' tumor model. Matrix-embedded 3D cultures using a microfluidic chip platform can recapitulate the microscale interaction within tumor microenvironments. As a major component of tumor microenvironment, cancer-associated fibroblasts (CAFs) play a role in cancer progression and drug resistance. Here, we present a microfluidic chip-based tumor tissue culture model that integrates 3D tumor spheroids (TSs) with CAF in proximity within a hydrogel scaffold. HT-29 human colorectal carcinoma cells grew into 3D TSs and the growth was stimulated when co-cultured with fibroblasts as shown by 1.5-folds increase of % changes in diameter over 5 days. TS cultured for 6 days showed a reduced expression of Ki-67 along with increased expression of fibronectin when co-cultured with fibroblasts compared to mono-cultured TSs. Fibroblasts were activated under co-culture conditions, as demonstrated by increases in α-SMA expression and migratory activity. When exposed to paclitaxel, a survival advantage was observed in TSs co-cultured with activated fibroblasts. Overall, we demonstrated the reciprocal interaction between TSs and fibroblasts in our 7-channel microfluidic chip. The co-culture of 3D TS-CAF in a collagen matrix-incorporated microfluidic chip may be useful to study the tumor microenvironment and for evaluation of drug screening and evaluation. PMID:27391808

  16. Anti-elastase, anti-tyrosinase and matrix metalloproteinase-1 inhibitory activity of earthworm extracts as potential new anti-aging agent

    PubMed Central

    Azmi, Nurhazirah; Hashim, Puziah; Hashim, Dzulkifly M; Halimoon, Normala; Majid, Nik Muhamad Nik

    2014-01-01

    Objective To examine whether earthworms of Eisenia fetida, Lumbricus rubellus and Eudrilus eugeniae extracts have elastase, tyrosinase and matrix metalloproteinase-1 (MMP-1) inhibitory activity. Methods The earthworms extract was screened for elastase, tyrosinase and MMP-1 inhibitory activity and compared with the positive controls. It was also evaluated for whitening and anti-wrinkle capacity. Results The extract showed significantly (P<0.05) good elastase and tyrosinase inhibition and excellent MMP-1 inhibition compared to N-Isobutyl-N-(4-methoxyphenylsulfonyl)-glycylhydroxamic acid. Conclusions Earthworms extract showed effective inhibition of tyrosinase, elastase and MMP-1 activities. Therefore, this experiment further rationalizes the traditional use of this worm extracts which may be useful as an anti-wrinkle agent. PMID:25183109

  17. Matrix Metalloproteinase-3 (MMP-3) Is an Endogenous Activator of the MMP-9 Secreted by Placental Leukocytes: Implication in Human Labor

    PubMed Central

    Flores-Pliego, Arturo; Espejel-Nuñez, Aurora; Castillo-Castrejon, Marisol; Meraz-Cruz, Noemi; Beltran-Montoya, Jorge; Zaga-Clavellina, Veronica; Nava-Salazar, Sonia; Sanchez-Martinez, Maribel; Vadillo-Ortega, Felipe; Estrada-Gutierrez, Guadalupe

    2015-01-01

    Background The activity of matrix degrading enzymes plays a leading role in the rupture of the fetal membranes under normal and pathological human labor, and matrix metalloproteinase-9 (MMP-9) it is considered a biomarker of this event. To gain further insight into local MMP-9 origin and activation, in this study we analyzed the contribution of human placental leukocytes to MMP-9 secretion and explored the local mechanisms of the pro-enzyme activation. Methods Placental blood leukocytes were obtained from women at term gestation without labor and maintained in culture up to 72 h. MMP-9 activity in the culture supernatants was determined by zymography and using a specific substrate. The presence of a potential pro-MMP-9 activator in the culture supernatants was monitored using a recombinant biotin-labeled human pro-MMP-9. To characterize the endogenous pro-MMP-9 activator, MMP-1, -3, -7 and -9 were measured by multiplex assay in the supernatants, and an inhibition assay of MMP-9 activation was performed using an anti-human MMP-3 and a specific MMP-3 inhibitor. Finally, production of MMP-9 and MMP-3 in placental leukocytes obtained from term pregnancies with and without labor was assessed by immunofluorescence. Results Placental leukocytes spontaneously secreted pro-MMP-9 after 24 h of culture, increasing significantly at 48 h (P≤0.05), when the active form of MMP-9 was detected. Culture supernatants activated the recombinant pro-MMP-9 showing that placental leukocytes secrete the activator. A significant increase in MMP-3 secretion by placental leukocytes was observed since 48 h in culture (P≤0.05) and up to 72 h (P≤0.001), when concentration reached its maximum value. Specific activity of MMP-9 decreased significantly (P≤0.005) when an anti-MMP-3 antibody or a specific MMP-3 inhibitor were added to the culture media. Placental leukocytes from term labor produced more MMP-9 and MMP-3 compared to term non-labor cells. Conclusions In this work we confirm that

  18. Stromal Cell-Derived Factor-1α Activation of Tissue Engineered Endothelial Progenitor Cell Matrix Enhances Ventricular Function after Myocardial Infarction by Inducing Neovasculogenesis

    PubMed Central

    Frederick, John R.; Fitzpatrick, J. Raymond; McCormick, Ryan C.; Harris, David A.; Kim, Ah-Young; Muenzer, Jeffrey R.; Marotta, Nicole; Smith, Maximilian J.; Cohen, Jeffrey E.; Hiesinger, William; Atluri, Pavan; Woo, Y. Joseph

    2014-01-01

    Background Myocardial ischemia causes cardiomyocyte death, adverse ventricular remodeling, and ventricular dysfunction. Endothelial progenitor cells (EPC) have been shown to ameliorate this process, particularly when activated with stromal cell-derived factor-1α (SDF). We hypothesized that implantation of a tissue engineered extracellular matrix scaffold seeded with EPCs primed with SDF could induce neovasculogenesis, prevent adverse remodeling, and preserve ventricular function after myocardial infarction (MI). Methods and Results Lewis rats (n=82) underwent left anterior descending artery ligation to induce MI. EPCs were cultured on a vitronectin/collagen scaffold, and primed with SDF to generate the activated EPC matrix (EPCM). EPCM was sutured to the anterolateral left ventricular (LV) wall including the region of ischemia.. At four weeks, when compared to controls, borderzone myocardial tissue demonstrated increased levels of VEGF in the EPCM group. Vessel density as assessed by immunohistochemical microscopy was significantly increased in the EPCM group (4.1 vs 6.2 vessels/high-powered field, p<0.001), and microvascular perfusion measured by lectin microangiography was enhanced four-fold (0.7 vs. 2.7% vessel volume/section volume, p=0.04). Ventricular geometry and scar fraction assessed by analysis of sectioned hearts exhibited significantly preserved LV internal diameter (9.7mm vs. 8.6mm, p=0.005) and decreased infarct scar expressed as percent of total section area (16% vs. 7%, p=0.002) when compared to all other groups. In addition, EPCM animals showed a significant preservation of function as measured by echocardiography, pressure volume-conductance, and Doppler flow. Conclusions Extracellular matrix seeded with EPCs primed with SDF induces borderzone neovasculogenesis, attenuates adverse ventricular remodeling, and preserves ventricular function after MI. PMID:20837901

  19. In-situ growth of antimony sulfide in carbon nanoparticle matrix: Enhanced electrocatalytic activity as counter electrode in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Panpan; Zhang, Ming; Ai, Changzhi; Wu, Zhixin; Lu, Shuang; Zhang, Xintong; Huang, Niu; Sun, Yihua; Sun, Xiaohua

    2016-07-01

    Considering the undesirable electrocatalytic activity toward I-/I3- redox system of prinstine antimony sulfide (Sb2S3) fabricated with the existing conditions, a mesoporous carbon nanoparticle film (CNP) is introduced here for in-situ growth of Sb2S3 to construct a Sb2S3@CNP hybrid catalyst. Based on a Sb-thiourea precursor solution, in-situ growth of Sb2S3 can be achieved via solution deposition (denoted as Sb2S3@CNP-S) as well as atmospheric pressure thermal evaporation (denoted as Sb2S3@CNP-T) in CNP matrix. Structural characterizations indicate that Sb2S3 particles have well dispersed in the pores of CNP matrix. Because of the introduction of porous and conductive CNP matrix to support Sb2S3, the hybrid catalyst exhibits lower charge transfer resistance at the catalyst/electrolyte interface and higher electrocatalytic activity. When used as counter electrode (CE) for dye-sensitized solar cells (DSSCs), devices using Sb2S3@CNP hybrid catalyst as CE produce fill factor of 67.6% and 66.3%, which is significantly higher than that using pristine Sb2S3 fabricated in our previous work (52.8%). Finally, the corresponding power conversion efficiencies reach 6.69% (Sb2S3@CNP-S) and 6.24% (Sb2S3@CNP-T), respectively, which are comparable to that using Pt CE measured under the same conditions (6.74%).

  20. The HIV Matrix Protein p17 Promotes the Activation of Human Hepatic Stellate Cells through Interactions with CXCR2 and Syndecan-2

    PubMed Central

    Renga, Barbara; Francisci, Daniela; Schiaroli, Elisabetta; Carino, Adriana; Cipriani, Sabrina; D'Amore, Claudio; Sidoni, Angelo; Sordo, Rachele Del; Ferri, Ivana; Lucattelli, Monica; Lunghi, Benedetta; Baldelli, Franco; Fiorucci, Stefano

    2014-01-01

    Background The human immunodeficiency virus type 1 (HIV-1) p17 is a matrix protein involved in virus life's cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs), a key cell type involved in matrix deposition in liver fibrotic disorders. Aim In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes. Methods LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors. Results Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2. Conclusions The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs. PMID:24736615

  1. C-Cl activation by group IV metal oxides in solid argon matrixes: matrix isolation infrared spectroscopy and theoretical investigations of the reactions of MOx (M = Ti, Zr; x = 1, 2) with CH3Cl.

    PubMed

    Zhao, Yanying

    2013-07-11

    Reactions of the ground-state titanium and zirconium monoxide and dioxide molecules with monochloromethane in excess argon matrixes have been investigated in solid argon by infrared absorption spectroscopy and density functional theoretical calculations. The results show that the ground-state MOx (M = Ti, Zr; x = 1, 2) molecules react with CH3Cl to first form the weakly bound MO(CH3Cl) and MO2(CH3Cl) complexes. The MO(CH3Cl) complexes can rearrange to the CH3M(O)Cl isomers with the Cl atom of CH3Cl coordination to the metal center of MO upon UV light irradiation (λ < 300 nm). Theoretical calculations indicate that the electronic state crossings exist from the MO + CH3Cl reaction to the more stable CH3M(O)Cl molecules via the MO(CH3Cl) complexes traversing their corresponding transition states. The MO2(CH3Cl) complexes can isomerize to the more stable CH3OM(O)Cl molecules with the addition of the C-Cl bond of CH3Cl to one of the O═M bonds of MO2 upon annealing after broad-band light irradiation. The C-Cl activation by the MOx mechanism was interpreted by the calculated potential energy profiles. PMID:23763350

  2. Abnormal activation of calpain and protein kinase Cα promotes a constitutive release of matrix metalloproteinase 9 in peripheral blood mononuclear cells from cystic fibrosis patients.

    PubMed

    Averna, Monica; Bavestrello, Margherita; Cresta, Federico; Pedrazzi, Marco; De Tullio, Roberta; Minicucci, Laura; Sparatore, Bianca; Salamino, Franca; Pontremoli, Sandro; Melloni, Edon

    2016-08-15

    Matrix metalloproteinase 9 (MMP9) is physiologically involved in remodeling the extracellular matrix components but its abnormal release has been observed in several human pathologies. We here report that peripheral blood mononuclear cells (PBMCs), isolated from cystic fibrosis (CF) patients homozygous for F508del-cystic fibrosis transmembrane conductance regulator (CFTR), express constitutively and release at high rate MMP9 due to the alteration in their intracellular Ca(2+) homeostasis. This spontaneous and sustained MMP9 secretion may contribute to the accumulation of this protease in fluids of CF patients. Conversely, in PBMCs isolated from healthy donors, expression and secretion of MMP9 are undetectable but can be evoked, after 12 h of culture, by paracrine stimulation which also promotes an increase in [Ca(2+)]i. We also demonstrate that in both CF and control PBMCs the Ca(2+)-dependent MMP9 secretion is mediated by the concomitant activation of calpain and protein kinase Cα (PKCα), and that MMP9 expression involves extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. Our results are supported by the fact that either the inhibition of Ca(2+) entry or chelation of [Ca(2+)]i as well as the inhibition of single components of the signaling pathway or the restoration of CFTR activity all promote the reduction of MMP9 secretion. PMID:27349634

  3. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200 C and method of fabrication

    DOEpatents

    Carey, P.G.; Smith, P.M.; Havens, J.H.; Jones, P.

    1999-01-05

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100 C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired. 12 figs.

  4. Plastic substrates for active matrix liquid crystal display incapable of withstanding processing temperature of over 200.degree. C and method of fabrication

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Havens, John; Jones, Phil

    1999-01-01

    Bright-polarizer-free, active-matrix liquid crystal displays (AMLCDs) are formed on plastic substrates. The primary components of the display are a pixel circuit fabricated on one plastic substrate, an intervening liquid-crystal material, and a counter electrode on a second plastic substrate. The-pixel circuit contains one or more thin-film transistors (TFTs) and either a transparent or reflective pixel electrode manufactured at sufficiently low temperatures to avoid damage to the plastic substrate. Fabrication of the TFTs can be carried out at temperatures less than 100.degree. C. The liquid crystal material is a commercially made nematic curvilinear aligned phase (NCAP) film. The counter electrode is comprised of a plastic substrate coated with a transparent conductor, such as indium-doped tin oxide (ITO). By coupling the active matrix with NCAP, a high-information content can be provided in a bright, fully plastic package. Applications include any low cost portable electronics containing flat displays where ruggedization of the display is desired.

  5. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    SciTech Connect

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.; Hsu, J.-L.; Chou, F.-P. . E-mail: fpchou@csmu.edu.tw

    2006-07-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-{kappa}B, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment.

  6. The use of a diode matrix in commissioning activities for electron energies {>=}9 MeV: A feasibility study

    SciTech Connect

    Casanova Borca, Valeria; Pasquino, Massimo; Ozzello, Franca; Tofani, Santi

    2009-04-15

    The contribution of a commercially available diode matrix (MapCHECK trade mark sign , provided by Sun Nuclear, Melbourne, FL) for the commissioning procedures of the voxel based Monte Carlo (VMC++) algorithm for electron beams of MasterPlan treatment planning system was investigated. The attention is mainly focused on the calculation in homogeneous and heterogeneous phantoms. With this aim, following a data set similar to that proposed by Electron Collaborative Working Group (ECWG), the dose profiles and two-dimensional (2D) dose distributions measured by the diode matrix were compared with the calculated ones using the gamma analysis method with acceptance criteria for the dose difference and the distance to agreement equal to 4% and 4 mm, respectively. The average and standard deviation of the percentage of points satisfying the constraint {gamma}{<=}1 are 98.3{+-}4.1% and 99.3{+-}1.7% for the 9 and 12 MeV electron beam, respectively, showing that the accuracy of MasterPlan electron beam algorithm is good for simple two-dimensional geometries as well as for more complicated three-dimensional ones. The results are in agreement with those reported in literature by Cygler et al. [''Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning,'' Med. Phys. 31, 142-153 (2004)]. In addition, the authors have also analyzed the response of the 2D array in terms of dose profiles at different depths, comparing the results with those obtained in water phantom using an electron diode. The results show that in the low gradient regions there were no deviations larger than the criteria of acceptability set by Van Dyk et al. [''Commissioning and quality assurance of treatment planning computers,'' Int. J. Radiat. Oncol. Biol. Phys. 26, 261-273 (1993)]; in the high gradient region, the maximum deviations are less than 2 mm with most of the values less than 1 mm. The present article shows that MapCHECK trade mark sign can play a

  7. Oxidative stress promotes the increase of matrix metalloproteinases-2 and -9 activities in the feto-placental unit of diabetic rats.

    PubMed

    Pustovrh, María Carolina; Jawerbaum, Alicia; Capobianco, Evangelina; White, Verónica; Martínez, Nora; López-Costa, Juan José; González, Elida

    2005-12-01

    Maternal diabetes increases the risk of congenital malformations, placental dysfunction and diseases in both the neonate and the offspring's later life. Oxidative stress has been involved in the etiology of these abnormalities. Matrix metalloproteases (MMPs), involved in multiple developmental pathways, are increased in the fetus and placenta from diabetic experimental models. As oxidants could be involved in the activation of latent MMPs, we investigated a putative relationship between MMPs activities and oxidative stress in the feto-placental unit of diabetic rats at midgestation. We found that H2O2 enhanced and that superoxide dismutase (SOD) reduced MMPs activities in the maternal side of the placenta and in the fetuses from control and diabetic rats. MMPs were not modified by oxidative status in the fetal side of the placenta. Lipid peroxidation was enhanced in the maternal and fetal sides of the placenta and in the fetus from diabetic rats when compared to controls, and gradually decreased from the maternal placental side to the fetus in diabetic animals. The activities of the antioxidant enzymes SOD and catalase were decreased in the maternal placental side, catalase activity was enhanced in the fetal placental side and both enzymes were increased in the fetuses from diabetic rats when compared to controls. Our data demonstrate changes in the oxidative balance and capability of oxidants to upregulate MMPs activity in the feto-placental unit from diabetic rats, a basis to elucidate links between oxidative stress and alterations in the developmental pathways in which MMPs are involved. PMID:16298858

  8. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity.

    PubMed

    Yeh, Chao-Bin; Hsieh, Ming-Ju; Hsieh, Yih-Shou; Chien, Ming-Hsien; Lin, Pen-Yuan; Chiou, Hui-Ling; Yang, Shun-Fa

    2012-01-01

    High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE) exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9). Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR) and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB) and activating protein-1 (AP-1) on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1. PMID:23258989

  9. Internal cleavages of the autoinhibitory prodomain are required for membrane type 1 matrix metalloproteinase activation, although furin cleavage alone generates inactive proteinase.

    PubMed

    Golubkov, Vladislav S; Cieplak, Piotr; Chekanov, Alexei V; Ratnikov, Boris I; Aleshin, Alexander E; Golubkova, Natalya V; Postnova, Tatiana I; Radichev, Ilian A; Rozanov, Dmitri V; Zhu, Wenhong; Motamedchaboki, Khatereh; Strongin, Alex Y

    2010-09-01

    The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD/L(50) site initiates the MT1-MMP activation, whereas the (108)RRKR(111)/Y(112) cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP. PMID:20605791

  10. Internal Cleavages of the Autoinhibitory Prodomain Are Required for Membrane Type 1 Matrix Metalloproteinase Activation, although Furin Cleavage Alone Generates Inactive Proteinase*

    PubMed Central

    Golubkov, Vladislav S.; Cieplak, Piotr; Chekanov, Alexei V.; Ratnikov, Boris I.; Aleshin, Alexander E.; Golubkova, Natalya V.; Postnova, Tatiana I.; Radichev, Ilian A.; Rozanov, Dmitri V.; Zhu, Wenhong; Motamedchaboki, Khatereh; Strongin, Alex Y.

    2010-01-01

    The functional activity of invasion-promoting membrane type 1 matrix metalloproteinase (MT1-MMP) is elevated in cancer. This elevated activity promotes cancer cell migration, invasion, and metastasis. MT1-MMP is synthesized as a zymogen, the latency of which is maintained by its prodomain. Excision by furin was considered sufficient for the prodomain release and MT1-MMP activation. We determined, however, that the full-length intact prodomain released by furin alone is a potent autoinhibitor of MT1-MMP. Additional MMP cleavages within the prodomain sequence are required to release the MT1-MMP enzyme activity. Using mutagenesis of the prodomain sequence and mass spectrometry analysis of the prodomain fragments, we demonstrated that the intradomain cleavage of the PGD↓L50 site initiates the MT1-MMP activation, whereas the 108RRKR111↓Y112 cleavage by furin completes the removal and the degradation of the autoinhibitory prodomain and the liberation of the functional activity of the emerging enzyme of MT1-MMP. PMID:20605791

  11. Quinazolinones and pyrido[3,4-d]pyrimidin-4-ones as orally active and specific matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis.

    PubMed

    Li, Jie Jack; Nahra, Joe; Johnson, Adam R; Bunker, Amy; O'Brien, Patrick; Yue, Wen-Song; Ortwine, Daniel F; Man, Chiu-Fai; Baragi, Vijay; Kilgore, Kenneth; Dyer, Richard D; Han, Hyo-Kyung

    2008-02-28

    Quinazolinones 8 and pyrido[3,4-d]pyrimidin-4-ones 9 as orally active and specific matrix metalloproteinase-13 inhibitors were discovered for the treatment of osteoarthritis. Starting from a high-through-put screening (HTS) hit thizolopyrimidin-dione 7, we obtained two chemotypes, 8 and 9, using computer-aided drug design (CADD) and methodical structure-activity relationship (SAR) studies. They occupy the unique S 1'-specificity pocket and do not bind to the Zn(2+) ion. Some pyrido[3,4-d]pyrimidin-4-ones, such as 10a, possess favorable absorption, distribution, metabolism, and elimination (ADME) and safety profiles. 10a effectively prevents cartilage damage in rabbit animal models of osteoarthritis without inducing musculoskeletal side effects when given at extremely high doses to rats. PMID:18251495

  12. Response surface methodology as an approach to determine optimal activities of lipase entrapped in sol-gel matrix using different vegetable oils.

    PubMed

    Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M

    2008-03-01

    The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading. PMID:18373071

  13. Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats.

    PubMed

    Mao, Xuexuan; Yin, Wei; Liu, Mengfei; Ye, Minzhong; Liu, Peiqing; Liu, Jianxin; Lian, Qishen; Xu, Suowen; Pi, Rongbiao

    2011-04-18

    Previously we demonstrated that Osthole, a natural coumarin, protects against focal cerebral ischemia/reperfusion-induced injury in rats. In the present study, the effects of Osthole on neurobehavioral functions, infarct volume and matrix metalloproteinase-9 (MMP-9) in a rat 2h focal cerebral ischemia model were investigated. Osthole (100mg/kg per dose) was administrated intraperitoneally 30min before ischemic insult and immediately after reperfusion. Osthole treatment significantly reduced neurological deficit score and infarct volume by 38.5% and 33.8%, respectively, as compared with the untreated animals. Osthole reversed ischemia-reperfusion-induced increase in MMP-9 protein level/activity as evidenced by Western blotting and gelatin zymography. Taken together, these results for the first time demonstrate that Osthole reduces infarct volume, restores neurobehavioral functions and downregulates MMP-9 protein level/activity in ischemia/reperfused brain. PMID:21316348

  14. (60)Co in cast steel matrix: A European interlaboratory comparison for the characterisation of new activity standards for calibration of gamma-ray spectrometers in metallurgy.

    PubMed

    Tzika, Faidra; Burda, Oleksiy; Hult, Mikael; Arnold, Dirk; Marroyo, Belén Caro; Dryák, Pavel; Fazio, Aldo; Ferreux, Laurent; García-Toraño, Eduardo; Javornik, Andrej; Klemola, Seppo; Luca, Aurelian; Moser, Hannah; Nečemer, Marijan; Peyrés, Virginia; Reis, Mario; Silva, Lidia; Šolc, Jaroslav; Svec, Anton; Tyminski, Zbigniew; Vodenik, Branko; Wätjen, Uwe

    2016-08-01

    Two series of activity standards of (60)Co in cast steel matrix, developed for the calibration of gamma-ray spectrometry systems in the metallurgical sector, were characterised using a European interlaboratory comparison among twelve National Metrology Institutes and one international organisation. The first standard, consisting of 14 disc shaped samples, was cast from steel contaminated during production ("originally"), and the second, consisting of 15 similar discs, from artificially-contaminated ("spiked") steel. The reference activity concentrations of (60)Co in the cast steel standards were (1.077±0.019) Bqg(-1) on 1 January 2013 12h00 UT and (1.483±0.022) Bqg(-1) on 1 June 2013 12h00 UT, respectively. PMID:27236833

  15. Identification of Proteins with Potential Osteogenic Activity Present in the Water-Soluble Matrix Proteins from Crassostrea gigas Nacre Using a Proteomic Approach

    PubMed Central

    Oliveira, Daniel V.; Silva, Tomé S.; Cordeiro, Odete D.; Cavaco, Sofia I.; Simes, Dina C.

    2012-01-01

    Nacre, when implanted in vivo in bones of dogs, sheep, mice, and humans, induces a biological response that includes integration and osteogenic activity on the host tissue that seems to be activated by a set of proteins present in the nacre water-soluble matrix (WSM). We describe here an experimental approach that can accurately identify the proteins present in the WSM of shell mollusk nacre. Four proteins (three gigasin-2 isoforms and a cystatin A2) were for the first time identified in WSM of Crassostrea gigas nacre using 2DE and LC-MS/MS for protein identification. These proteins are thought to be involved in bone remodeling processes and could be responsible for the biocompatibility shown between bone and nacre grafts. These results represent a contribution to the study of shell biomineralization process and opens new perspectives for the development of new nacre biomaterials for orthopedic applications. PMID:22666151

  16. Phospholipase C{gamma}1 stimulates transcriptional activation of the matrix metalloproteinase-3 gene via the protein kinase C/Raf/ERK cascade

    SciTech Connect

    Shin, Soon Young; Choi, Ha Young; Ahn, Bong-Hyun; Son, Sang Wook; Lee, Young Han . E-mail: younghan@hanyang.ac.kr

    2007-02-16

    The phospholipid hydrolase phospholipase C{gamma}1 (PLC{gamma}1) plays a major role in regulation of cell proliferation, development, and cell motility. Overexpression of PLC{gamma}1 is associated with tumor development, and it is overexpressed in some tumors. Matrix metalloproteinase-3 (MMP-3) is a protein involved in tumor invasion and metastasis. Here, we demonstrate that overexpression of PLC{gamma}1 stimulates MMP-3 expression at the transcriptional level via the PKC-mediated Raf/MEK1/ERK signaling cascade. We propose that modulation of PLC{gamma}1 activity might be of value in controlling the activity of MMPs, which are important regulators of invasion and metastasis in malignant tumors.

  17. STAT3 and ERK Signaling Pathways Are Implicated in the Invasion Activity by Oncostatin M through Induction of Matrix Metalloproteinases 2 and 9

    PubMed Central

    Ko, Hyun Sun; Park, Byung Joon; Choi, Sae Kyung; Kang, Hee Kyung; Kim, Ahyoung; Kim, Ho Shik; Park, In Yang

    2016-01-01

    Purpose Our previous studies have shown that oncostatin M (OSM) promotes trophoblast invasion activity through increased enzyme activity of matrix metalloproteinase (MMP)-2 and -9. We further investigated OSM-induced intracellular signaling mechanisms associated with these events in the immortalized human trophoblast cell line HTR8/SVneo. Materials and Methods We investigated the effects of OSM on RNA and protein expression of MMP-2 and -9 in the first-trimester extravillous trophoblast cell line (HTR8/SVneo) via Western blot. The selective signal transducer and activator of transcription (STAT)3 inhibitor, stattic, STAT3 siRNA, and extracellular signal-regulated kinase (ERK) siRNA were used to investigate STAT3 and ERK activation by OSM. The effects of STAT3 and ERK inhibitors on OSM-induced enzymatic activities of MMP-2 and -9 and invasion activity were further determined via Western blot and gelatin zymography. Results OSM-induced MMP-2 and -9 protein expression was significantly suppressed by STAT3 inhibition with stattic and STAT3 siRNA silencing, whereas the ERK1/2 inhibitor (U0126) and ERK silencing significantly suppressed OSM-induced MMP-2 protein expression. OSM-induced MMP-2 and MMP-9 enzymatic activities were significantly decreased by stattic pretreatment. The increased invasion activity induced by OSM was significantly suppressed by STAT3 and ERK1/2 inhibition, though to a greater extent by STAT3 inhibition. Conclusion Both STAT3 and ERK signaling pathways are involved in OSM-induced invasion activity of HTR8/SVneo cells. Activation of STAT3 appears to be critical for the OSM-mediated increase in invasiveness of HTR8/SVneo cells. PMID:26996579

  18. Suppression of activation energy and superconductivity by the addition of Al{sub 2}O{sub 3} nanoparticles in CuTl-1223 matrix

    SciTech Connect

    Jabbar, Abdul; Qasim, Irfan; Mumtaz, M.; Zubair, M.; Nadeem, K.; Khurram, A. A.

    2014-05-28

    Low anisotropic (Cu{sub 0.5}Tl{sub 0.5})Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10−δ} (CuTl-1223) high T{sub c} superconducting matrix was synthesized by solid-state reaction and Al{sub 2}O{sub 3} nanoparticles were prepared separately by co-precipitation method. Al{sub 2}O{sub 3} nanoparticles were added with different concentrations during the final sintering cycle of CuTl-1223 superconducting matrix to get the required (Al{sub 2}O{sub 3}){sub y}/CuTl-1223, y = 0.0, 0.5, 0.7, 1.0, and 1.5 wt. %, composites. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray, and dc-resistivity (ρ) measurements. The activation energy and superconductivity were suppressed with increasing concentration of Al{sub 2}O{sub 3} nanoparticles in (CuTl-1223) matrix. The XRD analysis showed that the addition of Al{sub 2}O{sub 3} nanoparticles did not affect the crystal structure of the parent CuTl-1223 superconducting phase. The suppression of activation energy and superconducting properties is most probably due to weak flux pinning in the samples. The possible reason of weak flux pinning is reduction of weak links and enhanced inter-grain coupling due to the presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries. The presence of Al{sub 2}O{sub 3} nanoparticles at the grain boundaries possibly reduced the number of flux pinning centers, which were present in the form of weak links in the pure CuTl-1223 superconducting matrix. The increase in the values of inter-grain coupling (α) deduced from the fluctuation induced conductivity analysis with the increased concentration of Al{sub 2}O{sub 3} nanoparticles is a theoretical evidence of improved inter-grain coupling.

  19. Calcium Alginate Gels as Stem Cell Matrix – Making Paracrine Stem Cell Activity Available for Enhanced Healing after Surgery

    PubMed Central

    Schmitt, Andreas; Rödel, Philipp; Anamur, Cihad; Seeliger, Claudine; Imhoff, Andreas B.; Herbst, Elmar; Vogt, Stephan; van Griensven, Martijn; Winter, Gerhard; Engert, Julia

    2015-01-01

    Regeneration after surgery can be improved by the administration of anabolic growth factors. However, to locally maintain these factors at the site of regeneration is problematic. The aim of this study was to develop a matrix system containing human mesenchymal stem cells (MSCs) which can be applied to the surgical site and allows the secretion of endogenous healing factors from the cells. Calcium alginate gels were prepared by a combination of internal and external gelation. The gelling behaviour, mechanical stability, surface adhesive properties and injectability of the gels were investigated. The permeability of the gels for growth factors was analysed using bovine serum albumin and lysozyme as model proteins. Human MSCs were isolated, cultivated and seeded into the alginate gels. Cell viability was determined by AlamarBlue assay and fluorescence microscopy. The release of human VEGF and bFGF from the cells was determined using an enzyme-linked immunoassay. Gels with sufficient mechanical properties were prepared which remained injectable through a syringe and solidified in a sufficient time frame after application. Surface adhesion was improved by the addition of polyethylene glycol 300,000 and hyaluronic acid. Humans MSCs remained viable for the duration of 6 weeks within the gels. Human VEGF and bFGF was found in quantifiable concentrations in cell culture supernatants of gels loaded with MSCs and incubated for a period of 6 weeks. This work shows that calcium alginate gels can function as immobilization matrices for human MSCs. PMID:25793885

  20. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. PMID:24755526

  1. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    SciTech Connect

    Franco, Gilson C.N.; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  2. The effect of acute and long-term physical activity on extracellular matrix and serglycin in human skeletal muscle

    PubMed Central

    Hjorth, Marit; Norheim, Frode; Meen, Astri J; Pourteymour, Shirin; Lee, Sindre; Holen, Torgeir; Jensen, Jørgen; Birkeland, Kåre I; Martinov, Vladimir N; Langleite, Torgrim M; Eckardt, Kristin; Drevon, Christian A; Kolset, Svein O

    2015-01-01

    Remodeling of extracellular matrix (ECM), including regulation of proteoglycans in skeletal muscle can be important for physiological adaptation to exercise. To investigate the effects of acute and long-term exercise on the expression of ECM-related genes and proteoglycans in particular, 26 middle-aged, sedentary men underwent a 12 weeks supervised endurance and strength training intervention and two acute, 45 min bicycle tests (70% VO2max), one at baseline and one after 12 weeks of training. Total gene expression in biopsies from m. vastus lateralis was measured with deep mRNA sequencing. After 45 min of bicycling approximately 550 gene transcripts were >50% upregulated. Of these, 28 genes (5%) were directly related to ECM. In response to long-term exercise of 12 weeks 289 genes exhibited enhanced expression (>50%) and 20% of them were ECM related. Further analyses of proteoglycan mRNA expression revealed that more than half of the proteoglycans expressed in muscle were significantly enhanced after 12 weeks intervention. The proteoglycan serglycin (SRGN) has not been studied in skeletal muscle and was one of few proteoglycans that showed increased expression after acute (2.2-fold, P < 0.001) as well as long-term exercise (1.4-fold, P < 0.001). Cultured, primary human skeletal muscle cells expressed and secreted SRGN. When the expression of SRGN was knocked down, the expression and secretion of serpin E1 (SERPINE1) increased. In conclusion, acute and especially long-term exercise promotes enhanced expression of several ECM components and proteoglycans. SRGN is a novel exercise-regulated proteoglycan in skeletal muscle with a potential role in exercise adaptation. PMID:26290530

  3. The extracellular matrix microtopography drives critical changes in cellular motility and Rho A activity in colon cancer cells

    PubMed Central

    2010-01-01

    We have shown that the microtopography (mT) underlying colon cancer changes as a tumor de-differentiates. We distinguish the well-differentiated mT based on the increasing number of "pits" and poorly differentiated mT on the basis of increasing number of "posts." We investigated Rho A as a mechanosensing protein using mT features derived from those observed in the ECM of colon cancer. We evaluated Rho A activity in less-tumorogenic (Caco-2 E) and more tumorigenic (SW620) colon cancer cell-lines on microfabricated pits and posts at 2.5 μm diameter and 200 nm depth/height. In Caco-2 E cells, we observed a decrease in Rho A activity as well as in the ratio of G/F actin on surfaces with either pits or posts but despite this low activity, knockdown of Rho A led to a significant decrease in confined motility suggesting that while Rho A activity is reduced on these surfaces it still plays an important role in controlling cellular response to barriers. In SW620 cells, we observed that Rho A activity was greatest in cells plated on a post microtopography which led to increased cell motility, and an increase in actin cytoskeletal turnover. PMID:20667086

  4. Protease Nexin-1 affects the migration and invasion of C6 glioma cells through the regulation of urokinase Plasminogen Activator and Matrix Metalloproteinase-9/2.

    PubMed

    Pagliara, Valentina; Adornetto, Annagrazia; Mammì, Maria; Masullo, Mariorosario; Sarnataro, Daniela; Pietropaolo, Concetta; Arcone, Rosaria

    2014-11-01

    Protease Nexin-1 (PN-1) or Serpine2 is a physiological regulator of extracellular proteases as thrombin and urokinase (uPA) in the brain. Besides, PN-1 is also implicated in some human cancers and further identified as a substrate for Matrix Metalloproteinase (MMP)-9, a key enzyme in tumor invasiveness. Our aim was to study the role of PN-1 in the migration and invasive potential of glioma cells, using the rat C6 glioma cell line as stable clones transfected with pAVU6+27 vector expressing PN-1 short-hairpin RNA. We find that PN-1 knockdown enhanced the in vitro migration and invasiveness of C6 cells which also showed a strong gelatinolytic activity by in situ zymography. PN-1 silencing did not alter prothrombin whereas increased uPA, MMP-9 and MMP-2 expression levels and gelatinolytic activity in a conditioned medium from stable C6 cells. Selective inhibitors for MMP-9 (Inhibitor I), MMP-2 (Inhibitor III) or exogenous recombinant PN-1 added to the culture medium of C6 silenced cells restored either the migration and invasive ability or gelatinolytic activity thus validating the specificity of PN-1 silencing strategy. Phosphorylation levels of extracellular signal-related kinases (Erk1/2 and p38 MAPK) involved in MMP-9 and MMP-2 signaling were increased in PN-1 silenced cells. This study shows that PN-1 affects glioma cell migration and invasiveness through the regulation of uPA and MMP-9/2 expression levels which contribute to the degradation of extracellular matrix during tumor invasion. PMID:25072751

  5. Mutations in the Catalytic Domain of Human Matrix Metalloproteinase-1 (MMP-1) That Allow for Regulated Activity through the Use of Ca2+

    PubMed Central

    Paladini, Rudolph D.; Wei, Ge; Kundu, Anirban; Zhao, Qiping; Bookbinder, Louis H.; Keller, Gilbert A.; Shepard, H. Michael; Frost, Gregory I.

    2013-01-01

    Conditionally active proteins regulated by a physiological parameter represent a potential new class of protein therapeutics. By systematically creating point mutations in the catalytic and linker domains of human MMP-1, we generated a protein library amenable to physiological parameter-based screening. Mutants screened for temperature-sensitive activity had mutations clustered at or near amino acids critical for metal binding. One mutant, GVSK (Gly159 to Val, Ser208 to Lys), contains mutations in regions of the catalytic domain involved in calcium and zinc binding. The in vitro activity of GVSK at 37 °C in high Ca2+ (10 mm) was comparable with MMP-1 (wild type), but in low Ca2+ (1 mm), there was an over 10-fold loss in activity despite having similar kinetic parameters. Activity decreased over 50% within 15 min and correlated with the degradation of the activated protein, suggesting that GVSK was unstable in low Ca2+. Varying the concentration of Zn2+ had no effect on GVSK activity in vitro. As compared with MMP-1, GVSK degraded soluble collagen I at the high but not the low Ca2+ concentration. In vivo, MMP-1 and GVSK degraded collagen I when perfused in Zucker rat ventral skin and formed higher molecular weight complexes with α2-macroglobulin, an inhibitor of MMPs. In vitro and in vivo complex formation and subsequent enzyme inactivation occurred faster with GVSK, especially at the low Ca2+ concentration. These data suggest that the activity of the human MMP-1 mutant GVSK can be regulated by Ca2+ both in vitro and in vivo and may represent a novel approach to engineering matrix-remodeling enzymes for therapeutic applications. PMID:23322779

  6. High Levels of 17β-Estradiol Are Associated with Increased Matrix Metalloproteinase-2 and Metalloproteinase-9 Activity in Tears of Postmenopausal Women with Dry Eye

    PubMed Central

    Shen, Guanglin; Ma, Xiaoping

    2016-01-01

    Purpose. To determine the serum levels of sex steroids and tear matrix metalloproteinases (MMP) 2 and 9 concentrations in postmenopausal women with dry eye. Methods. Forty-four postmenopausal women with dry eye and 22 asymptomatic controls were enrolled. Blood was drawn and analyzed for serum levels of sex steroids and lipids. Then, the following tests were performed: tear collection, Ocular Surface Disease Index (OSDI) questionnaire, fluorescein tear film break-up time (TBUT), corneal fluorescein staining, Schirmer test, and conjunctival impression cytology. The conjunctival mRNA expression and tear concentrations of MMP-2 and MMP-9 were measured. Results. Serum 17β-estradiol levels were significantly higher in the dry eye subjects than in the controls (P = 0.03), whereas there were no significant differences in levels of testosterone, dehydroepiandrosterone sulfate (DHEA-S), and progesterone. Tear MMP-2 and MMP-9 concentrations (P < 0.001), as well as the MMP-9 mRNA expression in conjunctival samples (P = 0.02), were significantly higher in dry eye subjects than in controls. Serum 17β-estradiol levels were positively correlated with tear MMP-2 and MMP-9 concentrations and negatively correlated with Schirmer test values. Conclusions. High levels of 17β-estradiol are associated with increased matrix metalloproteinase-2 and metalloproteinase-9 activity in tears of postmenopausal women with dry eye. PMID:26904272

  7. Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammation

    PubMed Central

    Chadzinska, Magdalena; Baginski, Pawel; Kolaczkowska, Elzbieta; Savelkoul, Huub F J; Lidy Verburg-van Kemenade, B M

    2008-01-01

    Matrix metalloproteinase 9 (MMP-9) belongs to a family of zinc-dependent endopeptidases. As a consequence of its ability to cleave structural extracellular matrix molecules, mammalian MMP-9 is associated with vital inflammatory processes such as leucocyte migration and tissue remodelling and regeneration. Interestingly, MMP-9 genes have been identified in fish, but functional data are still limited and focus on the involvement of MMP-9 in embryonic development, reproduction and post-mortem tenderization. Here, we describe the involvement of MMP-9 in the innate immunity of carp. In carp, MMP-9 was most notably expressed in classical fish immune organs and in peritoneal and peripheral blood leucocytes, indicating a role of MMP-9 in immune responses. In our well-characterized zymosan-induced peritonitis model for carp, we analysed expression of the MMP-9 gene and the gelatinolytic levels of both pro- and activated forms of MMP-9. The biphasic profile of MMP-9 mRNA expression indicated involvement during the initial phase of inflammation and during the later phase of tissue remodelling. Also, in vitro stimulation of carp phagocytes with lipopolysaccharide or concanavalin A increased MMP-9 gene expression, with a peak at 24 hr. The increase of MMP-9 mRNA correlated with the peak of MMP-9 gelatinolytic level in culture supernatants. These results provide evidence for an evolutionarily conserved and relevant role of MMP-9 in the innate immune response. PMID:18557954

  8. Recovery of active anti TNF-α ScFv through matrix-assisted refolding of bacterial inclusion bodies using CIM monolithic support.

    PubMed

    Sushma, Krishnan; Bilgimol, Chuvappumkal Joseph; Vijayalakshmi, Mookambeswaran A; Satheeshkumar, Padikara Kutty

    2012-04-01

    Anti TNF-α molecules are important as therapeutic agents for many of the autoimmune diseases in chronic stage. Here we report the expression and purification of a recombinant single chain variable fragment (ScFv) specific to TNF-α from inclusion bodies. In contrast to the conventional on column refolding using the soft gel supports, an efficient methodology using monolithic matrix has been employed. Nickel (II) coupled to convective interaction media (CIM) support was utilized for this purpose with 6M guanidine hydrochloride (GuHCl) as the chaotropic agent. The protein purified after solubilization and refolding proved to be biologically active with an IC₅₀ value of 15 μg. To the best of our knowledge, this is the first report showing the application of methacrylate based chromatographic supports for matrix-assisted refolding and purification of Escherichia coli inclusion bodies. The results are promising to elaborate the methodology further to exploit the potential positive features of monoliths in protein refolding science. PMID:22386363

  9. Regulation of Matrix Remodeling by Peroxisome Proliferator-Activated Receptor-γ: A Novel Link Between Metabolism and Fibrogenesis

    PubMed Central

    Wei, Jun; Bhattacharyya, Swati; Jain, Manu; Varga, John

    2012-01-01

    The intractable process of fibrosis underlies the pathogenesis of systemic sclerosis (SSc) and other diseases, and in aggregate contributes to 45% of deaths worldwide. Because currently there is no effective anti-fibrotic therapy, a better understanding of the pathways and cellular differentiation programs underlying fibrosis are needed. Emerging evidence points to a fundamental role of the nuclear hormone receptor peroxisome proliferator activated receptor-γ (PPAR-γ) in modulating fibrogenesis. While PPAR-γ has long been known to be important in lipid metabolism and in glucose homeostasis, its role in regulating mesenchymal cell biology and its association with pathological fibrosis had not been appreciated until recently. This article highlights recent studies revealing a consistent association of fibrosis with aberrant PPAR-γ expression and activity in various forms of human fibrosis and in rodent models, and reviews studies linking genetic manipulation of the PPAR-γ pathway in rodents and fibrosis. We survey the broad range of anti-fibrotic activities associated with PPAR-γ and the underlying mechanisms. We also summarize the emerging data linking PPAR-γ dysfunction and pulmonary arterial hypertension (PAH), which together with fibrosis is responsible for the mortality in patients in SSc. Finally, we consider current and potential future strategies for targeting PPAR-γ activity or expression as a therapy for controlling fibrosis. PMID:22802908

  10. Quercetin Improves Postischemic Recovery of Heart Function in Doxorubicin-Treated Rats and Prevents Doxorubicin-Induced Matrix Metalloproteinase-2 Activation and Apoptosis Induction

    PubMed Central

    Barteková, Monika; Šimončíková, Petra; Fogarassyová, Mária; Ivanová, Monika; Okruhlicová, Ľudmila; Tribulová, Narcisa; Dovinová, Ima; Barančík, Miroslav

    2015-01-01

    Quercetin (QCT) is flavonoid that possesses various biological functions including anti-oxidative and radical-scavenging activities. Moreover, QCT exerts some preventive actions in treatment of cardiovascular diseases. The aim of present study was to explore effects of prolonged administration of QCT on changes induced by repeated application of doxorubicin (DOX) in rat hearts. We focused on the ultrastructure of myocardium, matrix metalloproteinases (MMPs), biometric parameters, and apoptosis induction. Our aim was also to examine effects of QCT on ischemic tolerance in hearts exposed to chronic effects of DOX, and to determine possible mechanisms underlying effects of QCT. Our results showed that QCT prevented several negative chronic effects of DOX: (I) reversed DOX-induced blood pressure increase; (II) mediated improvement of deleterious effects of DOX on ultrastructure of left ventricle; (III) prevented DOX-induced effects on tissue MMP-2 activation; and (iv) reversed effects of DOX on apoptosis induction and superoxide dismutase inhibition. Moreover, we showed that rat hearts exposed to effects of QCT were more resistant to ischemia/reperfusion injury. Effects of QCT on modulation of ischemic tolerance were linked to Akt kinase activation and connexin-43 up-regulation. Taken together, these results demonstrate that prolonged treatment with QCT prevented negative chronic effects of DOX on blood pressure, cellular damage, MMP-2 activation, and apoptosis induction. Moreover, QCT influenced myocardial responses to acute ischemic stress. These facts bring new insights into mechanisms of QCT action on rat hearts exposed to the chronic effects of DOX. PMID:25872140

  11. Modulation of matrix metalloproteinases MMP-2 and MMP-9 activity by hydrofiber-foam hybrid dressing – relevant support in the treatment of chronic wounds

    PubMed Central

    Krejner, Alicja

    2015-01-01

    Success in chronic wound therapy requires careful selection of appropriate dressing, which enables effective management of wound exudate. According to current knowledge, exudate may contain large quantities of proteases, including matrix metalloproteinases, MMP-2 and MMP-9, which are responsible for delay in wound healing. Therefore, neutralization of MMPs may be beneficial for treatment efficacy. The aim of the study was to test whether AQUACEL Foam, a novel, technologically advanced hydrofiber-foam hybrid dressing (HFHD), may interfere with proteolytic activity of MMPs in vitro. The assessment included in vitro tests of liquid retention and measurement of human recombinant MMP-2 and MMP-9 activity. The MMPs activity was measured before and after their interaction with HFHD, using a fluorescent gelatinase assay kit and Real-Time PCR device. The in vitro tests have shown that the hydrofiber layer of HFHD revealed significant potential to decrease the activity of MMPs in the experimental system. The mentioned modulatory properties of AQUACEL Foam may contribute to a composed mechanism of its beneficial action. Furthermore, our finding may explain clinical effectiveness of HFHD observed in clinical settings. PMID:26648787

  12. Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1

    PubMed Central

    Sekine, Katsutoshi; Kawauchi, Takeshi; Kubo, Ken-ichiro; Honda, Takao; Herz, Joachim; Hattori, Mitsuharu; Kinashi, Tatsuo; Nakajima, Kazunori

    2012-01-01

    Summary Birth-date-dependent neuronal layering is fundamental to neocortical functions. The extracellular protein Reelin is essential for the establishment of the eventual neuronal alignments. Although this Reelin-dependent neuronal layering is mainly established by the final neuronal migration step called “terminal translocation” beneath the marginal zone (MZ), the molecular mechanism underlying the control by Reelin of terminal translocation and layer formation is largely unknown. Here, we show that after Reelin binds to its receptors, it activates integrin α5β1 through the intracellular Dab1-Crk/CrkL-C3G-Rap1 pathway. This intracellular pathway is required for terminal translocation and the activation of Reelin signaling promotes neuronal adhesion to fibronectin through integrin α5β1. Since fibronectin is localized in the MZ, the activated integrin α5β1 then controls terminal translocation, which mediates proper neuronal alignments in the mature cortex. These data indicate that Reelin-dependent activation of neuronal adhesion to the extracellular matrix is crucial for the eventual birth-date-dependent layeringof the neocortex. PMID:23083738

  13. Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and Membrane Type 1 Matrix Metalloproteinase

    PubMed Central

    Qiu, Hong; Tang, Xiaoying; Ma, Jun; Shaverdashvili, Khvaramze; Zhang, Keman

    2015-01-01

    Notch1 is an evolutionarily conserved transmembrane receptor involved in melanoma growth. Notch1 is first cleaved by furin in the Golgi apparatus to produce the biologically active heterodimer. Following ligand binding, Notch1 is cleaved at the cell membrane by proteases such as ADAM10 and -17 and membrane type 1 matrix metalloproteinase (MT1-MMP), the latter of which we recently identified as a novel protease involved in Notch1 processing. The final cleavage is γ-secretase dependent and releases the active Notch intracellular domain (NIC). We now demonstrate that Notch1 directly regulates furin expression. Aside from activating Notch1, furin cleaves and activates several proteases, including MT1-MMP, ADAM10, and ADAM17. By chromatin immunoprecipitation and a reporter assay, we demonstrate that Notch1 binds at position −1236 of the furin promoter and drives furin expression. The Notch1-dependent enhancement of furin expression increases the activities of MT1-MMP and ADAM10 but not that of ADAM17, as demonstrated by short hairpin RNA (shRNA) knockdown of furin, and promotes the cleavage of Notch1 itself. These data highlight a novel positive-feedback loop whereby Notch1-dependent furin expression can induce Notch1 signaling by increasing Notch1 processing and by potentiating the activity of the proteases responsible for Notch1 activation. This leads to Notch1 signal amplification, which can promote melanoma tumor growth and progression, as demonstrated by the inhibition of cell migration and invasion upon furin inhibition downstream of Notch1. Disruption of such feedback signaling might represent an avenue for the treatment of melanoma. PMID:26283728

  14. Priming Endothelial Cells With a Melanoma-Derived Extracellular Matrix Triggers the Activation of αvβ3/VEGFR2 Axis.

    PubMed

    Helal-Neto, Edward; Brandão-Costa, Renata M; Saldanha-Gama, Roberta; Ribeiro-Pereira, Cristiane; Midlej, Victor; Benchimol, Marlene; Morandi, Verônica; Barja-Fidalgo, Christina

    2016-11-01

    The unique composition of tumor-produced extracellular matrix (ECM) can be a determining factor in changing the profile of endothelial cells in the tumor microenvironment. As the main receptor for ECM proteins, integrins can activate a series of signaling pathways related to cell adhesion, migration, and differentiation of endothelial cells that interact with ECM proteins. We studied the direct impact of the decellularized ECM produced by a highly metastatic human melanoma cell line (MV3) on the activation of endothelial cells and identified the intracellular signaling pathways associated with cell differentiation. Our data show that compared to the ECM derived from a human melanocyte cell line (NGM-ECM), ECM produced by a melanoma cell line (MV3-ECM) is considerably different in ultrastructural organization and composition and possesses a higher content of tenascin-C and laminin and a lower expression of fibronectin. When cultured directly on MV3-ECM, endothelial cells change morphology and show increased adhesion, migration, proliferation, and tubulogenesis. Interaction of endothelial cells with MV3-ECM induces the activation of integrin signaling, increasing FAK phosphorylation and its association with Src, which activates VEGFR2, potentiating the receptor response to VEGF. The blockage of αvβ3 integrin inhibited the FAK-Src association and VEGFR activation, thus reducing tubulogenesis. Together, our data suggest that the interaction of endothelial cells with the melanoma-ECM triggers integrin-dependent signaling, leading to Src pathway activation that may potentiate VEGFR2 activation and up-regulate angiogenesis. J. Cell. Physiol. 231: 2464-2473, 2016. © 2016 Wiley Periodicals, Inc. PMID:27420801

  15. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway

    SciTech Connect

    Li, Hongzhong; Huang, Jing; Yang, Bing; Xiang, Tingxiu; Yin, Xuedong; Peng, Weiyan; Cheng, Wei; Wan, Jingyuan; Luo, Fuling; Li, Hongyuan; Ren, Guosheng

    2013-10-01

    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial–mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed that inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. - Highlights: • Mangiferin inhibits growth and metastatic potential in breast cancer cells. • Mangiferin down-regulates MMP-7 and -9 in breast cancer cells. • Mangiferin induces the reversal of EMT in metastatic breast cancer cells. • Mangiferin inhibits the activation of β-catenin pathway in breast cancer cells. • Inhibiting β-catenin is responsible for the antitumor activity of mangiferin.

  16. Prediction of antiarthritic drug efficacies by monitoring active matrix metalloproteinase-3 (MMP-3) levels in collagen-induced arthritic mice using the MMP-3 probe.

    PubMed

    Lee, Aeju; Park, Kyeongsoon; Choi, Sung-Jae; Seo, Dong-Hyun; Kim, Kwangmeyung; Kim, Han Sung; Choi, Kuiwon; Kwon, Ick Chan; Yoon, Soo-Young; Youn, Inchan

    2014-05-01

    Active matrix metalloproteinase-3 (MMP-3) is a prognostic marker of rheumatoid arthritis (RA). We recently developed an MMP-3 probe that can specifically detect the active form of MMP-3. The aim of this study was to investigate whether detection and monitoring of active MMP-3 could be useful to predict therapeutic drug responses in a collagen-induced arthritis (CIA) model. During the period of treatment with drugs such as methotrexate (MTX) or infliximab (IFX), MMP-3 mRNA and protein levels were correlated with fluorescence signals in arthritic joint tissues and in the serum of CIA mice. Also, bone volume density and erosion in the knee joints and the paws of CIA mice were measured with microcomputed tomography (micro-CT), X-ray, and histology to confirm drug responses. In joint tissues and serum of CIA mice, strong fluorescence signals induced by the action of active MMP-3 were significantly decreased when drugs were applied. The decrease in RA scores in drug-treated CIA mice led to fluorescence reductions, mainly as a result of down-regulation of MMP-3 mRNA or protein. The micro-CT, X-ray, and histology results clearly showed marked decreases in bone and cartilage destruction, which were consistent with the reduction of fluorescence by down-regulation of active MMP-3 in drug-treated CIA mice. We suggest that the MMP-3 diagnostic kit could be used to detect and monitor the active form of MMP-3 in CIA mice serum during a treatment course and thereby used to predict the drug response or resistance to RA therapies at an earlier stage. We hope that monitoring of active MMP-3 levels in arthritis patients using the MMP-3 diagnostic kit will be a promising tool for drug discovery, drug development, and monitoring of drug responses in RA therapy. PMID:24673659

  17. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP.

    PubMed Central

    Bernardo, M Margarida; Fridman, Rafael

    2003-01-01

    The matrix metalloproteinase (MMP)-2 has a crucial role in extracellular matrix degradation associated with cancer metastasis and angiogenesis. The latent form, pro-MMP-2, is activated on the cell surface by the membrane-tethered membrane type 1 (MT1)-MMP, in a process regulated by the tissue inhibitor of metalloproteinase (TIMP)-2. A complex of active MT1-MMP and TIMP-2 binds pro-MMP-2 forming a ternary complex, which permits pro-MMP-2 activation by a TIMP-2-free neighbouring MT1-MMP. It remains unclear how MMP-2 activity in the pericellular space is regulated in the presence of TIMP-2. To address this question, the effect of TIMP-2 on MMP-2 activity in the extracellular space was investigated in live cells, and their isolated plasma membrane fractions, engineered to control the relative levels of MT1-MMP and TIMP-2 expression. We show that both free and inhibited MMP-2 is detected in the medium, and that the net MMP-2 activity correlates with the level of TIMP-2 expression. Studies to displace MT1-MMP-bound TIMP-2 in a purified system with active MMP-2 show minimal displacement of inhibitor, under the experimental conditions, due to the high affinity interaction between TIMP-2 and MT1-MMP. Thus inhibition of MMP-2 activity in the extracellular space is unlikely to result solely as a result of TIMP-2 dissociation from its complex with MT1-MMP. Consistently, immunoblot analyses of plasma membranes, and surface biotinylation experiments show that the level of surface association of TIMP-2 is independent of MT1-MMP expression. Thus low-affinity binding of TIMP-2 to sites distinct to MT1-MMP may have a role in regulating MMP-2 activity in the extracellular space generated by the ternary complex. PMID:12755684

  18. Effects of parathyroid hormone and calcitonin on alkaline phosphatase activity and matrix calcification in rabbit growth-plate chondrocyte cultures

    SciTech Connect

    Kato, Y.; Shimazu, A.; Nakashima, K.; Suzuki, F.; Jikko, A.; Iwamoto, M. )

    1990-07-01

    The effects of PTH and calcitonin (CT) on the expression of mineralization-related phenotypes by chondrocytes were examined. In cultures of pelleted growth-plate chondrocytes. PTH caused 60-90% decreases in alkaline phosphatase activity, the incorporation of {sup 45}Ca into insoluble material, and the calcium content during the post-mitotic stage. These effects of PTH were dose-dependent and reversible. In contrast, CT increased alkaline phosphatase activity, {sup 45}Ca incorporation into insoluble material, and the calcium content by 1.4- to 1.8-fold. These observations suggest that PTH directly inhibits the expression of the mineralization-related phenotypes by growth-plate chondrocytes, and that CT has the opposite effects.

  19. A Low-Operating-Power and Flexible Active-Matrix Organic-Transistor Temperature-Sensor Array.

    PubMed

    Ren, Xiaochen; Pei, Ke; Peng, Boyu; Zhang, Zhichao; Wang, Zongrong; Wang, Xinyu; Chan, Paddy K L

    2016-06-01

    An organic flexible temperature-sensor array exhibits great potential in health monitoring and other biomedical applications. The actively addressed 16 × 16 temperature sensor array reaches 100% yield rate and provides 2D temperature information of the objects placed in contact, even if the object has an irregular shape. The current device allows defect predictions of electronic devices, remote sensing of harsh environments, and e-skin applications. PMID:27111745

  20. Human lung tissue macrophages, but not alveolar macrophages, express matrix metalloproteinases after direct contact with activated T lymphocytes.

    PubMed

    Ferrari-Lacraz, S; Nicod, L P; Chicheportiche, R; Welgus, H G; Dayer, J M

    2001-04-01

    Human alveolar macrophages (AM) and lung tissue macrophages (LTM) have a distinct localization in the cellular environment. We studied their response to direct contact with activated T lymphocytes in terms of the production of interstitial collagenase (MMP-1), 92-kD gelatinase (MMP-9), and of TIMP-1, one of the counter-regulatory tissue inhibitors of metalloproteinases. Either AM obtained by bronchoalveolar lavage or LTM obtained by mincing and digestion of lung tissue were exposed for 48 h to plasma membranes of T lymphocytes previously activated with phorbol myristate acetate and phytohemagglutinin for 24 h. Membranes of activated T cells strongly induced the production of MMP-1, MMP-9, and TIMP-1 exclusively in LTM but not in AM, whereas membranes from unstimulated T cells failed to induce the release of MMPs. Both populations of mononuclear phagocytes spontaneously released only small amounts of MMPs and TIMP-1. Similar results were obtained when MMP and TIMP-1 expression was analyzed at pretranslational and biosynthetic levels, respectively. Blockade experiments with cytokine antagonists revealed the involvement of T-cell membrane-associated interleukin-1 and tumor necrosis factor-alpha in MMP production by LTM upon contact with T cells. These data suggest that the ability of lung macrophages to produce MMPs after direct contact with activated T cells is related to the difference in phenotype of mononuclear phagocytes and cell localization. In addition, these observations indicate that cell-cell contact represents an important biological mechanism in potentiating the inflammatory response of mononuclear phagocytes in the lungs. PMID:11306438

  1. Driving Method for Compensating Reliability Problem of Hydrogenated Amorphous Silicon Thin Film Transistors and Image Sticking Phenomenon in Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong

    2011-03-01

    In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.

  2. Synthesis and Validation of a Hydroxypyrone-Based, Potent, and Specific Matrix Metalloproteinase-12 Inhibitor with Anti-Inflammatory Activity In Vitro and In Vivo

    PubMed Central

    Aerts, J.; Vandenbroucke, R. E.; Dera, R.; Balusu, S.; Van Wonterghem, E.; Moons, L.; Libert, C.; Dehaen, W.; Arckens, L.

    2015-01-01

    A hydroxypyrone-based matrix metalloproteinase (MMP) inhibitor was synthesized and assayed for its inhibitory capacity towards a panel of ten different MMPs. The compound exhibited selective inhibition towards MMP-12. The effects of inhibition of MMP-12 on endotoxemia and inflammation-induced blood-cerebrospinal fluid barrier (BCSFB) disruption were assessed both in vitro and in vivo. Similar to MMP-12 deficient mice, inhibitor-treated mice displayed significantly lower lipopolysaccharide- (LPS-) induced lethality compared to vehicle treated controls. Following LPS injection Mmp-12 mRNA expression was massively upregulated in choroid plexus tissue and a concomitant increase in BCSFB permeability was observed, which was restricted in inhibitor-treated mice. Moreover, an LPS-induced decrease in tight junction permeability of primary choroid plexus epithelial cells was attenuated by inhibitor application in vitro. Taken together, this hydroxypyrone-based inhibitor is selective towards MMP-12 and displays anti-inflammatory activity in vitro and in vivo. PMID:26351407

  3. The Nuclear Matrix Protein, NRP/B, Acts as a Transcriptional Repressor of E2F-mediated Transcriptional Activity

    PubMed Central

    Choi, Jina; Yang, Eun Sung; Cha, Kiweon; Whang, John; Choi, Woo-Jung; Avraham, Shalom; Kim, Tae-Aug

    2014-01-01

    Background: NRP/B, a family member of the BTB/Kelch repeat proteins, is implicated in neuronal and cancer development, as well as the regulation of oxidative stress responses in breast and brain cancer. Our previous studies indicate that the NRP/B-BTB/POZ domain is involved in the dimerization of NRP/B and in a complex formation with the tumor suppressor, retinoblastoma protein. Although much evidence supports the potential role of NRP/B as a tumor suppressor, the molecular mechanisms of NRP/B action on E2F transcription factors have not been elucidated. Methods: Three-dimensional modeling of NRP/B was used to generate point mutations in the BTB/Kelch domains. Tet-on inducible NRP/B expression was established. The NRP/B deficient breast cancer cell line, MDA-MB-231, was generated using lentiviral shNRP/B to evaluate the effect of NRP/B on cell proliferation, invasion and migration. Immunoprecipitation was performed to verify the interaction of NRP/B with E2F and histone deacetylase (HDAC-1), and the expression level of NRP/B protein was analyzed by Western blot analysis. Changes in cell cycle were determined by flow cytometry. Transcriptional activities of E2F transcription factors were measured by chloramphenicol acetyltransferase (CAT) activity. Results: Ectopic overexpression of NRP/B demonstrated that the NRP/B-BTB/POZ domain plays a critical role in E2F-mediated transcriptional activity. Point mutations within the BTB/POZ domain restored E2-promoter activity inhibited by NRP/B. Loss of NRP/B enhanced the proliferation and migration of breast cancer cells. Endogenous NRP/B interacted with E2F and HDAC1. Treatement with an HDAC inhibitor, trichostatin A (TSA), abolished the NRP/B-mediated suppression of E2-promoter activity. Gain or loss of NRP/B in HeLa cells confirmed the transcriptional repressive capability of NRP/B on the E2F target genes, Cyclin E and HsORC (Homo sapiens Origin Recognition Complex). Conclusions: The present study shows that NRP/B acts as a

  4. Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection

    PubMed Central

    Sterkand, Rosa T.; Ozbun, Michelle A.

    2015-01-01

    Oncogenic human papillomaviruses (HPVs) attach predominantly to extracellular matrix (ECM) components during infection of cultured keratinocytes and in the rodent vaginal challenge model in vivo. However, the mechanism of virion transfer from the ECM to receptors that mediate entry into host cells has not been determined. In this work we strove to assess the role of heparan sulfate (HS) chains in HPV16 binding to the ECM and determine how HPV16 release from the ECM is regulated. We also assessed the extent to which capsids released from the ECM are infectious. We show that a large fraction of HPV16 particles binds to the ECM via HS chains, and that syndecan-1 (snd-1) molecules present in the ECM are involved in virus binding. Inhibiting the normal processing of snd-1 and HS molecules via matrix metalloproteinases and heparanase dramatically reduces virus release from the ECM, cellular uptake and infection. Conversely, exogenous heparinase activates each of these processes. We confirm that HPV16 released from the ECM is infectious in keratinocytes. Use of a specific inhibitor shows furin is not involved in HPV16 release from ECM attachment factors and corroborates other studies showing only the intracellular activity of furin is responsible for modulating HPV infectivity. These data suggest that our recently proposed model, describing the action of HS proteoglycan processing enzymes in releasing HPV16 from the cell surface in complex with the attachment factor snd-1, is also relevant to the release of HPV16 particles from the ECM to promote efficient infection of keratinocytes. PMID:26289843

  5. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    SciTech Connect

    Zhao Wei; Li Dan; Reznik, Alla; Lui, B.J.M.; Hunt, D.C.; Rowlands, J.A.; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-09-15

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  6. Indirect flat-panel detector with avalanche gain: fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager).

    PubMed

    Zhao, Wei; Li, Dan; Reznik, Alla; Lui, B J M; Hunt, D C; Rowlands, J A; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-09-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d(Se) and the applied electric field E(Se) of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E(Se) dependence of both avalanche gain and optical quantum efficiency of an 8 microm HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E(Se): (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 microm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy. PMID:16266110

  7. Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration.

    PubMed

    Vaz, Ana Rita; Cunha, Carolina; Gomes, Cátia; Schmucki, Nadja; Barbosa, Marta; Brites, Dora

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects mainly motor neurons (MNs). NSC-34 MN-like cells carrying the G93A mutation in human superoxide dismutase-1 (hSOD1(G93A)) are a common model to study the molecular mechanisms of neurodegeneration in ALS. Although the underlying pathways of MN failure still remain elusive, increased apoptosis and oxidative stress seem to be implicated. Riluzole, the only approved drug, only slightly delays ALS progression. Ursodeoxycholic acid (UDCA), as well as its glycine (glycoursodeoxycholic acid, GUDCA) and taurine (TUDCA) conjugated species, have shown therapeutic efficacy in neurodegenerative models and diseases. Pilot studies in ALS patients indicate safety and tolerability for UDCA oral administration. We explored the mechanisms associated with superoxide dismutase-1 (SOD1) accumulation and MN degeneration in NSC-34/hSOD1(G93A) cells differentiated for 4 days in vitro (DIV). We examined GUDCA efficacy in preventing such pathological events and in restoring MN functionality by incubating cells with 50 μM GUDCA at 0 DIV and at 2 DIV, respectively. Increased cytosolic SOD1 inclusions were observed in 4 DIV NSC-34/hSOD1(G93A) cells together with decreased mitochondria viability (1.2-fold, p < 0.01), caspase-9 activation (1.8-fold, p < 0.05), and apoptosis (2.1-fold, p < 0.01). GUDCA exerted preventive effects (p < 0.05) while also reduced caspase-9 levels when added at 2 DIV (p < 0.05). ATP depletion (2-fold, p < 0.05), increased nitrites (1.6-fold, p < 0.05) and metalloproteinase-9 (MMP-9) activation (1.8-fold, p < 0.05), but no changes in MMP-2, were observed in the extracellular media of 4 DIV NSC-34/hSOD1(G93A) cells. GUDCA inhibited nitrite production (p < 0.05) while simultaneously prevented and reverted MMP-9 activation (p < 0.05), but not ATP depletion. Data highlight caspase-9 and MMP-9 activation as key pathomechanisms in ALS and GUDCA

  8. TNF-{alpha} promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling

    SciTech Connect

    Wang, Cheng-hu; Cao, Guo-Fan; Jiang, Qin; Yao, Jin

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer TNF-{alpha} induces MMP-9 expression and secretion to promote RPE cell migration. Black-Right-Pointing-Pointer MAPK activation is not critical for TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer Akt and mTORC1 signaling mediate TNF-{alpha}-induced MMP-9 expression. Black-Right-Pointing-Pointer SIN1 knockdown showed no significant effect on MMP-9 expression by TNF-{alpha}. -- Abstract: Tumor necrosis factor-alpha (TNF-{alpha}) promotes in vitro retinal pigment epithelial (RPE) cell migration to initiate proliferative vitreoretinopathy (PVR). Here we report that TNF-{alpha} promotes human RPE cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression. Inhibition of MMP-9 by its inhibitor or its neutralizing antibody inhibited TNF-{alpha}-induced in vitro RPE cell migration. Reversely, exogenously-added active MMP-9 promoted RPE cell migration. Suppression Akt/mTOR complex 1(mTORC1) activation by LY 294002 and rapamycin inhibited TNF-{alpha}-mediated MMP-9 expression. To introduce a constitutively active Akt (CA-Akt) in cultured RPE cells increased MMP-9 expression, and to block mTORC1 activation by rapamycin inhibited its effect. RNA interference (RNAi)-mediated silencing of SIN1, a key component of mTOR complex 2 (mTORC2), had no effect on MMP-9 expression or secretion. In conclusion, this study suggest that TNF-{alpha} promotes RPE cell migration by inducing MMP-9 expression through activation of Akt/ mTORC1, but not mTORC2 signaling.

  9. Heme oxygenase-1 regulates matrix metalloproteinase MMP-1 secretion and chondrocyte cell death via Nox4 NADPH oxidase activity in chondrocytes.

    PubMed

    Rousset, Francis; Nguyen, Minh Vu Chuong; Grange, Laurent; Morel, Françoise; Lardy, Bernard

    2013-01-01

    Interleukin-1β (IL-1β) activates the production of reactive oxygen species (ROS) and secretion of MMPs as well as chondrocyte apoptosis. Those events lead to matrix breakdown and are key features of osteoarthritis (OA). We confirmed that in human C-20/A4 chondrocytes the NADPH oxidase Nox4 is the main source of ROS upon IL-1β stimulation. Since heme molecules are essential for the NADPH oxidase maturation and activity, we therefore investigated the consequences of the modulation of Heme oxygenase-1 (HO-1), the limiting enzyme in heme catabolism, on the IL-1β signaling pathway and more specifically on Nox4 activity. Induction of HO-1 expression decreased dramatically Nox4 activity in C-20/A4 and HEK293 T-REx™ Nox4 cell lines. Unexpectedly, this decrease was not accompanied by any change in the expression, the subcellular localization or the maturation of Nox4. In fact, the inhibition of the heme synthesis by succinylacetone rather than heme catabolism by HO-1, led to a confinement of the Nox4/p22(phox) heterodimer in the endoplasmic reticulum with an absence of redox differential spectrum highlighting an incomplete maturation. Therefore, the downregulation of Nox4 activity by HO-1 induction appeared to be mediated by carbon monoxide (CO) generated from the heme degradation process. Interestingly, either HO-1 or CO caused a significant decrease in the expression of MMP-1 and DNA fragmentation of chondrocytes stimulated by IL-1β. These results all together suggest that a modulation of Nox4 activity via heme oxygenase-1 may represent a promising therapeutic tool in osteoarthritis. PMID:23840483

  10. Heme Oxygenase-1 Regulates Matrix Metalloproteinase MMP-1 Secretion and Chondrocyte Cell Death via Nox4 NADPH Oxidase Activity in Chondrocytes

    PubMed Central

    Rousset, Francis; Nguyen, Minh Vu Chuong; Grange, Laurent; Morel, Françoise; Lardy, Bernard

    2013-01-01

    Interleukin-1β (IL-1β) activates the production of reactive oxygen species (ROS) and secretion of MMPs as well as chondrocyte apoptosis. Those events lead to matrix breakdown and are key features of osteoarthritis (OA). We confirmed that in human C-20/A4 chondrocytes the NADPH oxidase Nox4 is the main source of ROS upon IL-1β stimulation. Since heme molecules are essential for the NADPH oxidase maturation and activity, we therefore investigated the consequences of the modulation of Heme oxygenase-1 (HO-1), the limiting enzyme in heme catabolism, on the IL-1β signaling pathway and more specifically on Nox4 activity. Induction of HO-1 expression decreased dramatically Nox4 activity in C-20/A4 and HEK293 T-REx™ Nox4 cell lines. Unexpectedly, this decrease was not accompanied by any change in the expression, the subcellular localization or the maturation of Nox4. In fact, the inhibition of the heme synthesis by succinylacetone rather than heme catabolism by HO-1, led to a confinement of the Nox4/p22phox heterodimer in the endoplasmic reticulum with an absence of redox differential spectrum highlighting an incomplete maturation. Therefore, the downregulation of Nox4 activity by HO-1 induction appeared to be mediated by carbon monoxide (CO) generated from the heme degradation process. Interestingly, either HO-1 or CO caused a significant decrease in the expression of MMP-1 and DNA fragmentation of chondrocytes stimulated by IL-1β. These results all together suggest that a modulation of Nox4 activity via heme oxygenase-1 may represent a promising therapeutic tool in osteoarthritis. PMID:23840483

  11. The Acrosomal Matrix.

    PubMed

    Foster, James A; Gerton, George L

    2016-01-01

    The acrosome, a single exocytotic vesicle on the head of sperm, has an essential role in fertilization, but the exact mechanisms by which it facilitates sperm-egg interactions remain unresolved. The acrosome contains dozens of secretory proteins that are packaged into the forming structure during spermatogenesis; many of these proteins are localized into specific topographical areas of the acrosome, while others are more diffusely distributed. Acrosomal proteins can also be biochemically classified as components of the acrosomal matrix, a large, relatively insoluble complex, or as soluble proteins. This review focuses on recent findings using genetically modified mice (gene knockouts and transgenic "green acrosome" mice) to study the effects of eliminating acrosomal matrix-associated proteins on sperm structure and function. Some gene knockouts produce infertile phenotypes with obviously missing, specific activities that affect acrosome biogenesis during spermatogenesis or interfere with acrosome function in mature sperm. Mutations that delete some components produce fertile phenotypes with subtler effects that provide useful insights into acrosomal matrix function in fertilization. In general, these studies enable the reassessment of paradigms to explain acrosome formation and function and provide novel, objective insights into the roles of acrosomal matrix proteins in fertilization. The use of genetically engineered mouse models has yielded new mechanistic information that complements recent, important in vivo imaging studies. PMID:27194348

  12. Perfluorooctanoic acid enhances colorectal cancer DLD-1 cells invasiveness through activating NF-κB mediated matrix metalloproteinase-2/-9 expression

    PubMed Central

    Miao, Chen; Ma, Jun; Zhang, Yajie; Chu, Yimin; Li, Ji; Kuai, Rong; Wang, Saiyu; Peng, Haixia

    2015-01-01

    Objective: Perfluorooctanoic acid (PFOA) is widely used in consumer products and detected in human serum. Our study meant to elucidate the uncovered molecular mechanisms underlying the PFOA induced colorectal cancer cell DLD-1 invasion and matrix metalloproteinases (MMP) expression. Methods and results: Trans-well filter assay appeared that PFOA treatment stimulated DLD-1 cells invasion significantly. Meanwhile, the results of luciferase reporter, quantitative real-time PCR, western blotting, and gelatin zymography showed that PFOA induced MMP-2/-9 expression and enzyme activation levels consistently (P < 0.05 each). Subsequently, western blotting and immunofluorescence assay demonstrated that PFOA could enhance nuclear factor kappaB (NF-κB) activity by stimulating NF-κB translocation into nuclear in DLD-1 cells. Furthermore, JSH-23, a well-known NF-κB inhibitor, could reverse the PFOA induced colorectal cancer cell invasion and MMP-2/-9 expression. Conclusions: Our study confirmed that PFOA could induce colorectal cancer cell DLD-1 invasive ability and MMP-2/-9 expression through activating NF-κB, which deserves more concerns on environmental pollutant-resulted public health risk. PMID:26617761

  13. A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors

    PubMed Central

    Lee, Wookyu; Koo, Hyunmo; Sun, Junfeng; Noh, Jinsoo; Kwon, Kye-Si; Yeom, Chiseon; Choi, Younchang; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    Roll-to-roll (R2R) printing has been pursued as a commercially viable high-throughput technology to manufacture flexible, disposable, and inexpensive printed electronic devices. However, in recent years, pessimism has prevailed because of the barriers faced when attempting to fabricate and integrate thin film transistors (TFTs) using an R2R printing method. In this paper, we report 20 × 20 active matrices (AMs) based on single-walled carbon nanotubes (SWCNTs) with a resolution of 9.3 points per inch (ppi) resolution, obtained using a fully R2R gravure printing process. By using SWCNTs as the semiconducting layer and poly(ethylene terephthalate) (PET) as the substrate, we have obtained a device yield above 98%, and extracted the key scalability factors required for a feasible R2R gravure manufacturing process. Multi-touch sensor arrays were achieved by laminating a pressure sensitive rubber onto the SWCNT-TFT AM. This R2R gravure printing system overcomes the barriers associated with the registration accuracy of printing each layer and the variation of the threshold voltage (Vth). By overcoming these barriers, the R2R gravure printing method can be viable as an advanced manufacturing technology, thus enabling the high-throughput production of flexible, disposable, and human-interactive cutting-edge electronic devices based on SWCNT-TFT AMs. PMID:26635237

  14. A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors

    NASA Astrophysics Data System (ADS)

    Lee, Wookyu; Koo, Hyunmo; Sun, Junfeng; Noh, Jinsoo; Kwon, Kye-Si; Yeom, Chiseon; Choi, Younchang; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-12-01

    Roll-to-roll (R2R) printing has been pursued as a commercially viable high-throughput technology to manufacture flexible, disposable, and inexpensive printed electronic devices. However, in recent years, pessimism has prevailed because of the barriers faced when attempting to fabricate and integrate thin film transistors (TFTs) using an R2R printing method. In this paper, we report 20 × 20 active matrices (AMs) based on single-walled carbon nanotubes (SWCNTs) with a resolution of 9.3 points per inch (ppi) resolution, obtained using a fully R2R gravure printing process. By using SWCNTs as the semiconducting layer and poly(ethylene terephthalate) (PET) as the substrate, we have obtained a device yield above 98%, and extracted the key scalability factors required for a feasible R2R gravure manufacturing process. Multi-touch sensor arrays were achieved by laminating a pressure sensitive rubber onto the SWCNT-TFT AM. This R2R gravure printing system overcomes the barriers associated with the registration accuracy of printing each layer and the variation of the threshold voltage (Vth). By overcoming these barriers, the R2R gravure printing method can be viable as an advanced manufacturing technology, thus enabling the high-throughput production of flexible, disposable, and human-interactive cutting-edge electronic devices based on SWCNT-TFT AMs.

  15. A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors.

    PubMed

    Lee, Wookyu; Koo, Hyunmo; Sun, Junfeng; Noh, Jinsoo; Kwon, Kye-Si; Yeom, Chiseon; Choi, Younchang; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    Roll-to-roll (R2R) printing has been pursued as a commercially viable high-throughput technology to manufacture flexible, disposable, and inexpensive printed electronic devices. However, in recent years, pessimism has prevailed because of the barriers faced when attempting to fabricate and integrate thin film transistors (TFTs) using an R2R printing method. In this paper, we report 20 × 20 active matrices (AMs) based on single-walled carbon nanotubes (SWCNTs) with a resolution of 9.3 points per inch (ppi) resolution, obtained using a fully R2R gravure printing process. By using SWCNTs as the semiconducting layer and poly(ethylene terephthalate) (PET) as the substrate, we have obtained a device yield above 98%, and extracted the key scalability factors required for a feasible R2R gravure manufacturing process. Multi-touch sensor arrays were achieved by laminating a pressure sensitive rubber onto the SWCNT-TFT AM. This R2R gravure printing system overcomes the barriers associated with the registration accuracy of printing each layer and the variation of the threshold voltage (Vth). By overcoming these barriers, the R2R gravure printing method can be viable as an advanced manufacturing technology, thus enabling the high-throughput production of flexible, disposable, and human-interactive cutting-edge electronic devices based on SWCNT-TFT AMs. PMID:26635237

  16. A theoretical approach to the photochemical activation of matrix isolated aluminum atoms and their reaction with methane.

    PubMed

    Pacheco-Blas, M A; Novaro, O A; Pacheco-Sánchez, J H

    2010-11-01

    The photochemical activation of Al atoms in cryogenic matrices to induce their reaction with methane has been experimentally studied before. Here, a theoretical study of the nonadiabatic transition probabilities for the ground ((2)P:3s(2)3p(1)) and the lowest excited states ((2)S:3s(2)4s(1) and (2)D:3s(2)3d(1)) of an aluminum atom interacting with a methane molecule (CH(4)) was carried out through ab initio Hartree-Fock self-consistent field calculations. This was followed by a multiconfigurational study of the correlation energy obtained by extensive variational and perturbational configuration interaction analyses using the CIPSI program. The (2)D state is readily inserted into a C-H bond, this being a prelude to a sequence of avoided crossings with the initially repulsive (to CH(4)) lower lying states (2)P and (2)S. We then use a direct extension of the Landau-Zener theory to obtain transition probabilities at each avoided crossing, allowing the formation of an HAlCH(3) intermediate that eventually leads to the final pair of products H+AlCH(3) and HAl+CH(3). PMID:21054032

  17. A theoretical approach to the photochemical activation of matrix isolated aluminum atoms and their reaction with methane

    SciTech Connect

    Pacheco-Blas, M. A.; Novaro, O. A.; Pacheco-Sanchez, J. H.

    2010-11-07

    The photochemical activation of Al atoms in cryogenic matrices to induce their reaction with methane has been experimentally studied before. Here, a theoretical study of the nonadiabatic transition probabilities for the ground ({sup 2}P:3s{sup 2}3p{sup 1}) and the lowest excited states ({sup 2}S:3s{sup 2}4s{sup 1} and {sup 2}D:3s{sup 2}3d{sup 1}) of an aluminum atom interacting with a methane molecule (CH{sub 4}) was carried out through ab initio Hartree-Fock self-consistent field calculations. This was followed by a multiconfigurational study of the correlation energy obtained by extensive variational and perturbational configuration interaction analyses using the CIPSI program. The {sup 2}D state is readily inserted into a C-H bond, this being a prelude to a sequence of avoided crossings with the initially repulsive (to CH{sub 4}) lower lying states {sup 2}P and {sup 2}S. We then use a direct extension of the Landau-Zener theory to obtain transition probabilities at each avoided crossing, allowing the formation of an HAlCH{sub 3} intermediate that eventually leads to the final pair of products H+AlCH{sub 3} and HAl+CH{sub 3}.

  18. Strong correlation in acene sheets from the active-space variational two-electron reduced density matrix method: effects of symmetry and size.

    PubMed

    Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A

    2011-06-01

    Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets). PMID:21563790

  19. [Prokaryotic expression and antigenic activity analysis on the matrix protein genes of two strains of human metapneumovirus recently identified in Beijing].

    PubMed

    Cao, Shou-Chun; Qian, Yuan; Li, Guo-Hua; Zhu, Ru-Nan; Zhao, Lin-Qing; Ding, Ya-Xin

    2007-01-01

    Human metapneumovirus (hMPV) is a recently identified respiratory virus more like human respiratory syncytial virus in clinical symptoms. Matrix protein (M) is one of the most important structural proteins. For further studying of hMPV, the full length of M genes from the recombinant plasmid pUCm-M1816 and pUCmM1817 were cloned by PCR and sub-cloned into the pET30a(+) vector, which is a prokaryotic expression vector, after dual-enzyme digestion with Bam HI and Xho I. The positive recombinated plasmids were transformed into E. coli BL21 (DE3) and expressed under the inducing of IPTG. Target proteins were characterized by SDS-PAGE and Western blotting. In this article, we' ve successfully constructed the recombinated plasmids pET30a-M1816 and pET30a-M1817 which have correct open reading frames confirmed by dual-enzyme digestion analysis and sequencing. The fusion proteins with 6 x His-N were highly produced after inducing by 1mmol/ L IPTG at 37 degrees C. A unique protein band with approximate 27.6 kD was characterized by SDS-PAGE. Most of the target protein existed in inclusion body. Western blot analysis showed that the target protein has specific binding reaction to rabbit antiserum against polypeptides of the matrix protein of hMPV. So the M genes were highly expressed in the prokaryotic system and the expressed M proteins have specific antigenic activities. It can be used for further studying of hMPV infections in Beijing. PMID:17886723

  20. Upconversion nanophosphor: an efficient phosphopeptides-recognizing matrix and luminescence resonance energy transfer donor for robust detection of protein kinase activity.

    PubMed

    Liu, Chenghui; Chang, Lijuan; Wang, Honghong; Bai, Jie; Ren, Wei; Li, Zhengping

    2014-06-17

    Protein kinases play important regulatory roles in intracellular signal transduction pathways. The aberrant activities of protein kinases are closely associated with the development of various diseases, which necessitates the development of practical and sensitive assays for monitoring protein kinase activities as well as for screening of potential kinase-targeted drugs. We demonstrate here a robust luminescence resonance energy transfer (LRET)-based protein kinase assay by using NaYF4:Yb,Er, one of the most efficient upconversion nanophosphors (UCNPs), as an autofluorescence-free LRET donor and a tetramethylrhodamine (TAMRA)-labeled substrate peptide as the acceptor. Fascinatingly, besides acting as the LRET donor, NaYF4:Yb,Er UCNPs also serve as the phosphopeptide-recognizing matrix because the intrinsic rare earth ions of UCNPs can specifically capture the fluorescent phosphopeptides catalyzed by protein kinases over the unphosphorylated ones. Therefore, a sensitive and generic protein kinase assay is developed in an extremely simple mix-and-read format without any requirement of surface modification, substrate immobilization, separation, or washing steps, showing great potential in protein kinases-related clinical diagnosis and drug discovery. To the best of our knowledge, this is the first report by use of rare earth-doped UCNPs as both the phospho-recognizing and signal reporting elements for protein kinase analysis. PMID:24871878

  1. Endothelial-monocyte activating polypeptide II alters fibronectin based endothelial cell adhesion and matrix assembly via alpha5 beta1 integrin

    SciTech Connect

    Schwarz, Margaret A. . E-mail: m.schwarz@umdnj.edu; Zheng, Hiahua; Liu, Jie; Corbett, Siobhan; Schwarz, Roderich E.

    2005-12-10

    Mature Endothelial-Monocyte Activating Polypeptide (mEMAP) II functions as a potent antiangiogenic peptide. Although the anti-tumor effect of mEMAP II has been described, little is known regarding its mechanism of action. Observations that mEMAP II induced apoptosis only in a subset of migrating and proliferating endothelial cells (EC) suggests a targeted effect on cells engaged in angiogenic activities which are known to rely upon cell adhesion and migration. Indeed, we demonstrate that mEMAP II inhibited fibronectin (FN) dependent microvascular EC (MEC) adhesion and spreading and we show that this depends upon the alpha5 beta1 integrin. Immunofluorescence analysis demonstrated that mEMAP II-dependent blockade of FN-alpha5 beta1 interactions was associated with disassembly of both actin stress fiber networks and FN matrix. These findings suggest that mEMAP II blocks MEC adhesion and spreading on fibronectin, via a direct interaction with the integrin alpha5 beta1, thus implicating that alpha5 integrin may be a mediator of mEMAP II's antiangiogenic function.

  2. Activation of matrix metalloproteinase in dorsal hippocampus drives improvement in spatial working memory after intra-VTA nicotine infusion in rats.

    PubMed

    Shu, Hui; Zheng, Guo-qing; Wang, Xiaona; Sun, Yanyun; Liu, Yushan; Weaver, John Michael; Shen, Xianzhi; Liu, Wenlan; Jin, Xinchun

    2015-10-01

    The hippocampus receives dopaminergic projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences hippocampus-dependent behaviors. Enhancements in working memory performance have been previously reported following acute smoking/nicotine exposure. However, the underlying mechanism remains unclear. This study investigated the effects of nicotine on spatial working memory (SWM) and the mechanisms involved. Delayed alternation T-maze task was used to assess SWM. In situ and gel gelatin zymography were used to detect matrix metalloproteinase-9 (MMP-9) in SWM. Systemic or local (intra-VTA) administration of nicotine significantly improves SWM, which was accompanied by increased MMP-9 activity in dorsal hippocampus (dHPC). Intra-dHPC administration of MMP inhibitor FN-439 abolished the memory enhancement induced by intra-VTA nicotine infusion. FN-439 had no effect on locomotor behavior. Our data suggest that intra-VTA nicotine infusion activates MMP-9 in dHPC to improve SWM in rats. PMID:26263395

  3. Schisandrae Fructus Inhibits IL-1β-Induced Matrix Metalloproteinases and Inflammatory Mediators Production in SW1353 Human Chondrocytes by Suppressing NF-κB and MAPK Activation.

    PubMed

    Jeong, Jin-Woo; Lee, Hye Hyeon; Choi, Eun-Ok; Lee, Ki Won; Kim, Ki Young; Kim, Sung Goo; Hong, Su Hyun; Kim, Gi-Young; Park, Cheol; Kim, Ho Kyoung; Choi, Young Whan; Choi, Yung Hyun

    2015-12-01

    Proinflammatory cytokine interleukin-1 beta (IL-1β) plays a crucial role in the pathogenesis of osteoarthritis (OA) by stimulating several mediators that contribute to cartilage degradation. Schisandrae Fructus (SF), the dried fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae), is widely used in traditional medicine for the treatment of a number of chronic inflammatory diseases. This study investigated the antiosteoarthritis properties of an ethanol extract of SF on IL-1β-stimulated SW1353 chondrocytes. SF attenuated IL-1β-induced expression and activity of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 and also reduced the elevated levels of cyclooxygenase-2 and inducible nitric oxide synthase associated with the inhibition of prostaglandin E2 and nitric oxide production in IL-1β-stimulated SW1353 chondrocytes. In addition, SF markedly suppressed the nuclear translocation of nuclear factor-kappa B (NF-κB) by blocking inhibitor κB-alpha degradation and inhibited the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These results indicate that the inhibitory effect of SF on IL-1β-stimulated expression of MMPs and inflammatory mediators production in SW1353 cells were associated with the suppression of the NF-κB and JNK/p38 MAPK signaling pathways. The results from this study indicate that SF may have therapeutic potential for the treatment of OA due to its anti-inflammatory and chondroprotective features. PMID:26443270

  4. Changes in matrix metalloprotease activity and progranulin levels may contribute to the pathophysiological function of mutant leucine-rich repeat kinase 2.

    PubMed

    Caesar, Mareike; Felk, Sandra; Zach, Susanne; Brønstad, Gunnar; Aasly, Jan O; Gasser, Thomas; Gillardon, Frank

    2014-07-01

    Increasing evidence suggests that Parkinson's disease (PD)-linked Leucine-rich repeat kinase 2 (LRRK2) has a role in peripheral and brain-resident immune cells. Furthermore, dysregulation of the anti-inflammatory, neurotrophic protein progranulin (PGRN) has been demonstrated in several chronic neurodegenerative diseases. Here we show that PGRN levels are significantly reduced in conditioned medium of LRRK2(R1441G) mutant mouse fibroblasts, leukocytes, and microglia, whereas levels of proinflammatory factors, like interleukin-1β and keratinocyte-derived chemokine, were significantly increased. Decreased PGRN levels were also detected in supernatants of cultured human fibroblasts isolated from presymptomatic LRRK2(G2019S) mutation carriers, while mitochondrial function was unaffected. Furthermore, medium levels of matrix metalloprotease (MMP) 2 increased, whereas MMP 9 decreased in LRRK2(R1441G) mutant microglia. Increased proteolytic cleavage of the MMP substrates ICAM-5 and α-synuclein in synaptoneurosomes from LRRK2(R1441G) mutant mouse brain indicates increased net synaptic MMP activity. PGRN levels were decreased in the cerebrospinal fluid of presymptomatic LRRK2 mutant mice, whereas PGRN levels were increased in aged symptomatic mutant mice. Notably, PGRN levels were also increased in the cerebrospinal fluid of PD patients carrying LRRK2 mutations, but not in idiopathic PD patients and in healthy control donors. Our data suggest that proinflammatory activity of peripheral and brain-resident immune cells may particularly contribute to the early stages of Parkinson's disease caused by LRRK2 mutations. PMID:24652679

  5. Salmon and king crab trypsin stimulate interleukin-8 and matrix metalloproteinases via protease-activated receptor-2 in the skin keratinocytic HaCaT cell line.

    PubMed

    Bhagwat, Sampada S; Larsen, Anett K; Winberg, Jan-Olof; Seternes, Ole-Morten; Bang, Berit E

    2014-07-01

    Occupational skin symptoms are prevalent among the workers of the seafood processing industry. In this study we investigate the role of salmon (Salmo salar) and king crab trypsin (Paralithodes camtschaticus) as inducers of inflammation in skin via secretion of inflammatory mediators. Human skin keratinocytes (HaCaT cells) were exposed to purified salmon and king crab trypsin. We observed that salmon trypsin enhanced the secretion of IL-8 and MMP-2 and crab trypsin enhanced the secretion of IL-8, MMP-2 and MMP-9 in a dose dependent manner. As protease activated receptors (PAR)-2 in skin are known to play an important role in physiology and pathology, we explored the involvement of these receptors in mediating the release of interleukin (IL)-8 and matrix metalloproteinase (MMP)-2 and -9 subsequent to exposure of skin keratinocytes to salmon and crab trypsin. In addition we observed that salmon and crab trypsin exhibit individual differences in stimulating the release of these inflammatory mediators. Finally, using specific small interfering RNA (siRNA) against PAR-2, we confirmed that the increase in secretion of IL-8, MMP-2 and MMP-9 in skin keratinocytes following exposure to salmon and crab trypsin was mediated via activation of PAR-2. These results suggest that exposure to proteases from the seafood may lead to inflammatory reactions in skin. PMID:24795235

  6. N-myc downstream regulated gene 2 overexpression reduces matrix metalloproteinase-2 and -9 activities and cell invasion of A549 lung cancer cell line in vitro

    PubMed Central

    Faraji, Seyed Nooredin; Mojtahedi, Zahra; Ghalamfarsa, Ghasem; Takhshid, Mohammad Ali

    2015-01-01

    Objective(s): N-myc downstream regulated gene 2 (NDRG2) is a candidate gene for tumor suppression. The expression of NDRG2 is down-regulated in several tumors including lung cancer. The aim of this study was to explore the effect of NDRG2 overexpression on invasion, migration, and enzymatic activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in human lung adenocarcinoma A549 cells. Materials and Methods: A recombinant plasmid encoding green fluorescent protein (GFP)-tagged NDRG2 (pCMV6-AC-NDRG2-GFP) was used to overexpress GFP-tagged NDRG2 in A549 cells. The cells in the experimental group and those in the control group were transfected with pCMV6-AC-NDRG2-GFP and a control plasmid without NDRG2 (pCMV6-AC-GFP), respectively. Fluorescent microscopy and flowcytometry analysis of GFP expression were used to evaluate the cellular expression of GFP-tagged NDRG2 and the efficiency of transfection. The effects of NDRG2 expression on cell invasion and migration were evaluated using transwell filter migration assay. The gelatinase activity of secreted MMP-2 and MMP-9 was measured by gelatin zymography. Results: Our results demonstrated the expression of GFP-tagged NDRG2 in the cytoplasm and nucleus of A549 cells. The findings of transwell assay showed that NDRG2 overexpression reduced migration and invasion of A549 cells compared to control cells. Gelatin zymography analyses revealed that NDRG2 overexpression decreased the gelatinase activity of secreted MMP-2 and MMP-9. Conclusion: These findings suggest that NDRG2 may be a new anti-invasion factor in lung cancer that inhibits MMPs activities. PMID:26557966

  7. Serum levels of cartilage oligomeric matrix protein (COMP): a rapid decrease in patients with active rheumatoid arthritis undergoing intravenous steroid treatment.

    PubMed

    Skoumal, M; Haberhauer, G; Feyertag, J; Kittl, E M; Bauer, K; Dunky, A

    2006-09-01

    To examine the influence of intravenous steroid-treatment (IST) on serum levels of Cartilage oligomeric matrix protein (COMP) in patients with active rheumatoid arthritis (RA). Serum levels of COMP and C-reactive protein (CRP) were measured in 12 patients with highly active RA (Steinbrocker stages II-IV) and in 5 patients with highly active reactive arthritis (ReA) (positive testing for HLA-B27) before starting daily IST. Patients received a total steroid dosage between 100 and 500 mg of prednisolone. COMP was measured by a commercially available sandwich-type ELISA-kit developed by AnaMar Medical AB, Sweden. Statistical evaluation was calculated by paired t test. In the RA group, COMP levels ranged from 6.3 to 19.4 U/l (mean 12.9 U/l), CRP from 5 to 195 mg/l (mean 77.8 mg/l), the COMP levels of the ReA group ranged from 5.1 to 7.4 U/l (mean 7.9 U/l), the CRP levels from 13 to 126 mg/l (mean 49 mg/l). We found a significant difference between the initial COMP levels in RA+ and ReA patients (P<0.005). In contrast to the ReA group, serum-COMP levels of RA+ patients (P<0.004) and the VAS (P<0.0001) decreased significantly within 2-10 days after the first treatment with steroids. The CRP levels remained unchanged in both groups. Our results indicate that the intravenous treatment with steroids in patients with highly active RA leads to a significant decrease of cartilage degradation. COMP seems to be a valuable parameter not even as a prognostic factor, but as a marker for monitoring the therapy response in patients with RA. PMID:16485108

  8. 7-Hydroxycoumarin prevents UVB-induced activation of NF-κB and subsequent overexpression of matrix metalloproteinases and inflammatory markers in human dermal fibroblast cells.

    PubMed

    Karthikeyan, Ramasamy; Kanimozhi, Govindasamy; Prasad, Nagarajan Rajendra; Agilan, Balupillai; Ganesan, Muthusamy; Mohana, Shanmugham; Srithar, Gunaseelan

    2016-08-01

    Ultraviolet B (UVB) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage. Human dermal fibroblasts (HDFa) were subjected to single UVB-irradiation (18mJ/cm(2)) resulting in reactive oxygen species (ROS) generation, oxidative DNA damage and upregulation of nuclear factor kappa B (NF-κB) expression. Further, it has been observed that there was a significant cytokine production (TNF-α and IL-6) in UVB irradiated HDFa cells. Our results show that 7-hydroxycoumarin (7-OHC) prevents UVB-induced activation of NF-κB thereby subsequently preventing the overexpression of TNF-α and IL-6 in HDFa cells. Further, 7-OHC prevents UVB-induced activation of cyclooxygenase-2 (COX-2) expression, an inflammatory mediator in skin cells. Moreover, 7-OHC inhibited mRNA expression pattern of matrix metalloproteinases (MMP-1 and MMP-9) in UVB irradiated skin cells. Furthermore, 7-OHC restored antioxidant status, thereby scavenging the excessively generated ROS; consequently preventing the oxidative DNA damage. It has also been noticed that 7-OHC prevents UVB mediated DNA damage through activation of DNA repair enzymes such as XRCC1 and HOGG1. In this study, we treated HDFa cells with 7-OHC before and after UVB irradiation and we found that pretreatment showed better results when compared to posttreatment. Further, 7-OHC showed 9.8416 sun protection factor (SPF) value and it absorbs photons in the UVB wavelength rage. Thus, it has been concluded that sunscreen property, free radical scavenging potential and prevention of NF-κB activation play a role for photoprotective property of 7-OHC. PMID:27240190

  9. Inhibition of MDA-MB-231 breast cancer cell migration and invasion activity by andrographolide via suppression of nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Zhai, Zanjing; Qu, Xinhua; Li, Haowei; Ouyang, Zhengxiao; Yan, Wei; Liu, Guangwang; Liu, Xuqiang; Fan, Qiming; Tang, Tingting; Dai, Kerong; Qin, An

    2015-02-01

    Breast cancer is one of the most common types of cancer worldwide. The majority of patients with cancer succumb to the disease as a result of distant metastases (for example, in the bones), which cause severe complications. Despite advancements in breast cancer treatment, chemotherapeutic outcomes remain far from satisfactory, prompting a search for effective natural agents with few side‑effects. Andrographolide (AP), a natural diterpenoid lactone isolated from Andrographis paniculata, inhibits cancer cell growth. The current study aimed to examine the effect of AP on breast cancer cell proliferation, survival and progression in vitro and also its inhibitory activity on breast cancer bone metastasis in vivo. To achieve this, CCK8, flow cytometry, migration, invasion, western blot, PCR and luciferase reporter assay analyses were performed in vitro as well as establishing intratibial xenograft model of breast cancer bone metastasis in vivo. The results demonstrated that AP inhibits the migration and invasion of the MBA‑MD‑231 aggressive breast cancer cell line at non‑lethal concentrations, in addition to suppressing proliferation and inducing apoptosis at high concentrations in vitro. In vivo, AP significantly inhibited the growth of tumors planted in bone and attenuated cancer‑induced osteolysis. Tartrate‑resistant acid phosphatase staining revealed osteoclast activation in tumor‑bearing mice and AP was observed to attenuate this activation. The anti‑tumor activity of AP in vitro and in vivo correlates with the downregulation of the nuclear factor κB signaling pathway and the inhibition of matrix metalloproteinase‑9 expression levels. These results indicate that AP may be an effective anti‑tumor agent for the treatment of breast cancer bone metastasis. PMID:25374279

  10. Phenotypic switching induced by damaged matrix is associated with DNA methyltransferase 3A (DNMT3A) activity and nuclear localization in smooth muscle cells (SMC).

    PubMed

    Jiang, Jia-Xin; Aitken, Karen J; Sotiropoulos, Chris; Sotiropolous, Chris; Kirwan, Tyler; Panchal, Trupti; Zhang, Nicole; Pu, Shuye; Wodak, Shoshana; Tolg, Cornelia; Bägli, Darius J

    2013-01-01

    Extracellular matrix changes are often crucial inciting events for fibroproliferative disease. Epigenetic changes, specifically DNA methylation, are critical factors underlying differentiated phenotypes. We examined the dependency of matrix-induced fibroproliferation and SMC phenotype on DNA methyltransferases. The cooperativity of matrix with growth factors, cell density and hypoxia was also examined. Primary rat visceral SMC of early passage (0-2) were plated on native collagen or damaged/heat-denatured collagen. Hypoxia was induced with 3% O2 (balanced 5% CO2 and 95% N2) over 48 hours. Inhibitors were applied 2-3 hours after cells were plated on matrix, or immediately before hypoxia. Cells were fixed and stained for DNMT3A and smooth muscle actin (SMA) or smooth muscle myosin heavy chain. Illumina 450 K array of CpG sites was performed on bisulfite-converted DNA from smooth muscle cells on damaged matrix vs native collagen. Matrix exquisitely regulates DNMT3A localization and expression, and influences differentiation in SMCs exposed to denatured matrix +/- hypoxia. Analysis of DNA methylation signatures showed that Matrix caused significant DNA methylation alterations in a discrete number of CpG sites proximal to genes related to SMC differentiation. Matrix has a profound effect on the regulation of SMC phenotype, which is associated with altered expression, localization of DNMTs and discrete changes DNA methylation. PMID:24282625

  11. Development of ballistic hot electron emitter and its applications to parallel processing: active-matrix massive direct-write lithography in vacuum and thin films deposition in solutions

    NASA Astrophysics Data System (ADS)

    Koshida, N.; Kojima, A.; Ikegami, N.; Suda, R.; Yagi, M.; Shirakashi, J.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Nishino, H.; Yoshida, S.; Sugata, M.; Totsu, K.; Esashi, M.

    2015-03-01

    Making the best use of the characteristic features in nanocrystalline Si (nc-Si) ballistic hot electron source, the alternative lithographic technology is presented based on the two approaches: physical excitation in vacuum and chemical reduction in solutions. The nc-Si cold cathode is a kind of metal-insulator-semiconductor (MIS) diode, composed of a thin metal film, an nc-Si layer, an n+-Si substrate, and an ohmic back contact. Under a biased condition, energetic electrons are uniformly and directionally emitted through the thin surface electrodes. In vacuum, this emitter is available for active-matrix drive massive parallel lithography. Arrayed 100×100 emitters (each size: 10×10 μm2, pitch: 100 μm) are fabricated on silicon substrate by conventional planar process, and then every emitter is bonded with integrated complementary metal-oxide-semiconductor (CMOS) driver using through-silicon-via (TSV) interconnect technology. Electron multi-beams emitted from selected devices are focused by a micro-electro-mechanical system (MEMS) condenser lens array and introduced into an accelerating system with a demagnification factor of 100. The electron accelerating voltage is 5 kV. The designed size of each beam landing on the target is 10×10 nm2 in square. Here we discuss the fabrication process of the emitter array with TSV holes, implementation of integrated ctive-matrix driver circuit, the bonding of these components, the construction of electron optics, and the overall operation in the exposure system including the correction of possible aberrations. The experimental results of this mask-less parallel pattern transfer are shown in terms of simple 1:1 projection and parallel lithography under an active-matrix drive scheme. Another application is the use of this emitter as an active electrode supplying highly reducing electrons into solutions. A very small amount of metal-salt solutions is dripped onto the nc-Si emitter surface, and the emitter is driven without

  12. The Effect of Progestins on Tumor Necrosis Factor α-Induced Matrix Metalloproteinase 9 Activity and Gene Expression in Human Primary Amnion and Chorion Cells In Vitro

    PubMed Central

    Allen, Terrence K; Feng, Liping; Nazzal, Matthew; Grotegut, Chad A; Buhimschi, Irina A; Murtha, Amy P

    2015-01-01

    Background Current treatment modalities for preventing preterm premature rupture of membranes (PPROM) are limited, but progestins may play a role. Tumor necrosis factor α (TNFα) enhances matrix metalloproteinase 9 (MMP-9) gene expression and activity in fetal membranes, contributing to membrane weakening and rupture. We previously demonstrated that progestins attenuate TNFα-induced MMP-9 activity in a cytotrophoblast cell line. However, whether they have a similar effect in primary amnion and chorion cells of fetal membranes is unknown. In this study we evaluated the effect of progestins on basal and TNFα-induced MMP-9 activity and gene expression in primary chorion and amnion cells harvested from the fetal membranes of term non-laboring patients. Methods Primary amnion and chorion cells were isolated from fetal membranes obtained from term uncomplicated non-laboring patients following elective cesarean delivery (n=11). Confluent primary amnion and chorion cell cultures were both pretreated with vehicle (control), progesterone (P4), 17α-hydroxyprogesterone caproate (17P) or medroxyprogesterone acetate (MPA) at 10-6 M concentration for 6 h followed by stimulation with TNFα at 10 ng/mL for an additional 24 h. Cell cultures pretreated with the vehicle only served as the unstimulated control and the vehicle stimulated with TNFα served as the stimulated control. Both controls were assigned a value of 100 units. Cell culture medium was harvested for MMP-9 enzymatic activity quantification using gelatin zymography. Total RNA was extracted for quantifying MMP-9 gene expression using RT-qPCR. Basal MMP-9 activity and gene expression data were normalized to the unstimulated control. TNFα-stimulated MMP-9 activity and gene expression were normalized to the stimulated control. The primary outcome was the effect of progestins on TNFα-induced MMP-9 enzymatic activity in term human primary amnion and chorion cells in vitro. Secondary outcomes included the effect of

  13. The study of electromagnetic wave propagation in photonic crystals via planewave based transfer (scattering) matrix method with active gain material applications

    NASA Astrophysics Data System (ADS)

    Li, Ming

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional (2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Further more, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. First, the planewave based transfer (scattering) matrix method (TMM) is described in every detail along with a brief review of photonic crystal history (Chapter 1 and 2). As a frequency domain method, TMM has the following major advantages over other numerical methods: (1) the planewave basis makes Maxwell's Equations a linear algebra problem and there are mature numerical package to solve linear algebra problem such as Lapack and Scalapack (for parallel computation). (2) Transfer (scattering) matrix method make 3D problem into 2D slices and link all slices together via the scattering matrix (S matrix) which reduces computation time and memory usage dramatically and makes 3D real photonic crystal devices design possible; and this also makes the simulated domain no length limitation along the propagation direction (ideal for waveguide simulation). (3) It is a frequency domain method and calculation results are all for steady state, without the influences of finite time span convolution effects and/or transient effects. (4) TMM can treat dispersive material (such as metal at visible light) naturally without introducing any additional computation; and meanwhile TMM can also deal with anisotropic material and magnetic material (such as perfectly matched layer) naturally from its algorithms. (5) Extension of TMM to deal with active gain material can be done through an iteration procedure with gain

  14. Inhaled corticosteroids do not reduce initial high activity of matrix metalloproteinase (MMP)-9 in exhaled breath condensates of children with asthma exacerbation: a proof of concept study

    PubMed Central

    Grzela, Katarzyna; Zagórska, Wioletta; Krejner, Alicja; Banaszkiewicz, Aleksandra; Litwiniuk, Małgorzata; Kulus, Marek

    2016-01-01

    Inhaled corticosteroids (ICS) are the key component of asthma treatment. However, it is unclear whether they could control the activity and level of matrix metalloproteinase (MMP)-9, which is an important factor in asthma-associated inflammation and airway remodeling. Therefore, the aim of this proof of concept study was to analyze the influence of increased doses of ICS on MMP-9 in exhaled breath condensates (EBC) of patients with allergic asthma exacerbation. Apart from MMP-9, the assessment concerned selected inflammation markers – exhaled nitric oxide (eNO) and cytokines (IL-8 and TNF). The study involved a small group (n = 4) of individuals with asthma exacerbation. The intervention concerned increased doses of ICS with β-mimetics for 4 weeks. In addition to clinical evaluation, eNO measurements and EBC collections were done before and after 4 weeks of intense ICS treatment. The biochemical assessment of EBC concerned MMP-9, IL-8 and TNF. The data were compared to results of healthy controls (n = 6). The initial levels of eNO, MMP-9 and TNF in EBC were higher in the asthma group than in controls. In all subjects IL-8 levels were below the detection limit. After 4 weeks of ICS treatment in all patients we observed improvement of clinical and laboratory parameters. Interestingly, despite reduction of eNO and TNF, the activity of MMP-9/EBC remained on the initial level. Practical relevance of our results is limited by a small group. Nevertheless, our data suggest that ICS, although sufficient to control symptoms and inflammatory markers, may be ineffective to reduce MMP-9/EBC activity in asthma exacerbation and, possibly, airway remodeling. PMID:27536209

  15. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  16. Heterogeneous adsorption behavior of landfill leachate on granular activated carbon revealed by fluorescence excitation emission matrix (EEM)-parallel factor analysis (PARAFAC).

    PubMed

    Lee, Sonmin; Hur, Jin

    2016-04-01

    Heterogeneous adsorption behavior of landfill leachate on granular activated carbon (GAC) was investigated by fluorescence excitation-emission matrix (EEM) combined with parallel factor analysis (PARAFAC). The equilibrium adsorption of two leachates on GAC was well described by simple Langmuir and Freundlich isotherm models. More nonlinear isotherm and a slower adsorption rate were found for the leachate with the higher values of specific UV absorbance and humification index, suggesting that the leachate containing more aromatic content and condensed structures might have less accessible sites of GAC surface and a lower degree of diffusive adsorption. Such differences in the adsorption behavior were found even within the bulk leachate as revealed by the dissimilarity in the isotherm and kinetic model parameters between two identified PARAFAC components. For both leachates, terrestrial humic-like fluorescence (C1) component, which is likely associated with relatively large sized and condensed aromatic structures, exhibited a higher isotherm nonlinearity and a slower kinetic rate for GAC adsorption than microbial humic-like (C2) component. Our results were consistent with size exclusion effects, a well-known GAC adsorption mechanism. This study demonstrated the promising benefit of using EEM-PARAFAC for GAC adsorption processes of landfill leachate through fast monitoring of the influent and treated leachate, which can provide valuable information on optimizing treatment processes and predicting further environmental impacts of the treated effluent. PMID:26849193

  17. Incorporation of nanostructured hydroxyapatite and poly(N-isopropylacrylamide) in demineralized bone matrix enhances osteoblast and human mesenchymal stem cell activity.

    PubMed

    Nicoletti, Alessandro; Torricelli, Paola; Bigi, Adriana; Fornasari, Piermaria; Fini, Milena; Moroni, Lorenzo

    2015-01-01

    Demineralized bone matrix (DBM) is currently used in many clinical applications for bone augmentation and repair. DBM is normally characterized by the presence of bone morphogenetic proteins. In this study, the authors have optimized methods to obtain DBM under good manufacturing practice, resulting in enhanced bioactivity. The processed DBM can be used alone, together with nanostructured hydroxyapatite (nanoHA), or dispersed in a physiological carrier or hydrogel. In this study, osteoblasts (MG-63) and human bone marrow derived mesenchymal stem cells (hMSCs) were cultured on DBM pastes made in phosphate buffered saline solution or poly(N-isopropylacrylamide) (PNIPAAM) hydrogels with or without nanoHA. The authors observed that the presence of PNIPAAM reduced osteoblast adhesion, while the addition of nanoHA increased osteoblast adhesion, proliferation, interleukin-6 (IL-6) production, and reduced lactate dehydrogenase (LDH) production. Increasing concentrations of PNIPAAM in combination with nanoHA further increased osteoblast proliferation, and decreased IL-6 and LDH production. Incorporation of PNIPAAM in DBM enhanced hMSCs proliferation and collagen type-I production. Furthermore, a combination of PNIPAAM and nanoHA further increased alkaline phosphatase and osteocalcin production in hMSCs, independently from the concentration of PNIPAAM. This study shows that combinations of DBM with nanoHA and PNIPAAM seem to offer a promising route to enhance cell activity and induce osteogenic differentiation. PMID:26443012

  18. Novel insights into enzymatic-enhanced anaerobic digestion of waste activated sludge by three-dimensional excitation and emission matrix fluorescence spectroscopy.

    PubMed

    Luo, Kun; Yang, Qi; Li, Xiao-ming; Chen, Hong-Bo; Liu, Xian; Yang, Guo-jing; Zeng, Guang-Ming

    2013-04-01

    In our previous study, it has been proposed that the hydrolysis of waste activated sludge (WAS) can be enhanced by hydrolytic enzymes. In this study, fluorescence spectral characteristics of extracellular polymeric substances (EPSs) and dissolved organic matter (DOM) during anaerobic digestion were investigated using three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy to explore the destruction mechanisms of WAS enhanced by additional enzymes (protease, α-amylase and the mixture). Two individual fluorescence peaks associated with protein-like fluorophores (aromatic and tryptophan protein-like substances) were identified in the EEM fluorescence spectra of the EPS after 1 and 6d, and only aromatic protein-like substances were observed after 12d of anaerobic digestion for all treatments. As for the DOM, three individual fluorescence peaks were identified, but the peaks associated with visible humic acid-like fluorophores disappeared after 12d. The EEM fluorescence intensity of EPS decreased during the entire anaerobic process, whereas that of the DOM increased at 1d and then decreased till the end. In the EPS, the residual protein-like substances were found to be the lowest during the entire anaerobic process when treated with protease. Correspondingly, the protein-like substances in the DOM increased rapidly from 1 to 6d, and decreased to the lowest level after 12d for the protease treatment. PMID:23266409

  19. Short channel amorphous In-Ga-Zn-O thin-film transistor arrays for ultra-high definition active matrix liquid crystal displays: Electrical properties and stability

    NASA Astrophysics Data System (ADS)

    Kim, Soo Chang; Kim, Young Sun; Yu, Eric Kai-Hsiang; Kanicki, Jerzy

    2015-09-01

    The electrical properties and stability of ultra-high definition (UHD) amorphous In-Ga-Zn-O (a-IGZO) thin-film transistor (TFT) arrays with short channel (width/length = 12/3 μm) were examined. A-IGZO TFT arrays have a mobility of ∼6 cm2/V s, subthreshold swing (S.S.) of 0.34 V/decade, threshold voltage of 3.32 V, and drain current (Id) on/off ratio of <109 with Ioff below 10-13 A. Overall these devices showed slightly different electrical characteristics as compared to the long channel devices; non-saturation of output curve at high drain-to-source voltage (Vds), negative shift of threshold voltage with increasing Vds, and the mobility reduction at high gate voltage (Vgs) were observed. The second derivative method adopting Tikhonov's regularization theory is suggested for the robust threshold voltage extraction. The temperature dependency of γ-value was established after taking into consideration the impact of source/drain contact resistances. The AC bias-temperature stress was used to simulate the actual operation of active matrix liquid crystal displays (AM-LCDs). The threshold voltage shift had a dependency on the magnitude of drain bias stress, frequency, and duty cycle due to the impact ionization accelerated at high temperature. This study demonstrates that the short channel effects, source/drain contact resistances and impact ionization have to be taken into account during optimization of UHD AM-LCDs.

  20. Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2

    PubMed Central

    Du, Hong; El-Mohri, Youcef; Zhao, Qihua; Su, Zhong; Yamamoto, Jin; Wang, Yi

    2009-01-01

    Active matrix, flat-panel x-ray imagers based on a-Si:H thin film transistors offer many advantages and are widely utilized in medical imaging applications. Unfortunately, the detective quantum efficiency (DQE) of conventional flat-panel imagers incorporating scintillators or a-Se photoconductors is significantly limited by their relatively modest signal to noise ratio, particularly in applications involving low x-ray exposures or high spatial resolution. For this reason, polycrystalline HgI2 is of considerable interest by virtue of its low effective work function, high atomic number, and the possibility of large-area deposition. In this study, a detailed investigation of the properties of prototype, flat-panel arrays coated with two forms of this high-gain photoconductor are reported. Encouragingly, high x-ray sensitivity, low dark current, and spatial resolution close to the theoretical limits were observed from a number of prototypes. In addition, input-quantum-limited DQE performance was measured from one of the prototypes at relatively low exposures. However, high levels of charge trapping, lag, and polarization, as well as pixel-to-pixel variations in x-ray sensitivity are of concern. While the results of the current study are promising, further development will be required to realize prototypes exhibiting the characteristics necessary to allow practical implementation of this approach. PMID:18296765

  1. High-throughput colorimetric assays for mercury(II) in blood and wastewater based on the mercury-stimulated catalytic activity of small silver nanoparticles in a temperature-switchable gelatin matrix.

    PubMed

    Sun, Zongzhao; Zhang, Ning; Si, Yanmei; Li, Shuai; Wen, Jiangwei; Zhu, Xiangbing; Wang, Hua

    2014-08-21

    A catalysis-based, label-free, and high-throughput colorimetric protocol has been initially proposed for detecting mercury(II) in blood and wastewater with 96-cell plates, based on the mercury-enhanced catalytic activity of small silver nanoparticles synthesized in a gelatin matrix with unique temperature switchable sol-gel transition. PMID:24995435

  2. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    PubMed

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic

  3. Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis.

    PubMed

    Dal-Pizzol, Felipe; Rojas, Hugo Alberto; dos Santos, Emilia Marcelina; Vuolo, Francieli; Constantino, Larissa; Feier, Gustavo; Pasquali, Matheus; Comim, Clarissa M; Petronilho, Fabrícia; Gelain, Daniel Pens; Quevedo, João; Moreira, José Cláudio Fonseca; Ritter, Cristiane

    2013-08-01

    There is no description on the mechanisms associated with blood-brain barrier (BBB) disruption during sepsis development. Thus, we here determined changes in permeability of the BBB in an animal model of severe sepsis and the role of matrix metalloproteinase (MMP)-2 and MMP-9 in the dysfunction of the BBB. Sepsis was induced in Wistar rats by cecal ligation and perforation. BBB permeability was assessed using the Evans blue dye method. The content of MMP-2 and MMP-9 in the cerebral microvessels was determined by western blot. The activity of MMP-2 and MMP-9 was determined using zymography. An inhibitor of MMP-2 and MMP-9 or specific inhibitors of MMP-2 or MMP-9 were administered to define the role of MMPs on BBB permeability, brain inflammatory response, and sepsis-induced cognitive alterations. The increase of BBB permeability is time-related to the increase of MMP-9 and MMP-2 in the microvessels, both in cortex and hippocampus. Using an MMP-2 and MMP-9 inhibitor, or specific MMP-2 or MMP-9 inhibitors, the increase in the permeability of the BBB was reversed. This was associated with lower brain levels of interleukin (IL)-6 and lower oxidative damage. In contrast, only the inhibition of both MMP-9 and MMP-2 was able to improve acute cognitive alterations associated with sepsis. In conclusion, MMP-2 and MMP-9 activation seems to be a major step in BBB dysfunction, but BBB dysfunction seems not to be associated with acute cognitive dysfunction during sepsis development. PMID:23479197

  4. Glabridin inhibits migration and invasion by transcriptional inhibition of matrix metalloproteinase 9 through modulation of NF-κB and AP-1 activity in human liver cancer cells

    PubMed Central

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Yang, Shun-Fa; Chen, Mu-Kuan; Chiou, Hui-Ling

    2014-01-01

    BACKGROUND AND PURPOSE High mortality and morbidity rates for hepatocellular carcinoma in Taiwan primarily result from uncontrolled tumour metastasis. Glabridin, a prenylated isoflavonoid of licorice (Glycyrrhiza glabra) roots, is associated with a wide range of biological properties, such as regulation of energy metabolism, oestrogenic, neuroprotective, anti-osteoporotic and skin whitening. However, the effect of glabridin on the metastasis of tumour cells has not been clarified. EXPERIMENTAL APPROACH A wound healing model and Boyden chamber assays in vitro were used to determine the effects of glabridin on the migration and invasion of human hepatocellular carcinoma (HHC) cells. Western blot analysis, gelatin zymography, real-time PCR and promoter assays were used to evaluate the inhibitory effects of glabridin on matrix metalloproteinase 9 (MMP9) expression in these cells. KEY RESULTS Glabridin significantly inhibited migration/invasion capacities of HCC cells, Huh7 and Sk-Hep-1, cell lines that have low cytotoxicity in vitro, even at high concentrations. Western blot analysis and gelatin zymography showed that glabridin inhibited the expression, activities and protein levels of MMP9 and the phosphorylation of ERK1/2 and JNK1/2. These inhibitory effects were associated with an up-regulation of tissue inhibitor of metalloproteinase-1 and a down-regulation of the transcription factors NF-κB and activator protein 1 signalling pathways. Finally, the administration of glabridin effectively suppressed the tumour formation in the hepatoma xenograft model in vivo. CONCLUSION AND IMPLICATIONS Glabridin inhibited the invasion of human HCC cells and may have potential as a chemopreventive agent against liver cancer metastasis. PMID:24641665

  5. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D.

    PubMed

    Kleinhans, C; Schmid, F F; Schmid, F V; Kluger, P J

    2015-07-10

    Bone homeostasis is maintained by osteoblasts (bone formation) and osteoclasts (bone resorption). While there have been numerous studies investigating mesenchymal stem cells and their potential to differentiate into osteoblasts as well as their interaction with different bone substitute materials, there is only limited knowledge concerning in vitro generated osteoclasts. Due to the increasing development of degradable bone-grafting materials and the need of sophisticated in vitro test methods, it is essential to gain deeper insight into the process of osteoclastogenesis and the resorption functionality of human osteoclasts. Therefore, we focused on the comparison of osteoclastogenesis and resorption activity on tissue culture polystyrene (TCPS) and bovine extracellular bone matrices (BMs). Cortical bone slices were used as two-dimensional (2D) substrates, whereas a thermally treated cancellous bone matrix was used for three-dimensional (3D) experiments. We isolated primary human monocytes and induced osteoclastogenesis by medium supplementation. Subsequently, the expression of the vitronectin receptor (αVβ3) and cathepsin K as well as the characteristic actin formation on TCPS and the two BMs were examined. The cell area of human osteoclasts was analyzed on TCPS and on BMs, whereas significantly larger osteoclasts could be detected on BMs. Additionally, we compared the diameter of the sealing zones with the measured diameter of the resorption pits on the BMs and revealed similar diameters of the sealing zones and the resorption pits. We conclude that using TCPS as culture substrate does not affect the expression of osteoclast-specific markers. The analysis of resorption activity can successfully be conducted on cortical as well as on cancellous bone matrices. For new in vitro test systems concerning bone resorption, we suggest the establishment of a 2D assay for high throughput screening of new degradable bone substitute materials with osteoclasts. PMID:25562421

  6. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si-xTi Foils as Active Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-02-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si-xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  7. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si- xTi Foils as Active Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-06-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si- xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  8. Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities

    SciTech Connect

    Borkham-Kamphorst, Erawan Alexi, Pascal; Tihaa, Lidia; Haas, Ute; Weiskirchen, Ralf

    2015-02-13

    Platelet-derived growth factor-D (PDGF-D) is a more recent recognized growth factor involved in the regulation of several cellular processes, including cell proliferation, transformation, invasion, and angiogenesis by binding to and activating its cognate receptor PDGFR-β. After bile duct ligation or in the carbon tetrachloride-induced hepatic fibrosis model{sub ,} PDGF-D showed upregulation comparable to PDGF-B. Moreover, adenoviral PDGF-D gene transfer induced hepatic stellate cell proliferation and liver fibrosis. We here investigated the molecular mechanism of PDGF-D involvement in liver fibrogenesis. Therefore, the GRX mouse cell line was stimulated with PDGF-D and evaluated for fibrotic markers and PDGF-D signaling pathways in comparison to the other PDGF isoforms. We found that PDGF-D failed to enhance Col I and α-smooth muscle actin (α-SMA) production but has capacity to upregulate expression of the tissue inhibitor of metalloprotease 1 (TIMP-1) resulting in attenuation of MMP-2 and MMP-9 gelatinase activity as indicated by gelatinase zymography. This phenomenon was restored through application of a PDGF-D neutralizing antibody. Unexpectedly, PDGF-D incubation decreased both PDGFR-α and -β in mRNA and protein levels, and PDGF-D phosphorylated typrosines specific for PDGFR-α and -β. We conclude that PDGF-D intensifies fibrogenesis by interfering with the fibrolytic activity of the TIMP-1/MMP system and that PDGF-D signaling is mediated through both PDGF-α and -β receptors. - Highlights: • PDGF-D signals through PDGF receptor type α and β. • PDGF-D modulates extracellular matrix homeostasis and remodeling. • Like PDGF-B, PDGF-D triggers phosphorylation of PLC-γ, Akt/PKB, JNK, ERK1/2, and p38. • PDGF-D induces TIMP-1 expression through ERK and p38 MAPK. • PDGF-D attenuates MMP-2 and MMP-9 gelatinase activities.

  9. Extracellular matrix and wound healing.

    PubMed

    Maquart, F X; Monboisse, J C

    2014-04-01

    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. PMID:24650524

  10. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    PubMed Central

    Wan, Rong; Mo, Yiqun; Zhang, Xing; Chien, Sufan; Tollerud, David J.; Zhang, Qunwei

    2009-01-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO2 to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO2 and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO2, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression.. Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO2. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2 (TIMP-2) in U937 cells after

  11. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    SciTech Connect

    Wan Rong; Mo Yiqun; Zhang Xing; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2008-12-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO{sub 2} to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO{sub 2} and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression{sub ..} Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2

  12. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    SciTech Connect

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko; Kondo, Ayami; Mogi, Makio; Nakamura, Hiroshi

    2014-04-15

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7{sup +}hSMSC)-derived osteoblast-like (α7{sup +}hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7{sup +}hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7{sup +}hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7{sup +}hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via

  13. Nr4a1-eGFP Is a Marker of Striosome-Matrix Architecture, Development and Activity in the Extended Striatum

    PubMed Central

    Davis, Margaret I.; Puhl, Henry L.

    2011-01-01

    Transgenic mice expressing eGFP under population specific promoters are widely used in neuroscience to identify specific subsets of neurons in situ and as sensors of neuronal activity in vivo. Mice expressing eGFP from a bacterial artificial chromosome under the Nr4a1 promoter have high expression within the basal ganglia, particularly within the striosome compartments and striatal-like regions of the extended amygdala (bed nucleus of the stria terminalis, striatal fundus, central amygdaloid nucleus and intercalated cells). Grossly, eGFP expression is inverse to the matrix marker calbindin 28K and overlaps with mu-opioid receptor immunoreactivity in the striatum. This pattern of expression is similar to Drd1, but not Drd2, dopamine receptor driven eGFP expression in structures targeted by medium spiny neuron afferents. Striosomal expression is strong developmentally where Nr4a1-eGFP expression overlaps with Drd1, TrkB, tyrosine hydroxylase and phospho-ERK, but not phospho-CREB, immunoreactivity in “dopamine islands”. Exposure of adolescent mice to methylphenidate resulted in an increase in eGFP in both compartments in the dorsolateral striatum but eGFP expression remained brighter in the striosomes. To address the role of activity in Nr4a1-eGFP expression, primary striatal cultures were prepared from neonatal mice and treated with forskolin, BDNF, SKF-83822 or high extracellular potassium and eGFP was measured fluorometrically in lysates. eGFP was induced in both neurons and contaminating glia in response to forskolin but SKF-83822, brain derived neurotrophic factor and depolarization increased eGFP in neuronal-like cells selectively. High levels of eGFP were primarily associated with Drd1+ neurons in vitro detected by immunofluorescence; however ∼15% of the brightly expressing cells contained punctate met-enkephalin immunoreactivity. The Nr4a1-GFP mouse strain will be a useful model for examining the connectivity, physiology, activity and development of the

  14. Involvement of nitric oxide synthase in matrix metalloproteinase-9- and/or urokinase plasminogen activator receptor-mediated glioma cell migration

    PubMed Central

    2013-01-01

    Background Src tyrosine kinase activates inducible nitric oxide synthase (iNOS) and, in turn, nitric oxide production as a means to transduce cell migration. Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Our recent studies have clearly demonstrated the role of α9β1 integrin in matrix metalloproteinase-9 (MMP-9) and/or urokinase plasminogen activator receptor (uPAR)-mediated glioma cell migration. In the present study, we evaluated the involvement of α9β1 integrin-iNOS pathway in MMP-9- and/or uPAR-mediated glioma cell migration. Methods MMP-9 and uPAR shRNAs and overexpressing plasmids were used to downregulate and upregulate these molecules, respectively in U251 glioma cells and 5310 glioma xenograft cells. The effect of treatments on migration and invasion potential of these glioma cells were assessed by spheroid migration, wound healing, and Matrigel invasion assays. In order to attain the other objectives we also performed immunocytochemical, immunohistochemical, RT-PCR, Western blot and fluorescence-activated cell sorting (FACS) analysis. Results Immunohistochemical analysis revealed the prominent association of iNOS with glioblastoma multiforme (GBM). Immunofluorescence analysis showed prominent expression of iNOS in glioma cells. MMP-9 and/or uPAR knockdown by respective shRNAs reduced iNOS expression in these glioma cells. RT-PCR analysis revealed elevated iNOS mRNA expression in either MMP-9 or uPAR overexpressed glioma cells. The migration potential of MMP-9- and/or uPAR-overexpressed U251 glioma cells was significantly inhibited after treatment with L-NAME, an inhibitor of iNOS. Similarly, a significant inhibition of the invasion potential of the control or MMP-9/uPAR-overexpressed glioma cells was noticed after L-NAME treatment. A prominent reduction of iNOS expression was observed in the tumor regions of nude mice brains, which were injected with 5310 glioma cells, after MMP-9 and/or uPAR knockdown. Protein expressions

  15. Boron Induces Early Matrix Mineralization via Calcium Deposition and Elevation of Alkaline Phosphatase Activity in Differentiated Rat Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Movahedi Najafabadi, Bent-al-hoda; Abnosi, Mohammad Hussein

    2016-01-01

    Objective Boron (B) is essential for plant development and might be an essential micronutrient for animals and humans. This study was conducted to characterize the impact of boric acid (BA) on the cellular and molecular nature of differentiated rat bone marrow mesenchymal stem cells (BMSCs). Materials and Methods In this experimental study, BMSCs were extracted and expanded to the 3rdpassage, then cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) complemented with osteogenic media as well as 6 ng/ml and 6 µg/ml of BA. After 5, 10, 15 and 21 days the viability and the level of mineralization was determined using MTT assay and alizarin red respectively. In addition, the morphology, nuclear diameter and cytoplasmic area of the cells were studied with the help of fluorescent dye. The concentration of calcium, activity of alanine transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) as well as sodium and potassium levels were also evaluated using commercial kits and a flame photometer respectively. Results Although 6 µg/ml of BA was found to be toxic, a concentration of 6 ng/ml increased the osteogenic ability of the cell significantly throughout the treatment. In addition it was observed that B treatment caused the early induction of matrix mineralization compared to controls. Conclusion Although more investigation is required, we suggest the prescription of a very low concentration of B in the form of BA or foods containing BA, in groups at high risk of osteoporosis or in the case of bone fracture. PMID:27054120

  16. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays.

    PubMed

    Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu

    2009-11-24

    We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature. PMID:19842677

  17. Efficient Detection of Carbapenemase Activity in Enterobacteriaceae by Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry in Less Than 30 Minutes

    PubMed Central

    Lasserre, Camille; De Saint Martin, Luc; Cuzon, Gaelle; Bogaerts, Pierre; Lamar, Estelle; Glupczynski, Youri; Naas, Thierry

    2015-01-01

    The recognition of carbapenemase-producing Enterobacteriaceae (CPE) isolates is a major laboratory challenge, and their inappropriate or delayed detection may have negative impacts on patient management and on the implementation of infection control measures. We describe here a matrix-assisted laser desorption ionization−time of flight (MALDI-TOF)-based method to detect carbapenemase activity in Enterobacteriaceae. After a 20-min incubation of the isolate with 0.5 mg/ml imipenem at 37°C, supernatants were analyzed by MALDI-TOF in order to identify peaks corresponding to imipenem (300 Da) and an imipenem metabolite (254 Da). A total of 223 strains, 77 CPE (OXA-48 variants, KPC, NDM, VIM, IMI, IMP, and NMC-A) and 146 non-CPE (cephalosporinases, extended-spectrum β-lactamases [ESBLs], and porin defects), were tested and used to calculate a ratio of imipenem hydrolysis: mass spectrometry [MS] ratio = metabolite/(imipenem + metabolite). An MS ratio cutoff was statistically determined to classify strains as carbapenemase producers (MS ratio of ≥0.82). We validated this method first by testing 30 of our 223 isolates (15 CPE and 15 non-CPE) 10 times to calculate an intraclass correlation coefficient (ICC of 0.98), showing the excellent repeatability of the method. Second, 43 strains (25 CPE and 18 non-CPE) different from the 223 strains used to calculate the ratio cutoff were used as external controls and blind tested. They yielded sensitivity and specificity of 100%. The total cost per test is <0.10 U.S. dollars (USD). This easy-to-perform assay is time-saving, cost-efficient, and highly reliable and might be used in any routine laboratory, given the availability of mass spectrometry, to detect CPE. PMID:25926485

  18. Effect of pH and water activity on the growth limits of Listeria monocytogenes in a cheese matrix at two contamination levels.

    PubMed

    Schvartzman, M S; Belessi, C; Butler, F; Skandamis, P N; Jordan, K N

    2011-11-01

    Listeria monocytogenes can proliferate at the beginning of cheesemaking as the conditions favor growth. The objective of this study was to establish the growth limits of L. monocytogenes in a cheese matrix, in case of potential contamination of the milk prior to cheese manufacture. A semisoft laboratory scale model cheese system was made at different initial pH and water activity (a(w)) levels with a mix of two strains of L. monocytogenes. A factorial design of five pH values (5.6 to 6.5), four a(w) values (0.938 to 0.96), and two L. monocytogenes inoculation levels (1 to 20 CFU/ml and 500 to 1,000 CFU/ml) was carried out. Each combination was evaluated in six independent replicates. In order to determine if there was a dominant strain, isolated colonies from the cheeses were analyzed by pulsed-field gel electrophoresis. The data relating to growth initiation were fitted to a logistic regression model. The a(w) of milk influenced the probability of growth initiation of L. monocytogenes at both low and high contamination levels. The pH, at the concentrations tested, had a lower effect on the probability of growth initiation. At pH 6.5 and a(w) of 0.99 for low contamination levels and pH 6.5 and a(w) of 0.97 for high contamination levels, increases in population of up to 4 and 2 log were observed at low and high contamination levels, respectively. This shows that if conditions are favorable for growth initiation at the early stages of the cheesemaking process, contamination of milk, even with low numbers, could lead to L. monocytogenes populations that exceed the European Union's microbiological limit of 100 CFU/g of cheese. PMID:22054180

  19. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    PubMed

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility. PMID:25697377

  20. Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology.

    PubMed

    Siewerdsen, J H; Antonuk, L E; el-Mohri, Y; Yorkston, J; Huang, W; Boudry, J M; Cunningham, I A

    1997-01-01

    Noise properties of active matrix, flat-panel imagers under conditions relevant to diagnostic radiology are investigated. These studies focus on imagers based upon arrays with pixels incorporating a discrete photodiode coupled to a thin-film transistor, both fabricated from hydrogenated amorphous silicon. These optically sensitive arrays are operated with an overlying x-ray converter to allow indirect detection of incident x rays. External electronics, including gate driver circuits and preamplification circuits, are also required to operate the arrays. A theoretical model describing the signal and noise transfer properties of the imagers under conditions relevant to diagnostic radiography, fluoroscopy, and mammography is developed. This frequency-dependent model is based upon a cascaded systems analysis wherein the imager is conceptually divided into a series of stages having intrinsic gain and spreading properties. Predictions from the model are compared with x-ray sensitivity and noise measurements obtained from individual pixels from an imager with a pixel format of 1536 x 1920 pixels at a pixel pitch of 127 microns. The model is shown to be in excellent agreement with measurements obtained with diagnostic x rays using various phosphor screens. The model is used to explore the potential performance of existing and hypothetical imagers for application in radiography, fluoroscopy, and mammography as a function of exposure, additive noise, and fill factor. These theoretical predictions suggest that imagers of this general design incorporating a CsI: Tl intensifying screen can be optimized to provide detective quantum efficiency (DQE) superior to existing screen-film and storage phosphor systems for general radiography and mammography. For fluoroscopy, the model predicts that with further optimization of a-Si:H imagers, DQE performance approaching that of the best x-ray image intensifier systems may be possible. The results of this analysis suggest strategies for

  1. A matrix lower bound

    SciTech Connect

    Grcar, Joseph F.

    2002-02-04

    A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.

  2. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  3. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  4. Luteolin prevents solar radiation-induced matrix metalloproteinase-1 activation in human fibroblasts: a role for p38 mitogen-activated protein kinase and interleukin-20 released from keratinocytes.

    PubMed

    Wölfle, Ute; Heinemann, Anja; Esser, Philipp R; Haarhaus, Birgit; Martin, Stefan F; Schempp, Christoph M

    2012-10-01

    Human skin is continuously exposed to solar radiation, which can result in photoaging, a process involving both dermal and, to a lesser extent, epidermal structures. Previously, we have shown that the flavonoid luteolin protects the epidermis from ultraviolet (UV)-induced damage by a combination of UV-absorbing, antioxidant, and antiinflammatory properties. The aim of the present study was to determine direct and indirect effects of luteolin on dermal fibroblasts as major targets of photoaging. Stimulation of fibroblasts with UVA light or the proinflammatory cytokine interleukin-20 (IL-20) is associated with wrinkled skin, increased IL-6 secretion, matrix metalloproteinase (MMP-1) expression, and hyaluronidase activity. All of these targets were inhibited by luteolin via interference with the p38 mitogen-activated protein kinase (MAPK) pathway. Next, we assessed the role of conditioned supernatants from keratinocytes irradiated with solar-simulated radiation (SSR) on nonirradiated dermal fibroblasts. In keratinocytes, luteolin inhibited SSR-induced production of IL-20, also via interference with the p38 MAPK pathway. Similarly, keratinocyte supernatant-induced IL-6 and MMP-1 expression in fibroblasts was reduced by pretreatment of keratinocytes with luteolin. Finally, these results were confirmed ex vivo on skin explants treated with luteolin before UV irradiation. Our results suggest that SSR-mediated production of soluble factors in keratinocytes is modulated by luteolin and may attenuate photoaging in dermal fibroblasts. PMID:23004935

  5. Luteolin Prevents Solar Radiation-Induced Matrix Metalloproteinase-1 Activation in Human Fibroblasts: A Role for p38 Mitogen-Activated Protein Kinase and Interleukin-20 Released from Keratinocytes

    PubMed Central

    Heinemann, Anja; Esser, Philipp R.; Haarhaus, Birgit; Martin, Stefan F.; Schempp, Christoph M.

    2012-01-01

    Abstract Human skin is continuously exposed to solar radiation, which can result in photoaging, a process involving both dermal and, to a lesser extent, epidermal structures. Previously, we have shown that the flavonoid luteolin protects the epidermis from ultraviolet (UV)-induced damage by a combination of UV-absorbing, antioxidant, and antiinflammatory properties. The aim of the present study was to determine direct and indirect effects of luteolin on dermal fibroblasts as major targets of photoaging. Stimulation of fibroblasts with UVA light or the proinflammatory cytokine interleukin-20 (IL-20) is associated with wrinkled skin, increased IL-6 secretion, matrix metalloproteinase (MMP-1) expression, and hyaluronidase activity. All of these targets were inhibited by luteolin via interference with the p38 mitogen-activated protein kinase (MAPK) pathway. Next, we assessed the role of conditioned supernatants from keratinocytes irradiated with solar-simulated radiation (SSR) on nonirradiated dermal fibroblasts. In keratinocytes, luteolin inhibited SSR-induced production of IL-20, also via interference with the p38 MAPK pathway. Similarly, keratinocyte supernatant-induced IL-6 and MMP-1 expression in fibroblasts was reduced by pretreatment of keratinocytes with luteolin. Finally, these results were confirmed ex vivo on skin explants treated with luteolin before UV irradiation. Our results suggest that SSR-mediated production of soluble factors in keratinocytes is modulated by luteolin and may attenuate photoaging in dermal fibroblasts. PMID:23004935

  6. An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays

    SciTech Connect

    Antonuk, Larry E.; Zhao Qihua; El-Mohri, Youcef; Du Hong; Wang Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William

    2009-07-15

    Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and/or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 {mu}m. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 {mu}m pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of {approx}80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 {mu}m pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or

  7. Planarization of amorphous silicon thin film transistors for high-aperture-ratio and large-area active-matrix liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Lan, Je-Hsiung

    The reduction of the backlight power consumption and the improvement of the display image uniformity for future large-area and high-resolution active-matrix liquid- crystal displays (AM-LCDs) are very important. One possible method to achieve the former goal is to increase the pixel electrode aperture-ratio. This can be realized by overlapping the pixel electrode with both gate/data buslines. While for the latter, reduction of the RC-delay by using a low resistance gate metal line is the key. Both of these approaches can be realized by using planarization technology. In this dissertation, the planarization technology based on low dielectric constant organic polymer, benzocyclobutene (BCB), is demonstrated, and this technology has been successfully applied to hydrogenated amorphous-silicon (a-Si:H) thin-film transistor (TFT) arrays and thick metal gate buslines/electrodes. Through the planarization technology, a high-aperture-ratio (HAR) pixel electrode structure has been fabricated. The parasitic capacitance and crosstalk issues in the HAR pixel electrode have been studied through interconnect analysis and circuit simulation. The impact of the parasitic capacitance on display performances, such as feedthrough voltage, vertical crosstalk, pixel electrode aperture-ratio, pixel charging behavior, and gate busline RC-delay issues, has been thoroughly discussed. Some key issues during the process integration of the HAR pixel electrode structure have been addressed. These include the BCB contact via formation, the patterning of the ITO pixel electrodes on BCB layer, the selection of Ar plasma treatment conditions for BCB surface, and the optical transmittance evaluation of the ITO/BCB double-layer structure. In addition, the BCB passivation effects on back-channel etched type a-Si:H TFTs have been investigated. It is found that there is no degradation in the TFT electrical performance and reliability after the BCB passivation. Finally, the planarization technology is

  8. An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays

    PubMed Central

    Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Du, Hong; Wang, Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William

    2009-01-01

    Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and∕or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 μm. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 μm pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of ∼80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 μm pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or continuous

  9. Matrix differentiation formulas

    NASA Technical Reports Server (NTRS)

    Usikov, D. A.; Tkhabisimov, D. K.

    1983-01-01

    A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.

  10. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  11. Dietary Zinc Reduces Osteoclast Resorption Activities and Increases Markers of Osteoblast Differentiation, Matrix Maturation, and Mineralization in the Long Bones of Growing Rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nutritional influence of zinc (Zn) on markers of bone extracellular matrix (ECM) resorption and mineralization was investigated in growing rats. Thirty male weanling rats were randomly assigned to consume AIN-93G based diets containing 2.5, 5, 7.5, 15, or 30 µg Zn/g diet for 24 d. Femur Zn incre...

  12. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  13. Extracellular matrix component signaling in cancer.

    PubMed

    Multhaupt, Hinke A B; Leitinger, Birgit; Gullberg, Donald; Couchman, John R

    2016-02-01

    Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression. PMID:26519775

  14. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification.

    PubMed

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B; Nys, Yves; Gautron, Joël

    2015-09-01

    Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed. PMID:26306314

  15. Quantitative proteomics provides new insights into chicken eggshell matrix protein functions during the primary events of mineralisation and the active calcification phase.

    PubMed

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B; Nys, Yves; Gautron, Joël

    2015-08-01

    Eggshell is a bioceramic composed of 95% calcium carbonate mineral and 3.5% organic matrix. Its structural organisation is controlled by its organic matrix. We have used quantitative proteomics to study four key stages of shell mineralisation: 1) widespread deposition of amorphous calcium carbonate (ACC), 2) ACC transformation into crystalline calcite aggregates, 3) formation of larger calcite crystal units and 4) development of a columnar structure with preferential calcite crystal orientation. This approach explored the distribution of 216 shell matrix proteins found at the four stages. Variations in abundance according to these calcification events were observed for 175 proteins. A putative function related to the mineralisation process was predicted by bioinformatics for 77 of them and was further characterised. We confirmed the important role of lysozyme, ovotransferrin, ovocleidin-17 and ovocleidin-116 for shell calcification process, characterised major calcium binding proteins (EDIL3, ALB, MFGE8, NUCB2), and described novel proteoglycans core proteins (GPC4, HAPLN3). We suggest that OVAL and OC-17 play a role in the stabilisation of ACC. Finally, we report proteins involved in the regulation of proteins driving the mineralisation. They correspond to numerous molecular chaperones including CLU, PPIB and OCX21, protease and protease inhibitors including OVM and CST3, and regulators of phosphorylation. PMID:26049031

  16. Data set for the proteomic inventory and quantitative analysis of chicken eggshell matrix proteins during the primary events of eggshell mineralization and the active growth phase of calcification

    PubMed Central

    Marie, Pauline; Labas, Valérie; Brionne, Aurélien; Harichaux, Grégoire; Hennequet-Antier, Christelle; Rodriguez-Navarro, Alejandro B.; Nys, Yves; Gautron, Joël

    2015-01-01

    Chicken eggshell is a biomineral composed of 95% calcite calcium carbonate mineral and of 3.5% organic matrix proteins. The assembly of mineral and its structural organization is controlled by its organic matrix. In a recent study [1], we have used quantitative proteomic, bioinformatic and functional analyses to explore the distribution of 216 eggshell matrix proteins at four key stages of shell mineralization defined as: (1) widespread deposition of amorphous calcium carbonate (ACC), (2) ACC transformation into crystalline calcite aggregates, (3) formation of larger calcite crystal units and (4) rapid growth of calcite as columnar structure with preferential crystal orientation. The current article detailed the quantitative analysis performed at the four stages of shell mineralization to determine the proteins which are the most abundant. Additionally, we reported the enriched GO terms and described the presence of 35 antimicrobial proteins equally distributed at all stages to keep the egg free of bacteria and of 81 proteins, the function of which could not be ascribed. PMID:26306314

  17. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-01

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering. PMID:26805790

  18. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  19. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  20. Tumor Necrosis Factor-α– and Interleukin-1β–Dependent Matrix Metalloproteinase-3 Expression in Nucleus Pulposus Cells Requires Cooperative Signaling via Syndecan 4 and Mitogen-Activated Protein Kinase–NF-κB Axis

    PubMed Central

    Wang, Xin; Wang, Hua; Yang, Hao; Li, Jun; Cai, Qiqing; Shapiro, Irving M.; Risbud, Makarand V.

    2015-01-01

    Matrix metalloproteinase-3 (MMP-3) plays an important role in intervertebral disc degeneration, a ubiquitous condition closely linked to low back pain and disability. Elevated expression of syndecan 4, a cell surface heparan sulfate proteoglycan, actively controls disc matrix catabolism. However, the relationship between MMP-3 expression and syndecan 4 in the context of inflammatory disc disease has not been clearly defined. We investigated the mechanisms by which cytokines control MMP-3 expression in rat and human nucleus pulposus cells. Cytokine treatment increased MMP-3 expression and promoter activity. Stable silencing of syndecan 4 blocked cytokine-mediated MMP-3 expression; more important, syndecan 4 did not mediate its effects through NF-κB or mitogen-activated protein kinase (MAPK) pathways. However, treatment with MAPK and NF-κB inhibitors resulted in partial blocking of the inductive effect of cytokines on MMP-3 expression. Loss-of-function studies confirmed that NF-κB, p38α/β2/γ/δ, and extracellular signal–regulated kinase (ERK) 2, but not ERK1, contributed to cytokine-dependent induction of MMP3 promoter activity. Similarly, inhibitor treatments, lentiviral short hairpin-p65, and short hairpin-IκB kinase β significantly decreased cytokine-dependent up-regulation in MMP-3 expression. Finally, we show that transforming growth factor-β can block the up-regulation of MMP-3 induced by tumor necrosis factor (TNF)-α by counteracting the NF-κB pathway and syndecan 4 expression. Taken together, our results suggest that cooperative signaling through syndecan 4 and the TNF receptor 1–MAPK–NF-κB axis is required for TNF-α–dependent expression of MMP-3 in nucleus pulposus cells. Controlling these pathways may slow the progression of intervertebral disc degeneration and matrix catabolism. PMID:25063530

  1. Matrix cracking in ceramic-matrix composites

    SciTech Connect

    Danchaivijit, S.; Shetty, D.K. . Dept. of Materials Science and Engineering)

    1993-10-01

    Matrix cracking in ceramic-matrix composites with unbonded frictional interface has been studied using fracture mechanics theory. The critical stress for extension of a fiber-bridged crack has been analyzed using the stress-intensity approach. The analysis uses a new shear-lag formulation of the crack-closure traction applied by the bridging fibers based on the assumption of a constant sliding friction stress over the sliding length of the fiber-matrix interface. The new formulation satisfies two required limiting conditions: (a) when the stress in the bridging fiber approaches the far-field applied stress, the crack-opening displacement approaches a steady-state upper limit that is in agreement with the previous formulations; and (b) in the limit of zero crack opening, the stress in the bridging fiber approaches the far-field fiber stress. This lower limit of the bridging stress is distinctly different from the previous formulations. For all other conditions, the closure traction is a function of the far-field applied stress in addition to the local crack-opening displacement, the interfacial sliding friction stress, and the material properties. Numerical calculations using the stress-intensity approach indicate that the critical stress for crack extension decreases with increasing crack length and approaches a constant steady-state value for large cracks. The steady-state matrix-cracking stress agrees with a steady-state energy balance analysis applied to the continuum model, but it is slightly less than the matrix-cracking stress predicted by such theories of steady-state cracking as that of Aveston, Cooper, and Kelly. The origin of this difference and a method for reconciliation of the two theoretical approaches are discussed.

  2. A Role for the Cavin-3/Matrix Metalloproteinase-9 Signaling Axis in the Regulation of PMA-Activated Human HT1080 Fibrosarcoma Cell Neoplastic Phenotype

    PubMed Central

    Toufaily, Chirine; Charfi, Cyndia; Annabi, Bayader; Annabi, Borhane

    2014-01-01

    Caveolae are specialized cell membrane invaginations known to regulate several cancer cell functions and oncogenic signaling pathways. Among other caveolar proteins, they are characterized by the presence of proteins of the cavin family. In this study, we assessed the impact of cavin-1, cavin-2, and cavin-3 on cell migration in a human HT-1080 fibrosarcoma model. We found that all cavin-1, -2 and -3 transcripts were expressed and that treatment with phorbol 12-myristate 13-acetate (PMA), which is known to prime cell migration and proliferation, specifically upregulated cavin-3 gene and protein expression. PMA also triggered matrix metalloproteinase (MMP)-9 secretion, but reduced the global cell migration index. Overexpression of recombinant forms of the three cavins demonstrated that only cavin-3 was able to reduce basal cell migration, and this anti-migratory effect was potentiated by PMA. Interestingly, cavin-3 overexpression inhibited PMA-induced MMP-9, while cavin-3 gene silencing led to an increase in MMP-9 gene expression and secretion. Furthermore, recombinant cavin-3 significantly prevented PMA-mediated dephosphorylation of AKT, a crucial regulator in MMP-9 transcription. In conclusion, our results demonstrate that cellular cavin-3 expression may repress MMP-9 transcriptional regulation in part through AKT. We suggest that the balance in cavin-3-to-MMP-9 expression regulates the extent of extracellular matrix degradation, confirming the tumor-suppressive role of cavin-3 in controlling the invasive potential of human fibrosarcoma cells. PMID:25520561

  3. Ventilator-induced lung injury upregulates and activates gelatinases and EMMPRIN: attenuation by the synthetic matrix metalloproteinase inhibitor, Prinomastat (AG3340).

    PubMed

    Foda, H D; Rollo, E E; Drews, M; Conner, C; Appelt, K; Shalinsky, D R; Zucker, S

    2001-12-01

    Mechanical ventilation has become an indispensable therapeutic modality for patients with respiratory failure. However, a serious potential complication of MV is the newly recognized ventilator-induced acute lung injury. There is strong evidence suggesting that matrix metalloproteinases (MMPs) play an important role in the development of acute lung injury. Another factor to be considered is extracellular matrix metalloproteinase inducer (EMMPRIN). EMMPRIN is responsible for inducing fibroblasts to produce/secrete MMPs. In this report we sought to determine: (1) the role played by MMPs and EMMPRIN in the development of ventilator-induced lung injury (VILI) in an in vivo rat model of high volume ventilation; and (2) whether the synthetic MMP inhibitor Prinomastat (AG3340) could prevent this type of lung injury. We have demonstrated that high volume ventilation caused acute lung injury. This was accompanied by an upregulation of gelatinase A, gelatinase B, MT1-MMP, and EMMPRIN mRNA demonstrated by in situ hybridization. Pretreatment with the MMP inhibitor Prinomastat attenuated the lung injury caused by high volume ventilation. Our results suggest that MMPs play an important role in the development of VILI in rat lungs and that the MMP-inhibitor Prinomastat is effective in attenuating this type of lung injury. PMID:11726397

  4. MATRIX AND VECTOR SERVICES

    Energy Science and Technology Software Center (ESTSC)

    2001-10-18

    PETRA V2 provides matrix and vector services and the ability construct, query, and use matrix and vector objects that are used and computed by TRILINOS solvers. It provides all basic matr5ix and vector operations for solvers in TRILINOS.

  5. Matrix metalloproteinases and epileptogenesis.

    PubMed

    Ikonomidou, Chrysanthy

    2014-12-01

    Matrix metalloproteinases are vital drivers of synaptic remodeling in health and disease. It is suggested that at early stages of epileptogenesis, inhibition of matrix metalloproteinases may help ameliorate cell death, aberrant network rewiring, and neuroinflammation and prevent development of epilepsy. PMID:26567100

  6. Transfer function matrix

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Given a multivariable system, it is proved that the numerator matrix N(s) of the transfer function evaluated at any system pole either has unity rank or is a null matrix. It is also shown that N(s) evaluated at any transmission zero of the system has rank deficiency. Examples are given for illustration.

  7. Time rate collision matrix

    SciTech Connect

    Stoenescu, M.L.; Smith, T.M.

    1980-02-01

    The collision integral terms in Boltzmann equation are reformulated numerically leading to the substitution of the multiple integrals with a multiplicative matrix of the two colliding species velocity distribution functions which varies with the differential collision cross section. A matrix of lower rank may be constructed when one of the distribution functions is specified, in which case the matrix elements represent kinetic transition probabilities in the velocity space and the multiplication of the time rate collision matrix with the unknown velocity distribution function expresses the time rate of change of the distribution. The collision matrix may be used to describe the time evolution of systems in nonequilibrium conditions, to evaluate the rate of momentum and energy transfer between given species, or to generate validity criteria for linearized kinetic equations.

  8. Grassmann matrix quantum mechanics

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-01

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. We discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.

  9. Collagen-binding Microbial Surface Components Recognizing Adhesive Matrix Molecule (MSCRAMM) of Gram-positive Bacteria Inhibit Complement Activation via the Classical Pathway*

    PubMed Central

    Kang, Mingsong; Ko, Ya-Ping; Liang, Xiaowen; Ross, Caná L.; Liu, Qing; Murray, Barbara E.; Höök, Magnus

    2013-01-01

    Members of a family of collagen-binding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) from Gram-positive bacteria are established virulence factors in several infectious diseases models. Here, we report that these adhesins also can bind C1q and act as inhibitors of the classical complement pathway. Molecular analyses of Cna from Staphylococcus aureus suggested that this prototype MSCRAMM bound to the collagenous domain of C1q and interfered with the interactions of C1r with C1q. As a result, C1r2C1s2 was displaced from C1q, and the C1 complex was deactivated. This novel function of the Cna-like MSCRAMMs represents a potential immune evasion strategy that could be used by numerous Gram-positive pathogens. PMID:23720782

  10. Diosgenin stimulates osteogenic activity by increasing bone matrix protein synthesis and bone-specific transcription factor Runx2 in osteoblastic MC3T3-E1 cells.

    PubMed

    Alcantara, Ethel H; Shin, Mee-Young; Sohn, Ho-Yong; Park, Youn-Moon; Kim, Taewan; Lim, Jae-Hwan; Jeong, Hyung-Jin; Kwon, Soon-Tae; Kwun, In-Sook

    2011-11-01

    Diosgenin, a steroid saponin extracted from the root of wild yam (Dioscorea villossa) is claimed to have osteogenic property. However, detailed studies providing evidence to this claim have not been fully undertaken. In this study, we investigated the effect of diosgenin on the osteogenesis of murine MC3T3-E1 osteoblastic cells. Cells were cultured with varying levels of diosgenin (0-10 μM) within 25 days of bone formation period. Diosgenin was found to stimulate proliferation within the range of 0.01-5 μM using MTT assay. The medium and cellular levels of Type 1 collagen and alkaline phosphatase (ALP), both of which are major bone matrix proteins, increased within the low range of diosgenin concentration (>0-3 μM), and this pattern was further confirmed by collagen and ALP staining of the extracellular matrix (ECM). The cellular protein expression of ALP and collagen Type 1 was also increased at 0.1-1 μM diosgenin treatment as analyzed by Western blot. Calcium deposition within the ECM also showed the same pattern as assessed by Alizarin Red S and Von Kossa staining. Bone-specific transcription factor runt-related transcription factor 2 (Runx2) and Runx2-regulated osteopontin protein expressions were induced at low concentration (0.1-1 μM) and again decreased with high diosgenin concentrations. Based on our findings, our study suggests that diosgenin can enhance bone formation by stimulating the synthesis and secretion of Type 1 collagen and ALP and bone marker proteins Runx2 and osteopontin expression. The increased levels of these marker proteins, in turn, can increase the formation of calcium deposits within the ECM thereby increasing bone formation. PMID:21292464

  11. Modulation of Matrix Metalloproteinases Activity in the Ventral Horn of the Spinal Cord Re-stores Neuroglial Synaptic Homeostasis and Neurotrophic Support following Peripheral Nerve Injury

    PubMed Central

    Cirillo, Giovanni; Colangelo, Anna Maria; De Luca, Ciro; Savarese, Leonilde; Barillari, Maria Rosaria; Alberghina, Lilia; Papa, Michele

    2016-01-01

    Modulation of extracellular matrix (ECM) remodeling after peripheral nerve injury (PNI) could represent a valid therapeutic strategy to prevent maladaptive synaptic plasticity in central nervous system (CNS). Inhibition of matrix metalloproteinases (MMPs) and maintaining a neurotrophic support could represent two approaches to prevent or reduce the maladaptive plastic changes in the ventral horn of spinal cord following PNI. The purpose of our study was to analyze changes in the ventral horn produced by gliopathy determined by the suffering of motor neurons following spared nerve injury (SNI) of the sciatic nerve and how the intrathecal (i.t.) administration of GM6001 (a MMPs inhibitor) or the NGF mimetic peptide BB14 modulate these events. Immunohistochemical analysis of spinal cord sections revealed that motor neuron disease following SNI was associated with increased microglial (Iba1) and astrocytic (GFAP) response in the ventral horn of the spinal cord, indicative of reactive gliosis. These changes were paralleled by decreased glial aminoacid transporters (glutamate GLT1 and glycine GlyT1), increased levels of the neuronal glutamate transporter EAAC1, and a net increase of the Glutamate/GABA ratio, as measured by HPLC analysis. These molecular changes correlated to a significant reduction of mature NGF levels in the ventral horn. Continuous i.t. infusion of both GM6001 and BB14 reduced reactive astrogliosis, recovered the expression of neuronal and glial transporters, lowering the Glutamate/GABA ratio. Inhibition of MMPs by GM6001 significantly increased mature NGF levels, but it was absolutely ineffective in modifying the reactivity of microglia cells. Therefore, MMPs inhibition, although supplies neurotrophic support to ECM components and restores neuro-glial transporters expression, differently modulates astrocytic and microglial response after PNI. PMID:27028103

  12. Modulation of Matrix Metalloproteinases Activity in the Ventral Horn of the Spinal Cord Re-stores Neuroglial Synaptic Homeostasis and Neurotrophic Support following Peripheral Nerve Injury.

    PubMed

    Cirillo, Giovanni; Colangelo, Anna Maria; De Luca, Ciro; Savarese, Leonilde; Barillari, Maria Rosaria; Alberghina, Lilia; Papa, Michele

    2016-01-01

    Modulation of extracellular matrix (ECM) remodeling after peripheral nerve injury (PNI) could represent a valid therapeutic strategy to prevent maladaptive synaptic plasticity in central nervous system (CNS). Inhibition of matrix metalloproteinases (MMPs) and maintaining a neurotrophic support could represent two approaches to prevent or reduce the maladaptive plastic changes in the ventral horn of spinal cord following PNI. The purpose of our study was to analyze changes in the ventral horn produced by gliopathy determined by the suffering of motor neurons following spared nerve injury (SNI) of the sciatic nerve and how the intrathecal (i.t.) administration of GM6001 (a MMPs inhibitor) or the NGF mimetic peptide BB14 modulate these events. Immunohistochemical analysis of spinal cord sections revealed that motor neuron disease following SNI was associated with increased microglial (Iba1) and astrocytic (GFAP) response in the ventral horn of the spinal cord, indicative of reactive gliosis. These changes were paralleled by decreased glial aminoacid transporters (glutamate GLT1 and glycine GlyT1), increased levels of the neuronal glutamate transporter EAAC1, and a net increase of the Glutamate/GABA ratio, as measured by HPLC analysis. These molecular changes correlated to a significant reduction of mature NGF levels in the ventral horn. Continuous i.t. infusion of both GM6001 and BB14 reduced reactive astrogliosis, recovered the expression of neuronal and glial transporters, lowering the Glutamate/GABA ratio. Inhibition of MMPs by GM6001 significantly increased mature NGF levels, but it was absolutely ineffective in modifying the reactivity of microglia cells. Therefore, MMPs inhibition, although supplies neurotrophic support to ECM components and restores neuro-glial transporters expression, differently modulates astrocytic and microglial response after PNI. PMID:27028103

  13. The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites

    SciTech Connect

    Abdolmaleki, Amir; Mallakpour, Shadpour; Borandeh, Sedigheh

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR, specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.

  14. Optimum interface properties for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Lerch, Bradley A.

    1989-01-01

    Due to the thermal expansion coefficient mismatch (CTE) between the fiber and the matrix, high residual sresses exist in metal matrix composite systems upon cool down from processing temperature to room temperature. An interface material can be placed between the fiber and the matrix to reduce the high tensile residual stresses in the matrix. A computer program was written to minimize the residual stress in the matrix subject to the interface material properties. The decision variables are the interface modulus, thickness and thermal expansion coefficient. The properties of the interface material are optimized such that the average distortion energy in the matrix and the interface is minimized. As a result, the only active variable is the thermal expansion coefficient. The optimum modulus of the interface is always the minimum allowable value and the interface thickness is always the maximum allowable value, independent of the fiber/matrix system. The optimum interface thermal expansion coefficient is always between the values of the fiber and the matrix. Using this analysis, a survey of materials was conducted for use as fiber coatings in some specific composite systems.

  15. Metal matrix composites microfracture: Computational simulation

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Caruso, John J.; Chamis, Christos C.

    1990-01-01

    Fiber/matrix fracture and fiber-matrix interface debonding in a metal matrix composite (MMC) are computationally simulated. These simulations are part of a research activity to develop computational methods for microfracture, microfracture propagation and fracture toughness of the metal matrix composites. The three-dimensional finite element model used in the simulation consists of a group of nine unidirectional fibers in three by three unit cell array of SiC/Ti15 metal matrix composite with a fiber volume ration of 0.35. This computational procedure is used to predict the fracture process and establish the hierarchy of fracture modes based on strain energy release rate. It is also used to predict stress redistribution to surrounding matrix-fibers due to initial and progressive fracture of fiber/matrix and due to debonding of fiber-matrix interface. Microfracture results for various loading cases such as longitudinal, transverse, shear and bending are presented and discussed. Step-by-step procedures are outlined to evaluate composite microfracture for a given composite system.

  16. Measurement matrix optimization method based on matrix orthogonal similarity transformation

    NASA Astrophysics Data System (ADS)

    Pan, Jinfeng

    2016-05-01

    Optimization of the measurement matrix is one of the important research aspects of compressive sensing theory. A measurement matrix optimization method is presented based on the orthogonal similarity transformation of the information operator's Gram matrix. In terms of the fact that the information operator's Gram matrix is a singular symmetric matrix, a simplified orthogonal similarity transformation is deduced, and thus the simplified diagonal matrix that is orthogonally similar to it is obtained. Then an approximation of the Gram matrix is obtained by letting all the nonzero diagonal entries of the simplified diagonal matrix equal their average value. Thus an optimized measurement matrix can be acquired according to its relationship with the information operator. Results of experiments show that the optimized measurement matrix compared to the random measurement matrix is less coherent with dictionaries. The relative signal recovery error also declines when the proposed measurement matrix is utilized.

  17. Corrosion of Titanium Matrix Composites

    SciTech Connect

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.

  18. Optical Sensing Circuit Using Low-Temperature Polycrystalline Silicon p-Type Thin-Film Transistors and p-Intrinsic-Metal Diode for Active Matrix Displays with Optical Input Functions

    NASA Astrophysics Data System (ADS)

    Lim, Han-Sin; Kwon, Oh-Kyong

    2009-03-01

    An optical sensing circuit composed of low-temperature polycrystalline silicon (LTPS) p-type thin-film transistors (TFTs) and a p-intrinsic-metal (p-i-m) diode is proposed for image scanning and touch sensing functions. Because it is a very difficult challenge to integrate both display pixels and optical sensing circuits into the restricted pixel area, the number of additional devices and control signal lines must be minimized. Therefore, two p-type TFTs, one p-i-m diode, one capacitor, and one signal line are added to display pixel for the proposed optical sensing circuit. Active matrix liquid crystal display (AMLCD) and active matrix organic light-emitting diode (AMOLED) pixels with the proposed optical sensing circuit have image scanning and touch sensing functions, respectively. Through the measurement of the proposed circuit under the condition of incident light varying from 0 to 10,000 lx, we verified that the dynamic and output ranges of the proposed circuit are 30 dB and 1.5 V, respectively.

  19. Metal Matrix Composites

    SciTech Connect

    Hunt, Warren; Herling, Darrell R.

    2004-02-01

    Metal matrix composites have found selected application in areas that can cost-effectively capitalize on improvements in specific stiffness, specific strength, fatigue resistance, wear resistance, and coefficient of thermal expansion. Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored, including aluminum, beryllium, magnesium, titanium, iron, nickel, cobalt, and silver. However, aluminum is by far the most preferred. For reinforcements, the materials are typically ceramics, which provide a very beneficial combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, metallic materials such as tungsten and steel fibers have been considered.

  20. The Hill Interaction Matrix

    ERIC Educational Resources Information Center

    Hill, William Fawcett

    1971-01-01

    Leadership style, group composition, and group development are simultaneously quantified through the use of the matrix. It represents an attempt to objectify the art of group therapy. Comment by Richard C. Rank follows. (Author)

  1. Enter the matrix: shape, signal and superhighway.

    PubMed

    Lund, Dane K; Cornelison, D D W

    2013-09-01

    Mammalian skeletal muscle is notable for both its highly ordered biophysical structure and its regenerative capacity following trauma. Critical to both of these features is the specialized muscle extracellular matrix, comprising both the multiple concentric sheaths of connective tissue surrounding structural units from single myofibers to whole muscles and the dense interstitial matrix that occupies the space between them. Extracellular matrix-dependent interactions affect all activities of the resident muscle stem cell population (the satellite cells), from maintenance of quiescence and stem cell potential to the regulation of proliferation and differentiation. This review focuses on the role of the extracellular matrix in muscle regeneration, with a particular emphasis on regulation of satellite-cell activity. PMID:23374506

  2. Matrix computations in MACSYMA

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1977-01-01

    Facilities built into MACSYMA for manipulating matrices with numeric or symbolic entries are described. Computations will be done exactly, keeping symbols as symbols. Topics discussed include how to form a matrix and create other matrices by transforming existing matrices within MACSYMA; arithmetic and other computation with matrices; and user control of computational processes through the use of optional variables. Two algorithms designed for sparse matrices are given. The computing times of several different ways to compute the determinant of a matrix are compared.

  3. Optical coherency matrix tomography

    PubMed Central

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-01-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452

  4. GALNT3, a gene associated with hyperphosphatemic familial tumoral calcinosis, is transcriptionally regulated by extracellular phosphate and modulates matrix metalloproteinase activity

    PubMed Central

    Chefetz, Ilana; Kohno, Kimitoshi; Izumi, Hiroto; Uitto, Jouni; Richard, Gabriele; Sprecher, Eli

    2011-01-01

    GALNT3 encodes UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyl-transferarase 3 (ppGalNacT3), a glycosyltransferase which has been suggested to prevent proteolysis of FGF23, a potent phosphaturic protein. Accordingly, loss-of-function mutations in GALNT3 cause hyperphosphatemic familial tumoral calcinosis (HFTC), a rare autosomal recessive disorder manifesting with increased kidney reabsorption of phosphate, resulting in severe hyperphosphatemia and widespread ectopic calcifications. Although these findings definitely attribute a role to ppGalNacT3 in the regulation of phosphate homeostasis, little is currently known about the factors regulating GALNT3 expression. In addition, the effect of decreased GALNT3 expression in peripheral tissues has not been explored so far. In the present study, we demonstrate that GALNT3 expression is under the regulation of a number of factors known to be associated with phosphate homeostasis, including inorganic phosphate itself, calcium and 1,25-dihydroxyvitamin D3. In addition, we show that decreased GALNT3 expression in human skin fibroblasts leads to increased expression of FGF7 and of matrix metalloproteinases, which have been previously implicated in the pathogenesis of ectopic calcification. Thus, the present data suggest that ppGalNacT3 may play a role in peripheral tissues of potential relevance to the pathogenesis of disorders of phosphate metabolism. PMID:18976705

  5. Follow-up: Prospective compound design using the ‘SAR Matrix’ method and matrix-derived conditional probabilities of activity

    PubMed Central

    Gupta-Ostermann, Disha; Hirose, Yoichiro; Odagami, Takenao; Kouji, Hiroyuki; Bajorath, Jürgen

    2015-01-01

    In a previous Method Article, we have presented the ‘Structure-Activity Relationship (SAR) Matrix’ (SARM) approach. The SARM methodology is designed to systematically extract structurally related compound series from screening or chemical optimization data and organize these series and associated SAR information in matrices reminiscent of R-group tables. SARM calculations also yield many virtual candidate compounds that form a “chemical space envelope” around related series. To further extend the SARM approach, different methods are developed to predict the activity of virtual compounds. In this follow-up contribution, we describe an activity prediction method that derives conditional probabilities of activity from SARMs and report representative results of first prospective applications of this approach. PMID:25949808

  6. Mycobacterium tuberculosis upregulates microglial matrix metalloproteinase-1 and -3 expression and secretion via NF-kappaB- and Activator Protein-1-dependent monocyte networks.

    PubMed

    Green, Justin A; Elkington, Paul T; Pennington, Caroline J; Roncaroli, Federico; Dholakia, Shruti; Moores, Rachel C; Bullen, Anwen; Porter, Joanna C; Agranoff, Dan; Edwards, Dylan R; Friedland, Jon S

    2010-06-01

    Inflammatory tissue destruction is central to pathology in CNS tuberculosis (TB). We hypothesized that microglial-derived matrix metalloproteinases (MMPs) have a key role in driving such damage. Analysis of all of the MMPs demonstrated that conditioned medium from Mycobacterium tuberculosis-infected human monocytes (CoMTb) stimulated greater MMP-1, -3, and -9 gene expression in human microglial cells than direct infection. In patients with CNS TB, MMP-1/-3 immunoreactivity was demonstrated in the center of brain granulomas. Concurrently, CoMTb decreased expression of the inhibitors, tissue inhibitor of metalloproteinase-2, -3, and -4. MMP-1/-3 secretion was significantly inhibited by dexamethasone, which reduces mortality in CNS TB. Surface-enhanced laser desorption ionization time-of-flight analysis of CoMTb showed that TNF-alpha and IL-1beta are necessary but not sufficient for upregulating MMP-1 secretion and act synergistically to drive MMP-3 secretion. Chemical inhibition and promoter-reporter analyses showed that NF-kappaB and AP-1 c-Jun/FosB heterodimers regulate CoMTb-induced MMP-1/-3 secretion. Furthermore, NF-kappaB p65 and AP-1 c-Jun subunits were upregulated in biopsy granulomas from patients with cerebral TB. In summary, functionally unopposed, network-dependent microglial MMP-1/-3 gene expression and secretion regulated by NF-kappaB and AP-1 subunits were demonstrated in vitro and, for the first time, in CNS TB patients. Dexamethasone suppression of MMP-1/-3 gene expression provides a novel mechanism explaining the benefit of steroid therapy in these patients. PMID:20483790

  7. Identification and Characterization of a Novel 38.5-Kilodalton Cell Surface Protein of Staphylococcus aureus with Extended-Spectrum Binding Activity for Extracellular Matrix and Plasma Proteins

    PubMed Central

    Hussain, Muzaffar; Becker, Karsten; von Eiff, Christof; Schrenzel, Jacques; Peters, Georg; Herrmann, Mathias

    2001-01-01

    The ability to attach to host ligands is a well-established pathogenic factor in invasive Staphylococcus aureus disease. In addition to the family of adhesive proteins bound to the cell wall via the sortase A (srtA) mechanism, secreted proteins such as the fibrinogen-binding protein Efb, the extracellular adhesion protein Eap, or coagulase have been found to interact with various extracellular host molecules. Here we describe a novel protein, the extracellular matrix protein-binding protein (Emp) initially identified in Western ligand blots as a 40-kDa protein due to its broad-spectrum recognition of fibronectin, fibrinogen, collagen, and vitronectin. Emp is expressed in the stationary growth phase and is closely associated with the cell surface and yet is extractable by sodium dodecyl sulfate. The conferring gene emp (1,023 nucleotides) encodes a signal peptide of 26 amino acids and a mature protein of a calculated molecular mass of 35.5 kDa. Using PCR, emp was demonstrated in all 240 S. aureus isolates of a defined clinical strain collection as well as in 6 S. aureus laboratory strains, whereas it is lacking in all 10 S. epidermidis strains tested. Construction of an allelic replacement mutant (mEmp50) revealed the absence of Emp in mEmp50, a significantly decreased adhesion of mEmp50 to immobilized fibronectin and fibrinogen, and restoration of these characteristics upon complementation of mEmp50. Emp expression was also demonstrable upon heterologous complementation of S. carnosus. rEmp expressed in Escherichia coli interacted with fibronectin, fibrinogen, and vitronectin in surface plasmon resonance experiments at a Kd of 21 nM, 91 nM, and 122 pM, respectively. In conclusion, the biologic characterization of Emp suggests that it is a member of the group of secreted S. aureus molecules that interact with an extended spectrum of host ligands and thereby contribute to S. aureus pathogenicity. PMID:11698365

  8. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    PubMed

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses. PMID:23827939

  9. Investigation of the role of Endo180/urokinase-type plasminogen activator receptor-associated protein as a collagenase 3 (matrix metalloproteinase 13) receptor.

    PubMed Central

    Bailey, Louise; Wienke, Dirk; Howard, Matthew; Knäuper, Vera; Isacke, Clare M; Murphy, Gillian

    2002-01-01

    Procollagenase 3 can be activated by interaction with and cleavage by the cell-associated membrane type 1 metalloproteinase (MT1 MMP; MMP 14). It has also been shown to bind to a specific receptor, and is subsequently internalized via the low-density lipoprotein-related receptor by osteoblast cell lines. The receptor was identified as a recycling glycoprotein of the macrophage mannose receptor family, Endo180. In order to ascertain whether there is a relationship between Endo180 binding and procollagenase 3 activation, we have compared procollagenase 3 activation by an HT1080 fibrosarcoma cell line overexpressing MT1 MMP, without and with overexpression of Endo180. No difference in procollagenase 3 activation was observed, and neither was the enzyme bound to the cells or internalized. In contrast, the osteoblast cell lines, MG63 and UMR-106, both bound and internalized procollagenase 3. However, immunolocalization studies showed that the Endo180 abundantly expressed by these cells did not co-localize with the procollagenase 3. In further biochemical studies we confirmed that procollagenase 3 did not bind to Endo180, using both ligand- blotting and immunoprecipitation techniques. We conclude that Endo180 is unlikely to be a receptor for collagenase 3 in relation to either its activation or cell binding and internalization, and that other interaction partners must be sought. PMID:11903048

  10. Selective loss of PMA-stimulated expression of matrix metalloproteinase 1 in HaCaT keratinocytes is correlated with the inability to induce mitogen-activated protein family kinases.

    PubMed Central

    Sudbeck, B D; Baumann, P; Ryan, G J; Breitkopf, K; Nischt, R; Krieg, T; Mauch, C

    1999-01-01

    Many cell types, including fibroblasts and primary keratinocytes, increase matrix metalloproteinase 1 (MMP-1) production in response to agonists such as growth factors and phorbol esters. However, the spontaneously transformed human keratinocyte cell line HaCaT, although it increases MMP-1 production in response to epidermal growth factor (EGF), does not respond similarly to stimulation with PMA. This phenomenon occurs even though HaCaT cells remain proliferatively responsive to both agonists, suggesting a HaCaT-specific defect in a PMA-mediated signal transduction pathway. Using an inside-out approach to elucidate the source of this defect, we found that EGF, but not PMA, stimulated MMP-1 promoter activity in transiently transfected HaCaT keratinocytes. In addition, an assessment of fibroblast and HaCaT c-fos and c-jun gene expression after exposure to EGF and PMA showed that although both agonists increased the expression of c-fos and c-jun mRNA in fibroblasts, only EGF did so in HaCaT keratinocytes. Finally, we looked at the activation of mitogen-activated protein (MAP) family kinases after stimulation with EGF or PMA and found that both agonists increased the phosphorylation and activation of fibroblast extracellular signal-regulated protein kinase and c-Jun N-terminal kinase, but only EGF activated the same kinase activities in HaCaT cells. Further, the EGF-mediated increase in MMP-1 gene expression was inhibited by the MAP kinase/ERK kinase (MEK)-specific inhibitor PD98059 and the p38 kinase-specific inhibitor SB203580. Our evidence indicates that although HaCaT MAP kinases are functional, they are not properly regulated in response to the activation of protein kinase C, and that the defect that bars HaCaT MMP-1 expression in response to stimulation with PMA lies before MAP kinase activation. PMID:10085241

  11. Overexpression of proto-oncogene FBI-1 activates membrane type 1-matrix metalloproteinase in association with adverse outcome in ovarian cancers

    PubMed Central

    2010-01-01

    Background FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) is a member of the POK (POZ and Kruppel) family of transcription factors and play important roles in cellular differentiation and oncogenesis. Recent evidence suggests that FBI-1 is expressed at high levels in a subset of human lymphomas and some epithelial solid tumors. However, the function of FBI-1 in human ovarian cancers remains elusive. Results In this study, we investigated the role of FBI-1 in human ovarian cancers, in particularly, its function in cancer cell invasion via modulating membrane type 1-matrix metalloproteinase (MT1-MMP). Significantly higher FBI-1 protein and mRNA expression levels were demonstrated in ovarian cancers samples and cell lines compared with borderline tumors and benign cystadenomas. Increased FBI-1 mRNA expression was correlated significantly with gene amplification (P = 0.037). Moreover, higher FBI-1 expression was found in metastatic foci (P = 0.036) and malignant ascites (P = 0.021), and was significantly associated with advanced stage (P = 0.012), shorter overall survival (P = 0.032) and disease-free survival (P = 0.016). In vitro, overexpressed FBI-1 significantly enhanced cell migration and invasion both in OVCA 420 and SKOV-3 ovarian carcinoma cells, irrespective of p53 status, accompanied with elevated expression of MT1-MMP, but not MMP-2 or TIMP-2. Moreover, knockdown of MT1-MMP abolished FBI-1-mediated cell migration and invasion. Conversely, stable knockdown of FBI-1 remarkably reduced the motility of these cells with decreased expression of MT1-MMP. Promoter assay and chromatin immunoprecipitation study indicated that FBI-1 could directly interact with the promoter spanning ~600bp of the 5'-flanking sequence of MT1-MMP and enhanced its expression in a dose-dependent manner. Furthermore, stable knockdown and ectopic expression of FBI-1 decreased and increased cell proliferation respectively in OVCA 420, but not in

  12. Tendon Functional Extracellular Matrix

    PubMed Central

    Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.

    2015-01-01

    This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030

  13. Matrix interdiction problem

    SciTech Connect

    Pan, Feng; Kasiviswanathan, Shiva

    2010-01-01

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.

  14. Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes

    PubMed Central

    Kim, Woo Kyoung; Kang, Nam E; Kim, Myung Hwan

    2013-01-01

    3T3-L1 preadipocyte were differentiated to adipocytes, and then treated with 0, 10, 20, and 40 µg/mL of peanut sprout ethanol extract (PSEE). The main component of PSEE is resveratrol which contained 5.55 mg/mL of resveratrol. The MTT assay, Oil-Red O staining, glycerol-3-phosphate dehydrogenase (GPDH) activity, and the triglyceride concentration were determined in 3T3-L1 cells. MMP-2 and MMP-9 activities as well as mRNA expressions of C/EBP β and C/EBP α were also investigated. As the concentration of PSEE in adipocytes increased, the cell proliferation was decreased in a dose-dependent manner from 4 days of incubation (P < 0.05). The GDPH activity (P < 0.05) and the triglyceride concentration (P < 0.05) were decreased as the PSEE treatment concentration increased. The mRNA expression of C/EBPβ in 3T3-L1 cells was significantly low in groups of PSEE-treated, compared with control group (P < 0.05). The MMP-9 (P < 0.05) and MMP-2 (P < 0.05) activities were decreased in a dose-dependent manner as the PSEE concentration increased from 20 µg/mL. In conclusion, it was found that PSEE has an effect on restricting proliferation and differentiation of adipocytes. PMID:23766875

  15. Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose.

    PubMed

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2014-12-26

    In the present study, we have synthesized a biocompatible hybrid carrier of hypromellose (HY) and poly(vinyl alcohol) (PVA) for immobilization of Burkholderia cepacia lipase (BCL). The immobilized biocatalyst HY:PVA:BCL was subjected to determination of half-life time (τ) and deactivation rate constant (K(D)) in various organic solvents. Biocatalyst showed higher τ-value in a nonpolar solvent like cyclohexane (822 h) as compared to that of a polar solvent such as acetone (347 h), which signifies better compatibility of biocatalyst in the nonpolar solvents. Furthermore, the K(D)-value was found to be less in cyclohexane (0.843 × 10(-3)) as compared to acetone (1.997 × 10(-3)), indicating better stability in the nonpolar solvents. Immobilized-BCL (35 mg) was sufficient to achieve 99% conversion of phenethyl butyrate (natural constituent of essential oils and has wide industrial applications) using phenethyl alcohol (2 mmol) and vinyl butyrate (6 mmol) at 44 °C in 3 h. The activation energy (E(a)) was found to be lower for immobilized-BCL than crude-BCL, indicating better catalytic efficiency of immobilized lipase BCL. The immobilized-BCL reported 6-fold superior biocatalytic activity and 8 times recyclability as compared to crude-BCL. Improved catalytic activity of immobilized enzyme in nonpolar media was also supported by thermodynamic activation parameters such as enthalpy (ΔH(⧧)), entropy (ΔS(⧧)) and Gibb's free energy (ΔG(⧧)) study, which showed that phenethyl butyrate synthesis catalyzed by immobilized-BCL was feasible as compared to crude-BCL. The present work explains a thermodynamic investigation and superior biocatalytic activity for phenethyl butyrate synthesis using biocompatible immobilized HY:PVA:BCL in nonaqueous media for the first time. PMID:25474503

  16. Complex matrix model duality

    SciTech Connect

    Brown, T. W.

    2011-04-15

    The same complex matrix model calculates both tachyon scattering for the c=1 noncritical string at the self-dual radius and certain correlation functions of operators which preserve half the supersymmetry in N=4 super-Yang-Mills theory. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich-Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces.

  17. Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex.

    PubMed

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinases (MMPs) are a family of endopeptidases implicated in a wide rage of degenerative and inflammatory diseases, including Helicobacter pylori-associated gastritis, and gastric and duodenal ulcer. As gastric mucosal inflammatory responses to H. pylori are characterized by the rise in MMP-9 production, as well as the induction in mitogen-activated protein kinase (MAPK) and Rac1 activation, we investigated the role of Rac1/MAPK in the processes associated with the release of MMP-9. We show that H. pylori LPS-elicited induction in gastric mucosal MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we demonstrate that the LPS-induced MMP-9 release requires ERK-mediated phosphorylation of cPLA2 on Ser(505) that is essential for its membrane localization with Rac1, and that this process necessitates p38 participation. Moreover, we reveal that the activation and membrane translocation of p38 to the Rac1-GTP complex plays a pivotal role in cPLA2-dependent enhancement in MMP-9 release. Hence, our findings provide a strong evidence for the role of ERK/cPLA2 and Rac1/p38/cPLA2 cascade in H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 release. PMID:26886372

  18. Upregulation of miR-328 and inhibition of CREB-DNA-binding activity are critical for resveratrol-mediated suppression of matrix metalloproteinase-2 and subsequent metastatic ability in human osteosarcomas

    PubMed Central

    Tan, Peng; Tang, Chih-Hsin; Hsiao, Michael; Hsieh, Feng-Koo; Chien, Ming-Hsien

    2015-01-01

    Osteosarcomas, the most common malignant bone tumors, show a potent capacity for local invasion and pulmonary metastasis. Resveratrol (RESV), a phytochemical, exhibits multiple tumor-suppressing activities and has been tested in clinical trials. However, the antitumor activities of RESV in osteosarcomas are not yet completely defined. In osteosarcoma cells, we found that RESV inhibited the migration/invasion in vitro and lung metastasis in vivo by suppressing matrix metalloproteinase (MMP)-2. We identified that RESV exhibited a transcriptional inhibitory effect on MMP-2 through reducing CREB-DNA-binding activity. Moreover, a microRNA (miR) analysis showed that miR-328 was predominantly upregulated after RESV treatment. Inhibition of miR-328 significantly relieved MMP-2 and motility suppression imposed by RESV treatment. Furthermore, ectopic miR-328 expression in highly invasive cells decreased MMP-2 expression and invasive abilities. Mechanistic investigations found that JNK and p38 MAPK signaling pathways were involved in RESV-regulated CREB-DNA-binding activity, miR328 expression, and cell motility. Clinical samples indicated inverse expression between MMP-2 and miR-328 in normal bone and osteosarcoma tissues. The inverse correlation of MMP-2 and miR-328 was also observed in tumor specimens, and MMP-2 expression was linked to tumor metastasis. Taken together, our results provide new insights into the role of RESV-induced molecular and epigenetic regulation in suppressing tumor metastasis. PMID:25605016

  19. Matrixed business support comparison study.

    SciTech Connect

    Parsons, Josh D.

    2004-11-01

    The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.

  20. The Role of Cyclooxygenase-2, Interleukin-1β and Fibroblast Growth Factor-2 in the Activation of Matrix Metalloproteinase-1 in Sheared-Chondrocytes and Articular Cartilage

    PubMed Central

    Guan, Pei-Pei; Guo, Jing-Wen; Yu, Xin; Wang, Yue; Wang, Tao; Konstantopoulos, Konstantinos; Wang, Zhan-You; Wang, Pu

    2015-01-01

    MMP-1 expression is detected in fluid shear stress (20 dyn/cm2)-activated and osteoarthritic human chondrocytes, however, the precise mechanisms underlying shear-induced MMP-1 synthesis remain unknown. Using primary chondrocytes and T/C-28a2 chondrocytic cells as model systems, we report that prolonged application of high fluid shear to human chondrocytes induced the synthesis of cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β) and fibroblast growth factor-2 (FGF-2), which led to a marked increase in MMP-1 expression. IL-1β, COX-2-dependent PGE2 activated the PI3-K/AKT and p38 signaling pathways, which were in turn responsible for MMP-1 synthesis via NF-κB- and c-Jun-transactivating pathways. Prolonged shear stress exposure (>12 h) induced 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) synthesis. Although 15d-PGJ2 suppressed PI3-K/AKT and p38 signaling pathways, it stimulated MMP-1 expression via activating heme oxygenase 1 (HO-1). The critical role of COX-2 in regulating MMP-1 expression in articular cartilage in vivo was demonstrated using COX-2+/− transgenic mice in the absence or presence of rofecoxib oral administration. These findings provide novel insights for developing therapeutic strategies to combat OA. PMID:25992485

  1. Tumor Necrosis Factor-α-induced Proteolytic Activation of Pro-matrix Metalloproteinase-9 by Human Skin Is Controlled by Down-regulating Tissue Inhibitor of Metalloproteinase-1 and Mediated by Tissue-associated Chymotrypsin-like Proteinase*

    PubMed Central

    Han, Yuan-Ping; Nien, Yih-Dar; Garner, Warren L.

    2008-01-01

    The proteolytic activation of pro-matrix metalloproteinase (MMP)-9 by conversion of the 92-kDa precursor into an 82-kDa active form has been observed in chronic wounds, tumor metastasis, and many inflammation-associated diseases, yet the mechanistic pathway to control this process has not been identified. In this report, we show that the massive expression and activation of MMP-9 in skin tissue from patients with chronically unhealed wounds could be reconstituted in vitro with cultured normal human skin by stimulation with transforming growth factor-β and tumor necrosis factor (TNF)-α. We dissected the mechanistic pathway for TNF-α induced activation of pro-MMP-9 in human skin. We found that proteolytic activation of pro-MMP-9 was mediated by a tissue-associated chymotrypsin-like proteinase, designated here as pro-MMP-9 activator (pM9A). This unidentified activator specifically converted pro-MMP-9 but not pro-MMP-2, another member of the gelatinase family. The tissue-bound pM9A was steadily expressed and not regulated by TNF-α, which indicated that the cytokine-mediated activation of pro-MMP-9 might be regulated at the inhibitor level. Indeed, the skin constantly secreted tissue inhibitor of metalloproteinase-1 at the basal state. TNF-α, but not transforming growth factor-β, down-regulated this inhibitor. The TNF-α-mediated activation of pro-MMP-9 was tightly associated with down-regulation of tissue inhibitor of metalloproteinase-1 in a dose-dependent manner. To establish this linkage, we demonstrate that the recombinant tissue inhibitor of metalloproteinase-1 could block the activation of pro-MMP-9 by either the intact skin or skin fractions. Thus, these studies suggest a novel regulation for the proteolytic activation of MMP-9 in human tissue, which is mediated by tissue-bound activator and controlled by down-regulation of a specific inhibitor. PMID:12004062

  2. Matrix Synthesis and Characterization

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The role of NASA in the area of composite material synthesis; evaluation techniques; prediction analysis techniques; solvent-resistant tough composite matrix; resistance to paint strippers; acceptable processing temperature and pressure for thermoplastics; and the role of computer modeling and fiber interface improvement were discussed.

  3. Matrix Embedded Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Kamakolanu, U. G.; Freund, F. T.

    2016-05-01

    In the matrix of minerals such as olivine, a redox reaction of the low-z elements occurs. Oxygen is oxidized to the peroxy state while the low-Z-elements become chemically reduced. We assign them a formula [CxHyOzNiSj]n– and call them proto-organics.

  4. Constructing the matrix

    NASA Astrophysics Data System (ADS)

    Elliott, John

    2012-09-01

    As part of our 'toolkit' for analysing an extraterrestrial signal, the facility for calculating structural affinity to known phenomena must be part of our core capabilities. Without such a resource, we risk compromising our potential for detection and decipherment or at least causing significant delay in the process. To create such a repository for assessing structural affinity, all known systems (language parameters) need to be structurally analysed to 'place' their 'system' within a relational communication matrix. This will need to include all known variants of language structure, whether 'living' (in current use) or ancient; this must also include endeavours to incorporate yet undeciphered scripts and non-human communication, to provide as complete a picture as possible. In creating such a relational matrix, post-detection decipherment will be assisted by a structural 'map' that will have the potential for 'placing' an alien communication with its nearest known 'neighbour', to assist subsequent categorisation of basic parameters as a precursor to decipherment. 'Universal' attributes and behavioural characteristics of known communication structure will form a range of templates (Elliott, 2001 [1] and Elliott et al., 2002 [2]), to support and optimise our attempt at categorising and deciphering the content of an extraterrestrial signal. Detection of the hierarchical layers, which comprise intelligent, complex communication, will then form a matrix of calculations that will ultimately score affinity through a relational matrix of structural comparison. In this paper we develop the rationales and demonstrate functionality with initial test results.

  5. Recruitment of Matrix Metalloproteinase-9 (MMP-9) to the Fibroblast Cell Surface by Lysyl Hydroxylase 3 (LH3) Triggers Transforming Growth Factor-β (TGF-β) Activation and Fibroblast Differentiation*

    PubMed Central

    Dayer, Cynthia; Stamenkovic, Ivan

    2015-01-01

    Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin ex