Science.gov

Sample records for matrix metalloproteinase-9 persists

  1. The serum matrix metalloproteinase-9 level is an independent predictor of recurrence after ablation of persistent atrial fibrillation

    PubMed Central

    Wu, Gang; Wang, Shun; Cheng, Mian; Peng, Bin; Liang, Jingjun; Huang, He; Jiang, Xuejun; Zhang, Lizhi; Yang, Bo; Cha, Yongmei; Jiang, Hong; Huang, Congxin

    2016-01-01

    OBJECTIVES: This study investigated whether the serum matrix metalloproteinase-9 level is an independent predictor of recurrence after catheter ablation for persistent atrial fibrillation. METHODS: Fifty-eight consecutive patients with persistent atrial fibrillation were enrolled and underwent catheter ablation. The serum matrix metalloproteinase-9 level was detected before ablation and its relationship with recurrent arrhythmia was analyzed at the end of the follow-up. RESULTS: After a mean follow-up of 12.1±7.2 months, 21 (36.2%) patients had a recurrence of their arrhythmia after catheter ablation. At baseline, the matrix metalloproteinase-9 level was higher in the patients with recurrence than in the non-recurrent group (305.77±88.90 vs 234.41±93.36 ng/ml, respectively, p=0.006). A multivariate analysis showed that the matrix metalloproteinase-9 level was an independent predictor of arrhythmia recurrence, as was a history of atrial fibrillation and the diameter of the left atrium. CONCLUSION: The serum matrix metalloproteinase-9 level is an independent predictor of recurrent arrhythmia after catheter ablation in patients with persistent atrial fibrillation. PMID:27276393

  2. Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability.

    PubMed

    Murase, Sachiko; Lantz, Crystal L; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A; Quinlan, Elizabeth M

    2016-07-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth, and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here, we demonstrate that deletion of the extracellular proteinase matrix metalloproteinase-9 (MMP-9) affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons but decreases dendritic length and complexity. Parallel changes in neuronal morphology are observed in primary visual cortex and persist into adulthood. Individual CA1 neurons in MMP-9(-/-) mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significantly increases spontaneous neuronal activity in awake MMP-9(-/-) mice and enhances response to acute challenge by the excitotoxin kainate. Our data document a novel role for MMP-9-dependent proteolysis: the regulation of several aspects of circuit maturation to constrain excitability throughout life. PMID:26093382

  3. Correlation between matrix metalloproteinase-9 and endometriosis.

    PubMed

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2015-01-01

    Endometrial implantation is the major cause of endometriosis (EMS). Matrix metalloproteinase (MMPs) can degrade multiple extracellular matrix and has been postulated to be related with EMC occurrence. This study thus investigated serum and ascites levels of MMP-9 in EMS patients, in an attempt to discuss the correlation between MMP-9 and EMS. A total of 100 EMS patients, including eutopic endometrium and ectopic endometrium, were recruited in this study along with hysteromyoma patients as the control group. Peripheral blood and ascites samples were collected and tested for MMP-9 levels using gelatin zymogram and enzyme-linked immunosorbent assay (ELISA). In EMS patients, MMP-9 levels in serum and ascites were 6.24 ± 0.53 mM and 38.57 ± 4.93 mM, respectively. Both of them were significantly higher than those in control group (P<0.05). Eutopic endometrium group had higher MMP-9 levels compared to those in ectopic endometrium ones (P<0.05). With advancement of disease stage, EMS patients had progressively elevated MMP-9 levels (P<0.05). Patients at proliferative stage had higher MMP-9 secretion (P<0.05). In summary, site of endometrium, clinical stage and proliferative cycle were independent risk factors for EMS. The elevation of serum and ascites MMP-9 existed in EMS patients, of which those had ectopic endometrium, advanced stage and at proliferative stage had higher MMP-9 expression. PMID:26722547

  4. Correlation between matrix metalloproteinase-9 and endometriosis

    PubMed Central

    Liu, Haiping; Wang, Jianye; Wang, Haiyu; Tang, Ning; Li, Yunfei; Zhang, Yan; Hao, Tianyu

    2015-01-01

    Endometrial implantation is the major cause of endometriosis (EMS). Matrix metalloproteinase (MMPs) can degrade multiple extracellular matrix and has been postulated to be related with EMC occurrence. This study thus investigated serum and ascites levels of MMP-9 in EMS patients, in an attempt to discuss the correlation between MMP-9 and EMS. A total of 100 EMS patients, including eutopic endometrium and ectopic endometrium, were recruited in this study along with hysteromyoma patients as the control group. Peripheral blood and ascites samples were collected and tested for MMP-9 levels using gelatin zymogram and enzyme-linked immunosorbent assay (ELISA). In EMS patients, MMP-9 levels in serum and ascites were 6.24±0.53 mM and 38.57±4.93 mM, respectively. Both of them were significantly higher than those in control group (P<0.05). Eutopic endometrium group had higher MMP-9 levels compared to those in ectopic endometrium ones (P<0.05). With advancement of disease stage, EMS patients had progressively elevated MMP-9 levels (P<0.05). Patients at proliferative stage had higher MMP-9 secretion (P<0.05). In summary, site of endometrium, clinical stage and proliferative cycle were independent risk factors for EMS. The elevation of serum and ascites MMP-9 existed in EMS patients, of which those had ectopic endometrium, advanced stage and at proliferative stage had higher MMP-9 expression. PMID:26722547

  5. Matrix Metalloproteinase-9 Production by Immortalized Human Chondrocyte Lines

    PubMed Central

    Malemud, Charles J.; Meszaros, Evan C.; Wylie, Meredith A.; Dahoud, Wissam; Skomorovska-Prokvolit, Yelenna; Mesiano, Sam

    2016-01-01

    We reported at the Keynote Forum of Immunology Summit-2015 that recombinant human (rh) TNF-α or rhIL-6 stimulated production of matrix metalloproteinase-9 (MMP-9) in the T/C28a2 and C-28/I2 human immortalized chondrocyte cell lines. Furthermore, we reported that tocilizumab (TCZ), a fully humanized monoclonal antibody which neutralizes IL-6-mediated signaling, inhibited the rhIL-6-mediated increase in the production of MMP-9. IL-6 is also a known activator of the JAK/STAT signaling pathway. In that regard, we evaluated the effect of rhIL-6 on total and phosphorylated Signal Transducer and Activator of Transcription by these chondrocyte lines which showed that whereas STAT3 was constitutively phosphorylated in T/C28a2 chondrocytes, rhIL-6 activated STAT3 in C-28/I2 chondrocytes. The finding that rhIL-6 increased the production of MMP-9 by human immortalized chondrocyte cell lines may have important implications with respect to the destruction of articular cartilage in rheumatoid arthritis and osteoarthritis. Thus, the markedly elevated level of IL-6 in rheumatoid arthritis and osteoarthritis sera and synovial fluid would be expected to generate significant MMP-9 to cause the degradation of articular cartilage extracellular matrix proteins. The finding that TCZ suppressed rhIL-6-mediated MMP-9 production suggests that TCZ, currently employed in the medical therapy of rheumatoid arthritis, could be considered as a drug for osteoarthritis.

  6. Matrix metalloproteinase 9 modulates collagen matrices and wound repair

    PubMed Central

    LeBert, Danny C.; Squirrell, Jayne M.; Rindy, Julie; Broadbridge, Elizabeth; Lui, Yuming; Zakrzewska, Anna; Eliceiri, Kevin W.; Meijer, Annemarie H.; Huttenlocher, Anna

    2015-01-01

    Acute and chronic injuries are characterized by leukocyte infiltration into tissues. Although matrix metalloproteinase 9 (Mmp9) has been implicated in both conditions, its role in wound repair remains unclear. We previously reported a zebrafish chronic inflammation mutant caused by an insertion in the hepatocyte growth factor activator inhibitor gene 1 (hai1; also known as spint1) that is characterized by epithelial extrusions and neutrophil infiltration into the fin. Here, we performed a microarray analysis and found increased inflammatory gene expression in the mutant larvae, including a marked increase in mmp9 expression. Depletion of mmp9 partially rescued the chronic inflammation and epithelial phenotypes, in addition to restoring collagen fiber organization, as detected by second-harmonic generation imaging. Additionally, we found that acute wounding induces epithelial cell mmp9 expression and is associated with a thickening of collagen fibers. Interestingly, depletion of mmp9 impaired this collagen fiber reorganization. Moreover, mmp9 depletion impaired tissue regeneration after tail transection, implicating Mmp9 in acute wound repair. Thus, Mmp9 regulates both acute and chronic tissue damage and plays an essential role in collagen reorganization during wound repair. PMID:26015541

  7. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus

    PubMed Central

    Dabo, Abdoulaye J.; Cummins, Neville; Eden, Edward; Geraghty, Patrick

    2015-01-01

    Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR. PMID:26284919

  8. Plasma matrix metalloproteinase-9 response to downhill running in humans.

    PubMed

    Welsh, M C; Allen, D L; Byrnes, W C

    2014-05-01

    Matrix metalloproteinase-9 is a proteolytic enzyme capable of degrading proteins of the muscle extracellular matrix. Systemic levels of MMP-9 or its inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1), have the potential to serve as blood markers of exercise-induced muscle damage. The purpose of this study was to determine if an eccentrically-dominated task, downhill running (DHR), produces changes in plasma MMP-9 or TIMP-1 and examine the relationship between MMP-9/TIMP-1 levels and indirect indicators of muscle damage. Subjects were sedentary (SED, n=12) or had a history of concentrically-biased training (CON, n=9). MMP-9 and TIMP-1 were measured before (Pre-Ex), immediately after (Post-Ex), and 1-, 2-, 4-, and 7-days post-DHR (-10°), and compared to discomfort ratings, creatine kinase activity and strength loss. At 1-day Post-Ex, discomfort increased (5.6 ± 7.8 to 45.5 ± 19.9 mm; 0-100 mm scale), strength decreased (-6.9 ± 1.6%) and CK increased (162.9 ± 177.2%). MMP-9 was modestly but significantly increased at Post-Ex in both CONC and SED (32.7 ± 33.6%) and at 4-days in SED (66.9 ± 88.1%), Individual responses were variable, however. There were no correlations between MMPs and discomfort ratings, plasma CK or strength. While plasma MMP-9 changes may be detectable in the systemic circulation after DHR, they are small and do not correspond to other markers of damage. PMID:24048912

  9. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    PubMed Central

    Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang

    2016-01-01

    Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2

  10. Matrix metalloproteinase 9 level as an indicator for restenosis following cervical and intracranial angioplasty and stenting

    PubMed Central

    Liu, Jun-peng; Wang, Yin-zhou; Li, Yong-kun; Cheng, Qiong; Zheng, Zheng

    2015-01-01

    Cervical and intracranial angioplasty and stenting is an effective and safe method of reducing the risk of ischemic stroke, but it may be affected by in-stent restenosis. The present study investigated serum level of matrix metalloproteinase 9 as a predictor of restenosis after 40 patients underwent cervical and/or intracranial angioplasty and stenting. Results showed that restenosis occurred in 30% (3/10) of patients when the serum level of matrix metalloproteinase 9 at 3 days after surgery was 2.5 times higher than preoperative level. No restenosis occurred when the serum level of matrix metalloproteinase 9 at 3 days after surgery was not 2.5 times higher than preoperative level. Restenosis occurred in 12% (2/17) of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for more than 30 days after surgery, but only occurred in 4% (1/23) of patients when the serum level of matrix metalloproteinase 9 was higher than preoperative level for less than 30 days after surgery. However, the differences observed were not statistically significant (P > 0.05). Experimental findings indicate that when the serum level of matrix metalloproteinase 9 is 2.5 times higher than preoperative level at 3 days after cervical and intracranial angioplasty and stenting, it may serve as a predictor of in-stent restenosis. PMID:26170826

  11. Genomic Organization of channel catfish, Ictalurus punctatus, matrix metalloproteinase-9-gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned and sequenced MMP-9 genomic DNA by using a Unversal GenomeWalker kit. The co...

  12. Molecular Cloning, Expression and Genome Organization of Channel Catfish (Ictalurus punctatus) Matrix Metalloproteinase-9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned, sequenced using the RACE (rapid amplification of cDNA ends) method and cha...

  13. CLONING AND SEQUENCING OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) MATRIX METALLOPROTEINASE-9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned and sequenced using the RACE. The complete sequence of the CC MMP-9 cDNA g...

  14. Matrix Metalloproteinase-9 regulates neuronal circuit development and excitability

    PubMed Central

    Murase, Sachiko; Lantz, Crystal; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A.; Quinlan, Elizabeth M.

    2015-01-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here we demonstrate that deletion of the extracellular proteinase MMP-9 affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons, but decreases dendritic length and complexity while dendritic spine density is unchanged. Parallel changes in neuronal morphology are observed in primary visual cortex, and persist into adulthood. Individual CA1 neurons in MMP-9−/− mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significant increases spontaneous neuronal activity in awake MMP-9−/− mice and enhances response to acute challenge by the excitotoxin kainate. Thus MMP-9-dependent proteolysis regulates several aspects of circuit maturation to constrain excitability throughout life. PMID:26093382

  15. Environmental arsenic exposure and serum matrix metalloproteinase-9

    PubMed Central

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B.

    2014-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike’s Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9, than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure was positively associated with MMP-9 using all three exposure metrics evaluated. PMID:23232971

  16. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue

    PubMed Central

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-01-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  17. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue.

    PubMed

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-12-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  18. Matrix Metalloproteinase-9 as a Novel Player in Synaptic Plasticity and Schizophrenia

    PubMed Central

    Lepeta, Katarzyna; Kaczmarek, Leszek

    2015-01-01

    Recent findings implicate alterations in glutamate signaling, leading to aberrant synaptic plasticity, in schizophrenia. Matrix metalloproteinase-9 (MMP-9) has been shown to regulate glutamate receptors, be regulated by glutamate at excitatory synapses, and modulate physiological and morphological synaptic plasticity. By means of functional gene polymorphism, gene responsiveness to antipsychotics and blood plasma levels MMP-9 has recently been implicated in schizophrenia. This commentary critically reviews these findings based on the hypothesis that MMP-9 contributes to pathological synaptic plasticity in schizophrenia. PMID:25837304

  19. The Matrix Metalloproteinase 9 Point-of-Care Test in Dry Eye.

    PubMed

    Lanza, Nicole L; Valenzuela, Felipe; Perez, Victor L; Galor, Anat

    2016-04-01

    Dry eye is a common, multifactorial disease currently diagnosed by a combination of symptoms and signs. However, the subjective symptoms of dry eye poorly correlate to the current gold standard for diagnostic tests, reflecting the need to develop better objective tests for the diagnosis of dry eye. This review considers the role of ocular surface matrix metalloproteinase 9 (MMP-9) in dry eye and the implications of a novel point-of-care test that measures MMP-9 levels, InflammaDry (RPS, Sarasota, FL) on choosing appropriate therapeutic treatments. PMID:26850527

  20. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    SciTech Connect

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho Park, Young-Guk

    2009-01-09

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1{beta} (IL-1{beta}) stimulation with increasing in vitro age. Tumor necrosis factor-{alpha} (TNF-{alpha})-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-{kappa}B and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  1. Complete structure, genomic organization, and expression of channel catfish (Ictalurus punctatus, Rafinesque 1818) matrix metalloproteinase-9 gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that the channel catfish (CC) matrix metalloproteinase-9 (MMP-9) expressed sequence tag (EST) was up-regulated after early Edwardsiella ictaluri infection. In this study, the CC MMP-9 gene was cloned, sequenced and ch...

  2. Transcriptional Activation of Human Matrix Metalloproteinase-9 Gene Expression by Multiple Coactivators

    PubMed Central

    Zhao, Xueyan; Benveniste, Etty N.

    2008-01-01

    Summary Matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme for matrix proteins, chemokines and cytokines, is a major target in cancer and autoimmune diseases since it is aberrantly upregulated. To control MMP-9 expression in pathological conditions, it is necessary to understand the regulatory mechanisms of MMP-9 expression. MMP-9 gene expression is regulated primarily at the transcriptional level. In this study, we investigated the role of multiple coactivators in regulating MMP-9 transcription. We demonstrate that multiple transcriptional coactivators are involved in MMP-9 promoter activation, including CBP/p300, PCAF, CARM1 and GRIP1. Furthermore, enhancement of MMP-9 promoter activity requires the histone acetyltransferase activity of PCAF but not that of CBP/p300, and the methyltransferase activity of CARM1. More importantly, these coactivators are not only able to activate MMP-9 promoter activity independently, but also function in a synergistic manner. Significant synergy was observed among CARM1, p300 and GRIP1, which is dependent on the interaction of p300 and CARM1 with the AD1 and AD2 domains of GRIP1, respectively. This suggests the formation of a ternary coactivator complex on the MMP-9 promoter. Chromatin immunoprecipitation assays demonstrate that these coactivators associate with the endogenous MMP-9 promoter, and that siRNA knockdown of expression of these coactivators reduces endogenous MMP-9 expression. Taken together, these studies demonstrate a new level of transcriptional regulation of MMP-9 expression by the cooperative action of coactivators. PMID:18790699

  3. Therapeutic sesamol attenuates monocrotaline-induced sinusoidal obstruction syndrome in rats by inhibiting matrix metalloproteinase-9.

    PubMed

    Periasamy, Srinivasan; Hsu, Dur-Zong; Chen, Shin-Yi; Yang, Shan-Shan; Chandrasekaran, Victor Raj Mohan; Liu, Ming-Yie

    2011-11-01

    We investigated the therapeutic effect of sesamol against monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats. Male Sprague-Dawley rats were gavaged with a single dose of monocrotaline (90 mg/kg) to induce SOS. Sesamol (5, 10, 20, and 40 mg/kg) was subcutaneously injected 24 h after monocrotaline treatment. Control rats were given saline only. Aspartate transaminase, alanine transaminase, mast cells, CD 68(+) Kupffer cells, neutrophils, myeloperoxidase, matrix metalloproteinase-9 (MMP-9), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), laminin, and collagen were assessed 48 h after monocrotaline treatment. All tested parameters, except for TIMP-1, laminin, and collagen, were significantly higher in monocrotaline-treated rats than in control rats, and, except for TIMP-1, laminin, and collagen, significantly lower in sesamol-treated rats than in monocrotaline-treated rats. In addition, liver pathology revealed that sesamol offered significant protection against SOS. We conclude that a single dose of sesamol therapeutically attenuated SOS by decreasing the recruitment of inflammatory cells, downregulating MMP-9, and upregulating TIMP-1 expression. PMID:21681587

  4. Serum matrix metalloproteinase 9 (MMP9) as a biochemical marker for wasting marmoset syndrome

    PubMed Central

    YOSHIMOTO, Takuro; NIIMI, Kimie; TAKAHASHI, Eiki

    2016-01-01

    Use of the common marmoset (Callithrix jacchus) as a non-human primate experimental animal has increased in recent years. Although wasting marmoset syndrome (WMS) is one of the biggest problems in captive marmoset colonies, the molecular mechanisms, biochemical markers for accurate diagnosis and a reliable treatment remain unknown. In this study, as a first step to finding biochemical marker(s) for the accurate diagnosis of WMS, we conducted blood cell counts, including hematocrit, hemoglobin and platelets, and examined serum chemistry values, including albumin, calcium and levels of serum matrix metalloproteinase 9 (MMP9), using a colony of marmosets with and without weight loss. MMP9 is thought to be an enzyme responsible for the degradation of extracellular matrix components and participates in the pathogenesis of inflammatory conditions, such as human and murine inflammatory bowel disease, which, like WMS, are characterized histologically by inflammatory cell infiltrations in the intestines. The values of hematocrit and hemoglobin and levels of serum albumin and calcium in the WMS group were significantly decreased versus the control group. The platelet values and serum MMP9 concentrations were increased significantly in the WMS group compared with the control group. MMP9 could be a new and useful marker for the diagnosis of WMS in addition to hematocrit, hemoglobin, serum albumin and calcium. Our results also indicate that MMP9 could be a useful molecular candidate for treatment. PMID:26876041

  5. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization

    PubMed Central

    Di, Yu; Nie, Qing-Zhu; Chen, Xiao-Long

    2016-01-01

    AIM To investigate the signal transduction mechanism of matrix metalloproteinase-9 (MMP-9) mediated- vascular endothelial growth factor (VEGF) expression and retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR) model. METHODS C57BL/6J mice were divided into four groups: control group, OIR group, OIR control group (phosphate-buffered saline by intravitreal injection) and treated group [tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) by intravitreal injection]. OIR model was established in C57BL/6J mice exposed to 75%±2% oxygen for 5d. mRNA level and protein expression of MMP-9, TIMP-1 and VEGF were measured by real-time polymerase chain reaction and Western blotting, and located by immunohistochemistry. RESULTS Levels of MMP-9 and VEGF in retina were significantly increased in animals with OIR and OIR control group. Levels of TIMP-1 in retina was significantly reduced in animals with OIR and OIR control group. Furthermore, a significant correlation was found between MMP-9 and VEGF. Intravitreal injection of TIMP-1 significantly reduced MMP-9 and VEGF expression of the OIR mouse model (all P<0.05). CONCLUSION These results demonstrate that MMP-9-mediated up-regulation of VEGF promotes RNV in retinopathy of prematurity (ROP). TIMP-1 may be a potential target for the prevention and treatment of ROP. PMID:27366678

  6. Serum matrix metalloproteinase-9 in colorectal cancer family-risk population screening

    PubMed Central

    Otero-Estévez, Olalla; Chiara, Loretta De; Rodríguez-Girondo, Mar; Rodríguez-Berrocal, Francisco Javier; Cubiella, Joaquín; Castro, Inés; Hernández, Vicent; Martínez-Zorzano, Vicenta Soledad

    2015-01-01

    Matrix metalloproteinase-9 (MMP-9) is related to tumour development and progression in colorectal cancer (CRC) and its utility as biomarker has been suggested. The aim of our study was to measure serum MMP-9 in asymptomatic first-degree relatives of CRC patients, and to analyse its diagnostic accuracy for the detection of advanced neoplasia (AN: advanced adenomas and CRC). Additionally, we compared its diagnostic capability with the most used non-invasive faecal immunochemical test (FIT). Serum MMP-9 was quantified by ELISA in 516 asymptomatic individuals that underwent a colonoscopy and a FIT. MMP-9 levels were significantly related to age and gender and therefore the concentration was corrected by these confounders. Corrected MMP-9 (cMMP-9) levels were higher in individuals with advanced adenomas (AA; p-value = 0.029) and AN (p-value = 0.056) compared to individuals with no neoplasia. Moreover, elevated cMMP-9 concentration was associated with more severe characteristics of adenomas (number of lesions, size and histology). Nevertheless, the diagnostic accuracy of cMMP-9 was considerably lower than that of FIT for identifying AA (22.64% vs. 47.17% sensitivity, 90% specificity) or AN (19.30% vs. 52.63% sensitivity, 90% specificity). According to our results, serum MMP-9 cannot be considered of utility for the diagnosis of AN in CRC family-risk population screening. PMID:26264519

  7. Longitudinal prospective study of matrix metalloproteinase-9 as a serum marker in gliomas.

    PubMed

    Iwamoto, Fabio M; Hottinger, Andreas F; Karimi, Sasan; Riedel, Elyn; Dantis, Jocelynn; Jahdi, Maryam; Panageas, Katherine S; Lassman, Andrew B; Abrey, Lauren E; Fleisher, Martin; Deangelis, Lisa M; Holland, Eric C; Hormigo, Adília

    2011-12-01

    The objective of this study was to evaluate if longitudinal measurements of serum matrix metalloproteinase-9 (MMP-9) correlated with disease status or survival in adults with gliomas. Serum samples were collected prospectively and concurrently with MRI scans at multiple time points during the course of the disease. MMP-9 levels were determined by ELISA and correlated with radiographic disease status and survival. Forty-one patients with low-grade gliomas, 105 with anaplastic gliomas, and 197 with glioblastoma enrolled in this study from August 2002 to September 2008. A total of 1,684 serum samples (97.1% of all MMP-9 samples) had a matching MRI scan. No statistically significant association was observed between levels of serum MMP-9 and radiographic disease status in low-grade gliomas (P = 0.98), anaplastic gliomas (P = 0.39) or glioblastomas (P = 0.33). Among patients with glioblastoma, longitudinal increases in MMP-9 had a weak association with shorter survival (HR = 1.1 per each doubling in MMP-9 levels, 95% CI, 1.0-1.3, P = 0.04) but they were not independently associated with survival when adjusted for age, extent of resection, and performance status. Changes in serum MMP-9 were not associated with survival in the anaplastic glioma cohort. Serum MMP-9 showed no utility in determining glioma disease status and was not a clinically relevant prognostic marker of survival. PMID:21710351

  8. Alpha1-antichymotrypsin activity correlates with and may modulate matrix metalloproteinase-9 in human acute wounds.

    PubMed

    Reiss, Matthew J; Han, Yuan-Ping; Garner, Warren L

    2009-01-01

    Matrix metalloproteinase-9 (MMP-9) plays a central role in many physiologic processes including acute and the chronic wounds. MMP-9 is not routinely expressed in healthy tissues but is promptly expressed as a proenzyme and converted into active enzyme after tissue injury. The mechanisms involved, including the activators and inhibitors for this enzyme in human tissue remain largely obscure. We recently identified alpha1-antichymotrypsin (alpha1-ACT), an acute phase factor, as a potent inhibitor controlling activation of pro-MMP-9 by human skin. The aim of this study is to establish the clinical relevance of the inhibitor in cutaneous wound healing. Fluids from acute burn blisters and conditioned media from skin explants of burn patients were analyzed. We observed that the presence pro-MMP-9 and its activation correlated with the proximity to and degree of injury. Early after trauma, massive levels of wound alpha1-ACT were associated with an absence of pro-MMP-9 activation. Conversely, the active MMP-9 occurs simultaneously with inactivation of alpha1-ACT. Our results suggest a role for alpha1-ACT as a physiologic inhibitor of MMP-9 activation in human wound healing. PMID:19660051

  9. Functional roles of N-linked glycosylation of human matrix metalloproteinase 9

    PubMed Central

    Duellman, Tyler; Burnett, John; Yang, Jay

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is a secreted endoproteinase with a critical role in the regulation of the extracellular matrix and proteolytic activation of signaling molecules. Human (h)MMP-9 has two well-defined N-glycosylation sites at residues N38 and N120, however, their role has remained mostly unexplored partly because expression of the N-glycosylation-deficient N38S has been difficult due to a recently discovered SNP-dependent miRNA-mediated inhibitory mechanism. hMMP-9 cDNA encoding amino acid substitutions at residues 38 (mS38) or 120 (N120S) were created in the background of a miRNA binding site disrupted template and expressed by transient transfection. hMMP-9 harboring a single mS38 replacement secreted well, whereas N120S, or a double mS38/ N120S hMMP-9 demonstrated much reduced secretion. Imaging indicated ER-retention of the non-secreted variants and co-IP confirmed an enhanced strong interaction between the non-secreted hMMP-9s and the ER-resident protein calreticulin. Removal of N-glycosylation at residue 38 revealed an amino acid-dependent strong interaction with calreticulin likely preventing unloading of the misfolded protein from the ER chaperone down the normal secretory pathway. As with other glycoproteins, N-glycosylation strongly regulates hMMP-9 secretion. This is mediated, however, through a novel mechanism of cloaking an N-glycosylation-independent strong interaction with the ER-resident calreticulin. PMID:26207422

  10. Matrix Metalloproteinase 9 (MMP-9) Regulates Vein Wall Biomechanics in Murine Thrombus Resolution

    PubMed Central

    Nguyen, Khanh P.; McGilvray, Kirk C.; Puttlitz, Christian M.; Mukhopadhyay, Subhradip; Chabasse, Christine; Sarkar, Rajabrata

    2015-01-01

    Objective Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9), a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall. Methods and Results The effects of targeted deletion of MMP-9 were studied in an in vivo murine model of thrombus resolution using the FVB strain of mice. MMP-9 expression and activity significantly increased on day 3 after DVT. The lack of MMP-9 impaired thrombus resolution by 27% and this phenotype was rescued by the transplantation of wildtype bone marrow cells. Using novel biomechanical techniques, we demonstrated that the lack of MMP-9 significantly decreased thrombus-induced loss of vein wall compliance. Biomechanical analysis of the contribution of individual structural components showed that MMP-9 affected the elasticity of the extracellular matrix and collagen-elastin fibers. Biochemical and histological analyses correlated with these biomechanical effects as thrombi of mice lacking MMP-9 had significantly fewer macrophages and collagen as compared to those of wildtype mice. Conclusions MMP-9 mediates thrombus-induced loss of vein wall compliance by increasing stiffness of the extracellular matrix and collagen-elastin fibers during thrombus resolution. MMP-9 also mediates macrophage and collagen content of the resolving thrombus and bone-marrow derived MMP-9 plays a role in resolution of thrombus mass. These disparate effects of MMP-9 on various aspects of thrombus illustrate the complexity of individual protease function on biomechanical and morphometric aspects of thrombus resolution. PMID:26406902

  11. Simvastatin inhibits induction of matrix metalloproteinase-9 in rat alveolar macrophages exposed to cigarette smoke extract

    PubMed Central

    Kim, Sang-Eun; Thuy, Tran Thi Thanh; Lee, Ji-Hyun; Ro, Jai Youl; Bae, Young-An; Kong, Yoon; Ahn, Jee-Yin; Lee, Dong-Soon; Oh, Yeon-Mock; Lee, Sang-Do

    2009-01-01

    Matrix metalloproteinase-9 (MMP-9) may play an important role in emphysematous change in chronic obstructive pulmonary disease (COPD), one of the leading causes of mortality and morbidity worldwide. We previously reported that simvastatin, an inhibitor of HMG-CoA reductase, attenuates emphysematous change and MMP-9 induction in the lungs of rats exposed to cigarette smoke. However, it remained uncertain how cigarette smoke induced MMP-9 and how simvastatin inhibited cigarette smoke-induced MMP-9 expression in alveolar macrophages (AMs), a major source of MMP-9 in the lungs of COPD patients. Presently, we examined the related signaling for MMP-9 induction and the inhibitory mechanism of simvastatin on MMP-9 induction in AMs exposed to cigarette smoke extract (CSE). In isolated rat AMs, CSE induced MMP-9 expression and phosphorylation of ERK and Akt. A chemical inhibitor of MEK1/2 or PI3K reduced phosphorylation of ERK or Akt, respectively, and also inhibited CSE-mediated MMP-9 induction. Simvastatin reduced CSE-mediated MMP-9 induction, and simvastatin-mediated inhibition was reversed by farnesyl pyrophosphate (FPP) or geranylgeranyl pyrophosphate (GGPP). Similar to simvastatin, inhibition of FPP transferase or GGPP transferase suppressed CSE-mediated MMP-9 induction. Simvastatin attenuated CSE-mediated activation of RAS and phosphorylation of ERK, Akt, p65, IκB, and nuclear AP-1 or NF-κB activity. Taken together, these results suggest that simvastatin may inhibit CSE-mediated MMP-9 induction, primarily by blocking prenylation of RAS in the signaling pathways, in which Raf-MEK-ERK, PI3K/Akt, AP-1, and IκB-NF-κB are involved. PMID:19299917

  12. Expression analysis of Matrix Metalloproteinase-9 in epithelialized and non-epithelialized apical periodontitis lesions

    PubMed Central

    Carneiro, Everdan; Menezes, Renato; Garlet, Gustavo Pompermaier; Garcia, Roberto Brandão; Bramante, Clóvis Monteiro; Figueira, Rita; Sogayar, Mari; Granjeiro, José Mauro

    2009-01-01

    OBJECTIVE To determine the expression of matrix metalloproteinase-9 (MMP-9) in apical periodontitis lesions. STUDY DESIGN Nineteen epithelialized and eighteen non-epithelialized apical periodontitis lesions were collected after periapical surgery. After histological processing, serial sectioning, H&E staining and microscopic analysis, 10 epithelialized and 10 non-epithelialized lesions were selected for immunohistochemical analysis for MMP-9 and CD 68. At least 1/3 of each specimen was frozen at −70°C for further mRNA isolation and reverse transcription into cDNA for Real-Time-PCR procedures. The relative expression of a target gene was determined in comparison with reference genes (GAPDH, HPRT, β-actin and BCRP). RESULTS Polymorphonuclear neutrophils, macrophages and lymphocytes were stained for MMP-9 in both types of lesions, and when present, epithelial cells were also stained. The number and the ratio of MMP-9+/total cells were greater in non-epithelialized than epithelialized lesions (p=0.0001) and showed a positive correlation to CD68+/total cells (p=0.045). No significant differences were observed for MMP-9 mRNA expression between ephithelized and non-ephithelized lesions. However, when compared to healthy periapical ligaments, both types of lesions presented increased MMP-9 expression (p<0.0001). CONCLUSION The present data suggest the participation of several inflammatory cells, mainlly CD68+ cells, in the MMP-9 expression in apical periodontitis lesions. MMP-9 could be actively enroled in the ECM degradation in apical periodontitis lesions. PMID:18926740

  13. Molecular Mechanism of Transcriptional Regulation of Matrix Metalloproteinase-9 in Diabetic Retinopathy.

    PubMed

    Mishra, Manish; Flaga, Jadwiga; Kowluru, Renu A

    2016-08-01

    Increase in matrix metalloproteinase-9 (MMP-9) is implicated in retinal capillary cell apoptosis, a phenomenon which precedes the development of diabetic retinopathy. MMP-9 promoter has multiple sites for binding the transcriptional factors, including two for activator protein 1 (AP-1). The binding of AP-1, a heterodimer of c-Jun and c-Fos, is regulated by posttranslational modifications, and in diabetes, deacetylating enzyme, Sirt1, is inhibited. Our aim, is to investigate the molecular mechanism of MMP-9 transcriptional regulation in diabetes. Binding of AP-1 (c-Jun, c-Fos) at the MMP-9 promoter, and AP-1 acetylation were analyzed in retinal endothelial cells incubated in normal or high glucose by chromatin-immunoprecipitation and co-immunoprecipitation respectively. Role of AP-1 in MMP-9 regulation was confirmed by c-Jun or c-Fos siRNAs, and that of its acetylation, by Sirt1 overexpression. In vitro results were validated in the retina from diabetic mice overexpressing Sirt1, and in the retinal microvessels from human donors with diabetic retinopathy. In experimental models, AP-1 binding was increased at the proximal and distal sites of the MMP-9 promoter, and similar phenomenon was confirmed in the retinal microvessels from human donors with diabetic retinopathy. Silencing of AP-1, or overexpression of Sirt1 ameliorated glucose-induced increase in MMP-9 expression and cell apoptosis. Thus, in diabetes, due to Sirt1 inhibition, AP-1 is hyperacetylated, which increases its binding at MMP-9 promoter, and hence, activation of Sirt1 could inhibit the development of diabetic retinopathy by impeding MMP-9-mediated mitochondrial damage. J. Cell. Physiol. 231: 1709-1718, 2016. © 2015 Wiley Periodicals, Inc. PMID:26599598

  14. Attenuation of dextran sodium sulphate induced colitis in matrix metalloproteinase-9 deficient mice

    PubMed Central

    Santana, Alfredo; Medina, Carlos; Paz-Cabrera, Maria Cristina; Díaz-Gonzalez, Federico; Farré, Esther; Salas, Antonio; Radomski, Marek W; Quintero, Enrique

    2006-01-01

    AIM: To study whether matrix metalloproteinase-9 (MMP-9) is a key factor in epithelial damage in the dextran sodium sulphate (DSS) model of colitis in mice. METHODS: MMP-9-deficient and wild-type (wt) mice were given 5% DSS in drinking water for 5 d followed by recovery up to 7 d. On d 5 and 12 after induction of colitis, gelatinases, MMP-2 and MMP-9, were measured in homogenates of colonic tissue by zymography and Western blot, whereas tissue inhibitor of metalloproteinases (TIMPs) were measured by reverse zymography. The gelatinolytic activity was also determined in supernatants of polymorphonuclear leukocytes (PMN) isolated from mice blood. Moreover, intestinal epithelial cells were stimulated with TNF-α to study whether these cells were able to produce MMPs. Finally, colonic mucosal lesions were measured by microscopic examination. RESULTS: On d 5 of colitis, the activity of MMP-9 was increased in homogenates of colonic tissues (0.24 ± 0.1 vs 21.3 ± 6.4, P < 0.05) and PMN from peripheral blood in wt (0.5 ± 0.1 vs 10.4 ± 0.7, P < 0.05), but not in MMP-9-deficient animals. The MMP-9 activity was also up-regulated by TNF-α in epithelial intestinal cells (2.5 ± 0.5 vs 14.7 ± 3.0, P < 0.05). Although colitis also led to increase of TIMP-1 activity, the MMP-9/TIMP-1 balance remained elevated. Finally, in the MMP-9-deficient colitic mice both the extent and severity of intestinal epithelial injury were significantly attenuated when compared with wt mice. CONCLUSION: We conclude that DSS induced colitis is markedly attenuated in animals lacking MMP-9. This suggests that intestinal injury induced by DSS is modulated by MMP-9 and that inhibition of this gelatinase may reduce inflammation. PMID:17072979

  15. Regulation of Matrix Metalloproteinase-9 by Epigenetic Modifications and the Development of Diabetic Retinopathy

    PubMed Central

    Zhong, Qing; Kowluru, Renu A.

    2013-01-01

    Diabetes activates retinal matrix metalloproteinase-9 (MMP-9), and MMP-9 damages the mitochondria and augments capillary cell apoptosis. Our aim is to elucidate the mechanism responsible for MMP-9 activation. Histone modifications and recruitment of the nuclear transcriptional factor-κB (p65 subunit) at the MMP-9 promoter and the activity of lysine-specific demethylase 1 (LSD1) were measured in the retina from streptozotocin-induced diabetic rats. The role of LSD1 in MMP-9 activation was investigated in isolated retinal endothelial cells transfected with LSD1 small interfering RNA (siRNA). The results were confirmed in the retina from human donors with diabetic retinopathy. Diabetes decreased histone H3 dimethyl lysine 9 (H3K9me2) and increased acetyl H3K9 (Ac-H3K9) and p65 at the retinal MMP-9 promoter. LSD1 enzyme activity and its transcripts were elevated. LSD1 siRNA ameliorated the glucose-induced decrease in H3K9me2 and increase in p65 at the MMP-9 promoter, and prevented MMP-9 activation, mitochondrial damage, and cell apoptosis. Human donors with diabetic retinopathy had similar epigenetic changes at the MMP-9 promoter. Thus, activated LSD1 hypomethylates H3K9 at the MMP-9 promoter and this frees up that lysine 9 for acetylation. Increased Ac-H3K9 facilitates the recruitment of p65, resulting in MMP-9 activation and mitochondrial damage. Thus, the regulation of LSD1 by molecular or pharmacological means has the potential to retard the development of diabetic retinopathy. PMID:23423566

  16. Selective Inhibition of Matrix Metalloproteinase-9 Attenuates Secondary Damage Resulting from Severe Traumatic Brain Injury

    PubMed Central

    Gooyit, Major; Chen, Shanyan; Purdy, Justin J.; Walker, Jennifer M.; Giritharan, Andrew B.; Purnell, Whitley; Robinson, Christopher R.; Shin, Dmitriy; Schroeder, Valerie A.; Suckow, Mark A.; Simonyi, Agnes; Y. Sun, Grace; Mobashery, Shahriar; Cui, Jiankun; Chang, Mayland; Gu, Zezong

    2013-01-01

    Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Following the initial insult, severe TBI progresses to a secondary injury phase associated with biochemical and cellular changes. The secondary injury is thought to be responsible for the development of many of the neurological deficits observed after TBI and also provides a window of opportunity for therapeutic intervention. Matrix metalloproteinase-9 (MMP-9 or gelatinase B) expression is elevated in neurological diseases and its activation is an important factor in detrimental outcomes including excitotoxicity, mitochondrial dysfunction and apoptosis, and increases in inflammatory responses and astrogliosis. In this study, we used an experimental mouse model of TBI to examine the role of MMP-9 and the therapeutic potential of SB-3CT, a mechanism-based gelatinase selective inhibitor, in ameliorating the secondary injury. We observed that activation of MMP-9 occurred within one day following TBI, and remained elevated for 7 days after the initial insult. SB-3CT effectively attenuated MMP-9 activity, reduced brain lesion volumes and prevented neuronal loss and dendritic degeneration. Pharmacokinetic studies revealed that SB-3CT and its active metabolite, p-OH SB-3CT, were rapidly absorbed and distributed to the brain. Moreover, SB-3CT treatment mitigated microglial activation and astrogliosis after TBI. Importantly, SB-3CT treatment improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. These results demonstrate that MMP-9 is a key target for therapy to attenuate secondary injury cascades and that this class of mechanism-based gelatinase inhibitor–with such desirable pharmacokinetic properties–holds considerable promise as a potential pharmacological treatment of TBI. PMID:24194849

  17. AMP-activated protein kinase suppresses matrix metalloproteinase-9 expression in mouse embryonic fibroblasts.

    PubMed

    Morizane, Yuki; Thanos, Aristomenis; Takeuchi, Kimio; Murakami, Yusuke; Kayama, Maki; Trichonas, George; Miller, Joan; Foretz, Marc; Viollet, Benoit; Vavvas, Demetrios G

    2011-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tissue remodeling under both physiological and pathological conditions. Although MMP-9 expression is low in most cells and is tightly controlled, the mechanism of its regulation is poorly understood. We utilized mouse embryonic fibroblasts (MEFs) that were nullizygous for the catalytic α subunit of AMP-activated protein kinase (AMPK), which is a key regulator of energy homeostasis, to identify AMPK as a suppressor of MMP-9 expression. Total AMPKα deletion significantly elevated MMP-9 expression compared with wild-type (WT) MEFs, whereas single knock-out of the isoforms AMPKα1 and AMPKα2 caused minimal change in the level of MMP-9 expression. The suppressive role of AMPK on MMP-9 expression was mediated through both its activity and presence. The AMPK activators 5-amino-4-imidazole carboxamide riboside and A769662 suppressed MMP-9 expression in WT MEFs, and AMPK inhibition by the overexpression of dominant negative (DN) AMPKα elevated MMP-9 expression. However, in AMPKα(-/-) MEFs transduced with DN AMPKα, MMP-9 expression was suppressed. AMPKα(-/-) MEFs showed increased phosphorylation of IκBα, expression of IκBα mRNA, nuclear localization of nuclear factor-κB (NF-κB), and DNA-binding activity of NF-κB compared with WT. Consistently, selective NF-κB inhibitors BMS345541 and SM7368 decreased MMP-9 expression in AMPKα(-/-) MEFs. Overall, our results suggest that both AMPKα isoforms suppress MMP-9 expression and that both the activity and presence of AMPKα contribute to its function as a regulator of MMP-9 expression by inhibiting the NF-κB pathway. PMID:21402702

  18. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  19. Niclosamide suppresses migration of hepatocellular carcinoma cells and downregulates matrix metalloproteinase-9 expression

    PubMed Central

    TOMIZAWA, MINORU; SHINOZAKI, FUMINOBU; MOTOYOSHI, YASUFUMI; SUGIYAMA, TAKAO; YAMAMOTO, SHIGENORI; ISHIGE, NAOKI

    2015-01-01

    Metastasis negatively affects the prognosis of hepatocellular carcinoma (HCC). In the present study, niclosamide, which is known to suppress the proliferation of HCC cells, was investigated for possible suppressant effects on the migration of HCC cells. HLF and PLC/PRF/5 HCC cells were cultured in the presence of niclosamide. Cell proliferation was analyzed using the MTS assay. Cell migration was measured by performing a scratch assay. Expression levels of cyclin D1 and matrix metalloproteinase 9 (MMP9) were analyzed by performing revers transcription-quantitative polymerase chain reaction. Compared with the control treatment, treatment with 10 µm niclosamide suppressed the proliferation of the HLF and PRL/PRF/5 cells to 49.9±3.7 and 17.9±11.5% (P<0.05), respectively. Furthermore, compared with the control treatment, treatment with 1.0 µM niclosamide downregulated the expression of cyclin D1 to 52.4±4.4 and 23.9±5.4% (P<0.05) in the HLF and PRL/PRF/5 cells, respectively. In the scratch assay, treatment of the HLF cells with niclosamide (1.0 µm) decreased the distance of the scratched line from the growing edge to 4.6±1.0 mm compared with the 9.2±1.4 mm observed with the control treatment (P<0.05). Similarly, treatment of the PRL/PRF/5 cells with niclosamide (1.0 µm) also decreased the distance of the scratched line from the growing edge to 3.0±0.8 mm compared with the 5.5±0.9 mm observed with the control treatment (P<0.05). Further, MMP9 expression levels in the HLF cells treated with 1.0 µm niclosamide decreased to 22.4±1.76% (P<0.05) compared with those in the untreated control HLF cells. Similarly, expression level of MMP9 in the PRL/PRF/5 cells treated with 1.0 µm niclosamide deceased to 18.7±10.7% (P<0.05) compared with those in the untreated control PRL/PRF/5 cells. Overall, niclosamide downregulated the expression of MMP9 in and suppressed the migration of HCC cells. PMID:26788160

  20. Melatonin Preserves Blood-Brain Barrier Integrity and Permeability via Matrix Metalloproteinase-9 Inhibition

    PubMed Central

    Alluri, Himakarnika; Wilson, Rickesha L.; Anasooya Shaji, Chinchusha; Wiggins-Dohlvik, Katie; Patel, Savan; Liu, Yang; Peng, Xu; Beeram, Madhava R.; Davis, Matthew L.; Huang, Jason H.; Tharakan, Binu

    2016-01-01

    Microvascular hyperpermeability that occurs at the level of the blood-brain barrier (BBB) often leads to vasogenic brain edema and elevated intracranial pressure following traumatic brain injury (TBI). At a cellular level, tight junction proteins (TJPs) between neighboring endothelial cells maintain the integrity of the BBB via TJ associated proteins particularly, zonula occludens-1 (ZO-1) that binds to the transmembrane TJPs and actin cytoskeleton intracellularly. The pro-inflammatory cytokine, interleukin-1β (IL-1β) as well as the proteolytic enzymes, matrix metalloproteinase-9 (MMP-9) are key mediators of trauma-associated brain edema. Recent studies indicate that melatonin a pineal hormone directly binds to MMP-9 and also might act as its endogenous inhibitor. We hypothesized that melatonin treatment will provide protection against TBI-induced BBB hyperpermeability via MMP-9 inhibition. Rat brain microvascular endothelial cells grown as monolayers were used as an in vitro model of the BBB and a mouse model of TBI using a controlled cortical impactor was used for all in vivo studies. IL-1β (10 ng/mL; 2 hours)-induced endothelial monolayer hyperpermeability was significantly attenuated by melatonin (10 μg/mL; 1 hour), GM6001 (broad spectrum MMP inhibitor; 10 μM; 1 hour), MMP-9 inhibitor-1 (MMP-9 specific inhibitor; 5 nM; 1 hour) or MMP-9 siRNA transfection (48 hours) in vitro. Melatonin and MMP-9 inhibitor-1 pretreatment attenuated IL-1β-induced MMP-9 activity, loss of ZO-1 junctional integrity and f-actin stress fiber formation. IL-1β treatment neither affected ZO-1 protein or mRNA expression or cell viability. Acute melatonin treatment attenuated BBB hyperpermeability in a mouse controlled cortical impact model of TBI in vivo. In conclusion, one of the protective effects of melatonin against BBB hyperpermeability occurs due to enhanced BBB integrity via MMP-9 inhibition. In addition, acute melatonin treatment provides protection against BBB

  1. Ablation of Matrix Metalloproteinase-9 Prevents Cardiomyocytes Contractile Dysfunction in Diabetics

    PubMed Central

    Prathipati, Priyanka; Metreveli, Naira; Nandi, Shyam Sundar; Tyagi, Suresh C.; Mishra, Paras K.

    2016-01-01

    Elevated expression and activity of matrix metalloproteinase-9 (MMP9) and decreased contractility of cardiomyocytes are documented in diabetic hearts. However, it is unclear whether MMP is involved in the regulation of contractility of cardiomyocytes in diabetic hearts. In the present study, we tested the hypothesis that MMP9 regulates contractility of cardiomyocytes in diabetic hearts, and ablation of MMP9 prevents impaired contractility of cardiomyocytes in diabetic hearts. To determine the specific role of MMP9 in cardiomyocyte contractility, we used 12–14 week male WT (normoglycemic sibling of Akita), Akita, and Ins2+∕−/MMP9−∕− (DKO) mice. DKO mice were generated by cross-breeding male Ins2+∕− Akita (T1D) with female MMP9 knockout (MMP9−∕−) mice. We isolated cardiomyocytes from the heart of the above three groups of mice and measured their contractility and calcium transients. Moreover, we determined mRNA and protein levels of sarco-endoplasmic reticulum calcium ATPase-2a (SERCA-2a), which is involved in calcium handling during contractility of cardiomyocytes in WT, Akita, and DKO hearts using QPCR, Western blotting and immunoprecipitation, respectively. Our results revealed that in Akita hearts where increased expression and activity of MMP9 is reported, the rates of shortening and re-lengthening (±dL/dt) of cardiomyocytes were decreased, time to 90% peak height and baseline during contractility was increased, rate of calcium decay was increased, and calcium transient was decreased as compared to WT cardiomyocytes. However, these changes in Akita were blunted in DKO cardiomyocytes. The molecular analyses of SERCA-2a in the hearts showed that it was downregulated in Akita as compared to WT but was comparatively upregulated in DKO. These results suggest that abrogation of MMP9 gene prevents contractility of cardiomyocytes, possibly by increasing SERCA-2a and calcium transients. We conclude that MMP9 plays a crucial role in the regulation

  2. Integrin αvβ6 and matrix metalloproteinase 9 correlate with survival in gastric cancer

    PubMed Central

    Lian, Pei-Long; Liu, Zhao; Yang, Guang-Yun; Zhao, Rui; Zhang, Zhao-Yang; Chen, Yue-Guang; Zhuang, Zhuo-Nan; Xu, Ke-Sen

    2016-01-01

    AIM: To investigate the expression of integrin αvβ6 and matrix metalloproteinase 9 (MMP-9), their association with prognostic factors and to assess their predictive role in gastric cancer patients. METHODS: Immunohistochemistry was used to determine the expressions of integrin αvβ6 and MMP-9 in 126 specimens from patients with primary gastric carcinoma. Associations between immunohistochemical staining and various clinic pathologic variables of tissue specimens were evaluated by the χ2 test and Fisher’s exact test. Expression correlation of αvβ6 and MMP-9 was assessed using bivariate correlation analysis. The patients were followed-up every 3 mo in the first two years and at least every 6 mo afterwards, with a median follow-up of 56 mo (ranging from 2 mo to 94 mo). Four different combinations of αvβ6 and MMP-9 levels (that is, both markers positive, both markers negative, αvβ6 positive with MMP-9 negative, and αvβ6 negative with MMP-9 positive) were evaluated for their relative effect on survival. The difference in survival curves was evaluated with a log-rank test. Survival analysis was conducted using the Kaplan-Meier survival and Cox proportional hazards model analysis. RESULTS: The expressions of integrin αvβ6 and MMP-9 were investigated in 126 cases, among which 34.92% were positive for αvβ6 expression, and 42.06% for MMP-9 expression. The expression of αvβ6 was associated with Lauren type, differentiation, N stage, and TNM stage (the P values were 0.006, 0.038, 0.016, and 0.002, respectively). While MMP-9 expression was associated with differentiation, T stage, N stage, and TNM stage (the P values were 0.039, 0.014, 0.033, and 0.008, respectively). The positive correlation between αvβ6 and MMP-9 in gastric cancer was confirmed by a correlation analysis. The Kaplan-Meier survival analysis showed that patients with expression of αvβ6 or MMP-9 alone died earlier than those with negative expression and that patients who were both αvβ6

  3. Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus.

    PubMed

    Zybura-Broda, Katarzyna; Amborska, Renata; Ambrozek-Latecka, Magdalena; Wilemska, Joanna; Bogusz, Agnieszka; Bucko, Joanna; Konopka, Anna; Grajkowska, Wieslawa; Roszkowski, Marcin; Marchel, Andrzej; Rysz, Andrzej; Koperski, Lukasz; Wilczynski, Grzegorz M; Kaczmarek, Leszek; Rylski, Marcin

    2016-01-01

    Enhanced levels of Matrix Metalloproteinase-9 (MMP-9) have been implicated in the pathogenesis of epilepsy in humans and rodents. Lack of Mmp-9 impoverishes, whereas excess of Mmp-9 facilitates epileptogenesis. Epigenetic mechanisms driving the epileptogenesis-related upregulation of MMP-9 expression are virtually unknown. The aim of this study was to reveal these mechanisms. We analyzed hippocampi extracted from adult and pediatric patients with temporal lobe epilepsy as well as from partially and fully pentylenetetrazole kindled rats. We used a unique approach to the analysis of the kindling model results (inclusion in the analysis of rats being during kindling, and not only a group of fully kindled animals), which allowed us to separate the molecular effects exerted by the epileptogenesis from those related to epilepsy and epileptic activity. Consequently, it allowed for a disclosure of molecular mechanisms underlying causes, and not consequences, of epilepsy. Our data show that the epileptogenesis-evoked upregulation of Mmp-9 expression is regulated by removal from Mmp-9 gene proximal promoter of the two, interweaved potent silencing mechanisms-DNA methylation and Polycomb Repressive Complex 2 (PRC2)-related repression. Demethylation depends on a gradual dissociation of the DNA methyltransferases, Dnmt3a and Dnmt3b, and on progressive association of the DNA demethylation promoting protein Gadd45β to Mmp-9 proximal gene promoter in vivo. The PRC2-related mechanism relies on dissociation of the repressive transcription factor YY1 and the dissipation of the PRC2-evoked trimethylation on Lys27 of the histone H3 from the proximal Mmp-9 promoter chromatin in vivo. Moreover, we show that the DNA hydroxymethylation, a new epigenetic DNA modification, which is localized predominantly in the gene promoters and is particularly abundant in the brain, is not involved in a regulation of MMP-9 expression during the epileptogenesis in the rat hippocampus as well as in the

  4. Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus

    PubMed Central

    Zybura-Broda, Katarzyna; Amborska, Renata; Ambrozek-Latecka, Magdalena; Wilemska, Joanna; Bogusz, Agnieszka; Bucko, Joanna; Konopka, Anna; Grajkowska, Wieslawa; Roszkowski, Marcin; Marchel, Andrzej; Rysz, Andrzej; Koperski, Lukasz; Wilczynski, Grzegorz M.; Kaczmarek, Leszek; Rylski, Marcin

    2016-01-01

    Enhanced levels of Matrix Metalloproteinase-9 (MMP-9) have been implicated in the pathogenesis of epilepsy in humans and rodents. Lack of Mmp-9 impoverishes, whereas excess of Mmp-9 facilitates epileptogenesis. Epigenetic mechanisms driving the epileptogenesis-related upregulation of MMP-9 expression are virtually unknown. The aim of this study was to reveal these mechanisms. We analyzed hippocampi extracted from adult and pediatric patients with temporal lobe epilepsy as well as from partially and fully pentylenetetrazole kindled rats. We used a unique approach to the analysis of the kindling model results (inclusion in the analysis of rats being during kindling, and not only a group of fully kindled animals), which allowed us to separate the molecular effects exerted by the epileptogenesis from those related to epilepsy and epileptic activity. Consequently, it allowed for a disclosure of molecular mechanisms underlying causes, and not consequences, of epilepsy. Our data show that the epileptogenesis-evoked upregulation of Mmp-9 expression is regulated by removal from Mmp-9 gene proximal promoter of the two, interweaved potent silencing mechanisms–DNA methylation and Polycomb Repressive Complex 2 (PRC2)-related repression. Demethylation depends on a gradual dissociation of the DNA methyltransferases, Dnmt3a and Dnmt3b, and on progressive association of the DNA demethylation promoting protein Gadd45β to Mmp-9 proximal gene promoter in vivo. The PRC2-related mechanism relies on dissociation of the repressive transcription factor YY1 and the dissipation of the PRC2-evoked trimethylation on Lys27 of the histone H3 from the proximal Mmp-9 promoter chromatin in vivo. Moreover, we show that the DNA hydroxymethylation, a new epigenetic DNA modification, which is localized predominantly in the gene promoters and is particularly abundant in the brain, is not involved in a regulation of MMP-9 expression during the epileptogenesis in the rat hippocampus as well as in the

  5. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients

    PubMed Central

    Tamborino, Carmine; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Dujmovic, Irena

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  6. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients.

    PubMed

    Trentini, Alessandro; Castellazzi, Massimiliano; Cervellati, Carlo; Manfrinato, Maria Cristina; Tamborino, Carmine; Hanau, Stefania; Volta, Carlo Alberto; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Dujmovic, Irena; Fainardi, Enrico

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  7. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    PubMed

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  8. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    PubMed Central

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A.; Banerji, Asoke; Perry, J. Jefferson P.

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1′ pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  9. Matrix Metalloproteinase-1 and Matrix Metalloproteinase-9 in the Aqueous Humor of Diabetic Macular Edema Patients

    PubMed Central

    Choi, Jin A.; Jee, Donghyun

    2016-01-01

    Purpose To assess the concentrations of matrix metalloproteinase (MMP)-1 and MMP-9 in the aqueous humor of diabetic macular edema (DME) patients. Method The concentrations of MMP-1 and MMP-9 in the aqueous humors of 15 cataract patients and 25 DME patients were compared. DME patients were analyzed according to the diabetic retinopathy (DR) stage, diabetes mellitus (DM) duration, pan-retinal photocoagulation (PRP) treatment, recurrence within 3 months, HbA1C (glycated hemoglobin) level, and axial length. Results The concentrations of MMP-1 and MMP-9 of the DME groups were higher than those of the control group (p = 0.005 and p = 0.002, respectively). There was a significant difference in MMP-1 concentration between the mild non-proliferative diabetic retinopathy (NPDR) group and the proliferative diabetic retinopathy (PDR) group (p = 0.012). MMP-1 concentrations were elevated in PRP-treated patients (p = 0.005). There was a significant difference in MMP-9 concentrations between the mild NPDR group and the PDR group (p < 0.001), and between the moderate and severe NPDR group and the PDR group (p < 0.001). The MMP-9 concentrations in PRP treated patients, DM patients with diabetes ≥ 10 years and recurrent DME within 3months were elevated (p = 0.023, p = 0.011, and p = 0.027, respectively). In correlation analyses, the MMP-1 level showed a significant correlation with age (r = -0.48, p = 0.01,), and the MMP-9 level showed significant correlations with axial length (r = -0.59, p < 0.01) and DM duration (r = 049, p = 0.01). Conclusions Concentrations of MMP-1 and MMP-9 were higher in the DME groups than in the control group. MMP-9 concentrations also differed depending on DR staging, DM duration, PRP treatment, and degree of axial myopia. MMP-9 may be more important than MMP-1 in the induction of DM complications in eyes. PMID:27467659

  10. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    SciTech Connect

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon; Jeon, Jae Heung; Ko, Jeong-Heon; Kim, Bo Yeon; Kim, Cheorl-Ho . E-mail: chkimbio@skku.edu

    2007-05-11

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of TNF-{alpha}. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-{alpha}-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-{alpha}-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-{alpha}. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-{kappa}B and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.

  11. The Effects of Matrix Metalloproteinase-9 on Dairy Goat Mastitis and Cell Survival of Goat Mammary Epithelial Cells

    PubMed Central

    Li, Hui; Zheng, Huiling; Li, Lihui; Shen, Xingai; Zang, Wenjuan; Sun, Yongsen

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is a zinc-dependent enzyme, and plays a crucial role in extracellular matrix degeneration, inflammation and tissue remodeling. However, the relationship between MMP-9 and somatic cell count (SCC) in goat milk and the role of MMP-9 in the regulation of mastitis are still unknown. In this study, we found MMP-9 was predominantly expressed in the spleen, intestine and mammary gland. The SCC in goat milk was positively correlated with MMP-9 expression, and staphylococcus aureus could markedly increase MMP-9 expression in goat mammary epithelial cells (GMEC) in dosage and time dependent manner. We also demonstrated that SB-3CT, an inhibitor of MMP-9, promoted apoptosis and inhibited proliferation in GMEC. Thus, MMP-9 may emerge as an easily measurable and sensitive parameter that reflects the number of somatic cells present in milk and a regulatory factor of apoptosis in GMEC. PMID:27518717

  12. The Effects of Matrix Metalloproteinase-9 on Dairy Goat Mastitis and Cell Survival of Goat Mammary Epithelial Cells.

    PubMed

    Li, Hui; Zheng, Huiling; Li, Lihui; Shen, Xingai; Zang, Wenjuan; Sun, Yongsen

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is a zinc-dependent enzyme, and plays a crucial role in extracellular matrix degeneration, inflammation and tissue remodeling. However, the relationship between MMP-9 and somatic cell count (SCC) in goat milk and the role of MMP-9 in the regulation of mastitis are still unknown. In this study, we found MMP-9 was predominantly expressed in the spleen, intestine and mammary gland. The SCC in goat milk was positively correlated with MMP-9 expression, and staphylococcus aureus could markedly increase MMP-9 expression in goat mammary epithelial cells (GMEC) in dosage and time dependent manner. We also demonstrated that SB-3CT, an inhibitor of MMP-9, promoted apoptosis and inhibited proliferation in GMEC. Thus, MMP-9 may emerge as an easily measurable and sensitive parameter that reflects the number of somatic cells present in milk and a regulatory factor of apoptosis in GMEC. PMID:27518717

  13. Significance of Circulating and Crevicular Matrix Metalloproteinase-9 in Rheumatoid Arthritis-Chronic Periodontitis Association

    PubMed Central

    Silosi, Isabela; Cojocaru, Manole; Foia, Lili; Boldeanu, Mihail Virgil; Petrescu, Florin; Biciusca, Viorel

    2015-01-01

    In the recent years, statistically significant associations between rheumatoid arthritis (RA) and periodontal disease have been identified. Emerging as a chronic inflammatory joint disease, RA displays various features and pathogenetic events similar to chronic periodontitis (CP). The purpose of this study was to evaluate the utility of determining systemic and crevicular levels of metalloproteinase-9 (MMP-9) as potential biomarkers for association between RA and CP. A total of fifty-six patients were included in the study. The subjects were categorized into four groups as follows: healthy-control (n = 21), active RA (n = 16), CP (n = 14), and RA-CP association (n = 12). Assessment of serum and crevicular concentrations of total MMP-9 (active and pro-MMP-9) was based on ELISA technique. The results of this study showed statistically significant differences of serum MMP-9 between patients groups and control. Serum levels of MMP-9 were similar in RA and RA-CP associated patients. Gingival crevicular fluid (GCF) recorded increased MMP-9 levels in RA-CP association subjects as compared to CP. Considering that RA-CP association is characterized by a disregulation of the inflammatory response, MMP-9 may play a role in the pathogenesis of RA-CP association. MMP-9 is therefore a sensitive tool in the diagnosis and management of patients affected by this binomial association. PMID:25821836

  14. Significance of circulating and crevicular matrix metalloproteinase-9 in rheumatoid arthritis-chronic periodontitis association.

    PubMed

    Silosi, Isabela; Cojocaru, Manole; Foia, Lili; Boldeanu, Mihail Virgil; Petrescu, Florin; Surlin, Petra; Biciusca, Viorel

    2015-01-01

    In the recent years, statistically significant associations between rheumatoid arthritis (RA) and periodontal disease have been identified. Emerging as a chronic inflammatory joint disease, RA displays various features and pathogenetic events similar to chronic periodontitis (CP). The purpose of this study was to evaluate the utility of determining systemic and crevicular levels of metalloproteinase-9 (MMP-9) as potential biomarkers for association between RA and CP. A total of fifty-six patients were included in the study. The subjects were categorized into four groups as follows: healthy-control (n = 21), active RA (n = 16), CP (n = 14), and RA-CP association (n = 12). Assessment of serum and crevicular concentrations of total MMP-9 (active and pro-MMP-9) was based on ELISA technique. The results of this study showed statistically significant differences of serum MMP-9 between patients groups and control. Serum levels of MMP-9 were similar in RA and RA-CP associated patients. Gingival crevicular fluid (GCF) recorded increased MMP-9 levels in RA-CP association subjects as compared to CP. Considering that RA-CP association is characterized by a disregulation of the inflammatory response, MMP-9 may play a role in the pathogenesis of RA-CP association. MMP-9 is therefore a sensitive tool in the diagnosis and management of patients affected by this binomial association. PMID:25821836

  15. Matrix Metalloproteinase-9 −1562C/T Gene Polymorphism Is Associated with Diabetic Nephropathy

    PubMed Central

    Feng, Shufen; Ye, Gang; Bai, Shi; Liao, Xueling; Li, Lu

    2016-01-01

    To investigate the association between the metalloproteinase-9 (MMP9) −1562C/T polymorphism and diabetic nephropathy (DN) in Han Chinese, the patients with type 2 diabetes were collected and divided into the non-DN (NDN) and DN groups; controls were recruited. Genotype and allele frequencies were assessed using polymerase chain reaction and restriction fragment length polymorphism. Results showed that SBP, DBP, HbA1c, UAER, Cr, BUN, TG, and TC were higher in the DN group compared with the control and NDN groups. SBP, HbA1c, and TC in DN patients with the TT and CT genotypes were lower than in those with CC. Compared with controls, the frequency of the T allele in the DN group was significantly lower. The MMP9 −1562C allele, SBP, Cr, BUN, TG, and TC were independent risk factors for DN. All of the above suggested that the MMP9 −1562C/T polymorphism was associated with DN in Han Chinese.

  16. Colocalisation of matrix metalloproteinase-9-mRNA and protein in human colorectal cancer stromal cells.

    PubMed Central

    Zeng, Z. S.; Guillem, J. G.

    1996-01-01

    The matrix metalloproteinases (MMPs) are perceived as essential for tumour invasion and metastases. The purpose of this study was to determine the expression and cellular localisation of the 92 kDa type IV collagenase (MMP-9) protein and mRNA in human colorectal cancer (CRC). In CRC and matched normal mucosa specimens from 26 CRC patients, Northern blot hybridisation and Western blot analyses provide convincing evidence that MMP-9 is expressed in greater quantities in CRC than in normal tissue. The MMP-9 tumour to normal mucosa fold-increase (T/N) was 9.7 +/- 7.1 (mean +/- s.d.) (P < 0.001) for RNA and 7.1 +/- 3.9 (P < 0.001) for protein. The sites of MMP-9 mRNA and protein synthesis were colocalised in tumour stroma by in situ hybridisation and immunohistochemistry in 26 CRC samples. Both MMP-9 mRNA and protein signals were strongest in the population of stromal cells concentrated at the tumour-stroma interface of an invading tumour. Furthermore, MMP-9-positive cells were identified as macrophages using an antimacrophage antibody (KP1) in serial sections from ten CRC samples. Given the persistent localisation of MMP-9-producing macrophages to the interphase between CRC and surrounding stroma, our observations suggest that MMP-9 production is controlled, in part, by tumour-stroma cell interactions. Further studies are needed to determine the in vivo regulation of MMP-9 production from infiltrating peritumour macrophages. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8883399

  17. Adiponectin inhibits oxidized low density lipoprotein-induced increase in matrix metalloproteinase 9 expression in vascular smooth muscle cells

    PubMed Central

    Saneipour, Maryam; Ghatreh-Samani, Keihan; Heydarian, Esfandiar; Farrokhi, Effat; Abdian, Narges

    2015-01-01

    BACKGROUND High expression of matrix metalloproteinase 9 (MMP9) during vascular injury and inflammation plays an important role in atherosclerotic plaque formation and rupture. In the process of atherosclerosis, oxidized low-density lipoprotein (oxLDL) upregulates MMP9 in human aortic vascular smooth muscle cells (HA/VSMCs). Adiponectin is an adipose tissue-derived hormone that has been shown to exert anti-atherogenic and anti-inflammatory effects. The aim of this study was to investigate the effect of adiponectin on MMP9 expression under pathogenic condition created by oxLDL in HA/VSMCs. METHODS In this experimental study, HA/VSMC were stimulated with oxLDL alone and in the presence of adiponectin for 24 and 48 h. The expression of MMP9 gene was determined by real-time polymerase chain reaction method. The protein level of this gene was investigated by western blotting technique. RESULTS An oxLDL increased MMP9 expression 2.16 ± 0.24- and 3.32 ± 0.25-fold after 24 and 48 h, respectively and adiponectin decreased oxLDL-induced MMP9 expression in a time-dependent manner. CONCLUSION These results show that adiponectin changes extracellular matrix by reducing MMP9 mRNA and protein, therefore, may stabilize lesions and reduce atheroma rupture. PMID:26405452

  18. Matrix metalloproteinase-9 plays a role in protecting zebrafish from lethal infection with Listeria monocytogenes by enhancing macrophage migration.

    PubMed

    Shan, Ying; Zhang, Yikai; Zhuo, Xunhui; Li, Xiaoliang; Peng, Jinrong; Fang, Weihuan

    2016-07-01

    Zebrafish could serve as an alternative animal model for pathogenic bacteria in multiple infectious routes. Our previous study showed that immersion infection in zebrafish with Listeria monocytogenes did not cause lethality but induced transient expression of several immune response genes. We used an Affymetrix gene chip to examine the expression profiles of genes of zebrafish immersion-infected with L. monocytogenes. A total of 239 genes were up-regulated and 56 genes down-regulated compared with uninfected fish. Highest expression (>20-fold) was seen with the mmp-9 gene encoding the matrix metalloproteinase-9 (Mmp-9) known to degrade the extracellular matrix proteins. By morpholino knockdown of mmp-9, we found that the morphants showed rapid death with much higher bacterial load after intravenous or intraventricular (brain ventricle) infection with L. monocytogenes. Macrophages in mmp-9-knockdown morphants had significant defect in migrating to the brain cavity upon intraventricular infection. Decreased migration of murine macrophages with knockdown of mmp-9 and cd44 was also seen in transwell inserts with 8-μm pore polycarbonate membrane, as compared with the scrambled RNA. These findings suggest that Mmp-9 is a protective molecule against infection by L. monocytogenes by engaging in migration of zebrafish macrophages to the site of infection via a non-proteolytic role. Further work is required on the molecular mechanisms governing Mmp-9-driven macrophage migration in zebrafish. PMID:27068748

  19. Relation of dietary inorganic arsenic to serum matrix metalloproteinase-9 (MMP-9) at different threshold concentrations of tap water arsenic.

    PubMed

    Kurzius-Spencer, Margaret; Harris, Robin B; Hartz, Vern; Roberge, Jason; Hsu, Chiu-Hsieh; O'Rourke, Mary Kay; Burgess, Jefferey L

    2016-09-01

    Arsenic (As) exposure is associated with cancer, lung and cardiovascular disease, yet the mechanisms involved are not clearly understood. Elevated matrix metalloproteinase-9 (MMP-9) levels are also associated with these diseases, as well as with exposure to water As. Our objective was to evaluate the effects of dietary components of inorganic As (iAs) intake on serum MMP-9 concentration at differing levels of tap water As. In a cross-sectional study of 214 adults, dietary iAs intake was estimated from 24-h dietary recall interviews using published iAs residue data; drinking and cooking water As intake from water samples and consumption data. Aggregate iAs intake (food plus water) was associated with elevated serum MMP-9 in mixed model regression, with and without adjustment for covariates. In models stratified by tap water As, aggregate intake was a significant positive predictor of serum MMP-9 in subjects exposed to water As≤10 μg/l. Inorganic As from food alone was associated with serum MMP-9 in subjects exposed to tap water As≤3 μg/l. Exposure to iAs from food and water combined, in areas where tap water As concentration is ≤10 μg/l, may contribute to As-induced changes in a biomarker associated with toxicity. PMID:25605447

  20. Ophiopogonin-D suppresses MDA-MB-435 cell adhesion and invasion by inhibiting matrix metalloproteinase-9.

    PubMed

    Zhang, Yuanyuan; Han, Yuwei; Zhai, Kefeng; Sun, Minhui; Liu, Jihua; Yu, Boyang; Kou, Junping

    2015-07-01

    Ophiopogonin-D is one of steroidal saponins isolated from the root of the Chinese medicinal plant Ophiopogon japonicas. It has been claimed to possess anti-inflammatory and anti-oxidant properties. The present study was the first to examine the anti-tumor metastasis properties of ophiopogonin-D. An MTT assay showed that ophiopogonin-D inhibited the proliferation of MDA-MB-435 melanoma cells, and decreased invasion was demonstrated using a Transwell invasion assay. Furthermore, adhesion of MDA-MB-435 cells to human umbilical vascular endothelial cells and to fibronectin was inhibited by ophiopogonin-D. Gelatin zymography and western blot analysis showed that ophiopogonin-D inhibited the expression and secretion of matrix metalloproteinase-9 (MMP-9), but not that of MMP-2. Inhibition of phosphorylation of p38 by ophiopogonin-D indicated its inhibition of the mitogen-activated protein kinase pathway. Overall, the results suggested that ophiopogonin-D may be considered as a candidate drug for treating or preventing tumor metastasis. PMID:25816153

  1. Matrix metalloproteinase-9 deficiency impairs host defense mechanisms against Streptococcus pneumoniae in a mouse model of bacterial meningitis.

    PubMed

    Böttcher, Tobias; Spreer, Annette; Azeh, Ivo; Nau, Roland; Gerber, Joachim

    2003-03-01

    Matrix metalloproteinase-9 (MMP-9) appears to contribute to blood-brain barrier damage and neuronal injury in bacterial meningitis. To further explore the function of MMP-9 in meningeal inflammation, we injected 10(4) colony forming units (CFU) of a Streptoccocus pneumoniae type 3 strain into the right forebrain of MMP-9 deficient mice (MMP-9(-/-), n=16) and wild-type controls (129 x B6, n=15). The clinical course of the disease, leukocyte recruitment into the subarachnoid space and bacterial titers in the brain did not differ. Yet, clearance of the bacteria from blood (log CFU/ml 4.7 [3.8/5.4] vs. 3.6 [3.0/4.0]; P=0.005) and spleen homogenates (log CFU/ml 5.3 [4.8/5.5] vs. 4.0 [2.8/4.7]; P=0.01) was reduced in MMP-9 deficient mice. A reduced systemic bacterial clearance of MMP-9(-/-) mice was confirmed in experimental S. pneumoniae peritonitis/sepsis. This implies a compromised systemic, but not intracerebral host response against S. pneumoniae in MMP-9 deficiency. PMID:12581831

  2. Matrix metalloproteinase-9 (MMP-9) in human cerebrospinal fluid (CSF): elevated levels are primarily related to CSF cell count.

    PubMed

    Yushchenko, M; Weber, F; Mäder, M; Schöll, U; Maliszewska, M; Tumani, H; Felgenhauer, K; Beuche, W

    2000-10-01

    Matrix metalloproteinase-9 (MMP-9) was investigated by enzyme-linked immunosorbent assay (ELISA) and zymography in 111 paired CSF and serum samples from patients with various neurological disorders. In 20 patients with blood-brain barrier (BBB) impairment but normal CSF cell count, elevated levels of MMP-9 were not observed by ELISA measurement. Another 11 patients characterized in the same way, exhibited only slightly increased MMP-9 levels. In contrast, in 12 patients with intact BBB but elevated CSF cell count, MMP-9 was increased too. It was shown by the more sensitive zymography that MMP-9 increased if CSF cell count exceeded five cells per microl. Spearman rank statistics revealed that MMP-9 concentration in CSF correlated with CSF cell count (r=0.755; P<0.0001), but not with CSF/serum albumin ratio (Q(Alb)) (r=0.212; P=0.057), a measure for BBB impairment. Moreover, the CSF/serum MMP-9 ratio (Q(MMP-9)) did not correlate with Q(Alb)(r=0.192; P=0.100). By use of a Boyden chamber, in which granulocytes migrated through a reconstituted basement membrane, it was demonstrated that the MMP-9 concentration in the lower chamber correlated very significantly with the number of accumulated cells (r(2)=0.7692; P<0.0001). The meaning of the increase of MMP-9 in CSF is critically discussed. PMID:11024556

  3. Relation of dietary inorganic arsenic to serum matrix metalloproteinase-9 (MMP-9) at different threshold concentrations of tap water arsenic

    PubMed Central

    Kurzius-Spencer, Margaret; Harris, Robin B.; Hartz, Vern; Roberge, Jason; Hsu, Chiu-Hsieh; O’Rourke, Mary Kay; Burgess, Jefferey L.

    2015-01-01

    Arsenic (As) exposure is associated with cancer, lung and cardiovascular disease, yet the mechanisms involved are not clearly understood. Elevated matrix metalloproteinase-9 (MMP-9) levels are also associated with these diseases, as well as with exposure to water As. Our objective was to evaluate the effects of dietary components of inorganic As (iAs) intake on serum MMP-9 concentration at differing levels of tap water As. In a cross-sectional study of 214 adults, dietary iAs intake was estimated from 24-h dietary recall interviews using published iAs residue data; drinking and cooking water As intake from water samples and consumption data. Aggregate iAs intake (food plus water) was associated with elevated serum MMP-9 in mixed model regression, with and without adjustment for covariates. In models stratified by tap water As, aggregate intake was a significant positive predictor of serum MMP-9 in subjects exposed to water As ≤10 μg/l. Inorganic As from food alone was associated with serum MMP-9 in subjects exposed to tap water As ≤3 μg/l. Exposure to iAs from food and water combined, in areas where tap water As concentration is ≤10 μg/l, may contribute to As-induced changes in a biomarker associated with toxicity. PMID:25605447

  4. Puerarin Attenuated Early Diabetic Kidney Injury through Down-Regulation of Matrix Metalloproteinase 9 in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Zhong, Yifei; Zhang, Xianwen; Cai, Xianfan; Wang, Ke; Chen, Yiping; Deng, Yueyi

    2014-01-01

    Radix puerariae, a traditional Chinese herbal medication, has been used successfully to treat patients with early stage of diabetic nephropathy. However, the underlined mechanism of this renal protective effect has not been determined. In the current study, we investigated the effects and the mechanism of puerarin in Streptozotocin (STZ)-induced diabetic rats. We treated STZ-rats with either puerarin or losartan, an angiotensin II receptor blocker, as compared to those treated with vehicle. We found that both puerarin and losartan attenuated kidney hypertrophy, mesangial expansion, proteinuria, and podocyte foot process effacement in STZ rats. In addition, both puerarin and losartan increased expression of podocyte slit diaphragm proteins such as nephrin and podocin. Interestingly, we found that puerarin treatment induced a more pronounced suppression of oxidative stress production and S-nitrosylation of proteins in the diabetic kidneys as compared to losartan treatment. Furthermore, we found that matrix metalloproteinase-9 (MMP-9), which is known to be activated by oxidative stress and S-nitrosylation of proteins, was also suppressed more extensively by puerarin than losartan. In conclusion, these data provide for the first time the potential mechanism to support the use of puerarin in the treatment of early diabetic nephropathy. PMID:24454919

  5. Influence of Malondialdehyde and Matrix Metalloproteinase-9 on Progression of Carotid Atherosclerosis in Chronic Renal Disease with Cardiometabolic Syndrome

    PubMed Central

    Rašić, Senija; Rebić, Damir; Hasić, Sabaheta; Rašić, Ismar; Delić Šarac, Marina

    2015-01-01

    Objective was to assess whether the concentration of malondialdehyde (MDA) as a marker of lipid peroxidation and serum concentration of matrix metalloproteinase-9 (MMP-9) are involved in the process of atherosclerosis in chronic kidney disease (CKD) patients nondialysis-dependent and those on peritoneal dialysis (PD), both with signs of cardiometabolic syndrome (CMS). Thirty CKD and 22 PD patients were included in a study. All observed patients were divided into three subgroups depending on the degree of atherosclerotic changes in the carotid arteries (CA). Severity of atherosclerotic changes in the CA was evaluated by ultrasonography. We confirmed significantly lower level of serum MDA throughout all the stages of atherosclerosis in PD patients compared with observed CKD patients (P < 0.05) and increased serum concentration of MDA and MMP-9 with the progression of severity atherosclerotic changes in both groups of patients. The multiple regression analysis revealed that MDA and MMP-9 are significant predictors of changes in IMT-CA CKD patients (P < 0.05) and plaque score on CA in these patients (P < 0.05). The results suggest that MDA and MMP-9 could be mediators of CKD-related vascular remodeling in CMS. PMID:26538831

  6. Classically Activated Macrophages Use Stable Microtubules for Matrix Metalloproteinase-9 (MMP-9) Secretion*

    PubMed Central

    Hanania, Raed; Song Sun, He; Xu, Kewei; Pustylnik, Sofia; Jeganathan, Sujeeve; Harrison, Rene E.

    2012-01-01

    As major effector cells of the innate immune response, macrophages must adeptly migrate from blood to infected tissues. Endothelial transmigration is accomplished by matrix metalloproteinase (MMP)-induced degradation of basement membrane and extracellular matrix components. The classical activation of macrophages with LPS and IFN-γ causes enhanced microtubule (MT) stabilization and secretion of MMPs. Macrophages up-regulate MMP-9 expression and secretion upon immunological challenge and require its activity for migration during the inflammatory response. However, the dynamics of MMP-9 production and intracellular distribution as well as the mechanisms responsible for its trafficking are unknown. Using immunofluorescent imaging, we localized intracellular MMP-9 to small Golgi-derived cytoplasmic vesicles that contained calreticulin and protein-disulfide isomerase in activated RAW 264.7 macrophages. We demonstrated vesicular organelles of MMP-9 aligned along stable subsets of MTs and showed that selective modulation of MT dynamics contributes to the enhanced trafficking of MMP-9 extracellularly. We found a Rab3D-dependent association of MMP-9 vesicles with the molecular motor kinesin, whose association with the MT network was greatly enhanced after macrophage activation. Finally, we implicated kinesin 5B and 3B isoforms in the effective trafficking of MMP-9 extracellularly. PMID:22270361

  7. Matrix Metalloproteinase-9: Its Interplay with Angiogenic Factors in Inflammatory Bowel Diseases

    PubMed Central

    Gamian, Andrzej; Krzystek-Korpacka, Malgorzata

    2014-01-01

    Matrix metalloproteinase- (MMP-) 9 is one of the main metalloproteinases reported to be involved in extracellular matrix degradation and recently also in triggering of angiogenic switch in the course of inflammatory bowel diseases (IBD). The goal of our studies was to estimate in one experimental setting the levels of MMP-9 in sera of Crohn's Disease (CD) and ulcerative colitis (UC) patients and to evaluate its possible diagnostic potential in comparison with other biochemical markers and selected proinflammatory and angiogenic factors. The study group included 176 subjects (CD = 64, UC = 85, control = 27). Concentrations of serum MMP-9 were significantly higher in active than inactive forms of IBD, being higher in active UC than in active CD. Both in the case of CD and UC serum MMP-9 positively correlated with disease activity, IL-6 levels, platelet and leukocyte count, midkine, and PDGF-BB, as well as in UC with ESR and in CD with CRP, IL-1, and VEGF-A. Diagnostic accuracy of MMP-9 in distinguishing active UC from active CD was 66%, and displayed higher specificity than CRP (79.0% versus 61.6%, resp.). Evaluation of serum MMP-9 concentrations could aid in differentiation of active UC from active CD. MMP-9 correlated better with inflammatory and angiogenic parameters in CD than in UC. PMID:24803722

  8. Luteolin inhibits matrix metalloproteinase 9 and 2 in azoxymethane-induced colon carcinogenesis.

    PubMed

    Pandurangan, A K; Dharmalingam, P; Sadagopan, S K A; Ganapasam, S

    2014-11-01

    The present investigation deals with the antimetastatic role of luteolin (LUT) by inhibiting matrix metalloproteinase (MMP)-9 and -2 in azoxymethane (AOM)-induced colon carcinogenesis in Balb/C mice. Animals received AOM at a dosage of 15 mg/kg body weight intraperitoneally once a week for 3 weeks. AOM-induced mice was treated with LUT (1.2 mg of LUT/kg body weight/day orally). After the experimental period, the tumor markers such as γ-glutamyl transferase (GGT), 5' nucleotidase (5'ND), cathepsin-D (Cat-D), and carcinoembroyonic antigen (CEA) were elevated upon induction with AOM. Subsequent treatment with LUT results in the reduction of the tumor markers was recorded. The expressions of MMP-9 and MMP-2 were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence methods. The expressions of MMP-9 and MMP-2 were increased during AOM induction and upon treatment with LUT reduced the expressions. RT-PCR analysis of tissue inhibitor of matrix metalloproteinase (TIMP)-2 was limited during AOM-induced colorectal cancer (CRC). Supplementation of LUT increased the expression of TIMP-2. To conclude, LUT acts as an antimetastatic agent by suppressing MMP-9 and MMP-2 productions and upregulating TIMP-2 expression, thereby suggesting that LUT can be a chemotherapeutic agent against CRC. PMID:24532706

  9. INDUCTION BY EPIDERMOPHYTON FLOCCOSUM OF HUMAN FIBROBLAST MATRIX METALLOPROTEINASE-9 SECRETION IN VITRO.

    PubMed

    Kitisin, Thitinan; Luplertlop, Natthanej

    2015-03-01

    Skin infection from pathogenic dermatophyte, Epidermophytonfloccosum, can cause serious health complications, especially in immuno-compromised patients. Proteolytic enzymes secreted from E. floccosum are required for host tissue degradation, facilitating fungal invasion. However, little is known regarding host matrix metalloproteinase (MMP) expression during E. floccosum infection. In this study human foreskin fibroblast (HFF) cell line was used to determine MMP-9 protease activity by gelatin zymography and amount by ELISA. E. floccosum-induced HFF secretion of MMP-9 in a time dependent manner, but HFF cell viability decreased. Treatment with an MMP inhibitor (SB-3CT) caused reduction in E. floccosum-induced secreted MMP-9 and improvement in HFF cell viability. These findings indicate a possible control measure for protecting skin from E. floccosum infection. PMID:26513930

  10. Polymorphism, Genetic Effect and Association with Egg Production Traits of Chicken Matrix Metalloproteinases 9 Promoter

    PubMed Central

    Zhu, Guiyu; Jiang, Yunliang

    2014-01-01

    Matrix metalloproteinases (MMP) are key enzymes involved in cell and tissue remodeling during ovarian follicle development and ovulation. The control of MMP9 transcription in ovarian follicles occurs through a core promoter region (−2,400 to −1,700 bp). The aim of this study was to screen genetic variations in the core promoter region and examine MMP9 transcription regulation and reproduction performance. A single cytosine deletion/insertion polymorphism was found at −1954 C+/C−. Genetic association analysis indicated significant correlation between the deletion genotype (C−) with total egg numbers at 28 weeks (p = 0.031). Furthermore, luciferase-reporter assay showed the deletion genotype (C−) had significantly lower promoter activity than the insertion genotype (C+) in primary granulosa cells (p<0.01). Therefore, the identified polymorphism could be used for marker-assisted selection to improve chicken laying performance. PMID:25358310

  11. Airway Remodeling in Chronic Obstructive Pulmonary Disease and Asthma: the Role of Matrix Metalloproteinase-9.

    PubMed

    Grzela, Katarzyna; Litwiniuk, Malgorzata; Zagorska, Wioletta; Grzela, Tomasz

    2016-02-01

    Chronic obstructive pulmonary disease (COPD) and asthma are both associated with airflow restriction and progressive remodeling, which affect the respiratory tract. Among various biological factors involved in the pathomechanisms of both diseases, proteolytic enzymes--matrix metalloproteinases (MMPs)--play an important role, especially MMP-9. In this review, the authors discuss the current topics of research concerning the possible role of MMP-9 in both mentioned diseases. They include the analysis of protein levels, nucleotide polymorphisms of MMP-9 gene and their possible correlation with asthma and COPD. Finally, the authors refer to the studies on MMP-9 inhibition as a new perspective for increasing the effectiveness of treatment in asthma and COPD. PMID:26123447

  12. Thymocyte development in the absence of matrix metalloproteinase-9/gelatinase B

    PubMed Central

    Gounko, Natalia V.; Martens, Erik; Opdenakker, Ghislain; Rybakin, Vasily

    2016-01-01

    Matrix metalloproteinases (MMP) play critical roles in a variety of immune reactions by facilitating cell migration, and affect cell communication by processing both cytokines and cell surface receptors. Based on published data indicating that MMP-9 is upregulated upon T cell activation and also in the thymus upon the induction of negative selection, we investigated the contribution of MMP-9 into mouse T cell development and differentiation in the thymus. Our data suggest that MMP-9 deficiency does not result in major abnormalities in the development of any conventionally selected or agonist selected subsets and does not interfere with thymocyte apoptosis and clearance, and that MMP-9 expression is not induced in immature T cells at any stage of their thymic development. PMID:27432536

  13. Increased Expression of Intranuclear Matrix Metalloproteinase 9 in Atrophic Renal Tubules Is Associated with Renal Fibrosis

    PubMed Central

    Tsai, Jen-Pi; Liou, Jia-Hung; Kao, Wei-Tse; Wang, Shao-Chung; Lian, Jong-Da; Chang, Horng-Rong

    2012-01-01

    Background Reduced turnover of extracellular matrix has a role in renal fibrosis. Matrix metalloproteinases (MMPs) is associated with many glomerular diseases, but the histological association of MMPs and human renal fibrosis is unclear. Methods This is a retrospective study. Institutional Review Board approval was obtained for the review of patients’ medical records, data analysis and pathological specimens staining with waiver of informed consents. Specimens of forty-six patients were examined by immunohistochemical stain of MMP-9 in nephrectomized kidneys, and the association of renal expression of MMP-9 and renal fibrosis was determined. MMP-9 expression in individual renal components and fibrosis was graded as high or low based on MMP-9 staining and fibrotic scores. Results Patients with high interstitial fibrosis scores (IFS) and glomerular fibrosis scores (GFS) had significantly higher serum creatinine, lower estimated glomerular filtration rate (eGFR), and were more likely to have chronic kidney disease (CKD) and urothelial cell carcinoma. Univariate analysis showed that IFS and GFS were negatively associated with normal and atrophic tubular cytoplasmic MMP-9 expression and IFS was positively correlated with atrophic tubular nuclear MMP-9 expression. Multivariate stepwise regression indicated that MMP-9 expression in atrophic tubular nuclei (r = 0.4, p = 0.002) was an independent predictor of IFS, and that MMP-9 expression in normal tubular cytoplasm (r = −0.465, p<0.001) was an independent predictor of GFS. Conclusions Interstitial fibrosis correlated with MMP-9 expression in the atrophic tubular nuclei. Our results indicate that renal fibrosis is associated with a decline of MMP-9 expression in the cytoplasm of normal tubular cells and increased expression of MMP-9 in the nuclei of tubular atrophic renal tubules. PMID:23110201

  14. Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice

    PubMed Central

    Chiao, Ying Ann; Ramirez, Trevi A.; Zamilpa, Rogelio; Okoronkwo, S. Michelle; Dai, Qiuxia; Zhang, Jianhua; Jin, Yu-Fang; Lindsey, Merry L.

    2012-01-01

    Aims Age-related diastolic dysfunction has been attributed to an increased passive stiffness, which is regulated by extracellular matrix (ECM). We recently showed that matrix metalloproteinase (MMP)-9, an ECM mediator, increases in the left ventricle (LV) with age. The aim of this study, accordingly, was to determine the role of MMP-9 in cardiac ageing. Methods and results We compared LV function in young (6–9 months), middle-aged (12–15 months), old (18–24 months) and senescent (26–34 months) wild-type (WT) and MMP-9 null mice (n ≥ 12/group). All groups had similar fractional shortenings and aortic peak velocities, indicating that systolic function was not altered by ageing or MMP-9 deletion. The mitral ratios of early to late diastolic filling velocities were reduced in old and senescent WT compared with young controls, and this reduction was attenuated in MMP-9 null mice. Concomitantly, the increase in LV collagen content was reduced in MMP-9 null mice (n = 5-6/group). To dissect the mechanisms of these changes, we evaluated the mRNA expression levels of 84 ECM and adhesion molecules by real-time qPCR (n = 6/group). The expression of pro-fibrotic periostin and connective tissue growth factor (CTGF) increased with senescence, as did transforming growth factor-β (TGF-β)-induced protein levels and Smad signalling, and these increases were blunted by MMP-9 deletion. In senescence, MMP-9 deletion also resulted in a compensatory increase in MMP-8. Conclusion MMP-9 deletion attenuates the age-related decline in diastolic function, in part by reducing TGF-β signalling-induced periostin and CTGF expression and increasing MMP-8 expression to regulate myocardial collagen turnover and deposition. PMID:22918978

  15. Associations of Matrix Metalloproteinase-9 and Tissue Inhibitory Factor-1 Polymorphisms With Parkinson Disease in Taiwan

    PubMed Central

    Chen, Yi-Chun; Wu, Yih-Ru; Mesri, Mina; Chen, Chiung-Mei

    2016-01-01

    Abstract Matrix metalloproteinases (MMPs) function in the degradation of extracellular matrix and are considered to play a role in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). MMPs activities are modulated by tissue inhibitors of metalloproteinases (TIMPs). This study examined whether the genetic polymorphisms of MMP-3, gelatinase (MMP-2 and MMP-9), TIMP-2, and TIMP-1 were associated with PD in Taiwan. A total of 359 PD patients and 332 controls were enrolled. The candidate genetic variants included MMP-2 rs2285053 (−735 C > T), MMP-3 rs3025058 (−1171 5A > 6A), MMP-9 rs3918241 (−1831 T > A), rs17576 (G > A, R279Q), and rs3787268 (G > A, intron), TIMP-1 rs4898 (T > C, F124F), and TIMP-2 rs7503607 (−269 G > T). Associations were tested by logistic regression, adjusted with gender and age at onset. Minor allele frequency of TIMP-1 rs4898 (36.0%) was significantly lower in the male PD patients than in the male controls (51.2%) (χ2 test, P = 0.004). When adjusted with gender and age at onset, MMP-9 rs17576 AA genotype was associated with PD susceptibility in a recessive fashion (odds ratios [OR] = 2.28, 95% confidence intervals [95% CI] = 1.12–4.62, P = 0.02). In males, TIMP-1 rs4898 C allele was associated with a protective effect on PD (OR = 0.75, 95% CI = 0.60–0.94, P = 0.014). We did not find association between the examined genetic variants of MMP-2, MMP-3, and TIMP-2 and PD susceptibility. This is the first study that demonstrated a protective effect of TIMP-1 rs4898 C allele on male PD and a modest association of MMP-9 rs17576 AA genotype with PD susceptibility in the Taiwan population. Further replication is needed for confirmation. PMID:26844501

  16. Associations of Matrix Metalloproteinase-9 and Tissue Inhibitory Factor-1 Polymorphisms With Parkinson Disease in Taiwan.

    PubMed

    Chen, Yi-Chun; Wu, Yih-Ru; Mesri, Mina; Chen, Chiung-Mei

    2016-02-01

    Matrix metalloproteinases (MMPs) function in the degradation of extracellular matrix and are considered to play a role in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). MMPs activities are modulated by tissue inhibitors of metalloproteinases (TIMPs). This study examined whether the genetic polymorphisms of MMP-3, gelatinase (MMP-2 and MMP-9), TIMP-2, and TIMP-1 were associated with PD in Taiwan.A total of 359 PD patients and 332 controls were enrolled. The candidate genetic variants included MMP-2 rs2285053 (-735 C > T), MMP-3 rs3025058 (-1171 5A > 6A), MMP-9 rs3918241 (-1831 T > A), rs17576 (G > A, R279Q), and rs3787268 (G > A, intron), TIMP-1 rs4898 (T > C, F124F), and TIMP-2 rs7503607 (-269 G > T). Associations were tested by logistic regression, adjusted with gender and age at onset.Minor allele frequency of TIMP-1 rs4898 (36.0%) was significantly lower in the male PD patients than in the male controls (51.2%) (χ test, P = 0.004). When adjusted with gender and age at onset, MMP-9 rs17576 AA genotype was associated with PD susceptibility in a recessive fashion (odds ratios [OR] = 2.28, 95% confidence intervals [95% CI] = 1.12-4.62, P = 0.02). In males, TIMP-1 rs4898 C allele was associated with a protective effect on PD (OR = 0.75, 95% CI = 0.60-0.94, P = 0.014). We did not find association between the examined genetic variants of MMP-2, MMP-3, and TIMP-2 and PD susceptibility.This is the first study that demonstrated a protective effect of TIMP-1 rs4898 C allele on male PD and a modest association of MMP-9 rs17576 AA genotype with PD susceptibility in the Taiwan population. Further replication is needed for confirmation. PMID:26844501

  17. On the structure and functions of gelatinase B/matrix metalloproteinase-9 in neuroinflammation.

    PubMed

    Vandooren, Jennifer; Van Damme, Jo; Opdenakker, Ghislain

    2014-01-01

    The blood-brain barrier (BBB) is a specific structure that is composed of two basement membranes (BMs) and that contributes to the control of neuroinflammation. As long as the BBB is intact, extravasated leukocytes may accumulate between two BMs, generating vascular cuffs. Specific matrix metalloproteinases, MMP-2 and MMP-9, have been shown to cleave BBB beta-dystroglycan and to disintegrate thereby the parenchymal BM, resulting in encephalomyelitis. This knowledge has been added to the molecular basis of the REGA model to understand the pathogenesis of multiple sclerosis, and it gives further ground for the use of MMP inhibitors for the treatment of acute neuroinflammation. MMP-9 is associated with central nervous system inflammation and occurs in various forms: monomers and multimers. None of the various neurological and neuropathologic functions of MMP-9 have been associated with either molecular structure or molecular form, and therefore, in-depth structure-function studies are needed before medical intervention with MMP-9-specific inhibitors is initiated. PMID:25410359

  18. Lung matrix metalloproteinase-9 correlates with cigarette smoking and obstruction of airflow.

    PubMed Central

    Kang, Min Jong; Oh, Yeon-Mok; Lee, Jae Cheol; Kim, Dong Gyu; Park, Myung Jae; Lee, Myung Goo; Hyun, In Gyu; Han, Sung Koo; Shim, Young-Soo; Jung, Ki-Suck

    2003-01-01

    Cigarette smoking is the most important risk factor for obstruction of airflow in chronic obstructive pulmonary disease (COPD). Matrix metalloproteinases (MMPs) or an imbalance between MMPs and their inhibitors, the tissue inhibitors of MMP (TIMPs), is considered to play a role in the pathogenesis of COPD. We investigated whether the MMPs expression or the imbalance between MMPs and TIMP-1 is associated with the amount of cigarette smoking and the FEV1 value, in the lung parenchyma of 26 subjects (6 non-smokers and 20 cigarette smokers). First, we performed zymographic analysis to identify the profile of the MMPs, which revealed gelatinolytic bands mainly equivalent to MMP-9 in the smokers. We then measured, using enzyme immunoassay, the concentrations of MMP-9 and its inhibitor, TIMP-1. Correlation analysis revealed that both the MMP-9 concentrations and the molar ratios of MMP-9 to TIMP-1 (MMP-9/TIMP-1) were correlated with the amount of cigarette smoking. Furthermore, MMP-9 concentrations were inversely correlated with FEV1. In conclusion, this study shows that MMP-9 expression in human lung parenchyma is associated with cigarette smoking and also with the obstruction of airflow, suggesting that MMP-9 may play a role in the pathogenesis of the cigarette smoke-induced obstruction of airflow known as the characteristic of COPD. PMID:14676438

  19. Investigation of RNA interference suppression of matrix metalloproteinase-9 in mouse model of atherosclerosis

    PubMed Central

    Jin, Zhe-Xiu; Xiong, Qiang; Jia, Fang; Sun, Chun-Ling; Zhu, Hong-Tao; Ke, Fu-Sheng

    2015-01-01

    Objective: To investigate the effect of RNA interference of matrix metalloproteinase (MMP)-9 on atherosclerosis on atherosclerosis in apolipoprotein E (ApoE)-/- mouse. Methods: ApoE-/- mouse strain and three cell lines (293T, NIH3T3 and Raw264.7) were used in the present study to investigate the effect of MMP-9 silencing by RNA interference. Thirty 10-week-old ApoE-/- mice were randomly assigned to a control group, lentiviruses with naked vector group and Lentiviruses-MMP-9 intervention group (n = 10). Aortic atherosclerotic plaques of the mice were stained with immunohistochemical techniques, the MMP-9 and high-sensitivity C-reactive protein levels of three groups were detected simultaneously. Expression of MMP-9 was significantly down-regulated in interference group. MMP-9 and high-sensitivity C-reactive protein levels in MMP-9 interference group were significantly lower than that of the control group. Conclusion: The expression of MMP-9 is closely related to vulnerability of atherosclerotic plaques. Silencing of MMP-9 expression acts as a positive role in maintenance of atherosclerotic plaque stability. The present study provides novel experimental insight for the treatment of vulnerable plaques in atherosclerosis. PMID:26131101

  20. Matrix metalloproteinase 9 (MMP-9) and biodegradable polymers in the engineering of a vascular construct

    NASA Astrophysics Data System (ADS)

    Sung, Hak-Joon

    The role of matrix metalloproteinase (MMP)-9 and processing conditions of biodegradable polymer scaffolds has been investigated to optimize engineering vascular constructs. For a small diameter vascular construct, uniform 10 mum thickness of highly porous scaffolds were developed using a computer-controlled knife coater and exploiting phase transition properties of salts. The comparative study of fast vs. slow degrading three-dimensional scaffolds using a fast degrading poly D, L-lactic-glycolic acid copolymer (PLGA) and a slow degrading poly e-caprolactone (PCL) indicated that fast degradation negatively affects cell viability and migration into the scaffold in vitro and in vivo, which is likely due to the fast polymer degradation mediated acidification of the local environment. MMP-9 was crucial for collagen remodeling process by smooth muscle cells (SMC). MMP-9 deficiency dramatically decreased inflammatory cell invasion as well as capillary formation within the scaffolds implanted in vivo. This study reports that the angiogenic response developed within the scaffolds in vivo was related to the presence of inflammatory response. Combinatorial polymer libraries fabricated from blended PLGA and PCL and processed at gradient annealing temperatures were utilized to investigate polymeric interactions with SMC. Surface roughness was also found to correlate with SMC adhesion. SMC aggregation, proliferation, and protein production, were highest in regions that exhibited increased surface roughness, reduced hardness, and decreased crystallinity of the PCL-rich phases. This study revealed a previously unknown processing temperature and blending compositions for two well-known polymers, which optimized SMC interactions.

  1. Matrix Metalloproteinase-9 Is Required for Hippocampal Late-Phase Long-Term Potentiation and Memory

    PubMed Central

    Nagy, Vanja; Bozdagi, Ozlem; Matynia, Anna; Balcerzyk, Marcin; Okulski, Pawel; Dzwonek, Joanna; Costa, Rui M.; Silva, Alcino J.; Kaczmarek, Leszek; Huntley, George W.

    2015-01-01

    Matrix metalloproteinases (MMPs) are extracellular proteases that have well recognized roles in cell signaling and remodeling in many tissues. In the brain, their activation and function are customarily associated with injury or pathology. Here, we demonstrate a novel role for MMP-9 in hippocampal synaptic physiology, plasticity, and memory. MMP-9 protein levels and proteolytic activity are rapidly increased by stimuli that induce late-phase long-term potentiation (L-LTP) in area CA1. Such regulation requires NMDA receptors and protein synthesis. Blockade of MMP-9 pharmacologically prevents induction of L-LTP selectively; MMP-9 plays no role in, nor is regulated during, other forms of short-term synaptic potentiation or long-lasting synaptic depression. Similarly, in slices from MMP-9 null-mutant mice, hippocampal LTP, but not long-term depression, is impaired in magnitude and duration; adding recombinant active MMP-9 to null-mutant slices restores the magnitude and duration of LTP to wild-type levels. Activated MMP-9 localizes in part to synapses and modulates hippocampal synaptic physiology through integrin receptors, because integrin function-blocking reagents prevent an MMP-9-mediated potentiation of synaptic signal strength. The fundamental importance of MMP-9 function in modulating hippocampal synaptic physiology and plasticity is underscored by behavioral impairments in hippocampal-dependent memory displayed by MMP-9 null-mutant mice. Together, these data reveal new functions for MMPs in synaptic and behavioral plasticity. PMID:16481424

  2. Matrix Metalloproteinase-9 Mediates RSV Infection in Vitro and in Vivo

    PubMed Central

    Kong, Michele Y.F.; Whitley, Richard J.; Peng, Ning; Oster, Robert; Schoeb, Trenton R.; Sullender, Wayne; Ambalavanan, Namasivayam; Clancy, John Paul; Gaggar, Amit; Blalock, J. Edwin

    2015-01-01

    Respiratory Syncytial Virus (RSV) is an important human pathogen associated with substantial morbidity and mortality. The present study tested the hypothesis that RSV infection would increase matrix metalloproteinase (MMP)-9 expression, and that MMP-9 inhibition would decrease RSV replication both in vitro and in vivo. RSV A2 infection of human bronchial epithelial cells increased MMP-9 mRNA and protein release. Cells transfected with siRNA against MMP-9 following RSV infection had lower viral titers. In RSV infected wild-type (WT) mice, MMP-9, airway resistance and viral load peaked at day 2 post infection, and remained elevated on days 4 and 7. RSV infected MMP-9 knockout (KO) mice had decreased lung inflammation. On days 2 and 4 post inoculation, the RSV burden was lower in the MMP-9 KO mice compared to WT controls. In conclusion, our studies demonstrate that RSV infection is a potent stimulus of MMP-9 expression both in vitro and in vivo. Reduction of MMP-9 (via siRNA knockdown, and in MMP-9 KO mice) resulted in decreased viral replication. Our findings suggest MMP-9 is a potential therapeutic target for RSV disease. PMID:26264019

  3. FOXA2 suppresses the metastasis of hepatocellular carcinoma partially through matrix metalloproteinase-9 inhibition.

    PubMed

    Wang, Jian; Zhu, Chang-Peng; Hu, Ping-Fang; Qian, Hui; Ning, Bei-Fang; Zhang, Qing; Chen, Fei; Liu, Jiao; Shi, Bin; Zhang, Xin; Xie, Wei-Fen

    2014-11-01

    The forkhead box transcription factor A2 (FOXA2) is a member of the hepatocyte nuclear factor family and plays an important role in liver development and metabolic homeostasis, but its role in the metastasis of hepatocellular carcinoma (HCC) has not been evaluated. In this study, we found that the expression of FOXA2 was decreased in 68.1% (49/72) of human HCC tissues compared with their paired non-cancerous adjacent tissues. Clinicopathological analysis revealed that reduced FOXA2 expression was correlated with aggressive characteristics (venous invasion, poor differentiation, high tumor node metastasis grade). FOXA2 level was even lower in portal vein tumor thrombus compared with primary tumor tissues and correlated with epithelial-mesenchymal transition in HCC cells. Overexpression of FOXA2 inhibited migration and invasion of Focus cells, whereas knockdown of FOXA2 in HepG2 showed the opposite effect. Moreover, upregulation of FOXA2 suppressed HCC metastasis to bone, brain and lung in two distinct mouse models. Finally, we proved that FOXA2 repressed the transcription of matrix metalloproteinase (MMP)-9 and exerted its antimetastasis effect partially through downregulation of MMP-9. In conclusion, our findings indicate that FOXA2 plays a critical role in HCC metastasis and may serve as a novel therapeutic target for HCC. PMID:25142974

  4. Matrix Metalloproteinase-9 Reduces Islet Amyloid Formation by Degrading Islet Amyloid Polypeptide*

    PubMed Central

    Aston-Mourney, Kathryn; Zraika, Sakeneh; Udayasankar, Jayalakshmi; Subramanian, Shoba L.; Green, Pattie S.; Kahn, Steven E.; Hull, Rebecca L.

    2013-01-01

    Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes. PMID:23229548

  5. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9.

    PubMed

    Ordonez, Alvaro A; Tasneen, Rokeya; Pokkali, Supriya; Xu, Ziyue; Converse, Paul J; Klunk, Mariah H; Mollura, Daniel J; Nuermberger, Eric L; Jain, Sanjay K

    2016-07-01

    Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments. PMID:27482816

  6. Role of matrix metalloproteinase-9 in chronic kidney disease: a new biomarker of resistant albuminuria.

    PubMed

    Pulido-Olmo, Helena; García-Prieto, Concha F; Álvarez-Llamas, Gloria; Barderas, María G; Vivanco, Fernando; Aranguez, Isabel; Somoza, Beatriz; Segura, Julián; Kreutz, Reinhold; Fernández-Alfonso, María S; Ruilope, Luis M; Ruiz-Hurtado, Gema

    2016-04-01

    Resistant albuminuria, developed under adequate chronic blockade of the renin-angiotensin system, is a clinical problem present in a small number of patients with chronic kidney disease (CKD). The mechanism underlying this resistant albuminuria remains unknown. Matrix metalloproteinases (MMPs) are involved in the pathophysiology of cardiovascular and renal diseases. In the present study we tested the role of MMPs in resistant albuminuria. First we evaluated gelatinase MMP-2 and MMP-9 activity by zymography in the Munich Wistar Frömter (MWF) rat, a model of progressive albuminuria, and subsequently in patients with resistant albuminuria. Markers of oxidative stress were observed in the kidneys of MWF rats, together with a significant increase in pro-MMP-2 and active MMP-9 forms. These changes were normalized together with reduced albuminuria in consomic MWF-8(SHR) rats, in which chromosome 8 of MWF was replaced with the respective chromosome from spontaneously hypertensive rats. The MMP-2 and MMP-9 protein levels were similar in patients with normal and resistant albuminuria; however, high circulating levels of collagen IV, a specific biomarker of tissue collagen IV degradation, were observed in patients with resistant albuminuria. These patients showed a significant increase in gelatinase MMP-2 and MMP-9 activity, but only a significant increase in the active MMP-9 form quantified by ELISA, which correlated significantly with the degree of albuminuria. Although the expression of the tissue inhibitor of MMP-9 (TIMP)-1 was similar, a novel AlphaLISA assay demonstrated that the MMP-9-TIMP-1 interaction was reduced in patients with resistant albuminuria. It is of interest that oxidized TIMP-1 expression was higher in patients with resistant albuminuria. Therefore, increased circulating MMP-9 activity is associated with resistant albuminuria and a deleterious oxidative stress environment appears to be the underlying mechanism. These changes might contribute to the

  7. Plasma matrix metalloproteinase-9 levels, MMP-9 gene haplotypes, and cardiovascular risk in obese subjects.

    PubMed

    Luizon, Marcelo R; Belo, Vanessa A; Fernandes, Karla S; Andrade, Vanessa L; Tanus-Santos, Jose E; Sandrim, Valeria C

    2016-06-01

    Plasma matrix metalloproteinase (MMP)-9 is a predictor of cardiovascular mortality, and MMP-9 polymorphisms affect plasma MMP-9 levels. However, no study examined whether MMP-9 haplotypes affect MMP-9 levels in obese adults. We examined whether MMP-9 polymorphisms and haplotypes are associated with obesity, and whether they affect MMP-9 levels in obese subjects. We examined the plasma levels of MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 in 105 subjects with normal weight (controls), 100 obese subjects, and 156 obese subjects with ≥3 metabolic risk factors (MRFs). We determined genotypes for three polymorphisms: C-1562T (rs3918242), Q279R (A>G, rs17576), and R668Q (G>A, rs17577). MMP-9 levels and activity (MMP-9/TIMP-1 ratio) were higher in obese subjects than in controls (P < 0.05). However, MMP-9 levels were higher in obese subjects with ≥3 MRFs than in obese subjects (P < 0.05). Obese subjects with ≥3 MRFs carrying the GA+AA genotypes for R668Q (G>A) polymorphism had higher MMP-9 levels than subjects carrying the AA genotype (P < 0.05). The "T, G, A" haplotype was more common in both groups of obese subjects than in controls (OR 3.95 and 4.39, respectively; P < 0.01). Notably, obese subjects with ≥3 MRFs carrying the "T, G, A" haplotype had higher MMP-9 levels than subjects carrying the "C, A, G" reference haplotype (P < 0.05). The "T, G, A" haplotype was associated with an increased risk of obesity and affected MMP-9 levels in obese subjects with ≥3 MRFs. Our findings suggest that plasma MMP-9 levels and MMP-9 haplotypes may help to discriminate obese subjects at an increased cardiovascular risk. PMID:27146834

  8. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9

    PubMed Central

    Ordonez, Alvaro A.; Tasneen, Rokeya; Pokkali, Supriya; Xu, Ziyue; Converse, Paul J.; Klunk, Mariah H.; Mollura, Daniel J.; Nuermberger, Eric L.

    2016-01-01

    ABSTRACT Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis. Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ. A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments. PMID:27482816

  9. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells.

    PubMed

    Tan, Thian Kui; Zheng, Guoping; Hsu, Tzu-Ting; Wang, Ying; Lee, Vincent W S; Tian, Xinrui; Wang, Yiping; Cao, Qi; Wang, Ya; Harris, David C H

    2010-03-01

    As a rich source of pro-fibrogenic growth factors and matrix metalloproteinases (MMPs), macrophages are well-placed to play an important role in renal fibrosis. However, the exact underlying mechanisms and the extent of macrophage involvement are unclear. Tubular cell epithelial-mesenchymal transition (EMT) is an important contributor to renal fibrosis and MMPs to induction of tubular cell EMT. The aim of this study was to investigate the contribution of macrophages and MMPs to induction of tubular cell EMT. The murine C1.1 tubular epithelial cell line and primary tubular epithelial cells were cultured in activated macrophage-conditioned medium (AMCM) derived from lipopolysaccharide-activated J774 macrophages. MMP-9, but not MMP-2 activity was detected in AMCM. AMCM-induced tubular cell EMT in C1.1 cells was inhibited by broad-spectrum MMP inhibitor (GM6001), MMP-2/9 inhibitor, and in AMCM after MMP-9 removal by monoclonal Ab against MMP-9. AMCM-induced EMT in primary tubular epithelial cells was inhibited by MMP-2/9 inhibitor. MMP-9 induced tubular cell EMT in both C1.1 cells and primary tubular epithelial cells. Furthermore, MMP-9 induced tubular cell EMT in C1.1 cells to an extent similar to transforming growth factor-beta. Transforming growth factor-beta-induced tubular cell EMT in C1.1 cells was inhibited by MMP-2/9 inhibitor. Our in vitro study provides evidence that MMPs, specifically MMP-9, secreted by effector macrophages can induce tubular cell EMT and thereby contribute to renal fibrosis. PMID:20075196

  10. Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice*

    PubMed Central

    Tyagi, Neetu; Givvimani, Srikanth; Qipshidze, Natia; Kundu, Soumi; Kapoor, Shray; Vacek, Jonathan C.; Tyagi, Suresh C.

    2010-01-01

    An elevated level of homocysteine (Hcy), known as hyperhomocysteinmia (HHcy), was associated with neurovascular diseases. At physiological levels, hydrogen sulfide (H2S) protected the neurovascular system. Because Hcy was also a precursor of hydrogen sulfide (H2S), we sought to test whether the H2S protected the brain during HHcy. Cystathionine-β-synthase heterozygous (CBS+/−) and wild type (WT) mice were supplemented with or without NaHS (30 µM/L, H2S donor) in drinking water. Blood flow and cerebral microvascular permeability in pial vessels were measured by intravital microscopy in WT, WT+NaHS, CBS−/+ and CBS−/+ + NaHS treated mice. The brain tissues were analyzed for matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) by Western blot and RT-PCR. The mRNA levels of CBS and cystathionine gamma lyase (CSE, enzyme responsible for conversion of Hcy to H2S) genes were measured by RT-PCR. The results showed a significant increase in MMP-2, MMP-9, TIMP-3 protein and mRNA in CBS (−/+) mice, while H2S treatment mitigated this increase. Interstitial localization of MMPs was also apparent through Immunohistochemistry. A decrease in protein and mRNA expression of TIMP-4 was observed in CBS (−/+) mice. Microscopy data revealed increase in permeability in CBS (−/+) mice. These effects were ameliorated by H2S and suggested that physiological levels of H2S supplementation may have therapeutic potential against HHcy-induced microvascular permeability, in part, by normalizing the MMP/TIMP ratio in the brain. PMID:19913585

  11. Matrix metalloproteinase-9 expression correlated with tumor response in patients with locally advanced rectal cancer undergoing preoperative chemoradiotherapy

    SciTech Connect

    Unsal, Diclehan . E-mail: diclehan@yahoo.com; Uner, Aytug; Akyurek, Nalan; Erpolat, Petek; Dursun, Ayse; Pak, Yucel

    2007-01-01

    Purpose: To analyze whether the expression of matrix metalloproteinases (MMPs) and their tissue inhibitors are associated with tumor response to preoperative chemoradiotherapy in rectal cancer patients. Methods and Materials: Forty-four patients who had undergone preoperative chemoradiotherapy were evaluated retrospectively. Treatment consisted of pelvic radiotherapy and two cycles of 5-fluorouracil plus leucovorin. Surgery was performed 6-8 weeks later. MMP-2, MMP-9, and tissue inhibitors of metalloproteinase-1 and -2 expression was analyzed by immunohistochemistry of the preradiation biopsy and surgical specimens. The intensity and extent of staining were evaluated separately, and a final score was calculated by multiplying the two scores. The primary endpoint was the correlation of expression with tumor response, with the secondary endpoint the effect of chemoradiotherapy on the expression. Results: Preoperative treatment resulted in downstaging in 20 patients (45%) and no clinical response in 24 (55%). The pathologic tumor response was complete in 11 patients (25%), partial in 23 (52%), and none in 10 (23%). Positive MMP-9 staining was observed in 20 tumors (45%) and was associated with the clinical nodal stage (p = 0.035) and the pathologic and clinical response (p < 0.0001). The staining status of the other markers was associated with neither stage nor response. The overall pathologic response rate was 25% in MMP-9-positive patients vs. 52% in MMP-9-negative patients (p = 0.001). None of the 11 patients with pathologic complete remission was MMP-9 positive. Conclusions: Matrix metalloproteinase-9 expression correlated with a poor tumor response to preoperative chemoradiotherapy in rectal carcinoma patients.

  12. Hypoxia reduces the output of matrix metalloproteinase-9 (MMP-9) in monocytes by inhibiting its secretion and elevating membranal association.

    PubMed

    Rahat, Michal A; Marom, Barak; Bitterman, Haim; Weiss-Cerem, Lea; Kinarty, Amalia; Lahat, Nitza

    2006-04-01

    Cellular hypoxia, characterizing tumors, ischemia, and inflammation induce recruitment of monocytes/macrophages, immobilize them at the hypoxic site, and alter their function. To migrate across the extracellular matrix and as part of their inflammatory functions, monocytes and macrophages secrete proteases, including matrix metalloproteinase-9 (MMP-9), whose expression is induced by proinflammatory cytokines [e.g., tumor necrosis factor alpha (TNF-alpha)]. We show that hypoxia (<0.3% O2 for 48 h) reduced the output of TNF-alpha-induced proMMP-9 by threefold (P < 0.01) in the U937 monocytic cell line and in primary human monocytes. TNF-alpha induced MMP-9 transcription by threefold, but no significant difference was observed in MMP-9 mRNA steady-state between normoxia and hypoxia, which inhibited the trafficking of proMMP-9 via secretory vesicles and increased the intracellular accumulation of proMMP-9 in the cells by 47% and 62% compared with normoxia (P < 0.05), as evaluated by zymography of cellular extracts and confocal microscopy, respectively. Secretion of proMMP-9 was reduced by the addition of cytochalazin B or nocodazole, which inhibits the polymerization of actin and tubulin fibers, or by the addition of the Rho kinase inhibitor Y27632, suggesting the involvement of the cytoskeleton and the Rho GTPases in the process of enzyme secretion. Furthermore, attachment of proMMP-9 to the cell membrane increased after hypoxia via its interactions with surface molecules such as CD44. In addition, the reduced migration of monocytes in hypoxia was shown to be mediated, at least partially, by secreted MMP-9. Thus, hypoxia post-translationally reduced the secreted amounts of proMMP-9 by using two mutually nonexclusive mechanisms: mostly, inhibition of cellular trafficking and to a lesser extent, attachment to the membrane. PMID:16434697

  13. Proteolytic regulation of synaptic plasticity in the mouse primary visual cortex: analysis of matrix metalloproteinase 9 deficient mice

    PubMed Central

    Kelly, Emily A.; Russo, Amanda S.; Jackson, Cory D.; Lamantia, Cassandra E.; Majewska, Ania K.

    2015-01-01

    The extracellular matrix (ECM) is known to play important roles in regulating neuronal recovery from injury. The ECM can also impact physiological synaptic plasticity, although this process is less well understood. To understand the impact of the ECM on synaptic function and remodeling in vivo, we examined ECM composition and proteolysis in a well-established model of experience-dependent plasticity in the visual cortex. We describe a rapid change in ECM protein composition during Ocular Dominance Plasticity (ODP) in adolescent mice, and a loss of ECM remodeling in mice that lack the extracellular protease, matrix metalloproteinase-9 (MMP9). Loss of MMP9 also attenuated functional ODP following monocular deprivation (MD) and reduced excitatory synapse density and spine density in sensory cortex. While we observed no change in the morphology of existing dendritic spines, spine dynamics were altered, and MMP9 knock-out (KO) mice showed increased turnover of dendritic spines over a period of 2 days. We also analyzed the effects of MMP9 loss on microglia, as these cells are involved in extracellular remodeling and have been recently shown to be important for synaptic plasticity. MMP9 KO mice exhibited very limited changes in microglial morphology. Ultrastructural analysis, however, showed that the extracellular space surrounding microglia was increased, with concomitant increases in microglial inclusions, suggesting possible changes in microglial function in the absence of MMP9. Taken together, our results show that MMP9 contributes to ECM degradation, synaptic dynamics and sensory-evoked plasticity in the mouse visual cortex. PMID:26441540

  14. Pioglitazone inhibits the expression of matrix metalloproteinase-9, a protein involved in diabetes-associated wound healing.

    PubMed

    Zhang, Jun; Huang, Xiaoyuan; Wang, Lingfeng

    2014-08-01

    Matrix metalloproteinase-9 (MMP-9) is a protein involved in diabetes-associated wound healing. The present study aimed to determine whether pioglitazone, an agonist of peroxisome proliferator-activated receptor‑γ (PPAR-γ), inhibits the expression of MMP-9. HaCaT cells at a density of 6x105 cells/well were seeded into 6-well plates in medium and were cultured for 24 h. The cells were then treated with bovine serum albumin (BSA) only or advanced glycation end‑product (AGE)-BSA (50, 100, 200, 300 or 400 µg/ml), with or without pioglitazone (0.5 or 1 µM). The effects of AGE-BSA on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of MMP-9 secreted into the medium were detected by an enzyme-linked immunosorbent assay. The mRNA and protein levels were analyzed by quantitative polymerase chain reaction (qPCR) and western blot analysis, respectively. AGEs are able to increase the level of MMP-9 mRNA in HaCaT cells and the levels of MMP-9 protein secreted into the medium. Pioglitazone (0.5 or 1 µΜ) significantly inhibited the levels of MMP-9 in the treated HaCaT cells. Pioglitazone (0.5 or 1 µΜ) also suppressed the levels of MMP-9 in the cell culture medium. Pioglitazone at concentrations of 0.5 and 1 µΜ significantly suppressed the levels of MMP-9 mRNA to 20 or 8%, respectively. These results suggest that pioglitazone is able to effectively suppress the expression of MMP-9 via a transcriptional mechanism. PMID:24890117

  15. The alterations of matrix metalloproteinase-9 in mouse brainstem during herpes simplex virus type 1-induced facial palsy.

    PubMed

    Chen, Dong; Zhang, Daogong; Xu, Lei; Han, Yuechen; Wang, Haibo

    2013-11-01

    The aim of this study is to explore the changes of matrix metalloproteinase-9 (MMP9) in the mouse brainstem during the development of facial paralysis induced by herpes simplex virus type 1 (HSV-1) and the inhibitory effect of methylprednisolone sodium succinate (MPSS) on MMP9 expression. HSV-1 was inoculated into the surface of posterior auricle of mouse to establish a paralyzed animal model. The paralyzed mice were divided randomly into three groups. In one group without any treatment, mice were killed at different time points of 6 h, 1, 2, 3, and 7 days post-induction of facial paralysis; in the other two groups, mice were injected daily with MPSS and a combination of MPSS and glucocorticoid receptor blocker (RU486) for 2 days, respectively. The expression of MMP9 in the facial nucleus of brainstem was detected by Western blot, quantitative real-time polymerase chain reaction, and immunofluorescence technique. A total of 52.07 % of mice developed unilateral facial paralysis after inoculated with HSV-1. Both mRNA and protein expression of MMP9 were present at low levels in normal facial nucleus of brainstem and were increased significantly after facial paralysis with its peak time at 2 days post-induction of facial paralysis. Expression of MMP9 of paralyzed mice was inhibited by MPSS, and the inhibition could be blocked by RU486. Our findings suggest that MMP9 in mouse brainstem is involved in the evolution of facial palsy induced by HSV-1 and may play an important role in the pathogenesis of this disease. MPSS might effectively relieve HSV-1-mediated damages by inhibitory effect on expression of MMP9 in HSV-1-induced facial paralysis. PMID:23817985

  16. Histamine induces the production of matrix metalloproteinase-9 in human astrocytic cultures via H1-receptor subtype.

    PubMed

    Patel, Aarti; Vasanthan, Vishnu; Fu, Wen; Fahlman, Richard P; MacTavish, David; Jhamandas, Jack H

    2016-05-01

    Accumulation of β-amyloid (Aβ) protein within the brain is a neuropathological hallmark of Alzheimer's disease (AD). One strategy to facilitate Aβ clearance from the brain is to promote Aβ catabolism. Matrix metalloproteinase-9 (MMP-9), a member of the family of Zn(+2)-containing endoproteases, known to be expressed and secreted by astrocytes, is capable of degrading Aβ. Histamine, a major aminergic brain neurotransmitter, stimulates the production of MMP-9 in keratinocytes through the histamine H1 receptor (H1R). In the present study, we show that histamine evokes a concentration- and calcium-dependent release of MMP-9 from human astrocytic U373 cells and primary cultures of human and rat astrocytes through the H1R subtype. Activation of H1R on astrocytes elevated intracellular levels of Ca(2+) that was accompanied by time-dependent increases in MAP kinase p44/p42 and PKC. In-cell western blots revealed dose-dependent increases in both enzymes, confirming involvement of these signal transduction pathways. We next investigated the extent of recombinant human MMP-9 (rhMMP-9) proteolytic activity on soluble oligomeric Aβ (soAβ). Mass spectrometry demonstrated time-dependent cleavage of soAβ (20 μM), but not another amyloidogenic protein amylin, upon incubation with rhMMP-9 (100 nM) at 1, 4 and 17 h. Furthermore, Western blots showed a shift in soAβ equilibrium toward lower order, less toxic monomeric species. In conclusion, both MAPK p44/p42 and PKC pathways appear to be involved in histamine-upregulated MMP-9 release via H1Rs in astrocytes. Furthermore, MMP-9 appears to cleave soAβ into less toxic monomeric species. Given the key role of histamine in MMP-9 release, this neurotransmitter may serve as a potential therapeutic target for AD. PMID:25682263

  17. Circulating Matrix Metalloproteinase-9 Is Associated with Cardiovascular Risk Factors in a Middle-Aged Normal Population

    PubMed Central

    Garvin, Peter; Nilsson, Lennart; Carstensen, John; Jonasson, Lena; Kristenson, Margareta

    2008-01-01

    Background Elevated levels of circulating matrix metalloproteinase-9 (MMP-9) have been demonstrated in patients with established coronary artery disease (CAD). The aim of this study was to analyse levels of MMP-9 in a population free from symptomatic CAD and investigate their associations with cardiovascular (CV) risk factors, including C-reactive protein (CRP). Methods A cross-sectional study was performed in a population based random sample aged 45–69 (n = 345, 50% women). MMP-9 levels were measured in EDTA-plasma using an ELISA-method. CV risk factors were measured using questionnaires and standard laboratory methods. Results Plasma MMP-9 was detectable in all participants, mean 38.9 ng/mL (SD 22.1 ng/mL). Among individuals without reported symptomatic CAD a positive association (p<0.001) was seen, for both men and women, of MMP-9 levels regarding total risk load of eight CV risk factors i.e. blood pressure, dyslipidemia, diabetes, obesity, smoking, alcohol intake, physical activity and fruit and vegetable intake. The association was significant also after adjustment for CRP, and was not driven by a single risk factor alone. In regression models adjusted for age, sex, smoking, alcohol intake and CRP, elevated MMP-9 levels were independently positively associated with systolic blood pressure (p = 0.037), smoking (p<0.001), alcohol intake (p = 0.003) and CRP (p<0.001). The correlation coefficient between MMP-9 and CRP was r = 0.24 (p<0.001). Conclusions In a population without reported symptomatic CAD, MMP-9 levels were associated with total CV risk load as well as with single risk factors. This was found also after adjustment for CRP. PMID:18335048

  18. Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice.

    PubMed

    Muradashvili, Nino; Benton, Richard L; Saatman, Kathryn E; Tyagi, Suresh C; Lominadze, David

    2015-04-01

    Traumatic brain injury (TBI) is accompanied with enhanced matrix metalloproteinase-9 (MMP-9) activity and elevated levels of plasma fibrinogen (Fg), which is a known inflammatory agent. Activation of MMP-9 and increase in blood content of Fg (i.e. hyperfibrinogenemia, HFg) both contribute to cerebrovascular disorders leading to blood brain barrier disruption. It is well-known that activation of MMP-9 contributes to vascular permeability. It has been shown that at an elevated level (i.e. HFg) Fg disrupts blood brain barrier. However, mechanisms of their actions during TBI are not known. Mild TBI was induced in wild type (WT, C57BL/6 J) and MMP-9 gene knockout (Mmp9(-/-)) homozygous, mice. Pial venular permeability to fluorescein isothiocyanate-conjugated bovine serum albumin in pericontusional area was observed 14 days after injury. Mice memory was tested with a novel object recognition test. Increased expression of Fg endothelial receptor intercellular adhesion protein-1 and formation of caveolae were associated with enhanced activity of MMP-9 causing an increase in pial venular permeability. As a result, an enhanced deposition of Fg and cellular prion protein (PrP(C)) were found in pericontusional area. These changes were attenuated in Mmp9(-/-) mice and were associated with lesser loss of short-term memory in these mice than in WT mice. Our data suggest that mild TBI-induced increased cerebrovascular permeability enhances deposition of Fg-PrP(C) and loss of memory, which is ameliorated in the absence of MMP-9 activity. Thus, targeting MMP-9 activity and blood level of Fg can be a possible therapeutic remedy to diminish vasculo-neuronal damage after TBI. PMID:24771110

  19. Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice

    PubMed Central

    Muradashvili, Nino; Benton, Richard L.; Saatman, Kathryn E.; Tyagi, Suresh C.; Lominadze, David

    2014-01-01

    Traumatic brain injury (TBI) is accompanied with enhanced matrix metalloproteinase-9 (MMP-9) activity and elevated levels of plasma fibrinogen (Fg), which is a known inflammatory agent. Activation of MMP-9 and increase in blood content of Fg (i.e. hyperfibrinogenemia, HFg) both contribute to cerebrovascular disorders leading to blood brain barrier disruption. It is well-known that activation of MMP-9 contributes to vascular permeability. It has been shown that at an elevated level (i.e. HFg) Fg disrupts blood brain barrier. However, mechanisms of their actions during TBI are not known. Mild TBI was induced in wild type (WT, C57BL/6J) and MMP-9 gene knockout (Mmp9−/−) homozygous, mice. Pial venular permeability to fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) in pericontusional area was observed 14 days after injury. Mice memory was tested with a novel object recognition test. Increased expression of Fg endothelial receptor intercellular adhesion protein-1 and formation of caveolae were associated with enhanced activity of MMP-9 causing an increase in pial venular permeability. As a result, an enhanced deposition of Fg and cellular prion protein (PrPC) were found in pericontusional area. These changes were attenuated in Mmp9−/− mice and were associated with lesser loss of short-term memory in these mice than in WT mice. Our data suggest that mild TBI-induced increased cerebrovascular permeability enhances deposition of Fg-PrPC and loss of memory, which is ameliorated in the absence of MMP-9 activity. Thus, targeting MMP-9 activity and blood level of Fg can be a possible therapeutic remedy to diminish vasculo-neuronal damage after TBI. PMID:24771110

  20. The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells

    SciTech Connect

    Kang, Hyereen; Ko, Jesang; Jang, Sung-Wuk

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We evaluated the effect of ANXA1 on promoting migration and invasion in MDA-MB-231 cells. Black-Right-Pointing-Pointer ANXA1 siRNA inhibits invasion and migration. Black-Right-Pointing-Pointer ANXA1 regulates MMP-9 expression and activity. Black-Right-Pointing-Pointer ANX-1 siRNA inhibits the activation of NF-{kappa}B in MDA-MB-231 cells. -- Abstract: Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. However, the regulatory mechanism of MMP-9 expression and its biological effects on breast cancer development remain obscure. In the current study, we examined the potential role of annexin A1 (ANXA1) in regulating migration and invasion in breast cancer cell lines. Both ANXA1 mRNA and protein are expressed in the highly invasive, hormone-insensitive human breast cancer cell lines MDA-MB-231 and SKBr3, but not in the hormone-responsive cell lines MCF-7 and T47D. Downregulation of ANXA1 expression with specific small interfering RNAs (ANXA1 siRNA) in MDA-MB-231 cells resulted in decreased cancer cell migration and invasion. Ablation of ANXA1 expression decreases the expression of MMP-9 at both the mRNA and protein levels and also reduces the proteolytic activity of MMP-9 in MDA-MB-231 cells. Moreover, silencing ANXA1 also decreases the transcriptional activity of MMP-9 by the suppression of nuclear factor kappa-B (NF-{kappa}B) activity. Collectively, these results indicate that ANXA1 functions as a positive regulator of MMP-9 expression and invasion of breast cancer cells through specific activation of the NF-{kappa}B signaling pathway.

  1. Elevated Plasma Matrix Metalloproteinase-9 and Its Correlations with Severity of Disease in Patients with Ventilator-Associated Pneumonia

    PubMed Central

    Li, Yia-Ting; Wang, Yao-Chen; Lee, Hsiang-Lin; Lu, Min-Chi; Yang, Shun-Fa

    2016-01-01

    Ventilator-associated pneumonia (VAP) increases patient mortality and medical expenditure, and a real-time and reliable method for the rapid diagnosis of VAP may help reduce fatal complications. Matrix metalloproteinases-9 (MMP-9) is considered significant in the pathogenesis of lung inflammation and infection. Therefore, we examined its relationship with the clinical course of VAP. This retrospective observational study recruited 30 healthy volunteers, 12 patients who used mechanical ventilation without the development of VAP (hereafter, patients without VAP), and 30 patients with a clinical diagnosis of VAP (hereafter, patients with VAP). The activity and level of plasma MMP-9 were determined through a gelatin zymography assay and ELISA. Our results report that both plasma MMP-9 activity and concentration were significantly elevated in the acute stage of patients with VAP when compared with control group and patients without VAP (p < 0.001). Subsequently, the plasma MMP-9 of patients with VAP decreased significantly after antibiotic treatment. Furthermore, plasma MMP-9 concentration was positively correlated with the clinical pulmonary infection score (r = 0.409, p = 0.007), WBCs (r = 0.620, p < 0.001), and neutrophils counts (r = 0.335, p = 0.035). In addition, plasma MMP-9 is an excellent tool for recognizing VAP when the cutoff level is set to 92.62 ng/mL (AUC = 0.863, 95% CI = 0.761 to 0.932). In conclusions, we concluded that MMP-9 levels play a role in the development of VAP and might have the potential to be applied in the development of VAP therapies. PMID:27499696

  2. Salvianolic acid B functioned as a competitive inhibitor of matrix metalloproteinase-9 and efficiently prevented cardiac remodeling

    PubMed Central

    2010-01-01

    Background Infarct-induced left ventricular (LV) remodeling is a deleterious consequence after acute myocardial infarction (MI) which may further advance to congestive heart failure. Therefore, new therapeutic strategies to attenuate the effects of LV remodeling are urgently needed. Salvianolic acid B (SalB) from Salviae mitiorrhizae, which has been widely used in China for the treatment of cardiovascular diseases, is a potential candidate for therapeutic intervention of LV remodeling targeting matrix metalloproteinase-9 (MMP-9). Results Molecular modeling and LIGPLOT analysis revealed in silico docking of SalB at the catalytic site of MMP-9. Following this lead, we expressed truncated MMP-9 which contains only the catalytic domain, and used this active protein for in-gel gelatin zymography, enzymatic analysis, and SalB binding by Biacore. Data generated from these assays indicated that SalB functioned as a competitive inhibitor of MMP-9. In our rat model for cardiac remodeling, western blot, echocardiography, hemodynamic measurement and histopathological detection were used to detect the effects and mechanism of SalB on cardio-protection. Our results showed that in MI rat, SalB selectively inhibited MMP-9 activities without affecting MMP-9 expression while no effect of SalB was seen on MMP-2. Moreover, SalB treatment in MI rat could efficiently increase left ventricle wall thickness, improve heart contractility, and decrease heart fibrosis. Conclusions As a competitive inhibitor of MMP-9, SalB presents significant effects on preventing LV structural damage and preserving cardiac function. Further studies to develop SalB and its analogues for their potential for cardioprotection in clinic are warranted. PMID:20735854

  3. Effects of atorvastatin on plasma matrix metalloproteinase-9 concentration after glial tumor resection; a randomized, double blind, placebo controlled trial

    PubMed Central

    2014-01-01

    Background Neurosurgical procedures such as craniotomy and brain tumor resection could potentially lead to unavoidable cerebral injuries. Matrix metalloproteinase-9 (MMP-9) is up-regulated in neurological injuries. Statins have been suggested to reduce MMP- 9 level and lead to neuroprotection. Atorvastatin preoperatively administered to evaluate its neuroprotective effects and outcome assessment in neurosurgical-induced brain injuries after glial tumor resection. In this prospective, randomized, double-blind, placebo-controlled trial, 42 patients undergoing glial tumor surgery randomly received 40 mg atorvastatin or placebo twice daily from seven days prior to operation and continued for a 3 weeks period. Plasma MMP-9 concentration measured 4 times, immediately before starting atorvastatin or placebo, immediately before surgery, 24 hours and two weeks after the surgery. Karnofsky performance score was assessed before first dose of atorvastatin as a baseline and 2 months after the surgery. Results Karnofsky performance scale after surgery raised significantly more in Atorvastatin group (11.43 +/- 10.62 vs. 4.00 +/- 8.21) (p = 0.03). Atorvastatin did not significantly reduce MMP-9 plasma concentration 24 hours after surgery in comparison to placebo. No statistical significance detected regarding length of hospital stay among the groups. Significant reduction in MMP-9 plasma concentration was recorded in atorvastatin group two weeks after surgery (p = 0.048). Conclusions Significant statistical differences detected with atorvastatin group regarding MMP-9 plasma concentration, clinical outcome and Karnofsky performance score. Consequently, atorvastatin use may lead to better outcome after neurosurgical procedures. PMID:24397933

  4. Association of Matrix Metalloproteinase-9 (MMP9) Variants with Primary Angle Closure and Primary Angle Closure Glaucoma

    PubMed Central

    Wiggs, Janey L.; Pasquale, Louis R.; Sun, Xinghuai; Fan, Bao Jian

    2016-01-01

    Shorter axial length observed in patients with primary angle closure glaucoma (PACG) might be due to altered matrix metalloproteinase-9 (MMP9) activity resulting in ECM remodeling during eye growth and development. This study aimed to evaluate common variants in MMP9 for association with PACG. Six tag SNPs of MMP9 were genotyped in a Chinese sample of 1,030 cases, including 572 PACG and 458 primary angle closure (PAC), and 499 controls. None of 6 SNPs were significantly associated with overall PAC/PACG (P > 0.07) or with PAC/PACG subgroups (Pc > 0.18). Meta-analysis of two non-Chinese studies revealed significant association between rs17576 and PACG (ORs = 0.56, P < 0.0001); however, meta-analysis of our dataset with 4 Chinese datasets did not replicate this association (ORs = 1.23, P = 0.29). Prior significant association for rs3918249 in one Caucasian study (OR = 0.63, P = 0.006) was not replicated in meta-analysis of 3 Chinese studies including this study (ORs = 0.91, P = 0.13). Significant heterogeneity between non-Chinese and Chinese datasets precluded overall meta-analysis for rs17576 and rs3918249 (Q = 0.001 and 0.04 respectively). rs17577 was nominally associated with PACG in one Caucasian study (OR = 1.71, P = 0.02), but not in 3 Chinese studies including our study (ORs = 1.20, P = 0.07). Overall meta-analysis revealed nominal association for rs17577 and PAC/PACG (ORs = 1.26, Pc = 0.05). Meta-analysis did not show significant association between the other SNPs and PAC/PACG (P > 0.47). The largest association study to date did not find significant association between MMP9 and PAC/PACG in Chinese; meta-analysis with other Chinese datasets did not produce significant association. In most instances combination with non-Chinese datasets was not possible except for one variant showing nominally significant association. More work is needed to define the role of MMP9 variants in PACG. PMID:27272641

  5. Cyanobacterial Microcystis aeruginosa lipopolysaccharide elicits release of superoxide anion, thromboxane B₂, cytokines, chemokines, and matrix metalloproteinase-9 by rat microglia.

    PubMed

    Mayer, Alejandro M S; Clifford, Jonathan A; Aldulescu, Monica; Frenkel, Jeffrey A; Holland, Michael A; Hall, Mary L; Glaser, Keith B; Berry, John

    2011-05-01

    Microcystis aeruginosa (M. aeruginosa) is a cosmopolitan Gram-negative cyanobacterium that may contaminate freshwater by releasing toxins, such as lipopolysaccharide (LPS) during aquatic blooms, affecting environmental and human health. The putative toxic effects of cyanobacterial LPS on brain microglia, a glial cell type that constitutes the main leukocyte-dependent source of reactive oxygen species in the central nervous system, are presently unknown. We tested the hypothesis that in vitro concentration- and time-dependent exposure to M. aeruginosa LPS strain UTCC 299 would activate rat microglia and the concomitant generation of superoxide anion (O₂⁻). After a 17-h exposure of microglia to M.aeruginosa LPS, the following concentration-dependent responses were observed: 0.1-100 ng/ml M. aeruginosa LPS enhanced O₂⁻ generation, with limited inflammatory mediator generation; 1000-10,000 ng/ml M. aeruginosa LPS caused thromboxane B₂ (TXB₂), matrix metalloproteinase-9 (MMP-9), and macrophage inflammatory protein-2 (MIP-2/CXCL2) release, concurrent with maximal O₂⁻ generation; 100,000 ng/mL M. aeruginosa LPS deactivated O₂⁻ production but maintained elevated levels of TXB₂, MMP-9, tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), and interleukin-6 (IL-6), macrophage inflammatory protein 1α (MIP-1α/CCL3), and MIP-2/CXCL2, with concomitant lactic dehydrogenase release. Although M. aeruginosa LPS was consistently less potent than Escherichia coli LPS, with the exception of O₂⁻, TXB₂, and MCP-1/CCL2 generation, it was more efficacious because higher levels of MMP-9, TNF-α, IL-1α, IL-6, MIP-1α/CCL3, and MIP-2/CXCL2 were produced. Our in vitro studies suggest that one or more of the inflammatory mediators released during M. aeruginosa LPS stimulation of microglia may play a critical role in the subsequent ability of microglia to generate O₂⁻. To our knowledge, this is the first experimental evidence that LPS isolated from a M

  6. Association of Matrix Metalloproteinase-9 (MMP9) Variants with Primary Angle Closure and Primary Angle Closure Glaucoma.

    PubMed

    Chen, Xueli; Chen, Yuhong; Wiggs, Janey L; Pasquale, Louis R; Sun, Xinghuai; Fan, Bao Jian

    2016-01-01

    Shorter axial length observed in patients with primary angle closure glaucoma (PACG) might be due to altered matrix metalloproteinase-9 (MMP9) activity resulting in ECM remodeling during eye growth and development. This study aimed to evaluate common variants in MMP9 for association with PACG. Six tag SNPs of MMP9 were genotyped in a Chinese sample of 1,030 cases, including 572 PACG and 458 primary angle closure (PAC), and 499 controls. None of 6 SNPs were significantly associated with overall PAC/PACG (P > 0.07) or with PAC/PACG subgroups (Pc > 0.18). Meta-analysis of two non-Chinese studies revealed significant association between rs17576 and PACG (ORs = 0.56, P < 0.0001); however, meta-analysis of our dataset with 4 Chinese datasets did not replicate this association (ORs = 1.23, P = 0.29). Prior significant association for rs3918249 in one Caucasian study (OR = 0.63, P = 0.006) was not replicated in meta-analysis of 3 Chinese studies including this study (ORs = 0.91, P = 0.13). Significant heterogeneity between non-Chinese and Chinese datasets precluded overall meta-analysis for rs17576 and rs3918249 (Q = 0.001 and 0.04 respectively). rs17577 was nominally associated with PACG in one Caucasian study (OR = 1.71, P = 0.02), but not in 3 Chinese studies including our study (ORs = 1.20, P = 0.07). Overall meta-analysis revealed nominal association for rs17577 and PAC/PACG (ORs = 1.26, Pc = 0.05). Meta-analysis did not show significant association between the other SNPs and PAC/PACG (P > 0.47). The largest association study to date did not find significant association between MMP9 and PAC/PACG in Chinese; meta-analysis with other Chinese datasets did not produce significant association. In most instances combination with non-Chinese datasets was not possible except for one variant showing nominally significant association. More work is needed to define the role of MMP9 variants in PACG. PMID:27272641

  7. Correlation between genetic polymorphism of matrix metalloproteinase-9 in patients with coronary artery disease and cardiac remodeling

    PubMed Central

    Yu, Qibin; Li, Hanmei; Li, Linlin; Wang, Shaoye; Wu, Yongbo

    2015-01-01

    Objective: To explore the correlation between genetic polymorphism of matrix metalloproteinase-9 (MMP-9) in patients with coronary artery disease (CAD) and cardiac remodeling. Methods: A total of 272 subjects who received coronary angiography in our hospital from July 2008 to September 2013 were selected, including 172 CAD patients (CAD group) and another 100 ones (control group). Both groups were subjected to MMP-9 and ultrasonic detections to determine vascular remodeling and atherosclerotic plaques. C1562G polymorphism of MMP-9 gene was detected, and correlation with vascular remodeling and atherosclerotic plaque was analyzed. Results: Serum MMP-9 level of CAD group (330.87±50.39 ng/ml) was significantly higher than that of control group (134.87±34.02 ng/ml) (P<0.05). Compared with control group, CAD group had significantly higher intima-media thickness, and significantly lower systolic peak velocity, mean systolic velocity and end-diastolic velocity (P<0.05). Total area of stenotic blood vessels was 67.34±22.98 mm2, while that of control blood vessels was 64.00±20.83 mm2. G/G, G/C and C/C genotype frequencies of MMP-9 differed significantly in the two groups (P<0.05). G and C allele frequencies of CAD group (70.9% and 29.1%) were significantly different from those of control group (50.0% and 50.0%) (P<0.05). G/G, G/C and C/C genotypes were manifested as lipid-rich, fibrous and calcified or ulcerated plaques respectively. Total area of stenotic blood vessels of G/G genotype significantly exceeded those of G/C and C/C genotypes (P<0.05), whereas the latter two had no significant differences. Conclusion: CAD promoted 1562C-G transformation of MMP-9 gene into genetic polymorphism, thus facilitating arterial remodeling and increasing unstable atherosclerotic plaques. PMID:26150861

  8. Hydrogel-Framed Nanofiber Matrix Integrated with a Microfluidic Device for Fluorescence Detection of Matrix Metalloproteinases-9.

    PubMed

    Han, Sang Won; Koh, Won-Gun

    2016-06-21

    Matrix metalloproteinases (MMPs) play a pivotal role in regulating the composition of the extracellular matrix and have a critical role in vascular disease, cancer progression, and bone disorders. This paper describes the design and fabrication of a microdevice as a new platform for highly sensitive MMP-9 detection. In this sensing platform, fluorescein isocyanate (FITC)-labeled MMP-9 specific peptides were covalently immobilized on an electrospun nanofiber matrix to utilize an enzymatic cleavage strategy. Prior to peptide immobilization, the nanofiber matrix was incorporated into hydrogel micropatterns for easy size control and handling of the nanofiber matrix. The resultant hydrogel-framed nanofiber matrix immobilizing the peptides was inserted into microfluidic devices consisting of reaction chambers and detection zones. The immobilized peptides were reacted with the MMP-9-containing solution in a reaction chamber, which resulted in the cleavage of the FITC-containing peptide fragments and subsequently generated fluorescent flow at the detection zone. As higher concentrations of the MMP-9 solution were introduced or larger peptide-immobilizing nanofiber areas were used, more peptides were cleaved, and a stronger fluorescence signal was observed. Due to the huge surface area of the nanofiber and small dimensions of the microsystem, a faster response time (30 min) and lower detection limit (10 pM) could be achieved in this study. The hydrogel-framed nanofiber matrix is disposable and can be replaced with new ones immobilizing either the same or different biomolecules for various bioassays, while the microfluidic system can be continuously reused. PMID:27214657

  9. Elevated Expression of Matrix Metalloproteinase-9 not Matrix Metalloproteinase-2 Contributes to Progression of Extracranial Arteriovenous Malformation

    PubMed Central

    Wei, Ting; Zhang, Haihong; Cetin, Neslihan; Miller, Emily; Moak, Teri; Suen, James Y.; Richter, Gresham T.

    2016-01-01

    Extracranial arteriovenous malformations (AVMs) are rare but dangerous congenital lesions arising from direct arterial-venous shunts without intervening capillaries. Progressive infiltration, expansion, and soft tissue destruction lead to bleeding, pain, debilitation and disfigurement. The pathophysiology of AVMs is not well understood. Matrix Metalloproteinases (MMPs) are thought to play an important role in pathologic processes underlying many diseases. This study investigates the expression of MMP-9 and MMP-2 in aggressive extracranial AVMs. The differential expression of MMP-9 and its regulatory factors is also examined. Herein we demonstrate that mRNA and protein expressions of MMP-9, but not MMP-2, are significantly higher in AVM tissues compared to normal tissues. The serum level of MMP-9, but not MMP-2, is also elevated in AVM patients compared to healthy controls. MMP-9/neutrophil gelatinase-associated lipocalin (NGAL) complex is also significantly increased in AVM tissues. The MMP-9/ tissue inhibitor of metalloproteases-1 (TIMP-1) complex presents as a major form detected in normal tissues. The increased and aberrant expression of MMP-9 and specific MMP-9 forms may help explain the constitutive vascular remodeling and infiltrative nature of these lesions. Specific MMP-9 inhibitors would be a promising treatment for AVMs. PMID:27075045

  10. Osthole, a natural coumarin, improves neurobehavioral functions and reduces infarct volume and matrix metalloproteinase-9 activity after transient focal cerebral ischemia in rats.

    PubMed

    Mao, Xuexuan; Yin, Wei; Liu, Mengfei; Ye, Minzhong; Liu, Peiqing; Liu, Jianxin; Lian, Qishen; Xu, Suowen; Pi, Rongbiao

    2011-04-18

    Previously we demonstrated that Osthole, a natural coumarin, protects against focal cerebral ischemia/reperfusion-induced injury in rats. In the present study, the effects of Osthole on neurobehavioral functions, infarct volume and matrix metalloproteinase-9 (MMP-9) in a rat 2h focal cerebral ischemia model were investigated. Osthole (100mg/kg per dose) was administrated intraperitoneally 30min before ischemic insult and immediately after reperfusion. Osthole treatment significantly reduced neurological deficit score and infarct volume by 38.5% and 33.8%, respectively, as compared with the untreated animals. Osthole reversed ischemia-reperfusion-induced increase in MMP-9 protein level/activity as evidenced by Western blotting and gelatin zymography. Taken together, these results for the first time demonstrate that Osthole reduces infarct volume, restores neurobehavioral functions and downregulates MMP-9 protein level/activity in ischemia/reperfused brain. PMID:21316348

  11. Roles of mitogen activated protein kinases and EGF receptor in arsenite-stimulated matrix metalloproteinase-9 production

    SciTech Connect

    Cooper, Karen L.; Myers, Terrance Alix; Rosenberg, Martina; Chavez, Miquella; Hudson, Laurie G. . E-mail: lghudson@unm.edu

    2004-11-01

    The dermatotoxicity of arsenic is well established and epidemiological studies identify an increased incidence of keratinocytic tumors (basal cell and squamous cell carcinoma) associated with arsenic exposure. Little is known about the underlying mechanisms of arsenic-mediated skin carcinogenesis, but activation of mitogen-activated protein (MAP) kinases and subsequent regulation of downstream target genes may contribute to tumor promotion and progression. In this study, we investigated activation of the extracellular signal regulated kinase (ERK) and the stress-associated kinase p38 by arsenite in HaCat cells, a spontaneously immortalized human keratinocyte cell line. Arsenite concentrations {>=}100 {mu}M stimulate rapid activation of p38 and ERK MAP kinases. However, upon extended exposure (24 h), persistent stimulation of p38 and ERK MAP kinases was detected at low micromolar concentrations of arsenite. Although ERK and p38 were activated with similar time and concentration dependence, the mechanism of activation differed for these two MAP kinases. ERK activation by arsenite was fully dependent on the catalytic activity of the epidermal growth factor (EGF) receptor and partially dependent on Src-family kinase activity. In contrast, p38 activation was independent of EGF receptor or Src-family kinase activity. Arsenite-stimulated MAP kinase signal transduction resulted in increased production of matrix metalloproteinase (MMP)-9, an AP-1 regulated gene product. MMP-9 induction by arsenite was prevented when EGF receptor or MAP kinase signaling was inhibited. These studies indicate that EGF receptor activation is a component of arsenite-mediated signal transduction and gene expression in keratinocytes and that low micromolar concentrations of arsenite stimulate key signaling pathways upon extended exposure. Stimulation of MAP kinase cascades by arsenic and subsequent regulation of genes including c-fos, c-jun, and the matrix degrading proteases may play an important

  12. Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration.

    PubMed

    Vaz, Ana Rita; Cunha, Carolina; Gomes, Cátia; Schmucki, Nadja; Barbosa, Marta; Brites, Dora

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects mainly motor neurons (MNs). NSC-34 MN-like cells carrying the G93A mutation in human superoxide dismutase-1 (hSOD1(G93A)) are a common model to study the molecular mechanisms of neurodegeneration in ALS. Although the underlying pathways of MN failure still remain elusive, increased apoptosis and oxidative stress seem to be implicated. Riluzole, the only approved drug, only slightly delays ALS progression. Ursodeoxycholic acid (UDCA), as well as its glycine (glycoursodeoxycholic acid, GUDCA) and taurine (TUDCA) conjugated species, have shown therapeutic efficacy in neurodegenerative models and diseases. Pilot studies in ALS patients indicate safety and tolerability for UDCA oral administration. We explored the mechanisms associated with superoxide dismutase-1 (SOD1) accumulation and MN degeneration in NSC-34/hSOD1(G93A) cells differentiated for 4 days in vitro (DIV). We examined GUDCA efficacy in preventing such pathological events and in restoring MN functionality by incubating cells with 50 μM GUDCA at 0 DIV and at 2 DIV, respectively. Increased cytosolic SOD1 inclusions were observed in 4 DIV NSC-34/hSOD1(G93A) cells together with decreased mitochondria viability (1.2-fold, p < 0.01), caspase-9 activation (1.8-fold, p < 0.05), and apoptosis (2.1-fold, p < 0.01). GUDCA exerted preventive effects (p < 0.05) while also reduced caspase-9 levels when added at 2 DIV (p < 0.05). ATP depletion (2-fold, p < 0.05), increased nitrites (1.6-fold, p < 0.05) and metalloproteinase-9 (MMP-9) activation (1.8-fold, p < 0.05), but no changes in MMP-2, were observed in the extracellular media of 4 DIV NSC-34/hSOD1(G93A) cells. GUDCA inhibited nitrite production (p < 0.05) while simultaneously prevented and reverted MMP-9 activation (p < 0.05), but not ATP depletion. Data highlight caspase-9 and MMP-9 activation as key pathomechanisms in ALS and GUDCA

  13. High Levels of 17β-Estradiol Are Associated with Increased Matrix Metalloproteinase-2 and Metalloproteinase-9 Activity in Tears of Postmenopausal Women with Dry Eye

    PubMed Central

    Shen, Guanglin; Ma, Xiaoping

    2016-01-01

    Purpose. To determine the serum levels of sex steroids and tear matrix metalloproteinases (MMP) 2 and 9 concentrations in postmenopausal women with dry eye. Methods. Forty-four postmenopausal women with dry eye and 22 asymptomatic controls were enrolled. Blood was drawn and analyzed for serum levels of sex steroids and lipids. Then, the following tests were performed: tear collection, Ocular Surface Disease Index (OSDI) questionnaire, fluorescein tear film break-up time (TBUT), corneal fluorescein staining, Schirmer test, and conjunctival impression cytology. The conjunctival mRNA expression and tear concentrations of MMP-2 and MMP-9 were measured. Results. Serum 17β-estradiol levels were significantly higher in the dry eye subjects than in the controls (P = 0.03), whereas there were no significant differences in levels of testosterone, dehydroepiandrosterone sulfate (DHEA-S), and progesterone. Tear MMP-2 and MMP-9 concentrations (P < 0.001), as well as the MMP-9 mRNA expression in conjunctival samples (P = 0.02), were significantly higher in dry eye subjects than in controls. Serum 17β-estradiol levels were positively correlated with tear MMP-2 and MMP-9 concentrations and negatively correlated with Schirmer test values. Conclusions. High levels of 17β-estradiol are associated with increased matrix metalloproteinase-2 and metalloproteinase-9 activity in tears of postmenopausal women with dry eye. PMID:26904272

  14. Expression profiles of matrix metalloproteinase 9 in teleost fish provide evidence for its active role in initiation and resolution of inflammation

    PubMed Central

    Chadzinska, Magdalena; Baginski, Pawel; Kolaczkowska, Elzbieta; Savelkoul, Huub F J; Lidy Verburg-van Kemenade, B M

    2008-01-01

    Matrix metalloproteinase 9 (MMP-9) belongs to a family of zinc-dependent endopeptidases. As a consequence of its ability to cleave structural extracellular matrix molecules, mammalian MMP-9 is associated with vital inflammatory processes such as leucocyte migration and tissue remodelling and regeneration. Interestingly, MMP-9 genes have been identified in fish, but functional data are still limited and focus on the involvement of MMP-9 in embryonic development, reproduction and post-mortem tenderization. Here, we describe the involvement of MMP-9 in the innate immunity of carp. In carp, MMP-9 was most notably expressed in classical fish immune organs and in peritoneal and peripheral blood leucocytes, indicating a role of MMP-9 in immune responses. In our well-characterized zymosan-induced peritonitis model for carp, we analysed expression of the MMP-9 gene and the gelatinolytic levels of both pro- and activated forms of MMP-9. The biphasic profile of MMP-9 mRNA expression indicated involvement during the initial phase of inflammation and during the later phase of tissue remodelling. Also, in vitro stimulation of carp phagocytes with lipopolysaccharide or concanavalin A increased MMP-9 gene expression, with a peak at 24 hr. The increase of MMP-9 mRNA correlated with the peak of MMP-9 gelatinolytic level in culture supernatants. These results provide evidence for an evolutionarily conserved and relevant role of MMP-9 in the innate immune response. PMID:18557954

  15. Abnormal activation of calpain and protein kinase Cα promotes a constitutive release of matrix metalloproteinase 9 in peripheral blood mononuclear cells from cystic fibrosis patients.

    PubMed

    Averna, Monica; Bavestrello, Margherita; Cresta, Federico; Pedrazzi, Marco; De Tullio, Roberta; Minicucci, Laura; Sparatore, Bianca; Salamino, Franca; Pontremoli, Sandro; Melloni, Edon

    2016-08-15

    Matrix metalloproteinase 9 (MMP9) is physiologically involved in remodeling the extracellular matrix components but its abnormal release has been observed in several human pathologies. We here report that peripheral blood mononuclear cells (PBMCs), isolated from cystic fibrosis (CF) patients homozygous for F508del-cystic fibrosis transmembrane conductance regulator (CFTR), express constitutively and release at high rate MMP9 due to the alteration in their intracellular Ca(2+) homeostasis. This spontaneous and sustained MMP9 secretion may contribute to the accumulation of this protease in fluids of CF patients. Conversely, in PBMCs isolated from healthy donors, expression and secretion of MMP9 are undetectable but can be evoked, after 12 h of culture, by paracrine stimulation which also promotes an increase in [Ca(2+)]i. We also demonstrate that in both CF and control PBMCs the Ca(2+)-dependent MMP9 secretion is mediated by the concomitant activation of calpain and protein kinase Cα (PKCα), and that MMP9 expression involves extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. Our results are supported by the fact that either the inhibition of Ca(2+) entry or chelation of [Ca(2+)]i as well as the inhibition of single components of the signaling pathway or the restoration of CFTR activity all promote the reduction of MMP9 secretion. PMID:27349634

  16. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9.

    PubMed

    Morisaki, Yuta; Niikura, Mamiko; Watanabe, Mizuho; Onishi, Kosuke; Tanabe, Shogo; Moriwaki, Yasuhiro; Okuda, Takashi; Ohara, Shinji; Murayama, Shigeo; Takao, Masaki; Uchida, Sae; Yamanaka, Koji; Misawa, Hidemi

    2016-01-01

    Differential vulnerability among motor neuron (MN) subtypes is a fundamental feature of amyotrophic lateral sclerosis (ALS): fast-fatigable (FF) MNs are more vulnerable than fast fatigue-resistant (FR) or slow (S) MNs. The reason for this selective vulnerability remains enigmatic. We report here that the extracellular matrix (ECM) protein osteopontin (OPN) is selectively expressed by FR and S MNs and ALS-resistant motor pools, whereas matrix metalloproteinase-9 (MMP-9) is selectively expressed by FF MNs. OPN is secreted and accumulated as extracellular granules in ECM in three ALS mouse models and a human ALS patient. In SOD1(G93A) mice, OPN/MMP-9 double positivity marks remodeled FR and S MNs destined to compensate for lost FF MNs before ultimately dying. Genetic ablation of OPN in SOD1(G93A) mice delayed disease onset but then accelerated disease progression. OPN induced MMP-9 up-regulation via αvβ3 integrin in ChAT-expressing Neuro2a cells, and also induced CD44-mediated astrocyte migration and microglial phagocytosis in a non-cell-autonomous manner. Our results demonstrate that OPN expressed by FR/S MNs is involved in the second-wave neurodegeneration by up-regulating MMP-9 through αvβ3 integrin in the mouse model of ALS. The differences in OPN/MMP-9 expression profiles in MN subsets partially explain the selective MN vulnerability in ALS. PMID:27264390

  17. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9

    PubMed Central

    Morisaki, Yuta; Niikura, Mamiko; Watanabe, Mizuho; Onishi, Kosuke; Tanabe, Shogo; Moriwaki, Yasuhiro; Okuda, Takashi; Ohara, Shinji; Murayama, Shigeo; Takao, Masaki; Uchida, Sae; Yamanaka, Koji; Misawa, Hidemi

    2016-01-01

    Differential vulnerability among motor neuron (MN) subtypes is a fundamental feature of amyotrophic lateral sclerosis (ALS): fast-fatigable (FF) MNs are more vulnerable than fast fatigue-resistant (FR) or slow (S) MNs. The reason for this selective vulnerability remains enigmatic. We report here that the extracellular matrix (ECM) protein osteopontin (OPN) is selectively expressed by FR and S MNs and ALS-resistant motor pools, whereas matrix metalloproteinase-9 (MMP-9) is selectively expressed by FF MNs. OPN is secreted and accumulated as extracellular granules in ECM in three ALS mouse models and a human ALS patient. In SOD1G93A mice, OPN/MMP-9 double positivity marks remodeled FR and S MNs destined to compensate for lost FF MNs before ultimately dying. Genetic ablation of OPN in SOD1G93A mice delayed disease onset but then accelerated disease progression. OPN induced MMP-9 up-regulation via αvβ3 integrin in ChAT-expressing Neuro2a cells, and also induced CD44-mediated astrocyte migration and microglial phagocytosis in a non-cell-autonomous manner. Our results demonstrate that OPN expressed by FR/S MNs is involved in the second-wave neurodegeneration by up-regulating MMP-9 through αvβ3 integrin in the mouse model of ALS. The differences in OPN/MMP-9 expression profiles in MN subsets partially explain the selective MN vulnerability in ALS. PMID:27264390

  18. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  19. WW domain-containing oxidoreductase is involved in upregulation of matrix metalloproteinase 9 by Epstein-Barr virus latent membrane protein 2A.

    PubMed

    Lan, Yu-Yan; Wu, Shih-Yi; Lai, Hsiao-Ching; Chang, Nan-Shan; Chang, Fang-Hsin; Tsai, Meng-Hsuan; Su, Ih-Jen; Chang, Yao

    2013-07-12

    WW domain-containing oxidoreductase (WOX1) participates in tumor suppression and many other biologic functions, but its molecular and functional interactions with viral proteins remain largely unknown. This study reveals that WOX1 is physically associated with latent membrane protein 2A (LMP2A), an oncoprotein of Epstein-Barr virus. The molecular interaction involves the tyrosine residue 33 of WOX1 and the proline-rich motifs of LMP2A. Interestingly, endogenous WOX1 is required for some LMP2A-triggered, cancer-promoting effects, including activation of extracellular signal-regulated kinase-1/2, upregulation of matrix metalloproteinase 9 (MMP9) and promotion of cell invasion. Upon knockdown of endogenous WOX1, LMP2A-triggered MMP9 induction is restored by exogenous wild-type WOX1, but not by a WOX1 mutant defective in LMP2A binding. These results indicate that, through interaction with LMP2A, WOX1 is involved in MMP9 induction, suggesting a novel role of WOX1 in Epstein-Barr virus-associated cancer progression. PMID:23770367

  20. Paeoniflorin inhibits proliferation and induces apoptosis of human glioma cells via microRNA-16 upregulation and matrix metalloproteinase-9 downregulation.

    PubMed

    Li, Weihua; Qi, Zhonghua; Wei, Zhenqing; Liu, Siwei; Wang, Pin; Chen, Yanwei; Zhao, Yongshun

    2015-08-01

    Paeoniflorin is one of the active ingredients of the commonly used herbal medicine derived from Paeonia, which exhibits anticancer properties. MicroRNA-16 (miR-16) is upregulated in CD133(-) cells, but downregulated in CD133(+) cells from glioma tissue. Matrix metalloproteinase-9 (MMP-9) expression in glioma tissue samples is significantly higher than that in healthy brain tissue samples. Therefore, miR-16 and MMP-9 expression may be associated with glioma pathogenesis. In the present study, the effects of paeoniflorin on glioma were analyzed. U87 cells were treated with paeoniflorin at 0, 5, 10 and 20 μΜ concentrations. The results suggested that paeoniflorin inhibited U87 cell proliferation and accelerated cell apoptosis. In the present study paeoniflorin treatment increased miR-16 expression and reduced MMP-9 protein expression in U87 cells. Additionally, the results of the present study suggested that miR-16 may regulate MMP-9 expression in miR-16-transfected U87 cells. Furthermore, anti-miR-16 antibodies were used in order to investigate the apoptotic effects of paeoniflorin on U87 cells. The results demonstrated that paeoniflorin inhibits proliferation and induces apoptosis of human glial cells, via miR-16 upregulation and MMP-9 downregulation. PMID:25954855

  1. Testis peritubular myoid cells increase their motility and express matrix-metalloproteinase 9 (MMP-9) after interaction with embryonal carcinoma cells.

    PubMed

    Moreno-Ruiz, P; Arluzea, J; Silván, U; Díez-Torre, A; Andrade, R; Bonilla, Z; Díaz-Núñez, M; Silió, M; Aréchaga, J

    2016-01-01

    Today cancer research studies have highlighted the role of the cancer-stroma interaction in the regulation of invasive processes. However, very little is known about cell-to-cell relationships between germinal cancer cells and the somatic ones belong to their close environment, particularly at early invasion stages. Here, we have studied the potential role of the seminiferous peritubular myoid cells (PTCs), as potential part of the reactive stroma, like tumor myofibroblast, in the progression of embryonal carcinoma (EC). To this end, we show results on the in vitro interactions between F9 murine embryonal carcinoma cells (EC cells) and primary cultures of murine PTCs, using contact-dependent and contact-independent 2D co-cultures. In these circumstances, when EC cells interact with PTCs they change their migratory behavior and matrix-metalloproteinase 9 (MMP-9) was up-regulated in PTCs. Additionally, among a variety of cytokines implicated in tumor-stroma cross-talk, we have examined in more detail the influence of tumor necrosis factor alpha (TNF-α). In this regard, it was observed that this cytokine induced a MMP-9 secretion by PTCs in a pattern dependent on its concentration, whereas does not increase the migration capacity of cancer cells. All together, our results provide evidence for a role played by peritubular myoid cells and cancer-cell secreted TNF- α for a change in the tumor microenvironment during the early stages of EC progression. PMID:26711538

  2. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity.

    PubMed

    Yeh, Chao-Bin; Hsieh, Ming-Ju; Hsieh, Yih-Shou; Chien, Ming-Hsien; Lin, Pen-Yuan; Chiou, Hui-Ling; Yang, Shun-Fa

    2012-01-01

    High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE) exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9). Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR) and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB) and activating protein-1 (AP-1) on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1. PMID:23258989

  3. Significance of Matrix Metalloproteinase 9 Expression as Supporting Marker to Cytokeratin 19 mRNA in Sentinel Lymph Nodes in Breast Cancer Patients

    PubMed Central

    Murawski, Marek; Woźniak, Marta; Duś-Szachniewicz, Kamila; Kołodziej, Paweł; Rzeszutko, Marta; Ziółkowski, Piotr

    2016-01-01

    One-step nucleic acid amplification (OSNA) detects and quantifies, with the use of a polymerase chain reaction, the presence of cytokeratin 19 mRNA in sentinel lymph nodes. The main advantage of the OSNA assay is the avoidance of second surgery in case of positive sentinel lymph node diagnosis. The objective of this study was to evaluate the significance of matrix metalloproteinase 9 expression by immunohistochemistry as supporting marker to cytokeratin 19 mRNA in sentinel lymph nodes in breast cancer patients and to relate this expression with clinicopathological data. This study was conducted on fresh sentinel lymph nodes obtained from 40 patients with tumors classified as carcinoma of no special type. The presence of metastatic cells in the slices of lymph nodes was evaluated by immunohistochemistry using antibodies for CK19 and MMP-9. Expression of CK19 and MMP-9 in lymph nodes was also confirmed by means of Western blot analysis. Results indicated that the strongest correlation with CK19 mRNA was displayed by MMP-9, CK19 (by immunohistochemistry, IHC), and nodal metastases (p < 0.001). Higher histological grading also positively correlated with CK19 mRNA, however that correlation was less significant. Since MMP-9 shows very strong correlation with CK19 mRNA in breast carcinoma of no special type metastases, expression of MMP-9 in sentinel lymph nodes should be considered as useful method whenever OSNA analysis is not available. PMID:27110764

  4. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia. PMID:24141084

  5. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells.

    PubMed

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José; Delpino, María Victoria

    2016-02-01

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway. PMID:26667834

  6. Effect of daptomycin on local interleukin-6, matrix metalloproteinase-9, and metallopeptidase inhibitor 1 in patients with MRSA-infected diabetic foot.

    PubMed

    Ambrosch, Andreas; Halevy, Daniel; Fwity, Boushra; Brin, Thomas; Lobmann, Ralf

    2014-03-01

    Infection is a major cause of the diabetic foot syndrome that is promoted by the increased burden of multiresistant germs like methicillin-resistant Staphylococcus aureus (MRSA). Maximizing positive outcome for serious MRSA infections requires an aggressive treatment approach and careful monitoring of the healing process. Therefore, we examined 8 patients with MRSA-infected diabetic foot syndrome of Wagner classification grade 2 or 3 (corresponding to the Texas classification stage 2 or 3) during antibiotic treatment with daptomycin. We documented the wound size and obtained samples of wound secretion for analyses of proinflammatory interleukin-6 (IL-6), protease (matrix metalloproteinase-9 [MMP-9]), and antiprotease (metallopeptidase inhibitor 1 [TIMP-1]) activity. During the course of anti-MRSA therapy, we observed a decrease in the concentration of local IL-6 within the first 3 days followed by a decrease of MMP-9 and an increase of TIMP-1. Finally, a reduction of wound size was documented. The present data show that efficient antimicrobial treatment with daptomycin has a number of beneficial effects on wound healing at the molecular level in MRSA-infected diabetic foot ulcers. PMID:24659622

  7. Effect of daptomycin on local interleukin-6, matrix metalloproteinase-9, and metallopeptidase inhibitor 1 in patients with MRSA-infected diabetic foot.

    PubMed

    Ambrosch, Andreas; Halevy, Daniel; Fwity, Boushra; Brin, Thomas; Lobmann, Ralf

    2013-06-01

    Infection is a major cause of the diabetic foot syndrome being aggravating by the increased burden of multiresistant germs like methicillin-resistant Staphylococcus aureus (MRSA). Maximizing positive outcome for serious MRSA infections requires an aggressive treatment approach and a careful monitoring of the healing process. Therefore, we examined 8 patients with MRSA-infected diabetic foot syndrome Wagner classification grades 2 or 3 (corresponding to the Texas classification stage 2 and 3) during antibiotic treatment with daptomycin. We documented the wound size and obtained samples of wound secretion for analyses of pro-inflammatory interleukin-6 (IL-6), protease (matrix metalloproteinase-9 [MMP-9]), and antiprotease activity (metallopeptidase inhibitor 1 [TIMP-1]). During the course of anti-MRSA therapy, a decrease in the concentration of local IL-6 within the first 3 days followed by a drop of MMP-9 and an increase of TIMP-1 was observed. Finally, a reduction of wound size could be documented. The present data show that efficient antimicrobial treatment with daptomycin leads to a number of beneficial processes at the molecular level of wound healing in MRSA-infected diabetic foot ulcers. PMID:23771610

  8. Impact of 4-hydroxynonenal on matrix metalloproteinase-9 regulation in lipopolysaccharide-stimulated RAW 264.7 cells.

    PubMed

    Schrimpe-Rutledge, Alexandra C; Fong, Kim Y; Wright, David W

    2015-03-01

    Tissue degradation and leukocyte extravasation suggest proteolytic destruction of the extracellular matrix (ECM) during severe malaria. Matrix metalloproteinases (MMPs) play an established role in ECM turnover, and increased MMP-9 protein abundance is correlated with malarial infection. The malaria pigment hemozoin (Hz) is a heme detoxification biomineral that is produced during infection and associated with biologically active lipid peroxidation products such as 4-hydroxynonenal (HNE) adsorbed to its surface. Hz has innate immunomodulatory activity, and many of its effects can be reproduced by exogenously added HNE. Hz phagocytosis enhances MMP-9 expression in monocytes; thus, this study was designed to examine the ability of HNE to alter MMP-9 regulation in activated cells of macrophage lineage. Data show that treatment of lipopolysaccharide-stimulated RAW 264.7 cells with HNE increased MMP-9 secretion and activity. HNE treatment abolished the cognate tissue inhibitor of metalloproteinase-1 protein levels, further decreasing MMP-9 regulation. Phosphorylation of both p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase was induced by HNE, but only p38 MAPK inhibition lessened MMP-9 secretion. These results demonstrate the in vitro ability of HNE to cause MMP-9 dysregulation in an activated cell model. The findings may extend to myriad pathologies associated with lipid peroxidation and elevated MMP-9 levels leading to tissue damage. PMID:25663587

  9. Orally administered betaine reduces photodamage caused by UVB irradiation through the regulation of matrix metalloproteinase-9 activity in hairless mice.

    PubMed

    Im, A-Rang; Lee, Hee Jeong; Youn, Ui Joung; Hyun, Jin Won; Chae, Sungwook

    2016-01-01

    Betaine is widely distributed in plants, microorganisms, in several types of food and in medical herbs, including Lycium chinense. The administration of 100 mg betaine/kg body weight/day is an effective strategy for preventing ultraviolet irradiation‑induced skin damage. The present study aimed to determine the preventive effects of betaine on ultraviolet B (UVB) irradiation‑induced skin damage in hairless mice. The mice were divided into three groups: Control (n=5), UVB‑treated vehicle (n=5) and UVB‑treated betaine (n=5) groups. The level of irradiation was progressively increased between 60 mJ/cm2 per exposure at week 1 (one minimal erythematous dose = 60 mJ/cm2) and 90 mJ/cm2 per exposure at week 7. The formation of wrinkles significantly increased following UVB exposure in the UVB‑treated vehicle group. However, treatment with betaine suppressed UVB‑induced wrinkle formation, as determined by the mean length, mean depth, number, epidermal thickness and collagen damage. Furthermore, oral administration of betaine also inhibited the UVB‑induced expression of mitogen‑activated protein kinase kinase (MEK), extracellular signal‑regulated kinase (ERK), and matrix metalloproteinase‑9 (MMP‑9). These findings suggested that betaine inhibits UVB‑induced skin damage by suppressing increased expression of MMP‑9 through the inhibition of MEK and ERK. PMID:26648401

  10. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells

    PubMed Central

    Cohen, Keren; Flint, Nir; Shalev, Shachar; Erez, Daniel; Baharal, Tal; Davis, Paul J.; Hercbergs, Aleck; Ellis, Martin; Ashur-Fabian, Osnat

    2014-01-01

    Thyroid hormone (3,5,3′-triiodothyronine, T3; L-thyroxine, T4) enhances cancer cell proliferation, invasion and angiogenesis via a discrete receptor located near the RGD recognition site on αvβ3 integrin. Tetraiodothyroacetic acid (tetrac) and its nanoparticulate formulation interfere with binding of T3/T4 to the integrin. This integrin is overexpressed in multiple myeloma (MM) and other cancers. MM cells interact with αvβ3 integrin to support growth and invasion. Matrix metalloproteinases (MMPs) are a family of enzymes active in tissue remodeling and cancer. The association between integrins and MMPs secretion and action is well established. In the current study, we examined the effects of thyroid hormone on myeloma cell adhesion, migration and MMP activity. We show that T3 and T4 increased myeloma adhesion to fibronectin and induced αvβ3 clustering. In addition, the hormones induced MMP-9 expression and activation via αvβ3 and MAPK induction. Bortezomib, a standard myeloma treatment, caused a decrease in activity/quantity of MMPs and thyroid hormone opposed this effect. RGD peptide and tetrac impaired the production of MMP-9 in cell lines and in primary BM cells from myeloma patients. In conclusion, thyroid hormone-dependent regulation via αvβ3 of myeloma cell adhesion and MMP-9 production may play a role in myeloma migration and progression. PMID:25071016

  11. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation

    PubMed Central

    Yeh, Chia-Ming; Lin, Chiao-Wen; Yang, Jia-Sin; Yang, Wei-En; Su, Shih-Chi; Yang, Shun-Fa

    2016-01-01

    Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation. PMID:26980735

  12. c-Met identifies a population of matrix metalloproteinase 9-producing monocytes in peritumoural stroma of hepatocellular carcinoma.

    PubMed

    Zhao, Lan; Wu, Yan; Xie, Xu-Dong; Chu, Yi-Fan; Li, Jin-Qing; Zheng, Limin

    2015-11-01

    Macrophages (Mϕ) are prominent components of solid tumours and exhibit distinct phenotypes in different microenvironments. Previously, we found that tumours could alter the normal developmental process of Mϕ to trigger transient activation of monocytes in the peritumoural stroma of human hepatocellular carcinoma (HCC). In the present study, we showed that a fraction of monocytes in the peritumoural stroma, but not in HCC cancer nests, expressed surface c-Met molecules. Monocytes exposed to tumours strongly expressed c-Met proteins with kinetics similar to their activation status, and significant correlations were found between c-Met levels and HLA-DR expression on tumour-infiltrating monocytes. NF-κB-mediated autocrine TNF-α stimulated the expression of c-Met on activated monocytes, and by interacting with its ligand hepatocyte growth factor (HGF), c-Met increased the motility and matrix metalloproteinase (MMP) 9-producing capacity of tumour-associated monocytes. The intensity of c-Met expression on tumour-infiltrating monocytes was associated with high mortality and reduced survival of patients with HCC. Therefore, the expression of c-Met on activated monocytes/Mϕ may represent a novel mechanism by which a tumour actively and precisely regulates the distribution and functions of these cells to facilitate disease progression. PMID:26108200

  13. Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells.

    PubMed

    Cohen, Keren; Flint, Nir; Shalev, Shachar; Erez, Daniel; Baharal, Tal; Davis, Paul J; Hercbergs, Aleck; Ellis, Martin; Ashur-Fabian, Osnat

    2014-08-15

    Thyroid hormone (3,5,3'-triiodothyronine, T3; L-thyroxine, T4) enhances cancer cell proliferation, invasion and angiogenesis via a discrete receptor located near the RGD recognition site on αvβ3 integrin. Tetraiodothyroacetic acid (tetrac) and its nanoparticulate formulation interfere with binding of T3/T4 to the integrin. This integrin is overexpressed in multiple myeloma (MM) and other cancers. MM cells interact with αvβ3 integrin to support growth and invasion. Matrix metalloproteinases (MMPs) are a family of enzymes active in tissue remodeling and cancer. The association between integrins and MMPs secretion and action is well established. In the current study, we examined the effects of thyroid hormone on myeloma cell adhesion, migration and MMP activity. We show that T3 and T4 increased myeloma adhesion to fibronectin and induced αvβ3 clustering. In addition, the hormones induced MMP-9 expression and activation via αvβ3 and MAPK induction. Bortezomib, a standard myeloma treatment, caused a decrease in activity/quantity of MMPs and thyroid hormone opposed this effect. RGD peptide and tetrac impaired the production of MMP-9 in cell lines and in primary BM cells from myeloma patients. In conclusion, thyroid hormone-dependent regulation via αvβ3 of myeloma cell adhesion and MMP-9 production may play a role in myeloma migration and progression. PMID:25071016

  14. Eicosapentaenoic acid inhibits TNF-{alpha}-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    SciTech Connect

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul Chung, Jin Ho

    2008-04-04

    Eicosapentaenoic acid (EPA) is an omega-3 ({omega}-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-{kappa}B activation induced by tumor necrosis factor (TNF)-{alpha} or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-{alpha}-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-{alpha} induced MMP-9 expression by NF-{kappa}B-dependent pathway. Pretreatment of EPA inhibited TNF-{alpha}-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect I{kappa}B-{alpha} phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-{kappa}B. EPA inhibited TNF-{alpha}-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKK{alpha}-dependent event. Taken together, we demonstrate that EPA inhibits TNF-{alpha}-induced MMP-9 expression through inhibition of p38 and Akt activation.

  15. Deficiency of the protein-tyrosine phosphatase DEP-1/PTPRJ promotes matrix metalloproteinase-9 expression in meningioma cells.

    PubMed

    Petermann, Astrid; Stampnik, Yvonn; Cui, Yan; Morrison, Helen; Pachow, Doreen; Kliese, Nadine; Mawrin, Christian; Böhmer, Frank-D

    2015-05-01

    Brain-invasive growth of a subset of meningiomas is associated with less favorable prognosis. The molecular mechanisms causing invasiveness are only partially understood, however, the expression of matrix metalloproteinases (MMPs) has been identified as a contributing factor. We have previously found that loss of density enhanced phosphatase-1 (DEP-1, also designated PTPRJ), a transmembrane protein-tyrosine phosphatase, promotes meningioma cell motility and invasive growth in an orthotopic xenotransplantation model. We have now analyzed potential alterations of the expression of genes involved in motility control, caused by DEP-1 loss in meningioma cell lines. DEP-1 depleted cells exhibited increased expression of mRNA encoding MMP-9, and the growth factors EGF and FGF-2. The increase of MMP-9 expression in DEP-1 depleted cells was also readily detectable at the protein level by zymography. MMP-9 upregulation was sensitive to chemical inhibitors of growth factor signal transduction. Conversely, MMP-9 mRNA levels could be stimulated with growth factors (e.g. EGF) and inflammatory cytokines (e.g. TNFα). Increase of MMP-9 expression by DEP-1 depletion, or growth factor/cytokine stimulation qualitatively correlated with increased invasiveness in vitro scored as transmigration through matrigel-coated membranes. The studies suggest induction of MMP-9 expression promoted by DEP-1 deficiency, or potentially by growth factors and inflammatory cytokines, as a mechanism contributing to meningioma brain invasiveness. PMID:25672645

  16. Regulation of high glucose-mediated mucin expression by matrix metalloproteinase-9 in human airway epithelial cells.

    PubMed

    Yu, Hongmei; Yang, Juan; Xiao, Qian; Lü, Yang; Zhou, Xiangdong; Xia, Li; Nie, Daijing

    2015-04-10

    Mucus hypersecretion is the key manifestation in patients with chronic inflammatory airway diseases and mucin 5AC (MUC5AC) is a major component of airway mucus. Matrix metalloproteinases (MMP)-9, have been found to be involved in the pathogenesis of inflammatory airway diseases. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that high glucose (HG)-regulates MMP-9 production and MMP-9 activity through nicotinamide adenine dinucleotide phosphate (NADPH)/reactive oxygen species (ROS) cascades pathways, leading to mucin production in human airway epithelial cells (16HBE). We show that HG increases MMP-9 production, MMP-9 activity and MUC5AC expression. These effects are prevented by small interfering RNA (siRNA) for MMP-9, indicating that HG-induced mucin production is MMP-9-dependent. HG activates MMP-9 production, MMP-9 activity and MUC5AC overproduction, which is inhibited by nPG, DMSO and DPI (inhibitors of ROS and NADPH), suggesting that HG-activated mucin synthesis is mediated by NADPH/ROS in 16HBE cells. These observations demonstrate an important role for MMP-9 activated by NADPH/ROS signaling pathways in regulating HG-induced MUC5AC expression. These findings may bring new insights into the molecular pathogenesis of the infections related to diabetes mellitus and lead to novel therapeutic intervention for mucin overproduction in chronic inflammatory airway diseases. PMID:25704757

  17. Toll-like Receptor-4 Polymorphisms and Serum Matrix Metalloproteinase-9 in Newly Diagnosed Patients With Calcified Neurocysticercosis and Seizures

    PubMed Central

    Lachuriya, Gaurav; Garg, Ravindra Kumar; Jain, Amita; Malhotra, Hardeep Singh; Singh, Arvind Kumar; Jain, Bhawna; Kumar, Neeraj; Verma, Rajesh; Sharma, Praveen Kumar

    2016-01-01

    Abstract We evaluated seizure profile, Toll-like receptor (TLR)-4 polymorphisms, and serum matrix metalloproteinases (MMPs) in patients with calcified neurocysticercosis. One-hundred nine patients with calcified neurocysticercosis with newly diagnosed seizures and 109 control subjects were enrolled. TLR-4 Asp299Gly and Thr399Ile polymorphisms and serum MMP-9 levels were evaluated. The patients were followed for 1 year. Asp/Gly (P = 0.012) and Thr/Ile (P = 0.002), Gly (Asp/Gly plus Gly/Gly) (P = 0.008) and Ile (Thr/Ile plus Ile/Ile) (P = 0.003) genotypes were significantly associated with calcified neurocysticercosis compared with controls. Gly/Gly and Ile/Ile genotypes were not significantly associated (P = 0.529 for Gly/Gly, P = 0.798 for Ile/Ile) with either group. The levels of MMP-9 were higher in calcified neurocysticercosis (P =  < 0.001). The levels of MMP-9 were higher in patients with multiple calcified neurocysticercosis compared with single calcified neurocysticercosis (P =  < 0.001). Headache (P = 0.031), status epilepticus (P = 0.029), Todd paralysis (P = 0.039), lesion size >10 mm (P = 0.001), and perilesional edema (P =  < 0.001) were significantly associated with seizure recurrence. Heterozygous form Asp/Gly (P =  < 0.001) and heterozygous form Thr/Ile (P =  < 0.001) were significantly associated with seizure recurrence. The Gly (Asp/Gly plus Gly/Gly) (P =  < 0.001) and Ile (Thr/Ile plus Ile/Ile) (P =  < 0.001) genotypes were also significantly associated with seizure recurrence. Higher serum MMP-9 levels were significantly associated with seizure recurrence (P =  < 0.001). The TLR-4 gene abnormalities may trigger inflammation around calcified neurocysticercosis leading to an increase in perilesional edema and provocation of seizures. PMID:27124018

  18. Matrix metalloproteinase-9 Gene-1562C>T Gene Polymorphism and Coronary Artery Disease in the Chinese Han Population: A Meta-Analysis of 5468 Subjects

    PubMed Central

    Li, Yan-Yan; Yang, Xin-Xing; Zhou, Yan-Hong; Gong, Ge; Geng, Hong-Yu; Kim, Hyun J.; Zhou, Chuan-Wei; Qian, Yun; Wang, Xiang-Ming; Wu, Jun

    2016-01-01

    Background: Multiple studies indicate that the matrix metalloproteinase-9 (MMP-9)-1562C>T gene polymorphism may be associated with an increased risk of coronary artery disease (CAD) in the Chinese Han population. However, a clear consensus has yet to be established. Objective and methods: A meta-analysis of 5468 subjects from 10 separate studies was performed to explore the possible relationship between the MMP-9-1562C>T gene polymorphism and CAD within the Chinese Han population. Pooled odds ratio (ORs) for the association and the corresponding 95% confidence intervals (CIs) were evaluated by a random or fixed-effect model. Results: Our analysis confirms the association between the MMP-9-1562C>T gene polymorphism and an increased risk of CAD within the Chinese Han population under allelic (OR: 1.60, 95% CI: 1.25–2.04, P = 0.0002), recessive (OR: 3.05, 95% CI: 1.67–5.56, P = 0.0003), dominant (OR: 2.23, 95% CI: 1.49–3.35, P = 0.0001), homozygous (OR: 3.41, 95% CI: 1.87–6.23, P < 0.0001), heterozygous (OR: 2.03, 95% CI: 1.40–2.93, P = 0.0002), and additive genetic models (OR: 1.78, 95% CI: 1.33–2.39, P < 0.0001). Conclusions: In the Chinese Han population, the MMP-9-1562C>T gene polymorphism is correlated with an increased risk of CAD. Therefore, Han Chinese carriers of the -1562T allele may be at an increased risk of CAD. PMID:27375491

  19. A radical scavenger edaravone inhibits matrix metalloproteinase-9 upregulation and blood-brain barrier breakdown in a mouse model of prolonged cerebral hypoperfusion

    PubMed Central

    Maki, Takakuni; Liang, Anna C.; Arai, Ken

    2014-01-01

    Matrix metalloproteinase-9 (MMP-9) plays key roles in the brain pathophysiology, especially in blood-brain barrier (BBB) breakdown. Therefore, inhibiting MMP-9 activity may be a promising therapy for protecting brains in cerebrovascular diseases. Here we show that in a mouse prolonged cerebral hypoperfusion model, a clinically proven radical scavenger edaravone suppressed MMP-9 and reduced BBB damage in cerebral white matter. Prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in male adult C57BL/6J mice (10 weeks old). After 7 days of cerebral hypoperfusion, white matter region (e.g. corpus callosum) exhibited significant BBB leakage, assessed by IgG staining. Correspondingly, immunostaining and western blotting showed that MMP-9 was upregulated in the white matter. Edaravone treatment (3 mg/kg, i.p. at day 0 and 3) inhibited both BBB leakage and MMP-9 increase. Under the early phase of cerebral hypoperfusion conditions, oligodendrocyte precursor cells (OPCs) mainly contribute to the MMP-9 increase, but our immunostaining data showed that very little OPCs expressed MMP-9 in the edaravone-treated animals at day 7. Therefore, in vitro studies with primary rat OPCs were conducted to examine whether edaravone would directly suppressed MMP-9 expressions in OPCs. OPC cultures were exposed to sub-lethal CoCl2 for 7 days to induce prolonged chemical hypoxic stress. Prolonged chemical hypoxic stress increased MMP-9 expression in OPCs, and radical scavenging with edaravone (10 μM for 7 days) ameliorated the increase. Taken together, our proof-of-concept study demonstrates that radical scavengers may provide a potential therapeutic approach for white matter injury by suppressing BBB damage. PMID:24820542

  20. Sequential measurements of serum matrix metalloproteinase 9 to monitor chemotherapy responses in patients with advanced non-small-cell lung cancer

    PubMed Central

    Qiao, Xiaojuan; Zhai, Xiaoran; Wang, Jinghui; Zhao, Xiaoting; Yang, Xinjie; Lv, Jialin; Ma, Li; Zhang, Lina; Wang, Yue; Zhang, Shucai; Yue, Wentao

    2016-01-01

    Background Matrix metalloproteinase 9 (MMP-9) plays an important role in tumor invasion and metastasis, including lung cancer. However, whether variations in serum MMP-9 levels can serve as a biomarker for monitoring chemotherapy curative effect remains unclear. This study was designed to investigate the association between variations in serum MMP-9 levels and chemotherapy curative effect in patients with lung cancer. Patients and methods A total of 82 patients with advanced lung cancer were included. All newly diagnosed patients were treated with platinum-based doublet chemotherapy. Serial measurements of serum MMP-9 levels were performed by enzyme-linked immunosorbent assay. In this manner, we chose four time points to examine the association, including before chemotherapy, and 3 weeks after the beginning of the first, second, and fourth cycles of chemotherapy. Results Compared with the serum level of MMP-9 before progressive disease, patients with progressive disease had elevated serum levels of MMP-9. Compared with the previous time point of collecting specimens, the serum levels of MMP-9 in the patients with a complete response/partial response/stable disease decreased or were maintained stable. The differences of variation in serum MMP-9 levels in patients with different chemotherapy curative effects were all statistically significant after one cycle, two cycles, and four cycles (after one cycle: P<0.001; after two cycles: P<0.001; after four cycles: P=0.01). However, patients with small-cell lung cancer did not exhibit similar test results. Conclusion The variation in serum MMP-9 levels in patients with non-small-cell lung cancer during chemotherapy was closely related to chemotherapy curative effect and could be useful to monitor chemotherapy curative effect for a small portion of patients. PMID:27330309

  1. Aliskiren attenuates bleomycin-induced pulmonary fibrosis in rats: focus on oxidative stress, advanced glycation end products, and matrix metalloproteinase-9.

    PubMed

    Abuelezz, Sally A; Hendawy, Nevien; Osman, Wesam M

    2016-08-01

    Pulmonary fibrosis is a progressive lung disorder with high mortality rate and limited successful treatment. This study was designed to assess the potential anti-oxidant and anti-fibrotic effects of aliskiren (Alsk) during bleomycin (BLM)-induced pulmonary fibrosis. Male Wistar rats were used as control untreated or treated with the following: a single dose of 2.5 mg/kg of BLM endotracheally and BLM and Alsk (either low dose 30 mg/kg/day or high dose 60 mg/kg/day), and another group was given Alsk 60 mg/kg/day alone. Alsk was given by gavage. Alsk anti-oxidant and anti-fibrotic effects were assessed. BLM significantly increased relative lung weight and the levels of lactate dehydrogenase and total and differential leucocytic count in bronchoalveolar lavage that was significantly ameliorated by high-dose Alsk treatment. As markers of oxidative stress, BLM caused a significant increase in the levels of lipid peroxides and nitric oxide accompanied with a significant decrease of superoxide dismutase and glutathione transferase enzymes. High-dose Alsk treatment restored these markers toward normal values. Alsk counteracted the overexpression of advanced glycation end products, matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 in lung tissue induced by BLM. Fibrosis assessed by measuring hydroxyproline content, which markedly increased in the BLM group, was also significantly reduced by Alsk. These were confirmed by histopathological and immunohistochemical examination which revealed that Alsk attenuates signs of pulmonary fibrosis and decreased the overexpressed MMP-9 and transforming growth factor β1. Collectively, these findings indicate that Alsk has a potential anti-fibrotic effect beside its anti-oxidant activity. PMID:27154762

  2. Glabridin inhibits migration and invasion by transcriptional inhibition of matrix metalloproteinase 9 through modulation of NF-κB and AP-1 activity in human liver cancer cells

    PubMed Central

    Hsieh, Ming-Ju; Lin, Chiao-Wen; Yang, Shun-Fa; Chen, Mu-Kuan; Chiou, Hui-Ling

    2014-01-01

    BACKGROUND AND PURPOSE High mortality and morbidity rates for hepatocellular carcinoma in Taiwan primarily result from uncontrolled tumour metastasis. Glabridin, a prenylated isoflavonoid of licorice (Glycyrrhiza glabra) roots, is associated with a wide range of biological properties, such as regulation of energy metabolism, oestrogenic, neuroprotective, anti-osteoporotic and skin whitening. However, the effect of glabridin on the metastasis of tumour cells has not been clarified. EXPERIMENTAL APPROACH A wound healing model and Boyden chamber assays in vitro were used to determine the effects of glabridin on the migration and invasion of human hepatocellular carcinoma (HHC) cells. Western blot analysis, gelatin zymography, real-time PCR and promoter assays were used to evaluate the inhibitory effects of glabridin on matrix metalloproteinase 9 (MMP9) expression in these cells. KEY RESULTS Glabridin significantly inhibited migration/invasion capacities of HCC cells, Huh7 and Sk-Hep-1, cell lines that have low cytotoxicity in vitro, even at high concentrations. Western blot analysis and gelatin zymography showed that glabridin inhibited the expression, activities and protein levels of MMP9 and the phosphorylation of ERK1/2 and JNK1/2. These inhibitory effects were associated with an up-regulation of tissue inhibitor of metalloproteinase-1 and a down-regulation of the transcription factors NF-κB and activator protein 1 signalling pathways. Finally, the administration of glabridin effectively suppressed the tumour formation in the hepatoma xenograft model in vivo. CONCLUSION AND IMPLICATIONS Glabridin inhibited the invasion of human HCC cells and may have potential as a chemopreventive agent against liver cancer metastasis. PMID:24641665

  3. Plasma Brain Natriuretic Peptide, Endothelin-1, and Matrix Metalloproteinase 9 Expression and Significance in Type 2 Diabetes Mellitus Patients with Ischemic Heart Disease

    PubMed Central

    Ju, Chunfang; Ye, Meixin; Li, Feng

    2015-01-01

    Background Type 2 diabetes (DMT2) combined with ischemic heart disease (IHD) promotes the occurrence and development of coronary atherosclerosis. We aimed to provide a theoretical basis for improving patient prognosis through analyzing expression of plasma brain natriuretic peptide (BNP), endothelin-1 (ET 1), and matrix metalloproteinase 9 (MMP-9). Material/Methods Enzyme-linked immunosorbent assay (ELISA) was used to detect BNP, ET-1, and MMP-9 levels in 50 patients with DMT2 only (group A), 47 patients with IHD only (group B), 43 patients with comorbid (both) IHD and DMT2 (group C), and 50 health controls (group D). Group C was further divided into single-branch lesion group, double-branch lesions group, and triple-branch lesion group according to coronary angiography, or cardiac function grade II, III, and IV group according to cardiac function, and their BNP, ET-1, and MMP-9 levels were compared. Results Compared with group D, TG, diastolic, and systolic blood pressure were all significantly elevated in groups A, B, and C. Group C exhibited obviously higher glycosylated hemoglobin than group A. Gensini score in group C was markedly higher than in group B. Compared with group D, BNP, ET-1, and MMP-9 levels were all increased in groups A, B, and C. Group C showed higher levels of BNP, ET-1, and MMP-9 than group A and B. BNP, ET-1, and MMP-9 levels in the triple-branch lesions group were higher than in the single-branch lesions group and double-branch lesions group. The cardiac function grade IV group presented higher levels of BNP, ET-1, and MMP-9 than did the grade II and III groups. BNP, ET-1, and MMP-9 showed a positive correlation to each other. Conclusions BNP, ET-1, and MMP-9 may participate in the occurrence and development of comorbid DMT2 and IHD. They are important objective indicators for evaluating severity and prognosis of patients with comorbid DMA2 and IHD. PMID:26190179

  4. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.

    PubMed

    Chen, Ying-Jung; Lin, Ku-Nan; Jhang, Li-Mei; Huang, Chia-Hui; Lee, Yuan-Chin; Chang, Long-Sen

    2016-05-25

    Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells. PMID:27087131

  5. Hypothermic Machine Perfusion Reduced Inflammatory Reaction by Downregulating the Expression of Matrix Metalloproteinase 9 in a Reperfusion Model of Donation After Cardiac Death.

    PubMed

    Fu, Zhen; Ye, Qifa; Zhang, Yang; Zhong, Zibiao; Xiong, Yan; Wang, Yanfeng; Hu, Long; Wang, Wei; Huang, Wei; Ko, Dicken Shiu-Chung

    2016-06-01

    The exact mechanism by which hypothermic machine perfusion (HMP) improves the graft quality in kidney transplantation of donation after cardiac death (DCD) remains unclear. The aim of this study was to investigate the correlation between the expression of matrix metalloproteinase 9 (MMP-9) and inflammatory reaction in kidney ischemia-reperfusion (I/R) injury injury followed by cold storage (CS) or HMP model of DCD. New Zealand white rabbit kidneys were subjected to 35 min of warm ischemia and 1 h reperfusion, then preserved by either 1 h reperfusion (sham-operated group), 4 h CS or 4 h HMP in vivo. Kidneys were reperfused 24 h followed by further analysis. No treatment was given to rabbits in the normal control group. The expression of MMP-9, nuclear factor-κB (NF-κB), and MMP-2 mRNA were detected by real-time PCR (RT-PCR). MMP-9 was located by immunohistochemistry and immunofluorescence methods. Tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), myeloperoxidase (MPO), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured by kits for each groups. Compared with the CS group, the expression of MMP-9 and NF-κB mRNA were downregulated in HMP group (P < 0.05). In contrast, expression of MMP-2 mRNA had no statistical significance between CS group and HMP group (P > 0.05). In normal control and sham-operated groups, a low level of MMP-9 expression was detected in glomeruli. However, positive signals of MMP-9 were mostly located in the tubulointerstitium and the vascular wall of CS and HMP groups. Expression of TNF-α, IL-6, MDA, and activity of MPO decreased while activity of SOD in the HMP group increased in contrast to the CS group (P < 0.05). In conclusion, inflammatory cytokines mediated MMP-9 expression through NF-κB band to MMP-9 promoter region, resulting in renal injury. Therefore, HMP reduced inflammatory reaction by downregulating the expression of MMP-9, which may be the mechanism of kidney protection in I

  6. Involvement of nitric oxide synthase in matrix metalloproteinase-9- and/or urokinase plasminogen activator receptor-mediated glioma cell migration

    PubMed Central

    2013-01-01

    Background Src tyrosine kinase activates inducible nitric oxide synthase (iNOS) and, in turn, nitric oxide production as a means to transduce cell migration. Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Our recent studies have clearly demonstrated the role of α9β1 integrin in matrix metalloproteinase-9 (MMP-9) and/or urokinase plasminogen activator receptor (uPAR)-mediated glioma cell migration. In the present study, we evaluated the involvement of α9β1 integrin-iNOS pathway in MMP-9- and/or uPAR-mediated glioma cell migration. Methods MMP-9 and uPAR shRNAs and overexpressing plasmids were used to downregulate and upregulate these molecules, respectively in U251 glioma cells and 5310 glioma xenograft cells. The effect of treatments on migration and invasion potential of these glioma cells were assessed by spheroid migration, wound healing, and Matrigel invasion assays. In order to attain the other objectives we also performed immunocytochemical, immunohistochemical, RT-PCR, Western blot and fluorescence-activated cell sorting (FACS) analysis. Results Immunohistochemical analysis revealed the prominent association of iNOS with glioblastoma multiforme (GBM). Immunofluorescence analysis showed prominent expression of iNOS in glioma cells. MMP-9 and/or uPAR knockdown by respective shRNAs reduced iNOS expression in these glioma cells. RT-PCR analysis revealed elevated iNOS mRNA expression in either MMP-9 or uPAR overexpressed glioma cells. The migration potential of MMP-9- and/or uPAR-overexpressed U251 glioma cells was significantly inhibited after treatment with L-NAME, an inhibitor of iNOS. Similarly, a significant inhibition of the invasion potential of the control or MMP-9/uPAR-overexpressed glioma cells was noticed after L-NAME treatment. A prominent reduction of iNOS expression was observed in the tumor regions of nude mice brains, which were injected with 5310 glioma cells, after MMP-9 and/or uPAR knockdown. Protein expressions

  7. Immunohistochemical expression of matrix metalloproteinase-1, matrix metalloproteinase-2 and matrix metalloproteinase-9, myofibroblasts and Ki-67 in actinic cheilitis and lip squamous cell carcinoma.

    PubMed

    Bianco, Bianca C; Scotti, Fernanda M; Vieira, Daniella S C; Biz, Michelle T; Castro, Renata G; Modolo, Filipe

    2015-10-01

    Matrix metalloproteinases (MMPs), myofibroblasts (MFs) and epithelial proliferation have key roles in neoplastic progression. In this study immunoexpression of MMP-1, MMP-2 and MMP-9, presence of MFs and the epithelial proliferation index were investigated in actinic cheilitis (AC), lip squamous cell carcinoma (LSCC) and mucocele (MUC). Thirty cases of AC, thirty cases of LSCC and twenty cases of MUC were selected for immunohistochemical investigation of the proteins MMP-1, MMP-2, MMP-9, α-smooth muscle actin (α-SMA) and Ki-67. The MMP-1 expression in the epithelial component was higher in the AC than the MUC and LSCC. In the connective tissue, the expression was higher in the LSCC. MMP-2 showed lower epithelial and stromal immunostaining in the LSCC when compared to the AC and MUC. The epithelial staining for MMP-9 was higher in the AC when compared to the LSCC. However, in the connective tissue, the expression was lower in the AC compared to other lesions. The cell proliferation rate was increased in proportion to the severity of dysplasia in the AC, while in the LSCC it was higher in well-differentiated lesions compared to moderately differentiated. There were no statistically significant differences in number of MFs present in the lesions studied. The results suggest that MMPs could affect the biological behaviour of ACs and LSCCs inasmuch as they could participate in the development and progression from premalignant lesions to malignant lesions. PMID:26515234

  8. A nutrient mixture reduces the expression of matrix metalloproteinases in an animal model of spinal cord injury by modulating matrix metalloproteinase-2 and matrix metalloproteinase-9 promoter activities

    PubMed Central

    ZHANG, HONGQI; CHU, GE; PAN, CHAO; HU, JIANZHONG; GUO, CHAOFENG; LIU, JINYANG; WANG, YUXIANG; WU, JIANHUANG

    2014-01-01

    This study aimed to determine whether a novel nutrient mixture (NM), composed of lysine, ascorbic acid, proline, green tea extracts and other micronutrients, attenuates impairments induced by spinal cord injury (SCI) and to investigate the related molecular mechanisms. A mouse model of SCI was established. Thirty-two mice were divided into four groups. The sham group received vehicle only. The SCI groups were treated orally with saline (saline group), a low dose (500 μg 3 times/day) of NM (NM-LD group) or a high dose (2,000 μg 3 times/day) of NM (NM-HD group). The levels of mouse hindlimb movement were determined every day in the first week post-surgery. The protein expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 were determined by western blotting. Wild-type and mutant MMP-2- and MMP-9-directed luciferase constructs were generated and their luciferase activities were determined. NM significantly facilitated the recovery of hindlimb movement of the mice in comparison to that in the saline group. The expression levels of MMP-2 in the NM-LD and NM-HD groups were decreased by ~50% compared with the saline group as indicated by western blotting results. The expression levels of MMP-9 in the NM-LD and NM-HD groups were decreased to ~25 and ~10%, respectively. These results suggest that NM significantly inhibits the expression of MMP-2 and MMP-9 proteins. Reverse transcription quantitative polymerase chain reaction results indicated that NM reduced the levels of MMP-2 and MMP-9 mRNA. Furthermore, the luciferase results indicated that site-directed mutagenesis comprising a −1306 C to T (C/T) base change in the MMP-2 promoter and a −1562 C/T base change in the MMP-9 promoter abolished the inhibitory effects of NM on MMP-2 and MMP-9 promoters. These results suggest that NM attenuates SCI-induced impairments in mice movement by negatively affecting the promoter activity of MMP-2 and MMP-9 genes and thus decreasing the expression of MMP-2 and MMP-9

  9. The Effect of Progestins on Tumor Necrosis Factor α-Induced Matrix Metalloproteinase 9 Activity and Gene Expression in Human Primary Amnion and Chorion Cells In Vitro

    PubMed Central

    Allen, Terrence K; Feng, Liping; Nazzal, Matthew; Grotegut, Chad A; Buhimschi, Irina A; Murtha, Amy P

    2015-01-01

    Background Current treatment modalities for preventing preterm premature rupture of membranes (PPROM) are limited, but progestins may play a role. Tumor necrosis factor α (TNFα) enhances matrix metalloproteinase 9 (MMP-9) gene expression and activity in fetal membranes, contributing to membrane weakening and rupture. We previously demonstrated that progestins attenuate TNFα-induced MMP-9 activity in a cytotrophoblast cell line. However, whether they have a similar effect in primary amnion and chorion cells of fetal membranes is unknown. In this study we evaluated the effect of progestins on basal and TNFα-induced MMP-9 activity and gene expression in primary chorion and amnion cells harvested from the fetal membranes of term non-laboring patients. Methods Primary amnion and chorion cells were isolated from fetal membranes obtained from term uncomplicated non-laboring patients following elective cesarean delivery (n=11). Confluent primary amnion and chorion cell cultures were both pretreated with vehicle (control), progesterone (P4), 17α-hydroxyprogesterone caproate (17P) or medroxyprogesterone acetate (MPA) at 10-6 M concentration for 6 h followed by stimulation with TNFα at 10 ng/mL for an additional 24 h. Cell cultures pretreated with the vehicle only served as the unstimulated control and the vehicle stimulated with TNFα served as the stimulated control. Both controls were assigned a value of 100 units. Cell culture medium was harvested for MMP-9 enzymatic activity quantification using gelatin zymography. Total RNA was extracted for quantifying MMP-9 gene expression using RT-qPCR. Basal MMP-9 activity and gene expression data were normalized to the unstimulated control. TNFα-stimulated MMP-9 activity and gene expression were normalized to the stimulated control. The primary outcome was the effect of progestins on TNFα-induced MMP-9 enzymatic activity in term human primary amnion and chorion cells in vitro. Secondary outcomes included the effect of

  10. Expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase (TIMP-1) in tissues with a diagnosis of childhood lymphoma.

    PubMed

    Bozkurt, Ceyhun; Ertem, Ulya; Oksal, Aysegül; Sahin, Gürses; Yüksek, Nazmiye; Birgen, Dilek

    2008-09-01

    Matrix metalloproteinases (MMP) are enzymes involved in the reconfiguration of the microenvironment by means of degrading the extracellular matrix and have more than 20 subgroups containing zinc. Proteins that serve as the inhibitors of these enzymes are called tissue inhibitors of matrix metalloproteinase (TIMP). These enzymes have been shown to be active in a wide range of processes, from wound recovery to fetus development, heart diseases, and spread of malignant diseases. The aim of this study was to investigate whether there is a relationship between the type, stage, and prognosis of childhood lymphoma subjects and matrix metalloproteinase type-9 (MMP-9) and its inhibitor, tissue inhibitor of matrix metalloproteinase type-1 (TIMP-1). Paraffin blocks of childhood patients diagnosed with non-Hodgkin lymphoma (n = 23), Hodgkin lymphoma (n = 14), or reactive lymphadenopathy (n = 12) were retrospectively immunohistochemically stained with MMP-9 and TIMP-1 stains and whether there was a relationship between the degree of staining and the type, tumor stage, and prognosis of the disease was investigated. Moderate and high degrees of MMP-9 staining were detected in 94.6% of the lymphoma patient tissues and a slight TIMP-1 staining was detected in 21.6% of the lymphoma patient tissues. No relationship was observed between the degree of these staining patterns and the type, tumor stage, and prognosis of the disease. This study indicates that the equilibrium between MMP-9 and TIMP-1 is important in lymphomas in addition to all the physiological and pathologic events although MMP-9 and the TIMP-1 staining patterns are not related to the tumor stage, prognosis, and type of the disease. Larger series of patients are needed to determine the prognostic value of MMP-9 and TIMP-1 in childhood lymphoma. PMID:18850474

  11. (±)Equol inhibits invasion in prostate cancer DU145 cells possibly via down-regulation of matrix metalloproteinase-9, matrix metalloproteinase-2 and urokinase-type plasminogen activator by antioxidant activity

    PubMed Central

    Zheng, Wei; Zhang, Yumei; Ma, Defu; Shi, Yuhui; Liu, Changqiu; Wang, Peiyu

    2012-01-01

    Exposure to soy isoflavones has been associated with low mortality of prostate cancer. In this study, we examined the effects of (±)equol and two representative isoflavones, daidzein and genistein, on migration and invasion in human prostate cancer DU145 cells. First of all, the three regents did not show significant growth inhibitive effect in DU145 cells until the treatments last for 72 h. Treatment with 5 µM, 10 µM, 50 µM (±)equol, 0.5 µM, 1 µM, 5 µM daidzein and genistein for 24 h decreased cell migration and invasion significantly. (±)equol activated phosphatase and tensin homologue deleted on chromosome ten at protein level but not mRNA level, which activated antioxidants, including superoxide dismutase and nuclear factor (erythroid-derived 2)-like 2. A reduction of malondialdehyde concentration, the product of lipid per-oxidation, was observed as well. Moreover, matrix metalloproteinase-2, matrix metalloproteinase-9, and urokinase-type plasminogen activator, the crucial members in metastasis, were down-regulated. Overall, our data indicate that (±)equol, daidzein and genistein may have significant anti-invasion effect in DU145 cells (in vitro). The effects induced by (±)equol may relate to its anti-oxidant effect mediated by phosphatase and tensin homologue deleted on chromosome ten. PMID:22798715

  12. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas: A systematic review and meta-analysis of case-control trials.

    PubMed

    Liu, Hong-Yan; Gu, Wei-Jun; Wang, Cheng-Zhi; Ji, Xiao-Jian; Mu, Yi-Ming

    2016-06-01

    The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas.We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method.Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61-11.50, P < 0.00001), and reverse transcriptase-polymerase chain reaction (SMD = 2.28, 95% CI = 0.91-3.64, P = 0.001). MMP-2 expression was also increased in patients with IPAs at the protein level (OR = 3.58, 95% CI = 1.63-7.87, P = 0.001), and RNA level (SMD = 3.91, 95% CI = 1.52-6.29, P = 0.001). Meta-analysis showed that there was no difference in TIMP-2 expression between invasive and NIPAs at the protein level (OR = 0.38, 95% CI = 0.06-2.26, P = 0.29). MMP-9 expression in prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48-2.20, P = 0.95).The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further. PMID:27310993

  13. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    PubMed Central

    Narayanaswamy, Radhakrishnan; Isha, Azizul; Wai, Lam Kok; Ismail, Intan Safinar

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted

  14. Vitamin D decreases the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 in fibroblasts derived from Taiwanese patients with chronic rhinosinusitis with nasal polyposis.

    PubMed

    Wang, Ling-Feng; Tai, Chih-Feng; Chien, Chen-Yu; Chiang, Feng-Yu; Chen, Jeff Yi-Fu

    2015-05-01

    Vitamin D and its derivatives have modulatory effects in immunological and inflammatory responses. Such properties suggest that they might have an impact on chronic inflammatory airway diseases, including nasal polyposis. The aim of this study was to understand the role of vitamin D in chronic rhinosinusitis with nasal polyps (CRSwNP) by investigating its effect on the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9 in nasal polyp-derived fibroblasts. Two primary fibroblast cultures were established from nasal polyp tissues obtained during surgery. The nasal polyp-derived fibroblasts were stimulated with tumor necrosis factor-α (TNF-α; 10 ng/mL) for 24 hours, followed by replacement with media alone or with vitamin D derivatives (calcitriol or tacalcitol; 10μM) and incubated for another 24 hours. After the treatments, the levels of MMP-2 and MMP-9 secreted were evaluated by both enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. ELISA results revealed that TNF-α could substantially stimulate the secretion of MMP-2 (p < 0.01) and MMP-9 (p < 0.001) in nasal polyp-derived fibroblasts. More importantly, such stimulatory effect was significantly suppressed by adding calcitriol (p ≤ 0.01 for MMP-2 and p < 0.001 for MMP-9) or tacalcitol (p < 0.005 for both MMP-2 and MMP-9). The ELISA results were also confirmed by Western blot analysis. The inhibitory effect of vitamin D derivatives on MMP-2 and MMP-9 secretion could potentiate their application in pharmacotherapy of Taiwanese CRSwNP patients. PMID:25910558

  15. Novel roles of androgen receptor, epidermal growth factor receptor, TP53, regulatory RNAs, NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, and matrix metalloproteinase-9 in prostate cancer and prostate cancer stem cells.

    PubMed

    Chappell, William H; Abrams, Stephen L; Lertpiriyapong, Kvin; Fitzgerald, Timothy L; Martelli, Alberto M; Cocco, Lucio; Rakus, Dariusz; Gizak, Agnieszka; Terrian, David; Steelman, Linda S; McCubrey, James A

    2016-01-01

    Approximately one in six men will be diagnosed with some form of prostate cancer in their lifetime. Over 250,000 men worldwide die annually due to complications from prostate cancer. While advancements in prostate cancer screening and therapies have helped in lowering this statistic, better tests and more effective therapies are still needed. This review will summarize the novel roles of the androgen receptor (AR), epidermal growth factor receptor (EGFR), the EGFRvIII variant, TP53, long-non-coding RNAs (lncRNAs), microRNAs (miRs), NF-kappa-B, chromosomal translocations, neutrophil associated gelatinase, (NGAL), matrix metalloproteinase-9 (MMP-9), the tumor microenvironment and cancer stem cells (CSC) have on the diagnosis, development and treatment of prostate cancer. PMID:26525204

  16. The Subcellular Localization of Intercellular Adhesion Molecule-5 (Telencephalin) in the Visual Cortex is not Developmentally Regulated in the Absence of Matrix Metalloproteinase-9

    PubMed Central

    Kelly, Emily A.; Tremblay, Marie-Eve; Gahmberg, Carl G.; Tian, Li; Majewska, Ania K.

    2013-01-01

    The telencephalon-associated intercellular adhesion molecule 5 (Telencephalin; ICAM-5) regulates dendritic morphology in the developing brain. In vitro studies have shown that ICAM-5 is predominantly found within dendrites and immature dendritic protrusions, with reduced expression in mushroom spines, suggesting that ICAM-5 downregulation is critical for the maturation of synaptic structures. However, developmental expression of ICAM-5 has not been explored in depth at the ultrastructural level in intact brain tissue. To investigate the ultrastructural localization of ICAM-5 with transmission electron microscopy, we performed immunoperoxidase histochemistry for ICAM-5 in mouse visual cortex at postnatal day (P)14, a period of intense synaptogenesis, and at P28, when synapses mature. We observed the expected ICAM-5 expression in dendritic protrusions and shafts at both P14 and P28. ICAM-5 expression in these dendritic protrusions decreased in prevalence with developmental age to become predominantly localized to dendritic shafts by P28. To further understand the relationship between ICAM-5 and the endopeptidase metalloproteinase-9 (MMP-9), which mediates ICAM-5 cleavage following glutamate activation during postnatal development, we also explored ICAM-5 expression in MMP-9 null animals. This analysis revealed a similar expression of ICAM-5 in dendritic elements at P14 and P28; however an increased prevalence of ICAM-5 was noted in dendritic protrusions at P28 in the MMP-9 null animals, indicating that in the absence of MMP-9, there is no developmental shift in ICAM-5 subcellular localization. Our ultrastructural observations shed light on possible functions mediated by ICAM-5 and their regulation by extracellular proteases. PMID:23897576

  17. Matrix metalloproteinase-9 deficiency leads to prolonged foreign body response in the brain associated with increased IL-1β levels and leakage of the blood brain barrier

    PubMed Central

    Tian, Weiming; Kyriakides, Themis R.

    2013-01-01

    Matrix metalloproteinases (MMPs) are enzymes with specificity towards extracellular matrix (ECM) components. MMPs, especially MMP-9, have been shown to degrade components of the basal lamina and disrupt the blood-brain barrier (BBB) and thus, contribute to neuroinflammation. In the present study we examined the role of MMP-9 in the foreign body response in the brain. Millipore filters of mixed cellulose ester were implanted into the brain cortex of wild type and MMP-9 -null mice for a period of 2 d to 8 wks and the response was analyzed by histology and immunohistochemistry. We observed enhanced and prolonged neuroinflammation in MMP-9-null mice, evidenced by persistence of neutrophils, macrophages/microglia, and reactive astrocytes up to 8 wks post-implantation. In addition, blood vessel density around implants was increased in MMP-9-null mice and detection of mouse serum albumin (MSA) indicated that vessels were leaky. Immunohistochemical and western blot analyses indicated that this defect was associated with the absence of tight junction proteins zonula occludens-1 (ZO-1) and ZO-2 from vessels in proximity to implants. Analysis of brain sections and brain protein extracts revealed that the levels of the pro-inflammatory cytokine interleukin-1β (IL-1β), which is a substrate for MMP-9, were significantly higher in MMP-9-null mice at 8wks post-implantation. Collectively, our studies suggest that increased levels of IL-1β and the delayed repair of BBB are associated with prolongation of the FBR in MMP-9-null mice. PMID:19264129

  18. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    PubMed

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses. PMID:23827939

  19. Anti-metastatic effect of supercritical extracts from the Citrus hassaku pericarp via inhibition of C-X-C chemokine receptor type 4 (CXCR4) and matrix metalloproteinase-9 (MMP-9).

    PubMed

    Kim, Chulwon; Kim, Dongmin; Nam, Dongwoo; Chung, Won-Seok; Ahn, Kyoo Seok; Kim, Sung-Hoon; Choi, Seung-Hoon; Shim, Bum Sang; Cho, Somi K; Ahn, Kwang Seok

    2014-09-01

    The fruit of hassaku (Citrus hassaku Hort. ex Tanaka) is locally known as phalsak in Korea. Recently, the fruit extract has been known to exhibit in vivo preventive effects against UVB-induced pigmentation, antiallergic activity, and enhancement of blood fluidity. However, the exact mechanisms of how supercritical extracts of phalsak peel (SEPS) inhibits tumor metastasis and invasion are still not fully understood. We found that SEPS could downregulate the constitutive expression of both CXCR4 and HER2 in human breast cancer MDA-MB-231 cells as compared with other cells. SEPS also suppressed matrix metalloproteinase-9 (MMP-9) expression and its enzymatic activity under non-cytotoxic concentrations. Neither proteasome inhibition nor lysosomal stabilization had any effect on the SEPS-induced decrease in CXCR4 expression. A detailed study of the underlying molecular mechanisms revealed that the regulation of the downregulation of CXCR4 was at the transcriptional level, as indicated by downregulation of mRNA expression, suppression of NF-κB activity, and inhibition of chromatin immunoprecipitation activity. Suppression of CXCR4 expression by SEPS correlated with the inhibition of CXCL12-stimulated invasion of MDA-MB-231 cells. Overall, our results indicate, for the first time, that SEPS can suppress CXCR4 and MMP-9 expressions through blockade of NF-κB activation and thus has the potential to suppress metastasis of breast cancer. PMID:24638915

  20. RhoA mediates the expression of acidic extracellular pH-induced matrix metalloproteinase-9 mRNA through phospholipase D1 in mouse metastatic B16-BL6 melanoma cells.

    PubMed

    Maeda, Toyonobu; Yuzawa, Satoshi; Suzuki, Atsuko; Baba, Yuh; Nishimura, Yukio; Kato, Yasumasa

    2016-03-01

    Solid tumors are characterized by acidic extracellular pH (pHe). The present study examined the contribution of small GTP-binding proteins to phospholipase D (PLD) activation of acidic pHe-induced matrix metalloproteinase-9 (MMP-9) production. Acidic pHe-induced MMP-9 production was reduced by C3 exoenzyme, which inhibits the Rho family of GTPases; cytochalasin D, which inhibits actin reorganization; and simvastatin, which inhibits geranylgeranylation of Rho. Small interfering RNA (siRNA) against RhoA, but not against Rac1 or Cdc42, significantly inhibited acidic pHe induction of MMP-9. Pull-down assays showed that acidic pHe increased the activated form of RhoA. Forced expression of constitutively active RhoA induced MMP-9 production, even at neutral pHe. RhoA siRNA also reduced acidic pHe induced PLD activity. Specific inhibition of PLD1 and Pld1 gene knockout significantly reduced acidic pHe-induced MMP-9 expression. In contrast, PLD2 inhibition or knockout had no effect on MMP-9 expression. These findings suggested that RhoA-PLD1 signaling is involved in acidic pHe induction of MMP-9. PMID:26782071

  1. Differential Expression of Matrix Metalloproteinase-9 Gene in Wounds of Type 2 Diabetes Mellitus Cases With Susceptible -1562C>T Genotypes and Wound Severity.

    PubMed

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2014-05-25

    Coordinated extracellular matrix deposition is a prerequisite for proper wound healing which is mainly orchestrated by matrix metalloproteinases (MMPs). Diabetic wounds generally show compromised wound healing cascade and abnormal MMP9 concentration is one of the cause. Our group have recently shown that the polymorphism -1562 C>T in the promoter region of MMP9 gene is associated with pathogenesis of wound healing impairment in T2DM patients. In present study we have done expression profiling of MMP9 gene in the wound biopsy of DFU cases. Expression level of MMP9 mRNA was then compared with susceptible -1562 C>T genotypes (TT and CT) as well as with different grades of wounds. We also screened the promoter region of MMP9 gene to see the methylation state of CpGs present there. Our study suggests that levels of MMP9 mRNA increase significantly with the wound grades. Moreover, the MMP9 levels in diabetic wounds were also dependent on -1562 C>T polymorphism in the promoter region of MMP9. Diabetic wounds also showed a significant unmethylated status of MMP9 promoter compared to control wounds. In conclusion, The risk genotypes of -1562 C>T polymorphism along with lack of methylation of CpG sites in MMP9 gene promoter may result in altered expression of MMP9 in wounds of T2DM cases resulting into nonhealing chronic ulcers in them. PMID:24861096

  2. Evaluation of physiological risk factors, oxidant-antioxidant imbalance, proteolytic and genetic variations of matrix metalloproteinase-9 in patients with pressure ulcer.

    PubMed

    Latifa, Khlifi; Sondess, Sahli; Hajer, Graiet; Manel, Ben-Hadj-Mohamed; Souhir, Khelil; Nadia, Bouzidi; Abir, Jaballah; Salima, Ferchichi; Abdelhedi, Miled

    2016-01-01

    Pressure ulcer (PU) remains a common worldwide problem in all health care settings, it is synonymous with suffering. PU is a complex disease that is dependent on a number of interrelated factors. It involves multiple mechanisms such as physiological risk factors, chronic inflammation, oxidant-antioxidant imbalance and proteolytic attack on extracellular matrix by matrix metalloproteinases (MMP). Therefore, we propose that these wounds lead to molecular variations that can be detected by assessing biomarkers. In this study, we aimed to evaluate the major clinical elements and biological scars in Tunisian patients suffering from PU. Consistently, non-healing wound remains a challenging clinical problem. The complex challenges of the wound environment, involving nutrient deficiencies, bacterial infection, as well as the critical role played by inflammatory cells, should be considered because of their negative impact on wound healing. In addition, an imbalance between pro-oxidants and antioxidant systems seems to be more aggravated in patients with PU compared to healthy subjects. Of interest, this study provides further evidence to support a core role of the biological activity of MMP-9 in the pathogenesis of PU and indicates that the MMP9-1562 C/T (rs 3918242) functional polymorphism is associated with protection against this disease. PMID:27405842

  3. A Role for the Cavin-3/Matrix Metalloproteinase-9 Signaling Axis in the Regulation of PMA-Activated Human HT1080 Fibrosarcoma Cell Neoplastic Phenotype

    PubMed Central

    Toufaily, Chirine; Charfi, Cyndia; Annabi, Bayader; Annabi, Borhane

    2014-01-01

    Caveolae are specialized cell membrane invaginations known to regulate several cancer cell functions and oncogenic signaling pathways. Among other caveolar proteins, they are characterized by the presence of proteins of the cavin family. In this study, we assessed the impact of cavin-1, cavin-2, and cavin-3 on cell migration in a human HT-1080 fibrosarcoma model. We found that all cavin-1, -2 and -3 transcripts were expressed and that treatment with phorbol 12-myristate 13-acetate (PMA), which is known to prime cell migration and proliferation, specifically upregulated cavin-3 gene and protein expression. PMA also triggered matrix metalloproteinase (MMP)-9 secretion, but reduced the global cell migration index. Overexpression of recombinant forms of the three cavins demonstrated that only cavin-3 was able to reduce basal cell migration, and this anti-migratory effect was potentiated by PMA. Interestingly, cavin-3 overexpression inhibited PMA-induced MMP-9, while cavin-3 gene silencing led to an increase in MMP-9 gene expression and secretion. Furthermore, recombinant cavin-3 significantly prevented PMA-mediated dephosphorylation of AKT, a crucial regulator in MMP-9 transcription. In conclusion, our results demonstrate that cellular cavin-3 expression may repress MMP-9 transcriptional regulation in part through AKT. We suggest that the balance in cavin-3-to-MMP-9 expression regulates the extent of extracellular matrix degradation, confirming the tumor-suppressive role of cavin-3 in controlling the invasive potential of human fibrosarcoma cells. PMID:25520561

  4. Evaluation of physiological risk factors, oxidant-antioxidant imbalance, proteolytic and genetic variations of matrix metalloproteinase-9 in patients with pressure ulcer

    PubMed Central

    Latifa, Khlifi; Sondess, Sahli; Hajer, Graiet; Manel, Ben-Hadj-Mohamed; Souhir, Khelil; Nadia, Bouzidi; Abir, Jaballah; Salima, Ferchichi; Abdelhedi, Miled

    2016-01-01

    Pressure ulcer (PU) remains a common worldwide problem in all health care settings, it is synonymous with suffering. PU is a complex disease that is dependent on a number of interrelated factors. It involves multiple mechanisms such as physiological risk factors, chronic inflammation, oxidant–antioxidant imbalance and proteolytic attack on extracellular matrix by matrix metalloproteinases (MMP). Therefore, we propose that these wounds lead to molecular variations that can be detected by assessing biomarkers. In this study, we aimed to evaluate the major clinical elements and biological scars in Tunisian patients suffering from PU. Consistently, non-healing wound remains a challenging clinical problem. The complex challenges of the wound environment, involving nutrient deficiencies, bacterial infection, as well as the critical role played by inflammatory cells, should be considered because of their negative impact on wound healing. In addition, an imbalance between pro-oxidants and antioxidant systems seems to be more aggravated in patients with PU compared to healthy subjects. Of interest, this study provides further evidence to support a core role of the biological activity of MMP-9 in the pathogenesis of PU and indicates that the MMP9-1562 C/T (rs 3918242) functional polymorphism is associated with protection against this disease. PMID:27405842

  5. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    PubMed

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9. PMID:25518925

  6. Matrix metalloproteinase-9 expression is enhanced in renal parietal epithelial cells of zucker diabetic Fatty rats and is induced by albumin in in vitro primary parietal cell culture.

    PubMed

    Zhang, Yuanyuan; George, Jasmine; Li, Yun; Olufade, Rebecca; Zhao, Xueying

    2015-01-01

    As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy

  7. Protease Nexin-1 affects the migration and invasion of C6 glioma cells through the regulation of urokinase Plasminogen Activator and Matrix Metalloproteinase-9/2.

    PubMed

    Pagliara, Valentina; Adornetto, Annagrazia; Mammì, Maria; Masullo, Mariorosario; Sarnataro, Daniela; Pietropaolo, Concetta; Arcone, Rosaria

    2014-11-01

    Protease Nexin-1 (PN-1) or Serpine2 is a physiological regulator of extracellular proteases as thrombin and urokinase (uPA) in the brain. Besides, PN-1 is also implicated in some human cancers and further identified as a substrate for Matrix Metalloproteinase (MMP)-9, a key enzyme in tumor invasiveness. Our aim was to study the role of PN-1 in the migration and invasive potential of glioma cells, using the rat C6 glioma cell line as stable clones transfected with pAVU6+27 vector expressing PN-1 short-hairpin RNA. We find that PN-1 knockdown enhanced the in vitro migration and invasiveness of C6 cells which also showed a strong gelatinolytic activity by in situ zymography. PN-1 silencing did not alter prothrombin whereas increased uPA, MMP-9 and MMP-2 expression levels and gelatinolytic activity in a conditioned medium from stable C6 cells. Selective inhibitors for MMP-9 (Inhibitor I), MMP-2 (Inhibitor III) or exogenous recombinant PN-1 added to the culture medium of C6 silenced cells restored either the migration and invasive ability or gelatinolytic activity thus validating the specificity of PN-1 silencing strategy. Phosphorylation levels of extracellular signal-related kinases (Erk1/2 and p38 MAPK) involved in MMP-9 and MMP-2 signaling were increased in PN-1 silenced cells. This study shows that PN-1 affects glioma cell migration and invasiveness through the regulation of uPA and MMP-9/2 expression levels which contribute to the degradation of extracellular matrix during tumor invasion. PMID:25072751

  8. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    PubMed Central

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis. PMID:26818472

  9. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  10. Relaxin induces matrix-metalloproteinases-9 and -13 via RXFP1: induction of MMP-9 involves the PI3K, ERK, Akt and PKC-ζ pathways.

    PubMed

    Ahmad, Nisar; Wang, Wei; Nair, Remi; Kapila, Sunil

    2012-11-01

    We determined the precise role of relaxin family peptide (RXFP) receptors-1 and -2 in the regulation of MMP-9 and -13 by relaxin, and delineated the signaling cascade that contributes to relaxin's modulation of MMP-9 in fibrocartilaginous cells. Relaxin treatment of cells in which RXFP1 was silenced resulted in diminished induction of MMP-9 and -13 by relaxin, whereas overexpression of RXFP1 potentiated the relaxin-induced expression of these proteinases. Suppression or overexpression of RXFP2 resulted in no changes in the relaxin-induced MMP-9 and -13. Studies using chemical inhibitors and siRNAs to signaling molecules showed that PI3K, Akt, ERK and PKC-ζ and the transcription factors Elk-1, c-fos and, to a lesser extent, NF-κB are involved in relaxin's induction of MMP-9. Our findings provide the first characterization of signaling cascade involved in the regulation of any MMP by relaxin and offer mechanistic insights on how relaxin likely mediates extracellular matrix turnover. PMID:22835547

  11. 5-Azacytidine regulates matrix metalloproteinase-9 expression, and the migration and invasion of human fibrosarcoma HT1080 cells via PI3-kinase and ERK1/2 pathways.

    PubMed

    Yu, Seon-Mi; Kim, Song Ja

    2016-09-01

    Abnormal methylation of promoter CpG islands is one of the hallmarks of cancer cells, and is catalyzed by DNA methyltransferases. 5-azacytidine (5-aza C), a methyltransferase inhibitor, can cause demethylation of promoter regions of diverse genes. Epigenetic processes contribute to the regulation of matrix metalloproteinase (MMP) expression. However, little is known about the mechanisms and effects of 5-aza C on the invasive and migratory capacities of human fibrosarcoma HT1080 cells. In the present study, we found that 5-aza C induces MMP-9 activity, as determined by zymography. HT1080 cell proliferation was determined following 5-aza C administration by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle was examined by flow cytometry. 5-aza C treatment inhibited cell proliferation without affecting cell viability. Furthermore, 5-aza C significantly promoted migration and invasion of HT1080 cells. 5-aza C treatment enhanced phosphorylation of extracellular signal-regulated kinase (ERK) and phosphoinositide (PI)3-kinase/Akt, and their inhibitors blocked MMP-9 activity induction, and cellular invasion and migration. Together, these findings suggest that promoter methylation may be one of the mechanisms modulating MMP-9 levels in HT1080 cells, and that 5-aza C-induced MMP-9 production is associated with the activation of ERK and PI3-kinase/Akt signaling pathways. PMID:27573026

  12. Matrix Metalloproteinase-9 Leads to Claudin-5 Degradation via the NF-κB Pathway in BALB/c Mice with Eosinophilic Meningoencephalitis Caused by Angiostrongylus cantonensis

    PubMed Central

    Chiu, Ping-Sung; Lai, Shih-Chan

    2013-01-01

    The epithelial barrier regulates the movement of ions, macromolecules, immune cells and pathogens. The objective of this study was to investigate the role of the matrix metalloproteinase (MMP)-9 in the degradation of tight junction protein during infection with rat nematode lungworm Angiostrongylus cantonensis. The results showed that phosphorylation of IκB and NF-κB was increased in mice with eosinophilic meningoencephalitis. Treatment with MG132 reduced the phosphorylation of NF-κB and the activity of MMP-9, indicating upregulation of MMP-9 through the NF-κB signaling pathway. Claudin-5 was reduced in the brain but elevated in the cerebrospinal fluid (CSF), implying that A. cantonensis infection caused tight junction breakdown and led to claudin-5 release into the CSF. Degradation of claudin-5 coincided with alteration of the blood-CSF barrier permeability and treatment with the MMP inhibitor GM6001 attenuated the degradation of claudin-5. These results suggested that degradation of claudin-5 was caused by MMP-9 in angiostrongyliasis meningoencephalitis. Claudin-5 could be used for the pathophysiologic evaluation of the blood-CSF barrier breakdown and tight junction disruption after infection with A. cantonensis. PMID:23505411

  13. Interferon-Gamma Increases the Ratio of Matrix Metalloproteinase-9/Tissue Inhibitor of Metalloproteinase-1 in Peripheral Monocytes from Patients with Coronary Artery Disease

    PubMed Central

    Gonzalez-Pacheco, Hector; Furuzawa-Carballeda, Janette; Gomez-Garcia, Lorena; Marquez-Velasco, Ricardo; Mejía-Domínguez, Ana María; Cossío-Aranda, Jorge; Martínez-Sánchez, Carlos; Bojalil, Rafael

    2013-01-01

    Acute coronary syndromes (ACS) may be triggered by acute infections. Systemic production of interferon gamma (IFN-γ) is induced during infection and regulates the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs), both important in plaque stability. This study evaluates the effect of IFN-γ on the MMPs/TIMP-1 ratio in cultured monocytes from 30 patients with stable coronary artery disease (CAD), 30 with unstable angina (UA) or non-ST-segment elevation myocardial infarction (NSTEMI), and 30 healthy blood donors. Supernatant concentrations of MMP-1, -2, -9, and TIMP-1 were measured by enzyme-linked immunoassays. Basal concentration of MMP-1 and TIMP-1 was similar between groups, while MMP-2 was higher in healthy individuals and MMP-9 in patients with UA/NSTEMI. Upon IFN-γ stimulation, MMP-9 secretion increased in all groups, while TIMP-1 decreased only in patients with CAD, which in turn result in a strikingly elevation in their mean MMP-9/TIMP-1 ratio. MMP-1/TIMP-1 and MMP-2/TIMP-1 ratios were <1.0 in basal conditions and after stimulation in all groups. Our results suggest that nonstimulated monocytes from patients with stable CAD show a similar behavior than those from healthy individuals. However, stimulation with IFN-γ induces an increase on the MMP-9/TIMP-1 ratio as high as that found in patients with ACS. Thus, it may bring biological plausibility to the association between acute infections and the development of ACS. PMID:23951304

  14. Inhibitory effect of plant-originated glycoprotein (27 kDa) on expression of matrix metalloproteinase-9 in cadmium chloride-induced BNL CL.2 cells.

    PubMed

    Lee, Jin; Lim, Kye-Taek

    2011-12-01

    Cadmium is very harmful to the environment and to human beings because of its long lifetime. The toxicity of cadmium as an industrial pollutant and a food contaminant, and as one of the major components in cigarette smoke is well known. Cadmium can cause a number of lesions in many organs, such as the kidney, the lung, the liver, the brain, the blood system. However, the mechanism of toxicity of cadmium is not yet clear. Also, it has been well known as human carcinogen which is indirectly caused inflammation-mediated hepatocarcinoma. In the present study it was demonstrated that glycoprotein (27 kDa) isolated from Gardenia jasminoides Ellis (GJE) protects BNL CL.2 cells from expression of inflammation-related factors stimulated by cadmium chloride (10 μM). Intracellular ROS and intracellular Ca(2+) using fluorescence, activities of activator protein (AP)-1, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-9, and arachidonic acid (AA) using immunoblot analysis or radioactivity were evaluated. The results obtained from this experiment indicated that GJE glycoprotein (100 μg/mL) inhibits the production of intracellular ROS, and intracellular Ca(2+) mobilization. Also, it significantly suppressed inflammatory factors [expression of AP-1 (c-Jun and c-Fos), arachidonic acid, COX-2, and MMP-9]. Taken together, these findings suggest that GJE glycoprotein might be used for protection of inflammation caused by cadmium ion as one of natural compounds. PMID:21924884

  15. Involvement of Matrix Metalloproteinase-9 in Amyloid-β 1–42–Induced Shedding of the Pericyte Proteoglycan NG2

    PubMed Central

    Schultz, Nina; Nielsen, Henrietta M.; Minthon, Lennart; Wennström, Malin

    2014-01-01

    Abstract Deposition of amyloid-β (Aβ) 1–42, the major component of senile plaques characteristic of Alzheimer disease, affects brain microvascular integrity and causes blood-brain barrier dysfunction, increased angiogenesis, and pericyte degeneration. To understand the cellular events underlying Aβ1–42 effects on microvascular alterations, we investigated whether different aggregation forms of Aβ1–42 affect shedding of the pericyte proteoglycan NG2 and whether they affect proteolytic cleavage mediated by matrix metalloproteinase (MMP)-9. We found decreased levels of soluble NG2, total MMP-9, and MMP-9 activity in pericyte culture supernatants in response to fibril-enriched preparations of Aβ1–42. Conversely, oligomer-enriched preparations of Aβ1–42 increased soluble NG2 levels in the supernatants. This increase was ablated by the MMP-9/MMP-2 inhibitor SB-3CT. There was also a trend toward increased MMP-9 activity observed after oligomeric Aβ1–42 exposure. Our results, demonstrating an Aβ1–42 aggregation-dependent effect on levels of NG2 and MMP-9, support previous studies showing an impact of Aβ1–42 on vascular integrity and thereby add to our understanding of mechanisms behind the microvascular changes commonly found in patients with Alzheimer disease. PMID:24918635

  16. Citrate Synthase Is a Novel In Vivo Matrix Metalloproteinase-9 Substrate That Regulates Mitochondrial Function in the Postmyocardial Infarction Left Ventricle

    PubMed Central

    de Castro Brás, Lisandra E.; Cates, Courtney A.; DeLeon-Pennell, Kristine Y.; Ma, Yonggang; Iyer, Rugmani Padmanabhan; Halade, Ganesh V.; Yabluchanskiy, Andriy; Fields, Gregg B.; Weintraub, Susan T.

    2014-01-01

    Abstract Aim: To evaluate the role of matrix metalloproteinase (MMP)-9 deletion on citrate synthase (CS) activity postmyocardial infarction (MI). Results: We fractionated left ventricle (LV) samples using a differential solubility-based approach. The insoluble protein fraction was analyzed by mass spectrometry, and we identified CS as a potential intracellular substrate of MMP-9 in the MI setting. CS protein levels increased in the insoluble fraction at day 1 post-MI in both genotypes (p<0.05) but not in the noninfarcted remote region. The CS activity decreased in the infarcted tissue of wild-type (WT) mice at day 1 post-MI (p<0.05), but this was not observed in the MMP-9 null mice, suggesting that MMP-9 deletion helps to maintain the mitochondrial activity post-MI. Additionally, inflammatory gene transcription was increased post-MI in the WT mice and attenuated in the MMP-9 null mice. MMP-9 cleaved CS in vitro, generating an ∼20 kDa fragment. Innovation: By applying a sample fractionation and proteomics approach, we were able to identify a novel MMP-9-related altered mitochondrial metabolic activity early post-MI. Conclusion: Our data suggest that MMP-9 deletion improves mitochondrial function post-MI. Antioxid. Redox Signal. 21, 1974–1985. PMID:24382150

  17. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    PubMed

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts. PMID:27319149

  18. Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis.

    PubMed

    Dal-Pizzol, Felipe; Rojas, Hugo Alberto; dos Santos, Emilia Marcelina; Vuolo, Francieli; Constantino, Larissa; Feier, Gustavo; Pasquali, Matheus; Comim, Clarissa M; Petronilho, Fabrícia; Gelain, Daniel Pens; Quevedo, João; Moreira, José Cláudio Fonseca; Ritter, Cristiane

    2013-08-01

    There is no description on the mechanisms associated with blood-brain barrier (BBB) disruption during sepsis development. Thus, we here determined changes in permeability of the BBB in an animal model of severe sepsis and the role of matrix metalloproteinase (MMP)-2 and MMP-9 in the dysfunction of the BBB. Sepsis was induced in Wistar rats by cecal ligation and perforation. BBB permeability was assessed using the Evans blue dye method. The content of MMP-2 and MMP-9 in the cerebral microvessels was determined by western blot. The activity of MMP-2 and MMP-9 was determined using zymography. An inhibitor of MMP-2 and MMP-9 or specific inhibitors of MMP-2 or MMP-9 were administered to define the role of MMPs on BBB permeability, brain inflammatory response, and sepsis-induced cognitive alterations. The increase of BBB permeability is time-related to the increase of MMP-9 and MMP-2 in the microvessels, both in cortex and hippocampus. Using an MMP-2 and MMP-9 inhibitor, or specific MMP-2 or MMP-9 inhibitors, the increase in the permeability of the BBB was reversed. This was associated with lower brain levels of interleukin (IL)-6 and lower oxidative damage. In contrast, only the inhibition of both MMP-9 and MMP-2 was able to improve acute cognitive alterations associated with sepsis. In conclusion, MMP-2 and MMP-9 activation seems to be a major step in BBB dysfunction, but BBB dysfunction seems not to be associated with acute cognitive dysfunction during sepsis development. PMID:23479197

  19. Perioperative time course of matrix metalloproteinase-9 (MMP-9), its tissue inhibitor TIMP-1 & S100B protein in carotid surgery

    PubMed Central

    Nagy, Bálint; Woth, Gábor; Mérei, Ákos; Nagy, Lilla; Lantos, János; Menyhei, Gábor; Bogár, Lajos; Mühl, Diána

    2016-01-01

    Background & objectives: Ischaemic stroke is a life burdening disease for which carotid endarterectomy (CEA) is considered a gold standard intervention. Pro-inflammatory markers like matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) and S-100 Beta (S100B) may have a role in the early inflammation and cognitive decline following CEA. This study was aimed to describe the perioperative time courses and correlations between of MMP-9, TIMP-1 and S100B following CEA. Methods: Fifty four patients scheduled for CEA were enrolled. Blood samples were collected at four time points, T1: preoperative, T2: 60 min after cross-clamp release, T3: first postoperative morning, T4: third postoperative morning. Twenty atherosclerotic patients were included as controls. Plasma MMP-9, TIMP-1 and S100B levels were estimated by ELISA. Results: TIMP-1 was decreased significantly in the CEA group (P<0.01). Plasma MMP-9 was elevated and remained elevated from T1-4 in the CEA group (P<0.05) with a marked elevation in T3 compared to T1 (P<0.05). MMP-9/TIMP-1 was elevated in the CEA group and increased further by T2 and T3 (P<0.05). S100B was elevated on T2 and decreased on T3-4 compared to T1. Interpretation & conclusions: Our study provides information on the dynamic changes of MMP-9-TIMP-1 system and S100B in the perioperative period. Preoperative reduction of TIMP-1 might be predictive for shunt requirement but future studies are required for verification. PMID:27121520

  20. Plasma Matrix Metalloproteinase-9 Levels Predict First-Time Coronary Heart Disease: An 8-Year Follow-Up of a Community-Based Middle Aged Population

    PubMed Central

    Garvin, Peter; Jonasson, Lena; Nilsson, Lennart; Falk, Magnus; Kristenson, Margareta

    2015-01-01

    Background The enzyme in matrix metalloproteinase (MMP)-9 has been suggested to be an important determinant of plaque degradation. While several studies have shown elevated levels in patients with coronary heart disease, results in prospective population based studies evaluating MMP-9 in relation to first time coronary events have been inconclusive. As of today, there are four published studies which have measured MMP-9 in serum and none using plasma. Measures of MMP-9 in serum have been suggested to have more flaws than measures in plasma. Aim To investigate the independent association between plasma levels of MMP-9 and first-time incidence of coronary events in an 8-year follow-up. Material and Methods 428 men and 438 women, aged 45–69 years, free of previous coronary events and stroke at baseline, were followed-up. Adjustments were made for sex, age, socioeconomic position, behavioral and cardiovascular risk factors, chronic disease at baseline, depressive symptoms, interleukin-6 and C-reactive protein. Results 53 events were identified during a risk-time of 6 607 person years. Hazard ratio (HR) for MMP-9 after adjustment for all covariates were HR = 1.44 (1.03 to 2.02, p = 0.033). Overall, the effect of adjustments for other cardiovascular risk factors was low. Conclusion Levels of plasma MMP-9 are independently associated with risk of first-time CHD events, regardless of adjustments. These results are in contrast to previous prospective population-based studies based on MMP-9 in serum. It is essential that more studies look at MMP-9 levels in plasma to further evaluate the association with first coronary events. PMID:26389803

  1. Nitric oxide attenuates matrix metalloproteinase-9 production by endothelial cells independent of cGMP- or NFκB-mediated mechanisms.

    PubMed

    Meschiari, Cesar A; Izidoro-Toledo, Tatiane; Gerlach, Raquel F; Tanus-Santos, Jose E

    2013-06-01

    Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10-400 μM) or SNAP (50-400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs' (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases. PMID:23456480

  2. Distinct pattern of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 mRNA expression in human colorectal cancer and liver metastases.

    PubMed Central

    Zeng, Z. S.; Guillem, J. G.

    1995-01-01

    The matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are perceived as essential for tumour invasion and metastasis. In the present study, we compare the topographical pattern of MMP-9 and TIMP-1 expression in colorectal cancer and liver metastasis by in situ hybridisation. TIMP-1 mRNA was detected in all 26 colorectal cancers examined, while only 18 out of 26 (69.2%) were positive for MMP-9. Both MMP-9 and TIMP-1 mRNA were observed in all ten liver metastases but were absent in three adenomas and in all normal colonic mucosa and liver. There was no association between MMP-9 or TIMP-1 mRNA expression and degree of differentiation or size of Tumours. MMP-9 and TIMP-1 mRNA were similarly observed in the peritumour stroma cells rather than in tumour cells themselves. MMP-9 mRNA positive cells were round and identified as macrophages by immunostaining with an anti-macrophage antibody (KP1), while TIMP-1, mRNA was detected in spindle-shaped stromal cells. In liver metastases, MMP-9 localised within peritumour stroma or at the interface between the tumour stroma and normal liver, whereas TIMP-1 mRNA was located throughout the malignant tumour stroma. Our data demonstrate a distinct pattern of MMP-9 and TIMP-1 mRNA expression in colorectal cancer and liver metastases suggesting distinct cellular origins as well as separate patterns of regulation. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:7669564

  3. Inhibition of MDA-MB-231 breast cancer cell migration and invasion activity by andrographolide via suppression of nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Zhai, Zanjing; Qu, Xinhua; Li, Haowei; Ouyang, Zhengxiao; Yan, Wei; Liu, Guangwang; Liu, Xuqiang; Fan, Qiming; Tang, Tingting; Dai, Kerong; Qin, An

    2015-02-01

    Breast cancer is one of the most common types of cancer worldwide. The majority of patients with cancer succumb to the disease as a result of distant metastases (for example, in the bones), which cause severe complications. Despite advancements in breast cancer treatment, chemotherapeutic outcomes remain far from satisfactory, prompting a search for effective natural agents with few side‑effects. Andrographolide (AP), a natural diterpenoid lactone isolated from Andrographis paniculata, inhibits cancer cell growth. The current study aimed to examine the effect of AP on breast cancer cell proliferation, survival and progression in vitro and also its inhibitory activity on breast cancer bone metastasis in vivo. To achieve this, CCK8, flow cytometry, migration, invasion, western blot, PCR and luciferase reporter assay analyses were performed in vitro as well as establishing intratibial xenograft model of breast cancer bone metastasis in vivo. The results demonstrated that AP inhibits the migration and invasion of the MBA‑MD‑231 aggressive breast cancer cell line at non‑lethal concentrations, in addition to suppressing proliferation and inducing apoptosis at high concentrations in vitro. In vivo, AP significantly inhibited the growth of tumors planted in bone and attenuated cancer‑induced osteolysis. Tartrate‑resistant acid phosphatase staining revealed osteoclast activation in tumor‑bearing mice and AP was observed to attenuate this activation. The anti‑tumor activity of AP in vitro and in vivo correlates with the downregulation of the nuclear factor κB signaling pathway and the inhibition of matrix metalloproteinase‑9 expression levels. These results indicate that AP may be an effective anti‑tumor agent for the treatment of breast cancer bone metastasis. PMID:25374279

  4. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression.

    PubMed

    Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. PMID:22503731

  5. Effects of resveratrol and genistein on nuclear factor-κB, tumor necrosis factor-α and matrix metalloproteinase-9 in patients with chronic obstructive pulmonary disease

    PubMed Central

    LIU, XIAO-JU; BAO, HAI-RONG; ZENG, XIAO-LI; WEI, JUN-MING

    2016-01-01

    Chronic airway inflammation and airway remodeling are the major pathophysiological characteristics of chronic obstructive pulmonary disease (COPD). Resveratrol and genistein have been previously demonstrated to have anti-inflammatory and antioxidative properties. The present study aimed to measure the inhibitory effects of resveratrol and genistein on tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)-9 concentration in patients with COPD. Lymphocytes were isolated from the blood of 34 patients with COPD and 30 healthy subjects, then randomly divided into the following four treatment groups: Control, dexamethasone (0.5 µmol/l), resveratrol (12.5 µmol/l) and genistein (25 µmol/l) groups. After 1 h of treatment, 100 µl lymphocytes were collected for nuclear factor (NF)-κB immunocytochemical staining. After 48 h treatment, the supernatant of the lymphocytes was collected for analysis of TNF-α and MMP-9 concentration levels. The percentage of lymphocytes with positive nuclear NF-κB expression was analyzed by immunocytochemical staining. The concentration levels of TNF-α and MMP-9 were measured using radioimmunoassay and enzyme-linked immunosorbent assay, respectively. The present study demonstrated that the percentage of NF-κB-positive cells, and the levels of TNF-α and MMP-9 in lymphocytes from patients with COPD patients were significantly higher compared with healthy subjects. Additionally, there were positive correlations between the percentage of NF-κB-positive cells, and the concentration levels of TNF-α and MMP-9 in patients with COPD. All three factors were significantly reduced in lymphocytes treated with resveratrol and genistein, and the inhibitory effects of resveratrol on NF-κB, TNF-α and MMP-9 were more potent than the effects of genistein. In conclusion, resveratrol and genistein may inhibit the NF-κB, TNF-α and MMP-9-associated pathways in patients with COPD. It is suggested that resveratrol and genistein may be potential

  6. Adventitial transplantation of blood outgrowth endothelial cells in porcine haemodialysis grafts alleviates hypoxia and decreases neointimal proliferation through a matrix metalloproteinase-9-mediated pathway—a pilot study

    PubMed Central

    Hughes, Deborah; Fu, Alex A.; Puggioni, Alessandra; Glockner, James F.; Anwer, Bilal; McGuire, Antonio M.; Mukhopadhyay, Debabrata; Misra, Sanjay

    2009-01-01

    Purpose. We hypothesized that adventitial transplantation of blood outgrowth endothelial cells (BOEC) to the vein-to-graft anastomosis of polytetrafluoroethylene grafts will reduce neointimal hyperplasia by reducing hypoxia inducible factor-1α (HIF-1α), by increasing angiogenesis in a porcine model of chronic renal insufficiency with haemodialysis polytetrafluoroethylene grafts. Because matrix metalloproteinases (MMPs) have been shown to be involved with angiogenesis, the expression of MMPs and their inhibitors was determined. Methods. Chronic renal insufficiency was created by subtotal renal infarction and 28 days later, arteriovenous PTFE grafts were placed bilaterally from the carotid artery to the jugular vein. Autologous blood outgrowth endothelial cells labeled with Lac Z were transplanted to the adventitia of the vein-to-graft anastomosis using polyglycolic acid scaffolding and scaffolding only to other side (control). Animals were killed 14 days later and vessels were explanted from the vein-to-graft anastomosis of both sides and underwent immunohistochemical analysis, western blotting and zymography for HIF-1α, MMP-2, MMP-9, TIMP-1 and TIMP-2. BOEC were also made hypoxic and normoxic for 12, 24 and 48 h to determine protein expression for MMPs and TIMPs. Results. Under hypoxia, BOEC significantly increased the expression of pro MMP-2 by 12 h and TIMP-2 by 24 h when compared to normoxic cells (P < 0.05). Transplantation of BOEC resulted in a significant decrease in both HIF-1α and intima-to-media ratio with a significant increase in both pro and active MMP-9 when compared to control vessels (P < 0.05). MMP-9 activity was localized to the neointima of the transplanted vessels by immunohistochemistry. There was increased CD31 density with engraftment of BOEC cells into the neointima of both the transplanted vessels compared to controls (P = NS). Conclusion. Transplantation of BOEC resulted in a significant decrease in intimal hyperplasia and HIF-1α with

  7. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    SciTech Connect

    Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole

  8. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    SciTech Connect

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-10-15

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47{sup phox}, p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF

  9. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells.

    PubMed

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-10-15

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-l-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47(phox), p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. PMID:23774252

  10. Evaluation of New Diagnostic Biomarkers in Pediatric Sepsis: Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, Mid-Regional Pro-Atrial Natriuretic Peptide, and Adipocyte Fatty-Acid Binding Protein

    PubMed Central

    Alqahtani, Mashael F.; Smith, Craig M.; Weiss, Scott L.; Dawson, Susan; Ralay Ranaivo, Hantamalala; Wainwright, Mark S.

    2016-01-01

    Elevated plasma concentrations of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), mid-regional pro-atrial natriuretic peptide (mrProANP), and adipocyte fatty-acid-binding proteins (A-FaBPs) have been investigated as biomarkers for sepsis or detection of acute neurological injuries in adults, but not children. We carried out a single-center, prospective observational study to determine if these measures could serve as biomarkers to identify children with sepsis. A secondary aim was to determine if these biomarkers could identify children with neurologic complications of sepsis. A total of 90 patients ≤ 18 years-old were included in this study. 30 with severe sepsis or septic shock were compared to 30 age-matched febrile and 30 age-matched healthy controls. Serial measurements of each biomarker were obtained, beginning on day 1 of ICU admission. In septic patients, MMP9-/TIMP-1 ratios (Median, IQR, n) were reduced on day 1 (0.024, 0.004–0.174, 13), day 2 (0.020, 0.002–0.109, 10), and day 3 (0.018, 0.003–0.058, 23) compared with febrile (0.705, 0.187–1.778, 22) and healthy (0.7, 0.4–1.2, 29) (p< 0.05) controls. A-FaBP and mrProANP (Median, IQR ng/mL, n) were elevated in septic patients compared to control groups on first 2 days after admission to the PICU (p <0.05). The area under the curve (AUC) for MMP-9/TIMP-1 ratio, mrProANP, and A-FaBP to distinguish septic patients from healthy controls were 0.96, 0.99, and 0.76, respectively. MMP-9/TIMP-1 ratio was inversely and mrProANP was directly related to PIM-2, PELOD, and ICU and hospital LOS (p<0.05). A-FaBP level was associated with PELOD, hospital and ICU length of stay (p<0.05). MMP-9/TIMP-1 ratio associated with poor Glasgow Outcome Score (p<0.05). A-FaBP levels in septic patients with neurological dysfunction (29.3, 17.2–54.6, 7) were significantly increased compared to septic patients without neurological dysfunction (14.6, 13.3–20.6, 11). MMP-9/TIMP-1 ratios

  11. Robust design of some selective matrix metalloproteinase-2 inhibitors over matrix metalloproteinase-9 through in silico/fragment-based lead identification and de novo lead modification: Syntheses and biological assays.

    PubMed

    Adhikari, Nilanjan; Halder, Amit K; Mallick, Sumana; Saha, Achintya; Saha, Kishna D; Jha, Tarun

    2016-09-15

    Broad range of selectivity possesses serious limitation for the development of matrix metalloproteinase-2 (MMP-2) inhibitors for clinical purposes. To develop potent and selective MMP-2 inhibitors, initially multiple molecular modeling techniques were adopted for robust design. Predictive and validated regression models (2D and 3D QSAR and ligand-based pharmacophore mapping studies) were utilized for estimating the potency whereas classification models (Bayesian and recursive partitioning analyses) were used for determining the selectivity of MMP-2 inhibitors over MMP-9. Bayesian model fingerprints were used to design selective lead molecule which was modified using structure-based de novo technique. A series of designed molecules were prepared and screened initially for inhibitions of MMP-2 and MMP-9, respectively, as these are designed followed by other MMPs to observe the broader selectivity. The best active MMP-2 inhibitor had IC50 value of 24nM whereas the best selective inhibitor (IC50=51nM) showed at least 4 times selectivity to MMP-2 against all tested MMPs. Active derivatives were non-cytotoxic against human lung carcinoma cell line-A549. At non-cytotoxic concentrations, these inhibitors reduced intracellular MMP-2 expression up to 78% and also exhibited satisfactory anti-migration and anti-invasive properties against A549 cells. Some of these active compounds may be used as adjuvant therapeutic agents in lung cancer after detailed study. PMID:27452283

  12. Apocynum venetum leaf extract attenuates disruption of the blood-brain barrier and upregulation of matrix metalloproteinase-9/-2 in a rat model of cerebral ischemia-reperfusion injury.

    PubMed

    Xiang, Jun; Lan, Rui; Tang, Yu-Ping; Chen, Yi-Ping; Cai, Ding-Fang

    2012-08-01

    We investigated the neuroprotective effects of Apocynum venetum leaf extract (AVLE) on a rat model of cerebral ischemia-reperfusion injury and explored the underlying mechanisms. Rats were randomly divided into five groups: sham, ischemia-reperfusion, AVLE125, AVLE250, and AVLE500. Cerebral ischemia was induced by 1.5 h of occlusion of the middle cerebral artery. Cerebral infarct area was measured by tetrazolium staining at 24 and 72 h after reperfusion, and neurological function was evaluated at 24, 48 and 72 h after reperfusion. Pathological changes on the ultrastructure of the blood-brain barrier (BBB) were observed by transmission electron microscopy. BBB permeability was assessed by detecting leakage of Evan's blue (EB) dye in brain tissue. The expression and activities of matrix metalloproteinase (MMP)-9/-2 were measured by western blot analyses and gelatin zymography at 24 h after reperfusion. AVLE (500 mg/kg/day) significantly reduced cerebral infarct area, improved recovery of neurological function, relieved morphological damage to the BBB, reduced water content and EB leakage in the brain, and downregulated the expression and activities of MMP-9/-2. These findings suggest that AVLE protects against cerebral ischemia-reperfusion-induced injury by alleviating BBB disruption. This action may be due to its inhibitory effects on the expression and activities of MMP-9/-2. PMID:22592643

  13. Helicobacter pylori-elicited induction in gastric mucosal matrix metalloproteinase-9 (MMP-9) release involves ERK-dependent cPLA2 activation and its recruitment to the membrane-localized Rac1/p38 complex.

    PubMed

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinases (MMPs) are a family of endopeptidases implicated in a wide rage of degenerative and inflammatory diseases, including Helicobacter pylori-associated gastritis, and gastric and duodenal ulcer. As gastric mucosal inflammatory responses to H. pylori are characterized by the rise in MMP-9 production, as well as the induction in mitogen-activated protein kinase (MAPK) and Rac1 activation, we investigated the role of Rac1/MAPK in the processes associated with the release of MMP-9. We show that H. pylori LPS-elicited induction in gastric mucosal MMP-9 release is associated with MAPK, ERK and p38 activation, and occurs with the involvement of Rac1 and cytosolic phospholipase A2 (cPLA2). Further, we demonstrate that the LPS-induced MMP-9 release requires ERK-mediated phosphorylation of cPLA2 on Ser(505) that is essential for its membrane localization with Rac1, and that this process necessitates p38 participation. Moreover, we reveal that the activation and membrane translocation of p38 to the Rac1-GTP complex plays a pivotal role in cPLA2-dependent enhancement in MMP-9 release. Hence, our findings provide a strong evidence for the role of ERK/cPLA2 and Rac1/p38/cPLA2 cascade in H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 release. PMID:26886372

  14. A Lindera obtusiloba Extract Blocks Calcium-/Phosphate-Induced Transdifferentiation and Calcification of Vascular Smooth Muscle Cells and Interferes with Matrix Metalloproteinase-2 and Metalloproteinase-9 and NF-κB.

    PubMed

    Freise, Christian; Kim, Ki Young; Querfeld, Uwe

    2015-01-01

    Vascular calcifications bear the risk for cardiovascular complications and have a high prevalence among patients with chronic kidney disease. Central mediators of vascular calcifications are vascular smooth muscle cells (VSMC). They transdifferentiate into a synthetic/osteoblast-like phenotype, which is induced, for example, by elevated levels of calcium and phosphate (Ca/P) due to a disturbed mineral balance. An aqueous extract from Lindera obtusiloba (LOE) is known to exert antifibrotic and antitumor effects or to interfere with the differentiation of preadipocytes. Using murine and rat VSMC cell lines, we here investigated whether LOE also protects VSMC from Ca/P-induced calcification. Indeed, LOE effectively blocked Ca/P-induced calcification of VSMC as shown by decreased VSMC mineralization and secretion of alkaline phosphatase. In parallel, mRNA expression of the calcification markers osterix and osteocalcin was reduced. Vice versa, the Ca/P-induced loss of the VSMC differentiation markers alpha smooth muscle actin and smooth muscle protein 22-alpha was rescued by LOE. Further, LOE blocked Ca/P-induced mRNA expressions and secretions of matrix metalloproteinases-2/-9 and activation of NF-κB, which are known contributors to vascular calcification. In conclusion, LOE interferes with the Ca/P-induced transdifferentiation/calcification of VSMC. Thus, LOE should be further analysed regarding a potential complementary treatment option for cardiovascular diseases including vascular calcifications. PMID:26294927

  15. Role of protein kinase D2 phosphorylation on Tyr in modulation by ghrelin of Helicobacter pylori-induced up-regulation in gastric mucosal matrix metalloproteinase-9 (MMP-9) secretion.

    PubMed

    Slomiany, B L; Slomiany, A

    2016-06-01

    Matrix metalloproteinas-9 (MMP-9) is a glycosylated endopeptidase associated with host reaction to microbial endotoxins and also characterizes gastric mucosal inflammatory response to H. pylori infection. Here, we report on the factors involved in gastric mucosal MMP-9 secretion in response to H. pylori LPS, and the effect of hormone, ghrelin. We show that both the LPS-elicited induction in MMP-9 secretion and also the modulatory influence of ghrelin occur at the level of MMP-9 processing between the endoplasmic reticulum (ER) and Golgi. Further, we demonstrate that the LPS effect is associated with up-regulation in the activation of Arf1, a small GTPase of the ADP-ribosylation factor family, and the recruitment and phosphorylation of protein kinase D2 (PKD2), involved in the secretory cargo processing in the Golgi. Moreover, we reveal that the LPS-induced up-regulation in MMP-9 secretion is reflected in a marked increase in PKCδ-mediated PKD2 phosphorylation on Ser, while the modulatory effect of ghrelin is manifested by the SFK-PTKs-dependent phosphorylation of PKD2 on Tyr. Thus, our findings demonstrate the role of Arf1/PKD2 in mediation of H. pylori LPS-induced up-regulation in gastric mucosal MMP-9 secretion and suggest the modulatory mechanism of ghrelin action. PMID:27209313

  16. Recruitment of Matrix Metalloproteinase-9 (MMP-9) to the Fibroblast Cell Surface by Lysyl Hydroxylase 3 (LH3) Triggers Transforming Growth Factor-β (TGF-β) Activation and Fibroblast Differentiation*

    PubMed Central

    Dayer, Cynthia; Stamenkovic, Ivan

    2015-01-01

    Solid tumor growth triggers a wound healing response. Similar to wound healing, fibroblasts in the tumor stroma differentiate into myofibroblasts (also referred to as cancer-associated fibroblasts) primarily, but not exclusively, in response to transforming growth factor-β (TGF-β). Myofibroblasts in turn enhance tumor progression by remodeling the stroma. Among proteases implicated in stroma remodeling, matrix metalloproteinases (MMPs), including MMP-9, play a prominent role. Recent evidence indicates that MMP-9 recruitment to the tumor cell surface enhances tumor growth and invasion. In the present work, we addressed the potential relevance of MMP-9 recruitment to and activity at the surface of fibroblasts. We show that recruitment of MMP-9 to the fibroblast cell surface occurs through its fibronectin-like (FN) domain and that the molecule responsible for the recruitment is lysyl hydroxylase 3 (LH3). Functional assays suggest that both pro- and active MMP-9 trigger α-smooth muscle actin expression in cultured fibroblasts, reflecting myofibroblast differentiation, possibly as a result of TGF-β activation. Moreover, the recombinant FN domain inhibited both MMP-9-induced TGF-β activation and α-smooth muscle actin expression by displacing MMP-9 from the fibroblast cell surface. Together our results uncover LH3 as a new docking receptor of MMP-9 on the fibroblast cell surface and demonstrate that the MMP-9 FN domain is essential for the interaction. They also show that the recombinant FN domain inhibits MMP-9-induced TGF-β activation and fibroblast differentiation, providing a potentially attractive therapeutic reagent toward attenuating tumor progression where MMP-9 activity is strongly implicated. PMID:25825495

  17. Embelin Inhibits Invasion and Migration of MDA-MB-231 Breast Cancer Cells by Suppression of CXC Chemokine Receptor 4, Matrix Metalloproteinases-9/2, and Epithelial-Mesenchymal Transition.

    PubMed

    Lee, Hanwool; Ko, Jeong-Hyeon; Baek, Seung Ho; Nam, Dongwoo; Lee, Seok Geun; Lee, Junhee; Yang, Woong Mo; Um, Jae-Young; Kim, Sung-Hoon; Shim, Bum Sang; Ahn, Kwang Seok

    2016-06-01

    Embelin (EB) is a benzoquinone derivative isolated from Embelia ribes Burm plant. Recent scientific evidence shows that EB induces apoptosis and inhibits migration and invasion in highly metastatic human breast cancer cells. However, the exact mechanisms of EB in tumor metastasis and invasion have not been fully elucidated. Here, we investigated the underlying mechanisms of antimetastatic activities of EB in breast cancer cells. The EB downregulated the chemokine receptor 4 (CXCR4) as well as matrix metalloproteinase (MMP)-9/2 expression and upregulated the tissue inhibitor of metalloproteinase 1 expression in MDA-MB-231 cells under noncytotoxic concentrations but not in MCF-7 cells. Additionally, EB inhibited the CXC motif chemokine ligand 12 induced invasion and migration activities of MDA-MB-231 cells. A detailed study of underlying mechanisms revealed that the regulation of the downregulation of CXCR4 was at the transcriptional level, as indicated by the downregulation of mRNA expression and suppression of nuclear factor-kappa B (NF-κB) activation. It further reduced the binding of NF-κB to the CXCR4 promoter. Besides, EB downregulated mesenchymal marker proteins (neural cadherin and vimentin) and concurrently upregulated epithelial markers (epithelial cadherin and occludin). Overall, these findings suggest that EB can abrogate breast cancer cell invasion and metastasis by suppression of CXCR4, MMP-9/2 expressions, and inhibition of epithelial-mesenchymal transition and thus may have a great potential to suppress metastasis of breast cancer. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27030214

  18. Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes

    PubMed Central

    2012-01-01

    Background Japanese encephalitis virus (JEV) infection is a major cause of acute encephalopathy in children, which destroys central nervous system (CNS) cells, including astrocytes and neurons. Matrix metalloproteinase (MMP)-9 has been shown to degrade components of the basal lamina, leading to disruption of the blood-brain barrier (BBB) and to contribute to neuroinflammatory responses in many neurological diseases. However, the detailed mechanisms of JEV-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) are largely unclear. Methods In this study, the effect of JEV on expression of MMP-9 was determined by gelatin zymography, western blot analysis, RT-PCR, and promoter assay. The involvement of AP-1 (c-Jun and c-Fos), c-Src, PDGFR, PI3K/Akt, and MAPKs in these responses were investigated by using the selective pharmacological inhibitors and transfection with siRNAs. Results Here, we demonstrate that JEV induces expression of pro-form MMP-9 via ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent, AP-1 activation in RBA-1 cells. JEV-induced MMP-9 expression and promoter activity were inhibited by pretreatment with inhibitors of AP-1 (tanshinone), c-Src (PP1), PDGFR (AG1296), and PI3K (LY294002), and by transfection with siRNAs of c-Jun, c-Fos, PDGFR, and Akt. Moreover, JEV-stimulated AP-1 activation was inhibited by pretreatment with the inhibitors of c-Src, PDGFR, PI3K, and MAPKs. Conclusion From these results, we conclude that JEV activates the ROS/c-Src/PDGFR/PI3K/Akt/MAPKs pathway, which in turn triggers AP-1 activation and ultimately induces MMP-9 expression in RBA-1 cells. These findings concerning JEV-induced MMP-9 expression in RBA-1 cells imply that JEV might play an important role in CNS inflammation and diseases. PMID:22251375

  19. Effect of a short-term in vitro exposure to the marine toxin domoic acid on viability, tumor necrosis factor-alpha, matrix metalloproteinase-9 and superoxide anion release by rat neonatal microglia

    PubMed Central

    Mayer, Alejandro MS; Hall, Mary; Fay, Michael J; Lamar, Peter; Pearson, Celeste; Prozialeck, Walter C; Lehmann, Virginia KB; Jacobson, Peer B; Romanic, Anne M; Uz, Tolga; Manev, Hari

    2001-01-01

    Background The excitatory amino acid domoic acid, a glutamate and kainic acid analog, is the causative agent of amnesic shellfish poisoning in humans. No studies to our knowledge have investigated the potential contribution to short-term neurotoxicity of the brain microglia, a cell type that constitutes circa 10% of the total glial population in the brain. We tested the hypothesis that a short-term in vitro exposure to domoic acid, might lead to the activation of rat neonatal microglia and the concomitant release of the putative neurotoxic mediators tumor necrosis factor-α (TNF-α), matrix metalloproteinases-2 and-9 (MMP-2 and -9) and superoxide anion (O2-). Results In vitro, domoic acid [10 μM-1 mM] was significantly neurotoxic to primary cerebellar granule neurons. Although neonatal rat microglia expressed ionotropic glutamate GluR4 receptors, exposure during 6 hours to domoic acid [10 μM-1 mM] had no significant effect on viability. By four hours, LPS (10 ng/mL) stimulated an increase in TNF-α mRNA and a 2,233 % increase in TNF-α protein In contrast, domoic acid (1 mM) induced a slight rise in TNF-α expression and a 53 % increase (p < 0.01) of immunoreactive TNF-α protein. Furthermore, though less potent than LPS, a 4-hour treatment with domoic acid (1 mM) yielded a 757% (p < 0.01) increase in MMP-9 release, but had no effect on MMP-2. Finally, while PMA (phorbol 12-myristate 13-acetate) stimulated O2- generation was elevated in 6 hour LPS-primed microglia, a similar pretreatment with domoic acid (1 mM) did not prime O2- release. Conclusions To our knowledge this is the first experimental evidence that domoic acid, at in vitro concentrations that are toxic to neuronal cells, can trigger a release of statistically significant amounts of TNF-α and MMP-9 by brain microglia. These observations are of considerable pathophysiological significance because domoic acid activates rat microglia several days after in vivo administration. PMID:11686853

  20. Tumor Necrosis Factor-α-induced Proteolytic Activation of Pro-matrix Metalloproteinase-9 by Human Skin Is Controlled by Down-regulating Tissue Inhibitor of Metalloproteinase-1 and Mediated by Tissue-associated Chymotrypsin-like Proteinase*

    PubMed Central

    Han, Yuan-Ping; Nien, Yih-Dar; Garner, Warren L.

    2008-01-01

    The proteolytic activation of pro-matrix metalloproteinase (MMP)-9 by conversion of the 92-kDa precursor into an 82-kDa active form has been observed in chronic wounds, tumor metastasis, and many inflammation-associated diseases, yet the mechanistic pathway to control this process has not been identified. In this report, we show that the massive expression and activation of MMP-9 in skin tissue from patients with chronically unhealed wounds could be reconstituted in vitro with cultured normal human skin by stimulation with transforming growth factor-β and tumor necrosis factor (TNF)-α. We dissected the mechanistic pathway for TNF-α induced activation of pro-MMP-9 in human skin. We found that proteolytic activation of pro-MMP-9 was mediated by a tissue-associated chymotrypsin-like proteinase, designated here as pro-MMP-9 activator (pM9A). This unidentified activator specifically converted pro-MMP-9 but not pro-MMP-2, another member of the gelatinase family. The tissue-bound pM9A was steadily expressed and not regulated by TNF-α, which indicated that the cytokine-mediated activation of pro-MMP-9 might be regulated at the inhibitor level. Indeed, the skin constantly secreted tissue inhibitor of metalloproteinase-1 at the basal state. TNF-α, but not transforming growth factor-β, down-regulated this inhibitor. The TNF-α-mediated activation of pro-MMP-9 was tightly associated with down-regulation of tissue inhibitor of metalloproteinase-1 in a dose-dependent manner. To establish this linkage, we demonstrate that the recombinant tissue inhibitor of metalloproteinase-1 could block the activation of pro-MMP-9 by either the intact skin or skin fractions. Thus, these studies suggest a novel regulation for the proteolytic activation of MMP-9 in human tissue, which is mediated by tissue-bound activator and controlled by down-regulation of a specific inhibitor. PMID:12004062

  1. Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats.

    PubMed

    Yamaguchi, Masaru; Hayashi, Masami; Fujita, Shouji; Yoshida, Takamasa; Utsunomiya, Tadahiko; Yamamoto, Hirotsugu; Kasai, Kazutaka

    2010-04-01

    It has previously been reported that low-energy laser irradiation stimulated the velocity of tooth movement via the receptor activator of nuclear factor kappa B (RANK)/RANK ligand and the macrophage colony-stimulating factor/its receptor (c-Fms) systems. Matrix metalloproteinase (MMP)-9, cathepsin K, and alpha(v) beta(3) [alpha(v)beta3] integrin are essential for osteoclastogenesis; therefore, the present study was designed to examine the effects of low-energy laser irradiation on the expression of MMP-9, cathepsin K, and alpha(v)beta3 integrin during experimental tooth movement. Fifty male, 6-week-old Wistar strain rats were used in the experiment. A total force of 10g was applied to the rat molars to induce tooth movement. A Ga-Al-As diode laser was used to irradiate the area around the moving tooth and, after 7 days, the amount of tooth movement was measured. To determine the amount of tooth movement, plaster models of the maxillae were made using a silicone impression material before (day 0) and after tooth movement (days 1, 2, 3, 4, and 7). The models were scanned using a contact-type three-dimensional (3-D) measurement apparatus. Immunohistochemical staining for MMP-9, cathepsin K, and integrin subunits of alpha(v)beta3 was performed. Intergroup comparisons of the average values were conducted with a Mann-Whitney U-test for tooth movement and the number of tartrate-resistant acid phosphatase (TRAP), MMP-9, cathepsin K, and integrin subunits of alpha(v)beta3-positive cells. In the laser-irradiated group, the amount of tooth movement was significantly greater than that in the non-irradiated group at the end of the experiment (P < 0.05). Cells positively stained with TRAP, MMP-9, cathepsin K, and integrin subunits of alpha(v)beta3 were found to be significantly increased in the irradiated group on days 2-7 compared with those in the non-irradiated group (P < 0.05). These findings suggest that low-energy laser irradiation facilitates the velocity of tooth

  2. 5-azacytidine induces anoikis, inhibits mammosphere formation and reduces metalloproteinase 9 activity in MCF-7 human breast cancer cells.

    PubMed

    Chang, Hsueh-Wei; Wang, Hui-Chun; Chen, Chiau-Yi; Hung, Ting-Wei; Hou, Ming-Feng; Yuan, Shyng-Shiou F; Huang, Chih-Jen; Tseng, Chao-Neng

    2014-01-01

    Cancer stem cells are a subset of cancer cells that initiate the growth of tumors. Low levels of cancer stem cells also exist in established cancer cell lines, and can be enriched in serum-free tumorsphere cultures. Since cancer stem cells have been reported to be resilient to common chemotherapeutic drugs in comparison to regular cancer cells, screening for compounds selectively targeting cancer stem cells may provide an effective therapeutic strategy. We found that 5-azacytidine (5-AzaC) selectively induced anoikis of MCF-7 in suspension cultures with an EC₅₀ of 8.014 µM, and effectively inhibited tumorsphere formation, as well as the migration and matrix metalloproteinases-9 (MMP-9) activity of MCF-7 cells. Furthermore, 5-AzaC and radiation collaboratively inhibited MCF-7 tumorsphere formation at clinically relevant radiation doses. Investigating the underlying mechanism may provide insight into signaling pathways crucial for cancer stem cell survival and pave the way to novel potential therapeutic targets. PMID:24633350

  3. Serum concentrations of metalloproteinase 2, metalloproteinase 9 and granzyme B in contact eczema patients

    PubMed Central

    Żbikowska-Gotz, Magdalena; Czajkowski, Rafał; Bartuzi, Zbigniew

    2013-01-01

    Introduction Contact eczema is a common skin condition with complex etiology, variable clinical presentation and lengthy therapy duration. The mechanism of contact eczema is complex, since it is affected by multiple inflammatory mediators. Aim To assess concentrations of metalloproteinase 2 (MMP-2), metalloproteinase 9 (MMP-9) and granzyme B (GzmB) in patients with contact eczema. Material and methods Seventy patients with contact eczema and 30 healthy persons as controls were included in the study. In all subjects, MMP-2, MMP-9 and GzmB were determined using ELISA immunoassay. In study group patients, concentrations were assayed in periods of disease exacerbation and remission. Obtained results were analyzed statistically. Results Mean MMP-2 and GzmB concentrations were found to be significantly higher in the study group than in the control group. Mean MMP-2, MMP-9 and GzmB levels were also statistically significantly higher during skin lesion relapse compared to contact eczema remission periods. Conclusions The presented paper demonstrates that MMP-2, MMP-9 and GzmB are good markers of contact eczema exacerbations. PMID:24278051

  4. Expression and activation of matrix metalloproteinases in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+.

    PubMed

    Siméon, A; Monier, F; Emonard, H; Gillery, P; Birembaut, P; Hornebeck, W; Maquart, F X

    1999-06-01

    We investigated the expression and activation of matrix metalloproteinases in a model of experimental wounds in rats, and their modulation by glycyl-L-histidyl-L-lysine-Cu(II), a potent activator of wound repair. Wound chambers were inserted under the skin of Sprague-Dawley rats and received serial injections of either 2 mg glycyl-L-histidyl-L-lysine-Cu(II) or the same volume of saline. The wound fluid and the neosynthetized connective tissue deposited in the chambers were collected and analyzed for matrix metalloproteinase expression and/or activity. Interstitial collagenase increased progressively in the wound fluid throughout the experiment. Glycyl-L-histidyl-L-lysine-Cu(II) treatment did not alter its activity. Matrix metalloproteinase-9 (gelatinase B) and matrix metalloproteinase-2 (gelatinase A) were the two main gelatinolytic activities expressed during the healing process. Pro-matrix metalloproteinase (pro-form of matrix metalloproteinase)-9 was strongly expressed during the early stages of wound healing (day 3). In the wound fluid, it decreased rapidly and disappeared after day 18, whereas in the wound tissue, matrix metalloproteinase-9 expression persisted in the glycyl-L-histidyl-L-lysine-Cu(II) injected chamber until day 22. Pro-matrix metalloproteinase-2 was expressed at low levels at the beginning of the healing process, increased progressively until day 7, then decreased until day 18. Activated matrix metalloproteinase-2 was present in wound fluid and wound tissue. It increased until day 12, then decreased progressively. Glycyl-L-histidyl-L-lysine-Cu(II) injections increased pro-matrix metalloproteinase-2 and activated matrix metalloproteinase-2 during the later stages of healing (days 18 and/or 22). These results demonstrate that various types of matrix metalloproteinases are selectively expressed or activated at the various periods of wound healing. Glycyl-L-histidyl-L-lysine-Cu(II) is able to modulate their expression and might significantly alter

  5. Impact of micronised purified flavonoid fraction on increased malondialdehyde and decreased metalloproteinase-2 and metalloproteinase-9 levels in varicocele: outcome of an experimentally induced varicocele.

    PubMed

    Dogan, F; Armagan, A; Oksay, T; Akman, T; Aylak, F; Bas, E

    2014-05-01

    To analyse the levels of an indirect marker of ROS-induced lipid peroxidation [i.e. malondialdehyde (MDA)] in both testes and the levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase inhibitor-1 (TIMP-1) in the left testis after induction of varicocele and investigated the impact of micronised purified flavonoid fraction (MPFF) on these markers. Forty-nine adolescent (6-week-old) male Wistar rats were included in this study. The rats were divided into seven groups as follows:Group-1, control; Group-2, sham; Group-3, left varicocele-induced; Group-4, varicocele + varicocelectomy + MPFF-treated (for 4 weeks); Group-5, varicocele + MPFF-treated (for 8 weeks); Group-6, varicocele-induced and 4 weeks later, MPFF-treated (for 4 weeks); and Group-7, varicocele + varicocelectomy. MDA was measured in the tissues of both testes using the thiobarbituric acid reactivity method. The ELISA method was used for the quantification of MMP-2, MMP-9 and TIMP-1 in the left testicular tissue. The levels of MDA were significantly higher in the varicocele group than in the other groups. The MDA levels in the left testicular tissues of Group-7 were significantly higher than those of Group 4 (P = 0.03). In the varicocele group, the MMP-2 and MMP-9 levels decreased, whereas the levels of TIMP-1 increased. The tissue levels of MMP-2 in Groups 4, 5 and 7 were significantly higher than those in Group 1 (P < 0.05). PMID:23550531

  6. Dependency of Experimental Autoimmune Encephalomyelitis Induction on MOG35-55 Properties Modulating Matrix Metalloproteinase-9 and Interleukin-6.

    PubMed

    Seo, Ji-Eun; Hasan, Mahbub; Han, Joon-Seung; Kim, Nak-Kyoon; Lee, Ji Eun; Lee, Kang Mi; Park, Ju-Hyung; Kim, Ho Jun; Son, Junghyun; Lee, Jaeick; Kwon, Oh-Seung

    2016-04-01

    Experimental autoimmune encephalomyelitis (EAE) is commonly induced with myelin oligodendrocyte glycoprotein (MOG)35-55; occasionally, EAE is not well induced despite MOG35-55 immunization. To confirm that EAE induction varies with difference in MOG35-55 properties, we compared three MOG35-55 from different commercial sources, which are MOG-A, MOG-B, and MOG-C. The peptides induced EAE disease with 100, 40, and 20 % incidence, respectively. Compared with others, MOG-A showed higher peptide purity (99.2 %) and content (92.2 %) and presented a sheet shape with additional sodium and chloride chemical elements. In MOG-A-treated group, MMP-9 activity and IL-6 levels were considerably higher than the other groups in CNS tissues, and significantly increased VCAM-1, IFN-γ, and decreased IL-4 were also shown compared to MOG-B- and/or MOG-C-treated group. In conclusion, the immunological and toxicological changes by the difference in MOG35-55 properties modulate EAE induction, and MOG35-55 which affects MMP-9 activity and IL-6 levels may be the most effective EAE-inducing antigen. This study can be potentially applied by researchers using MOG35-55 peptide and manufacturers for MOG35-55 synthesis. PMID:26464215

  7. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    SciTech Connect

    Franco, Gilson C.N.; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  8. Decreased levels of metalloproteinase-9 and angiogenic factors in skin lesions of patients with psoriatic arthritis after therapy with anti-TNF-α

    PubMed Central

    Cordiali-Fei, Paola; Trento, Elisabetta; D'Agosto, Giovanna; Bordignon, Valentina; Mussi, Anna; Ardigò, Marco; Mastroianni, Antonio; Vento, Antonella; Solivetti, Francesco; Berardesca, Enzo; Ensoli, Fabrizio

    2006-01-01

    Background Inflammation represents an early and key event in the development of both the cutaneous psoriasis and psoriatic arthritis. Compelling evidences indicate that the production of TNF-α plays a central role in psoriasis by sustaining the inflammatory process in the skin as well as in the joints. Among the multiple effects produced by TNF-α on keratinocytes, the induction of matrix metalloproteinase-9 (MMP-9), a collagenase implicated in joint inflammatory arthritis which acts as an angiogenesis promoting factor, might represent a key mechanism in the pathogenesis of the disease. Aims of the present study were to investigate a) the role of MMP-9 in the development of psoriasis by assessing the presence of MMP-9 in lesional skin and in sera of psoriatic patients; b) the association of MMP-9 with the activity of the disease; c) the relationship between MMP-9 and TNF-α production. Methods Eleven psoriatic patients, clinically presenting joint symptoms associated to the cutaneous disease, were included in a therapeutic protocol based on the administration of anti-TNF-α monoclonal antibody (Infliximab). Sera and skin biopsies were collected before treatment and after 6 weeks of therapy. Tissues were kept in short term cultures and production soluble mediators such as TNF-α, MMP-9, MMP-2, VEGF and E-Selectin, which include angiogenic molecules associated to the development of plaque psoriasis, were measured in the culture supernatants by immunoenzymatic assays (ng/ml or pg/ml per mg of tissue). MMP-9 concentrations were also measured in the sera. The cutaneous activity of disease was evaluated by the Psoriasis Area and Severity Index (PASI). Results Clinical and laboratory assessment indicated that all but one patients had a significant improvement of the PASI score after three months of therapy. The clinical amelioration was associated to a significant decrease of MMP-9 (P = 0.017), TNF-α (P = 0.005) and E-selectin (P = 0.018) levels, spontaneously released

  9. Analysis of the persistence of enteric markers in sewage polluted water on a solid matrix and in liquid suspension.

    PubMed

    Brooks, Yolanda; Aslan, Asli; Tamrakar, Sushil; Murali, Bharathi; Mitchell, Jade; Rose, Joan B

    2015-06-01

    Addressing the persistence of bacterial indicators using qPCR and their respective DNA targets under various conditions is a critical part of risk assessment for water quality monitoring. The goal of this study was to examine the persistence of fecal indicator bacteria (FIB) via Escherichia coli uidA, enterococci 23S rDNA and Bacteroides thetataiotaomicron 1,6 alpha mannanase from cells attached to a solid matrix and in suspension. Raw sewage (10% vol/vol) was seeded into autoclaved river water with half of the sample volume in suspension and the other half was filtered onto membranes and stored at 4°, 27° and 37°C for up to 28 days. At various time points, DNA from cells was extracted, markers were quantified, and were fit to linear and non-linear models (first order exponential, biphasic (double) exponential, two-staged, log-logistic, and Gompertz 3-parameter). First order and biphasic exponential models fit 73% of the experimental data. Persistence increased significantly when the cells were stored in an attached state (p < 0.001). Increasing temperature had an inverse effect on persistence for the cells in suspension. Bacterial cells could be stored on a solid matrix at 4°, 27° and 37 °C for up to 27, 18, and 3 days, respectively, with <90% decay. The least stable indicator at 4°, 27° and 37 °C was B. thetataiotaomicron in suspension with T90 = 9.6, 1.8, and 1.1 days, respectively. The most persistent indicator was enterococci, with T90 > 28 days in an attached state at all temperatures. PMID:25835590

  10. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones

    NASA Astrophysics Data System (ADS)

    Seyedabbasi, Mir Ahmad; Newell, Charles J.; Adamson, David T.; Sale, Thomas C.

    2012-06-01

    The relative contribution of dense non-aqueous phase liquid (DNAPL) dissolution versus matrix diffusion processes to the longevity of chlorinated source zones was investigated. Matrix diffusion is being increasingly recognized as an important non-DNAPL component of source behavior over time, and understanding the persistence of contaminants that have diffused into lower permeability units can impact remedial decision-making. In this study, a hypothetical DNAPL source zone architecture consisting of several different sized pools and fingers originally developed by Anderson et al. (1992) was adapted to include defined low permeability layers. A coupled dissolution-diffusion model was developed to allow diffusion into these layers while in contact with DNAPL, followed by diffusion out of these same layers after complete DNAPL dissolution. This exercise was performed for releases of equivalent masses (675 kg) of three different compounds, including chlorinated solvents with solubilities ranging from low (tetrachloroethene (PCE)), moderate (trichloroethene (TCE)) to high (dichloromethane (DCM)). The results of this simple modeling exercise demonstrate that matrix diffusion can be a critical component of source zone longevity and may represent a longer-term contributor to source longevity (i.e., longer time maintaining concentrations above MCLs) than DNAPL dissolution alone at many sites. For the hypothetical TCE release, the simulation indicated that dissolution of DNAPL would take approximately 38 years, while the back diffusion from low permeability zones could maintain the source for an additional 83 years. This effect was even more dramatic for the higher solubility DCM (97% of longevity due to matrix diffusion), while the lower solubility PCE showed a more equal contribution from DNAPL dissolution vs. matrix diffusion. Several methods were used to describe the resulting source attenuation curves, including a first-order decay model which showed that half-life of

  11. Implications of matrix diffusion on 1,4-dioxane persistence at contaminated groundwater sites.

    PubMed

    Adamson, David T; de Blanc, Phillip C; Farhat, Shahla K; Newell, Charles J

    2016-08-15

    Management of groundwater sites impacted by 1,4-dioxane can be challenging due to its migration potential and perceived recalcitrance. This study examined the extent to which 1,4-dioxane's persistence was subject to diffusion of mass into and out of lower-permeability zones relative to co-released chlorinated solvents. Two different release scenarios were evaluated within a two-layer aquifer system using an analytical modeling approach. The first scenario simulated a 1,4-dioxane and 1,1,1-TCA source zone where spent solvent was released. The period when 1,4-dioxane was actively loading the low-permeability layer within the source zone was estimated to be <3years due to its high effective solubility. While this was approximately an order-of-magnitude shorter than the loading period for 1,1,1-TCA, the mass of 1,4-dioxane stored within the low-permeability zone at the end of the simulation period (26kg) was larger than that predicted for 1,1,1-TCA (17kg). Even 80years after release, the aqueous 1,4-dioxane concentration was still several orders-of-magnitude higher than potentially-applicable criteria. Within the downgradient plume, diffusion contributed to higher concentrations and enhanced penetration of 1,4-dioxane into the low-permeability zones relative to 1,1,1-TCA. In the second scenario, elevated 1,4-dioxane concentrations were predicted at a site impacted by migration of a weak source from an upgradient site. Plume cutoff was beneficial because it could be implemented in time to prevent further loading of the low-permeability zone at the downgradient site. Overall, this study documented that 1,4-dioxane within transmissive portions of the source zone is quickly depleted due to characteristics that favor both diffusion-based storage and groundwater transport, leaving little mass to treat using conventional means. Furthermore, the results highlight the differences between 1,4-dioxane and chlorinated solvent source zones, suggesting that back diffusion of 1

  12. Dietary Fatty Acids from Leaves of Clerodendrum Volubile Induce Cell Cycle Arrest, Downregulate Matrix Metalloproteinase-9 Expression, and Modulate Redox Status in Human Breast Cancer.

    PubMed

    Erukainure, Ochuko L; Zaruwa, Moses Z; Choudhary, M Iqbal; Naqvi, S Asma; Ashraf, Nadia; Hafizur, Rahman M; Muhammad, Aliyu; Ebuehi, Osaretin A T; Elemo, Gloria N

    2016-01-01

    The antiproliferative effect of the fatty acid components of Clerodendrum volubile leaves as well as its antioxidant effect on MCF-7 and MDA-MB-231 human breast cancer cell lines were investigated. Fatty acids extracted from C. volubile leaf oil were subjected to gas chromatography mass spectrometry (GCMS) analysis. The cells were cultured and treated with the fatty acids for 48 h, after which the antiproliferation effect was ascertained via MTT assay and cell viability analysis using BD fluorescence activated cells sorting (FACS) Calibur. Cell cycle was analyzed by flow cytometry on FACS Calibur. Western blotting was used in determining expression of proteins in the cell lines. The treated cell lines were assessed for reduced glutathione level, catalase, superoxide dismutase, and lipid peroxidation. The fatty acids significantly inhibited cell proliferation, arrested G0/G1 phase, downregulated the expression of MMP-9, and attenuated oxidative stress in of MCF-7 cell lines but had little or no effect on MDA-MB-231 cell lines. These results indicate the therapeutic potential of the fatty acids components of the leaves of C. volubile on human breast cancer, which may be explored further in drug development. PMID:27043182

  13. Testes-specific protease 50 promotes cell invasion and metastasis by increasing NF-kappaB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Song, Z B; Ni, J-S; Wu, P; Bao, Y L; Liu, T; Li, M; Fan, C; Zhang, W J; Sun, L G; Huang, Y X; Li, Y X

    2015-01-01

    The high mortality in breast cancer is often associated with metastatic progression in patients. Previously we have demonstrated that testes-specific protease 50 (TSP50), an oncogene overexpressed in breast cancer samples, could promote cell proliferation and tumorigenesis. However, whether TSP50 also has a key role in cell invasion and cancer metastasis, and the mechanism underlying the process are still unclear. Here we found that TSP50 overexpression greatly promoted cell migration, invasion, adhesion and formation of the stellate structures in 3D culture system in vitro as well as lung metastasis in vivo. Conversely, TSP50 knockdown caused the opposite changes. Mechanistic studies revealed that NF-κB signaling pathway was required for TSP50-induced cell migration and metastasis, and further results indicated that TSP50 overexpression enhanced expression and secretion of MMP9, a target gene of NF-κB signaling. In addition, knockdown of MMP9 resulted in inhibition of cell migration and invasion in vitro and lung metastasis in vivo. Most importantly, immunohistochemical staining of human breast cancer samples strongly showed that the coexpression of TSP50 and p65 as well as TSP50 and MMP9 were correlated with increased metastasis and poor survival. Furthermore, we found that some breast cancer diagnosis-associated features such as tumor size, tumor grade, estrogen receptors (ER) and progesterone receptors (PR) levels, were correlated well with TSP50/p65 and TSP50/MMP9 expression status. Taken together, this work identified the TSP50 activation of MMP9 as a novel signaling mechanism underlying human breast cancer invasion and metastasis. PMID:25811800

  14. INHALED COMPLEX COMBUSTION EMISSIONS UPREGULATE TRANSCRIPTION AND ACTIVITY OF SYSTEMATIC MATRIX METALLOPROTEINASE-9 (MMP9): EVIDENCE IN MURINE AND HUMAN MODELS

    EPA Science Inventory

    Air pollution is associated with acute and chronic adverse human health effects related to atherosclerotic pathologies. MMP9 has a crucial role in the progression and ultimate degradation of vascular lesions and polymorphisms of MMP9 are highly associated with increased incidenc...

  15. Combined Neuroform Intracranial Stent and Bioactive Matrix Detachable Coil for Embolization of a Broad-Necked Persistent Primitive Trigeminal Artery Aneurysm

    PubMed Central

    Zhao, Q.P.; Li, T.L.; Duan, C.Z.; Chen, G.Z.

    2005-01-01

    Summary We report a patient with a wide-necked aneurysm arising at the bifurcation of the right internal carotid artery and the persistent primitive trigeminal artery (PPTA) treated successfully by Matrix detachable coil occlusion and assisted by a Neuroform intracranial stent. First, a Neuroform self-expanding intracranial stent was delivered via a 5-F Guider Softtip XP and placed as desired, then the aneurysm dome was embolized with two Matrix detachable coils through the interstices of the stent. The aneurysm was 80% occluded angiographically and the parent artery was patent. DSA imaging six months after the procedure showed the aneurysm to be obliterated at angiography and the neck tissue thickness of the aneurysm to be increased, but the parent artery diameter was not impacted. We describe the case in detail and discuss our preliminary experience of using the Neuroform stent and Matrix detachable coils for the treatment of a PPTA wide-necked aneurysm. PMID:20584437

  16. Unexpected persistence on habitat islands: genetic signatures reveal dispersal of a eucalypt-dependent marsupial through a hostile pine matrix.

    PubMed

    Taylor, Andrea C; Tyndale-Biscoe, Hugh; Lindenmayer, David B

    2007-07-01

    Several factors contribute to the extinction of populations in fragmented habitat but key ones include habitat loss and disruptions to connectivity. Aspects of the ecology of greater gliders (Petauroides volans), along with observations of their response to native forest clearance at a site in southeastern Australia, lead to the prediction in the 1960s that the species would not persist in the replacement exotic pine plantation. However, 35 years later, the species was observed in many remnant native vegetation patches retained within the plantation boundary, albeit at a lower occupancy rate than at matched continuous forest control sites. To determine the role of patch connectivity in persistence of P. volans in remnants, we employed 12 microsatellite markers to genotype individuals from 11 remnants, three contemporary nearby continuous native eucalypt forest sites and a sample collected during native vegetation clearance at the site in the 1960s. Patch samples retained substantially more genetic diversity than expected under an isolation model, suggesting that patches have experienced some immigration. Five putative patch immigrants--two from sampled sites 1- and 7-km distant, and three from unresolved or unsampled localities--were identified via genetic parentage and population assignment analyses. Patch populations displayed varying levels of admixture in Bayesian genetic structure analyses, with the oldest and most geographically isolated ones showing the least admixture, suggesting they have experienced relatively little immigration. Evidence of at least some immigration into patches may explain why P. volans has persisted contrary to expectation in heavily fragmented habitat. PMID:17594437

  17. Liver functions in silica-exposed workers in Egypt: possible role of matrix remodeling and immunological factors

    PubMed Central

    Zawilla, Nermin; Taha, Fatma; Ibrahim, Yasser

    2014-01-01

    Background: Brick manufacturing constitutes an important industrial sector in Egypt with considerable exposure to silica. Objectives: We aimed for evaluating hepatic functions in silica-exposed workers in the clay brick industry, and the possible role of matrix remodeling and immunological factors. Methods: A case–control study, 87 workers as exposed and 45 as control subjects. Questionnaire, clinical examination, and laboratory investigations: liver functions, matrix metalloproteinase-9, immunoglobulins G and E, and anti-liver kidney microsomal antibody. Results: In the exposed workers, mean levels of liver functions, matrix metalloproteinase-9 (MMP-9), and IgG and IgE were significantly higher. In the silicotic subgroup the mean level of GGT was almost twice the level in the non-silicotic subjects. Logistic regression showed that abnormal GGT and ALT were associated with production workers. Conclusion: Workers in the clay brick industry showed evidence of liver disease that could be related to matrix remodeling. PMID:24999850

  18. Persistent Biomechanical Alterations After ACL Reconstruction Are Associated With Early Cartilage Matrix Changes Detected by Quantitative MR

    PubMed Central

    Amano, Keiko; Pedoia, Valentina; Su, Favian; Souza, Richard B.; Li, Xiaojuan; Ma, C. Benjamin

    2016-01-01

    Background: The effectiveness of anterior cruciate ligament (ACL) reconstruction in preventing early osteoarthritis is debated. Restoring the original biomechanics may potentially prevent degeneration, but apparent pathomechanisms have yet to be described. Newer quantitative magnetic resonance (qMR) imaging techniques, specifically T1ρ and T2, offer novel, noninvasive methods of visualizing and quantifying early cartilage degeneration. Purpose: To determine the tibiofemoral biomechanical alterations before and after ACL reconstruction using magnetic resonance imaging (MRI) and to evaluate the association between biomechanics and cartilage degeneration using T1ρ and T2. Study Design: Cohort study; Level of evidence, 2. Methods: Knee MRIs of 51 individuals (mean age, 29.5 ± 8.4 years) with unilateral ACL injuries were obtained prior to surgery; 19 control subjects (mean age, 30.7 ± 5.3 years) were also scanned. Follow-up MRIs were obtained at 6 months and 1 year. Tibial position (TP), internal tibial rotation (ITR), and T1ρ and T2 were calculated using an in-house Matlab program. Student t tests, repeated measures, and regression models were used to compare differences between injured and uninjured sides, observe longitudinal changes, and evaluate correlations between TP, ITR, and T1ρ and T2. Results: TP was significantly more anterior on the injured side at all time points (P < .001). ITR was significantly increased on the injured side prior to surgery (P = .033). At 1 year, a more anterior TP was associated with elevated T1ρ (P = .002) and T2 (P = .026) in the posterolateral tibia and with decreased T2 in the central lateral femur (P = .048); ITR was associated with increased T1ρ in the posteromedial femur (P = .009). ITR at 6 months was associated with increased T1ρ at 1 year in the posteromedial tibia (P = .029). Conclusion: Persistent biomechanical alterations after ACL reconstruction are related to significant changes in cartilage T1ρ and T2 at 1 year

  19. Cell Persistence of Allogeneic Keratinocytes and Fibroblasts Applied in a Fibrin Matrix to Acute, Full Thickness Wounds

    PubMed Central

    Dickerson, Jaime E.; Planz, John V.; Reece, Barry T.; Weedon, Kathy A.; Kirkpatrick, Sandy D.; Slade, Herbert B.

    2013-01-01

    HP802-247 is a living cell suspension of cultured allogeneic growth-arrested human male keratinocytes and fibroblasts (1:9 ratio), intended for spray application to chronic wounds. In this study, a small wound was created on the arms of 28 healthy female volunteers (3-mm punch), followed by a single application of HP802-247. At each subsequent week for 8 weeks, a punch excision of the wounds was performed on a cohort of three subjects. Excised specimens were analyzed for allogeneic fibroblast and keratinocyte DNA determined by Y-chromosome short-tandem repeats using PCR amplification followed by capillary electrophoresis, a method with estimated sensitivity of 1 male cell in a background of 8,000 female cells. A complete haplotype attributable to HP802-247 fibroblasts was detected in three of three samples at 1 week, with one partial and one complete fibroblast haplotype detected at 2 weeks, and one partial keratinocyte haplotype detected at 3 weeks postapplication. The findings indicate that HP802-247 can be expected to persist in an acute wound bed for up to 2 weeks postapplication. PMID:26858859

  20. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B.

    PubMed

    Bond, M; Fabunmi, R P; Baker, A H; Newby, A C

    1998-09-11

    Matrix metalloproteinase (MMPs) enzymes are implicated in matrix remodelling during proliferative inflammatory processes including wound healing. We report here synergistic upregulation of MMP-9 protein and mRNA by platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF) in combination with interleukin-1alpha (IL-1alpha) or tumour necrosis factor-alpha (TNF-alpha) in primary rabbit and human dermal fibroblasts. The synergistic interaction between growth factors and cytokines implies that basement membrane remodelling is maximal physiologically when both are present together. The signalling pathways mediating this synergistic regulation are not understood, although analysis of the MMP-9 promoter has identified an essential proximal AP-1 element and an upstream nuclear factor kappa-B (NF-kappaB) site. Using electromobility shift assays, binding to the AP-1 site was only slightly increased by growth factors and cytokines. NF-kappaB binding was rapidly induced by IL-1alpha or TNF-alpha but was neither induced nor potentiated by bFGF or PDGF. Neither AP-1 nor NF-kappaB was therefore sufficient on its own for synergistic regulation. Using a recently developed adenovirus that overexpresses the inhibitory subunit, IkappaB alpha, we demonstrated an absolute requirement for NF-kappaB in upregulation of MMP-9. Activation of NF-kappaB binding by inflammatory cytokines was therefore necessary but not sufficient for synergistic upregulation of MMP-9. PMID:9755853

  1. Epidermal Growth Factor–induced Enhancement of Glioblastoma Cell Migration in 3D Arises from an Intrinsic Increase in Speed But an Extrinsic Matrix- and Proteolysis-dependent Increase in Persistence

    PubMed Central

    Kim, Hyung-Do; Guo, Tiffany W.; Wu, Angela P.; Wells, Alan; Gertler, Frank B.

    2008-01-01

    Epidermal growth factor (EGF) receptor-mediated cell migration plays a vital role in invasion of many tumor types. EGF receptor ligands increase invasiveness in vivo, but it remains unclear how consequent effects on intrinsic cell motility behavior versus effects on extrinsic matrix properties integrate to result in net increase of translational speed and/or directional persistence of migration in a 3D environment. Understanding this convolution is important for therapeutic targeting of tumor invasion, as key regulatory pathways for intrinsic versus extrinsic effects may not be coincident. Accordingly, we have undertaken a quantitative single-cell imaging study of glioblastoma cell movement in 3D matrices and on 2D substrata across a range of collagen densities with systematic variation of protease-mediated matrix degradation. In 3D, EGF induced a mild increase in cell speed and a strong increase in directional persistence, the latter depending heavily on matrix density and EGF-stimulated protease activity. In contrast, in 2D, EGF induced a similarly mild increase in speed but conversely a decrease in directional persistence (both independent of protease activity). Thus, the EGF-enhanced 3D tumor cell migration results only partially from cell-intrinsic effects, with override of cell-intrinsic persistence decrease by protease-mediated cell-extrinsic reduction of matrix steric hindrance. PMID:18632979

  2. In vitro studies to show sequestration of matrix metalloproteinases by silver-containing wound care products.

    PubMed

    Walker, Michael; Bowler, Philip G; Cochrane, Christine A

    2007-09-01

    Excess or "uncontrolled" proteinase activity in the wound bed has been implicated as one factor that may delay or compromise wound healing. One proteinase group--matrix metalloproteinases--includes collagenases, elastase, and gelatinases and can be endogenous (cell) or exogenous (bacterial) in origin. A study was conducted to assess the ability of five silver-containing wound care products to reduce a known matrix metalloproteinase supernatant concentration in vitro. Four silver-containing wound dressings (a carboxy-methyl cellulose, a nanocrystalline, a hydro-alginate, and a collagen/oxidized regenerated cellulose composite dressing), along with a 0.5% aqueous silver nitrate [w/v] solution and controls for matrix metalloproteinase-2 and matrix metalloproteinase-9 sourced from ex vivo dermal tissue and blood monocytes, respectively, were used. Extracts were separated and purified using gelatine-Sepharose column chromatography and dialysis and polyacrylamide gel electrophoretic zymography was used to analyze specific matrix metalloproteinase activity. All dressings and the solution were shown to sequester both matrix metalloproteinases. The silver-containing carboxy-methyl cellulose dressing showed significantly greater sequestration for matrix metalloproteinase-2 at 6 and 24 hours (P< 0.001) compared to the other treatments. For matrix metalloproteinase-9, both the carboxy-methyl cellulose dressing and the oxidized regenerated cellulose dressing achieved significant sequestration when compared to the other treatments at 24 hours (P <0.001), which was maintained to 48 hours (P < 0.001). Results from this study show that silver-containing dressings are effective in sequestering matrix metalloproteinase-2 and -9 and that this can be achieved without a sacrificial protein (eg, collagen). Although the varying ability of wound dressings to sequester matrix metalloproteinases has been shown in vitro, further in vivo evidence is required to confirm these findings. PMID

  3. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1.

    PubMed

    Mewhort, Holly E M; Lipon, Brodie D; Svystonyuk, Daniyil A; Teng, Guoqi; Guzzardi, David G; Silva, Claudia; Yong, V Wee; Fedak, Paul W M

    2016-03-15

    Following myocardial infarction (MI), cardiac myofibroblasts remodel the extracellular matrix (ECM), preventing mechanical complications. However, prolonged myofibroblast activity leads to dysregulation of the ECM, maladaptive remodeling, fibrosis, and heart failure (HF). Chronic inflammation is believed to drive persistent myofibroblast activity; however, the mechanisms are unclear. We assessed the influence of peripheral blood monocytes on human cardiac myofibroblast activity in a three-dimensional (3D) ECM microenvironment. Human cardiac myofibroblasts isolated from surgical biopsies of the right atrium and left ventricle were seeded into 3D collagen matrices. Peripheral blood monocytes were isolated from healthy human donors and cocultured with myofibroblasts. Monocytes increased myofibroblast activity measured by collagen gel contraction (baseline: 57.6 ± 5.9% vs. coculture: 65.2 ± 7.1% contraction; P < 0.01) and increased local ECM remodeling quantified by confocal microscopy. Under coculture conditions that allow indirect cellular interaction via paracrine factors but prevent direct cell-cell contact, monocytes had minimal effects on myofibroblast activity (17.9 ± 11.1% vs. 6.4 ± 7.0% increase, respectively; P < 0.01). When cells were cultured under direct contact conditions, multiplex analysis of the coculture media revealed an increase in the paracrine factors TGF-β1 and matrix metalloproteinase 9 compared with baseline (122.9 ± 10.1 pg/ml and 3,496.0 ± 190.4 pg/ml, respectively, vs. 21.5 ± 16.3 pg/ml and 183.3 ± 43.9 pg/ml; P < 0.001). TGF-β blockade abolished the monocyte-induced increase in cardiac myofibroblast activity. These data suggest that direct cell-cell interaction between monocytes and cardiac myofibroblasts stimulates TGF-β-mediated myofibroblast activity and increases remodeling of local matrix. Peripheral blood monocyte interaction with human cardiac myofibroblasts stimulates myofibroblast activity through release of TGF-β1

  4. Photon-gated persistent spectral hole burning by electron transfer from a doped donor to an acceptor branched to a host polymer matrix

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Nishi, T.; Shimada, T.; Hiratsuka, H.

    1993-01-01

    Two-color photon-gated persistent spectral hole burning (PSHB) via donor-acceptor electron transfer is reported in systems where the acceptor, 10-chloroanthracene, was intentionally branched to a side chain of the poly(methylmethacrylate) (PMMA) host polymer while the donor, metal-free tetraphenylporphine, was dispersed in the polymer. The systems, which had an acceptor concentration of up to 10-1 M, were prepared without aggregation of the acceptor. Spectral holes were burnt in the Qx(0,0) absorption band of the donor when the systems were simultaneously irradiated with a frequency-selective excitation (duration: 500 ps; energy: 200 nJ/cm2) and a gating excitation (wavelength: 514.5 nm; duration: 33 ms; energy: 14 μJ/cm2). The difference absorption spectrum between the unburned absorption spectrum and one recorded after photon-gated PSHB has confirmed that the hole formation mechanism is donor-acceptor electron transfer from a photoexcited donor to a ground-state branched acceptor. The thermal stability of burnt holes measured with a temperature cycling experiment increased when the acceptor was branched into PMMA. The effect of acceptor branching on the PSHB characteristics is discussed with reference to those for an acceptor-doped system.

  5. [Persistent diarrhea

    PubMed

    Andrade, J A; Moreira, C; Fagundes Neto, U

    2000-07-01

    INTRODUCTION: Persistent diarrhea has high impact on infantile morbidity and mortality rates in developing countries. Several studies have shown that 3 to 20% of acute diarrheal episodes in children under 5 years of age become persistent. DEFINITION: Persistent diarrhea is defined as an episode that lasts more than 14 days. ETIOLOGY: The most important agents isolated in persistent diarrhea are: Enteropathogenic E. coli (EPEC), Salmonella, Enteroaggregative E. coli (EAEC), Klebisiella and Cryptosporidium. CLINICAL ASPECTS: In general, the clinical characteristics of patients with persistent diarrhea do not change with the pathogenic agent. Persistent diarrhea seems to represent the final result of a several insults a infant suffers that predisposes to a more severe episode of diarrhea due to a combination of host factors and high rates of enviromental contamination. Therefore, efforts should be made to promptly treat all episodes of diarrhea with apropriate follow-up. THERAPY: The aim of the treatment is to restore hydroelectrolytic deficits and to replace losses until the diarrheal ceases. It is possible in the majority of the cases, using oral rehydration therapy and erly an appropriate type of diet. PREVENTION: It is imperative that management strategies also focus on preventive aspects. The most effective diarrheal prevention strategy in young infants worldwide is promotion of exclusive breast feeding. PMID:14676915

  6. Semibiotic Persistence

    NASA Astrophysics Data System (ADS)

    Prothmann, C.; Zauner, K.-P.

    From observation, we find four different strategies to successfully enable structures to persist over extended periods of time. If functionally relevant features are very large compared to the changes that can be effectuated by entropy, the functional structure itself has a high enough probability to erode only slowly over time. If the functionally relevant features are protected from environmental influence by sacrificial layers that absorb the impinging of the environment, deterioration can be avoided or slowed. Loss of functionality can be delayed, even for complex systems, by keeping alternate options for all required components available. Biological systems also apply information processing to actively counter the impact of entropy by mechanisms such as self-repair. The latter strategy increases the overall persistence of living systems and enables them to maintain a highly complex functional organisation during their lifetime and over generations. In contrast to the other strategies, information processing has only low material overhead. While at present engineered technology is far from achieving the self-repair of evolved systems, the semibiotic combination of biological components with conventionally engineered systems may open a path to long-term persistence of functional devices in harsh environments. We review nature's strategies for persistence, and consider early steps taken in the laboratory to import such capabilities into engineered architectures.

  7. Metalloproteinase-9 contributes to inflammatory glia activation and nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism.

    PubMed

    Annese, V; Herrero, María-Trinidad; Di Pentima, M; Gomez, A; Lombardi, L; Ros, C M; De Pablos, V; Fernandez-Villalba, E; De Stefano, Maria Egle

    2015-03-01

    Inflammation is a predominant aspect of neurodegenerative diseases, manifested by glia activation and expression of pro-inflammatory mediators. Studies on animal models of Parkinson's disease (PD) suggest that sustained neuroinflammation exacerbates degeneration of the dopaminergic (DA) nigro-striatal pathway. Therefore, insights into the inflammatory mechanisms of PD may help the development of novel therapeutic strategies against this disease. As extracellular matrix metalloproteinases (MMPs) could be major players in the progression of Parkinsonism, we investigated, in the substantia nigra and striatum of mice acutely injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), changes in mRNA expression, protein levels, and cell localization of MMP-9. This protease is mainly neuronal, but early after MPTP injection its mRNA and protein levels, as well as the number of MMP-9-expressing microglia and astrocytes, increase concomitantly to a prominent inflammation. Neuroinflammation and MMP-9(+) glia begin to decline within 2 weeks, although protein levels remain higher than control, in association with a partial recovery of DA nigro-striatal circuit. Comparable quantitative studies on MMP-9 knock-out mice, show a significant decrease in both glia activation and loss of DA neurons and fibers, with respect to wild-type. Moreover, in a parallel study on chronically MPTP-injected macaques, we observed that perpetuation of inflammation and high levels of MMP-9 are associated to DA neuron loss. Our data suggest that MMP-9 released by injured neurons favors glia activation; glial cells in turn reinforce their reactive state via autocrine MMP-9 release, contributing to nigro-striatal pathway degeneration. Specific modulation of MMP-9 activity may, therefore, be a strategy to ameliorate harmful inflammatory outcomes in Parkinsonism. PMID:24558048

  8. The Influence of Autologous Bone Marrow Stem Cell Transplantation on Matrix Metalloproteinases in Patients Treated for Acute ST-Elevation Myocardial Infarction

    PubMed Central

    Furenes, Eline Bredal; Opstad, Trine Baur; Solheim, Svein; Lunde, Ketil; Arnesen, Harald; Seljeflot, Ingebjørg

    2014-01-01

    Background. Matrix metalloproteinase-9 (MMP-9), regulated by tissue inhibitor of metalloproteinase-9 (TIMP-1) and the extracellular matrix metalloproteinase inducer (EMMPRIN), contributes to plaque instability. Autologous stem cells from bone marrow (mBMC) treatment are suggested to reduce myocardial damage; however, limited data exists on the influence of mBMC on MMPs. Aim. We investigated the influence of mBMC on circulating levels of MMP-9, TIMP-1, and EMMPRIN at different time points in patients included in the randomized Autologous Stem-Cell Transplantation in Acute Myocardial Infarction (ASTAMI) trial (n = 100). Gene expression analyses were additionally performed. Results. After 2-3 weeks we observed a more pronounced increase in MMP-9 levels in the mBMC group, compared to controls (P = 0.030), whereas EMMPRIN levels were reduced from baseline to 2-3 weeks and 3 months in both groups (P < 0.0001). Gene expression of both MMP-9 and EMMPRIN was reduced from baseline to 3 months. MMP-9 and EMMPRIN were significantly correlated to myocardial injury (CK: P = 0.005 and P < 0.001, resp.) and infarct size (SPECT: P = 0.018 and P = 0.008, resp.). Conclusion. The results indicate that the regulation of metalloproteinases is important during AMI, however, limited influenced by mBMC. PMID:25294955

  9. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics

    PubMed Central

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng

    2014-01-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl−/−; or Yes, Src, and Fyn knockout mice (YSF−/−)] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl−/− MEF showed impaired matrix endocytosis, YSF−/− MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  10. Plasma matrix metalloproteinases in neonates having surgery for congenital heart disease

    PubMed Central

    Joffe, Ari R.; Schulz, Christina; Rosychuk, Rhonda J.; Dyck, John; Rebeyka, Ivan M.; Ross, David B.; Schulz, Richard; Cheung, Po-Yin

    2009-01-01

    During cardiopulmonary-bypass matrix-metalloproteinases released may contribute to ventricular dysfunction. This study was to determine plasma matrix-metalloproteinases in neonates after cardiopulmonary-bypass and their relation to post-operative course. A prospective observational study included 18 neonates having cardiac surgery. Plasma matrix-metalloproteinases-2 and 9 activities were measured by gelatin-zymography pre-operatively, on starting cardiopulmonarybypass, 7–8 min after aortic cross-clamp release, and 1h, 4h, 24h, and 3d after cardiopulmonary-bypass. Plasma concentrations of their tissue inhibitors 1 and 2 were determined by enzyme-linked immunosorbent assay. Cardiac function was assessed by serial echocardiography. Paired t-tests and Wilcoxon tests were used to assess temporal changes, and linear correlation with simultaneous clinical and cardiac function parameters were assessed using Pearson's product-moment correlation coefficient. Plasma matrix-metalloproteinases activities and their tissue inhibitor concentrations decreased during cardiopulmonary-bypass. Matrix-metalloproteinase-2 plasma activity increased progressively starting 1h after cardiopulmonarybypass and returned to pre-operative levels at 24h. Matrix-metalloproteinase-9 plasma activity increased significantly after release of aortic cross-clamp, peaked 7–8min later, and returned to baseline at 24h. Plasma tissueinhibitor 1 and 2 concentrations increased 1h after cardiopulmonary-bypass. Cardiac function improved from 4h to 3d after surgery (p<0.05). There was no evidence of significant correlations between matrix-metalloproteinases or their inhibitors and cardiac function, inotrope scores, organ dysfunction scores, ventilation days, or hospital days. The temporal profile of plasma matrix-metalloproteinases and their inhibitors after cardiopulmonary-bypass in neonates are similar to adults. In neonates, further study should determine whether circulating matrix-metalloproteinases are

  11. Response: persistent perplexities.

    PubMed

    Radin, M J

    2001-09-01

    This response to the preceding five articles highlights the stubborn persistence of the philosophical perplexities surrounding commodification in the realm of medicine and biotechnology. PMID:11700685

  12. Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3.

    PubMed Central

    Cowell, S; Knäuper, V; Stewart, M L; D'Ortho, M P; Stanton, H; Hembry, R M; López-Otín, C; Reynolds, J J; Murphy, G

    1998-01-01

    SW1353 chondrosarcoma cells cultured in the presence of interleukin-1, concanavalin A or PMA secreted procollagenase 3 (matrix metalloproteinase-13). The enzyme was detected in the culture medium by Western blotting using a specific polyclonal antibody raised against recombinant human procollagenase 3. Oncostatin M enhanced the interleukin-1-induced production of procollagenase 3, whereas interleukin-4 decreased procollagenase 3 synthesis. The enzyme was latent except when the cells had been treated with concanavalin A, when a processed form of 48 kDa, which corresponds to the active form, was found in the culture medium and collagenolytic activity was detected by degradation of 14C-labelled type I collagen. The concanavalin A-induced activation of procollagenase 3 coincided with the processing of progelatinase A (matrix metalloproteinase-2) by the cells, as measured by gelatin zymography. In addition, progelatinase B (matrix metalloproteinase-9) was activated when gelatinase A and collagenase 3 were in their active forms. Concanavalin A treatment of SW1353 cells increased the amount of membrane-type-1 matrix metalloproteinase protein in the cell membranes, suggesting that this membrane-bound enzyme participates in an activation cascade involving collagenase 3 and the gelatinases. This cascade was effectively inhibited by tissue inhibitors of metalloproteinases-2 and -3. Tissue inhibitor of metalloproteinases-1, which is a much weaker inhibitor of membrane-type 1 matrix metalloproteinase than tissue inhibitors of metalloproteinases-2 and -3 [Will, Atkinson, Butler, Smith and Murphy (1996) J. Biol. Chem. 271, 17119-17123], was a weaker inhibitor of the activation cascade. PMID:9531484

  13. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  14. Nrf2 null enhances UVB-induced skin inflammation and extracellular matrix damages.

    PubMed

    Saw, Constance Lay Lay; Yang, Anne Yuqing; Huang, Mou-Tuan; Liu, Yue; Lee, Jong Hun; Khor, Tin Oo; Su, Zheng-Yuan; Shu, Limin; Lu, Yaoping; Conney, Allan H; Kong, Ah-Ng Tony

    2014-01-01

    Nrf2 plays a critical role in defending against oxidative stress and inflammation. We previously reported that Nrf2 confers protection against ultraviolet-B (UVB)-induced inflammation, sunburn reaction, and is involved in sulforaphane-mediated photo-protective effects in the skin. In this study, we aimed to demonstrate the protective role of Nrf2 against inflammation-mediated extracellular matrix (ECM) damage induced by UVB irradiation. Ear biopsy weights were significantly increased in both Nrf2 wild-type (Nrf2 WT) and knockout (Nrf2 KO) mice one week after UVB irradiation. However, these weights increased more significantly in KO mice compared to WT mice, suggesting a greater inflammatory response in KO mice. In addition, we analyzed the protein expression of numerous markers, including macrophage inflammatory protein-2 (MIP-2), pro-matrix metalloproteinase-9 (MMP-9), and p53. p53, a regulator of DNA repair, was overexpressed in Nrf2 KO mice, indicating that the absence of Nrf2 led to more sustained DNA damage. There was also more substantial ECM degradation and increased inflammation in UVB-irradiated Nrf2 KO mice compared to UVB-irradiated WT mice. Furthermore, the protective effects of Nrf2 in response to UVB irradiation were mediated by increased HO-1 protein expression. Collectively, our results show that Nrf2 plays a key role in protecting against UVB irradiation and that the photo-protective effect of Nrf2 is closely related to the inhibition of ECM degradation and inflammation. PMID:25228981

  15. Sodium hydrosulfide prevents myocardial dysfunction through modulation of extracellular matrix accumulation and vascular density.

    PubMed

    Pan, Li-Long; Wang, Xian-Li; Wang, Xi-Ling; Zhu, Yi-Zhun

    2014-01-01

    The aim was to examine the role of exogenous hydrogen sulfide (H2S) on cardiac remodeling in post-myocardial infarction (MI) rats. MI was induced in rats by ligation of coronary artery. After treatment with sodium hydrosulfide (NaHS, an exogenous H2S donor, 56 μM/kg·day) for 42 days, the effects of NaHS on left ventricular morphometric features, echocardiographic parameters, heme oxygenase-1 (HO-1), matrix metalloproteinases-9 (MMP-9), type I and type III collagen, vascular endothelial growth factor (VEGF), CD34, and α-smooth muscle actin (α-SMA) in the border zone of infarct area were analyzed to elucidate the protective mechanisms of exogenous H2S on cardiac function and fibrosis. Forty-two days post MI, NaHS-treatment resulted in a decrease in myocardial fibrotic area in association with decreased levels of type I, type III collagen and MMP-9 and improved cardiac function. Meanwhile, NaHS administration significantly increased cystathionine γ-lyase (CSE), HO-1, α-SMA, and VEGF expression. This effect was accompanied by an increase in vascular density in the border zone of infarcted myocardium. Our results provided the strong evidences that exogenous H2S prevented cardiac remodeling, at least in part, through inhibition of extracellular matrix accumulation and increase in vascular density. PMID:25514418

  16. Persistent depressive disorder

    MedlinePlus

    The exact cause of persistent depressive disorder (PDD) is unknown. It tends to run in families. PDD occurs more often in women. Most people with PDD will also have an episode of major depression at some point in their lives. ...

  17. Persistent heap Management library

    Energy Science and Technology Software Center (ESTSC)

    2012-01-17

    PERM is a C library for persistent heap management and is intended for use with a dynamic-memory allocator (e.g. malloc, free). The PERM memory allocator replaces the standard C dynamic memory allocation functions with compatible versions that provide persistent memory to application programs. Memory allocated with the PERM allocatory will persist between program invocations after a call to a checkpoint function. This function essentially saves the state of the heap and registered global variables tomore » a file which may reside in flash memory or other node local storage. A few other functions are also provided by the library to manage checkpoint files. Global variables in an application can be marked persistent and be included in a checkpoint by using a compiler attribute defined as PERM. The PERM checkpoint methof is not dependent on the programming model ans works with distributed memory or shared memory programs.« less

  18. Persistent heap Management library

    SciTech Connect

    2012-01-17

    PERM is a C library for persistent heap management and is intended for use with a dynamic-memory allocator (e.g. malloc, free). The PERM memory allocator replaces the standard C dynamic memory allocation functions with compatible versions that provide persistent memory to application programs. Memory allocated with the PERM allocatory will persist between program invocations after a call to a checkpoint function. This function essentially saves the state of the heap and registered global variables to a file which may reside in flash memory or other node local storage. A few other functions are also provided by the library to manage checkpoint files. Global variables in an application can be marked persistent and be included in a checkpoint by using a compiler attribute defined as PERM. The PERM checkpoint methof is not dependent on the programming model ans works with distributed memory or shared memory programs.

  19. Persistent depressive disorder

    MedlinePlus

    PDD; Chronic depression; Depression - chronic ... The exact cause of persistent depressive disorder (PDD) is unknown. It tends to run in families. PDD occurs more often in women. Most people with PDD will also ...

  20. Sync Matrix

    Energy Science and Technology Software Center (ESTSC)

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  1. Melting of persistent double-stranded polymers

    NASA Astrophysics Data System (ADS)

    Rahi, Sahand Jamal; Hertzberg, Mark Peter; Kardar, Mehran

    2008-11-01

    Motivated by recent DNA-pulling experiments, we revisit the Poland-Scheraga model of melting a double-stranded polymer. We include distinct bending rigidities for both the double-stranded segments and the single-stranded segments forming a bubble. There is also bending stiffness at the branch points between the two segment types. The transfer matrix technique for single persistent chains is generalized to describe the branching bubbles. Properties of spherical harmonics are then exploited in truncating and numerically solving the resulting transfer matrix. This allows efficient computation of phase diagrams and force-extension curves (isotherms). While the main focus is on exposition of the transfer matrix technique, we provide general arguments for a reentrant melting transition in stiff double strands. Our theoretical approach can also be extended to study polymers with bubbles of any number of strands, with potential applications to molecules such as collagen.

  2. Persistence and financial markets

    NASA Astrophysics Data System (ADS)

    Jain, S.

    2007-09-01

    The persistence phenomenon is studied in a financial context by using a novel mapping of the time evolution of the values of shares in a portfolio onto Ising spins. The method is applied to historical data from the London Financial Times Stock Exchange 100 index (FTSE 100) over an arbitrarily chosen period. By following the time dependence of the spins, we find evidence for a power law decay of the proportion of shares that remain either above or below their ‘starting’ values. As a result, we estimate a persistence exponent for the underlying financial market to be ≈0.5. Preliminary results from computer simulations on persistence in the economic dynamics of a toy model appear to reproduce the behaviour observed in real markets.

  3. Why Do Delusions Persist?

    PubMed Central

    Corlett, Philip R.; Krystal, John H.; Taylor, Jane R.; Fletcher, Paul C.

    2009-01-01

    Delusions are bizarre and distressing beliefs that characterize certain mental illnesses. They arise without clear reasons and are remarkably persistent. Recent models of delusions, drawing on a neuroscientific understanding of learning, focus on how delusions might emerge from abnormal experience. We believe that these models can be extended to help us understand why delusions persist. We consider prediction error, the mismatch between expectancy and experience, to be central. Surprising events demand a change in our expectancies. This involves making what we have learned labile, updating and binding the memory anew: a process of memory reconsolidation. We argue that, under the influence of excessive prediction error, delusional beliefs are repeatedly reconsolidated, strengthening them so that they persist, apparently impervious to contradiction. PMID:19636384

  4. Degradation of MSCRAMM target macromolecules in VLU slough by Lucilia sericata chymotrypsin 1 (ISP) persists in the presence of tissue gelatinase activity.

    PubMed

    Pritchard, David I; Brown, Alan P

    2015-08-01

    Venous leg ulcer slough is unpleasant to the patient and difficult to manage clinically. It harbours infection, also preventing wound management materials and dressings from supporting the underlying viable tissues. In other words, slough has significant nuisance value in the tissue viability clinic. In this study, we have sought to increase our knowledge of slough by building upon a previous but limited analysis of this necrotic tissue. In particular, slough has been probed using Western blotting for the presence of proteins with the capacity to engage microbial surface components recognising adhesive matrix macromolecules. Although the samples were difficult to resolve, we detected fibrinogen, fibronectin, IgG, collagen, human serum albumin and matrix metalloproteinase-9. Furthermore, the effect of a maggot-derived debridement enzyme, chymotrypsin 1 on macromolecules in slough was confirmed across seven patient samples. The effect of chymotrypsin 1 on slough confirms our thesis that this potential debridement enzyme could be effective in removing slough along with its associated bacteria, given its observed resistance to intrinsic gelatinase activity. In summary, we believe that the data provide scientists and clinicians with further insights into the potential molecular interactions between bacteria, wound tissue and Lucilia sericata in a clinically problematic yet scientifically interesting wound ecosystem. PMID:23834475

  5. The Persistence of PCBs.

    ERIC Educational Resources Information Center

    Boyle, Robert H.; Highland, Joseph H.

    1979-01-01

    PCB's are one of the most persistent chemicals ever introduced into the environment by man. From very early in their history of manufacture PCB's were suspected of being hazardous to health, but public awareness of the hazard was slow in coming. (RE)

  6. A Very Persistent Mistake

    ERIC Educational Resources Information Center

    McClelland, J. A. G.

    2011-01-01

    Articulated bodies with an internal energy source require to be coupled to an external mass in order to accelerate themselves but the typical text book assertion that the net force is provided by the external mass is not correct. Arguments are presented demonstrating that the assertion is incorrect and reasons are suggested for the persistence of…

  7. Retention and Persistence Data.

    ERIC Educational Resources Information Center

    Sanford, Timothy R.

    Two studies are combined with an introductory section: one is "Persistence to Graduation for Freshmen Entering the University of North Carolina at Chapel Hill, 1967-75," by Timothy Sanford, and the second is "Freshman, Transfer, Professional, Masters, and Doctoral Student Retention at the University of North Carolina at Chapel Hill," by Paul D.…

  8. Skip Regulates TGF- β 1-Induced Extracellular Matrix Degrading Proteases Expression in Human PC-3 Prostate Cancer Cells.

    PubMed

    Villar, Victor; Kocic, Jelena; Santibanez, Juan F

    2013-01-01

    Purpose. To determine whether Ski-interacting protein (SKIP) regulates TGF- β 1-stimulated expression of urokinase-type plasminogen activator (uPA), matrix metalloproteinase-9 (MMP-9), and uPA Inhibitor (PAI-1) in the androgen-independent human prostate cancer cell model. Materials and Methods. PC-3 prostate cancer cell line was used. The role of SKIP was evaluated using synthetic small interference RNA (siRNA) compounds. The expression of uPA, MMP-9, and PAI-1 was evaluated by zymography assays, RT-PCR, and promoter transactivation analysis. Results. In PC-3 cells TGF- β 1 treatment stimulated uPA, PAI-1, and MMP-9 expressions. The knockdown of SKIP in PC-3 cells enhanced the basal level of uPA, and TGF- β 1 treatment inhibited uPA production. Both PAI-1 and MMP-9 production levels were increased in response to TGF- β 1. The ectopic expression of SKIP inhibited both TGF- β 1-induced uPA and MMP-9 promoter transactivation, while PAI-1 promoter response to the factor was unaffected. Conclusions. SKIP regulates the expression of uPA, PAI-1, and MMP-9 stimulated by TGF- β 1 in PC-3 cells. Thus, SKIP is implicated in the regulation of extracellular matrix degradation and can therefore be suggested as a novel therapeutic target in prostate cancer treatment. PMID:23766912

  9. Persistent fetal circulation.

    PubMed

    Saucier, P H

    1980-01-01

    A review of persistent fetal circulation, which involves the presence of a right to left extrapulmonary shunt that is sustained into neonatal life, is presented. Clinical signs exhibited by the infant often resemble those of respiratory distress. Treatment is accomplished with hyperventilation and/or pharmacologically with tolazoline which, in addition to the usual attention to the overall condition of the infant, requires intensive monitoring by the nurse. PMID:6898712

  10. Persistent interface fluid syndrome.

    PubMed

    Hoffman, Richard S; Fine, I Howard; Packer, Mark

    2008-08-01

    We present an unusual case of persistent interface fluid that would not resolve despite normal intraocular pressure and corneal endothelial replacement with Descemet-stripping endothelial keratoplasty. Dissection, elevation, and repositioning of the laser in situ keratomileusis flap were required to resolve the interface fluid. Circumferential corneal graft-host margin scar formation acting as a mechanical strut may have been the cause of the intractable interface fluid. PMID:18655997