Science.gov

Sample records for matrix monte carlo

  1. Interaction picture density matrix quantum Monte Carlo

    SciTech Connect

    Malone, Fionn D. Lee, D. K. K.; Foulkes, W. M. C.; Blunt, N. S.; Shepherd, James J.; Spencer, J. S.

    2015-07-28

    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible.

  2. Interaction picture density matrix quantum Monte Carlo.

    PubMed

    Malone, Fionn D; Blunt, N S; Shepherd, James J; Lee, D K K; Spencer, J S; Foulkes, W M C

    2015-07-28

    The recently developed density matrix quantum Monte Carlo (DMQMC) algorithm stochastically samples the N-body thermal density matrix and hence provides access to exact properties of many-particle quantum systems at arbitrary temperatures. We demonstrate that moving to the interaction picture provides substantial benefits when applying DMQMC to interacting fermions. In this first study, we focus on a system of much recent interest: the uniform electron gas in the warm dense regime. The basis set incompleteness error at finite temperature is investigated and extrapolated via a simple Monte Carlo sampling procedure. Finally, we provide benchmark calculations for a four-electron system, comparing our results to previous work where possible. PMID:26233116

  3. Fission Matrix Capability for MCNP Monte Carlo

    SciTech Connect

    Carney, Sean E.; Brown, Forrest B.; Kiedrowski, Brian C.; Martin, William R.

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a

  4. Constrained Path Monte Carlo with Matrix Product State trial wavefunctions

    NASA Astrophysics Data System (ADS)

    Chung, Chia-Min; Fishman, Matthew; White, Steven; Zhang, Shiwei

    Constrained path Monte Carlo (CPMC) is a powerful method for simulating strongly correlated systems. By constraining the path with a trial wavefunction, CPMC circumvents the minus sign problem, but at the cost of introducing a bias. The Density Matrix Renormalization Group (DMRG) is an alternative simulation technique, which is immune to the minus sign problem, but which has an analogous ''dimensionality problem'' for two and three dimensions. Here we present a combination of these techniques, where we use a DMRG matrix product state as a trial wavefunction for CPMC. We demonstrate our method in two-dimensional Hubbard model, and show the comparison to DMRG alone and to CPMC with single-determinant trial functions.

  5. Extension of the fully coupled Monte Carlo/S sub N response matrix method to problems including upscatter and fission

    SciTech Connect

    Baker, R.S.; Filippone, W.F. . Dept. of Nuclear and Energy Engineering); Alcouffe, R.E. )

    1991-01-01

    The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S{sub N}) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and S{sub N} regions are fully coupled in the sense that no assumption is made about geometrical separation of decoupling. The fully coupled Monte Carlo/S{sub N} technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an S{sub N} calculation is to be performed. The Monte Carlo and S{sub N} regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and group sources. The hybrid method provides a new method of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S{sub N} is well suited for by itself. The fully coupled Monte Carlo/S{sub N} method has been implemented in the S{sub N} code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and group sources, and linkage subroutines to carry out the interface flux iterations. The common angular boundary fluxes are included in the S{sub N} code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating the S{sub N} calculations. The Monte Carlo routines have been successfully vectorized, with approximately a factor of five increases in speed over the nonvectorized version. The hybrid method is capable of solving forward, inhomogeneous source problems in X-Y and R-Z geometries. This capability now includes mulitigroup problems involving upscatter and fission in non-highly multiplying systems. 8 refs., 8 figs., 1 tab.

  6. Quantum Monte Carlo calculations of electroweak transition matrix elements in A=6,7 nuclei

    SciTech Connect

    Pervin, Muslema; Pieper, Steven C.; Wiringa, R. B.

    2007-12-15

    Green's function Monte Carlo (GFMC) calculations of magnetic dipole, electric quadrupole, Fermi, and Gamow-Teller transition matrix elements are reported for A=6,7 nuclei. The matrix elements are extrapolated from mixed estimates that bracket the relevant electroweak operator between variational Monte Carlo (VMC) and GFMC propagated wave functions. Because they are off-diagonal terms, two mixed estimates are required for each transition, with a VMC initial (final) state paired with a GFMC final (initial) state. The realistic Argonne v{sub 18} two-nucleon and Illinois-2 three-nucleon interactions are used to generate the nuclear states. In most cases we find good agreement with experimental data.

  7. Energy density matrix formalism for interacting quantum systems: a quantum Monte Carlo study

    SciTech Connect

    Krogel, Jaron T; Kim, Jeongnim; Reboredo, Fernando A

    2014-01-01

    We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground state quantum Monte Carlo techniques imple- mented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences demonstrates a quantita- tive connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides a new avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.

  8. Construction of the Jacobian matrix for fluorescence diffuse optical tomography using a perturbation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng

    2012-03-01

    Image formation in fluorescence diffuse optical tomography is critically dependent on construction of the Jacobian matrix. For clinical and preclinical applications, because of the highly heterogeneous characteristics of the medium, Monte Carlo methods are frequently adopted to construct the Jacobian. Conventional adjoint Monte Carlo method typically compute the Jacobian by multiplying the photon density fields radiated from the source at the excitation wavelength and from the detector at the emission wavelength. Nonetheless, this approach assumes that the source and the detector in Green's function are reciprocal, which is invalid in general. This assumption is particularly questionable in small animal imaging, where the mean free path length of photons is typically only one order of magnitude smaller than the representative dimension of the medium. We propose a new method that does not rely on the reciprocity of the source and the detector by tracing photon propagation entirely from the source to the detector. This method relies on the perturbation Monte Carlo theory to account for the differences in optical properties of the medium at the excitation and the emission wavelengths. Compared to the adjoint methods, the proposed method is more valid in reflecting the physical process of photon transport in diffusive media and is more efficient in constructing the Jacobian matrix for densely sampled configurations.

  9. Monte Carlo Benchmark

    Energy Science and Technology Software Center (ESTSC)

    2010-10-20

    The "Monte Carlo Benchmark" (MCB) is intended to model the computatiional performance of Monte Carlo algorithms on parallel architectures. It models the solution of a simple heuristic transport equation using a Monte Carlo technique. The MCB employs typical features of Monte Carlo algorithms such as particle creation, particle tracking, tallying particle information, and particle destruction. Particles are also traded among processors using MPI calls.

  10. Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature.

    PubMed

    Anagnostopoulos, Konstantinos N; Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo

    2008-01-18

    We present the first Monte Carlo results for supersymmetric matrix quantum mechanics with 16 supercharges at finite temperature. The recently proposed nonlattice simulation enables us to include the effects of fermionic matrices in a transparent and reliable manner. The internal energy nicely interpolates the weak coupling behavior obtained by the high temperature expansion, and the strong coupling behavior predicted from the dual black-hole geometry. The Polyakov line asymptotes at low temperature to a characteristic behavior for a deconfined theory, suggesting the absence of a phase transition. These results provide highly nontrivial evidence for the gauge-gravity duality. PMID:18232852

  11. Percolation conductivity of Penrose tiling by transfer-matrix Monte Carlo

    NASA Astrophysics Data System (ADS)

    Babalievski, F. V.

    1991-09-01

    A generalization of Derrida and Vannimenus transfer-matrix Monte Carlo for calculations of percolation conductivity of Penrose Tiling was applied. The strips used were 10(exp 4) long and widths varied between 3 and 19. The results show that in spite of differences for strip widths 3-7 the percolative conductivity of Penrose tiling is very close to that of square lattice. The estimation of the percolation transport exponent once more confirms the universality conjecture for 0-1 distribution of resistors.

  12. Percolation conductivity of Penrose tiling by the transfer-matrix Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Babalievski, Filip V.

    1992-03-01

    A generalization of the Derrida and Vannimenus transfer-matrix Monte Carlo method has been applied to calculations of the percolation conductivity in a Penrose tiling. Strips with a length~10 4 and widths from 3 to 19 have been used. Disregarding the differences for smaller strip widths (up to 7), the results show that the percolative conductivity of a Penrose tiling has a value very close to that of a square lattice. The estimate for the percolation transport exponent once more confirms the universality conjecture for the 0-1 distribution of resistors.

  13. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    PubMed Central

    Saha, Krishnendu; Straus, Kenneth J.; Chen, Yu.; Glick, Stephen J.

    2014-01-01

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction. PMID:25371555

  14. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  15. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    PubMed

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction. PMID:25371555

  16. Efficient combination of Wang-Landau and transition matrix Monte Carlo methods for protein simulations.

    PubMed

    Ghulghazaryan, Ruben G; Hayryan, Shura; Hu, Chin-Kun

    2007-02-01

    An efficient combination of the Wang-Landau and transition matrix Monte Carlo methods for protein and peptide simulations is described. At the initial stage of simulation the algorithm behaves like the Wang-Landau algorithm, allowing to sample the entire interval of energies, and at the later stages, it behaves like transition matrix Monte Carlo method and has significantly lower statistical errors. This combination allows to achieve fast convergence to the correct values of density of states. We propose that the violation of TTT identities may serve as a qualitative criterion to check the convergence of density of states. The simulation process can be parallelized by cutting the entire interval of simulation into subintervals. The violation of ergodicity in this case is discussed. We test the algorithm on a set of peptides of different lengths and observe good statistical convergent properties for the density of states. We believe that the method is of general nature and can be used for simulations of other systems with either discrete or continuous energy spectrum. PMID:17195159

  17. Monte Carlo simulations of a supersymmetric matrix model of dynamical compactification in non perturbative string theory

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, K.; Azuma, T.; Nishimura, J.

    The IKKT or IIB matrix model has been postulated to be a non perturbative definition of superstring theory. It has the attractive feature that spacetime is dynamically generated, which makes possible the scenario of dynamical compactification of extra dimensions, which in the Euclidean model manifests by spontaneously breaking the SO(10) rotational invariance (SSB). In this work we study using Monte Carlo simulations the 6 dimensional version of the Euclidean IIB matrix model. Simulations are found to be plagued by a strong complex action problem and the factorization method is used for effective sampling and computing expectation values of the extent of spacetime in various dimensions. Our results are consistent with calculations using the Gaussian Expansion method which predict SSB to SO(3) symmetric vacua, a finite universal extent of the compactified dimensions and finite spacetime volume.

  18. Monte Carlo Example Programs

    Energy Science and Technology Software Center (ESTSC)

    2006-05-09

    The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.

  19. Monte Carlo fundamentals

    SciTech Connect

    Brown, F.B.; Sutton, T.M.

    1996-02-01

    This report is composed of the lecture notes from the first half of a 32-hour graduate-level course on Monte Carlo methods offered at KAPL. These notes, prepared by two of the principle developers of KAPL`s RACER Monte Carlo code, cover the fundamental theory, concepts, and practices for Monte Carlo analysis. In particular, a thorough grounding in the basic fundamentals of Monte Carlo methods is presented, including random number generation, random sampling, the Monte Carlo approach to solving transport problems, computational geometry, collision physics, tallies, and eigenvalue calculations. Furthermore, modern computational algorithms for vector and parallel approaches to Monte Carlo calculations are covered in detail, including fundamental parallel and vector concepts, the event-based algorithm, master/slave schemes, parallel scaling laws, and portability issues.

  20. Monte Carlo Polarimetric Efficiency Simulations for a Single Monolithic CdTe Thick Matrix

    NASA Astrophysics Data System (ADS)

    Curado da Silva, R. M.; Hage-Ali, M.; Caroli, E.; Siffert, P.; Stephen, J. B.

    Polarimetric measurements for hard X- and soft gamma-rays are still quite unexplored in astrophysical source observations. In order to improve the study of these sources through Compton polarimetry, detectors should have a good polarimetric efficiency and also satisfy the demands of the typical exigent detection environments for this kind of missions. Herein we present a simple concept for such systems, since we propose the use of a single thick (˜10 mm) monolithic matrix of CdTe of 32×32 pixels, with an active area of about 40 cm2. In order to predict the best configuration and dimension of detector pixels defined inside the CdTe monolithic piece, a Monte Carlo code based on GEANT4 library modules was developed. Efficiency and polarimetric modulation factor results as a function of energy and detector thickness, are presented and discussed. Q factor of the order of 0.3 has been found up to several hundreds of keV.

  1. Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics.

    PubMed

    Hanada, Masanori; Miwa, Akitsugu; Nishimura, Jun; Takeuchi, Shingo

    2009-05-01

    In the string-gauge duality it is important to understand how the space-time geometry is encoded in gauge theory observables. We address this issue in the case of the D0-brane system at finite temperature T. Based on the duality, the temporal Wilson loop W in gauge theory is expected to contain the information of the Schwarzschild radius RSch of the dual black hole geometry as log(W)=RSch/(2pialpha'T). This translates to the power-law behavior log(W)=1.89(T/lambda 1/3)-3/5, where lambda is the 't Hooft coupling constant. We calculate the Wilson loop on the gauge theory side in the strongly coupled regime by performing Monte Carlo simulations of supersymmetric matrix quantum mechanics with 16 supercharges. The results reproduce the expected power-law behavior up to a constant shift, which is explainable as alpha' corrections on the gravity side. Our conclusion also demonstrates manifestly the fuzzball picture of black holes. PMID:19518857

  2. Schwarzschild Radius from Monte Carlo Calculation of the Wilson Loop in Supersymmetric Matrix Quantum Mechanics

    SciTech Connect

    Hanada, Masanori; Miwa, Akitsugu; Nishimura, Jun; Takeuchi, Shingo

    2009-05-08

    In the string-gauge duality it is important to understand how the space-time geometry is encoded in gauge theory observables. We address this issue in the case of the D0-brane system at finite temperature T. Based on the duality, the temporal Wilson loop W in gauge theory is expected to contain the information of the Schwarzschild radius R{sub Sch} of the dual black hole geometry as log=R{sub Sch}/(2{pi}{alpha}{sup '}T). This translates to the power-law behavior log=1.89(T/{lambda}{sup 1/3}){sup -3/5}, where {lambda} is the 't Hooft coupling constant. We calculate the Wilson loop on the gauge theory side in the strongly coupled regime by performing Monte Carlo simulations of supersymmetric matrix quantum mechanics with 16 supercharges. The results reproduce the expected power-law behavior up to a constant shift, which is explainable as {alpha}{sup '} corrections on the gravity side. Our conclusion also demonstrates manifestly the fuzzball picture of black holes.

  3. MORSE Monte Carlo code

    SciTech Connect

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described.

  4. Monte Carlo variance reduction

    NASA Technical Reports Server (NTRS)

    Byrn, N. R.

    1980-01-01

    Computer program incorporates technique that reduces variance of forward Monte Carlo method for given amount of computer time in determining radiation environment in complex organic and inorganic systems exposed to significant amounts of radiation.

  5. Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction

    SciTech Connect

    Aguiar, Pablo; Pino, Francisco; Silva-Rodríguez, Jesús; Pavía, Javier; Ros, Doménec; Ruibal, Álvaro; and others

    2014-03-15

    Purpose: To assess the performance of two approaches to the system response matrix (SRM) calculation in pinhole single photon emission computed tomography (SPECT) reconstruction. Methods: Evaluation was performed using experimental data from a low magnification pinhole SPECT system that consisted of a rotating flat detector with a monolithic scintillator crystal. The SRM was computed following two approaches, which were based on Monte Carlo simulations (MC-SRM) and analytical techniques in combination with an experimental characterization (AE-SRM). The spatial response of the system, obtained by using the two approaches, was compared with experimental data. The effect of the MC-SRM and AE-SRM approaches on the reconstructed image was assessed in terms of image contrast, signal-to-noise ratio, image quality, and spatial resolution. To this end, acquisitions were carried out using a hot cylinder phantom (consisting of five fillable rods with diameters of 5, 4, 3, 2, and 1 mm and a uniform cylindrical chamber) and a custom-made Derenzo phantom, with center-to-center distances between adjacent rods of 1.5, 2.0, and 3.0 mm. Results: Good agreement was found for the spatial response of the system between measured data and results derived from MC-SRM and AE-SRM. Only minor differences for point sources at distances smaller than the radius of rotation and large incidence angles were found. Assessment of the effect on the reconstructed image showed a similar contrast for both approaches, with values higher than 0.9 for rod diameters greater than 1 mm and higher than 0.8 for rod diameter of 1 mm. The comparison in terms of image quality showed that all rods in the different sections of a custom-made Derenzo phantom could be distinguished. The spatial resolution (FWHM) was 0.7 mm at iteration 100 using both approaches. The SNR was lower for reconstructed images using MC-SRM than for those reconstructed using AE-SRM, indicating that AE-SRM deals better with the

  6. Comparison of basis functions for 3D PET reconstruction using a Monte Carlo system matrix

    NASA Astrophysics Data System (ADS)

    Cabello, Jorge; Rafecas, Magdalena

    2012-04-01

    In emission tomography, iterative statistical methods are accepted as the reconstruction algorithms that achieve the best image quality. The accuracy of these methods relies partly on the quality of the system response matrix (SRM) that characterizes the scanner. The more physical phenomena included in the SRM, the higher the SRM quality, and therefore higher image quality is obtained from the reconstruction process. High-resolution small animal scanners contain as many as 103-104 small crystal pairs, while the field of view (FOV) is divided into hundreds of thousands of small voxels. These two characteristics have a significant impact on the number of elements to be calculated in the SRM. Monte Carlo (MC) methods have gained popularity as a way of calculating the SRM, due to the increased accuracy achievable, at the cost of introducing some statistical noise and long simulation times. In the work presented here the SRM is calculated using MC methods exploiting the cylindrical symmetries of the scanner, significantly reducing the simulation time necessary to calculate a high statistical quality SRM and the storage space necessary. The use of cylindrical symmetries makes polar voxels a convenient basis function. Alternatively, spherically symmetric basis functions result in improved noise properties compared to cubic and polar basis functions. The quality of reconstructed images using polar voxels, spherically symmetric basis functions on a polar grid, cubic voxels and post-reconstruction filtered polar and cubic voxels is compared from a noise and spatial resolution perspective. This study demonstrates that polar voxels perform as well as cubic voxels, reducing the simulation time necessary to calculate the SRM and the disk space necessary to store it. Results showed that spherically symmetric functions outperform polar and cubic basis functions in terms of noise properties, at the cost of slightly degraded spatial resolution, larger SRM file size and longer

  7. Prediction of fluid phase equilibria and interfacial tension of triangle-well fluids using transition matrix Monte Carlo

    NASA Astrophysics Data System (ADS)

    Sengupta, Angan; Adhikari, Jhumpa

    2016-05-01

    The triangle-well (TW) potential is a simple model which is able to capture the essence of the intermolecular attraction in real molecules. Transition matrix Monte Carlo simulations in the grand canonical ensemble (GC-TMMC) are performed to investigate the role of the range of attraction on the features of fluid phase equilibria. As the TW potential range increases, the vapour-liquid coexistence curves shift towards a higher temperature range with the critical temperature and pressure increasing, and the critical density values decreasing. These GC-TMMC results are in excellent agreement with the predictions of Gibbs ensemble Monte Carlo and replica exchange Monte Carlo (REMC) simulations reported in literature. Using the GC-TMMC method, the vapour pressures are also computed directly from the particle number probability distributions (PNPDs). It has been noted in literature that the surface tension values are computationally more expensive and difficult to determine than other coexistence properties using molecular simulations. The PNPDs from GC-TMMC simulations along with Binder's formalism allow for the calculation of the interfacial tension with relative ease. Also, our simulation generated results for the interfacial tension are in good agreement with the literature data obtained using REMC (via the virial route) and the plots of our interfacial tension values as a function of temperature are smooth unlike the literature data.

  8. Calculating infinite-medium α-eigenvalue spectra with Monte Carlo using a transition rate matrix method

    DOE PAGESBeta

    Betzler, Benjamin R.; Kiedrowski, Brian C.; Brown, Forrest B.; Martin, William R.

    2015-01-01

    The time-dependent behavior of the energy spectrum in neutron transport was investigated with a formulation, based on continuous-time Markov processes, for computing α eigenvalues and eigenvectors in an infinite medium. In this study, a research Monte Carlo code called “TORTE” (To Obtain Real Time Eigenvalues) was created and used to estimate elements of a transition rate matrix. TORTE is capable of using both multigroup and continuous-energy nuclear data, and verification was performed. Eigenvalue spectra for infinite homogeneous mixtures were obtained, and an eigenfunction expansion was used to investigate transient behavior of the neutron energy spectrum.

  9. Impact of model parameters on Monte Carlo simulations of backscattering Mueller matrix images of colon tissue

    PubMed Central

    Antonelli, Maria-Rosaria; Pierangelo, Angelo; Novikova, Tatiana; Validire, Pierre; Benali, Abdelali; Gayet, Brice; De Martino, Antonello

    2011-01-01

    Polarimetric imaging is emerging as a viable technique for tumor detection and staging. As a preliminary step towards a thorough understanding of the observed contrasts, we present a set of numerical Monte Carlo simulations of the polarimetric response of multilayer structures representing colon samples in the backscattering geometry. In a first instance, a typical colon sample was modeled as one or two scattering “slabs” with monodisperse non absorbing scatterers representing the most superficial tissue layers (the mucosa and submucosa), above a totally depolarizing Lambertian lumping the contributions of the deeper layers (muscularis and pericolic tissue). The model parameters were the number of layers, their thicknesses and morphology, the sizes and concentrations of the scatterers, the optical index contrast between the scatterers and the surrounding medium, and the Lambertian albedo. With quite similar results for single and double layer structures, this model does not reproduce the experimentally observed stability of the relative magnitudes of the depolarizing powers for incident linear and circular polarizations. This issue was solved by considering bimodal populations including large and small scatterers in a single layer above the Lambertian, a result which shows the importance of taking into account the various types of scatterers (nuclei, collagen fibers and organelles) in the same model. PMID:21750762

  10. Monte Carlo Event Generators

    NASA Astrophysics Data System (ADS)

    Dytman, Steven

    2011-10-01

    Every neutrino experiment requires a Monte Carlo event generator for various purposes. Historically, each series of experiments developed their own code which tuned to their needs. Modern experiments would benefit from a universal code (e.g. PYTHIA) which would allow more direct comparison between experiments. GENIE attempts to be that code. This paper compares most commonly used codes and provides some details of GENIE.

  11. MLE (Maximum Likelihood Estimator) reconstruction of a brain phantom using a Monte Carlo transition matrix and a statistical stopping rule

    SciTech Connect

    Veklerov, E.; Llacer, J.; Hoffman, E.J.

    1987-10-01

    In order to study properties of the Maximum Likelihood Estimator (MLE) algorithm for image reconstruction in Positron Emission Tomographyy (PET), the algorithm is applied to data obtained by the ECAT-III tomograph from a brain phantom. The procedure for subtracting accidental coincidences from the data stream generated by this physical phantom is such that he resultant data are not Poisson distributed. This makes the present investigation different from other investigations based on computer-simulated phantoms. It is shown that the MLE algorithm is robust enough to yield comparatively good images, especially when the phantom is in the periphery of the field of view, even though the underlying assumption of the algorithm is violated. Two transition matrices are utilized. The first uses geometric considerations only. The second is derived by a Monte Carlo simulation which takes into account Compton scattering in the detectors, positron range, etc. in the detectors. It is demonstrated that the images obtained from the Monte Carlo matrix are superior in some specific ways. A stopping rule derived earlier and allowing the user to stop the iterative process before the images begin to deteriorate is tested. Since the rule is based on the Poisson assumption, it does not work well with the presently available data, although it is successful wit computer-simulated Poisson data.

  12. Shell model Monte Carlo methods

    SciTech Connect

    Koonin, S.E.; Dean, D.J.

    1996-10-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of {gamma}-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs.

  13. Monte Carlo simulation of transfer reactions using extended R-matrix theory picturing surrogate-type WFCF features

    NASA Astrophysics Data System (ADS)

    Bouland, Olivier H.

    2016-03-01

    This article supplies an overview of issues related to the interpretation of surrogate measurement results for neutron-incident cross section predictions; difficulties that are somehow masked by the historical conversion route based on Weisskopf-Ewing approximation. Our proposal is to handle the various difficulties by using a more rigorous approach relying on Monte Carlo simulation of transfer reactions with extended R-matrix theory. The multiple deficiencies of the historical surrogate treatment are recalled but only one is examined in some details here; meaning the calculation of in-out-going channel Width Fluctuation Correction Factors (WFCF) which behavior witness partly the failure of Niels Bohr's compound nucleus theoretical landmark. Relevant WFCF calculations according to neutron-induced surrogate- and cross section-types as a function of neutron-induced fluctuating energy range [0 - 2.1 MeV] are presented and commented in the case of the 240Pu* and 241Pu* compound nucleus isotopes.

  14. Structure and dynamics of Ebola virus matrix protein VP40 by a coarse-grained Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Pandey, Ras; Farmer, Barry

    Ebola virus matrix protein VP40 (consisting of 326 residues) plays a critical role in viral assembly and its functions such as regulation of viral transcription, packaging, and budding of mature virions into the plasma membrane of infected cells. How does the protein VP40 go through structural evolution during the viral life cycle remains an open question? Using a coarse-grained Monte Carlo simulation we investigate the structural evolution of VP40 as a function of temperature with the input of a knowledge-based residue-residue interaction. A number local and global physical quantities (e.g. mobility profile, contact map, radius of gyration, structure factor) are analyzed with our large-scale simulations. Our preliminary data show that the structure of the protein evolves through different state with well-defined morphologies which can be identified and quantified via a detailed analysis of structure factor.

  15. Monte Carlo portal dosimetry

    SciTech Connect

    Chin, P.W. . E-mail: mary.chin@physics.org

    2005-10-15

    This project developed a solution for verifying external photon beam radiotherapy. The solution is based on a calibration chain for deriving portal dose maps from acquired portal images, and a calculation framework for predicting portal dose maps. Quantitative comparison between acquired and predicted portal dose maps accomplishes both geometric (patient positioning with respect to the beam) and dosimetric (two-dimensional fluence distribution of the beam) verifications. A disagreement would indicate that beam delivery had not been according to plan. The solution addresses the clinical need for verifying radiotherapy both pretreatment (without the patient in the beam) and on treatment (with the patient in the beam). Medical linear accelerators mounted with electronic portal imaging devices (EPIDs) were used to acquire portal images. Two types of EPIDs were investigated: the amorphous silicon (a-Si) and the scanning liquid ion chamber (SLIC). The EGSnrc family of Monte Carlo codes were used to predict portal dose maps by computer simulation of radiation transport in the beam-phantom-EPID configuration. Monte Carlo simulations have been implemented on several levels of high throughput computing (HTC), including the grid, to reduce computation time. The solution has been tested across the entire clinical range of gantry angle, beam size (5 cmx5 cm to 20 cmx20 cm), and beam-patient and patient-EPID separations (4 to 38 cm). In these tests of known beam-phantom-EPID configurations, agreement between acquired and predicted portal dose profiles was consistently within 2% of the central axis value. This Monte Carlo portal dosimetry solution therefore achieved combined versatility, accuracy, and speed not readily achievable by other techniques.

  16. Monte Carlo and quasi-Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Caflisch, Russel E.

    Monte Carlo is one of the most versatile and widely used numerical methods. Its convergence rate, O(N-1/2), is independent of dimension, which shows Monte Carlo to be very robust but also slow. This article presents an introduction to Monte Carlo methods for integration problems, including convergence theory, sampling methods and variance reduction techniques. Accelerated convergence for Monte Carlo quadrature is attained using quasi-random (also called low-discrepancy) sequences, which are a deterministic alternative to random or pseudo-random sequences. The points in a quasi-random sequence are correlated to provide greater uniformity. The resulting quadrature method, called quasi-Monte Carlo, has a convergence rate of approximately O((logN)kN-1). For quasi-Monte Carlo, both theoretical error estimates and practical limitations are presented. Although the emphasis in this article is on integration, Monte Carlo simulation of rarefied gas dynamics is also discussed. In the limit of small mean free path (that is, the fluid dynamic limit), Monte Carlo loses its effectiveness because the collisional distance is much less than the fluid dynamic length scale. Computational examples are presented throughout the text to illustrate the theory. A number of open problems are described.

  17. MCMini: Monte Carlo on GPGPU

    SciTech Connect

    Marcus, Ryan C.

    2012-07-25

    MCMini is a proof of concept that demonstrates the possibility for Monte Carlo neutron transport using OpenCL with a focus on performance. This implementation, written in C, shows that tracing particles and calculating reactions on a 3D mesh can be done in a highly scalable fashion. These results demonstrate a potential path forward for MCNP or other Monte Carlo codes.

  18. Parallelizing Monte Carlo with PMC

    SciTech Connect

    Rathkopf, J.A.; Jones, T.R.; Nessett, D.M.; Stanberry, L.C.

    1994-11-01

    PMC (Parallel Monte Carlo) is a system of generic interface routines that allows easy porting of Monte Carlo packages of large-scale physics simulation codes to Massively Parallel Processor (MPP) computers. By loading various versions of PMC, simulation code developers can configure their codes to run in several modes: serial, Monte Carlo runs on the same processor as the rest of the code; parallel, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on other MPP processor(s); distributed, Monte Carlo runs in parallel across many processors of the MPP with the rest of the code running on a different machine. This multi-mode approach allows maintenance of a single simulation code source regardless of the target machine. PMC handles passing of messages between nodes on the MPP, passing of messages between a different machine and the MPP, distributing work between nodes, and providing independent, reproducible sequences of random numbers. Several production codes have been parallelized under the PMC system. Excellent parallel efficiency in both the distributed and parallel modes results if sufficient workload is available per processor. Experiences with a Monte Carlo photonics demonstration code and a Monte Carlo neutronics package are described.

  19. Wormhole Hamiltonian Monte Carlo

    PubMed Central

    Lan, Shiwei; Streets, Jeffrey; Shahbaba, Babak

    2015-01-01

    In machine learning and statistics, probabilistic inference involving multimodal distributions is quite difficult. This is especially true in high dimensional problems, where most existing algorithms cannot easily move from one mode to another. To address this issue, we propose a novel Bayesian inference approach based on Markov Chain Monte Carlo. Our method can effectively sample from multimodal distributions, especially when the dimension is high and the modes are isolated. To this end, it exploits and modifies the Riemannian geometric properties of the target distribution to create wormholes connecting modes in order to facilitate moving between them. Further, our proposed method uses the regeneration technique in order to adapt the algorithm by identifying new modes and updating the network of wormholes without affecting the stationary distribution. To find new modes, as opposed to redis-covering those previously identified, we employ a novel mode searching algorithm that explores a residual energy function obtained by subtracting an approximate Gaussian mixture density (based on previously discovered modes) from the target density function. PMID:25861551

  20. Isotropic Monte Carlo Grain Growth

    Energy Science and Technology Software Center (ESTSC)

    2013-04-25

    IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.

  1. Quasi-Monte Carlo integration

    SciTech Connect

    Morokoff, W.J.; Caflisch, R.E.

    1995-12-01

    The standard Monte Carlo approach to evaluating multidimensional integrals using (pseudo)-random integration nodes is frequently used when quadrature methods are too difficult or expensive to implement. As an alternative to the random methods, it has been suggested that lower error and improved convergence may be obtained by replacing the pseudo-random sequences with more uniformly distributed sequences known as quasi-random. In this paper quasi-random (Halton, Sobol`, and Faure) and pseudo-random sequences are compared in computational experiments designed to determine the effects on convergence of certain properties of the integrand, including variance, variation, smoothness, and dimension. The results show that variation, which plays an important role in the theoretical upper bound given by the Koksma-Hlawka inequality, does not affect convergence, while variance, the determining factor in random Monte Carlo, is shown to provide a rough upper bound, but does not accurately predict performance. In general, quasi-Monte Carlo methods are superior to random Monte Carlo, but the advantage may be slight, particularly in high dimensions or for integrands that are not smooth. For discontinuous integrands, we derive a bound which shows that the exponent for algebraic decay of the integration error from quasi-Monte Carlo is only slightly larger than {1/2} in high dimensions. 21 refs., 6 figs., 5 tabs.

  2. Quasi-Monte Carlo Integration

    NASA Astrophysics Data System (ADS)

    Morokoff, William J.; Caflisch, Russel E.

    1995-12-01

    The standard Monte Carlo approach to evaluating multidimensional integrals using (pseudo)-random integration nodes is frequently used when quadrature methods are too difficult or expensive to implement. As an alternative to the random methods, it has been suggested that lower error and improved convergence may be obtained by replacing the pseudo-random sequences with more uniformly distributed sequences known as quasi-random. In this paper quasi-random (Halton, Sobol', and Faure) and pseudo-random sequences are compared in computational experiments designed to determine the effects on convergence of certain properties of the integrand, including variance, variation, smoothness, and dimension. The results show that variation, which plays an important role in the theoretical upper bound given by the Koksma-Hlawka inequality, does not affect convergence, while variance, the determining factor in random Monte Carlo, is shown to provide a rough upper bound, but does not accurately predict performance. In general, quasi-Monte Carlo methods are superior to random Monte Carlo, but the advantage may be slight, particularly in high dimensions or for integrands that are not smooth. For discontinuous integrands, we derive a bound which shows that the exponent for algebraic decay of the integration error from quasi-Monte Carlo is only slightly larger than {1}/{2} in high dimensions.

  3. Proton Upset Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  4. abcpmc: Approximate Bayesian Computation for Population Monte-Carlo code

    NASA Astrophysics Data System (ADS)

    Akeret, Joel

    2015-04-01

    abcpmc is a Python Approximate Bayesian Computing (ABC) Population Monte Carlo (PMC) implementation based on Sequential Monte Carlo (SMC) with Particle Filtering techniques. It is extendable with k-nearest neighbour (KNN) or optimal local covariance matrix (OLCM) pertubation kernels and has built-in support for massively parallelized sampling on a cluster using MPI.

  5. Quantum Monte Carlo : not just for energy levels.

    SciTech Connect

    Nollett, K. M.; Physics

    2007-01-01

    Quantum Monte Carlo and realistic interactions can provide well-motivated vertices and overlaps for DWBA analyses of reactions. Given an interaction in vaccum, there are several computational approaches to nuclear systems, as you have been hearing: No-core shell model with Lee-Suzuki or Bloch-Horowitz for Hamiltonian Coupled clusters with G-matrix interaction Density functional theory, granted an energy functional derived from the interaction Quantum Monte Carlo - Variational Monte Carlo Green's function Monte Carlo. The last two work directly with a bare interaction and bare operators and describe the wave function without expanding in basis functions, so they have rather different sets of advantages and disadvantages from the others. Variational Monte Carlo (VMC) is built on a sophisticated Ansatz for the wave function, built on shell model like structure modified by operator correlations. Green's function Monte Carlo (GFMC) uses an operator method to project the true ground state out of a reasonable guess wave function.

  6. Stripes in a three-chain Hubbard ladder: A comparison of density-matrix renormalization group and constrained-path Monte Carlo results

    SciTech Connect

    Bonca, J.; Gubernatis, J. E.; Guerrero, M.; Jeckelmann, Eric; White, Steven R.

    2000-02-01

    Using both the density-matrix renormalization group method and the constrained-path quantum Monte Carlo method, we studied the ground-state energies and the spin and hole densities of a 12x3 Hubbard model with open boundary conditions and six holes doped away from half-filling. Results obtained with these two methods agree well in the small and intermediate U regimes. For U/t{>=}6 we find a ground-state with charge inhomogeneities consistent with stripes. (c) 2000 The American Physical Society.

  7. Multilevel sequential Monte Carlo samplers

    DOE PAGESBeta

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan

    2016-08-24

    Here, we study the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with the step-size level hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levelsmore » $${\\infty}$$ >h0>h1 ...>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. In conclusion, it is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context.« less

  8. Synchronous Parallel Kinetic Monte Carlo

    SciTech Connect

    Mart?nez, E; Marian, J; Kalos, M H

    2006-12-14

    A novel parallel kinetic Monte Carlo (kMC) algorithm formulated on the basis of perfect time synchronicity is presented. The algorithm provides an exact generalization of any standard serial kMC model and is trivially implemented in parallel architectures. We demonstrate the mathematical validity and parallel performance of the method by solving several well-understood problems in diffusion.

  9. Monte Carlo calculations of nuclei

    SciTech Connect

    Pieper, S.C.

    1997-10-01

    Nuclear many-body calculations have the complication of strong spin- and isospin-dependent potentials. In these lectures the author discusses the variational and Green`s function Monte Carlo techniques that have been developed to address this complication, and presents a few results.

  10. Monte Carlo Simulation for Perusal and Practice.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.; Barcikowski, Robert S.; Robey, Randall R.

    The meaningful investigation of many problems in statistics can be solved through Monte Carlo methods. Monte Carlo studies can help solve problems that are mathematically intractable through the analysis of random samples from populations whose characteristics are known to the researcher. Using Monte Carlo simulation, the values of a statistic are…

  11. Monte Carlo methods in ICF

    SciTech Connect

    Zimmerman, G.B.

    1997-06-24

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ion and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burns nd burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  12. The D0 Monte Carlo

    SciTech Connect

    Womersley, J. . Dept. of Physics)

    1992-10-01

    The D0 detector at the Fermilab Tevatron began its first data taking run in May 1992. For analysis of the expected 25 pb[sup [minus]1] data sample, roughly half a million simulated events will be needed. The GEANT-based Monte Carlo program used to generate these events is described, together with comparisons to test beam data. Some novel techniques used to speed up execution and simplify geometrical input are described.

  13. Extending canonical Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Curilef, S.

    2010-02-01

    In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C < 0. The resulting framework appears to be a suitable generalization of the methodology associated with the so-called dynamical ensemble, which is applied to the extension of two well-known Monte Carlo methods: the Metropolis importance sampling and the Swendsen-Wang cluster algorithm. These Monte Carlo algorithms are employed to study the anomalous thermodynamic behavior of the Potts models with many spin states q defined on a d-dimensional hypercubic lattice with periodic boundary conditions, which successfully reduce the exponential divergence of the decorrelation time τ with increase of the system size N to a weak power-law divergence \\tau \\propto N^{\\alpha } with α≈0.2 for the particular case of the 2D ten-state Potts model.

  14. Compressible generalized hybrid Monte Carlo

    NASA Astrophysics Data System (ADS)

    Fang, Youhan; Sanz-Serna, J. M.; Skeel, Robert D.

    2014-05-01

    One of the most demanding calculations is to generate random samples from a specified probability distribution (usually with an unknown normalizing prefactor) in a high-dimensional configuration space. One often has to resort to using a Markov chain Monte Carlo method, which converges only in the limit to the prescribed distribution. Such methods typically inch through configuration space step by step, with acceptance of a step based on a Metropolis(-Hastings) criterion. An acceptance rate of 100% is possible in principle by embedding configuration space in a higher dimensional phase space and using ordinary differential equations. In practice, numerical integrators must be used, lowering the acceptance rate. This is the essence of hybrid Monte Carlo methods. Presented is a general framework for constructing such methods under relaxed conditions: the only geometric property needed is (weakened) reversibility; volume preservation is not needed. The possibilities are illustrated by deriving a couple of explicit hybrid Monte Carlo methods, one based on barrier-lowering variable-metric dynamics and another based on isokinetic dynamics.

  15. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    SciTech Connect

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

  16. Path Integral Monte Carlo Methods for Fermions

    NASA Astrophysics Data System (ADS)

    Ethan, Ethan; Dubois, Jonathan; Ceperley, David

    2014-03-01

    In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.

  17. Monte Carlo surface flux tallies

    SciTech Connect

    Favorite, Jeffrey A

    2010-11-19

    Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.

  18. Multidimensional stochastic approximation Monte Carlo.

    PubMed

    Zablotskiy, Sergey V; Ivanov, Victor A; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g(E), of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g(E_{1},E_{2}). We show when and why care has to be exercised when obtaining the microcanonical density of states g(E_{1}+E_{2}) from g(E_{1},E_{2}). PMID:27415383

  19. Multidimensional stochastic approximation Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang

    2016-06-01

    Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .

  20. 1-D EQUILIBRIUM DISCRETE DIFFUSION MONTE CARLO

    SciTech Connect

    T. EVANS; ET AL

    2000-08-01

    We present a new hybrid Monte Carlo method for 1-D equilibrium diffusion problems in which the radiation field coexists with matter in local thermodynamic equilibrium. This method, the Equilibrium Discrete Diffusion Monte Carlo (EqDDMC) method, combines Monte Carlo particles with spatially discrete diffusion solutions. We verify the EqDDMC method with computational results from three slab problems. The EqDDMC method represents an incremental step toward applying this hybrid methodology to non-equilibrium diffusion, where it could be simultaneously coupled to Monte Carlo transport.

  1. Status of Monte-Carlo Event Generators

    SciTech Connect

    Hoeche, Stefan; /SLAC

    2011-08-11

    Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.

  2. Quantum Monte Carlo for vibrating molecules

    SciTech Connect

    Brown, W.R. |

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H{sub 2}O and C{sub 3} vibrational states, using 7 PES`s, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H{sub 2}O and C{sub 3}. In order to construct accurate trial wavefunctions for C{sub 3}, the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C{sub 3} the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C{sub 3} PES`s suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies.

  3. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  4. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-01

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  5. Quantum Monte Carlo methods for nuclear physics

    DOE PAGESBeta

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-01

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  6. Quantum Monte Carlo methods for nuclear physics

    DOE PAGESBeta

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  7. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  8. Monte Carlo Shower Counter Studies

    NASA Technical Reports Server (NTRS)

    Snyder, H. David

    1991-01-01

    Activities and accomplishments related to the Monte Carlo shower counter studies are summarized. A tape of the VMS version of the GEANT software was obtained and installed on the central computer at Gallaudet University. Due to difficulties encountered in updating this VMS version, a decision was made to switch to the UNIX version of the package. This version was installed and used to generate the set of data files currently accessed by various analysis programs. The GEANT software was used to write files of data for positron and proton showers. Showers were simulated for a detector consisting of 50 alternating layers of lead and scintillator. Each file consisted of 1000 events at each of the following energies: 0.1, 0.5, 2.0, 10, 44, and 200 GeV. Data analysis activities related to clustering, chi square, and likelihood analyses are summarized. Source code for the GEANT user subprograms and data analysis programs are provided along with example data plots.

  9. Improved Monte Carlo Renormalization Group Method

    DOE R&D Accomplishments Database

    Gupta, R.; Wilson, K. G.; Umrigar, C.

    1985-01-01

    An extensive program to analyze critical systems using an Improved Monte Carlo Renormalization Group Method (IMCRG) being undertaken at LANL and Cornell is described. Here we first briefly review the method and then list some of the topics being investigated.

  10. Monte Carlo Ion Transport Analysis Code.

    Energy Science and Technology Software Center (ESTSC)

    2009-04-15

    Version: 00 TRIPOS is a versatile Monte Carlo ion transport analysis code. It has been applied to the treatment of both surface and bulk radiation effects. The media considered is composed of multilayer polyatomic materials.

  11. Monte Carlo Transport for Electron Thermal Transport

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  12. Random-matrix approach to the statistical compound nuclear reaction at low energies using the Monte-Carlo technique

    SciTech Connect

    Kawano, Toshihiko

    2015-11-10

    This theoretical treatment of low-energy compound nucleus reactions begins with the Bohr hypothesis, with corrections, and various statistical theories. The author investigates the statistical properties of the scattering matrix containing a Gaussian Orthogonal Ensemble (GOE) Hamiltonian in the propagator. The following conclusions are reached: For all parameter values studied, the numerical average of MC-generated cross sections coincides with the result of the Verbaarschot, Weidenmueller, Zirnbauer triple-integral formula. Energy average and ensemble average agree reasonably well when the width I is one or two orders of magnitude larger than the average resonance spacing d. In the strong-absorption limit, the channel degree-of-freedom ν a is 2. The direct reaction increases the inelastic cross sections while the elastic cross section is reduced.

  13. Extra Chance Generalized Hybrid Monte Carlo

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; Sanz-Serna, J. M.

    2015-01-01

    We study a method, Extra Chance Generalized Hybrid Monte Carlo, to avoid rejections in the Hybrid Monte Carlo method and related algorithms. In the spirit of delayed rejection, whenever a rejection would occur, extra work is done to find a fresh proposal that, hopefully, may be accepted. We present experiments that clearly indicate that the additional work per sample carried out in the extra chance approach clearly pays in terms of the quality of the samples generated.

  14. Bayesian Monte Carlo Method for Nuclear Data Evaluation

    SciTech Connect

    Koning, A.J.

    2015-01-15

    A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using TALYS. The result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by an experiment based weight.

  15. Monte Carlo Form-Finding Method for Tensegrity Structures

    NASA Astrophysics Data System (ADS)

    Li, Yue; Feng, Xi-Qiao; Cao, Yan-Ping

    2010-05-01

    In this paper, we propose a Monte Carlo-based approach to solve tensegrity form-finding problems. It uses a stochastic procedure to find the deterministic equilibrium configuration of a tensegrity structure. The suggested Monte Carlo form-finding (MCFF) method is highly efficient because it does not involve complicated matrix operations and symmetry analysis and it works for arbitrary initial configurations. Both regular and non-regular tensegrity problems of large scale can be solved. Some representative examples are presented to demonstrate the efficiency and accuracy of this versatile method.

  16. Precision measurement of the top quark mass in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration

    SciTech Connect

    Lujan, Paul Joseph

    2009-12-01

    This thesis presents a measurement of the top quark mass obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. The measurement uses a matrix element integration method to calculate a t$\\bar{t}$ likelihood, employing a Quasi-Monte Carlo integration, which enables us to take into account effects due to finite detector angular resolution and quark mass effects. We calculate a t$\\bar{t}$ likelihood as a 2-D function of the top pole mass mt and ΔJES, where ΔJES parameterizes the uncertainty in our knowledge of the jet energy scale; it is a shift applied to all jet energies in units of the jet-dependent systematic error. By introducing ΔJES into the likelihood, we can use the information contained in W boson decays to constrain ΔJES and reduce error due to this uncertainty. We use a neural network discriminant to identify events likely to be background, and apply a cut on the peak value of individual event likelihoods to reduce the effect of badly reconstructed events. This measurement uses a total of 4.3 fb-1 of integrated luminosity, requiring events with a lepton, large ET, and exactly four high-energy jets in the pseudorapidity range |η| < 2.0, of which at least one must be tagged as coming from a b quark. In total, we observe 738 events before and 630 events after applying the likelihood cut, and measure mt = 172.6 ± 0.9 (stat.) ± 0.7 (JES) ± 1.1 (syst.) GeV/c2, or mt = 172.6 ± 1.6 (tot.) GeV/c2.

  17. Frequency domain optical tomography using a Monte Carlo perturbation method

    NASA Astrophysics Data System (ADS)

    Yamamoto, Toshihiro; Sakamoto, Hiroki

    2016-04-01

    A frequency domain Monte Carlo method is applied to near-infrared optical tomography, where an intensity-modulated light source with a given modulation frequency is used to reconstruct optical properties. The frequency domain reconstruction technique allows for better separation between the scattering and absorption properties of inclusions, even for ill-posed inverse problems, due to cross-talk between the scattering and absorption reconstructions. The frequency domain Monte Carlo calculation for light transport in an absorbing and scattering medium has thus far been analyzed mostly for the reconstruction of optical properties in simple layered tissues. This study applies a Monte Carlo calculation algorithm, which can handle complex-valued particle weights for solving a frequency domain transport equation, to optical tomography in two-dimensional heterogeneous tissues. The Jacobian matrix that is needed to reconstruct the optical properties is obtained by a first-order "differential operator" technique, which involves less variance than the conventional "correlated sampling" technique. The numerical examples in this paper indicate that the newly proposed Monte Carlo method provides reconstructed results for the scattering and absorption coefficients that compare favorably with the results obtained from conventional deterministic or Monte Carlo methods.

  18. Quantum Monte Carlo calculations of spectroscopic overlaps in A{<=}7 nuclei

    SciTech Connect

    Brida, I.; Pieper, Steven C.; Wiringa, R. B.

    2011-08-15

    We present Green's function Monte Carlo calculations of spectroscopic overlaps for A{<=}7 nuclei. The realistic Argonne v{sub 18} two-nucleon and Illinois-7 three-nucleon interactions are used to generate the nuclear states. The overlap matrix elements are extrapolated from mixed estimates between variational Monte Carlo and Green's function Monte Carlo wave functions. The overlap functions are used to obtain spectroscopic factors and asymptotic normalization coefficients, and they can serve as an input for reaction calculations.

  19. Approaching chemical accuracy with quantum Monte Carlo.

    PubMed

    Petruzielo, F R; Toulouse, Julien; Umrigar, C J

    2012-03-28

    A quantum Monte Carlo study of the atomization energies for the G2 set of molecules is presented. Basis size dependence of diffusion Monte Carlo atomization energies is studied with a single determinant Slater-Jastrow trial wavefunction formed from Hartree-Fock orbitals. With the largest basis set, the mean absolute deviation from experimental atomization energies for the G2 set is 3.0 kcal/mol. Optimizing the orbitals within variational Monte Carlo improves the agreement between diffusion Monte Carlo and experiment, reducing the mean absolute deviation to 2.1 kcal/mol. Moving beyond a single determinant Slater-Jastrow trial wavefunction, diffusion Monte Carlo with a small complete active space Slater-Jastrow trial wavefunction results in near chemical accuracy. In this case, the mean absolute deviation from experimental atomization energies is 1.2 kcal/mol. It is shown from calculations on systems containing phosphorus that the accuracy can be further improved by employing a larger active space. PMID:22462844

  20. Quantum speedup of Monte Carlo methods

    PubMed Central

    Montanaro, Ashley

    2015-01-01

    Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. PMID:26528079

  1. Quantum Monte Carlo calculations of light nuclei

    SciTech Connect

    Pieper, S.C.

    1998-12-01

    Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H,{sup 4}He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed. {copyright} {ital 1998 American Institute of Physics.}

  2. Quantum Monte Carlo calculations of light nuclei

    SciTech Connect

    Pieper, Steven C.

    1998-12-21

    Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H,{sup 4}He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed.

  3. Quantum Monte Carlo calculations of light nuclei.

    SciTech Connect

    Pieper, S. C.

    1998-08-25

    Quantum Monte Carlo calculations using realistic two- and three-nucleon interactions are presented for nuclei with up to eight nucleons. We have computed the ground and a few excited states of all such nuclei with Greens function Monte Carlo (GFMC) and all of the experimentally known excited states using variational Monte Carlo (VMC). The GFMC calculations show that for a given Hamiltonian, the VMC calculations of excitation spectra are reliable, but the VMC ground-state energies are significantly above the exact values. We find that the Hamiltonian we are using (which was developed based on {sup 3}H, {sup 4}He, and nuclear matter calculations) underpredicts the binding energy of p-shell nuclei. However our results for excitation spectra are very good and one can see both shell-model and collective spectra resulting from fundamental many-nucleon calculations. Possible improvements in the three-nucleon potential are also be discussed.

  4. Spatial Correlations in Monte Carlo Criticality Simulations

    NASA Astrophysics Data System (ADS)

    Dumonteil, E.; Malvagi, F.; Zoia, A.; Mazzolo, A.; Artusio, D.; Dieudonné, C.; De Mulatier, C.

    2014-06-01

    Temporal correlations arising in Monte Carlo criticality codes have focused the attention of both developers and practitioners for a long time. Those correlations affects the evaluation of tallies of loosely coupled systems, where the system's typical size is very large compared to the diffusion/absorption length scale of the neutrons. These time correlations are closely related to spatial correlations, both variables being linked by the transport equation. Therefore this paper addresses the question of diagnosing spatial correlations in Monte Carlo criticality simulations. In that aim, we will propose a spatial correlation function well suited to Monte Carlo simulations, and show its use while simulating a fuel pin-cell. The results will be discussed, modeled and interpreted using the tools of branching processes of statistical mechanics. A mechanism called "neutron clustering", affecting simulations, will be discussed in this frame.

  5. Global Monte Carlo Simulation with High Order Polynomial Expansions

    SciTech Connect

    William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin

    2007-12-13

    The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as “local” piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi’s method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source

  6. Fast quantum Monte Carlo on a GPU

    NASA Astrophysics Data System (ADS)

    Lutsyshyn, Y.

    2015-02-01

    We present a scheme for the parallelization of quantum Monte Carlo method on graphical processing units, focusing on variational Monte Carlo simulation of bosonic systems. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent utilization of the accelerator. The CUDA code is provided along with a package that simulates liquid helium-4. The program was benchmarked on several models of Nvidia GPU, including Fermi GTX560 and M2090, and the Kepler architecture K20 GPU. Special optimization was developed for the Kepler cards, including placement of data structures in the register space of the Kepler GPUs. Kepler-specific optimization is discussed.

  7. Monte Carlo dose computation for IMRT optimization*

    NASA Astrophysics Data System (ADS)

    Laub, W.; Alber, M.; Birkner, M.; Nüsslin, F.

    2000-07-01

    A method which combines the accuracy of Monte Carlo dose calculation with a finite size pencil-beam based intensity modulation optimization is presented. The pencil-beam algorithm is employed to compute the fluence element updates for a converging sequence of Monte Carlo dose distributions. The combination is shown to improve results over the pencil-beam based optimization in a lung tumour case and a head and neck case. Inhomogeneity effects like a broader penumbra and dose build-up regions can be compensated for by intensity modulation.

  8. Monte Carlo simulation of neutron scattering instruments

    SciTech Connect

    Seeger, P.A.

    1995-12-31

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width.

  9. Monte Carlo simulation of an expanding gas

    NASA Technical Reports Server (NTRS)

    Boyd, Iain D.

    1989-01-01

    By application of simple computer graphics techniques, the statistical performance of two Monte Carlo methods used in the simulation of rarefied gas flows are assessed. Specifically, two direct simulation Monte Carlo (DSMC) methods developed by Bird and Nanbu are considered. The graphics techniques are found to be of great benefit in the reduction and interpretation of the large volume of data generated, thus enabling important conclusions to be drawn about the simulation results. Hence, it is discovered that the method of Nanbu suffers from increased statistical fluctuations, thereby prohibiting its use in the solution of practical problems.

  10. Geodesic Monte Carlo on Embedded Manifolds.

    PubMed

    Byrne, Simon; Girolami, Mark

    2013-12-01

    Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton-Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024

  11. Geodesic Monte Carlo on Embedded Manifolds

    PubMed Central

    Byrne, Simon; Girolami, Mark

    2013-01-01

    Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices. PMID:25309024

  12. Parameter estimation of gravitational waves from nonprecessing black hole-neutron star inspirals with higher harmonics: Comparing Markov-chain Monte Carlo posteriors to an effective Fisher matrix

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Richard; Farr, Ben; Ochsner, Evan; Cho, Hee-Suk; Kim, Chunglee; Lee, Chang-Hwan

    2014-03-01

    Most calculations of the gravitational wave signal from merging compact binaries limit attention to the leading-order quadrupole when constructing models for detection or parameter estimation. Some studies have claimed that if additional "higher harmonics" are included consistently in the gravitational wave signal and search model, binary parameters can be measured much more precisely. Using the lalinference Markov-chain Monte Carlo parameter estimation code, we construct posterior parameter constraints associated with two distinct nonprecessing black hole-neutron star (BH-NS) binaries, each with and without higher-order harmonics. All simulations place a plausible signal into a three-detector network with Gaussian noise. Our simulations suggest that higher harmonics provide little information, principally allowing us to measure a previously unconstrained angle associated with the source geometry well but otherwise improving knowledge of all other parameters by a few percent for our loud fiducial signal (ρ =20). Even at this optimistic signal amplitude, different noise realizations have a more significant impact on parameter accuracy than higher harmonics. We compare our results with the "effective Fisher matrix" introduced previously as a method to obtain robust analytic predictions for complicated signals with multiple significant harmonics. We find generally good agreement with these predictions, confirm that intrinsic parameter measurement accuracy is nearly independent of detector network geometry, and show that uncertainties in extrinsic and intrinsic parameters can, to a good approximation, be separated. For our fiducial example, the individual masses can be determined to lie between 7.11-11.48M⊙ and 1.77-1.276M⊙ at greater than 99% confidence level, accounting for unknown BH spin. Assuming comparable control over waveform systematics, measurements of BH-NS binaries can constrain the BH and perhaps NS mass distributions. Using analytic arguments to

  13. Monte Carlo simulation framework for TMT

    NASA Astrophysics Data System (ADS)

    Vogiatzis, Konstantinos; Angeli, George Z.

    2008-07-01

    This presentation describes a strategy for assessing the performance of the Thirty Meter Telescope (TMT). A Monte Carlo Simulation Framework has been developed to combine optical modeling with Computational Fluid Dynamics simulations (CFD), Finite Element Analysis (FEA) and controls to model the overall performance of TMT. The framework consists of a two year record of observed environmental parameters such as atmospheric seeing, site wind speed and direction, ambient temperature and local sunset and sunrise times, along with telescope azimuth and elevation with a given sampling rate. The modeled optical, dynamic and thermal seeing aberrations are available in a matrix form for distinct values within the range of influencing parameters. These parameters are either part of the framework parameter set or can be derived from them at each time-step. As time advances, the aberrations are interpolated and combined based on the current value of their parameters. Different scenarios can be generated based on operating parameters such as venting strategy, optical calibration frequency and heat source control. Performance probability distributions are obtained and provide design guidance. The sensitivity of the system to design, operating and environmental parameters can be assessed in order to maximize the % of time the system meets the performance specifications.

  14. A comparison of Monte Carlo generators

    NASA Astrophysics Data System (ADS)

    Golan, Tomasz

    2015-05-01

    A comparison of GENIE, NEUT, NUANCE, and NuWro Monte Carlo neutrino event generators is presented using a set of four observables: protons multiplicity, total visible energy, most energetic proton momentum, and π+ two-dimensional energy vs cosine distribution.

  15. MCMAC: Monte Carlo Merger Analysis Code

    NASA Astrophysics Data System (ADS)

    Dawson, William A.

    2014-07-01

    Monte Carlo Merger Analysis Code (MCMAC) aids in the study of merging clusters. It takes observed priors on each subcluster's mass, radial velocity, and projected separation, draws randomly from those priors, and uses them in a analytic model to get posterior PDF's for merger dynamic properties of interest (e.g. collision velocity, time since collision).

  16. A quasi-Monte Carlo Metropolis algorithm

    PubMed Central

    Owen, Art B.; Tribble, Seth D.

    2005-01-01

    This work presents a version of the Metropolis–Hastings algorithm using quasi-Monte Carlo inputs. We prove that the method yields consistent estimates in some problems with finite state spaces and completely uniformly distributed inputs. In some numerical examples, the proposed method is much more accurate than ordinary Metropolis–Hastings sampling. PMID:15956207

  17. Monte Carlo methods in genetic analysis

    SciTech Connect

    Lin, Shili

    1996-12-31

    Many genetic analyses require computation of probabilities and likelihoods of pedigree data. With more and more genetic marker data deriving from new DNA technologies becoming available to researchers, exact computations are often formidable with standard statistical methods and computational algorithms. The desire to utilize as much available data as possible, coupled with complexities of realistic genetic models, push traditional approaches to their limits. These methods encounter severe methodological and computational challenges, even with the aid of advanced computing technology. Monte Carlo methods are therefore increasingly being explored as practical techniques for estimating these probabilities and likelihoods. This paper reviews the basic elements of the Markov chain Monte Carlo method and the method of sequential imputation, with an emphasis upon their applicability to genetic analysis. Three areas of applications are presented to demonstrate the versatility of Markov chain Monte Carlo for different types of genetic problems. A multilocus linkage analysis example is also presented to illustrate the sequential imputation method. Finally, important statistical issues of Markov chain Monte Carlo and sequential imputation, some of which are unique to genetic data, are discussed, and current solutions are outlined. 72 refs.

  18. Scalable Domain Decomposed Monte Carlo Particle Transport

    SciTech Connect

    O'Brien, Matthew Joseph

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  19. A comparison of Monte Carlo generators

    SciTech Connect

    Golan, Tomasz

    2015-05-15

    A comparison of GENIE, NEUT, NUANCE, and NuWro Monte Carlo neutrino event generators is presented using a set of four observables: protons multiplicity, total visible energy, most energetic proton momentum, and π{sup +} two-dimensional energy vs cosine distribution.

  20. Monte Carlo simulations of lattice gauge theories

    SciTech Connect

    Rebbi, C

    1980-02-01

    Monte Carlo simulations done for four-dimensional lattice gauge systems are described, where the gauge group is one of the following: U(1); SU(2); Z/sub N/, i.e., the subgroup of U(1) consisting of the elements e 2..pi..in/N with integer n and N; the eight-element group of quaternions, Q; the 24- and 48-element subgroups of SU(2), denoted by T and O, which reduce to the rotation groups of the tetrahedron and the octahedron when their centers Z/sub 2/, are factored out. All of these groups can be considered subgroups of SU(2) and a common normalization was used for the action. The following types of Monte Carlo experiments are considered: simulations of a thermal cycle, where the temperature of the system is varied slightly every few Monte Carlo iterations and the internal energy is measured; mixed-phase runs, where several Monte Carlo iterations are done at a few temperatures near a phase transition starting with a lattice which is half ordered and half disordered; measurements of averages of Wilson factors for loops of different shape. 5 figures, 1 table. (RWR)

  1. Structural Reliability and Monte Carlo Simulation.

    ERIC Educational Resources Information Center

    Laumakis, P. J.; Harlow, G.

    2002-01-01

    Analyzes a simple boom structure and assesses its reliability using elementary engineering mechanics. Demonstrates the power and utility of Monte-Carlo simulation by showing that such a simulation can be implemented more readily with results that compare favorably to the theoretical calculations. (Author/MM)

  2. Novel Quantum Monte Carlo Approaches for Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Rubenstein, Brenda M.

    Quantum Monte Carlo methods are a powerful suite of techniques for solving the quantum many-body problem. By using random numbers to stochastically sample quantum properties, QMC methods are capable of studying low-temperature quantum systems well beyond the reach of conventional deterministic techniques. QMC techniques have likewise been indispensible tools for augmenting our current knowledge of superfluidity and superconductivity. In this thesis, I present two new quantum Monte Carlo techniques, the Monte Carlo Power Method and Bose-Fermi Auxiliary-Field Quantum Monte Carlo, and apply previously developed Path Integral Monte Carlo methods to explore two new phases of quantum hard spheres and hydrogen. I lay the foundation for a subsequent description of my research by first reviewing the physics of quantum liquids in Chapter One and the mathematics behind Quantum Monte Carlo algorithms in Chapter Two. I then discuss the Monte Carlo Power Method, a stochastic way of computing the first several extremal eigenvalues of a matrix too memory-intensive to be stored and therefore diagonalized. As an illustration of the technique, I demonstrate how it can be used to determine the second eigenvalues of the transition matrices of several popular Monte Carlo algorithms. This information may be used to quantify how rapidly a Monte Carlo algorithm is converging to the equilibrium probability distribution it is sampling. I next present the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm. This algorithm generalizes the well-known Auxiliary-Field Quantum Monte Carlo algorithm for fermions to bosons and Bose-Fermi mixtures. Despite some shortcomings, the Bose-Fermi Auxiliary-Field Quantum Monte Carlo algorithm represents the first exact technique capable of studying Bose-Fermi mixtures of any size in any dimension. In Chapter Six, I describe a new Constant Stress Path Integral Monte Carlo algorithm for the study of quantum mechanical systems under high pressures. While

  3. Direct aperture optimization for IMRT using Monte Carlo generated beamlets.

    PubMed

    Bergman, Alanah M; Bush, Karl; Milette, Marie-Pierre; Popescu, I Antoniu; Otto, Karl; Duzenli, Cheryl

    2006-10-01

    This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5 X 5.0 mm2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is approximately 33% compared to fluence-based optimization methods. PMID:17089832

  4. Quantum Monte Carlo calculations for carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Luu, Thomas; Lähde, Timo A.

    2016-04-01

    We show how lattice quantum Monte Carlo can be applied to the electronic properties of carbon nanotubes in the presence of strong electron-electron correlations. We employ the path-integral formalism and use methods developed within the lattice QCD community for our numerical work. Our lattice Hamiltonian is closely related to the hexagonal Hubbard model augmented by a long-range electron-electron interaction. We apply our method to the single-quasiparticle spectrum of the (3,3) armchair nanotube configuration, and consider the effects of strong electron-electron correlations. Our approach is equally applicable to other nanotubes, as well as to other carbon nanostructures. We benchmark our Monte Carlo calculations against the two- and four-site Hubbard models, where a direct numerical solution is feasible.

  5. Status of Monte Carlo at Los Alamos

    SciTech Connect

    Thompson, W.L.; Cashwell, E.D.; Godfrey, T.N.K.; Schrandt, R.G.; Deutsch, O.L.; Booth, T.E.

    1980-05-01

    Four papers were presented by Group X-6 on April 22, 1980, at the Oak Ridge Radiation Shielding Information Center (RSIC) Seminar-Workshop on Theory and Applications of Monte Carlo Methods. These papers are combined into one report for convenience and because they are related to each other. The first paper (by Thompson and Cashwell) is a general survey about X-6 and MCNP and is an introduction to the other three papers. It can also serve as a resume of X-6. The second paper (by Godfrey) explains some of the details of geometry specification in MCNP. The third paper (by Cashwell and Schrandt) illustrates calculating flux at a point with MCNP; in particular, the once-more-collided flux estimator is demonstrated. Finally, the fourth paper (by Thompson, Deutsch, and Booth) is a tutorial on some variance-reduction techniques. It should be required for a fledging Monte Carlo practitioner.

  6. Quantum Monte Carlo calculations of light nuclei.

    SciTech Connect

    Pieper, S. C.; Physics

    2008-01-01

    Variational Monte Carlo and Green's function Monte Carlo are powerful tools for cal- culations of properties of light nuclei using realistic two-nucleon (NN) and three-nucleon (NNN) potentials. Recently the GFMC method has been extended to multiple states with the same quantum numbers. The combination of the Argonne v18 two-nucleon and Illinois-2 three-nucleon potentials gives a good prediction of many energies of nuclei up to 12 C. A number of other recent results are presented: comparison of binding energies with those obtained by the no-core shell model; the incompatibility of modern nuclear Hamiltonians with a bound tetra-neutron; difficulties in computing RMS radii of very weakly bound nuclei, such as 6He; center-of-mass effects on spectroscopic factors; and the possible use of an artificial external well in calculations of neutron-rich isotopes.

  7. Status of Monte Carlo at Los Alamos

    SciTech Connect

    Thompson, W.L.; Cashwell, E.D.

    1980-01-01

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time.

  8. An enhanced Monte Carlo outlier detection method.

    PubMed

    Zhang, Liangxiao; Li, Peiwu; Mao, Jin; Ma, Fei; Ding, Xiaoxia; Zhang, Qi

    2015-09-30

    Outlier detection is crucial in building a highly predictive model. In this study, we proposed an enhanced Monte Carlo outlier detection method by establishing cross-prediction models based on determinate normal samples and analyzing the distribution of prediction errors individually for dubious samples. One simulated and three real datasets were used to illustrate and validate the performance of our method, and the results indicated that this method outperformed Monte Carlo outlier detection in outlier diagnosis. After these outliers were removed, the value of validation by Kovats retention indices and the root mean square error of prediction decreased from 3.195 to 1.655, and the average cross-validation prediction error decreased from 2.0341 to 1.2780. This method helps establish a good model by eliminating outliers. © 2015 Wiley Periodicals, Inc. PMID:26226927

  9. Fast Lattice Monte Carlo Simulations of Polymers

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Zhang, Pengfei

    2014-03-01

    The recently proposed fast lattice Monte Carlo (FLMC) simulations (with multiple occupancy of lattice sites (MOLS) and Kronecker δ-function interactions) give much faster/better sampling of configuration space than both off-lattice molecular simulations (with pair-potential calculations) and conventional lattice Monte Carlo simulations (with self- and mutual-avoiding walk and nearest-neighbor interactions) of polymers.[1] Quantitative coarse-graining of polymeric systems can also be performed using lattice models with MOLS.[2] Here we use several model systems, including polymer melts, solutions, blends, as well as confined and/or grafted polymers, to demonstrate the great advantages of FLMC simulations in the study of equilibrium properties of polymers.

  10. Monte-Carlo Opening Books for Amazons

    NASA Astrophysics Data System (ADS)

    Kloetzer, Julien

    Automatically creating opening books is a natural step towards the building of strong game-playing programs, especially when there is little available knowledge about the game. However, while recent popular Monte-Carlo Tree-Search programs showed strong results for various games, we show here that programs based on such methods cannot efficiently use opening books created using algorithms based on minimax. To overcome this issue, we propose to use an MCTS-based technique, Meta-MCTS, to create such opening books. This method, while requiring some tuning to arrive at the best opening book possible, shows promising results to create an opening book for the game of the Amazons, even if this is at the cost of removing its Monte-Carlo part.

  11. Monte Carlo modeling of exospheric bodies - Mercury

    NASA Technical Reports Server (NTRS)

    Smith, G. R.; Broadfoot, A. L.; Wallace, L.; Shemansky, D. E.

    1978-01-01

    In order to study the interaction with the surface, a Monte Carlo program is developed to determine the distribution with altitude as well as the global distribution of density at the surface in a single operation. The analysis presented shows that the appropriate source distribution should be Maxwell-Boltzmann flux if the particles in the distribution are to be treated as components of flux. Monte Carlo calculations with a Maxwell-Boltzmann flux source are compared with Mariner 10 UV spectrometer data. Results indicate that the presently operating models are not capable of fitting the observed Mercury exosphere. It is suggested that an atmosphere calculated with a barometric source distribution is suitable for more realistic future exospheric models.

  12. Monte Carlo Methods in the Physical Sciences

    SciTech Connect

    Kalos, M H

    2007-06-06

    I will review the role that Monte Carlo methods play in the physical sciences. They are very widely used for a number of reasons: they permit the rapid and faithful transformation of a natural or model stochastic process into a computer code. They are powerful numerical methods for treating the many-dimensional problems that derive from important physical systems. Finally, many of the methods naturally permit the use of modern parallel computers in efficient ways. In the presentation, I will emphasize four aspects of the computations: whether or not the computation derives from a natural or model stochastic process; whether the system under study is highly idealized or realistic; whether the Monte Carlo methodology is straightforward or mathematically sophisticated; and finally, the scientific role of the computation.

  13. Inhomogeneous Monte Carlo simulations of dermoscopic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gareau, Daniel S.; Li, Ting; Jacques, Steven; Krueger, James

    2012-03-01

    Clinical skin-lesion diagnosis uses dermoscopy: 10X epiluminescence microscopy. Skin appearance ranges from black to white with shades of blue, red, gray and orange. Color is an important diagnostic criteria for diseases including melanoma. Melanin and blood content and distribution impact the diffuse spectral remittance (300-1000nm). Skin layers: immersion medium, stratum corneum, spinous epidermis, basal epidermis and dermis as well as laterally asymmetric features (eg. melanocytic invasion) were modeled in an inhomogeneous Monte Carlo model.

  14. Monte Carlo simulation of Alaska wolf survival

    NASA Astrophysics Data System (ADS)

    Feingold, S. J.

    1996-02-01

    Alaskan wolves live in a harsh climate and are hunted intensively. Penna's biological aging code, using Monte Carlo methods, has been adapted to simulate wolf survival. It was run on the case in which hunting causes the disruption of wolves' social structure. Social disruption was shown to increase the number of deaths occurring at a given level of hunting. For high levels of social disruption, the population did not survive.

  15. Applications of Maxent to quantum Monte Carlo

    SciTech Connect

    Silver, R.N.; Sivia, D.S.; Gubernatis, J.E. ); Jarrell, M. . Dept. of Physics)

    1990-01-01

    We consider the application of maximum entropy methods to the analysis of data produced by computer simulations. The focus is the calculation of the dynamical properties of quantum many-body systems by Monte Carlo methods, which is termed the Analytical Continuation Problem.'' For the Anderson model of dilute magnetic impurities in metals, we obtain spectral functions and transport coefficients which obey Kondo Universality.'' 24 refs., 7 figs.

  16. Linear-scaling quantum Monte Carlo calculations.

    PubMed

    Williamson, A J; Hood, R Q; Grossman, J C

    2001-12-10

    A method is presented for using truncated, maximally localized Wannier functions to introduce sparsity into the Slater determinant part of the trial wave function in quantum Monte Carlo calculations. When combined with an efficient numerical evaluation of these localized orbitals, the dominant cost in the calculation, namely, the evaluation of the Slater determinant, scales linearly with system size. This technique is applied to accurate total energy calculation of hydrogenated silicon clusters and carbon fullerenes containing 20-1000 valence electrons. PMID:11736525

  17. Quantitative PET Imaging Using A Comprehensive Monte Carlo System Model

    SciTech Connect

    Southekal, S.; Vaska, P.; Southekal, s.; Purschke, M.L.; Schlyer, d.J.; Vaska, P.

    2011-10-01

    We present the complete image generation methodology developed for the RatCAP PET scanner, which can be extended to other PET systems for which a Monte Carlo-based system model is feasible. The miniature RatCAP presents a unique set of advantages as well as challenges for image processing, and a combination of conventional methods and novel ideas developed specifically for this tomograph have been implemented. The crux of our approach is a low-noise Monte Carlo-generated probability matrix with integrated corrections for all physical effects that impact PET image quality. The generation and optimization of this matrix are discussed in detail, along with the estimation of correction factors and their incorporation into the reconstruction framework. Phantom studies and Monte Carlo simulations are used to evaluate the reconstruction as well as individual corrections for random coincidences, photon scatter, attenuation, and detector efficiency variations in terms of bias and noise. Finally, a realistic rat brain phantom study reconstructed using this methodology is shown to recover >; 90% of the contrast for hot as well as cold regions. The goal has been to realize the potential of quantitative neuroreceptor imaging with the RatCAP.

  18. jTracker and Monte Carlo Comparison

    NASA Astrophysics Data System (ADS)

    Selensky, Lauren; SeaQuest/E906 Collaboration

    2015-10-01

    SeaQuest is designed to observe the characteristics and behavior of `sea-quarks' in a proton by reconstructing them from the subatomic particles produced in a collision. The 120 GeV beam from the main injector collides with a fixed target and then passes through a series of detectors which records information about the particles produced in the collision. However, this data becomes meaningful only after it has been processed, stored, analyzed, and interpreted. Several programs are involved in this process. jTracker (sqerp) reads wire or hodoscope hits and reconstructs the tracks of potential dimuon pairs from a run, and Geant4 Monte Carlo simulates dimuon production and background noise from the beam. During track reconstruction, an event must meet the criteria set by the tracker to be considered a viable dimuon pair; this ensures that relevant data is retained. As a check, a comparison between a new version of jTracker and Monte Carlo was made in order to see how accurately jTracker could reconstruct the events created by Monte Carlo. In this presentation, the results of the inquest and their potential effects on the programming will be shown. This work is supported by U.S. DOE MENP Grant DE-FG02-03ER41243.

  19. Numerical reproducibility for implicit Monte Carlo simulations

    SciTech Connect

    Cleveland, M.; Brunner, T.; Gentile, N.

    2013-07-01

    We describe and compare different approaches for achieving numerical reproducibility in photon Monte Carlo simulations. Reproducibility is desirable for code verification, testing, and debugging. Parallelism creates a unique problem for achieving reproducibility in Monte Carlo simulations because it changes the order in which values are summed. This is a numerical problem because double precision arithmetic is not associative. In [1], a way of eliminating this roundoff error using integer tallies was described. This approach successfully achieves reproducibility at the cost of lost accuracy by rounding double precision numbers to fewer significant digits. This integer approach, and other extended reproducibility techniques, are described and compared in this work. Increased precision alone is not enough to ensure reproducibility of photon Monte Carlo simulations. A non-arbitrary precision approaches required a varying degree of rounding to achieve reproducibility. For the problems investigated in this work double precision global accuracy was achievable by using 100 bits of precision or greater on all unordered sums which where subsequently rounded to double precision at the end of every time-step. (authors)

  20. Monte Carlo dose mapping on deforming anatomy

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Siebers, Jeffrey V.

    2009-10-01

    This paper proposes a Monte Carlo-based energy and mass congruent mapping (EMCM) method to calculate the dose on deforming anatomy. Different from dose interpolation methods, EMCM separately maps each voxel's deposited energy and mass from a source image to a reference image with a displacement vector field (DVF) generated by deformable image registration (DIR). EMCM was compared with other dose mapping methods: energy-based dose interpolation (EBDI) and trilinear dose interpolation (TDI). These methods were implemented in EGSnrc/DOSXYZnrc, validated using a numerical deformable phantom and compared for clinical CT images. On the numerical phantom with an analytically invertible deformation map, EMCM mapped the dose exactly the same as its analytic solution, while EBDI and TDI had average dose errors of 2.5% and 6.0%. For a lung patient's IMRT treatment plan, EBDI and TDI differed from EMCM by 1.96% and 7.3% in the lung patient's entire dose region, respectively. As a 4D Monte Carlo dose calculation technique, EMCM is accurate and its speed is comparable to 3D Monte Carlo simulation. This method may serve as a valuable tool for accurate dose accumulation as well as for 4D dosimetry QA.

  1. Path integral Monte Carlo and the electron gas

    NASA Astrophysics Data System (ADS)

    Brown, Ethan W.

    Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational

  2. Nuclear pairing within a configuration-space Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Lingle, Mark; Volya, Alexander

    2015-06-01

    Pairing correlations in nuclei play a decisive role in determining nuclear drip lines, binding energies, and many collective properties. In this work a new configuration-space Monte Carlo (CSMC) method for treating nuclear pairing correlations is developed, implemented, and demonstrated. In CSMC the Hamiltonian matrix is stochastically generated in Krylov subspace, resulting in the Monte Carlo version of Lanczos-like diagonalization. The advantages of this approach over other techniques are discussed; the absence of the fermionic sign problem, probabilistic interpretation of quantum-mechanical amplitudes, and ability to handle truly large-scale problems with defined precision and error control are noteworthy merits of CSMC. The features of our CSMC approach are shown using models and realistic examples. Special attention is given to difficult limits: situations with nonconstant pairing strengths, cases with nearly degenerate excited states, limits when pairing correlations in finite systems are weak, and problems when the relevant configuration space is large.

  3. Minimising biases in full configuration interaction quantum Monte Carlo.

    PubMed

    Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W

    2015-03-14

    We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and hence compute the stationary distribution. These solutions are used to quantify the dependence of the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a system with only two determinants, it still reveals a population control bias inherent to the FCIQMC algorithm. We investigate the effect of simulation parameters on the population control bias for the neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight ing scheme to remove the bias caused by population control commonly used in diffusion Monte Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post processing step. PMID:25770522

  4. Bayesian Monte Carlo method for nuclear data evaluation

    NASA Astrophysics Data System (ADS)

    Koning, A. J.

    2015-12-01

    A Bayesian Monte Carlo method is outlined which allows a systematic evaluation of nuclear reactions using the nuclear model code TALYS and the experimental nuclear reaction database EXFOR. The method is applied to all nuclides at the same time. First, the global predictive power of TALYS is numerically assessed, which enables to set the prior space of nuclear model solutions. Next, the method gradually zooms in on particular experimental data per nuclide, until for each specific target nuclide its existing experimental data can be used for weighted Monte Carlo sampling. To connect to the various different schools of uncertainty propagation in applied nuclear science, the result will be either an EXFOR-weighted covariance matrix or a collection of random files, each accompanied by the EXFOR-based weight.

  5. Quantum Monte Carlo simulations with tensor-network states

    NASA Astrophysics Data System (ADS)

    Song, Jeong Pil; Clay, R. T.

    2011-03-01

    Matrix-product states, generated by the density-matrix renormalization group method, are among the most powerful methods for simulation of quasi-one dimensional quantum systems. Direct application of a matrix-product state representation fails for two dimensional systems, although a number of tensor-network states have been proposed to generalize the concept for two dimensions. We introduce a useful approximate method replacing a 4-index tensor by two matrices in order to contract tensors in two dimensions. We use this formalism as a basis for variational quantum Monte Carlo, optimizing the matrix elements stochastically. We present results on a two dimensional spinless fermion model including nearest- neighbor Coulomb interactions, and determine the critical Coulomb interaction for the charge density wave state by finite size scaling. This work was supported by the Department of Energy grant DE-FG02-06ER46315.

  6. The Density Matrix of H20 - N2 In the Coordinate Representation: A Monte Carlo Calculation of the Far-Wing Line Shape

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1999-01-01

    The far-wing line shape theory within the binary collision and quasistatic framework has been developed using the coordinate representation. Within this formalism, the main computational task is the evaluation of multidimensional integrals whose variables are the orientational angles needed to specify the initial and final positions of the system during transition processes. Using standard methods, one is able to evaluate the 7-dimensional integrations required for linear molecular systems, or the 7-dimensional integrations for more complicated asymmetric-top (or symmetric-top) molecular systems whose interaction potential contains cyclic coordinates. In order to obviate this latter restriction on the form of the interaction potential, a Monte Carlo method is used to evaluate the 9-dimensional integrations required for systems consisting of one asymmetric-top (or symmetric-top) and one linear molecule, such as H20-N2. Combined with techniques developed previously to deal with sophisticated potential models, one is able to implement realistic potentials for these systems and derive accurate, converged results for the far-wing line shapes and the corresponding absorption coefficients. Conversely, comparison of the far-wing absorption with experimental data can serve as a sensitive diagnostic tool in order to obtain detailed information on the short-range anisotropic dependence of interaction potentials.

  7. Implicit Monte Carlo diffusion - an acceleration method for Monte Carlo time dependent radiative transfer simulations

    SciTech Connect

    Gentile, N A

    2000-10-01

    We present a method for accelerating time dependent Monte Carlo radiative transfer calculations by using a discretization of the diffusion equation to calculate probabilities that are used to advance particles in regions with small mean free path. The method is demonstrated on problems with on 1 and 2 dimensional orthogonal grids. It results in decreases in run time of more than an order of magnitude on these problems, while producing answers with accuracy comparable to pure IMC simulations. We call the method Implicit Monte Carlo Diffusion, which we abbreviate IMD.

  8. Four decades of implicit Monte Carlo

    DOE PAGESBeta

    Wollaber, Allan B.

    2016-04-25

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  9. A Monte Carlo multimodal inversion of surface waves

    NASA Astrophysics Data System (ADS)

    Maraschini, Margherita; Foti, Sebastiano

    2010-09-01

    The analysis of surface wave propagation is often used to estimate the S-wave velocity profile at a site. In this paper, we propose a stochastic approach for the inversion of surface waves, which allows apparent dispersion curves to be inverted. The inversion method is based on the integrated use of two-misfit functions. A misfit function based on the determinant of the Haskell-Thomson matrix and a classical Euclidean distance between the dispersion curves. The former allows all the modes of the dispersion curve to be taken into account with a very limited computational cost because it avoids the explicit calculation of the dispersion curve for each tentative model. It is used in a Monte Carlo inversion with a large population of profiles. In a subsequent step, the selection of representative models is obtained by applying a Fisher test based on the Euclidean distance between the experimental and the synthetic dispersion curves to the best models of the Monte Carlo inversion. This procedure allows the set of the selected models to be identified on the basis of the data quality. It also mitigates the influence of local minima that can affect the Monte Carlo results. The effectiveness of the procedure is shown for synthetic and real experimental data sets, where the advantages of the two-stage procedure are highlighted. In particular, the determinant misfit allows the computation of large populations in stochastic algorithms with a limited computational cost.

  10. A Monte Carlo approach to water management

    NASA Astrophysics Data System (ADS)

    Koutsoyiannis, D.

    2012-04-01

    Common methods for making optimal decisions in water management problems are insufficient. Linear programming methods are inappropriate because hydrosystems are nonlinear with respect to their dynamics, operation constraints and objectives. Dynamic programming methods are inappropriate because water management problems cannot be divided into sequential stages. Also, these deterministic methods cannot properly deal with the uncertainty of future conditions (inflows, demands, etc.). Even stochastic extensions of these methods (e.g. linear-quadratic-Gaussian control) necessitate such drastic oversimplifications of hydrosystems that may make the obtained results irrelevant to the real world problems. However, a Monte Carlo approach is feasible and can form a general methodology applicable to any type of hydrosystem. This methodology uses stochastic simulation to generate system inputs, either unconditional or conditioned on a prediction, if available, and represents the operation of the entire system through a simulation model as faithful as possible, without demanding a specific mathematical form that would imply oversimplifications. Such representation fully respects the physical constraints, while at the same time it evaluates the system operation constraints and objectives in probabilistic terms, and derives their distribution functions and statistics through Monte Carlo simulation. As the performance criteria of a hydrosystem operation will generally be highly nonlinear and highly nonconvex functions of the control variables, a second Monte Carlo procedure, implementing stochastic optimization, is necessary to optimize system performance and evaluate the control variables of the system. The latter is facilitated if the entire representation is parsimonious, i.e. if the number of control variables is kept at a minimum by involving a suitable system parameterization. The approach is illustrated through three examples for (a) a hypothetical system of two reservoirs

  11. Monte Carlo simulation of intercalated carbon nanotubes.

    PubMed

    Mykhailenko, Oleksiy; Matsui, Denis; Prylutskyy, Yuriy; Le Normand, Francois; Eklund, Peter; Scharff, Peter

    2007-01-01

    Monte Carlo simulations of the single- and double-walled carbon nanotubes (CNT) intercalated with different metals have been carried out. The interrelation between the length of a CNT, the number and type of metal atoms has also been established. This research is aimed at studying intercalated systems based on CNTs and d-metals such as Fe and Co. Factors influencing the stability of these composites have been determined theoretically by the Monte Carlo method with the Tersoff potential. The modeling of CNTs intercalated with metals by the Monte Carlo method has proved that there is a correlation between the length of a CNT and the number of endo-atoms of specific type. Thus, in the case of a metallic CNT (9,0) with length 17 bands (3.60 nm), in contrast to Co atoms, Fe atoms are extruded out of the CNT if the number of atoms in the CNT is not less than eight. Thus, this paper shows that a CNT of a certain size can be intercalated with no more than eight Fe atoms. The systems investigated are stabilized by coordination of 3d-atoms close to the CNT wall with a radius-vector of (0.18-0.20) nm. Another characteristic feature is that, within the temperature range of (400-700) K, small systems exhibit ground-state stabilization which is not characteristic of the higher ones. The behavior of Fe and Co endo-atoms between the walls of a double-walled carbon nanotube (DW CNT) is explained by a dominating van der Waals interaction between the Co atoms themselves, which is not true for the Fe atoms. PMID:17033783

  12. Kinetic Monte Carlo simulations of proton conductivity

    NASA Astrophysics Data System (ADS)

    Masłowski, T.; Drzewiński, A.; Ulner, J.; Wojtkiewicz, J.; Zdanowska-Frączek, M.; Nordlund, K.; Kuronen, A.

    2014-07-01

    The kinetic Monte Carlo method is used to model the dynamic properties of proton diffusion in anhydrous proton conductors. The results have been discussed with reference to a two-step process called the Grotthuss mechanism. There is a widespread belief that this mechanism is responsible for fast proton mobility. We showed in detail that the relative frequency of reorientation and diffusion processes is crucial for the conductivity. Moreover, the current dependence on proton concentration has been analyzed. In order to test our microscopic model the proton transport in polymer electrolyte membranes based on benzimidazole C7H6N2 molecules is studied.

  13. Quantum Monte Carlo calculations for light nuclei.

    SciTech Connect

    Wiringa, R. B.

    1998-10-23

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 40 different (J{pi}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  14. Exascale Monte Carlo R&D

    SciTech Connect

    Marcus, Ryan C.

    2012-07-24

    Overview of this presentation is (1) Exascale computing - different technologies, getting there; (2) high-performance proof-of-concept MCMini - features and results; and (3) OpenCL toolkit - Oatmeal (OpenCL Automatic Memory Allocation Library) - purpose and features. Despite driver issues, OpenCL seems like a good, hardware agnostic tool. MCMini demonstrates the possibility for GPGPU-based Monte Carlo methods - it shows great scaling for HPC application and algorithmic equivalence. Oatmeal provides a flexible framework to aid in the development of scientific OpenCL codes.

  15. Monte Carlo procedure for protein design

    NASA Astrophysics Data System (ADS)

    Irbäck, Anders; Peterson, Carsten; Potthast, Frank; Sandelin, Erik

    1998-11-01

    A method for sequence optimization in protein models is presented. The approach, which has inherited its basic philosophy from recent work by Deutsch and Kurosky [Phys. Rev. Lett. 76, 323 (1996)] by maximizing conditional probabilities rather than minimizing energy functions, is based upon a different and very efficient multisequence Monte Carlo scheme. By construction, the method ensures that the designed sequences represent good folders thermodynamically. A bootstrap procedure for the sequence space search is devised making very large chains feasible. The algorithm is successfully explored on the two-dimensional HP model [K. F. Lau and K. A. Dill, Macromolecules 32, 3986 (1989)] with chain lengths N=16, 18, and 32.

  16. Discovering correlated fermions using quantum Monte Carlo.

    PubMed

    Wagner, Lucas K; Ceperley, David M

    2016-09-01

    It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior. PMID:27518859

  17. Monte Carlo methods to calculate impact probabilities

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.

    2014-09-01

    Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward

  18. Monte Carlo radiation transport¶llelism

    SciTech Connect

    Cox, L. J.; Post, S. E.

    2002-01-01

    This talk summarizes the main aspects of the LANL ASCI Eolus project and its major unclassified code project, MCNP. The MCNP code provide a state-of-the-art Monte Carlo radiation transport to approximately 3000 users world-wide. Almost all hardware platforms are supported because we strictly adhere to the FORTRAN-90/95 standard. For parallel processing, MCNP uses a mixture of OpenMp combined with either MPI or PVM (shared and distributed memory). This talk summarizes our experiences on various platforms using MPI with and without OpenMP. These platforms include PC-Windows, Intel-LINUX, BlueMountain, Frost, ASCI-Q and others.

  19. Monte Carlo simulation for the transport beamline

    SciTech Connect

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  20. Discovering correlated fermions using quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Wagner, Lucas K.; Ceperley, David M.

    2016-09-01

    It has become increasingly feasible to use quantum Monte Carlo (QMC) methods to study correlated fermion systems for realistic Hamiltonians. We give a summary of these techniques targeted at researchers in the field of correlated electrons, focusing on the fundamentals, capabilities, and current status of this technique. The QMC methods often offer the highest accuracy solutions available for systems in the continuum, and, since they address the many-body problem directly, the simulations can be analyzed to obtain insight into the nature of correlated quantum behavior.

  1. Monte Carlo analysis of magnetic aftereffect phenomena

    NASA Astrophysics Data System (ADS)

    Andrei, Petru; Stancu, Alexandru

    2006-04-01

    Magnetic aftereffect phenomena are analyzed by using the Monte Carlo technique. This technique has the advantage that it can be applied to any model of hysteresis. It is shown that a log t-type dependence of the magnetization can be qualitatively predicted even in the framework of hysteresis models with local history, such as the Jiles-Atherton model. These models are computationally much more efficient than the models with global history such as the Preisach model. Numerical results related to the decay of the magnetization as of function of time, as well as to the viscosity coefficient, are presented.

  2. Monte Carlo simulation of the enantioseparation process

    NASA Astrophysics Data System (ADS)

    Bustos, V. A.; Acosta, G.; Gomez, M. R.; Pereyra, V. D.

    2012-09-01

    By means of Monte Carlo simulation, a study of enantioseparation by capillary electrophoresis has been carried out. A simplified system consisting of two enantiomers S (R) and a selector chiral C, which reacts with the enantiomers to form complexes RC (SC), has been considered. The dependence of Δμ (enantioseparation) with the concentration of chiral selector and with temperature have been analyzed by simulation. The effect of the binding constant and the charge of the complexes are also analyzed. The results are qualitatively satisfactory, despite the simplicity of the model.

  3. A Monte Carlo algorithm for degenerate plasmas

    SciTech Connect

    Turrell, A.E. Sherlock, M.; Rose, S.J.

    2013-09-15

    A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of degeneracy is outlined. It has possible applications in inertial confinement fusion and astrophysics. Degenerate particles are initialised according to the Fermi–Dirac distribution function, and scattering is via a Pauli blocked binary collision approximation. The algorithm is tested against degenerate electron–ion equilibration, and the degenerate resistivity transport coefficient from unmagnetised first order transport theory. The code is applied to the cold fuel shell and alpha particle equilibration problem of inertial confinement fusion.

  4. Modulated pulse bathymetric lidar Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Luo, Tao; Wang, Yabo; Wang, Rong; Du, Peng; Min, Xia

    2015-10-01

    A typical modulated pulse bathymetric lidar system is investigated by simulation using a modulated pulse lidar simulation system. In the simulation, the return signal is generated by Monte Carlo method with modulated pulse propagation model and processed by mathematical tools like cross-correlation and digital filter. Computer simulation results incorporating the modulation detection scheme reveal a significant suppression of the water backscattering signal and corresponding target contrast enhancement. More simulation experiments are performed with various modulation and reception variables to investigate the effect of them on the bathymetric system performance.

  5. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    SciTech Connect

    Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J

    2010-11-17

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.

  6. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  7. Chemical application of diffusion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1983-10-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. As an example the singlet-triplet splitting of the energy of the methylene molecule CH2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on our VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX is discussed. Since CH2 has only eight electrons, most of the loops in this application are fairly short. The longest inner loops run over the set of atomic basis functions. The CPU time dependence obtained versus the number of basis functions is discussed and compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures. Finally, preliminary work on restructuring the algorithm to compute the separate Monte Carlo realizations in parallel is discussed.

  8. Discrete range clustering using Monte Carlo methods

    NASA Technical Reports Server (NTRS)

    Chatterji, G. B.; Sridhar, B.

    1993-01-01

    For automatic obstacle avoidance guidance during rotorcraft low altitude flight, a reliable model of the nearby environment is needed. Such a model may be constructed by applying surface fitting techniques to the dense range map obtained by active sensing using radars. However, for covertness, passive sensing techniques using electro-optic sensors are desirable. As opposed to the dense range map obtained via active sensing, passive sensing algorithms produce reliable range at sparse locations, and therefore, surface fitting techniques to fill the gaps in the range measurement are not directly applicable. Both for automatic guidance and as a display for aiding the pilot, these discrete ranges need to be grouped into sets which correspond to objects in the nearby environment. The focus of this paper is on using Monte Carlo methods for clustering range points into meaningful groups. One of the aims of the paper is to explore whether simulated annealing methods offer significant advantage over the basic Monte Carlo method for this class of problems. We compare three different approaches and present application results of these algorithms to a laboratory image sequence and a helicopter flight sequence.

  9. Composite biasing in Monte Carlo radiative transfer

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Gordon, Karl D.; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf

    2016-05-01

    Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the specific problems that we consider: in simulations with composite path length stretching, high accuracy results are obtained even for simulations with modest numbers of photon packages, while simulations without biasing cannot reach convergence, even with a huge number of photon packages.

  10. Calculating Pi Using the Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Williamson, Timothy

    2013-11-01

    During the summer of 2012, I had the opportunity to participate in a research experience for teachers at the center for sustainable energy at Notre Dame University (RET @ cSEND) working with Professor John LoSecco on the problem of using antineutrino detection to accurately determine the fuel makeup and operating power of nuclear reactors. During full power operation, a reactor may produce 1021 antineutrinos per second with approximately 100 per day being detected. While becoming familiar with the design and operation of the detectors, and how total antineutrino flux could be obtained from such a small sample, I read about a simulation program called Monte Carlo. Further investigation led me to the Monte Carlo method page of Wikipedia2 where I saw an example of approximating pi using this simulation. Other examples where this method was applied were typically done with computer simulations2 or purely mathematical.3 It is my belief that this method may be easily related to the students by performing the simple activity of sprinkling rice on an arc drawn in a square. The activity that follows was inspired by those simulations and was used by my AP Physics class last year with very good results.

  11. THE MCNPX MONTE CARLO RADIATION TRANSPORT CODE

    SciTech Connect

    WATERS, LAURIE S.; MCKINNEY, GREGG W.; DURKEE, JOE W.; FENSIN, MICHAEL L.; JAMES, MICHAEL R.; JOHNS, RUSSELL C.; PELOWITZ, DENISE B.

    2007-01-10

    MCNPX (Monte Carlo N-Particle eXtended) is a general-purpose Monte Carlo radiation transport code with three-dimensional geometry and continuous-energy transport of 34 particles and light ions. It contains flexible source and tally options, interactive graphics, and support for both sequential and multi-processing computer platforms. MCNPX is based on MCNP4B, and has been upgraded to most MCNP5 capabilities. MCNP is a highly stable code tracking neutrons, photons and electrons, and using evaluated nuclear data libraries for low-energy interaction probabilities. MCNPX has extended this base to a comprehensive set of particles and light ions, with heavy ion transport in development. Models have been included to calculate interaction probabilities when libraries are not available. Recent additions focus on the time evolution of residual nuclei decay, allowing calculation of transmutation and delayed particle emission. MCNPX is now a code of great dynamic range, and the excellent neutronics capabilities allow new opportunities to simulate devices of interest to experimental particle physics; particularly calorimetry. This paper describes the capabilities of the current MCNPX version 2.6.C, and also discusses ongoing code development.

  12. Monte Carlo simulations within avalanche rescue

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Genswein, Manuel; Schweizer, Jürg

    2016-04-01

    Refining concepts for avalanche rescue involves calculating suitable settings for rescue strategies such as an adequate probing depth for probe line searches or an optimal time for performing resuscitation for a recovered avalanche victim in case of additional burials. In the latter case, treatment decisions have to be made in the context of triage. However, given the low number of incidents it is rarely possible to derive quantitative criteria based on historical statistics in the context of evidence-based medicine. For these rare, but complex rescue scenarios, most of the associated concepts, theories, and processes involve a number of unknown "random" parameters which have to be estimated in order to calculate anything quantitatively. An obvious approach for incorporating a number of random variables and their distributions into a calculation is to perform a Monte Carlo (MC) simulation. We here present Monte Carlo simulations for calculating the most suitable probing depth for probe line searches depending on search area and an optimal resuscitation time in case of multiple avalanche burials. The MC approach reveals, e.g., new optimized values for the duration of resuscitation that differ from previous, mainly case-based assumptions.

  13. Multilevel Monte Carlo simulation of Coulomb collisions

    DOE PAGESBeta

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods.more » We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less

  14. Multilevel Monte Carlo simulation of Coulomb collisions

    SciTech Connect

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε–2) or (ε–2(lnε)2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε–3) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10–5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

  15. Monte Carlo methods in lattice gauge theories

    SciTech Connect

    Otto, S.W.

    1983-01-01

    The mass of the O/sup +/ glueball for SU(2) gauge theory in 4 dimensions is calculated. This computation was done on a prototype parallel processor and the implementation of gauge theories on this system is described in detail. Using an action of the purely Wilson form (tract of plaquette in the fundamental representation), results with high statistics are obtained. These results are not consistent with scaling according to the continuum renormalization group. Using actions containing higher representations of the group, a search is made for one which is closer to the continuum limit. The choice is based upon the phase structure of these extended theories and also upon the Migdal-Kadanoff approximation to the renormalizaiton group on the lattice. The mass of the O/sup +/ glueball for this improved action is obtained and the mass divided by the square root of the string tension is a constant as the lattice spacing is varied. The other topic studied is the inclusion of dynamical fermions into Monte Carlo calculations via the pseudo fermion technique. Monte Carlo results obtained with this method are compared with those from an exact algorithm based on Gauss-Seidel inversion. First applied were the methods to the Schwinger model and SU(3) theory.

  16. Quantum Monte Carlo for atoms and molecules

    SciTech Connect

    Barnett, R.N.

    1989-11-01

    The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H{sub 2}, LiH, Li{sub 2}, and H{sub 2}O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li{sub 2}, and H{sub 2}O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions.

  17. Metallic lithium by quantum Monte Carlo

    SciTech Connect

    Sugiyama, G.; Zerah, G.; Alder, B.J.

    1986-12-01

    Lithium was chosen as the simplest known metal for the first application of quantum Monte Carlo methods in order to evaluate the accuracy of conventional one-electron band theories. Lithium has been extensively studied using such techniques. Band theory calculations have certain limitations in general and specifically in their application to lithium. Results depend on such factors as charge shape approximations (muffin tins), pseudopotentials (a special problem for lithium where the lack of rho core states requires a strong pseudopotential), and the form and parameters chosen for the exchange potential. The calculations are all one-electron methods in which the correlation effects are included in an ad hoc manner. This approximation may be particularly poor in the high compression regime, where the core states become delocalized. Furthermore, band theory provides only self-consistent results rather than strict limits on the energies. The quantum Monte Carlo method is a totally different technique using a many-body rather than a mean field approach which yields an upper bound on the energies. 18 refs., 4 figs., 1 tab.

  18. Monte Carlo modeling of spatial coherence: free-space diffraction.

    PubMed

    Fischer, David G; Prahl, Scott A; Duncan, Donald D

    2008-10-01

    We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions. PMID:18830335

  19. Monte Carlo techniques for analyzing deep-penetration problems

    SciTech Connect

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1986-02-01

    Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications.

  20. Quantum Monte Carlo Endstation for Petascale Computing

    SciTech Connect

    Lubos Mitas

    2011-01-26

    NCSU research group has been focused on accomplising the key goals of this initiative: establishing new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop initiative for use at the DOE ORNL computational facilities and for use by computational electronic structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects in application of these tools to the forefront electronic structure problems in molecular and solid systems; expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these advanced computational approaches. In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was significantly expanded and optimized using funds from this support and at present became an actively used tool in the petascale regime by ORNL researchers and beyond. These developments have been built upon efforts undertaken by the PI's group and collaborators over the period of the last decade. The code was optimized and tested extensively on a number of parallel architectures including petaflop ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together with overall organization of the code and random walker distribution over multicore architectures. We have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the calculations with the other groups of the Endstation team. The QWalk package contains about 50,000 lines of high quality object-oriented C++ and includes also interfaces to data files from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others. This grant supported PI for one month during summers, a full-time postdoc and partially three graduate students over the period of the grant duration, it has resulted in 13

  1. A proposal for a standard interface between Monte Carlo tools and one-loop programs

    SciTech Connect

    Binoth, T.; Boudjema, F.; Dissertori, G.; Lazopoulos, A.; Denner, A.; Dittmaier, S.; Frederix, R.; Greiner, N.; Hoche, S.; Giele, W.; Skands, P.

    2010-01-01

    Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarizes the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.

  2. A Proposal for a Standard Interface Between Monte Carlo Tools And One-Loop Programs

    SciTech Connect

    Binoth, T.; Boudjema, F.; Dissertori, G.; Lazopoulos, A.; Denner, A.; Dittmaier, S.; Frederix, R.; Greiner, N.; Hoeche, Stefan; Giele, W.; Skands, P.; Winter, J.; Gleisberg, T.; Archibald, J.; Heinrich, G.; Krauss, F.; Maitre, D.; Huber, M.; Huston, J.; Kauer, N.; Maltoni, F.; /Louvain U., CP3 /Milan Bicocca U. /INFN, Turin /Turin U. /Granada U., Theor. Phys. Astrophys. /CERN /NIKHEF, Amsterdam /Heidelberg U. /Oxford U., Theor. Phys.

    2011-11-11

    Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.

  3. Theory and Applications of Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Deible, Michael John

    With the development of peta-scale computers and exa-scale only a few years away, the quantum Monte Carlo (QMC) method, with favorable scaling and inherent parrallelizability, is poised to increase its impact on the electronic structure community. The most widely used variation of QMC is the diffusion Monte Carlo (DMC) method. The accuracy of the DMC method is only limited by the trial wave function that it employs. The effect of the trial wave function is studied here by initially developing correlation-consistent Gaussian basis sets for use in DMC calculations. These basis sets give a low variance in variance Monte Carlo calculations and improved convergence in DMC. The orbital type used in the trial wave function is then investigated, and it is shown that Brueckner orbitals result in a DMC energy comparable to a DMC energy with orbitals from density functional theory and significantly lower than orbitals from Hartree-Fock theory. Three large weakly interacting systems are then studied; a water-16 isomer, a methane clathrate, and a carbon dioxide clathrate. The DMC method is seen to be in good agreement with MP2 calculations and provides reliable benchmarks. Several strongly correlated systems are then studied. An H4 model system that allows for a fine tuning of the multi-configurational character of the wave function shows when the accuracy of the DMC method with a single Slater-determinant trial function begins to deviate from multi-reference benchmarks. The weakly interacting face-to-face ethylene dimer is studied with and without a rotation around the pi bond, which is used to increase the multi-configurational nature of the wave function. This test shows that the effect of a multi-configurational wave function in weakly interacting systems causes DMC with a single Slater-determinant to be unable to achieve sub-chemical accuracy. The beryllium dimer is studied, and it is shown that a very large determinant expansion is required for DMC to predict a binding

  4. Monte Carlo simulations of medical imaging modalities

    SciTech Connect

    Estes, G.P.

    1998-09-01

    Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computer power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.

  5. Coherent scatter imaging Monte Carlo simulation.

    PubMed

    Hassan, Laila; MacDonald, Carolyn A

    2016-07-01

    Conventional mammography can suffer from poor contrast between healthy and cancerous tissues due to the small difference in attenuation properties. Coherent scatter slot scan imaging is an imaging technique which provides additional information and is compatible with conventional mammography. A Monte Carlo simulation of coherent scatter slot scan imaging was performed to assess its performance and provide system optimization. Coherent scatter could be exploited using a system similar to conventional slot scan mammography system with antiscatter grids tilted at the characteristic angle of cancerous tissues. System optimization was performed across several parameters, including source voltage, tilt angle, grid distances, grid ratio, and shielding geometry. The simulated carcinomas were detectable for tumors as small as 5 mm in diameter, so coherent scatter analysis using a wide-slot setup could be promising as an enhancement for screening mammography. Employing coherent scatter information simultaneously with conventional mammography could yield a conventional high spatial resolution image with additional coherent scatter information. PMID:27610397

  6. Green's function Monte Carlo in nuclear physics

    SciTech Connect

    Carlson, J.

    1990-01-01

    We review the status of Green's Function Monte Carlo (GFMC) methods as applied to problems in nuclear physics. New methods have been developed to handle the spin and isospin degrees of freedom that are a vital part of any realistic nuclear physics problem, whether at the level of quarks or nucleons. We discuss these methods and then summarize results obtained recently for light nuclei, including ground state energies, three-body forces, charge form factors and the coulomb sum. As an illustration of the applicability of GFMC to quark models, we also consider the possible existence of bound exotic multi-quark states within the framework of flux-tube quark models. 44 refs., 8 figs., 1 tab.

  7. Accuracy control in Monte Carlo radiative calculations

    NASA Technical Reports Server (NTRS)

    Almazan, P. Planas

    1993-01-01

    The general accuracy law that rules the Monte Carlo, ray-tracing algorithms used commonly for the calculation of the radiative entities in the thermal analysis of spacecraft are presented. These entities involve transfer of radiative energy either from a single source to a target (e.g., the configuration factors). or from several sources to a target (e.g., the absorbed heat fluxes). In fact, the former is just a particular case of the latter. The accuracy model is later applied to the calculation of some specific radiative entities. Furthermore, some issues related to the implementation of such a model in a software tool are discussed. Although only the relative error is considered through the discussion, similar results can be derived for the absolute error.

  8. MORSE Monte Carlo radiation transport code system

    SciTech Connect

    Emmett, M.B.

    1983-02-01

    This report is an addendum to the MORSE report, ORNL-4972, originally published in 1975. This addendum contains descriptions of several modifications to the MORSE Monte Carlo Code, replacement pages containing corrections, Part II of the report which was previously unpublished, and a new Table of Contents. The modifications include a Klein Nishina estimator for gamma rays. Use of such an estimator required changing the cross section routines to process pair production and Compton scattering cross sections directly from ENDF tapes and writing a new version of subroutine RELCOL. Another modification is the use of free form input for the SAMBO analysis data. This required changing subroutines SCORIN and adding new subroutine RFRE. References are updated, and errors in the original report have been corrected. (WHK)

  9. Exploring theory space with Monte Carlo reweighting

    DOE PAGESBeta

    Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun

    2014-10-13

    Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists andmore » experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less

  10. Monte Carlo modeling and meteor showers

    NASA Astrophysics Data System (ADS)

    Kulikova, N. V.

    1987-08-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  11. Quantum Monte Carlo simulations in novel geometries

    NASA Astrophysics Data System (ADS)

    Iglovikov, Vladimir

    Quantum Monte Carlo simulations are giving increasing insight into the physics of strongly interacting bosons, spins, and fermions. Initial work focused on the simplest geometries, like a 2D square lattice. Increasingly, modern research is turning to more rich structures such as honeycomb lattice of graphene, the Lieb lattice of the CuO2 planes of cuprate superconductors, the triangular lattice, and coupled layers. These new geometries possess unique features which affect the physics in profound ways, eg a vanishing density of states and relativistic dispersion ("Dirac point'') of a honeycomb lattice, frustration on a triangular lattice, and a flat bands on a Lieb lattice. This thesis concerns both exploring the performance of QMC algorithms on different geometries(primarily via the "sign problem'') and also applying those algorithms to several interesting open problems.

  12. Resist develop prediction by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Sohn, Dong-Soo; Jeon, Kyoung-Ah; Sohn, Young-Soo; Oh, Hye-Keun

    2002-07-01

    Various resist develop models have been suggested to express the phenomena from the pioneering work of Dill's model in 1975 to the recent Shipley's enhanced notch model. The statistical Monte Carlo method can be applied to the process such as development and post exposure bake. The motions of developer during development process were traced by using this method. We have considered that the surface edge roughness of the resist depends on the weight percentage of protected and de-protected polymer in the resist. The results are well agreed with other papers. This study can be helpful for the developing of new photoresist and developer that can be used to pattern the device features smaller than 100 nm.

  13. Exploring theory space with Monte Carlo reweighting

    SciTech Connect

    Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun

    2014-10-13

    Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.

  14. Monte Carlo modeling and meteor showers

    NASA Technical Reports Server (NTRS)

    Kulikova, N. V.

    1987-01-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  15. Noncovalent Interactions by Quantum Monte Carlo.

    PubMed

    Dubecký, Matúš; Mitas, Lubos; Jurečka, Petr

    2016-05-11

    Quantum Monte Carlo (QMC) is a family of stochastic methods for solving quantum many-body problems such as the stationary Schrödinger equation. The review introduces basic notions of electronic structure QMC based on random walks in real space as well as its advances and adaptations to systems with noncovalent interactions. Specific issues such as fixed-node error cancellation, construction of trial wave functions, and efficiency considerations that allow for benchmark quality QMC energy differences are described in detail. Comprehensive overview of articles covers QMC applications to systems with noncovalent interactions over the last three decades. The current status of QMC with regard to efficiency, applicability, and usability by nonexperts together with further considerations about QMC developments, limitations, and unsolved challenges are discussed as well. PMID:27081724

  16. Monte-Carlo Simulation Balancing in Practice

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chieh; Coulom, Rémi; Lin, Shun-Shii

    Simulation balancing is a new technique to tune parameters of a playout policy for a Monte-Carlo game-playing program. So far, this algorithm had only been tested in a very artificial setting: it was limited to 5×5 and 6×6 Go, and required a stronger external program that served as a supervisor. In this paper, the effectiveness of simulation balancing is demonstrated in a more realistic setting. A state-of-the-art program, Erica, learned an improved playout policy on the 9×9 board, without requiring any external expert to provide position evaluations. The evaluations were collected by letting the program analyze positions by itself. The previous version of Erica learned pattern weights with the minorization-maximization algorithm. Thanks to simulation balancing, its playing strength was improved from a winning rate of 69% to 78% against Fuego 0.4.

  17. Angular biasing in implicit Monte-Carlo

    SciTech Connect

    Zimmerman, G.B.

    1994-10-20

    Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise.

  18. Chemical application of diffusion quantum Monte Carlo

    NASA Technical Reports Server (NTRS)

    Reynolds, P. J.; Lester, W. A., Jr.

    1984-01-01

    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures.

  19. Monte Carlo simulations in Nuclear Medicine

    SciTech Connect

    Loudos, George K.

    2007-11-26

    Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.

  20. Monte Carlo simulations in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    Molecular imaging technologies provide unique abilities to localise signs of disease before symptoms appear, assist in drug testing, optimize and personalize therapy, and assess the efficacy of treatment regimes for different types of cancer. Monte Carlo simulation packages are used as an important tool for the optimal design of detector systems. In addition they have demonstrated potential to improve image quality and acquisition protocols. Many general purpose (MCNP, Geant4, etc) or dedicated codes (SimSET etc) have been developed aiming to provide accurate and fast results. Special emphasis will be given to GATE toolkit. The GATE code currently under development by the OpenGATE collaboration is the most accurate and promising code for performing realistic simulations. The purpose of this article is to introduce the non expert reader to the current status of MC simulations in nuclear medicine and briefly provide examples of current simulated systems, and present future challenges that include simulation of clinical studies and dosimetry applications.

  1. Optimized trial functions for quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Yu; Sun, Zhiwei; Lester, William A., Jr.

    1990-01-01

    An algorithm to optimize trial functions for fixed-node quantum Monte Carlo calculations has been developed based on variational random walks. The approach is applied to wave functions that are products of a simple Slater determinant and correlation factor explicitly dependent on interelectronic distance, and is found to provide improved ground-state total energies. A modification of the method for ground-states that makes use of a projection operator technique is shown to make possible the calculation of more accurate excited-state energies. In this optimization method the Young tableaux of the permutation group is used to facilitate the treatment of fermion properties and multiplets. Application to ground states of H2, Li2, H3, H+3, and to the first-excited singlets of H2, H3, and H4 are presented and discussed.

  2. Optimized trial functions for quantum Monte Carlo

    SciTech Connect

    Huang, S.; Sun, Z.; Lester, W.A. Jr. )

    1990-01-01

    An algorithm to optimize trial functions for fixed-node quantum Monte Carlo calculations has been developed based on variational random walks. The approach is applied to wave functions that are products of a simple Slater determinant and correlation factor explicitly dependent on interelectronic distance, and is found to provide improved ground-state total energies. A modification of the method for ground-states that makes use of a projection operator technique is shown to make possible the calculation of more accurate excited-state energies. In this optimization method the Young tableaux of the permutation group is used to facilitate the treatment of fermion properties and multiplets. Application to ground states of H{sub 2}, Li{sub 2}, H{sub 3}, H{sup +}{sub 3}, and to the first-excited singlets of H{sub 2}, H{sub 3}, and H{sub 4} are presented and discussed.

  3. A Primer in Monte Carlo Integration Using Mathcad

    ERIC Educational Resources Information Center

    Hoyer, Chad E.; Kegerreis, Jeb S.

    2013-01-01

    The essentials of Monte Carlo integration are presented for use in an upper-level physical chemistry setting. A Mathcad document that aids in the dissemination and utilization of this information is described and is available in the Supporting Information. A brief outline of Monte Carlo integration is given, along with ideas and pedagogy for…

  4. Monte Carlo Test Assembly for Item Pool Analysis and Extension

    ERIC Educational Resources Information Center

    Belov, Dmitry I.; Armstrong, Ronald D.

    2005-01-01

    A new test assembly algorithm based on a Monte Carlo random search is presented in this article. A major advantage of the Monte Carlo test assembly over other approaches (integer programming or enumerative heuristics) is that it performs a uniform sampling from the item pool, which provides every feasible item combination (test) with an equal…

  5. Economic Risk Analysis: Using Analytical and Monte Carlo Techniques.

    ERIC Educational Resources Information Center

    O'Donnell, Brendan R.; Hickner, Michael A.; Barna, Bruce A.

    2002-01-01

    Describes the development and instructional use of a Microsoft Excel spreadsheet template that facilitates analytical and Monte Carlo risk analysis of investment decisions. Discusses a variety of risk assessment methods followed by applications of the analytical and Monte Carlo methods. Uses a case study to illustrate use of the spreadsheet tool…

  6. The Monte Carlo Method. Popular Lectures in Mathematics.

    ERIC Educational Resources Information Center

    Sobol', I. M.

    The Monte Carlo Method is a method of approximately solving mathematical and physical problems by the simulation of random quantities. The principal goal of this booklet is to suggest to specialists in all areas that they will encounter problems which can be solved by the Monte Carlo Method. Part I of the booklet discusses the simulation of random…

  7. Accelerated GPU based SPECT Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  8. Monte Carlo modelling of TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  9. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  10. Monte Carlo scatter correction for SPECT

    NASA Astrophysics Data System (ADS)

    Liu, Zemei

    The goal of this dissertation is to present a quantitatively accurate and computationally fast scatter correction method that is robust and easily accessible for routine applications in SPECT imaging. A Monte Carlo based scatter estimation method is investigated and developed further. The Monte Carlo simulation program SIMIND (Simulating Medical Imaging Nuclear Detectors), was specifically developed to simulate clinical SPECT systems. The SIMIND scatter estimation (SSE) method was developed further using a multithreading technique to distribute the scatter estimation task across multiple threads running concurrently on multi-core CPU's to accelerate the scatter estimation process. An analytical collimator that ensures less noise was used during SSE. The research includes the addition to SIMIND of charge transport modeling in cadmium zinc telluride (CZT) detectors. Phenomena associated with radiation-induced charge transport including charge trapping, charge diffusion, charge sharing between neighboring detector pixels, as well as uncertainties in the detection process are addressed. Experimental measurements and simulation studies were designed for scintillation crystal based SPECT and CZT based SPECT systems to verify and evaluate the expanded SSE method. Jaszczak Deluxe and Anthropomorphic Torso Phantoms (Data Spectrum Corporation, Hillsborough, NC, USA) were used for experimental measurements and digital versions of the same phantoms employed during simulations to mimic experimental acquisitions. This study design enabled easy comparison of experimental and simulated data. The results have consistently shown that the SSE method performed similarly or better than the triple energy window (TEW) and effective scatter source estimation (ESSE) methods for experiments on all the clinical SPECT systems. The SSE method is proven to be a viable method for scatter estimation for routine clinical use.

  11. Quantum Monte Carlo studies on small molecules

    NASA Astrophysics Data System (ADS)

    Galek, Peter T. A.; Handy, Nicholas C.; Lester, William A., Jr.

    The Variational Monte Carlo (VMC) and Fixed-Node Diffusion Monte Carlo (FNDMC) methods have been examined, through studies on small molecules. New programs have been written which implement the (by now) standard algorithms for VMC and FNDMC. We have employed and investigated throughout our studies the accuracy of the common Slater-Jastrow trial wave function. Firstly, we have studied a range of sizes of the Jastrow correlation function of the Boys-Handy form, obtained using our optimization program with analytical derivatives of the central moments in the local energy. Secondly, we have studied the effects of Slater-type orbitals (STOs) that display the exact cusp behaviour at nuclei. The orbitals make up the all important trial determinant, which determines the fixed nodal surface. We report all-electron calculations for the ground state energies of Li2, Be2, H2O, NH3, CH4 and H2CO, in all cases but one with accuracy in excess of 95%. Finally, we report an investigation of the ground state energies, dissociation energies and ionization potentials of NH and NH+. Recent focus paid in the literature to these species allow for an extensive comparison with other ab initio methods. We obtain accurate properties for the species and reveal a favourable tendency for fixed-node and other systematic errors to cancel. As a result of our accurate predictions, we are able to obtain a value for the heat of formation of NH, which agrees to within less than 1 kcal mol-1 to other ab initio techniques and 0.2 kcal mol-1 of the experimental value.

  12. A fully coupled Monte Carlo/discrete ordinates solution to the neutron transport equation. Final report

    SciTech Connect

    Filippone, W.L.; Baker, R.S.

    1990-12-31

    The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S{sub N}) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and S{sub N} regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S{sub N} is well suited for by themselves. The fully coupled Monte Carlo/S{sub N} technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an S{sub N} calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary S{sub N} region. The Monte Carlo and S{sub N} regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the S{sub N} code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the S{sub N} code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating S{sub N} calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.

  13. Vectorized Monte Carlo methods for reactor lattice analysis

    NASA Technical Reports Server (NTRS)

    Brown, F. B.

    1984-01-01

    Some of the new computational methods and equivalent mathematical representations of physics models used in the MCV code, a vectorized continuous-enery Monte Carlo code for use on the CYBER-205 computer are discussed. While the principal application of MCV is the neutronics analysis of repeating reactor lattices, the new methods used in MCV should be generally useful for vectorizing Monte Carlo for other applications. For background, a brief overview of the vector processing features of the CYBER-205 is included, followed by a discussion of the fundamentals of Monte Carlo vectorization. The physics models used in the MCV vectorized Monte Carlo code are then summarized. The new methods used in scattering analysis are presented along with details of several key, highly specialized computational routines. Finally, speedups relative to CDC-7600 scalar Monte Carlo are discussed.

  14. Monte Carlo simulation of light propagation in the adult brain

    NASA Astrophysics Data System (ADS)

    Mudra, Regina M.; Nadler, Andreas; Keller, Emanuella; Niederer, Peter

    2004-06-01

    When near infrared spectroscopy (NIRS) is applied noninvasively to the adult head for brain monitoring, extra-cerebral bone and surface tissue exert a substantial influence on the cerebral signal. Most attempts to subtract extra-cerebral contamination involve spatially resolved spectroscopy (SRS). However, inter-individual variability of anatomy restrict the reliability of SRS. We simulated the light propagation with Monte Carlo techniques on the basis of anatomical structures determined from 3D-magnetic resonance imaging (MRI) exhibiting a voxel resolution of 0.8 x 0.8 x 0.8 mm3 for three different pairs of T1/T2 values each. The MRI data were used to define the material light absorption and dispersion coefficient for each voxel. The resulting spatial matrix was applied in the Monte Carlo Simulation to determine the light propagation in the cerebral cortex and overlaying structures. The accuracy of the Monte Carlo Simulation was furthermore increased by using a constant optical path length for the photons which was less than the median optical path length of the different materials. Based on our simulations we found a differential pathlength factor (DPF) of 6.15 which is close to with the value of 5.9 found in the literature for a distance of 4.5cm between the external sensors. Furthermore, we weighted the spatial probability distribution of the photons within the different tissues with the probabilities of the relative blood volume within the tissue. The results show that 50% of the NIRS signal is determined by the grey matter of the cerebral cortex which allows us to conclude that NIRS can produce meaningful cerebral blood flow measurements providing that the necessary corrections for extracerebral contamination are included.

  15. Recent advances and future prospects for Monte Carlo

    SciTech Connect

    Brown, Forrest B

    2010-01-01

    The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codes such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.

  16. Quantum Monte Carlo calculations of {Alpha} = 8 nuclei.

    SciTech Connect

    Wiringa, R. B.; Pieper, S. C.; Carlson, J.; Pandharipande, V. R.; Physics; LANL; Univ. of Illinois

    2000-07-01

    We report quantum Monte Carlo calculations of ground and low-lying excited states for {Alpha}=8 nuclei using a realistic Hamiltonian containing the Argonne v{sub 18} two-nucleon and Urbana IX three-nucleon potentials. The calculations begin with correlated eight-body wave functions that have a filled {alpha}-like core and four p-shell nucleons LS coupled to the appropriate (J{sup {pi}},T) quantum numbers for the state of interest. After optimization, these variational wave functions are used as input to a Green's function Monte Carlo calculation made with a new constrained path algorithm. We find that the Hamiltonian produces a {sup 8}Be ground state that is within 2 MeV of the experimental resonance, but the other eight-body energies are progressively worse as the neutron-proton asymmetry increases. The {sup 8}Li ground state is stable against breakup into subclusters, but the {sup 8}He ground state is not. The excited state spectra are in fair agreement with experiment, with both the single-particle behavior of {sup 8}He and {sup 8}Li and the collective rotational behavior of {sup 8}Be being reproduced. We also examine energy differences in the T=1,2 isomultiplets and isospin-mixing matrix elements in the excited states of {sup 8}Be. Finally, we present densities, momentum distributions, and studies of the intrinsic shapes of these nuclei, with {sup 8}Be exhibiting a definite 2{alpha} cluster structure.

  17. Monte Carlo simulation of quantum Zeno effect in the brain

    NASA Astrophysics Data System (ADS)

    Georgiev, Danko

    2015-12-01

    Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.

  18. A radiating shock evaluated using Implicit Monte Carlo Diffusion

    SciTech Connect

    Cleveland, M.; Gentile, N.

    2013-07-01

    Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)

  19. Variance reduction in Monte Carlo analysis of rarefied gas diffusion.

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.

    1972-01-01

    The problem of rarefied diffusion between parallel walls is solved using the Monte Carlo method. The diffusing molecules are evaporated or emitted from one of the two parallel walls and diffuse through another molecular species. The Monte Carlo analysis treats the diffusing molecule as undergoing a Markov random walk, and the local macroscopic properties are found as the expected value of the random variable, the random walk payoff. By biasing the transition probabilities and changing the collision payoffs, the expected Markov walk payoff is retained but its variance is reduced so that the Monte Carlo result has a much smaller error.

  20. Linear Scaling Quantum Monte Carlo Calculations

    NASA Astrophysics Data System (ADS)

    Williamson, Andrew

    2002-03-01

    New developments to the quantum Monte Carlo approach are presented that improve the scaling of the time required to calculate the total energy of a configuration of electronic coordinates from N^3 to nearly linear[1]. The first factor of N is achieved by applying a unitary transform to the set of single particle orbitals used to construct the Slater determinant, creating a set of maximally localized Wannier orbitals. These localized functions are then truncated beyond a given cutoff radius to introduce sparsity into the Slater determinant. The second factor of N is achieved by evaluating the maximally localized Wannier orbitals on a cubic spline grid, which removes the size dependence of the basis set (e.g. plane waves, Gaussians) typically used to expand the orbitals. Application of this method to the calculation of the binding energy of carbon fullerenes and silicon nanostructures will be presented. An extension of the approach to deal with excited states of systems will also be presented in the context of the calculation of the excitonic gap of a variety of systems. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/LLNL under contract no. W-7405-Eng-48. [1] A.J. Williamson, R.Q. Hood and J.C. Grossman, Phys. Rev. Lett. 87 246406 (2001)

  1. Computing Entanglement Entropy in Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Melko, Roger

    2012-02-01

    The scaling of entanglement entropy in quantum many-body wavefunctions is expected to be a fruitful resource for studying quantum phases and phase transitions in condensed matter. However, until the recent development of estimators for Renyi entropy in quantum Monte Carlo (QMC), we have been in the dark about the behaviour of entanglement in all but the simplest two-dimensional models. In this talk, I will outline the measurement techniques that allow access to the Renyi entropies in several different QMC methodologies. I will then discuss recent simulation results demonstrating the richness of entanglement scaling in 2D, including: the prevalence of the ``area law''; topological entanglement entropy in a gapped spin liquid; anomalous subleading logarithmic terms due to Goldstone modes; universal scaling at critical points; and examples of emergent conformal-like scaling in several gapless wavefunctions. Finally, I will explore the idea that ``long range entanglement'' may complement the notion of ``long range order'' for quantum phases and phase transitions which lack a conventional order parameter description.

  2. Error modes in implicit Monte Carlo

    SciTech Connect

    Martin, William Russell,; Brown, F. B.

    2001-01-01

    The Implicit Monte Carlo (IMC) method of Fleck and Cummings [1] has been used for years to analyze radiative transfer problems, such as those encountered in stellar atmospheres or inertial confinement fusion. Larsen and Mercier [2] have shown that the IMC method violates a maximum principle that is satisfied by the exact solution to the radiative transfer equation. Except for [2] and related papers regarding the maximum principle, there have been no other published results regarding the analysis of errors or convergence properties for the IMC method. This work presents an exact error analysis for the IMC method by using the analytical solutions for infinite medium geometry (0-D) to determine closed form expressions for the errors. The goal is to gain insight regarding the errors inherent in the IMC method by relating the exact 0-D errors to multi-dimensional geometry. Additional work (not described herein) has shown that adding a leakage term (i.e., a 'buckling' term) to the 0-D equations has relatively little effect on the IMC errors analyzed in this paper, so that the 0-D errors should provide useful guidance for the errors observed in multi-dimensional simulations.

  3. Improved method for implicit Monte Carlo

    SciTech Connect

    Brown, F. B.; Martin, W. R.

    2001-01-01

    The Implicit Monte Carlo (IMC) method has been used for over 30 years to analyze radiative transfer problems, such as those encountered in stellar atmospheres or inertial confinement fusion. Reference [2] provided an exact error analysis of IMC for 0-D problems and demonstrated that IMC can exhibit substantial errors when timesteps are large. These temporal errors are inherent in the method and are in addition to spatial discretization errors and approximations that address nonlinearities (due to variation of physical constants). In Reference [3], IMC and four other methods were analyzed in detail and compared on both theoretical grounds and the accuracy of numerical tests. As discussed in, two alternative schemes for solving the radiative transfer equations, the Carter-Forest (C-F) method and the Ahrens-Larsen (A-L) method, do not exhibit the errors found in IMC; for 0-D, both of these methods are exact for all time, while for 3-D, A-L is exact for all time and C-F is exact within a timestep. These methods can yield substantially superior results to IMC.

  4. Monte Carlo Production Management at CMS

    NASA Astrophysics Data System (ADS)

    Boudoul, G.; Franzoni, G.; Norkus, A.; Pol, A.; Srimanobhas, P.; Vlimant, J.-R.

    2015-12-01

    The analysis of the LHC data at the Compact Muon Solenoid (CMS) experiment requires the production of a large number of simulated events. During the RunI of LHC (20102012), CMS has produced over 12 Billion simulated events, organized in approximately sixty different campaigns each emulating specific detector conditions and LHC running conditions (pile up). In order to aggregate the information needed for the configuration and prioritization of the events production, assure the book-keeping of all the processing requests placed by the physics analysis groups, and to interface with the CMS production infrastructure, the web- based service Monte Carlo Management (McM) has been developed and put in production in 2013. McM is based on recent server infrastructure technology (CherryPy + AngularJS) and relies on a CouchDB database back-end. This contribution covers the one and half year of operational experience managing samples of simulated events for CMS, the evolution of its functionalities and the extension of its capability to monitor the status and advancement of the events production.

  5. Atomistic Monte Carlo Simulation of Lipid Membranes

    PubMed Central

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC) local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA) for the phospholipid dipalmitoylphosphatidylcholine (DPPC). We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol. PMID:24469314

  6. Finding Planet Nine: a Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-06-01

    Planet Nine is a hypothetical planet located well beyond Pluto that has been proposed in an attempt to explain the observed clustering in physical space of the perihelia of six extreme trans-Neptunian objects or ETNOs. The predicted approximate values of its orbital elements include a semimajor axis of 700 au, an eccentricity of 0.6, an inclination of 30°, and an argument of perihelion of 150°. Searching for this putative planet is already under way. Here, we use a Monte Carlo approach to create a synthetic population of Planet Nine orbits and study its visibility statistically in terms of various parameters and focusing on the aphelion configuration. Our analysis shows that, if Planet Nine exists and is at aphelion, it might be found projected against one out of the four specific areas in the sky. Each area is linked to a particular value of the longitude of the ascending node and two of them are compatible with an apsidal anti-alignment scenario. In addition and after studying the current statistics of ETNOs, a cautionary note on the robustness of the perihelia clustering is presented.

  7. Accelerated Monte Carlo Methods for Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Rosin, Mark; Ricketson, Lee; Dimits, Andris; Caflisch, Russel; Cohen, Bruce

    2014-03-01

    We present a new highly efficient multi-level Monte Carlo (MLMC) simulation algorithm for Coulomb collisions in a plasma. The scheme, initially developed and used successfully for applications in financial mathematics, is applied here to kinetic plasmas for the first time. The method is based on a Langevin treatment of the Landau-Fokker-Planck equation and has a rich history derived from the works of Einstein and Chandrasekhar. The MLMC scheme successfully reduces the computational cost of achieving an RMS error ɛ in the numerical solution to collisional plasma problems from (ɛ-3) - for the standard state-of-the-art Langevin and binary collision algorithms - to a theoretically optimal (ɛ-2) scaling, when used in conjunction with an underlying Milstein discretization to the Langevin equation. In the test case presented here, the method accelerates simulations by factors of up to 100. We summarize the scheme, present some tricks for improving its efficiency yet further, and discuss the method's range of applicability. Work performed for US DOE by LLNL under contract DE-AC52- 07NA27344 and by UCLA under grant DE-FG02-05ER25710.

  8. Monte Carlo Simulation of Critical Casimir Forces

    NASA Astrophysics Data System (ADS)

    Vasilyev, Oleg A.

    2015-03-01

    In the vicinity of the second order phase transition point long-range critical fluctuations of the order parameter appear. The second order phase transition in a critical binary mixture in the vicinity of the demixing point belongs to the universality class of the Ising model. The superfluid transition in liquid He belongs to the universality class of the XY model. The confinement of long-range fluctuations causes critical Casimir forces acting on confining surfaces or particles immersed in the critical substance. Last decade critical Casimir forces in binary mixtures and liquid helium were studied experimentally. The critical Casimir force in a film of a given thickness scales as a universal scaling function of the ratio of the film thickness to the bulk correlation length divided over the cube of the film thickness. Using Monte Carlo simulations we can compute critical Casimir forces and their scaling functions for lattice Ising and XY models which correspond to experimental results for the binary mixture and liquid helium, respectively. This chapter provides the description of numerical methods for computation of critical Casimir interactions for lattice models for plane-plane, plane-particle, and particle-particle geometries.

  9. Commensurabilities between ETNOs: a Monte Carlo survey

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-04-01

    Many asteroids in the main and trans-Neptunian belts are trapped in mean motion resonances with Jupiter and Neptune, respectively. As a side effect, they experience accidental commensurabilities among themselves. These commensurabilities define characteristic patterns that can be used to trace the source of the observed resonant behaviour. Here, we explore systematically the existence of commensurabilities between the known ETNOs using their heliocentric and barycentric semimajor axes, their uncertainties, and Monte Carlo techniques. We find that the commensurability patterns present in the known ETNO population resemble those found in the main and trans-Neptunian belts. Although based on small number statistics, such patterns can only be properly explained if most, if not all, of the known ETNOs are subjected to the resonant gravitational perturbations of yet undetected trans-Plutonian planets. We show explicitly that some of the statistically significant commensurabilities are compatible with the Planet Nine hypothesis; in particular, a number of objects may be trapped in the 5:3 and 3:1 mean motion resonances with a putative Planet Nine with semimajor axis ˜700 au.

  10. Markov Chain Monte Carlo and Irreversibility

    NASA Astrophysics Data System (ADS)

    Ottobre, Michela

    2016-06-01

    Markov Chain Monte Carlo (MCMC) methods are statistical methods designed to sample from a given measure π by constructing a Markov chain that has π as invariant measure and that converges to π. Most MCMC algorithms make use of chains that satisfy the detailed balance condition with respect to π; such chains are therefore reversible. On the other hand, recent work [18, 21, 28, 29] has stressed several advantages of using irreversible processes for sampling. Roughly speaking, irreversible diffusions converge to equilibrium faster (and lead to smaller asymptotic variance as well). In this paper we discuss some of the recent progress in the study of nonreversible MCMC methods. In particular: i) we explain some of the difficulties that arise in the analysis of nonreversible processes and we discuss some analytical methods to approach the study of continuous-time irreversible diffusions; ii) most of the rigorous results on irreversible diffusions are available for continuous-time processes; however, for computational purposes one needs to discretize such dynamics. It is well known that the resulting discretized chain will not, in general, retain all the good properties of the process that it is obtained from. In particular, if we want to preserve the invariance of the target measure, the chain might no longer be reversible. Therefore iii) we conclude by presenting an MCMC algorithm, the SOL-HMC algorithm [23], which results from a nonreversible discretization of a nonreversible dynamics.

  11. Extending canonical Monte Carlo methods: II

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Curilef, S.

    2010-04-01

    We have previously presented a methodology for extending canonical Monte Carlo methods inspired by a suitable extension of the canonical fluctuation relation C = β2langδE2rang compatible with negative heat capacities, C < 0. Now, we improve this methodology by including the finite size effects that reduce the precision of a direct determination of the microcanonical caloric curve β(E) = ∂S(E)/∂E, as well as by carrying out a better implementation of the MC schemes. We show that, despite the modifications considered, the extended canonical MC methods lead to an impressive overcoming of the so-called supercritical slowing down observed close to the region of the temperature driven first-order phase transition. In this case, the size dependence of the decorrelation time τ is reduced from an exponential growth to a weak power-law behavior, \\tau (N)\\propto N^{\\alpha } , as is shown in the particular case of the 2D seven-state Potts model where the exponent α = 0.14-0.18.

  12. Commensurabilities between ETNOs: a Monte Carlo survey

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-07-01

    Many asteroids in the main and trans-Neptunian belts are trapped in mean motion resonances with Jupiter and Neptune, respectively. As a side effect, they experience accidental commensurabilities among themselves. These commensurabilities define characteristic patterns that can be used to trace the source of the observed resonant behaviour. Here, we explore systematically the existence of commensurabilities between the known ETNOs using their heliocentric and barycentric semimajor axes, their uncertainties, and Monte Carlo techniques. We find that the commensurability patterns present in the known ETNO population resemble those found in the main and trans-Neptunian belts. Although based on small number statistics, such patterns can only be properly explained if most, if not all, of the known ETNOs are subjected to the resonant gravitational perturbations of yet undetected trans-Plutonian planets. We show explicitly that some of the statistically significant commensurabilities are compatible with the Planet Nine hypothesis; in particular, a number of objects may be trapped in the 5:3 and 3:1 mean motion resonances with a putative Planet Nine with semimajor axis ˜700 au.

  13. Monte Carlo simulation of chromatin stretching.

    PubMed

    Aumann, Frank; Lankas, Filip; Caudron, Maïwen; Langowski, Jörg

    2006-04-01

    We present Monte Carlo (MC) simulations of the stretching of a single chromatin fiber. The model approximates the DNA by a flexible polymer chain with Debye-Hückel electrostatics and uses a two-angle zigzag model for the geometry of the linker DNA connecting the nucleosomes. The latter are represented by flat disks interacting via an attractive Gay-Berne potential. Our results show that the stiffness of the chromatin fiber strongly depends on the linker DNA length. Furthermore, changing the twisting angle between nucleosomes from 90 degrees to 130 degrees increases the stiffness significantly. An increase in the opening angle from 22 degrees to 34 degrees leads to softer fibers for small linker lengths. We observe that fibers containing a linker histone at each nucleosome are stiffer compared to those without the linker histone. The simulated persistence lengths and elastic moduli agree with experimental data. Finally, we show that the chromatin fiber does not behave as an isotropic elastic rod, but its rigidity depends on the direction of deformation: Chromatin is much more resistant to stretching than to bending. PMID:16711856

  14. Monte Carlo simulation of chromatin stretching

    NASA Astrophysics Data System (ADS)

    Aumann, Frank; Lankas, Filip; Caudron, Maïwen; Langowski, Jörg

    2006-04-01

    We present Monte Carlo (MC) simulations of the stretching of a single 30nm chromatin fiber. The model approximates the DNA by a flexible polymer chain with Debye-Hückel electrostatics and uses a two-angle zigzag model for the geometry of the linker DNA connecting the nucleosomes. The latter are represented by flat disks interacting via an attractive Gay-Berne potential. Our results show that the stiffness of the chromatin fiber strongly depends on the linker DNA length. Furthermore, changing the twisting angle between nucleosomes from 90° to 130° increases the stiffness significantly. An increase in the opening angle from 22° to 34° leads to softer fibers for small linker lengths. We observe that fibers containing a linker histone at each nucleosome are stiffer compared to those without the linker histone. The simulated persistence lengths and elastic moduli agree with experimental data. Finally, we show that the chromatin fiber does not behave as an isotropic elastic rod, but its rigidity depends on the direction of deformation: Chromatin is much more resistant to stretching than to bending.

  15. A new Monte Carlo power method for the eigenvalue problem of transfer matrices

    SciTech Connect

    Koma, Tohru )

    1993-04-01

    The author proposes a new Monte Carlo method for calculating eigenvalues of transfer matrices leading to free energies and to correlation lengths of classical and quantum many-body systems. Generally, this method can be applied to the calculation of the maximum eigenvalue of a nonnegative matrix A such that all the matrix elements of A[sup k] are strictly positive for an integer k. This method is based on a new representation of the maximum eigenvalue of the matrix A as the thermal average of a certain observable of a many-body system. Therefore one can easily calculate the maximum eigenvalue of a transfer matrix leading to the free energy in the standard Monte Carlo simulations, such as the Metropolis algorithm. As test cases, the author calculates the free energies of the square-lattice Ising model and of the spin-1/2 XY Heisenberg chain. He also proves two useful theorems on the ergodicity in quantum Monte Carlo algorithms, or more generally, on the ergodicity of Monte Carlo algorithms using the new representation of the maximum eigenvalue of the matrix A. 39 refs., 5 figs., 2 tabs.

  16. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    SciTech Connect

    Booth, T.E.

    1992-12-01

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed.

  17. COMPARISON OF MONTE CARLO METHODS FOR NONLINEAR RADIATION TRANSPORT

    SciTech Connect

    W. R. MARTIN; F. B. BROWN

    2001-03-01

    Five Monte Carlo methods for solving the nonlinear thermal radiation transport equations are compared. The methods include the well-known Implicit Monte Carlo method (IMC) developed by Fleck and Cummings, an alternative to IMC developed by Carter and Forest, an ''exact'' method recently developed by Ahrens and Larsen, and two methods recently proposed by Martin and Brown. The five Monte Carlo methods are developed and applied to the radiation transport equation in a medium assuming local thermodynamic equilibrium. Conservation of energy is derived and used to define appropriate material energy update equations for each of the methods. Details of the Monte Carlo implementation are presented, both for the random walk simulation and the material energy update. Simulation results for all five methods are obtained for two infinite medium test problems and a 1-D test problem, all of which have analytical solutions. Conclusions regarding the relative merits of the various schemes are presented.

  18. OBJECT KINETIC MONTE CARLO SIMULATIONS OF CASCADE ANNEALING IN TUNGSTEN

    SciTech Connect

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2014-03-31

    The objective of this work is to study the annealing of primary cascade damage created by primary knock-on atoms (PKAs) of various energies, at various temperatures in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.

  19. Monte Carlo techniques for analyzing deep penetration problems

    SciTech Connect

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1985-01-01

    A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs.

  20. Enhancements in Continuous-Energy Monte Carlo Capabilities in SCALE

    SciTech Connect

    Bekar, Kursat B; Celik, Cihangir; Wiarda, Dorothea; Peplow, Douglas E.; Rearden, Bradley T; Dunn, Michael E

    2013-01-01

    Monte Carlo tools in SCALE are commonly used in criticality safety calculations as well as sensitivity and uncertainty analysis, depletion, and criticality alarm system analyses. Recent improvements in the continuous-energy data generated by the AMPX code system and significant advancements in the continuous-energy treatment in the KENO Monte Carlo eigenvalue codes facilitate the use of SCALE Monte Carlo codes to model geometrically complex systems with enhanced solution fidelity. The addition of continuous-energy treatment to the SCALE Monaco code, which can be used with automatic variance reduction in the hybrid MAVRIC sequence, provides significant enhancements, especially for criticality alarm system modeling. This paper describes some of the advancements in continuous-energy Monte Carlo codes within the SCALE code system.

  1. DETERMINING UNCERTAINTY IN PHYSICAL PARAMETER MEASUREMENTS BY MONTE CARLO SIMULATION

    EPA Science Inventory

    A statistical approach, often called Monte Carlo Simulation, has been used to examine propagation of error with measurement of several parameters important in predicting environmental transport of chemicals. These parameters are vapor pressure, water solubility, octanol-water par...

  2. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    SciTech Connect

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.

    2013-07-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  3. Quantum Monte Carlo Algorithms for Diagrammatic Vibrational Structure Calculations

    NASA Astrophysics Data System (ADS)

    Hermes, Matthew; Hirata, So

    2015-06-01

    Convergent hierarchies of theories for calculating many-body vibrational ground and excited-state wave functions, such as Møller-Plesset perturbation theory or coupled cluster theory, tend to rely on matrix-algebraic manipulations of large, high-dimensional arrays of anharmonic force constants, tasks which require large amounts of computer storage space and which are very difficult to implement in a parallel-scalable fashion. On the other hand, existing quantum Monte Carlo (QMC) methods for vibrational wave functions tend to lack robust techniques for obtaining excited-state energies, especially for large systems. By exploiting analytical identities for matrix elements of position operators in a harmonic oscillator basis, we have developed stochastic implementations of the size-extensive vibrational self-consistent field (MC-XVSCF) and size-extensive vibrational Møller-Plesset second-order perturbation (MC-XVMP2) theories which do not require storing the potential energy surface (PES). The programmable equations of MC-XVSCF and MC-XVMP2 take the form of a small number of high-dimensional integrals evaluated using Metropolis Monte Carlo techniques. The associated integrands require independent evaluations of only the value, not the derivatives, of the PES at many points, a task which is trivial to parallelize. However, unlike existing vibrational QMC methods, MC-XVSCF and MC-XVMP2 can calculate anharmonic frequencies directly, rather than as a small difference between two noisy total energies, and do not require user-selected coordinates or nodal surfaces. MC-XVSCF and MC-XVMP2 can also directly sample the PES in a given approximation without analytical or grid-based approximations, enabling us to quantify the errors induced by such approximations.

  4. A Particle Population Control Method for Dynamic Monte Carlo

    NASA Astrophysics Data System (ADS)

    Sweezy, Jeremy; Nolen, Steve; Adams, Terry; Zukaitis, Anthony

    2014-06-01

    A general particle population control method has been derived from splitting and Russian Roulette for dynamic Monte Carlo particle transport. A well-known particle population control method, known as the particle population comb, has been shown to be a special case of this general method. This general method has been incorporated in Los Alamos National Laboratory's Monte Carlo Application Toolkit (MCATK) and examples of it's use are shown for both super-critical and sub-critical systems.

  5. Monte Carlo methods and applications in nuclear physics

    SciTech Connect

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.

  6. Shift: A Massively Parallel Monte Carlo Radiation Transport Package

    SciTech Connect

    Pandya, Tara M; Johnson, Seth R; Davidson, Gregory G; Evans, Thomas M; Hamilton, Steven P

    2015-01-01

    This paper discusses the massively-parallel Monte Carlo radiation transport package, Shift, developed at Oak Ridge National Laboratory. It reviews the capabilities, implementation, and parallel performance of this code package. Scaling results demonstrate very good strong and weak scaling behavior of the implemented algorithms. Benchmark results from various reactor problems show that Shift results compare well to other contemporary Monte Carlo codes and experimental results.

  7. Study of the Transition Flow Regime using Monte Carlo Methods

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1999-01-01

    This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.

  8. Development of Monte Carlo Capability for Orion Parachute Simulations

    NASA Technical Reports Server (NTRS)

    Moore, James W.

    2011-01-01

    Parachute test programs employ Monte Carlo simulation techniques to plan testing and make critical decisions related to parachute loads, rate-of-descent, or other parameters. This paper describes the development and use of a MATLAB-based Monte Carlo tool for three parachute drop test simulations currently used by NASA. The Decelerator System Simulation (DSS) is a legacy 6 Degree-of-Freedom (DOF) simulation used to predict parachute loads and descent trajectories. The Decelerator System Simulation Application (DSSA) is a 6-DOF simulation that is well suited for modeling aircraft extraction and descent of pallet-like test vehicles. The Drop Test Vehicle Simulation (DTVSim) is a 2-DOF trajectory simulation that is convenient for quick turn-around analysis tasks. These three tools have significantly different software architectures and do not share common input files or output data structures. Separate Monte Carlo tools were initially developed for each simulation. A recently-developed simulation output structure enables the use of the more sophisticated DSSA Monte Carlo tool with any of the core-simulations. The task of configuring the inputs for the nominal simulation is left to the existing tools. Once the nominal simulation is configured, the Monte Carlo tool perturbs the input set according to dispersion rules created by the analyst. These rules define the statistical distribution and parameters to be applied to each simulation input. Individual dispersed parameters are combined to create a dispersed set of simulation inputs. The Monte Carlo tool repeatedly executes the core-simulation with the dispersed inputs and stores the results for analysis. The analyst may define conditions on one or more output parameters at which to collect data slices. The tool provides a versatile interface for reviewing output of large Monte Carlo data sets while preserving the capability for detailed examination of individual dispersed trajectories. The Monte Carlo tool described in

  9. SCALE Monte Carlo Eigenvalue Methods and New Advancements

    SciTech Connect

    Goluoglu, Sedat; Leppanen, Jaakko; Petrie Jr, Lester M; Dunn, Michael E

    2010-01-01

    SCALE code system is developed and maintained by Oak Ridge National Laboratory to perform criticality safety, reactor analysis, radiation shielding, and spent fuel characterization for nuclear facilities and transportation/storage package designs. SCALE is a modular code system that includes several codes which use either Monte Carlo or discrete ordinates solution methodologies for solving relevant neutral particle transport equations. This paper describes some of the key capabilities of the Monte Carlo criticality safety codes within the SCALE code system.

  10. Monte Carlo Hybrid Applied to Binary Stochastic Mixtures

    Energy Science and Technology Software Center (ESTSC)

    2008-08-11

    The purpose of this set of codes isto use an inexpensive, approximate deterministic flux distribution to generate weight windows, wihich will then be used to bound particle weights for the Monte Carlo code run. The process is not automated; the user must run the deterministic code and use the output file as a command-line argument for the Monte Carlo code. Two sets of text input files are included as test problems/templates.

  11. DPEMC: A Monte Carlo for double diffraction

    NASA Astrophysics Data System (ADS)

    Boonekamp, M.; Kúcs, T.

    2005-05-01

    We extend the POMWIG Monte Carlo generator developed by B. Cox and J. Forshaw, to include new models of central production through inclusive and exclusive double Pomeron exchange in proton-proton collisions. Double photon exchange processes are described as well, both in proton-proton and heavy-ion collisions. In all contexts, various models have been implemented, allowing for comparisons and uncertainty evaluation and enabling detailed experimental simulations. Program summaryTitle of the program:DPEMC, version 2.4 Catalogue identifier: ADVF Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVF Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: any computer with the FORTRAN 77 compiler under the UNIX or Linux operating systems Operating system: UNIX; Linux Programming language used: FORTRAN 77 High speed storage required:<25 MB No. of lines in distributed program, including test data, etc.: 71 399 No. of bytes in distributed program, including test data, etc.: 639 950 Distribution format: tar.gz Nature of the physical problem: Proton diffraction at hadron colliders can manifest itself in many forms, and a variety of models exist that attempt to describe it [A. Bialas, P.V. Landshoff, Phys. Lett. B 256 (1991) 540; A. Bialas, W. Szeremeta, Phys. Lett. B 296 (1992) 191; A. Bialas, R.A. Janik, Z. Phys. C 62 (1994) 487; M. Boonekamp, R. Peschanski, C. Royon, Phys. Rev. Lett. 87 (2001) 251806; Nucl. Phys. B 669 (2003) 277; R. Enberg, G. Ingelman, A. Kissavos, N. Timneanu, Phys. Rev. Lett. 89 (2002) 081801; R. Enberg, G. Ingelman, L. Motyka, Phys. Lett. B 524 (2002) 273; R. Enberg, G. Ingelman, N. Timneanu, Phys. Rev. D 67 (2003) 011301; B. Cox, J. Forshaw, Comput. Phys. Comm. 144 (2002) 104; B. Cox, J. Forshaw, B. Heinemann, Phys. Lett. B 540 (2002) 26; V. Khoze, A. Martin, M. Ryskin, Phys. Lett. B 401 (1997) 330; Eur. Phys. J. C 14 (2000) 525; Eur. Phys. J. C 19 (2001) 477; Erratum, Eur. Phys. J. C 20 (2001) 599; Eur

  12. Extending Diffusion Monte Carlo to Internal Coordinates

    NASA Astrophysics Data System (ADS)

    Petit, Andrew S.; McCoy, Anne B.

    2013-06-01

    Diffusion Monte Carlo (DMC) is a powerful technique for studying the properties of molecules and clusters that undergo large-amplitude, zero-point vibrational motions. However, the overall applicability of the method is limited by the need to work in Cartesian coordinates and therefore have available a full-dimensional potential energy surface (PES). As a result, the development of a reduced-dimensional DMC methodology has the potential to significantly extend the range of problems that DMC can address by allowing the calculations to be performed in the subset of coordinates that is physically relevant to the questions being asked, thereby eliminating the need for a full-dimensional PES. As a first step towards this goal, we describe here an internal coordinate extension of DMC that places no constraints on the choice of internal coordinates other than requiring them all to be independent. Using H_3^+ and its isotopologues as model systems, we demonstrate that the methodology is capable of successfully describing the ground state properties of highly fluxional molecules as well as, in conjunction with the fixed-node approximation, the ν=1 vibrationally excited states. The calculations of the fundamentals of H_3^+ and its isotopologues provided general insights into the properties of the nodal surfaces of vibrationally excited states. Specifically, we will demonstrate that analysis of ground state probability distributions can point to the set of coordinates that are less strongly coupled and therefore more suitable for use as nodal coordinates in the fixed-node approximation. In particular, we show that nodal surfaces defined in terms of the curvilinear normal mode coordinates are reasonable for the fundamentals of H_2D^+ and D_2H^+ despite both molecules being highly fluxional.

  13. Monte Carlo simulation of scenario probability distributions

    SciTech Connect

    Glaser, R.

    1996-10-23

    Suppose a scenario of interest can be represented as a series of events. A final result R may be viewed then as the intersection of three events, A, B, and C. The probability of the result P(R) in this case is the product P(R) = P(A) P(B {vert_bar} A) P(C {vert_bar} A {intersection} B). An expert may be reluctant to estimate P(R) as a whole yet agree to supply his notions of the component probabilities in the form of prior distributions. Each component prior distribution may be viewed as the stochastic characterization of the expert`s uncertainty regarding the true value of the component probability. Mathematically, the component probabilities are treated as independent random variables and P(R) as their product; the induced prior distribution for P(R) is determined which characterizes the expert`s uncertainty regarding P(R). It may be both convenient and adequate to approximate the desired distribution by Monte Carlo simulation. Software has been written for this task that allows a variety of component priors that experts with good engineering judgment might feel comfortable with. The priors are mostly based on so-called likelihood classes. The software permits an expert to choose for a given component event probability one of six types of prior distributions, and the expert specifies the parameter value(s) for that prior. Each prior is unimodal. The expert essentially decides where the mode is, how the probability is distributed in the vicinity of the mode, and how rapidly it attenuates away. Limiting and degenerate applications allow the expert to be vague or precise.

  14. Lattice Monte Carlo simulations of polymer melts

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiao-Ping

    2014-12-01

    We use Monte Carlo simulations to study polymer melts consisting of fully flexible and moderately stiff chains in the bond fluctuation model at a volume fraction 0.5. In order to reduce the local density fluctuations, we test a pre-packing process for the preparation of the initial configurations of the polymer melts, before the excluded volume interaction is switched on completely. This process leads to a significantly faster decrease of the number of overlapping monomers on the lattice. This is useful for simulating very large systems, where the statistical properties of the model with a marginally incomplete elimination of excluded volume violations are the same as those of the model with strictly excluded volume. We find that the internal mean square end-to-end distance for moderately stiff chains in a melt can be very well described by a freely rotating chain model with a precise estimate of the bond-bond orientational correlation between two successive bond vectors in equilibrium. The plot of the probability distributions of the reduced end-to-end distance of chains of different stiffness also shows that the data collapse is excellent and described very well by the Gaussian distribution for ideal chains. However, while our results confirm the systematic deviations between Gaussian statistics for the chain structure factor Sc(q) [minimum in the Kratky-plot] found by Wittmer et al. [EPL 77, 56003 (2007)] for fully flexible chains in a melt, we show that for the available chain length these deviations are no longer visible, when the chain stiffness is included. The mean square bond length and the compressibility estimated from collective structure factors depend slightly on the stiffness of the chains.

  15. Monte-Carlo simulation of Callisto's exosphere

    NASA Astrophysics Data System (ADS)

    Vorburger, A.; Wurz, P.; Lammer, H.; Barabash, S.; Mousis, O.

    2015-12-01

    We model Callisto's exosphere based on its ice as well as non-ice surface via the use of a Monte-Carlo exosphere model. For the ice component we implement two putative compositions that have been computed from two possible extreme formation scenarios of the satellite. One composition represents the oxidizing state and is based on the assumption that the building blocks of Callisto were formed in the protosolar nebula and the other represents the reducing state of the gas, based on the assumption that the satellite accreted from solids condensed in the jovian sub-nebula. For the non-ice component we implemented the compositions of typical CI as well as L type chondrites. Both chondrite types have been suggested to represent Callisto's non-ice composition best. As release processes we consider surface sublimation, ion sputtering and photon-stimulated desorption. Particles are followed on their individual trajectories until they either escape Callisto's gravitational attraction, return to the surface, are ionized, or are fragmented. Our density profiles show that whereas the sublimated species dominate close to the surface on the sun-lit side, their density profiles (with the exception of H and H2) decrease much more rapidly than the sputtered particles. The Neutral gas and Ion Mass (NIM) spectrometer, which is part of the Particle Environment Package (PEP), will investigate Callisto's exosphere during the JUICE mission. Our simulations show that NIM will be able to detect sublimated and sputtered particles from both the ice and non-ice surface. NIM's measured chemical composition will allow us to distinguish between different formation scenarios.

  16. Quantum Monte Carlo calculations on positronium compounds

    NASA Astrophysics Data System (ADS)

    Jiang, Nan

    The stability of compounds containing one or more positrons in addition to electrons and nuclei has been the focus of extensive scientific investigations. Interest in these compounds stems from the important role they play in the process of positron annihilation, which has become a useful technique in material science studies. Knowledge of these compounds comes mostly from calculations which are presently less difficult than laboratory experiments. Owing to the small binding energies of these compounds, quantum chemistry methods beyond the molecular orbital approximation must be used. Among them, the quantum Monte Carlo (QMC) method is most appealing because it is easy to implement, gives exact results within the fixed nodes approximation, and makes good use of existing approximate wavefunctions. Applying QMC to small systems like PsH for binding energy calculation is straightforward. To apply it to systems with heavier atoms, to systems for which the center-of-mass motion needs to be separated, and to calculate annihilation rates, special techniques must be developed. In this project a detailed study and several advancements to the QMC method are carried out. Positronium compounds PsH, Ps2, PsO, and Ps2O are studied with algorithms we developed. Results for PsH and Ps2 agree with the best accepted to date. Results for PsO confirm the stability of this compound, and are in fair agreement with an earlier calculation. Results for Ps2O establish the stability of this compound and give an approximate annihilation rate for the first time. Discussions will include an introduction to QMC methods, an in-depth discussion on the QMC formalism, presentation of new algorithms developed in this study, and procedures and results of QMC calculations on the above mentioned positronium compounds.

  17. Monte carlo sampling of fission multiplicity.

    SciTech Connect

    Hendricks, J. S.

    2004-01-01

    Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.

  18. Monte Carlo study of microdosimetric diamond detectors

    NASA Astrophysics Data System (ADS)

    Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona

    2015-09-01

    Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy.

  19. Monte Carlo Volcano Seismic Moment Tensors

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  20. Monte Carlo study of microdosimetric diamond detectors.

    PubMed

    Solevi, Paola; Magrin, Giulio; Moro, Davide; Mayer, Ramona

    2015-09-21

    Ion-beam therapy provides a high dose conformity and increased radiobiological effectiveness with respect to conventional radiation-therapy. Strict constraints on the maximum uncertainty on the biological weighted dose and consequently on the biological weighting factor require the determination of the radiation quality, defined as the types and energy spectra of the radiation at a specific point. However the experimental determination of radiation quality, in particular for an internal target, is not simple and the features of ion interactions and treatment delivery require dedicated and optimized detectors. Recently chemical vapor deposition (CVD) diamond detectors have been suggested as ion-beam therapy microdosimeters. Diamond detectors can be manufactured with small cross sections and thin shapes, ideal to cope with the high fluence rate. However the sensitive volume of solid state detectors significantly deviates from conventional microdosimeters, with a diameter that can be up to 1000 times the height. This difference requires a redefinition of the concept of sensitive thickness and a deep study of the secondary to primary radiation, of the wall effects and of the impact of the orientation of the detector with respect to the radiation field. The present work intends to study through Monte Carlo simulations the impact of the detector geometry on the determination of radiation quality quantities, in particular on the relative contribution of primary and secondary radiation. The dependence of microdosimetric quantities such as the unrestricted linear energy L and the lineal energy y are investigated for different detector cross sections, by varying the particle type (carbon ions and protons) and its energy. PMID:26309235

  1. Monte Carlo Simulations for Spinodal Decomposition

    NASA Astrophysics Data System (ADS)

    Sander, Evelyn; Wanner, Thomas

    1999-06-01

    This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation. Namely, we are interested in why most solutions to the Cahn-Hilliard equation which start near a homogeneous equilibrium u 0≡ μ in the spinodal interval exhibit phase separation with a characteristic wavelength when exiting a ball of radius R in a Hilbert space centered at u 0. There are two mathematical explanations for spinodal decomposition, due to Grant and to Maier-Paape and Wanner. In this paper, we numerically compare these two mathematical approaches. In fact, we are able to synthesize the understanding we gain from our numerics with the approach of Maier-Paape and Wanner, leading to a better understanding of the underlying mechanism for this behavior. With this new approach, we can explain spinodal decomposition for a longer time and larger radius than either of the previous two approaches. A rigorous mathematical explanation is contained in a separate paper. Our approach is to use Monte Carlo simulations to examine the dependence of R, the radius to which spinodal decomposition occurs, as a function of the parameter ɛ of the governing equation. We give a description of the dominating regions on the surface of the ball by estimating certain densities of the distributions of the exit points. We observe, and can show rigorously, that the behavior of most solutions originating near the equilibrium is determined completely by the linearization for an unexpectedly long time. We explain the mechanism for this unexpectedly linear behavior, and show that for some exceptional solutions this cannot be observed. We also describe the dynamics of these exceptional solutions.

  2. Monte Carlo simulations for spinodal decomposition

    SciTech Connect

    Sander, E.; Wanner, T.

    1999-06-01

    This paper addresses the phenomenon of spinodal decomposition for the Cahn-Hilliard equation. Namely, the authors are interested in why most solutions to the Cahn-Hilliard equation which start near a homogeneous equilibrium u{sub 0} {equivalent_to} {mu} in the spinodal interval exhibit phase separation with a characteristic wavelength when exiting a ball of radius R in a Hilbert space centered at u{sub 0}. There are two mathematical explanations for spinodal decomposition, due to Grant and to Maier-Paape and Wanner. In this paper, the authors numerically compare these two mathematical approaches. In fact, they are able to synthesize the understanding they gain from the numerics with the approach of Maier-Paape and Wanner, leading to a better understanding of the underlying mechanism for this behavior. With this new approach, they can explain spinodal decomposition for a longer time and larger radius than either of the previous two approaches. A rigorous mathematical explanation is contained in a separate paper. The approach is to use Monte Carlo simulations to examine the dependence of R, the radius to which spinodal decomposition occurs, as a function of the parameter {var_epsilon} of the governing equation. The authors give a description of the dominating regions on the surface of the ball by estimating certain densities of the distributions of the exit points. They observe, and can show rigorously, that the behavior of most solutions originating near the equilibrium is determined completely by the linearization for an unexpectedly long time. They explain the mechanism for this unexpectedly linear behavior, and show that for some exceptional solutions this cannot be observed. They also describe the dynamics of these exceptional solutions.

  3. The factorization method for Monte Carlo simulations of systems with a complex with

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Nishimura, J.; Verbaarschot, J. J. M.

    2004-03-01

    We propose a method for Monte Carlo simulations of systems with a complex action. The method has the advantages of being in principle applicable to any such system and provides a solution to the overlap problem. In some cases, like in the IKKT matrix model, a finite size scaling extrapolation can provide results for systems whose size would make it prohibitive to simulate directly.

  4. Quantum Monte Carlo Endstation for Petascale Computing

    SciTech Connect

    David Ceperley

    2011-03-02

    CUDA GPU platform. We restructured the CPU algorithms to express additional parallelism, minimize GPU-CPU communication, and efficiently utilize the GPU memory hierarchy. Using mixed precision on GT200 GPUs and MPI for intercommunication and load balancing, we observe typical full-application speedups of approximately 10x to 15x relative to quad-core Xeon CPUs alone, while reproducing the double-precision CPU results within statistical error. We developed an all-electron quantum Monte Carlo (QMC) method for solids that does not rely on pseudopotentials, and used it to construct a primary ultra-high-pressure calibration based on the equation of state of cubic boron nitride. We computed the static contribution to the free energy with the QMC method and obtained the phonon contribution from density functional theory, yielding a high-accuracy calibration up to 900 GPa usable directly in experiment. We computed the anharmonic Raman frequency shift with QMC simulations as a function of pressure and temperature, allowing optical pressure calibration. In contrast to present experimental approaches, small systematic errors in the theoretical EOS do not increase with pressure, and no extrapolation is needed. This all-electron method is applicable to first-row solids, providing a new reference for ab initio calculations of solids and benchmarks for pseudopotential accuracy. We compared experimental and theoretical results on the momentum distribution and the quasiparticle renormalization factor in sodium. From an x-ray Compton-profile measurement of the valence-electron momentum density, we derived its discontinuity at the Fermi wavevector finding an accurate measure of the renormalization factor that we compared with quantum-Monte-Carlo and G0W0 calculations performed both on crystalline sodium and on the homogeneous electron gas. Our calculated results are in good agreement with the experiment. We have been studying the heat of formation for various Kubas complexes of molecular

  5. Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments

    SciTech Connect

    Pevey, Ronald E.

    2005-09-15

    Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL.

  6. A Monte Carlo synthetic-acceleration method for solving the thermal radiation diffusion equation

    SciTech Connect

    Evans, Thomas M.; Mosher, Scott W.; Slattery, Stuart R.; Hamilton, Steven P.

    2014-02-01

    We present a novel synthetic-acceleration-based Monte Carlo method for solving the equilibrium thermal radiation diffusion equation in three spatial dimensions. The algorithm performance is compared against traditional solution techniques using a Marshak benchmark problem and a more complex multiple material problem. Our results show that our Monte Carlo method is an effective solver for sparse matrix systems. For solutions converged to the same tolerance, it performs competitively with deterministic methods including preconditioned conjugate gradient and GMRES. We also discuss various aspects of preconditioning the method and its general applicability to broader classes of problems.

  7. A Monte Carlo Synthetic-Acceleration Method for Solving the Thermal Radiation Diffusion Equation

    SciTech Connect

    Evans, Thomas M; Mosher, Scott W; Slattery, Stuart

    2014-01-01

    We present a novel synthetic-acceleration based Monte Carlo method for solving the equilibrium thermal radiation diusion equation in three dimensions. The algorithm performance is compared against traditional solution techniques using a Marshak benchmark problem and a more complex multiple material problem. Our results show that not only can our Monte Carlo method be an eective solver for sparse matrix systems, but also that it performs competitively with deterministic methods including preconditioned Conjugate Gradient while producing numerically identical results. We also discuss various aspects of preconditioning the method and its general applicability to broader classes of problems.

  8. Coherent Scattering Imaging Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Hassan, Laila Abdulgalil Rafik

    Conventional mammography has poor contrast between healthy and cancerous tissues due to the small difference in attenuation properties. Coherent scatter potentially provides more information because interference of coherently scattered radiation depends on the average intermolecular spacing, and can be used to characterize tissue types. However, typical coherent scatter analysis techniques are not compatible with rapid low dose screening techniques. Coherent scatter slot scan imaging is a novel imaging technique which provides new information with higher contrast. In this work a simulation of coherent scatter was performed for slot scan imaging to assess its performance and provide system optimization. In coherent scatter imaging, the coherent scatter is exploited using a conventional slot scan mammography system with anti-scatter grids tilted at the characteristic angle of cancerous tissues. A Monte Carlo simulation was used to simulate the coherent scatter imaging. System optimization was performed across several parameters, including source voltage, tilt angle, grid distances, grid ratio, and shielding geometry. The contrast increased as the grid tilt angle increased beyond the characteristic angle for the modeled carcinoma. A grid tilt angle of 16 degrees yielded the highest contrast and signal to noise ratio (SNR). Also, contrast increased as the source voltage increased. Increasing grid ratio improved contrast at the expense of decreasing SNR. A grid ratio of 10:1 was sufficient to give a good contrast without reducing the intensity to a noise level. The optimal source to sample distance was determined to be such that the source should be located at the focal distance of the grid. A carcinoma lump of 0.5x0.5x0.5 cm3 in size was detectable which is reasonable considering the high noise due to the usage of relatively small number of incident photons for computational reasons. A further study is needed to study the effect of breast density and breast thickness

  9. Finding organic vapors - a Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Vuollekoski, Henri; Boy, Michael; Kerminen, Veli-Matti; Kulmala, Markku

    2010-05-01

    drawbacks in accuracy, the inability to find diurnal variation and the lack of size resolution. Here, we aim to shed some light onto the problem by applying an ad hoc Monte Carlo algorithm to a well established aerosol dynamical model, the University of Helsinki Multicomponent Aerosol model (UHMA). By performing a side-by-side comparison with measurement data within the algorithm, this approach has the significant advantage of decreasing the amount of manual labor. But more importantly, by basing the comparison on particle number size distribution data - a quantity that can be quite reliably measured - the accuracy of the results is good.

  10. Quantum Monte Carlo calculations of A=8 nuclei

    SciTech Connect

    Wiringa, R. B.; Pieper, Steven C.; Carlson, J.; Pandharipande, V. R.

    2000-07-01

    We report quantum Monte Carlo calculations of ground and low-lying excited states for A=8 nuclei using a realistic Hamiltonian containing the Argonne v{sub 18} two-nucleon and Urbana IX three-nucleon potentials. The calculations begin with correlated eight-body wave functions that have a filled {alpha}-like core and four p-shell nucleons LS coupled to the appropriate (J{sup {pi}};T) quantum numbers for the state of interest. After optimization, these variational wave functions are used as input to a Green's function Monte Carlo calculation made with a new constrained path algorithm. We find that the Hamiltonian produces a {sup 8}Be ground state that is within 2 MeV of the experimental resonance, but the other eight-body energies are progressively worse as the neutron-proton asymmetry increases. The {sup 8}Li ground state is stable against breakup into subclusters, but the {sup 8}He ground state is not. The excited state spectra are in fair agreement with experiment, with both the single-particle behavior of {sup 8}He and {sup 8}Li and the collective rotational behavior of {sup 8}Be being reproduced. We also examine energy differences in the T=1,2 isomultiplets and isospin-mixing matrix elements in the excited states of {sup 8}Be. Finally, we present densities, momentum distributions, and studies of the intrinsic shapes of these nuclei, with {sup 8}Be exhibiting a definite 2{alpha} cluster structure. (c) 2000 The American Physical Society.