Calculus of continuous matrix product states
NASA Astrophysics Data System (ADS)
Haegeman, Jutho; Cirac, J. Ignacio; Osborne, Tobias J.; Verstraete, Frank
2013-08-01
We discuss various properties of the variational class of continuous matrix product states, a class of Ansatz states for one-dimensional quantum fields that was recently introduced as the direct continuum limit of the highly successful class of matrix product states. We discuss both attributes of the physical states, e.g., by showing in detail how to compute expectation values, as well as properties intrinsic to the representation itself, such as the gauge freedom. We consider general translation noninvariant systems made of several particle species and derive certain regularity properties that need to be satisfied by the variational parameters. We also devote a section to the translation invariant setting in the thermodynamic limit and show how continuous matrix product states possess an intrinsic ultraviolet cutoff. Finally, we introduce a new set of states, which are tangent to the original set of continuous matrix product states. For the case of matrix product states, this construction has recently proven relevant in the development of new algorithms for studying time evolution and elementary excitations of quantum spin chains. We thus lay the foundation for similar developments for one-dimensional quantum fields.
Matrix product states for quantum metrology.
Jarzyna, Marcin; Demkowicz-Dobrzański, Rafał
2013-06-14
We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise and is related to the elusive nature of the Heisenberg precision scaling in the asymptotic limit of a large number of probes. PMID:25165900
NASA Astrophysics Data System (ADS)
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.
Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R
2016-07-01
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms. PMID:27394094
Matrix product states for gauge field theories.
Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank
2014-08-29
The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field. PMID:25215973
Entanglement classification with matrix product states
NASA Astrophysics Data System (ADS)
Sanz, M.; Egusquiza, I. L.; di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.
2016-07-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .
Entanglement classification with matrix product states
Sanz, M.; Egusquiza, I. L.; Di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.
2016-01-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by . PMID:27457273
Entanglement classification with matrix product states.
Sanz, M; Egusquiza, I L; Di Candia, R; Saberi, H; Lamata, L; Solano, E
2016-01-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by . PMID:27457273
Perturbation Theory for Parent Hamiltonians of Matrix Product States
NASA Astrophysics Data System (ADS)
Szehr, Oleg; Wolf, Michael M.
2015-05-01
This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).
Sequential generation of matrix-product states in cavity QED
Schoen, C.; Hammerer, K.; Wolf, M. M.; Cirac, J. I.; Solano, E.
2007-03-15
We study the sequential generation of entangled photonic and atomic multiqubit states in the realm of cavity QED. We extend the work of C. Schoen et al. [Phys. Rev. Lett. 95, 110503 (2005)], where it was shown that all states generated in a sequential manner can be classified efficiently in terms of matrix-product states. In particular, we consider two scenarios: photonic multiqubit states sequentially generated at the cavity output of a single-photon source and atomic multiqubit states generated by their sequential interaction with the same cavity mode.
Geometry of matrix product states: Metric, parallel transport, and curvature
Haegeman, Jutho Verstraete, Frank; Mariën, Michaël; Osborne, Tobias J.
2014-02-15
We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principal) fiber bundle. The total space or bundle space corresponds to the parameter space, i.e., the space of tensors associated to every physical site. The base manifold is embedded in Hilbert space and can be given the structure of a Kähler manifold by inducing the Hilbert space metric. Our main interest is in the states living in the tangent space to the base manifold, which have recently been shown to be interesting in relation to time dependence and elementary excitations. By lifting these tangent vectors to the (tangent space) of the bundle space using a well-chosen prescription (a principal bundle connection), we can define and efficiently compute an inverse metric, and introduce differential geometric concepts such as parallel transport (related to the Levi-Civita connection) and the Riemann curvature tensor.
Entropy scaling and simulability by matrix product states.
Schuch, Norbert; Wolf, Michael M; Verstraete, Frank; Cirac, J Ignacio
2008-01-25
We investigate the relation between the scaling of block entropies and the efficient simulability by matrix product states (MPSs) and clarify the connection both for von Neumann and Rényi entropies. Most notably, even states obeying a strict area law for the von Neumann entropy are not necessarily approximable by MPSs. We apply these results to illustrate that quantum computers might outperform classical computers in simulating the time evolution of quantum systems, even for completely translational invariant systems subject to a time-independent Hamiltonian. PMID:18232955
Matrix product states for su(2) invariant quantum spin chains
NASA Astrophysics Data System (ADS)
Zadourian, Rubina; Fledderjohann, Andreas; Klümper, Andreas
2016-08-01
A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.
Constrained Path Monte Carlo with Matrix Product State trial wavefunctions
NASA Astrophysics Data System (ADS)
Chung, Chia-Min; Fishman, Matthew; White, Steven; Zhang, Shiwei
Constrained path Monte Carlo (CPMC) is a powerful method for simulating strongly correlated systems. By constraining the path with a trial wavefunction, CPMC circumvents the minus sign problem, but at the cost of introducing a bias. The Density Matrix Renormalization Group (DMRG) is an alternative simulation technique, which is immune to the minus sign problem, but which has an analogous ''dimensionality problem'' for two and three dimensions. Here we present a combination of these techniques, where we use a DMRG matrix product state as a trial wavefunction for CPMC. We demonstrate our method in two-dimensional Hubbard model, and show the comparison to DMRG alone and to CPMC with single-determinant trial functions.
A matrix product state method for solving combinatorial optimization problems
NASA Astrophysics Data System (ADS)
Pelton, S. S.; Chamon, C.; Mucciolo, E. R.
2015-03-01
We present a method based on a matrix product state representation to solve combinatorial optimization problems. All constraints are met by mapping Boolean gates into projection operators and applying operators sequentially. The method provides exact solutions with high success probability, even in the case of frustrated systems. The computational cost of the method is controlled by the maximum relative entropy of the system. Results of numerical simulations for several types of problems will be shown and discussed. NSF Grants CCF-1116590 and CCF-1117241.
Scaling of entanglement support for matrix product states
NASA Astrophysics Data System (ADS)
Tagliacozzo, L.; de Oliveira, Thiago. R.; Iblisdir, S.; Latorre, J. I.
2008-07-01
The power of matrix product states to describe infinite-size translational-invariant critical spin chains is investigated. At criticality, the accuracy with which they describe ground-state properties of a system is limited by the size χ of the matrices that form the approximation. This limitation is quantified in terms of the scaling of the half-chain entanglement entropy. In the case of the quantum Ising model, we find Stilde (1)/(6)logχ with high precision. This result can be understood as the emergence of an effective finite correlation length ξχ ruling all the scaling properties in the system. We produce six extra pieces of evidence for this finite- χ scaling, namely, the scaling of the correlation length, the scaling of magnetization, the shift of the critical point, the scaling of the entanglement entropy for a finite block of spins, the existence of scaling functions, and the agreement with analogous classical results. All our computations are consistent with a scaling relation of the form ξχ˜χκ , with κ=2 for the Ising model. In the case of the Heisenberg model, we find similar results with the value κ˜1.37 . We also show how finite- χ scaling allows us to extract critical exponents. These results are obtained using the infinite time evolved block decimation algorithm which works in the thermodynamical limit and are verified to agree with density-matrix renormalization-group results and their classical analog obtained with the corner transfer-matrix renormalization group.
Simulation of braiding anyons using matrix product states
NASA Astrophysics Data System (ADS)
Ayeni, Babatunde M.; Singh, Sukhwinder; Pfeifer, Robert N. C.; Brennen, Gavin K.
2016-04-01
Anyons exist as pointlike particles in two dimensions and carry braid statistics, which enable interactions that are independent of the distance between the particles. Except for a relatively few number of models, which are analytically tractable, much of the physics of anyons remains still unexplored. In this paper, we show how U(1) symmetry can be combined with the previously proposed anyonic matrix product states to simulate ground states and dynamics of anyonic systems on a lattice at any rational particle number density. We provide proof of principle by studying itinerant anyons on a one-dimensional chain where no natural notion of braiding arises and also on a two-leg ladder where the anyons hop between sites and possibly braid. We compare the result of the ground-state energies of Fibonacci anyons against hardcore bosons and spinless fermions. In addition, we report the entanglement entropies of the ground states of interacting Fibonacci anyons on a fully filled two-leg ladder at different interaction strength, identifying gapped or gapless points in the parameter space. As an outlook, our approach can also prove useful in studying the time dynamics of a finite number of non-Abelian anyons on a finite two-dimensional lattice.
Quasi-degenerate perturbation theory using matrix product states.
Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali
2016-01-21
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost. PMID:26801016
Quasi-degenerate perturbation theory using matrix product states
NASA Astrophysics Data System (ADS)
Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali
2016-01-01
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.
Matrix product states and the non-Abelian rotor model
NASA Astrophysics Data System (ADS)
Milsted, Ashley
2016-04-01
We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.
Simulating spin-boson models with matrix product states
NASA Astrophysics Data System (ADS)
Wall, Michael; Safavi-Naini, Arghavan; Rey, Ana Maria
2016-05-01
The global coupling of few-level quantum systems (``spins'') to a discrete set of bosonic modes is a key ingredient for many applications in quantum science, including large-scale entanglement generation, quantum simulation of the dynamics of long-range interacting spin models, and hybrid platforms for force and spin sensing. In many situations, the bosons are integrated out, leading to effective long-range interactions between the spins; however, strong spin-boson coupling invalidates this approach, and spin-boson entanglement degrades the fidelity of quantum simulation of spin models. We present a general numerical method for treating the out-of-equilibrium dynamics of spin-boson systems based on matrix product states. While most efficient for weak coupling or small numbers of boson modes, our method applies for any spatial and operator dependence of the spin-boson coupling. In addition, our approach allows straightforward computation of many quantities of interest, such as the full counting statistics of collective spin measurements and quantum simulation infidelity due to spin-boson entanglement. We apply our method to ongoing trapped ion quantum simulator experiments in analytically intractable regimes. This work is supported by JILA-NSF-PFC-1125844, NSF-PIF- 1211914, ARO, AFOSR, AFOSR-MURI, and the NRC.
NASA Astrophysics Data System (ADS)
Wouters, Sebastian; Nakatani, Naoki; Van Neck, Dimitri; Chan, Garnet Kin-Lic
2013-08-01
The similarities between Hartree-Fock (HF) theory and the density matrix renormalization group (DMRG) are explored. Both methods can be formulated as the variational optimization of a wave-function Ansatz. Linearization of the time-dependent variational principle near a variational minimum allows to derive the random phase approximation (RPA). We show that the nonredundant parameterization of the matrix product state (MPS) tangent space [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.070601 107, 070601 (2011)] leads to the Thouless theorem for MPS, i.e., an explicit nonredundant parameterization of the entire MPS manifold, starting from a specific MPS reference. Excitation operators are identified, which extends the analogy between HF and DMRG to the Tamm-Dancoff approximation (TDA), the configuration interaction (CI) expansion, and coupled cluster theory. For a small one-dimensional Hubbard chain, we use a CI-MPS Ansatz with single and double excitations to improve on the ground state and to calculate low-lying excitation energies. For a symmetry-broken ground state of this model, we show that RPA-MPS allows to retrieve the Goldstone mode. We also discuss calculations of the RPA-MPS correlation energy. With the long-range quantum chemical Pariser-Parr-Pople Hamiltonian, low-lying TDA-MPS and RPA-MPS excitation energies for polyenes are obtained.
NASA Astrophysics Data System (ADS)
Orús, Román
2014-10-01
This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems are also discussed.
Orús, Román
2014-10-15
This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems are also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.
Matrix-Product-State Algorithm for Finite Fractional Quantum Hall Systems
NASA Astrophysics Data System (ADS)
Liu, Zhao; Bhatt, R. N.
2015-09-01
Exact diagonalization is a powerful tool to study fractional quantum Hall (FQH) systems. However, its capability is limited by the exponentially increasing computational cost. In order to overcome this difficulty, density-matrix-renormalization-group (DMRG) algorithms were developed for much larger system sizes. Very recently, it was realized that some model FQH states have exact matrix-product-state (MPS) representation. Motivated by this, here we report a MPS code, which is closely related to, but different from traditional DMRG language, for finite FQH systems on the cylinder geometry. By representing the many-body Hamiltonian as a matrix-product-operator (MPO) and using single-site update and density matrix correction, we show that our code can efficiently search the ground state of various FQH systems. We also compare the performance of our code with traditional DMRG. The possible generalization of our code to infinite FQH systems and other physical systems is also discussed.
Entangled rings, matrix product states, and exact solutions of XYZ spin chains
Asoudeh, Marzieh; Karimipour, Vahid; Sadrolashrafi, Afsaneh
2007-07-15
We show that the ground state of the Heisenberg spin-1/2 chain in an external magnetic field, can be exactly expressed as a matrix product state, provided that the coupling constants are constrained to be on a specific two dimensional surface. This ground state has a very interesting property: all the pairs of spins are equally entangled with each other. In this last respect, the results are of interest for engineering long-range entanglement in experimentally realizable finite arrays of qubits, where the ground state will act as the initial state of a quantum computer.
Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir
2011-04-15
A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.
Quantum quenches in two spatial dimensions using chain array matrix product states
A. J. A. James; Konik, R.
2015-10-15
We describe a method for simulating the real time evolution of extended quantum systems in two dimensions (2D). The method combines the benefits of integrability and matrix product states in one dimension to avoid several issues that hinder other applications of tensor based methods in 2D. In particular, it can be extended to infinitely long cylinders. As an example application we present results for quantum quenches in the 2D quantum [(2+1)-dimensional] Ising model. As a result, in quenches that cross a phase boundary we find that the return probability shows nonanalyticities in time.
Wouters, Sebastian; Limacher, Peter A; Van Neck, Dimitri; Ayers, Paul W
2012-04-01
We have implemented the sweep algorithm for the variational optimization of SU(2) U(1) (spin and particle number) invariant matrix product states (MPS) for general spin and particle number invariant fermionic Hamiltonians. This class includes non-relativistic quantum chemical systems within the Born-Oppenheimer approximation. High-accuracy ab initio finite field results of the longitudinal static polarizabilities and second hyperpolarizabilities of one-dimensional hydrogen chains are presented. This allows to assess the performance of other quantum chemical methods. For small basis sets, MPS calculations in the saturation regime of the optical response properties can be performed. These results are extrapolated to the thermodynamic limit. PMID:22482543
Simulation of many-qubit quantum computation with matrix product states
Banuls, M. C.; Perez, A.; Orus, R.; Latorre, J. I.; Ruiz-Femenia, P.
2006-02-15
Matrix product states provide a natural entanglement basis to represent a quantum register and operate quantum gates on it. This scheme can be materialized to simulate a quantum adiabatic algorithm solving hard instances of an NP-complete problem. Errors inherent to truncations of the exact action of interacting gates are controlled by the size of the matrices in the representation. The property of finding the right solution for an instance and the expected value of the energy (cost function) are found to be remarkably robust against these errors. As a symbolic example, we simulate the algorithm solving a 100-qubit hard instance, that is, finding the correct product state out of {approx}10{sup 30} possibilities. Accumulated statistics for up to 60 qubits seem to point at a subexponential growth of the average minimum time to solve hard instances with highly truncated simulations of adiabatic quantum evolution.
NASA Astrophysics Data System (ADS)
Binder, Moritz; Barthel, Thomas
We compare matrix product purifications and minimally entangled typical thermal states (METTS) for the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems. For METTS, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. We assess the computation costs and accuracies of the two methods for critical and gapped spin chains and the Bose-Hubbard model. For the same computation cost, purifications yield more accurate results than METTS except for temperatures well below the system's energy gap.
NASA Astrophysics Data System (ADS)
Binder, Moritz; Barthel, Thomas
We compare matrix product purifications and minimally entangled typical thermal states (METTS) for the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems. For METTS, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. We assess the computation costs and accuracies of the two methods for critical and gapped spin chains and the Bose-Hubbard model. For the same computation cost, purifications yield more accurate results than METTS except for temperatures well below the system's energy gap. (Phys. Rev. B 92, 125119 (2015)
Time-evolving a matrix product state with long-ranged interactions
NASA Astrophysics Data System (ADS)
Zaletel, Michael P.; Mong, Roger S. K.; Karrasch, Christoph; Moore, Joel E.; Pollmann, Frank
2015-04-01
We introduce a numerical algorithm to simulate the time evolution of a matrix product state under a long-ranged Hamiltonian in moderately entangled systems. In the effectively one-dimensional representation of a system by matrix product states, long-ranged interactions are necessary to simulate not just many physical interactions but also higher-dimensional problems with short-ranged interactions. Since our method overcomes the restriction to short-ranged Hamiltonians of most existing methods, it proves particularly useful for studying the dynamics of both power-law interacting, one-dimensional systems, such as Coulombic and dipolar systems, and quasi-two-dimensional systems, such as strips or cylinders. First, we benchmark the method by verifying a long-standing theoretical prediction for the dynamical correlation functions of the Haldane-Shastry model. Second, we simulate the time evolution of an expanding cloud of particles in the two-dimensional Bose-Hubbard model, a subject of several recent experiments.
Sharma, Sandeep; Alavi, Ali
2015-09-14
We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids. PMID:26374008
Sharma, Sandeep; Alavi, Ali
2015-09-14
We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids.
Many-Body Localization Implies that Eigenvectors are Matrix-Product States.
Friesdorf, M; Werner, A H; Brown, W; Scholz, V B; Eisert, J
2015-05-01
The phenomenon of many-body localization has received a lot of attention recently, both for its implications in condensed-matter physics of allowing systems to be an insulator even at nonzero temperature as well as in the context of the foundations of quantum statistical mechanics, providing examples of systems showing the absence of thermalization following out-of-equilibrium dynamics. In this work, we establish a novel link between dynamical properties--a vanishing group velocity and the absence of transport--with entanglement properties of individual eigenvectors. For systems with a generic spectrum, we prove that strong dynamical localization implies that all of its many-body eigenvectors have clustering correlations. The same is true for parts of the spectrum, thus allowing for the existence of a mobility edge above which transport is possible. In one dimension these results directly imply an entanglement area law; hence, the eigenvectors can be efficiently approximated by matrix-product states. PMID:25978216
Efficient DMFT impurity solver using real-time dynamics with matrix product states
NASA Astrophysics Data System (ADS)
Ganahl, Martin; Aichhorn, Markus; Evertz, Hans Gerd; Thunström, Patrik; Held, Karsten; Verstraete, Frank
2015-10-01
We propose to calculate spectral functions of quantum impurity models using the time evolving block decimation (TEBD) for matrix product states. The resolution of the spectral function is improved by a so-called linear prediction approach. We apply the method as an impurity solver within the dynamical mean-field theory (DMFT) for the single- and two-band Hubbard model on the Bethe lattice. For the single-band model, we observe sharp features at the inner edges of the Hubbard bands. A finite-size scaling shows that they remain present in the thermodynamic limit. We analyze the real time-dependence of the double occupation after adding a single electron and observe oscillations at the same energy as the sharp feature in the Hubbard band, indicating a long-lived coherent superposition of states that correspond to the Kondo peak and the side peaks. For a two-band Hubbard model, we observe an even richer structure in the Hubbard bands, which cannot be related to a multiplet structure of the impurity, in addition to sharp excitations at the band edges of a type similar to the single-band case.
Quantum Correlation in Matrix Product States of One-Dimensional Spin Chains
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2015-09-01
For our proposed composite parity-conserved matrix product state (MPS), if only a spin block length is larger than 1, any two such spin blocks have correlation including classical correlation and quantum correlation. Both the total correlation and the classical correlation become larger than that in any subcomponent; while the quantum correlations of the two nearest-neighbor spin blocks and the two next-nearest-neighbor spin blocks become smaller and for other conditions the quantum correlation becomes larger, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation, which deserves to be investigated in the future; and the ration of the quantum correlation to the total correlation monotonically decreases to a steady value as the spacing spin length increasing. Supported by the National Natural Science Foundation of China under Grant No. 10974137 and the Major Natural Science Foundation of the Educational Department of Sichuan Province under Grant No. 14ZA0167
NASA Astrophysics Data System (ADS)
Binder, Moritz; Barthel, Thomas
2015-09-01
For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1 /2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS—often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable time scales in both methods and we find that in this regard, METTS do not outperform purifications.
Matrix-product-state method with local basis optimization for nonequilibrium electron-phonon systems
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Brockt, Christoph; Dorfner, Florian; Vidmar, Lev; Jeckelmann, Eric
We present a method for simulating the time evolution of quasi-one-dimensional correlated systems with strongly fluctuating bosonic degrees of freedom (e.g., phonons) using matrix product states. For this purpose we combine the time-evolving block decimation (TEBD) algorithm with a local basis optimization (LBO) approach. We discuss the performance of our approach in comparison to TEBD with a bare boson basis, exact diagonalization, and diagonalization in a limited functional space. TEBD with LBO can reduce the computational cost by orders of magnitude when boson fluctuations are large and thus it allows one to investigate problems that are out of reach of other approaches. First, we test our method on the non-equilibrium dynamics of a Holstein polaron and show that it allows us to study the regime of strong electron-phonon coupling. Second, the method is applied to the scattering of an electronic wave packet off a region with electron-phonon coupling. Our study reveals a rich physics including transient self-trapping and dissipation. Supported by Deutsche Forschungsgemeinschaft (DFG) via FOR 1807.
Tensor representation techniques in post-Hartree-Fock methods: matrix product state tensor format
NASA Astrophysics Data System (ADS)
Benedikt, Udo; Auer, Henry; Espig, Mike; Hackbusch, Wolfgang; Auer, Alexander A.
2013-09-01
In this proof-of-principle study, we discuss the application of various tensor representation formats and their implications on memory requirements and computational effort for tensor manipulations as they occur in typical post-Hartree-Fock (post-HF) methods. A successive tensor decomposition/rank reduction scheme in the matrix product state (MPS) format for the two-electron integrals in the AO and MO bases and an estimate of the t 2 amplitudes as obtained from second-order many-body perturbation theory (MP2) are described. Furthermore, the AO-MO integral transformation, the calculation of the MP2 energy and the potential usage of tensors in low-rank MPS representation for the tensor contractions in coupled cluster theory are discussed in detail. We are able to show that the overall scaling of the memory requirements is reduced from the conventional N 4 scaling to approximately N 3 and the scaling of computational effort for tensor contractions in post-HF methods can be reduced to roughly N 4 while the decomposition itself scales as N 5. While efficient algorithms with low prefactor for the tensor decomposition have yet to be devised, this ansatz offers the possibility to find a robust approximation with low-scaling behaviour with system and basis-set size for post-HF ab initio methods.
Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2016-09-01
We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.
NASA Astrophysics Data System (ADS)
Park, Sung-Been; Cha, Min-Chul
2015-11-01
We investigate the finite-size scaling properties of the quantum phase transition in the one-dimensional quantum Ising model with periodic boundary conditions by representing the ground state in matrix product state forms. The infinite time-evolving block decimation technique is used to optimize the states. A trace over a product of the matrices multiplied as many times as the number of sites yields the finite-size effects. For sufficiently large Schmidt ranks, the finite-size scaling behavior determines the critical point and the critical exponents whose values are consistent with the analytical results.
Schäfer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.
2014-12-04
We seek for a realistic implementation of multimode Gaussian entangled states that can realize the optimal encoding for quantum bosonic Gaussian channels with memory. For a Gaussian channel with classical additive Markovian correlated noise and a lossy channel with non-Markovian correlated noise, we demonstrate the usefulness using Gaussian matrix-product states (GMPS). These states can be generated sequentially, and may, in principle, approximate well any Gaussian state. We show that we can achieve up to 99.9% of the classical Gaussian capacity with GMPS requiring squeezing parameters that are reachable with current technology. This may offer a way towards an experimental realization.
Quantum phase transitions in composite matrix product states of one-dimensional spin-1/2 chains
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2015-02-01
For matrix product states of one-dimensional spin-1/2 chains, we investigate the properties of quantum phase transition of the proposed composite system. We find that the system has three different ferromagnetic phases, one line of the two ferromagnetic phases coexisting equally describes the paramagnetic state, and the other two lines of two ferromagnetic phases coexisting equally describe the ferrimagnetic states, while the three phases coexisting equally point describes the ferromagnetic state. Whether on phase transition lines or at the phase transition point, the system is always in an isolated mediate-coupling state, the physical quantities are discontinuous and the system has long-range correlation and has long-range classical correlation and long-range quantum correlation. We believe that our work is helpful for comprehensively and profoundly understanding the quantum phase transitions, and of some certain guidance and enlightening on the classification and measure of quantum correlation of quantum many-body systems.
NASA Astrophysics Data System (ADS)
Eichler, C.; Mlynek, J.; Butscher, J.; Kurpiers, P.; Hammerer, K.; Osborne, T. J.; Wallraff, A.
2015-10-01
Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.
Hastings, Matthew B
2009-01-01
We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.
Universal Keplerian state transition matrix
NASA Technical Reports Server (NTRS)
Shepperd, S. W.
1985-01-01
A completely general method for computing the Keplerian state transition matrix in terms of Goodyear's universal variables is presented. This includes a new scheme for solving Kepler's problem which is a necessary first step to computing the transition matrix. The Kepler problem is solved in terms of a new independent variable requiring the evaluation of only one transcendental function. Furthermore, this transcendental function may be conveniently evaluated by means of a Gaussian continued fraction.
NASA Astrophysics Data System (ADS)
Pirvu, B.; Haegeman, J.; Verstraete, F.
2012-01-01
We study a matrix product state algorithm to approximate excited states of translationally invariant quantum spin systems with periodic boundary conditions. By means of a momentum eigenstate ansatz generalizing the one of Östlund and Rommer [see S. Östlund and S. Rommer, Phys. Rev. Lett. PRLTAO0031-900710.1103/PhysRevLett.75.353775, 3537 (1995);S. Rommer and S. Östlund, Phys. Rev. B1098-012110.1103/PhysRevB.55.2164 55, 2164 (1997)], we separate the Hilbert space of the system into subspaces with different momentum. This gives rise to a direct sum of effective Hamiltonians, each one corresponding to a different momentum, and we determine their spectrum by solving a generalized eigenvalue equation. Surprisingly, many branches of the dispersion relation are approximated to a very good precision. We benchmark the accuracy of the algorithm by comparison with the exact solutions and previous numerical results for the quantum Ising, the antiferromagnetic Heisenberg spin-1/2, and the bilinear-biquadratic spin-1 models.
ERIC Educational Resources Information Center
Goldrick, Matthew; Costa, Albert; Schiller, Niels O.
2008-01-01
A summary of recent work in language production is presented, focusing on the "Third International Workshop on Language Production" (Chicago, USA, August 2006). The articles included in this special issue focus on three overlapping themes: language production in dialogue (Arnold; Costa, Pickering, & Sorace); multilingual language production (Costa…
NASA Astrophysics Data System (ADS)
Schröder, Florian A. Y. N.; Chin, Alex W.
2016-02-01
We report the development of an efficient many-body algorithm for simulating open quantum system dynamics that utilizes a time-dependent variational principle for matrix product states to evolve large system-environment states. Capturing all system-environment correlations, we reproduce the nonperturbative, quantum-critical dynamics of the zero-temperature spin-boson model, and then exploit the many-body information to visualize the complete time-frequency spectrum of the environmental excitations. Our "environmental spectra" reveal correlated vibrational motion in polaronic modes which preserve their vibrational coherence during incoherent spin relaxation, demonstrating how environment information could yield valuable insights into complex quantum dissipative processes.
On the new Continuous Matrix Product Ansatz
NASA Astrophysics Data System (ADS)
Chung, S. S.; Bauman, S.; Sun, Kuei; Bolech, C. J.
2016-03-01
The fertile new field of quantum information theory is inspiring new ways to study correlated quantum systems by providing fresh insights into the structure of their Hilbert spaces. One of the latest developments in this direction was the extension of the ubiquitous matrix-product-state constructions, epitomized by the density-matrix renormalization-group algorithm, to continuous space-time; so as to be able to describe low-dimensional field theories within a variational approach. Following the earlier success achieved for bosonic theories, we present the first implementation of a continuous matrix product state (cMPS) for spinfull non-relativistic fermions in 1D. We propose a construction of variational matrices with an efficient parametrization that respects the translational symmetry of the problem (without being overly constraining) and readily meets the regularity conditions that arise from removing the ultraviolet divergences in the kinetic energy. We tested the validity of our approach on an interacting spin-1/2 system with spin imbalance. We observe that the ansatz correctly predicts the ground-state magnetic properties for the attractive spin-1/2 Fermi gas, including a phase-oscillating pair correlation function in the partially polarized regime (the 1D correlate of the FFLO state). We shall also discuss how to generalize the cMPS ansatz to other situations.
Hastings, M. B.
2009-09-15
We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {delta}=0.5, we simulate to a time of {approx_equal}22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.
Matrix product solution of an inhomogeneous multi-species TASEP
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Mallick, Kirone
2013-03-01
We study a multi-species exclusion process with inhomogeneous hopping rates and find a matrix product representation for the stationary state of this model. The matrices belong to the tensor algebra of the fundamental quadratic algebra associated with the exclusion process. We show that our matrix product representation is equivalent to a graphical construction proposed by Ayyer and Linusson (2012 arXiv:1206.0316), which generalizes an earlier probabilistic construction due to Ferrari and Martin (2007 Ann. Prob. 35 807).
Matrix product formula for Macdonald polynomials
NASA Astrophysics Data System (ADS)
Cantini, Luigi; de Gier, Jan; Wheeler, Michael
2015-09-01
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik-Zamolodchikov equations, which arise by considering representations of the Zamolodchikov-Faddeev and Yang-Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1.
An Empirical State Error Covariance Matrix for Batch State Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the
De Marchi, Umberto; Santo-Domingo, Jaime; Castelbou, Cyril; Sekler, Israel; Wiederkehr, Andreas; Demaurex, Nicolas
2014-07-18
Mitochondria capture and subsequently release Ca(2+) ions, thereby sensing and shaping cellular Ca(2+) signals. The Ca(2+) uniporter MCU mediates Ca(2+) uptake, whereas NCLX (mitochondrial Na/Ca exchanger) and LETM1 (leucine zipper-EF-hand-containing transmembrane protein 1) were proposed to exchange Ca(2+) against Na(+) or H(+), respectively. Here we study the role of these ion exchangers in mitochondrial Ca(2+) extrusion and in Ca(2+)-metabolic coupling. Both NCLX and LETM1 proteins were expressed in HeLa cells mitochondria. The rate of mitochondrial Ca(2+) efflux, measured with a genetically encoded indicator during agonist stimulations, increased with the amplitude of mitochondrial Ca(2+) ([Ca(2+)]mt) elevations. NCLX overexpression enhanced the rates of Ca(2+) efflux, whereas increasing LETM1 levels had no impact on Ca(2+) extrusion. The fluorescence of the redox-sensitive probe roGFP increased during [Ca(2+)]mt elevations, indicating a net reduction of the matrix. This redox response was abolished by NCLX overexpression and restored by the Na(+)/Ca(2+) exchanger inhibitor CGP37157. The [Ca(2+)]mt elevations were associated with increases in the autofluorescence of NAD(P)H, whose amplitude was strongly reduced by NCLX overexpression, an effect reverted by Na(+)/Ca(2+) exchange inhibition. We conclude that NCLX, but not LETM1, mediates Ca(2+) extrusion from mitochondria. By controlling the duration of matrix Ca(2+) elevations, NCLX contributes to the regulation of NAD(P)H production and to the conversion of Ca(2+) signals into redox changes. PMID:24898248
An efficient matrix product operator representation of the quantum chemical Hamiltonian
NASA Astrophysics Data System (ADS)
Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus
2015-12-01
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.
An efficient matrix product operator representation of the quantum chemical Hamiltonian.
Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus
2015-12-28
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries - abelian and non-abelian - and different relativistic and non-relativistic models may be solved by an otherwise unmodified program. PMID:26723662
An efficient matrix product operator representation of the quantum chemical Hamiltonian
Keller, Sebastian Reiher, Markus; Dolfi, Michele Troyer, Matthias
2015-12-28
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.
Matrix product ansatz for Fermi fields in one dimension
NASA Astrophysics Data System (ADS)
Chung, Sangwoo S.; Sun, Kuei; Bolech, C. J.
2015-03-01
We present an implementation of a continuous matrix product state for two-component fermions in one dimension. We propose a construction of variational matrices with an efficient parametrization that respects the translational symmetry of the problem (without being overly constraining) and readily meets the regularity conditions that arise from removing the ultraviolet divergences in the kinetic energy. We test the validity of our approach on an interacting spin-1/2 system and observe that the ansatz correctly predicts the ground-state magnetic properties for the attractive spin-1/2 Fermi gas, including the phase-oscillating pair correlation function in the partially polarized regime.
Matrix product solutions of boundary driven quantum chains
NASA Astrophysics Data System (ADS)
Prosen, Tomaž
2015-09-01
We review recent progress on constructing non-equilibrium steady state density operators of boundary driven locally interacting quantum chains, where driving is implemented via Markovian dissipation channels attached to the chain’s ends. We discuss explicit solutions in three different classes of quantum chains, specifically, the paradigmatic (anisotropic) Heisenberg spin-1/2 chain, the Fermi-Hubbard chain, and the Lai-Sutherland spin-1 chain, and discuss universal concepts which characterize these solutions, such as matrix product ansatz and a more structured walking graph state ansatz. The central theme is the connection between the matrix product form of nonequilibrium states and the integrability structures of the bulk Hamiltonian, such as the Lax operators and the Yang-Baxter equation. However, there is a remarkable distinction with respect to the conventional quantum inverse scattering method, namely addressing nonequilibrium steady state density operators requires non-unitary irreducible representations of Yang-Baxter algebra which are typically of infinite dimensionality. Such constructions result in non-Hermitian, and often also non-diagonalisable families of commuting transfer operators which in turn result in novel conservation laws of the integrable bulk Hamiltonians. For example, in the case of the anisotropic Heisenberg model, quasi-local conserved operators which are odd under spin reversal (or spin flip) can be constructed, whereas the conserved operators stemming from orthodox Hermitian transfer operators (via logarithmic differentiation) are all even under spin reversal.
Encoding the structure of many-body localization with matrix product operators
NASA Astrophysics Data System (ADS)
Pekker, David; Clark, Bryan K.
2015-03-01
Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates. The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The natural language for representing the spectrum of the Anderson insulator is that of product states over the single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is the corresponding natural language for describing the MBL phases. In this language all of the many-body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets of low bond-dimension matrices per site: the Gi matrix corresponding to the local ground state on site i and the Ei matrix corresponding to the local excited state. All 2 n eigenstates can be generated from all possible combinations of these matrices.
A Prevalidation of the Product-Process Matrix
ERIC Educational Resources Information Center
Ashenbaum, Bryan
2013-01-01
A major challenge for instructors of supply chain and operations management (SCOM) courses is to help students who have never seen a production floor visualize concepts, such as the product-process matrix from standard introductory SCOM texts. This article presents a classroom exercise, which "prevalidates" the product-process matrix.…
Estimation of the covariance matrix of macroscopic quantum states
NASA Astrophysics Data System (ADS)
Ruppert, László; Usenko, Vladyslav C.; Filip, Radim
2016-05-01
For systems analogous to a linear harmonic oscillator, the simplest way to characterize the state is by a covariance matrix containing the symmetrically ordered moments of operators analogous to position and momentum. We show that using Stokes-like detectors without direct access to either position or momentum, the estimation of the covariance matrix of a macroscopic signal is still possible using interference with a classical noisy and low-intensity reference. Such a detection technique will allow one to estimate macroscopic quantum states of electromagnetic radiation without a coherent high-intensity local oscillator. It can be directly applied to estimate the covariance matrix of macroscopically bright squeezed states of light.
Matrix model for non-Abelian quantum Hall states
NASA Astrophysics Data System (ADS)
Dorey, Nick; Tong, David; Turner, Carl
2016-08-01
We propose a matrix quantum mechanics for a class of non-Abelian quantum Hall states. The model describes electrons which carry an internal SU(p ) spin. The ground states of the matrix model include spin-singlet generalizations of the Moore-Read and Read-Rezayi states and, in general, lie in a class previously introduced by Blok and Wen. The effective action for these states is a U(p ) Chern-Simons theory. We show how the matrix model can be derived from quantization of the vortices in this Chern-Simons theory and how the matrix model ground states can be reconstructed as correlation functions in the boundary WZW model.
Production of aluminium metal matrix composites by liquid processing methods
NASA Astrophysics Data System (ADS)
Hynes, N. Rajesh Jesudoss; Kumar, R.; Tharmaraj, R.; Velu, P. Shenbaga
2016-05-01
Owing to high strength to low weight ratio, Aluminium matrix composites are widely used in diverse applications of many industries. This lucrative property is achieved by reinforcing the brittle ceramic particles in the aluminium matrix. Aluminium matrix composites are produced by liquid processing methods and solid processing methods. Nevertheless, liquidprocessing techniques stand out because of its simplicity and its suitability for mass production. In this review article, the production of aluminium matrix composites by different liquid processing technique is discussed and a comparative study is carried out.
Empirical State Error Covariance Matrix for Batch Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joe
2015-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.
Chiral condensate in the Schwinger model with matrix product operators
NASA Astrophysics Data System (ADS)
Bañuls, Mari Carmen; Cichy, Krzysztof; Jansen, Karl; Saito, Hana
2016-05-01
Tensor network (TN) methods, in particular the matrix product states (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the nonzero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and massive cases and show that the method works very well and gives good control over a broad range of temperatures, essentially from zero to infinite temperature.
NASA Astrophysics Data System (ADS)
Nakatani, Naoki; Chan, Garnet Kin-Lic
2013-04-01
We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
Excited State Effects in Nucleon Matrix Element Calculations
Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner
2011-12-01
We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.
Matrix Pade-type approximant and directional matrix Pade approximant in the inner product space
NASA Astrophysics Data System (ADS)
Gu, Chuanqing
2004-03-01
A new matrix Pade-type approximant (MPTA) is defined in the paper by introducing a generalized linear functional in the inner product space. The expressions of MPTA are provided with the generating function form and the determinant form. Moreover, a directional matrix Pade approximant is also established by giving a set of linearly independent matrices. In the end, it is shown that the method of MPTA can be applied to the reduction problems of the high degree multivariable linear system.
An Empirical State Error Covariance Matrix Orbit Determination Example
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance
Nutrient depletion in Bacillus subtilis biofilms triggers matrix production
NASA Astrophysics Data System (ADS)
Zhang, Wenbo; Seminara, Agnese; Suaris, Melanie; Brenner, Michael P.; Weitz, David A.; Angelini, Thomas E.
2014-01-01
Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation.
Entangled Bloch spheres: Bloch matrix and two-qubit state space
NASA Astrophysics Data System (ADS)
Gamel, Omar
2016-06-01
We represent a two-qubit density matrix in the basis of Pauli matrix tensor products, with the coefficients constituting a Bloch matrix, analogous to the single qubit Bloch vector. We find the quantum state positivity requirements on the Bloch matrix components, leading to three important inequalities, allowing us to parametrize and visualize the two-qubit state space. Applying the singular value decomposition naturally separates the degrees of freedom to local and nonlocal, and simplifies the positivity inequalities. It also allows us to geometrically represent a state as two entangled Bloch spheres with superimposed correlation axes. It is shown that unitary transformations, local or nonlocal, have simple interpretations as axis rotations or mixing of certain degrees of freedom. The nonlocal unitary invariants of the state are then derived in terms of local unitary invariants. The positive partial transpose criterion for entanglement is generalized, and interpreted as a reflection, or a change of a single sign. The formalism is used to characterize maximally entangled states, and generalize two qubit isotropic and Werner states.
Efficient Kriging via Fast Matrix-Vector Products
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Raykar, Vikas C.; Duraiswami, Ramani; Mount, David M.
2008-01-01
Interpolating scattered data points is a problem of wide ranging interest. Ordinary kriging is an optimal scattered data estimator, widely used in geosciences and remote sensing. A generalized version of this technique, called cokriging, can be used for image fusion of remotely sensed data. However, it is computationally very expensive for large data sets. We demonstrate the time efficiency and accuracy of approximating ordinary kriging through the use of fast matrixvector products combined with iterative methods. We used methods based on the fast Multipole methods and nearest neighbor searching techniques for implementations of the fast matrix-vector products.
Entropy and Exact Matrix-Product Representation of the Laughlin Wave Function
Iblisdir, S.; Latorre, J. I.; Orus, R.
2007-02-09
An analytical expression for the von Neumann entropy of the Laughlin wave function is obtained for any possible bipartition between the particles described by this wave function, for a filling fraction {nu}=1. Also, for a filling fraction {nu}=1/m, where m is an odd integer, an upper bound on this entropy is exhibited. These results yield a bound on the smallest possible size of the matrices for an exact representation of the Laughlin ansatz in terms of a matrix-product state. An analytical matrix-product state representation of this state is proposed in terms of representations of the Clifford algebra. For {nu}=1, this representation is shown to be asymptotically optimal in the limit of a large number of particles.
Entropy and exact matrix-product representation of the Laughlin wave function.
Iblisdir, S; Latorre, J I; Orús, R
2007-02-01
An analytical expression for the von Neumann entropy of the Laughlin wave function is obtained for any possible bipartition between the particles described by this wave function, for a filling fraction nu=1. Also, for a filling fraction nu=1/m, where m is an odd integer, an upper bound on this entropy is exhibited. These results yield a bound on the smallest possible size of the matrices for an exact representation of the Laughlin ansatz in terms of a matrix-product state. An analytical matrix-product state representation of this state is proposed in terms of representations of the Clifford algebra. For nu=1, this representation is shown to be asymptotically optimal in the limit of a large number of particles. PMID:17358918
Maximizing sparse matrix vector product performance in MIMD computers
McLay, R.T.; Kohli, H.S.; Swift, S.L.; Carey, G.F.
1994-12-31
A considerable component of the computational effort involved in conjugate gradient solution of structured sparse matrix systems is expended during the Matrix-Vector Product (MVP), and hence it is the focus of most efforts at improving performance. Such efforts are hindered on MIMD machines due to constraints on memory, cache and speed of memory-cpu data transfer. This paper describes a strategy for maximizing the performance of the local computations associated with the MVP. The method focuses on single stride memory access, and the efficient use of cache by pre-loading it with data that is re-used while bypassing it for other data. The algorithm is designed to behave optimally for varying grid sizes and number of unknowns per gridpoint. Results from an assembly language implementation of the strategy on the iPSC/860 show a significant improvement over the performance using FORTRAN.
Precision Study of Excited State Effects in Nucleon Matrix Elements
Simon Dinter, Constantia Alexandrou, Martha Constantinou, Vincent Drach, Karl Jansen, Dru B. Renner
2011-10-01
We present a dedicated precision analysis of the influence of excited states on the calculation of several nucleon matrix elements. This calculation is performed at fixed values of the lattice spacing, volume and pion mass that are typical of contemporary lattice computations. We focus on the nucleon axial charge, g{sub A}, for which we use 7,500 measurements, and on the average momentum of the unpolarized isovector parton distribution, x{sub u-d}, for which we use 23,000 measurements. All computations are done employing N{sub f}=2+1+1 maximally-twisted-mass Wilson fermions and non-perturbatively calculated renormalization factors. We find that excited state effects are negligible for g{sub A} and lead to a O(10%) downward shift for x{sub u-d}.
Matrix Metalloproteinase-9 Production by Immortalized Human Chondrocyte Lines
Malemud, Charles J.; Meszaros, Evan C.; Wylie, Meredith A.; Dahoud, Wissam; Skomorovska-Prokvolit, Yelenna; Mesiano, Sam
2016-01-01
We reported at the Keynote Forum of Immunology Summit-2015 that recombinant human (rh) TNF-α or rhIL-6 stimulated production of matrix metalloproteinase-9 (MMP-9) in the T/C28a2 and C-28/I2 human immortalized chondrocyte cell lines. Furthermore, we reported that tocilizumab (TCZ), a fully humanized monoclonal antibody which neutralizes IL-6-mediated signaling, inhibited the rhIL-6-mediated increase in the production of MMP-9. IL-6 is also a known activator of the JAK/STAT signaling pathway. In that regard, we evaluated the effect of rhIL-6 on total and phosphorylated Signal Transducer and Activator of Transcription by these chondrocyte lines which showed that whereas STAT3 was constitutively phosphorylated in T/C28a2 chondrocytes, rhIL-6 activated STAT3 in C-28/I2 chondrocytes. The finding that rhIL-6 increased the production of MMP-9 by human immortalized chondrocyte cell lines may have important implications with respect to the destruction of articular cartilage in rheumatoid arthritis and osteoarthritis. Thus, the markedly elevated level of IL-6 in rheumatoid arthritis and osteoarthritis sera and synovial fluid would be expected to generate significant MMP-9 to cause the degradation of articular cartilage extracellular matrix proteins. The finding that TCZ suppressed rhIL-6-mediated MMP-9 production suggests that TCZ, currently employed in the medical therapy of rheumatoid arthritis, could be considered as a drug for osteoarthritis.
Product-State Approximations to Quantum States
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Harrow, Aram W.
2016-02-01
We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded approximation error. If we allow states that are entangled within small clusters of systems but product across clusters then good approximations exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our approximations allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.
Controlling excited-state contamination in nucleon matrix elements
NASA Astrophysics Data System (ADS)
Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank; Nucleon Matrix Elements NME Collaboration
2016-06-01
We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2 +1 -flavor ensemble with lattices of size 323×64 generated using the rational hybrid Monte Carlo algorithm at a =0.081 fm and with Mπ=312 MeV . The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep→∞ estimates is presented.
Extracellular matrix production in vitro in cartilage tissue engineering
2014-01-01
Cartilage tissue engineering is arising as a technique for the repair of cartilage lesions in clinical applications. However, fibrocartilage formation weakened the mechanical functions of the articular, which compromises the clinical outcomes. Due to the low proliferation ability, dedifferentiation property and low production of cartilage-specific extracellular matrix (ECM) of the chondrocytes, the cartilage synthesis in vitro has been one of the major limitations for obtaining high-quality engineered cartilage constructs. This review discusses cells, biomaterial scaffolds and stimulating factors that can facilitate the cartilage-specific ECM production and accumulation in the in vitro culture system. Special emphasis has been put on the factors that affect the production of ECM macromolecules such as collagen type II and proteoglycans in the review, aiming at providing new strategies to improve the quality of tissue-engineered cartilage. PMID:24708713
Nonlocality of orthogonal product states
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Gao, Fei; Qin, Su-Juan; Yang, Ying-Hui; Wen, Qiao-Yan
2015-07-01
In this paper, we mainly study the local indistinguishability of mutually orthogonal product basis quantum states in d ⊗d . In 3 ⊗3 , Bennett et al. [ Phys. Rev. A 59, 1070 (1999), 10.1103/PhysRevA.59.1070] presented nine orthogonal product basis quantum states which cannot be distinguished by local operations and classical communication (LOCC). In the work by Zhang et al. [Z.-C. Zhang et al., Phys. Rev. A 90, 022313 (2014), 10.1103/PhysRevA.90.022313], this result was generalized in d ⊗d , where d is odd. In this paper, we aim to construct locally indistinguishable orthogonal product basis quantum states in d ⊗d . For the general d ⊗d (d >2 ) quantum system, we first construct 4 d -4 orthogonal product states, and prove these states are locally indistinguishable using a very simple but quite effective method. Then, based on these states, we construct some classes of locally indistinguishable orthogonal product basis quantum states (OPBS) in d ⊗d (d >2 ) . Finally, we construct some LOCC indistinguishable OPBS in multipartite quantum systems. All of the above results demonstrate the phenomenon of nonlocality without entanglement.
State Support of Domestic Production
Amy Wright
2007-12-30
This project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under the State Support of Domestic Production DE-FC26-04NT15456. The Interstate Oil and Gas Compact Commission (IOGCC) performed efforts in support of State programs related to the security, reliability and growth if our nation's domestic production of oil and natural gas. The project objectives were to improve the States ability to monitor the security of oil and gas operations; to maximize the production of domestic oil and natural gas thereby minimizing the threat to national security posed by interruptions in energy imports; to assist States in developing and maintaining high standards of environmental protection; to assist in addressing issues that limit the capacity of the industry; to promote the deployment of the appropriate application of technology for regulatory efficiency; and to inform the public about emerging energy issues.
Counting SO(9) x SU(2) representations in coordinate independent state space of SU(2) matrix theory
Michishita, Yoji
2010-12-15
We consider decomposition of coordinate independent states into SO(9) x SU(2) representations in SU(2) matrix theory. To see what and how many representations appear in the decomposition, we compute the character, which is given by a trace over the coordinate independent states, and decompose it into the sum of products of SO(9) and SU(2) characters.
Matrix algorithms for solving (in)homogeneous bound state equations
Blank, M.; Krassnigg, A.
2011-01-01
In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640
Characterization of the Vibrio cholerae Extracellular Matrix: A Top-Down Solid-State NMR Approach
Reichhardt, Courtney; Fong, Jiunn C.N.; Yildiz, Fitnat; Cegelski, Lynette
2015-01-01
Bacterial biofilms are communities of bacterial cells surrounded by a self-secreted extracellular matrix. Biofilm formation by Vibrio cholerae, the human pathogen responsible for cholera, contributes to its environmental survival and infectivity. Important genetic and molecular requirements have been identified for V. cholerae biofilm formation, yet a compositional accounting of these parts in the intact biofilm or extracellular matrix has not been described. As insoluble and non-crystalline assemblies, determinations of biofilm composition pose a challenge to conventional biochemical and biophysical analysis. The V. cholerae extracellular matrix composition is particularly complex with several proteins, complex polysaccharides, and other biomolecules having been identified as matrix parts. We developed a new top-down solid-state NMR approach to spectroscopically assign and quantify the carbon pools of the intact V. cholerae extracellular matrix using 13C CPMAS and 13C{15N}, 15N{31P}, and 13C{31P}REDOR. General sugar, lipid, and amino acid pools were first profiled and then further annotated and quantified as specific carbon types, including carbonyls, amides, glycyl carbons, and anomerics. In addition, 15N profiling revealed a large amine pool relative to amide contributions, reflecting the prevalence of molecular modifications with free amine groups. Our top-down approach could be implemented immediately to examine the extracellular matrix from mutant strains that might alter polysaccharide production or lipid release beyond the cell surface; or to monitor changes that may accompany environmental variations and stressors such as altered nutrient composition, oxidative stress or antibiotics. More generally, our analysis has demonstrated that solid-state NMR is a valuable tool to characterize complex biofilm systems. PMID:24911407
How Glassy States Affect Brown Carbon Production?
NASA Astrophysics Data System (ADS)
Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.
2015-12-01
Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( < 20% RH) at 293 K. Optical properties and the AMS spectra were measured for toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.
Entanglement and quantum phase transitions in matrix-product spin-1 chains
Alipour, S.; Karimipour, V.; Memarzadeh, L.
2007-05-15
We consider a one-parameter family of matrix-product states of spin-1 particles on a periodic chain and study in detail the entanglement properties of such a state. In particular, we calculate exactly the entanglement of one site with the rest of the chain, and the entanglement of two distant sites with each other, and show that the derivative of both these properties diverge when the parameter g of the states passes through a critical point. Such a point can be called a point of quantum phase transition, since at this point the character of the matrix-product state, which is the ground state of a Hamiltonian, changes discontinuously. We also study the finite size effects and show how the entanglement depends on the size of the chain. This later part is relevant to the field of quantum computation where the problem of initial state preparation in finite arrays of qubits or qutrits is important. It is also shown that the entanglement of two sites have scaling behavior near the critical point.
Production of matrix metalloproteinases in response to mycobacterial infection.
Quiding-Järbrink, M; Smith, D A; Bancroft, G J
2001-09-01
Matrix metalloproteinases (MMPs) constitute a large family of enzymes with specificity for the various proteins of the extracellular matrix which are implicated in tissue remodeling processes and chronic inflammatory conditions. To investigate the role of MMPs in immunity to mycobacterial infections, we incubated murine peritoneal macrophages with viable Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv and assayed MMP activity in the supernatants by zymography. Resting macrophages secreted only small amounts of MMP-9 (gelatinase B), but secretion increased dramatically in a dose-dependent manner in response to either BCG or M. tuberculosis in vitro. Incubation with mycobacteria also induced increased MMP-2 (gelatinase A) activity. Neutralization of tumor necrosis alpha (TNF-alpha), and to a lesser extent interleukin 18 (IL-18), substantially reduced MMP production in response to mycobacteria. Exogenous addition of TNF-alpha or IL-18 induced macrophages to express MMPs, even in the absence of bacteria. The immunoregulatory cytokines gamma interferon (IFN-gamma), IL-4, and IL-10 all suppressed BCG-induced MMP production, but through different mechanisms. IFN-gamma treatment increased macrophage secretion of TNF-alpha but still reduced their MMP activity. Conversely, IL-4 and IL-10 seemed to act by reducing the amount of TNF-alpha available to the macrophages. Finally, infection of BALB/c or severe combined immunodeficiency (SCID) mice with either BCG or M. tuberculosis induced substantial increases in MMP-9 activity in infected tissues. In conclusion, we show that mycobacterial infection induces MMP-9 activity both in vitro and in vivo and that this is regulated by TNF-alpha, IL-18, and IFN-gamma. These findings indicate a possible contribution of MMPs to tissue remodeling processes that occur in mycobacterial infections. PMID:11500442
Khachatryan, Vardan
2015-11-20
The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon+jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb^{-1}. We then compare the data with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Furthermore, by using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 ±0.08 (stat)^{+0.15}_{ -0.13 }(syst), representing the most precise measurement of this quantity in the lepton+jets final state to date.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El Sawy, M.; El-khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.
2016-07-01
The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon+jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The data are compared with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 ± 0.08(stat)-0.13+0.15 (syst), representing the most precise measurement of this quantity in the muon+jets final state to date.
Matrix membrane big bangs and D-brane production
Das, Sumit R.; Michelson, Jeremy
2006-06-15
We construct matrix membrane theory in pp wave backgrounds that have a null linear dilaton in Type IIB string theory. Such backgrounds can serve as toy models of big bang cosmologies. At late times only Abelian degrees of freedom survive, and if the Kaluza-Klein modes along one of the directions of the membrane decouple, standard perturbative strings emerge. Near the 'big bang', non-Abelian configurations of fuzzy ellipsoids are present, as in the Type IIA theories. A generic configuration of these shrink to zero volume at late times. However, the Kaluza-Klein modes (which can be thought of as states of (p,q) strings in the original IIB theory) can be generically produced in pairs in both pp wave and flat backgrounds in the presence of time dependence. Indeed, if we require that at late times the theory evolves to the perturbative string vacuum, these modes must be prepared in a squeezed state with a thermal distribution at early times.
State power plant productivity programs
Not Available
1981-02-01
The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.
Non-steady state cracking in ceramic matrix composites
NASA Technical Reports Server (NTRS)
Dharani, L. R.; Chai, L.
1989-01-01
A micromechanics analytical model based on the consistent shear lag theory is developed for predicting the failure modes in a fiber-reinforced unidirectional ceramic matrix composite. The model accounts for the relatively large matrix stiffness. The fiber and matrix stresses are established as functions of the applied stress, crack geometry, and most importantly, the microstructural properties of the constituents. From the predicted stress, the mode of failure is established based on the point stress criterion. The role of the microstructural properties on the failure mode and ultimate strength is assessed.
State transition matrix for long-distance formation with J2 in eccentric orbits
NASA Astrophysics Data System (ADS)
Kimura, Masaya; Yamada, Katsuhiko
2014-08-01
The relative state transition of spacecraft formation flying is considered in this paper. In eccentric orbits, the Tschauner-Hempel (TH) equations are used to express the relative motion between a deputy spacecraft and a chief spacecraft. Perturbation forces are not considered in the TH equations, and the relative distance between two spacecraft is limited to a short range. In this paper, the effects of the J2 perturbation forces are considered, and the case of relatively long distance between two spacecraft is focused. A state transition matrix applicable to such cases is derived. The state transition matrix is expressed by adding some compensating terms to the state transition matrix of the TH equations. The usefulness of the proposed state transition matrix relative to the state transition matrix of the TH equations is shown through numerical simulations from the viewpoint of position error.
A state interaction spin-orbit coupling density matrix renormalization group method.
Sayfutyarova, Elvira R; Chan, Garnet Kin-Lic
2016-06-21
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4](3-), determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter. PMID:27334156
A state interaction spin-orbit coupling density matrix renormalization group method
NASA Astrophysics Data System (ADS)
Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic
2016-06-01
We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.
An analytical state transition matrix for an orbit perturbed by oblateness
NASA Technical Reports Server (NTRS)
Mueller, A. C.; Scheifele, G. R.
1976-01-01
A new analytical state transition matrix is presented. This transition matrix contains the two-body terms and the secular and short periodic terms due to the J2 oblateness perturbation. The matrix is derived from a satellite theory which uses a set of 8 canonical elements with the true anomaly as the independent variable. This theory was chosen because of its accuracy and concise formulation. It presents no problems concerning the accuracy of the mean motion, which is typical for classical satellite theories. Numerical experiments show the J2 transition matrix to be superior to the simple two-body matrix.
NASA Astrophysics Data System (ADS)
Nakatani, Naoki; Wouters, Sebastian; Van Neck, Dimitri; Chan, Garnet Kin-Lic
2014-01-01
Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [J. J. Dorando, J. Hachmann, and G. K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.
An Analytical State Transition Matrix for Orbits Perturbed by an Oblate Spheroid
NASA Technical Reports Server (NTRS)
Mueller, A. C.
1977-01-01
An analytical state transition matrix and its inverse, which include the short period and secular effects of the second zonal harmonic, were developed from the nonsingular PS satellite theory. The fact that the independent variable in the PS theory is not time is in no respect disadvantageous, since any explicit analytical solution must be expressed in the true or eccentric anomaly. This is shown to be the case for the simple conic matrix. The PS theory allows for a concise, accurate, and algorithmically simple state transition matrix. The improvement over the conic matrix ranges from 2 to 4 digits accuracy.
Baykara, N. A.; Guervit, Ercan; Demiralp, Metin
2012-12-10
In this work a study on finite dimensional matrix approximations to products of quantum mechanical operators is conducted. It is emphasized that the matrix representation of the product of two operators is equal to the product of the matrix representation of each of the operators when all the fluctuation terms are ignored. The calculation of the elements of the matrices corresponding to the matrix representation of various operators, based on three terms recursive relation is defined. Finally it is shown that the approximation quality depends on the choice of higher values of n, namely the dimension of Hilbert space.
Derivation of the state matrix for dynamic analysis of linear homogeneous media.
Parra Martinez, Juan Pablo; Dazel, Olivier; Göransson, Peter; Cuenca, Jacques
2016-08-01
A method to obtain the state matrix of an arbitrary linear homogeneous medium excited by a plane wave is proposed. The approach is based on projections on the eigenspace of the governing equations matrix. It is an alternative to manually obtaining a linearly independent set of equations by combining the governing equations. The resulting matrix has been validated against previously published derivations for an anisotropic poroelastic medium. PMID:27586783
An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.
Catalog of State Basic Skills Products.
ERIC Educational Resources Information Center
CEMREL, Inc., St. Louis, MO.
Listed in this catalog are 122 product descriptions from 34 states identified by state coordinators of basic skills instruction as the best developed in their states. Products include books, pamphlets, videotapes, booklets, checklists, guides, handbooks, anthologies, and computer programs. Each product was developed to improve the management, the…
On Zero-Mass Ground States in Super-Membrane Matrix Models
NASA Astrophysics Data System (ADS)
Fröhlich, Jürg; Hoppe, Jens
We recall a formulation of super-membrane theory in terms of certain matrix models. These models are known to have a mass spectrum given by the positive half-axis. We show that, for the simplest such matrix model, a normalizable zero-mass ground state does _n_o_t exist.
Massless ground state for a compact SU (2) matrix model in 4D
NASA Astrophysics Data System (ADS)
Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro
2015-09-01
We show the existence and uniqueness of a massless supersymmetric ground state wavefunction of a SU (2) matrix model in a bounded smooth domain with Dirichlet boundary conditions. This is a gauge system and we provide a new framework to analyze the quantum spectral properties of this class of supersymmetric matrix models subject to constraints which can be generalized for arbitrary number of colors.
Alves, Rodrigo D. A. M.; Eijken, Marco; Bezstarosti, Karel; Demmers, Jeroen A. A.; van Leeuwen, Johannes P. T. M.
2013-01-01
During bone formation, osteoblasts deposit an extracellular matrix (ECM) that is mineralized via a process involving production and secretion of highly specialized matrix vesicles (MVs). Activin A, a transforming growth factor-β (TGF-β) superfamily member, was previously shown to have inhibitory effects in human bone formation models through unclear mechanisms. We investigated these mechanisms elicited by activin A during in vitro osteogenic differentiation of human mesenchymal stem cells (hMSC). Activin A inhibition of ECM mineralization coincided with a strong decline in alkaline phosphatase (ALP1) activity in extracellular compartments, ECM and matrix vesicles. SILAC-based quantitative proteomics disclosed intricate protein composition alterations in the activin A ECM, including changed expression of collagen XII, osteonectin and several cytoskeleton-binding proteins. Moreover, in activin A osteoblasts matrix vesicle production was deficient containing very low expression of annexin proteins. ECM enhanced human mesenchymal stem cell osteogenic development and mineralization. This osteogenic enhancement was significantly decreased when human mesenchymal stem cells were cultured on ECM produced under activin A treatment. These findings demonstrate that activin A targets the ECM maturation phase of osteoblast differentiation resulting ultimately in the inhibition of mineralization. ECM proteins modulated by activin A are not only determinant for bone mineralization but also possess osteoinductive properties that are relevant for bone tissue regeneration. PMID:23781072
An analysis of fiber-matrix interface failure stresses for a range of ply stress states
NASA Technical Reports Server (NTRS)
Crews, J. H.; Naik, R. A.; Lubowinski, S. J.
1993-01-01
A graphite/bismaleimide laminate was prepared without the usual fiber treatment and was tested over a wide range of stress states to measure its ply cracking strength. These tests were conducted using off-axis flexure specimens and produced fiber-matrix interface failure data over a correspondingly wide range of interface stress states. The absence of fiber treatment, weakened the fiber-matrix interfaces and allowed these tests to be conducted at load levels that did not yield the matrix. An elastic micromechanics computer code was used to calculate the fiber-matrix interface stresses at failure. Two different fiber-array models (square and diamond) were used in these calculations to analyze the effects of fiber arrangement as well as stress state on the critical interface stresses at failure. This study showed that both fiber-array models were needed to analyze interface stresses over the range of stress states. A linear equation provided a close fit to these critical stress combinations and, thereby, provided a fiber-matrix interface failure criterion. These results suggest that prediction procedures for laminate ply cracking can be based on micromechanics stress analyses and appropriate fiber-matrix interface failure criteria. However, typical structural laminates may require elastoplastic stress analysis procedures that account for matrix yielding, especially for shear-dominated ply stress states.
Manthe, Uwe; Ellerbrock, Roman
2016-05-28
A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail. PMID:27250291
NASA Astrophysics Data System (ADS)
Manthe, Uwe; Ellerbrock, Roman
2016-05-01
A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.
Mississippi State Biodiesel Production Project
Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin
2008-03-20
Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese
Le Ngoc Huyen, Tran; Queneudec T'kint, Michèle; Remond, Caroline; Chabbert, Brigitte; Dheilly, Rose-Marie
2011-11-01
Given the non competition of miscanthus with food and animal feed, this lignocellulosic species has attracted attention as a possible biofuel resource. However, sustainability of ethanol production from lignocelluloses biomass would imply reduction in the consumption of chemicals and/or energetic means, but also valorization of the lignocellulosic by-product remaining from enzymatic saccharification. Introduction of these by-products into a cementitious matrix could be used in manufacturing a lightweight composite. Miscanthus biomass was submitted to chemical pretreatments followed by saccharification using an enzymatic cocktail. Residues from saccharification were then mixed with a cementitious matrix. Given their mechanical properties and a good adherence between cement and by-product, the hardened materials could be used. However, the delay in the beginning of setting time is too long, which prevents the direct use of by-product into cementitious matrix. Preliminary experiments using a setting accelerator in the cementitious matrix permitted significant reduction in the setting time delay. PMID:22078741
Entropy Production and Non-Equilibrium Steady States
NASA Astrophysics Data System (ADS)
Suzuki, Masuo
2013-01-01
The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.
Rowland, B.; Hess, W.P.; Winter, P.R.; Ellison, G.B.; Radziszewski, J.G.
1999-02-18
Ultraviolet photoexcitation of matrix-isolated CH{sub 3}COCl, CH{sub 3}CH{sub 2}COCl, and CH{sub 3}CH{sub 2}CH{sub 2}CH{sub 2}COCl produces HCl{center_dot}CH{sub 2}{double_bond}C{double_bond}O, HCl{center_dot}CH{sub 3}CHC{double_bond}C{double_bond}O, and HCl{center_dot}CH{sub 3}CH{sub 2}CH{sub 2}CHC{double_bond}C{double_bond}O complexes. The authors report precursor and matrix dependent reaction quantum yields. Quantum yield values decrease with increasing alkyl chain length due to a reduced number of {alpha} H-atoms available for the elimination reaction and steric considerations. The authors found quantum yields in neat matrixes to be roughly half that in argon or xenon matrixes and assign structures for HCL and ketene complexes in argon and xenon matrixes by comparing IR spectra ab initio electronic structure calculations. In argon matrixes, the product complex HCl frequently is strongly shifted whereas the ketene remains unshifted with respect to matrix-isolated ketene. In xenon matrixes, HCl{center_dot}ketene complexes display absorption bands indicative of two distinct structures. Differences between HCl{center_dot}ketene structures in argon and xenon matrixes are attributed to size differences of the matrix lattice.
Strain-Induced Localized States Within the Matrix Continuum of Self-Assembled Quantum Dots
Popescu, V.; Bester, G.; Zunger, A.
2009-07-01
Quantum dot-based infrared detectors often involve transitions from confined states of the dot to states above the minimum of the conduction band continuum of the matrix. We discuss the existence of two types of resonant states within this continuum in self-assembled dots: (i) virtual bound states, which characterize square wells even without strain and (ii) strain-induced localized states. The latter emerge due to the appearance of 'potential wings' near the dot, related to the curvature of the dots. While states (i) do couple to the continuum, states (ii) are sheltered by the wings, giving rise to sharp absorption peaks.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, D. H.; Harris, C. E.
1989-01-01
A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.
Production of cyclodextrin glycosyltransferase by immobilized Bacillus sp. on chitosan matrix.
Eş, Ismail; Ribeiro, Maycon Carvalho; Dos Santos Júnior, Samuel Rodrigues; Khaneghah, Amin Mousavi; Rodriguez, Armando Garcia; Amaral, André Corrêa
2016-10-01
The whole-cell immobilization on chitosan matrix was evaluated. Bacillus sp., as producer of CGTase, was grown in solid-state and batch cultivation using three types of starches (cassava, potato and cornstarch). Biomass growth and substrate consumption were assessed by flow cytometry and modified phenol-sulfuric acid assays, respectively. Qualitative analysis of CGTase production was determined by colorless area formation on solid culture containing phenolphthalein. Scanning electron microscopy (SEM) analysis demonstrated that bacterial cells were immobilized on chitosan matrix efficiently. Free cells reached very high numbers during batch culture while immobilized cells maintained initial inoculum concentration. The maximum enzyme activity achieved by free cells was 58.15 U ml(-1) (36 h), 47.50 U ml(-1) (36 h) and 68.36 U ml(-1) (36 h) on cassava, potato and cornstarch, respectively. CGTase activities for immobilized cells were 82.15 U ml(-1) (18 h) on cassava, 79.17 U ml(-1) (12 h) on potato and 55.37 U ml(-1) (in 6 h and max 77.75 U ml(-1) in 36 h) on cornstarch. Application of immobilization technique increased CGTase activity significantly. The immobilized cells produced CGTase with higher activity in a shorter fermentation time comparing to free cells. PMID:27194141
Solid state storage of radioactive krypton in a silica matrix
Tingey, G.L.; Lytle, J.M.; Gray, W.J.; Wheeler, K.R.
1980-12-01
The feasibility of loading a low density SiO/sub 2/ glass with krypton for storage of radioactive /sup 85/Kr has been demonstrated by studies using non-radioactive krypton. A 96% SiO/sub 2/ glass with 28% porosity was heated at an elevated pressure of Kr gas to a temperature of 850 to 900/sup 0/C and held at that temperature to sinter the glass-krypton composite to a density of about 2 g/cm/sup 3/. A krypton content of 30 cm/sup 3/ of Kr(STP)/cm/sup 3/ of glass has been demonstrated when loading pressures of 140 MPa are used. Krypton release rates from the glass are lower than reported for any other waste form considered currently. At 420/sup 0/C a diffusion parameter, D/r/sub 0//sup 2/, of 8.66 x 10/sup -13/ min/sup -1/ was determined which leads to a total release of 0.7% of the krypton in 10 years. Release rates increase moderately with increasing temperature up to 600/sup 0/C and increase rapidly above 600/sup 0/C. The lower loading pressures (about 40 MPa) may appear to yield a more favorable product from the point of view of krypton release than the high pressures. Advantages and disadvantages of the technique are given in the conclusions section.
Equation of state for detonation products. [Detonation products
Davis, W.C.
1985-01-01
The concepts of hydrodynamics and thermodynamics as they apply to equations of state for explosive products are collected and discussed. The physics behind the behavior of dense gases is considered. Some ideas about applications are presented. This paper is intended as an introduction to the subject of equation of state for detonation products. 7 references, 3 figures.
Local cloning of two product states
Ji Zhengfeng; Feng Yuan; Ying Mingsheng
2005-09-15
Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states.
Di Luccia, Blanda; Riccio, Antonio; Vanacore, Adele; Baccigalupi, Loredana; Molinaro, Antonio; Ricca, Ezio
2015-01-01
The ability to produce an extracellular matrix and form multicellular communities is an adaptive behavior shared by many bacteria. In Bacillus subtilis, the model system for spore-forming bacteria, matrix production is one of the possible differentiation pathways that a cell can follow when vegetative growth is no longer feasible. While in B. subtilis the genetic system controlling matrix production has been studied in detail, it is still unclear whether other spore formers utilize similar mechanisms. We report that SF214, a pigmented strain of Bacillus pumilus isolated from the marine environment, can produce an extracellular matrix relying on orthologs of many of the genes known to be important for matrix synthesis in B. subtilis. We also report a characterization of the carbohydrates forming the extracellular matrix of strain SF214. The isolation and characterization of mutants altered in matrix synthesis, pigmentation, and spore formation suggest that in strain SF214 the three processes are strictly interconnected and regulated by a common molecular mechanism. PMID:26506360
State power plant productivity programs
NASA Astrophysics Data System (ADS)
1981-02-01
The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Michigan are described. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility.
Effect of advective flow in fractures and matrix diffusion on natural gas production
Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.
2015-10-12
Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.
Effect of advective flow in fractures and matrix diffusion on natural gas production
Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.
2015-10-12
Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less
Effect of advective flow in fractures and matrix diffusion on natural gas production
Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.
2015-06-26
Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.
Effect of advective flow in fractures and matrix diffusion on natural gas production
NASA Astrophysics Data System (ADS)
Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.
2015-10-01
Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network-based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three-dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. These results also suggest that matrix diffusion may support reduced production over longer time frames.
Nonlocality of orthogonal product basis quantum states
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Gao, Fei; Tian, Guo-Jing; Cao, Tian-Qing; Wen, Qiao-Yan
2014-08-01
In this paper, we mainly study the local indistinguishability of mutually orthogonal product basis quantum states in the high-dimensional quantum systems. In the Hilbert space of 3⊗3, Walgate and Hardy [Phys. Rev. Lett. 89, 147901 (2002), 10.1103/PhysRevLett.89.147901] presented a very simple proof for nonlocality of nine orthogonal product basis quantum states which are given by Bennett et al. [Phys. Rev. A 59, 1070 (1999), 10.1103/PhysRevA.59.1070]. In the quantum system of d⊗d, where d is odd, we construct d2 orthogonal product basis quantum states and prove these states are locally indistinguishable. Then we are able to construct some locally indistinguishable product basis quantum states in the multipartite systems. All these results reveal the phenomenon of "nonlocality without entanglement."
Walker, Michael; Bowler, Philip G; Cochrane, Christine A
2007-09-01
Excess or "uncontrolled" proteinase activity in the wound bed has been implicated as one factor that may delay or compromise wound healing. One proteinase group--matrix metalloproteinases--includes collagenases, elastase, and gelatinases and can be endogenous (cell) or exogenous (bacterial) in origin. A study was conducted to assess the ability of five silver-containing wound care products to reduce a known matrix metalloproteinase supernatant concentration in vitro. Four silver-containing wound dressings (a carboxy-methyl cellulose, a nanocrystalline, a hydro-alginate, and a collagen/oxidized regenerated cellulose composite dressing), along with a 0.5% aqueous silver nitrate [w/v] solution and controls for matrix metalloproteinase-2 and matrix metalloproteinase-9 sourced from ex vivo dermal tissue and blood monocytes, respectively, were used. Extracts were separated and purified using gelatine-Sepharose column chromatography and dialysis and polyacrylamide gel electrophoretic zymography was used to analyze specific matrix metalloproteinase activity. All dressings and the solution were shown to sequester both matrix metalloproteinases. The silver-containing carboxy-methyl cellulose dressing showed significantly greater sequestration for matrix metalloproteinase-2 at 6 and 24 hours (P< 0.001) compared to the other treatments. For matrix metalloproteinase-9, both the carboxy-methyl cellulose dressing and the oxidized regenerated cellulose dressing achieved significant sequestration when compared to the other treatments at 24 hours (P <0.001), which was maintained to 48 hours (P < 0.001). Results from this study show that silver-containing dressings are effective in sequestering matrix metalloproteinase-2 and -9 and that this can be achieved without a sacrificial protein (eg, collagen). Although the varying ability of wound dressings to sequester matrix metalloproteinases has been shown in vitro, further in vivo evidence is required to confirm these findings. PMID
Cao, Z; Xiang, J; Li, C
2009-08-01
Recent studies have found that in addition to promoting cellular invasion, overexpression of metalloproteinase -1 (MMP-1) is associated with the initial stages of cancer development. Extracellular matrix metalloproteinase inducer (EMMPRIN), a transmembrane glycoprotein, has been reported to be highly expressed in tumor cells and induce production of MMPs from peritumor fibroblasts (PTFs) adjacent to the tumor cells. The expression of EMMPRIN in tongue squamous cell carcinoma (SCC) was investigated in this study. It was found that EMMPRIN was expressed at the cell membrane throughout the entire lesion in tongue SCC. Immunofluorescence staining localized EMMPRIN to the cell membrane in a highly invasive tongue SCC cell line (Tca 8113). EMMPRIN mRNA was expressed at a high level in Tca 8113, whereas MMP-1 mRNA was expressed in PTF but harder to be detected in Tca 8113. Co-culture of Tca 8113 with PTF stimulated production of MMP-1. EMMPRIN was highly expressed in tongue SCC, and could induce local production of MMP-1. These data indicate that EMMPRIN might play an important role in tongue SCC progression and invasion. PMID:19372030
Boon, Lise; Ugarte-Berzal, Estefania; Vandooren, Jennifer; Opdenakker, Ghislain
2016-06-01
Matrix metalloproteases (MMPs) are crucial components of a complex and dynamic network of proteases. With a wide range of potential substrates, their production and activity are tightly controlled by a combination of signalling events, zymogen activation, post-translational modifications and extracellular inhibition. Slight imbalances may result in the initiation or progression of specific disease states, such as cancer and pathological inflammation. As glycosylation modifies the structures and functions of glycoproteins and many MMPs contain N- or O-linked oligosaccharides, we examine, compare and evaluate the evidence for whether glycosylation affects MMP catalytic activity and other functions. It is interesting that the catalytic sites of MMPs do not contain O-linked glycans, but instead possess a conserved N-linked glycosylation site. Both N- and O-linked oligosaccharides, attached to specific protein domains, endow these domains with novel functions such as the binding to lectins, cell-surface receptors and tissue inhibitors of metalloproteases (TIMPs). Validated glycobiological data on N- and O-linked oligosaccharides of gelatinase B/MMP-9 and on O-linked structures of membrane-type 1 MMP/MMP-14 indicate that in-depth research of other MMPs may yield important insights, e.g. about subcellular localizations and functions within macromolecular complexes. PMID:27234584
Boon, Lise; Ugarte-Berzal, Estefania; Vandooren, Jennifer; Opdenakker, Ghislain
2016-01-01
Matrix metalloproteases (MMPs) are crucial components of a complex and dynamic network of proteases. With a wide range of potential substrates, their production and activity are tightly controlled by a combination of signalling events, zymogen activation, post-translational modifications and extracellular inhibition. Slight imbalances may result in the initiation or progression of specific disease states, such as cancer and pathological inflammation. As glycosylation modifies the structures and functions of glycoproteins and many MMPs contain N- or O-linked oligosaccharides, we examine, compare and evaluate the evidence for whether glycosylation affects MMP catalytic activity and other functions. It is interesting that the catalytic sites of MMPs do not contain O-linked glycans, but instead possess a conserved N-linked glycosylation site. Both N- and O-linked oligosaccharides, attached to specific protein domains, endow these domains with novel functions such as the binding to lectins, cell-surface receptors and tissue inhibitors of metalloproteases (TIMPs). Validated glycobiological data on N- and O-linked oligosaccharides of gelatinase B/MMP-9 and on O-linked structures of membrane-type 1 MMP/MMP-14 indicate that in-depth research of other MMPs may yield important insights, e.g. about subcellular localizations and functions within macromolecular complexes. PMID:27234584
The ground state of the D = 11 supermembrane and matrix models on compact regions
NASA Astrophysics Data System (ADS)
Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro
2016-09-01
We establish a general framework for the analysis of boundary value problems of matrix models at zero energy on compact regions. We derive existence and uniqueness of ground state wavefunctions for the mass operator of the D = 11 regularized supermembrane theory, that is the N = 16 supersymmetric SU (N) matrix model, on balls of finite radius. Our results rely on the structure of the associated Dirichlet form and a factorization in terms of the supersymmetric charges. They also rely on the polynomial structure of the potential and various other supersymmetric properties of the system.
Hidalgo, M E; Ayesa, E
2001-09-01
This paper describes a mathematical tool for local identifiability analysis that can easily be applied to high-order state-space nonlinear systems and implemented in simulators with a discrete-time approach. The methodology is based on the recursive numerical evaluation of a reduced information matrix during the simulation of a calibration experiment and in the setting-up of a group of information parameters based on geometric interpretations of this matrix. As an example of application, the proposed methodology has been used in the study of an OUR batch test from the point of view of ASM No. 1 calibration. PMID:11487118
State Skill Standards: Digital Video & Broadcast Production
ERIC Educational Resources Information Center
Bullard, Susan; Tanner, Robin; Reedy, Brian; Grabavoi, Daphne; Ertman, James; Olson, Mark; Vaughan, Karen; Espinola, Ron
2007-01-01
The standards in this document are for digital video and broadcast production programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school program. Digital Video and Broadcast Production is a program that consists of the initial fundamentals and sequential courses that prepare…
Quantum secret sharing using product states
Hsu, L.-Y.; Li, C.-M.
2005-02-01
This study proposes quantum secret sharing protocols using product states. The first two protocols adopt the quantum key distribution protocol using product states [Guo et al.Phys. Rev. A 64, 042301 (2001)]. In these two protocols, the sender does not reveal any information about the qutrits until confirming that each receiver has received a qutrit. This study also considers the security and some possible eavesdropping strategies. In the third proposed protocol, three-level Bell states are exploited for qutrit preparation via nonlocality swapping.
Quantum state tomography with fully symmetric measurements and product measurements
Zhu Huangjun; Englert, Berthold-Georg
2011-08-15
We introduce random-matrix theory to study the tomographic efficiency of a wide class of measurements constructed out of weighted 2-designs, including symmetric informationally complete (SIC) probability operator measurements (POMs). In particular, we derive analytic formulas for the mean Hilbert-Schmidt distance and the mean trace distance between the estimator and the true state, which clearly show the difference between the scaling behaviors of the two error measures with the dimension of the Hilbert space. We then prove that the product SIC POMs, the multipartite analog of the SIC POMs, are optimal among all product measurements in the same sense as the SIC POMs are optimal among all joint measurements. We further show that, for bipartite systems, there is only a marginal efficiency advantage of the joint SIC POMs over the product SIC POMs. In marked contrast, for multipartite systems, the efficiency advantage of the joint SIC POMs increases exponentially with the number of parties.
LI, WANG; LING, WANG; TENG, XIAOMEI; QUAN, CUIXIA; CAI, SHENGNAN; HU, SHUQUN
2016-01-01
The aim of the study was to examine the association among advanced glycation end products (AGEs), extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase (MMPs), and investigate whether AGEs affect type I collagen (COL-I) through EMMPRIN or MMPs. A co-culture system with the osteoblast-like cells (MC3T3E1) and mouse RAW264.7 cells was employed to examine the effects of AGE-bovine serum albumin (BSA) (50 mg/l), EMMPRIN antibody (5 mg/l) and AGE-BSA+EMMPRIN antibody separately on COL-I expression for 24 h. Culture media were analyzed for the content of COL-I by ELISA. The effect of different concentrations of AGE-BSA (0, 50, 100, 200 and 400 mg/l) for 24 h was assessed on COL-I levels. Finally, semiquantitative RT-PCR was used to detect the osteoblast COL-I mRNA expression and MMP-2 and MMP-9's PMAO were also measured in the culture medium. COL-I content in the culture medium decreased significantly following treatment with AGE-BSA (P<0.05). EMMPRIN antibody increased COL-I content (P<0.05). EMMPRIN antibody+AGE-BSA increased COL-I significantly (P<0.05). Different concentrations of AGE-BSA increased COL-I mRNA expression significantly compared with the control group (P<0.05), and were enhanced with increasing AGE-BSA concentration (P<0.05). Also MMP-2 and MMP-9 secretion increased significantly (P<0.05), with the increasing AGE-BSA concentration. In conclusion, an increase in AGE levels in vitro stimulates the secretion of EMMPRIN/MMPs, promotes the degradation of COL-I and reduces bone strength. PMID:27284408
Pagenstecher, A.; Stalder, A. K.; Kincaid, C. L.; Shapiro, S. D.; Campbell, I. L.
1998-01-01
Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of inflammatory disorders of the central nervous system (CNS) whereas the contribution of the major endogenous counter-regulators of MMPs, the tissue inhibitors of the matrix metalloproteinases (TIMPs), is unclear. We investigated the temporal and spatial expression patterns in the CNS of nine MMP genes and three TIMP genes in normal mice, in mice with EAE, and in transgenic mice with astrocyte (glial fibrillary acidic protein)-targeted expression of the cytokines interleukin-3 (macrophage/microglial demyelinating disease), interleukin-6 (neurodegenerative disease), or tumor necrosis factor-alpha (lymphocytic encephalomyelitis). In normal mice, the MMPs MT1-MMP, stromelysin 3, and gelatinase B were expressed at low levels, whereas high expression of TIMP-2 and TIMP-3 was observed predominantly in neurons and in the choroid plexus, respectively. In EAE and the transgenic mice, significant induction or up-regulation of various MMP genes was observed, the pattern of which was somewhat specific for each of the models, and there was significant induction of TIMP-1. In situ localization experiments revealed a dichotomy between MMP expression that was restricted to leukocytes and possibly microglia within inflammatory lesions and TIMP-1 expression that was observed in activated astrocytes circumscribing the lesions. These findings demonstrate specific spatial and temporal regulation in the expression of individual MMP and TIMP genes in the CNS in normal and inflammatory states. The distinct localization of TIMP-1 and MMP expression during CNS inflammation suggests a dynamic state in which the interplay between these gene products may determine both the size and resolution of the destructive inflammatory focus. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9502415
Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong
2016-02-15
This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge. PMID:26706769
Topological edge states in two-gap unitary systems: a transfer matrix approach
NASA Astrophysics Data System (ADS)
Tauber, Clément; Delplace, Pierre
2015-11-01
We construct and investigate a family of two-band unitary systems living on a cylinder geometry and presenting localized edge states. Using the transfer matrix formalism, we solve and investigate in detail such states in the thermodynamic limit. Analytic considerations then suggest the construction of a family of Riemann surfaces associated to the band structure of the system. In this picture, the corresponding edge states naturally wind around non-contractile loops, defining a topological invariant associated to each gap of the system.
Clearance Kinetics and Matrix Binding Partners of the Receptor for Advanced Glycation End Products
Milutinovic, Pavle S.; Englert, Judson M.; Crum, Lauren T.; Mason, Neale S.; Ramsgaard, Lasse; Enghild, Jan J.; Sparvero, Louis J.; Lotze, Michael T.; Oury, Tim D.
2014-01-01
Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE). Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin. PMID:24642901
Clearance kinetics and matrix binding partners of the receptor for advanced glycation end products.
Milutinovic, Pavle S; Englert, Judson M; Crum, Lauren T; Mason, Neale S; Ramsgaard, Lasse; Enghild, Jan J; Sparvero, Louis J; Lotze, Michael T; Oury, Tim D
2014-01-01
Elucidating the sites and mechanisms of sRAGE action in the healthy state is vital to better understand the biological importance of the receptor for advanced glycation end products (RAGE). Previous studies in animal models of disease have demonstrated that exogenous sRAGE has an anti-inflammatory effect, which has been reasoned to arise from sequestration of pro-inflammatory ligands away from membrane-bound RAGE isoforms. We show here that sRAGE exhibits in vitro binding with high affinity and reversibly to extracellular matrix components collagen I, collagen IV, and laminin. Soluble RAGE administered intratracheally, intravenously, or intraperitoneally, does not distribute in a specific fashion to any healthy mouse tissue, suggesting against the existence of accessible sRAGE sinks and receptors in the healthy mouse. Intratracheal administration is the only effective means of delivering exogenous sRAGE to the lung, the organ in which RAGE is most highly expressed; clearance of sRAGE from lung does not differ appreciably from that of albumin. PMID:24642901
Hu, Weifeng; Chan, Garnet Kin-Lic
2015-07-14
We describe and extend the formalism of state-specific analytic density matrix renormalization group (DMRG) energy gradients, first used by Liu et al. [J. Chem. Theor. Comput. 2013, 9, 4462]. We introduce a DMRG wave function maximum overlap following technique to facilitate state-specific DMRG excited-state optimization. Using DMRG configuration interaction (DMRG-CI) gradients, we relax the low-lying singlet states of a series of trans-polyenes up to C20H22. Using the relaxed excited-state geometries, as well as correlation functions, we elucidate the exciton, soliton, and bimagnon ("single-fission") character of the excited states, and find evidence for a planar conical intersection. PMID:26575737
Iterative solutions to the steady-state density matrix for optomechanical systems.
Nation, P D; Johansson, J R; Blencowe, M P; Rimberg, A J
2015-01-01
We present a sparse matrix permutation from graph theory that gives stable incomplete lower-upper preconditioners necessary for iterative solutions to the steady-state density matrix for quantum optomechanical systems. This reordering is efficient, adding little overhead to the computation, and results in a marked reduction in both memory and runtime requirements compared to other solution methods, with performance gains increasing with system size. Either of these benchmarks can be tuned via the preconditioner accuracy and solution tolerance. This reordering optimizes the condition number of the approximate inverse and is the only method found to be stable at large Hilbert space dimensions. This allows for steady-state solutions to otherwise intractable quantum optomechanical systems. PMID:25679739
Oprenyeszk, Frederic; Sanchez, Christelle; Dubuc, Jean-Emile; Maquet, Véronique; Henrist, Catherine; Compère, Philippe; Henrotin, Yves
2015-01-01
This in vitro study investigated the metabolism of human osteoarthritic (OA) chondrocytes encapsulated in a spherical matrix enriched of chitosan. Human OA chondrocytes were encapsulated and cultured for 28 days either in chitosan-alginate beads or in alginate beads. The beads were formed by slowly passing dropwise either the chitosan 0.6%–alginate 1.2% or the alginate 1.2% solution through a syringe into a 102 mM CaCl2 solution. Beads were analyzed histologically after 28 days. Interleukin (IL)-6 and -8, prostaglandin (PG) E2, matrix metalloproteinases (MMPs), hyaluronan and aggrecan were quantified directly in the culture supernatant by specific ELISA and nitric oxide (NO) by using a colorimetric method based on the Griess reaction. Hematoxylin and eosin staining showed that chitosan was homogeneously distributed through the matrix and was in direct contact with chondrocytes. The production of IL-6, IL-8 and MMP-3 by chondrocytes significantly decreased in chitosan-alginate beads compared to alginate beads. PGE2 and NO decreased also significantly but only during the first three days of culture. Hyaluronan and aggrecan production tended to increase in chitosan-alginate beads after 28 days of culture. Chitosan-alginate beads reduced the production of inflammatory and catabolic mediators by OA chondrocytes and tended to stimulate the synthesis of cartilage matrix components. These particular effects indicate that chitosan-alginate beads are an interesting scaffold for chondrocytes encapsulation before transplantation to repair cartilage defects. PMID:26020773
Transfer Matrix Approach to 1d Random Band Matrices: Density of States
NASA Astrophysics Data System (ADS)
Shcherbina, Mariya; Shcherbina, Tatyana
2016-08-01
We study the special case of n× n 1D Gaussian Hermitian random band matrices, when the covariance of the elements is determined by the matrix J=(-W^2triangle +1)^{-1} . Assuming that n≥ CW log W≫ 1 , we prove that the averaged density of states coincides with the Wigner semicircle law up to the correction of order W^{-1}.
Moritz, Gerrit; Reiher, Markus
2006-01-21
The application of the quantum-chemical density-matrix renormalization group (DMRG) algorithm is cumbersome for complex electronic structures with many active orbitals. The high computational cost is mainly due to the poor convergence of standard DMRG calculations. A factor which affects the convergence behavior of the calculations is the choice of the start-up procedure. In this start-up step matrix representations of operators have to be calculated in a guessed many-electron basis of the DMRG environment block. Different possibilities for the construction of these basis states exist, and we first compare four procedures to approximate the environment states using Slater determinants explicitly. These start-up procedures are applied to DMRG calculations on a sophisticated test system: the chromium dimer. It is found that the converged energies and the rate of convergence depend significantly on the choice of the start-up procedure. However, since already the most simple start-up procedure, which uses only the Hartree-Fock determinant, is comparatively good, Slater determinants, in general, appear not to be a good choice as approximate environment basis states for convergence acceleration. Based on extensive test calculations it is demonstrated that the computational cost can be significantly reduced if the number of total states m is successively increased. This is done in such a way that the environment states are built up stepwise from system states of previous truncated DMRG sweeps for slowly increasing m values. PMID:16438563
NASA Astrophysics Data System (ADS)
Moritz, Gerrit; Reiher, Markus
2006-01-01
The application of the quantum-chemical density-matrix renormalization group (DMRG) algorithm is cumbersome for complex electronic structures with many active orbitals. The high computational cost is mainly due to the poor convergence of standard DMRG calculations. A factor which affects the convergence behavior of the calculations is the choice of the start-up procedure. In this start-up step matrix representations of operators have to be calculated in a guessed many-electron basis of the DMRG environment block. Different possibilities for the construction of these basis states exist, and we first compare four procedures to approximate the environment states using Slater determinants explicitly. These start-up procedures are applied to DMRG calculations on a sophisticated test system: the chromium dimer. It is found that the converged energies and the rate of convergence depend significantly on the choice of the start-up procedure. However, since already the most simple start-up procedure, which uses only the Hartree-Fock determinant, is comparatively good, Slater determinants, in general, appear not to be a good choice as approximate environment basis states for convergence acceleration. Based on extensive test calculations it is demonstrated that the computational cost can be significantly reduced if the number of total states m is successively increased. This is done in such a way that the environment states are built up stepwise from system states of previous truncated DMRG sweeps for slowly increasing m values.
Excited State Dynamics of 7-AZAINDOLE Homodimer in Frozen Nitrogen Matrix
NASA Astrophysics Data System (ADS)
Mukherjee, Moitrayee; Bandyopadhyay, Biman; Karmakar, Shreetama; Chakraborty, Tapas
2011-06-01
In a fluid medium (liquid or gas), the doubly hydrogen bonded dimer of 7-azaindole (7AI) undergoes tautomerization via simultaneous exchange of two H-atoms/protons between the two moieties upon UV excitation to lowest excited singlet state. The excited dimer emits exclusively visible fluorescence from tautomeric configuration, and no UV fluorescence is detected from the locally excited state. We show here for the first time that this generic excited state dynamics of 7AI dimer is totally altered if the species is synthesized and confined in frozen nitrogen at 8 K. The dimer has been found to emit only from the locally excited state, and the photophysical channel leading to excited state tautomerization is completely blocked. The formation of the centrosymmetric dimer in nitrogen matrix is ensured by recording the FTIR spectrum of the dimer before initiating the photophysical measurements. The details of our findings and interpretation of the measured data will be presented in the talk.
Production and characterization of para-hydrogen gas for matrix isolation infrared spectroscopy
NASA Astrophysics Data System (ADS)
Sundararajan, K.; Sankaran, K.; Ramanathan, N.; Gopi, R.
2016-08-01
Normal hydrogen (n-H2) has 3:1 ortho/para ratio and the production of enriched para-hydrogen (p-H2) from normal hydrogen is useful for many applications including matrix isolation experiments. In this paper, we describe the design, development and fabrication of the ortho-para converter that is capable of producing enriched p-H2. The p-H2 thus produced was probed using infrared and Raman techniques. Using infrared measurement, the thickness and the purity of the p-H2 matrix were determined. The purity of p-H2 was determined to be >99%. Matrix isolation infrared spectra of trimethylphosphate (TMP) and acetylene (C2H2) were studied in p-H2 and n-H2 matrices and the results were compared with the conventional inert matrices.
Comparison of optics and electronics for the calculation of matrix-vector products
NASA Technical Reports Server (NTRS)
Gary, C. K.
1992-01-01
Optical processors are attractive because of their ability to perform massively parallel operations such as matrix vector products. The inherently analog nature of optical calculations requires that optical processors be based on analog computations. While the speed at which such analog operations can be performed as well as the natural parallelism of optical systems are great advantages of optical processors, the analog representation of values severely limits the achievable accuracy. Furthermore, optical processors are limited by the need to convert information to and from the intensity of light. Digitization can be used to increase the accuracy of optical matrix-vector processors, but causes a severe reduction in speed. This paper compares the throughput and power requirements of optical and electronic processors, showing that optical matrix-vector processors can provide a greater number of operations/Watt than conventional electronics.
Multi-particle and multi-state Landau-Zener model: Dynamic matrix approach
NASA Astrophysics Data System (ADS)
Fai, L. C.; Tchoffo, M.; Jipdi, M. N.
2015-04-01
The paper presents the multi-particle and multi-state Landau-Zener problem and focuses on indistinguishable particles with degenerate states applying the Dynamics matrix approach. It is observed that the probabilities are described by the Binomial law with the limiting values that achieved exact results for spin and Landau-Zener problems. The derivation of the generalized multi-particle probability function is observed to be equivalent to solving a Landau-Zener problem for particle number equal to twice the spin.
Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states
NASA Astrophysics Data System (ADS)
Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva
2016-08-01
We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been
Reichhardt, Courtney; Ferreira, Jose A. G.; Joubert, Lydia-Marie; Clemons, Karl V.; Stevens, David A.
2015-01-01
Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The 13C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional 15N and 31P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions. PMID:26163318
Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states.
Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W; Edmondson, Steve; Malmström, Eva
2016-08-21
We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors. PMID:27230294
R-matrix calculation of bound and resonant states of BeH
NASA Astrophysics Data System (ADS)
Chakrabarti, K.; Tennyson, Jonathan
2014-12-01
Bound and resonant states of BeH are studied using the diatomic UK molecular R-matrix codes together with a Slater basis set for the BeH+ target states. Bound and resonant states of BeH are determined from an e-BeH+ collisional calculation. The calculations are repeated for 40 internuclear distances in the range 1.5-6.0 a 0 to yield bound state and resonance curves for BeH. Additionally, we also obtain the resonance widths in the range of the inter-nuclear distances considered. The data obtained may be useful for modeling various e-BeH+ collision-induced processes, particularly dissociative recombination and dissociative excitation.
R-matrix calculation of bound and resonant states of BeH
NASA Astrophysics Data System (ADS)
Chakrabarti, K.; Tennyson, Jonathan
2015-12-01
Bound and resonant states of BeH are studied using the diatomic UK molecular R-matrix codes together with a Slater basis set for the BeH+ target states. Bound and resonant states of BeH are determined from an e-BeH+ collisional calculation. The calculations are repeated for 40 internuclear distances in the range 1.5-6.0 a 0 to yield bound state and resonance curves for BeH. Additionally, we also obtain the resonance widths in the range of the inter-nuclear distances considered. The data obtained may be useful for modeling various e-BeH+ collision-induced processes, particularly dissociative recombination and dissociative excitation.
Conditions for Describing Triplet States in Reduced Density Matrix Functional Theory.
Theophilou, Iris; Lathiotakis, Nektarios N; Helbig, Nicole
2016-06-14
We consider necessary conditions for the one-body reduced density matrix (1RDM) to correspond to a triplet wave function of a two-electron system. The conditions concern the occupation numbers and are different for the high spin projections, Sz = ±1, and the Sz = 0 projection. Hence, they can be used to test if an approximate 1RDM functional yields the same energies for both projections. We employ these conditions in reduced density matrix functional theory calculations for the triplet excitations of two-electron systems. In addition, we propose that these conditions can be used in the calculation of triplet states of systems with more than two electrons by restricting the active space. We assess this procedure in calculations for a few atomic and molecular systems. We show that the quality of the optimal 1RDMs improves by applying the conditions in all the cases we studied. PMID:27171683
General Limit Distributions for Sums of Random Variables with a Matrix Product Representation
NASA Astrophysics Data System (ADS)
Angeletti, Florian; Bertin, Eric; Abry, Patrice
2014-12-01
The general limit distributions of the sum of random variables described by a finite matrix product ansatz are characterized. Using a mapping to a Hidden Markov Chain formalism, non-standard limit distributions are obtained, and related to a form of ergodicity breaking in the underlying non-homogeneous Hidden Markov Chain. The link between ergodicity and limit distributions is detailed and used to provide a full algorithmic characterization of the general limit distributions.
Mechanisms of fluid-flow-induced matrix production in bone tissue engineering.
Morris, H L; Reed, C I; Haycock, J W; Reilly, G C
2010-12-01
Matrix production by tissue-engineered bone is enhanced when the growing tissue is subjected to mechanical forces and/or fluid flow in bioreactor culture. Cells deposit collagen and mineral, depending upon the mechanical loading that they receive. However, the molecular mechanisms of flow-induced signal transduction in bone are poorly understood. The hyaluronan (HA) glycocalyx has been proposed as a potential mediator of mechanical forces in bone. Using a parallel-plate flow chamber the effects of removal of HA on flow-induced collagen production and NF-kappaB activation in MLO-A5 osteoid osteocytes were investigated. Short periods of fluid flow significantly increased collagen production and induced translocation of the NF-kappaB subunit p65 to the cell's nuclei in 65 per cent of the cell population. Enzymatic removal of the HA coat and antibody blocking of CD44 (a transmembrane protein that binds to HA) eliminated the fluid-flow-induced increase in collagen production but had no effect on the translocation of p65. HA and CD44 appear to play roles in transducing the flow signals that modulate collagen production over long-term culture but not in the short-term flow-induced activation of NF-kappaB, implying that multiple signalling events are initiated from the commencement of flow. Understanding the mechanotransduction events that enable fluid flow to stimulate bone matrix production will allow the optimization of bioreactor design and flow profiles for bone tissue engineering. PMID:21287834
A Tensor Product Formulation of Strassen's Matrix Multiplication Algorithm with Memory Reduction
Kumar, B.; Huang, C. -H.; Sadayappan, P.; Johnson, R. W.
1995-01-01
In this article, we present a program generation strategy of Strassen's matrix multiplication algorithm using a programming methodology based on tensor product formulas. In this methodology, block recursive programs such as the fast Fourier Transforms and Strassen's matrix multiplication algorithm are expressed as algebraic formulas involving tensor products and other matrix operations. Such formulas can be systematically translated to high-performance parallel/vector codes for various architectures. In this article, we present a nonrecursive implementation of Strassen's algorithm for shared memory vector processors such as the Cray Y-MP. A previous implementation of Strassen's algorithm synthesized from tensor product formulas required workingmore » storage of size O(7 n ) for multiplying 2 n × 2 n matrices. We present a modified formulation in which the working storage requirement is reduced to O(4 n ). The modified formulation exhibits sufficient parallelism for efficient implementation on a shared memory multiprocessor. Performance results on a Cray Y-MP8/64 are presented.« less
Huet, E; Brassart, B; Wallach, J; Debelle, L; Haye, B; Emonard, H; Hornebeck, W
2001-01-01
Soluble elastin-derived peptides from alkaline or elastase hydrolysis of insoluble elastin, as well as tropoelastin, increase matrix metalloproteinase-2 (MMP-2) production by human skin fibroblasts in culture as determined by gelatin zymography and ELISA. Such an effect is time and concentration dependent; it can be reproduced by synthetic elastin: VGVAPG, PGAIPG, and laminin: LGTIPG, hexapeptides and inhibited by lactose and is therefore elastin receptor-mediated. The steady state levels of MMP-2 mRNAs are invariant following elastin-fibroblasts interaction. Inhibition of phospholipase C (D-609), ADP-ribosylation factor (brefeldin), protein kinase C (RO-318220) and phospholipase D (1-propanol) totally abolished the elastin-mediated increase of MMP-2 production. It suggested that the post-transcriptional mechanism controlling the elastin-mediated overproduction of MMP-2 involved a cascade leading to phospholipase D activation. PMID:11723829
NASA Astrophysics Data System (ADS)
Arkhipov, Ievgen I.; Peřina, Jan
2016-09-01
A method for revealing the covariance matrix of an unknown two-mode Gaussian state is given based on the interference with a reference twin beam whose covariance matrix is known. In the method, first- and second-order cross-correlation intensity moments are determined varying the overall phase of the reference twin beam.
Spin Density Matrix Elements in exclusive production of ω mesons at Hermes
NASA Astrophysics Data System (ADS)
Marianski, B.; Terkulov, A.
2014-03-01
Spin density matrix elements have been determined for exclusive ω meson production on hydrogen and deuterium targets, in the kinematic region of 1.0 < Q2 < 10.0 GeV2, 3.0 < W < 6.3 GeV and -t' < 0.2 GeV2. The data, from which SDMEs are determined, were accumulated with the HERMES forward spectrometer during the running period of 1996 to 2007 using the 27.6 GeV electron or positron beam of HERA. A sizable contribution of unnatural parity exchange amplitudes is found for exclusive ω meson production.
Wear products that form during tribological tests of aluminum-matrix composite materials
NASA Astrophysics Data System (ADS)
Kalashnikov, I. E.; Bolotova, L. K.; Kobeleva, L. I.; Bykov, P. A.; Kolmakov, A. G.
2015-04-01
The wear products and the friction surfaces of the composite materials fabricated by reactive casting after the addition of commercial-purity aluminum AD1, titanium and nickel powders, and nanosized modifiers to a matrix melt are studied. The dispersity and the chemical composition of the wear products that form an intermediate layer between the contacting surfaces are analyzed, and the dominating wear mechanisms under experimental tribological loading conditions are determined. It is shown that the formation of such a disperse intermediate layer during lubricant-free friction of the synthesized composite materials decreases the temperature in the tribological contact and ensures a transition from weak to intense wear at higher critical loads.
String states, loops and effective actions in noncommutative field theory and matrix models
NASA Astrophysics Data System (ADS)
Steinacker, Harold C.
2016-09-01
Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.
NASA Astrophysics Data System (ADS)
Zhao, Chao; Yang, Guo-wu; Li, Xiao-yu
2016-09-01
Nowadays, there are plenty of separability criteria which are used to detect entanglement. Many of them are limited to apply for some cases. In this paper, we propose a separability criterion for arbitrary multipartite pure state which is based on the rank of reduced density matrix. It is proved that the rank of reduced density matrices of a multipartite state is closely related to entanglement. In fact it can be used to characterize entanglement. Our separability criterion is a necessary and sufficient condition for detecting entanglement. Furthermore, it is able to help us find the completely separable form of a multipartite pure state according to some explicit examples. Finally it demonstrates that our method are more suitable for some specific case. Our separability criterion are simple to understand and it is operational.
NASA Astrophysics Data System (ADS)
Zhao, Chao; Yang, Guo-wu; Li, Xiao-yu
2016-04-01
Nowadays, there are plenty of separability criteria which are used to detect entanglement. Many of them are limited to apply for some cases. In this paper, we propose a separability criterion for arbitrary multipartite pure state which is based on the rank of reduced density matrix. It is proved that the rank of reduced density matrices of a multipartite state is closely related to entanglement. In fact it can be used to characterize entanglement. Our separability criterion is a necessary and sufficient condition for detecting entanglement. Furthermore, it is able to help us find the completely separable form of a multipartite pure state according to some explicit examples. Finally it demonstrates that our method are more suitable for some specific case. Our separability criterion are simple to understand and it is operational.
Changes in recovery due to drug product matrix ageing as a source of mass imbalances.
Schulz, Katharina; Oberdieck, Ulrich; Backensfeld, Thomas; Weitschies, Werner
2013-02-23
An important quality feature of stability testing of drug products is mass balance. Besides several known or anticipated causes for mass imbalances, a further potential cause that has not yet been systematically assessed might be incomplete recovery due to the influence of matrix ageing. The genotoxic degradation product 4-chloroaniline (PCA) and the unstable drug substance estradiol (E2) that is known to be difficult to extract from matrices in low-dose solid formulations were chosen as examples. A marketed product containing E2 as well as two marketed products that potentially contain PCA were investigated together with experimental formulations containing E2 or PCA that were produced for this study. To accelerate drug product matrix ageing, samples were stored at different conditions for defined storage periods. PCA and E2 recovery was determined at all sampling time points, respectively. In comparison to unstressed samples, significant changes in recovery were observed in 67% of the formulations investigated. Consequently, the outlined procedure can be regarded as a promising approach to reveal potential reasons for mass imbalance. PMID:23245242
NASA Astrophysics Data System (ADS)
Genest, Vincent X.; Miki, Hiroshi; Vinet, Luc; Zhedanov, Alexei
2014-01-01
The multivariate Meixner polynomials are shown to arise as matrix elements of unitary representations of the SO(d, 1) group on oscillator states. These polynomials depend on d discrete variables and are orthogonal with respect to the negative multinomial distribution. The emphasis is put on the bivariate case for which the SO(2, 1) connection is used to derive the main properties of the polynomials: orthogonality relation, raising/lowering relations, generating function, recurrence relations and difference equations as well as explicit expressions in terms of standard (univariate) Krawtchouk and Meixner polynomials. It is explained how these results generalize directly to d variables.
Integrating matrix solution of the hybrid state vector equations for beam vibration
NASA Technical Reports Server (NTRS)
Lehman, L. L.
1982-01-01
A simple, versatile, and efficient computational technique has been developed for dynamic analysis of linear elastic beam and rod type of structures. Moreover, the method provides a rather general solution approach for two-point boundary value problems that are described by a single independent spatial variable. For structural problems, the method is implemented by a mixed state vector formulation of the differential equations, combined with an integrating matrix solution procedure. Highly accurate solutions are easily achieved with this approach. Example solutions are given for beam vibration problems including discontinuous stiffness and mass parameters, elastic restraint boundary conditions, concentrated inertia loading, and rigid body modes
A matrix product algorithm for stochastic dynamics on locally tree-like graphs
NASA Astrophysics Data System (ADS)
Barthel, Thomas; de Bacco, Caterina; Franz, Silvio
In this talk, I describe a novel algorithm for the efficient simulation of generic stochastic dynamics of classical degrees of freedom defined on the vertices of locally tree-like graphs. Such models correspond for example to spin-glass systems, Boolean networks, neural networks, or other technological, biological, and social networks. Building upon the cavity method and ideas from quantum many-body theory, the algorithm is based on a matrix product approximation of the so-called edge messages - conditional probabilities of vertex variable trajectories. The matrix product edge messages (MPEM) are constructed recursively. Computation costs and accuracy can be tuned by controlling the matrix dimensions of the MPEM in truncations. In contrast to Monte Carlo simulations, the approach has a better error scaling and works for both, single instances as well as the thermodynamic limit. Due to the absence of cancellation effects, observables with small expectation values can be evaluated accurately, allowing for the study of decay processes and temporal correlations with unprecedented accuracy. The method is demonstrated for the prototypical non-equilibrium Glauber dynamics of an Ising spin system. Reference: arXiv:1508.03295.
Simplified LCA and matrix methods in identifying the environmental aspects of a product system.
Hur, Tak; Lee, Jiyong; Ryu, Jiyeon; Kwon, Eunsun
2005-05-01
In order to effectively integrate environmental attributes into the product design and development processes, it is crucial to identify the significant environmental aspects related to a product system within a relatively short period of time. In this study, the usefulness of life cycle assessment (LCA) and a matrix method as tools for identifying the key environmental issues of a product system were examined. For this, a simplified LCA (SLCA) method that can be applied to Electrical and Electronic Equipment (EEE) was developed to efficiently identify their significant environmental aspects for eco-design, since a full scale LCA study is usually very detailed, expensive and time-consuming. The environmentally responsible product assessment (ERPA) method, which is one of the matrix methods, was also analyzed. Then, the usefulness of each method in eco-design processes was evaluated and compared using the case studies of the cellular phone and vacuum cleaner systems. It was found that the SLCA and the ERPA methods provided different information but they complemented each other to some extent. The SLCA method generated more information on the inherent environmental characteristics of a product system so that it might be useful for new design/eco-innovation when developing a completely new product or method where environmental considerations play a major role from the beginning. On the other hand, the ERPA method gave more information on the potential for improving a product so that it could be effectively used in eco-redesign which intends to alleviate environmental impacts of an existing product or process. PMID:15829365
NASA Astrophysics Data System (ADS)
Lemieux, M.-A.; Tremblay, A.-M. S.
1987-07-01
It is shown that various numerical methods to compute densities of states, projected densities of states (relevant for light scattering spectra), electrical or elastic properties of disordered media can all be considered as special cases of a general approach to these problems. This approach is based on a recursive evaluation of a generating function which in appropriate limits reduces, for example, to the approach based on the negative-eigenvalue theorem or to Gaussian elimination optimized for symmetric sparse matrices. The approach is simple and systematic. It also leads to an alternate proof of the negative-eigenvalue theorem. The general formalism and various special cases are discussed in detail. Comparisons with other methods such as the transfer-matrix, conjugate-gradient, and Haydock-Lanczos methods are provided.
Decomposition of density matrix renormalization group states into a Slater determinant basis
NASA Astrophysics Data System (ADS)
Moritz, Gerrit; Reiher, Markus
2007-06-01
The quantum chemical density matrix renormalization group (DMRG) algorithm is difficult to analyze because of the many numerical transformation steps involved. In particular, a decomposition of the intermediate and the converged DMRG states in terms of Slater determinants has not been accomplished yet. This, however, would allow one to better understand the convergence of the algorithm in terms of a configuration interaction expansion of the states. In this work, the authors fill this gap and provide a determinantal analysis of DMRG states upon convergence to the final states. The authors show that upon convergence, DMRG provides the same complete-active-space expansion for a given set of active orbitals as obtained from a corresponding configuration interaction calculation. Additional insight into DMRG convergence is provided, which cannot be obtained from the inspection of the total electronic energy alone. Indeed, we will show that the total energy can be misleading as a decrease of this observable during DMRG microiteration steps may not necessarily be taken as an indication for the pickup of essential configurations in the configuration interaction expansion. One result of this work is that a fine balance can be shown to exist between the chosen orbital ordering, the guess for the environment operators, and the choice of the number of renormalized states. This balance can be well understood in terms of the decomposition of total and system states in terms of Slater determinants.
Decomposition of density matrix renormalization group states into a Slater determinant basis.
Moritz, Gerrit; Reiher, Markus
2007-06-28
The quantum chemical density matrix renormalization group (DMRG) algorithm is difficult to analyze because of the many numerical transformation steps involved. In particular, a decomposition of the intermediate and the converged DMRG states in terms of Slater determinants has not been accomplished yet. This, however, would allow one to better understand the convergence of the algorithm in terms of a configuration interaction expansion of the states. In this work, the authors fill this gap and provide a determinantal analysis of DMRG states upon convergence to the final states. The authors show that upon convergence, DMRG provides the same complete-active-space expansion for a given set of active orbitals as obtained from a corresponding configuration interaction calculation. Additional insight into DMRG convergence is provided, which cannot be obtained from the inspection of the total electronic energy alone. Indeed, we will show that the total energy can be misleading as a decrease of this observable during DMRG microiteration steps may not necessarily be taken as an indication for the pickup of essential configurations in the configuration interaction expansion. One result of this work is that a fine balance can be shown to exist between the chosen orbital ordering, the guess for the environment operators, and the choice of the number of renormalized states. This balance can be well understood in terms of the decomposition of total and system states in terms of Slater determinants. PMID:17614539
LOCC indistinguishable orthogonal product quantum states
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun
2016-07-01
We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement.
LOCC indistinguishable orthogonal product quantum states
Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun
2016-01-01
We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement. PMID:27377310
LOCC indistinguishable orthogonal product quantum states.
Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun
2016-01-01
We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of (2k+i) ⊗ (2l+j) (i, j ∈ {0, 1} and i ≥ j ) and (3k+i) ⊗ (3l+j) (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of (3k+i) ⊗ (3l+j) is more generalized than the other construction such as Wang et al.'s construction and Zhang et al.'s construction, because it contains the quantum system of not only (2k) ⊗ (2l) and (2k+1) ⊗ (2l) but also (2k) ⊗ (2l+1) and (2k+1) ⊗ (2l+1). We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of (2k) ⊗ (2l) in Wang et al.'s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement. PMID:27377310
SAMQUA - Quantum Numbers of Compound Nuclear States for R-Matrix Analyses
Bouland, Olivier; Babut, Richard
2005-05-24
This paper reports the results of a collaborative effort between CEA of France and the DOE of the United States (in particular between le Laboratoire d'Etudes de Physique de Cadarache and the Nuclear Data Group at Oak Ridge National Laboratory): In preparing input for analyses of differential nuclear data using multilevel multi-channel R-matrix theory, a sometimes daunting and often error-prone task is the generation of quantum-number information for all channels for each compound nuclear state (i.e., for each 'spin group', defined by quantum numbers J{pi}). For many years, the code SAMQUA has been available to users of the R-matrix code SAMMY to assist in preparation of that input; the original SAMQUA code, however, was limited to single-channel spin group information. In this paper, an improved version of the SAMQUA code is described. The new SAMQUA permits inclusion of all open reaction channels in the low-energy interaction between one particle (neutron or charged particle) and a nuclear target, and considerably simplifies the determination of the quantum numbers needed for the definition of the reaction channels. SAMQUA, in addition to its primary function of preparing quantum numbers for the SAMMY input file, also provides the possibility to visualize immediately all open reaction channels. This paper gives two examples of the use of SAMQUA, with emphasis on the notions of reaction channels and penetrability.
Measurement of the top quark mass using the matrix element technique in dilepton final states
Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; et al
2016-08-18
Here, we present a measurement of the top quark mass in pp collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to tt events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain amore » top quark mass of mt = 173.93±1.84 GeV.« less
A new integral representation for the scalar products of Bethe states for the XXX spin chain
NASA Astrophysics Data System (ADS)
Kazama, Yoichi; Komatsu, Shota; Nishimura, Takuya
2013-09-01
Based on the method of separation of variables due to Sklyanin, we construct a new integral representation for the scalar products of the Bethe states for the SU(2) XXX spin 1/2 chain obeying the periodic boundary condition. Due to the compactness of the symmetry group, a twist matrix must be introduced at the boundary in order to extract the separated variables properly. Then by deriving the integration measure and the spectrum of the separated variables, we express the inner product of an on-shell and an off-shell Bethe states in terms of a multiple contour integral involving a product of Baxter wave functions. Its form is reminiscent of the integral over the eigenvalues of a matrix model and is expected to be useful in studying the semi-classical limit of the product.
Isolation and identification of oxidation products of syringol from brines and heated meat matrix.
Bölicke, Sarah-Maria; Ternes, Waldemar
2016-08-01
In this study we developed new extraction and detection methods (using HPLC-UV and LC-MS), making it possible to analyze the smoke phenol syringol and its oxidation products nitrososyringol, nitrosyringol, and the syringol dimer 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol, which were identified in heated meat for the first time. Preliminary brine experiments performed with different concentrations of ascorbic acid showed that high amounts of this antioxidant also resulted in almost complete degradation of syringol and to formation of the oxidation products when the brines were heated at low pH values. Heat treatment (80°C) and subsequent simulated digestion applied to meat samples containing syringol, ascorbic acid and different concentrations of sodium nitrite produced 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol even at a low nitrite level in the meat matrix, while nitroso- and nitrosyringol were isolated only after the digestion experiments. Increasing amounts of oxygen in the meat matrix decreased the syringol concentration and enhanced the formation of the reaction products in comparison to the samples without added oxygen. PMID:27085115
Three ocean state indicators from altimeter products
NASA Astrophysics Data System (ADS)
Rio, M.-H.; Bessières, L.; Boone, C.; Dufau, C.; Pujol, M.-I.
2012-04-01
The Sea Level Thematic Assembly Centre from the MyOcean project provides observations of the ocean dynamic topography from altimeter measurements. In order to validate and best make use of the SLTAC products, the ocean state is being monitored through the analysis of ocean indicators based on altimeter data only. Three specific indicators have been developed using the decomposition into principal components (EOF)analysis. The first ocean indicator follows the positive and negative phases of the ENSO events in the Tropical Pacific, the El Niño/La Niña events since 1992. The second ocean indicator allows monitoring the state of the Kuroshio current (contracted or extended). The third ocean indicator, dedicated to the Ionian basin in the Mediterranean Sea, allows to discriminate between the two main circulation patterns of the basin, either anticyclonic (for instance before 1997 or after 2006) or zonal (after 1997 or before 2006).
Carbajo, Jose B; Petre, Alice L; Rosal, Roberto; Herrera, Sonia; Letón, Pedro; García-Calvo, Eloy; Fernández-Alba, Amadeo R; Perdigón-Melón, Jose A
2015-07-15
The continuous ozonation of the antibiotic ofloxacin (OFX) has been performed using a synthetic water matrix and in a sewage treatment plant (STP) effluent. The aim was to study the effect of the water matrix on the ozonation with particular emphasis on the aquatic toxicity of treated water. OFX was completely removed in both water matrices, although the amount of ozone consumed for its depletion was strongly matrix-dependent. The extent of mineralization was limited and a number of intermediate transformation products (TPs) appeared, twelve of which could be identified. OFX reaction pathway includes the degradation of piperazinyl and quinolone moieties. The further oxidation of TPs gave rise to the formation and accumulation of carboxylic acids, aldehydes, nitrogen-containing organic compounds and inorganic ions. Aquatic toxicity of treated mixtures was assessed using four standard species: the bacteria Vibrio fischeri and Pseudomonas putida as target organisms and the algae Pseudokirchneriella subcapitata and the protozoan Tetrahymena thermophila as non-target organisms. OFX was toxic for the bacteria and the microalgae at the spiked concentration in untreated water. However, the continuous ozonation at the upper operational limit removed its toxic effects. T. thermophila was not affected by OFX, but was sensitive to STP effluent. PMID:25796038
Wang, Shiwei; Yu, Shan; Zhang, Zhenyin; Wei, Qing; Yan, Lu; Ai, Guomin; Liu, Hongsheng
2014-01-01
Biofilm formation is a complex process in which many factors are involved. Bacterial swarming motility and exopolysaccharides both contribute to biofilm formation, yet it is unclear how bacteria coordinate swarming motility and exopolysaccharide production. Psl and Pel are two key biofilm matrix exopolysaccharides in Pseudomonas aeruginosa. This opportunistic pathogen has three types of motility, swimming, twitching, and swarming. In this study, we found that elevated Psl and/or Pel production reduced the swarming motility of P. aeruginosa but had little effect on swimming and twitching. The reduction was due to decreased rhamnolipid production with no relation to the transcription of rhlAB, two key genes involved in the biosynthesis of rhamnolipids. Rhamnolipid-negative rhlR and rhlAB mutants synthesized more Psl, whereas exopolysaccharide-deficient strains exhibited a hyperswarming phenotype. These results suggest that competition for common sugar precursors catalyzed by AlgC could be a tactic for P. aeruginosa to balance the synthesis of exopolysaccharides and rhamnolipids and to control bacterial motility and biofilm formation inversely because the biosynthesis of rhamnolipids, Psl, and Pel requires AlgC to provide the sugar precursors and an additional algC gene enhances the biosynthesis of Psl and rhamnolipids. In addition, our data indicate that the increase in RhlI/RhlR expression attenuated Psl production. This implied that the quorum-sensing signals could regulate exopolysaccharide biosynthesis indirectly in bacterial communities. In summary, this study represents a mechanism that bacteria utilize to coordinate swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production, which is critical for biofilm formation and bacterial survival in the environment. PMID:25172852
Vibrio cholerae VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP
Krasteva, P.; Fong, J; Shikuma, N; Beyhan, S; Navarro, M; Yildiz, F; Sondermann, H
2010-01-01
Microorganisms can switch from a planktonic, free-swimming life-style to a sessile, colonial state, called a biofilm, which confers resistance to environmental stress. Conversion between the motile and biofilm life-styles has been attributed to increased levels of the prokaryotic second messenger cyclic di-guanosine monophosphate (c-di-GMP), yet the signaling mechanisms mediating such a global switch are poorly understood. Here we show that the transcriptional regulator VpsT from Vibrio cholerae directly senses c-di-GMP to inversely control extracellular matrix production and motility, which identifies VpsT as a master regulator for biofilm formation. Rather than being regulated by phosphorylation, VpsT undergoes a change in oligomerization on c-di-GMP binding.
Calculation of Steady-state Evaporation for an Arbitrary Matrix Potential at Ground Surface
NASA Astrophysics Data System (ADS)
Liu, X.; Zhan, H.
2014-12-01
The water loss from soil by evaporation and the amount of ground water available to plants due to the upward movement of water from a water table is an important topic in many disciplines such as soil science, hydrology, and plant physiology. Although water evaporation in actual field setting is a highly complex process, a nearly steady upward flow from a water table to a bare soil surface may be established if the daily evaporative demand is reasonably uniform for a long period of time. While the maximum potential rate of evaporation from the ground surface depends on atmospheric conditions, the actual flux across the soil surface is limited by the ability of the porous medium for transmitting water from the unsaturated zone.The purpose of this study is to calculate the steady-state evaporation for an arbitrary matrix potential at bare soil surface above a shallow water table, while the unsaturated hydraulic conductivity is a nonlinear function of water content or matrix potential. The Haverkamp function and the Brooks-Corey function for the unsaturated hydraulic conductivity are used, and the study results are contrast among the solution developed from the two retention equation and HYDRUS simulation.
One plus two-body random matrix ensembles with parity: Density of states and parity ratios
Vyas, Manan; Srivastava, P. C.; Kota, V. K. B.
2011-06-15
One plus two-body embedded Gaussian orthogonal ensemble of random matrices with parity [EGOE(1+2)-{pi}] generated by a random two-body interaction (modeled by GOE in two-particle spaces) in the presence of a mean field for spinless identical fermion systems is defined, generalizing the two-body ensemble with parity analyzed by Papenbrock and Weidenmueller [Phys. Rev. C 78, 054305 (2008)], in terms of two mixing parameters and a gap between the positive ({pi}=+) and negative ({pi}=-) parity single-particle (sp) states. Numerical calculations are used to demonstrate, using realistic values of the mixing parameters appropriate for some nuclei, that the EGOE(1+2)-{pi} ensemble generates Gaussian form (with corrections) for fixed parity eigenvalue densities (i.e., state densities). The random matrix model also generates many features in parity ratios of state densities that are similar to those predicted by a method based on the Fermi-gas model for nuclei. We have also obtained, by applying the formulation due to Chang et al. [Ann. Phys. (NY) 66, 137 (1971)], a simple formula for the spectral variances defined over fixed-(m{sub 1},m{sub 2}) spaces, where m{sub 1} is the number of fermions in the positive parity sp states and m{sub 2} is the number of fermions in the negative parity sp states. Similarly, using the binary correlation approximation, in the dilute limit, we have derived expressions for the lowest two-shape parameters. The smoothed densities generated by the sum of fixed-(m{sub 1},m{sub 2}) Gaussians with lowest two-shape corrections describe the numerical results in many situations. The model also generates preponderance of positive parity ground states for small values of the mixing parameters, and this is a feature seen in nuclear shell-model results.
Biogas production: current state and perspectives.
Weiland, Peter
2010-01-01
Anaerobic digestion of energy crops, residues, and wastes is of increasing interest in order to reduce the greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation and as a vehicle fuel. For biogas production, various process types are applied which can be classified in wet and dry fermentation systems. Most often applied are wet digester systems using vertical stirred tank digester with different stirrer types dependent on the origin of the feedstock. Biogas is mainly utilized in engine-based combined heat and power plants, whereas microgas turbines and fuel cells are expensive alternatives which need further development work for reducing the costs and increasing their reliability. Gas upgrading and utilization as renewable vehicle fuel or injection into the natural gas grid is of increasing interest because the gas can be used in a more efficient way. The digestate from anaerobic fermentation is a valuable fertilizer due to the increased availability of nitrogen and the better short-term fertilization effect. Anaerobic treatment minimizes the survival of pathogens which is important for using the digested residue as fertilizer. This paper reviews the current state and perspectives of biogas production, including the biochemical parameters and feedstocks which influence the efficiency and reliability of the microbial conversion and gas yield. PMID:19777226
Quantum nonlocality of multipartite orthogonal product states
NASA Astrophysics Data System (ADS)
Xu, Guang-Bao; Wen, Qiao-Yan; Qin, Su-Juan; Yang, Ying-Hui; Gao, Fei
2016-03-01
Local distinguishability of orthogonal quantum states is an area of active research in quantum information theory. However, most of the relevant results are about local distinguishability in bipartite Hilbert space and very little is known about the multipartite case. In this paper we present a generic method to construct a completable n -partite (n ≥3 ) product basis with only 2 n members, which exhibits nonlocality without entanglement with n parties, each holding a system of any finite dimension. We give an effective proof of the nonlocality of the completable multipartite product basis. In addition, we construct another incomplete multipartite product basis with a smaller number of members that cannot be distinguished by local operations and classical communication in a d1⊗d2⊗⋯⊗dn quantum system, where n ≥3 and di≥2 for i =1 ,2 ,...,n . The results can lead to a better understanding of the phenomenon of nonlocality without entanglement in any multipartite quantum system.
McLay, R.T.; Carey, G.F.
1996-12-31
In this study we consider parallel solution of sparse linear systems arising from discretized PDE`s. As part of our continuing work on our parallel PCG Solver package, we have made improvements in two areas. The first is improving the performance of the matrix-vector product. Here on regular finite-difference grids, we are able to use the cache memory more efficiently for smaller domains or where there are multiple degrees of freedom. The second problem of interest in the present work is the construction of preconditioners in the context of the parallel PCG solver we are developing. Here the problem is partitioned over a set of processors subdomains and the matrix-vector product for PCG is carried out in parallel for overlapping grid subblocks. For problems of scaled speedup, the actual rate of convergence of the unpreconditioned system deteriorates as the mesh is refined. Multigrid and subdomain strategies provide a logical approach to resolving the problem. We consider the parallel trade-offs between communication and computation and provide a complexity analysis of a representative algorithm. Some preliminary calculations using the parallel package and comparisons with other preconditioners are provided together with parallel performance results.
Measurement of single top quark production at D0 using a matrix element method
Mitrevski, Jovan Pavle; /Columbia U.
2007-07-01
Until now, the top quark has only been observed produced in pairs, by the strong force. According to the standard model, it can also be produced singly, via an electroweak interaction. Top quarks produced this way provide powerful ways to test the charged-current electroweak interactions of the top quark, to measure |V{sub tb}|, and to search for physics beyond the standard model. This thesis describes the application of the matrix element analysis technique to the search for single top quark production with the D0 detector using 0.9 fb{sup -1} of Run II data. From a comparison of the matrix element discriminants between data and the background model, assuming a Standard Model s-channel to t-channel cross section ratio of {sigma}{sub s}/{sigma}{sub t} = 0.44, we measure the single top quark production cross section: {sigma}(p{bar p} {yields} tb + X, tqb + X) = 4.8{sub -1.4}{sup +1.6} pb. This result has a p-value of 0.08%, corresponding to a 3.2 standard deviation Gaussian equivalent significance.
Bhowmick, Manishabrata; Stawikowska, Roma; Tokmina-Roszyk, Dorota; Fields, Gregg B.
2015-01-01
Matrix metalloproteinases (MMPs) have been implicated in numerous pathologies. An overall lack of selectivity has rendered active site targeted MMP inhibitors problematic. The present study describes MMP inhibitors that function by binding both secondary binding sites (exosites) and the active site. Heterotrimeric triple-helical peptide transition-state analog inhibitors (THPIs) were assembled utilizing click chemistry. Three different heterotrimers were constructed, allowing for the inhibitory phosphinate moiety to be present uniquely in the leading, middle, or trailing strand of the triple-helix. All heterotrimeric constructs had sufficient thermally stability to warrant analysis as inhibitors. The heterotrimeric THPIs were effective against MMP-13 and MT1-MMP, with Ki spanning 100–400 nM. Unlike homotrimeric THPIs, the heterotrimeric THPIs offered complete selectivity between MT1-MMP and MMP-1. Exosite-based approaches are providing inhibitors with desired MMP selectivities. PMID:25766890
Low-energy excited states of divanadium: a matrix isolation and MRCI study.
Hübner, Olaf; Himmel, Hans-Jörg
2016-06-01
The ground and excited electronic states of the vanadium dimer (V2) have been studied using Ne matrix isolation experiments and quantum chemical calculations (multireference configuration interaction based on complete active space self-consistent orbitals). In the near infrared absorption spectrum, two vibrational progressions of a new electronic term with a large number of members have been observed with the origin at 1.08 eV and a fundamental vibrational quantum of 475 cm(-1). With the aid of calculations, it has been assigned to a (3)Πu electronic term. The calculations yield potential energy curves for a large number of singlet, triplet, and quintet electronic terms. PMID:27182729
Symmetry-conserving purification of quantum states within the density matrix renormalization group
Nocera, Alberto; Alvarez, Gonzalo
2016-01-28
The density matrix renormalization group (DMRG) algorithm was originally designed to efficiently compute the zero-temperature or ground-state properties of one-dimensional strongly correlated quantum systems. The development of the algorithm at finite temperature has been a topic of much interest, because of the usefulness of thermodynamics quantities in understanding the physics of condensed matter systems, and because of the increased complexity associated with efficiently computing temperature-dependent properties. The ancilla method is a DMRG technique that enables the computation of these thermodynamic quantities. In this paper, we review the ancilla method, and improve its performance by working on reduced Hilbert spaces andmore » using canonical approaches. Furthermore we explore its applicability beyond spins systems to t-J and Hubbard models.« less
State-transition-matrix method for inverse scattering in one-dimensional inhomogeneous media.
Zarifi, Davoud; Soleimani, Mohammad; Abdolali, Ali
2014-11-01
This study presents an analytical approach for the electromagnetic characterization of one-dimensional inhomogeneous media. The proposed approach provides the permittivity profile of the medium in terms of the reflection and transmission coefficients. The inverse solution of the permittivity profile is obtained with the help of the state-transition matrix (STM) and its properties, which are presented and proved. The advantage of using this analytic reconstruction technique is its ability to remove complexity and nonlinearity of the inverse problem. Several examples have been considered for validation of the proposed technique and, in each case, quite good agreement has been found between the original and reconstructed profiles. It has been established from the obtained results that when the scattering parameters are combined with the properties of STM, a robust and reliable technique is provided for the electromagnetic characterization of one-dimensional inhomogeneous media. PMID:25493896
Survival of Lactobacillus rhamnosus GG as influenced by storage conditions and product matrixes.
Klu, Yaa Asantewaa Kafui; Williams, Jonathan H; Phillips, Robert D; Chen, Jinru
2012-12-01
Mortality resulting from diarrhea especially that occurs in children younger than 5 y of age ranks 3rd among all deaths caused by infectious diseases worldwide. Probiotics such as Lactobacillus rhamnosus GG are clinically shown to effectively reduce the incidence of diarrhea in children. A food substrate is one of the major factors regulating the colonization of microorganisms in human gastrointestinal tracts. Peanut butter is a nutritious, low-moisture food that could be a carrier for probiotics. In this study, we observed the influence of storage conditions and product matrixes on the survival of L. rhamnosus GG. Cells of L. rhamnosus GG were inoculated into full fat or reduced fat peanut butter at 10(7) CFU/g. Inoculated peanut butter was stored at 4, 25, or 37 °C for 48 wk. Samples were drawn periodically to determine the populations of L. rhamnosus GG. Results showed that there was no significant decrease in the viable counts of L. rhamnosus GG in products stored 4 °C. The survivability of L. rhamnosus GG decreased with increasing storage temperature and time. Product matrixes did not significantly affect the survival of L. rhamnosus GG except at 37 °C. Populations of L. rhamnosus GG were preserved at >6 logs in products stored at 4 °C for 48 wk and at 25 °C for 23 to 27 wk. At 37 °C, the 6-log level could not be maintained for even 6 wk. The results suggest that peanut butter stored at 4 and 25 °C could serve as vehicles to deliver probiotics. PMID:23106385
Madsen, Jonas S.; Lin, Yu-Cheng; Squyres, Georgia R.; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C.; Sørensen, Søren J.
2015-01-01
As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities. PMID:26431965
Measurement of the top quark mass in the dilepton final state using the matrix element method
Grohsjean, Alexander; /Munich U.
2008-12-01
The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb{sup -1}. A total of 107 t{bar t} candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be m{sub top}{sup Run IIa} = 170.6 {+-} 6.1(stat.){sub -1.5}{sup +2.1}(syst.)GeV; m{sub top}{sup Run IIb} = 174.1 {+-} 4.4(stat.){sub -1.8}{sup +2.5}(syst.)GeV; m{sub top}{sup comb} = 172.9 {+-} 3.6(stat
Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix.
Whiteley, Justin M; Taynton, Philip; Zhang, Wei; Lee, Se-Hee
2015-11-18
Thin solid membranes are formed by a new strategy, whereby an in situ derived self-healing polymer matrix that penetrates the void space of an inorganic solid is created. The concept is applied as a separator in an all-solid-state battery with an FeS2 -based cathode and achieves tremendous performance for over 200 cycles. Processing in dry conditions represents a paradigm shift for incorporating high active-material mass loadings into mixed-matrix membranes. PMID:26421754
Measurement of the top quark mass in the lepton+jets final state with the matrix element method
Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U.
2006-09-01
We present a measurement of the top quark mass with the Matrix Element method in the lepton+jets final state. As the energy scale for calorimeter jets represents the dominant source of systematic uncertainty, the Matrix Element likelihood is extended by an additional parameter, which is defined as a global multiplicative factor applied to the standard energy scale. The top quark mass is obtained from a fit that yields the combined statistical and systematic jet energy scale uncertainty.
Neutrino production states in oscillation phenomena—are they pure or mixed?
NASA Astrophysics Data System (ADS)
Ochman, Michał; Szafron, Robert; Zrałek, Marek
2008-06-01
General quantum mechanical states of neutrinos produced by mechanisms outside the Standard Model are discussed. The neutrino state is described by the Maki-Nakagawa-Sakata-Pontecorvo unitary mixing matrix only in the case of relativistic neutrinos and Standard Model left-handed charge-current interaction. The problem of Wigner spin rotation caused by Lorentz transformation from the rest production frame to the laboratory frame is considered. Moreover, the mixture of the neutrino states as a function of their energy and parameters from the extension of the Standard Model are investigated. Two sources of mixture, the appearance of subdominant helicity states and mass mixing with several different mixing matrices are studied.
Production of Tetraquark State Tcc at B-Factories
NASA Astrophysics Data System (ADS)
Reyima, Rashidin
2013-12-01
We study production of the tetraquark state Tcc via virtual photon at the B-factories in the QCD factorization framework. We predict the cross section of tetraquark state production in the leading order at the B-factories.
Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon
2013-11-15
Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. PMID:23978445
Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro.
Helman, Yael; Natale, Frank; Sherrell, Robert M; Lavigne, Michèle; Starovoytov, Valentin; Gorbunov, Maxim Y; Falkowski, Paul G
2008-01-01
The evolution of multicellularity in animals required the production of extracellular matrices that serve to spatially organize cells according to function. In corals, three matrices are involved in spatial organization: (i) an organic ECM, which facilitates cell-cell and cell-substrate adhesion; (ii) a skeletal organic matrix (SOM), which facilitates controlled deposition of a calcium carbonate skeleton; and (iii) the calcium carbonate skeleton itself, which provides the structural support for the 3D organization of coral colonies. In this report, we examine the production of these three matrices by using an in vitro culturing system for coral cells. In this system, which significantly facilitates studies of coral cell physiology, we demonstrate in vitro excretion of ECM by primary (nondividing) tissue cultures of both soft (Xenia elongata) and hard (Montipora digitata) corals. There are structural differences between the ECM produced by X. elongata cell cultures and that of M. digitata, and ascorbic acid, a critical cofactor for proline hydroxylation, significantly increased the production of collagen in the ECM of the latter species. We further demonstrate in vitro production of SOM and extracellular mineralized particles in cell cultures of M. digitata. Inductively coupled plasma mass spectrometry analysis of Sr/Ca ratios revealed the particles to be aragonite. De novo calcification was confirmed by following the incorporation of (45)Ca into acid labile macromolecules. Our results demonstrate the ability of isolated, differentiated coral cells to undergo fundamental processes required for multicellular organization. PMID:18162537
Matrix engineering, state filling, and charge transport in PbSe quantum dot solids
NASA Astrophysics Data System (ADS)
Law, Matt
Colloidal semiconductor quantum dots (QDs) are attractive building blocks for solar photovoltaics (PV). In this talk, I will highlight our recent progress in designing PbX (X = S, Se, Te) QD thin film absorbers for next-generation PV. Basic requirements for QD absorber layers include efficient light absorption, charge separation, charge transport, and long-term stability. I begin by discussing QD film fabrication, charge transport physics, insights from theory, and evidence that the carrier diffusion length is short and limited by electronic states in the QD band gap. Studies of carrier mobility as a function of basic film parameters such as inter-QD spacing, QD size, and QD size distribution have led to a better understanding of charge transport within highly disordered QD films. Efforts to improve carrier mobility by enhancing inter-dot electronic coupling, passivating surface states, and implementing surface doping will be highlighted. Engineering the inter-QD matrix to produce QD/inorganic or QD/organic nanocomposites is presented as a powerful way to optimize coupling, remove surface states, eliminate hysteretic charge trapping and ion motion, and achieve long-term environmental stability for high-performance, robust QD films that feature good carrier multiplication efficiency. New results on the use of atomic layer deposition infilling of QD films to yield all-inorganic QD transistors free of the bias-stress effect will be presented, and the likely role of ion transport in QD optoelectronics discussed. The use of infrared transmission spectroscopy to understand state filling and study charge transport in QD thin film transistors will be presented.
19 CFR 145.35 - United States products returned.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 2 2011-04-01 2011-04-01 false United States products returned. 145.35 Section... OF THE TREASURY (CONTINUED) MAIL IMPORTATIONS Special Classes of Merchandise § 145.35 United States products returned. Products of the United States returned after having been exported, which have not...
19 CFR 145.35 - United States products returned.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false United States products returned. 145.35 Section... OF THE TREASURY (CONTINUED) MAIL IMPORTATIONS Special Classes of Merchandise § 145.35 United States products returned. Products of the United States returned after having been exported, which have not...
Bottom-Up and Top-Down Solid-State NMR Approaches for Bacterial Biofilm Matrix Composition
Cegelski, Lynette
2015-01-01
The genomics and proteomics revolutions have been enormously successful in providing crucial “parts lists” for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this Perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The “sum-of-theparts” bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by E. coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in V. cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture. PMID:25797008
Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition
NASA Astrophysics Data System (ADS)
Cegelski, Lynette
2015-04-01
The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture.
Strategies for vectorizing the sparse matrix vector product on the CRAY XMP, CRAY 2, and CYBER 205
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry
1987-01-01
Large, randomly sparse matrix vector products are important in a number of applications in computational chemistry, such as matrix diagonalization and the solution of simultaneous equations. Vectorization of this process is considered for the CRAY XMP, CRAY 2, and CYBER 205, using a matrix of dimension of 20,000 with from 1 percent to 6 percent nonzeros. Efficient scatter/gather capabilities add coding flexibility and yield significant improvements in performance. For the CYBER 205, it is shown that minor changes in the IO can reduce the CPU time by a factor of 50. Similar changes in the CRAY codes make a far smaller improvement.
Measurement of spin correlation in tt production using a matrix element approach.
Abazov, V M; Abbott, B; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arov, M; Askew, A; Åsman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Deterre, C; DeVaughan, K; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guillemin, T; Guo, F; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jamin, D; Jayasinghe, A; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Jung, A W; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kulikov, S; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Lopes de Sa, R; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Miconi, F; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Padilla, M; Pal, A; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petridis, K; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Polozov, P; Popov, A V; Prewitt, M; Price, D; Prokopenko, N; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Ross, A; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Salcido, P; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Soustruznik, K; Stark, J; Stolin, V; Stoyanova, D A; Strauss, M; Strom, D; Stutte, L; Suter, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsai, Y-T; Tsybychev, D; Tuchming, B; Tully, C; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Welty-Rieger, L; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L
2011-07-15
We determine the fraction of tt events with spin correlation, assuming that the spin of the top quark is either correlated with the spin of the top antiquark as predicted by the standard model or is uncorrelated. For the first time we use a matrix-element-based approach to study tt spin correlation. We use tt → W+ b W- b → ℓ+ νbℓ- ν b final states produced in pp collisions at a center-of-mass energy sqrt(s)=1.96 TeV, where ℓ denotes an electron or a muon. The data correspond to an integrated luminosity of 5.4 fb(-1) and were collected with the D0 detector at the Fermilab Tevatron collider. The result agrees with the standard model prediction. We exclude the hypothesis that the spins of the tt are uncorrelated at the 97.7% C.L. PMID:21838349
NG2 proteoglycan increases mesangial cell proliferation and extracellular matrix production
Xiong Jing; Wang Yang; Zhu, Zhonghua; Liu Jianshe; Wang Yumei; Zhang Chun; Hammes, Hans-Peter; Lang, Florian; Feng Yuxi
2007-10-05
As a membrane-spanning protein, NG2 chondroitin sulfate proteoglycan interacts with molecules on both sides of plasma membrane. The present study explored the role of NG2 in the pathogenesis of diabetic nephropathy. In the normal kidneys, NG2 was observed predominantly in glomerular mesangium, Bowman's capsule and interstitial vessels. Both mRNA and protein expression in kidneys was significantly higher in strepozotocin-induced diabetic rats than that in normal rats. In the cultured rat mesangial cell line HBZY-1, overexpression of NG2 promoted mesangial cell proliferation and extracellular matrix (ECM) production, such as type VI collagen and laminin. Furthermore, target knockdown of NG2 resulted in decreased cell proliferation and ECM formation. The observations suggest that NG2 is up-regulated in diabetic nephropathy. It actively participates in the development and progression of glomerulosclerosis by stimulating proliferation of mesangial cells and deposition of ECM.
Ziegler, Christopher M.; Eisenhauer, Philip; Bruce, Emily A.; Weir, Marion E.; King, Benjamin R.; Klaus, Joseph P.; Krementsov, Dimitry N.; Shirley, David J.; Ballif, Bryan A.; Botten, Jason
2016-01-01
Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation. PMID:27010636
NASA Astrophysics Data System (ADS)
Mukherjee, Saikat; Adhikari, Satrajit
2014-08-01
We calculate the adiabatic potential energy surfaces (PESs) and the non-adiabatic coupling terms (NACTs) for the excited electronic states of K3 cluster by MRCI approach using MOLPRO. The NACTs are adapted with molecular symmetry to assign appropriate IREPs so that the elements of the Hamiltonian matrix are totally symmetric. We incorporate those NACTs into three-state adiabatic-to-diabatic transformation (ADT) equations to obtain ADT angles for constructing continuous, single-valued, smooth and symmetric diabatic Hamiltonian matrix, where its elements are fitted with analytic functions. Finally, we demonstrate that the dressed diabatic and adiabatic-via-dressed diabatic PECs show prominent topological effect over dressed adiabatic curves.
Matrix elements in the coupled-cluster approach - With application to low-lying states in Li
NASA Technical Reports Server (NTRS)
Martensson-Pendrill, Ann-Marie; Ynnerman, Anders
1990-01-01
A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.
Feasibility study on production of a matrix reference material for cyanobacterial toxins.
Hollingdale, Christie; Thomas, Krista; Lewis, Nancy; Békri, Khalida; McCarron, Pearse; Quilliam, Michael A
2015-07-01
The worldwide increase in cyanobacterial contamination of freshwater lakes and rivers is of great concern as many cyanobacteria produce potent hepatotoxins and neurotoxins (cyanotoxins). Such toxins pose a threat to aquatic ecosystems, livestock, and drinking water supplies. In addition, dietary supplements prepared from cyanobacteria can pose a risk to consumers if they contain toxins. Analytical monitoring for toxins in the environment and in consumer products is essential for the protection of public health. Reference materials (RMs) are an essential tool for the development and validation of analytical methods and are necessary for ongoing quality control of monitoring operations. Since the availability of appropriate RMs for cyanotoxins has been very limited, the present study was undertaken to examine the feasibility of producing a cyanobacterial matrix RM containing various cyanotoxins. The first step was large-scale culturing of various cyanobacterial cultures that produce anatoxins, microcystins, and cylindrospermopsins. After harvesting, the biomass was lyophilized, blended, homogenized, milled, and bottled. The moisture content and physical characteristics were assessed in order to evaluate the effectiveness of the production process. Toxin levels were measured by liquid chromatography with tandem mass spectrometry and ultraviolet detection. The reference material was found to be homogeneous for toxin content. Stability studies showed no significant degradation of target toxins over a period of 310 days at temperatures up to +40 °C except for the anatoxin-a, which showed some degradation at +40 °C. These results show that a fit-for-purpose matrix RM for cyanotoxins can be prepared using the processes and techniques applied in this work. PMID:25929442
Heparin modulates human intestinal smooth muscle (HISM) cell proliferation and matrix production
Graham, M.; Perr, H.; Drucker, D.E.; Diegelmann, R.F.
1986-03-01
(HISM) cell proliferation and collagen production may play a role in the pathogenesis of intestinal stricture in Crohn's disease. The present studies were performed to evaluate the effects of heparin, a known modulator of vascular smooth muscle cells, on HISM cell proliferation and collagen production. Heparin (100 ..mu..g/ml) was added daily to HISM cell cultures for cell proliferation studies and for 24 hours at various time points during culture for collagen synthesis studies. Collagen synthesis was determined by the uptake of /sup 3/H proline into collagenase-sensitive protein. Heparin completely inhibited cell proliferation for 7 days, after which cell numbers increased but at a slower rate than controls. Cells released from heparin inhibition demonstrated catch-up growth to control levels. Collagen production was significantly inhibited by 24 hours exposure to heparin but only at those times during culture when collagen synthesis was maximal (8 to 12 days). Non-collagen protein synthesis was inhibited by heparin at all time points during culture. Heparin through its modulation of HISM cells may play an important role in the control of the extracellular matrix of the intestinal wall.
Hellewell, Andrew L.; Gong, Xianyun; Schärich, Karsten; Christofidou, Elena D.; Adams, Josephine C.
2015-01-01
Thrombospondins (TSPs) are evolutionarily-conserved, secreted glycoproteins that interact with cell surfaces and extracellular matrix (ECM) and have complex roles in cell interactions. Unlike the structural components of the ECM that form networks or fibrils, TSPs are deposited into ECM as arrays of nanoscale puncta. The cellular and molecular mechanisms for the patterning of TSPs in ECM are poorly understood. In the present study, we investigated whether the mechanisms of TSP patterning in cell-derived ECM involves actin cytoskeletal pathways or TSP oligomer state. From tests of a suite of pharmacological inhibitors of small GTPases, actomyosin-based contractility, or actin microfilament integrity and dynamics, cytochalasin D and jasplakinolide treatment of cells were identified to result in altered ECM patterning of a model TSP1 trimer. The strong effect of cytochalasin D indicated that mechanisms controlling puncta patterning depend on global F-actin dynamics. Similar spatial changes were obtained with endogenous TSPs after cytochalasin D treatment, implicating physiological relevance. Under matched experimental conditions with ectopically-expressed TSPs, the magnitude of the effect was markedly lower for pentameric TSP5 and Drosophila TSP, than for trimeric TSP1 or dimeric Ciona TSPA. To distinguish between the variables of protein sequence or oligomer state, we generated novel, chimeric pentamers of TSP1. These proteins accumulated within ECM at higher levels than TSP1 trimers, yet the effect of cytochalasin D on the spatial distribution of puncta was reduced. These findings introduce a novel concept that F-actin dynamics modulate the patterning of TSPs in ECM and that TSP oligomer state is a key determinant of this process. PMID:26182380
Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon
2013-11-15
Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol
Luminescence spectroscopy of matrix-isolated z 6P state atomic manganese.
Collier, Martin A; McCaffrey, John G
2005-05-01
The relaxation of electronically excited atomic manganese isolated in solid rare gas matrices is observed from recorded emission spectra, to be strongly site specific. z 6P state excitation of Mn atoms isolated in the red absorption site in Ar and Kr produces narrow a 4D and a 6D state emissions while blue-site excitation produces z 6P state fluorescence and broadened a 4D and a 6D emissions. MnXe exhibits only a single thermally stable site whose emission at 620 nm is similar to the broad a 6D bands produced with blue-site excitation in Ar and Kr. Thus in Ar(Kr), excitation of the red site at 393 (400) nm produces narrow line emissions at 427.5 (427.8) and 590 (585.7) nm. From their spectral positions, linewidths, and long decay times, these emission bands are assigned to the a 4D72 and a 6D92 states, respectively. Excitation of the blue site at 380 (385.5) nm produces broad emission at 413 (416) nm which, because of its nanosecond radiative lifetime, is assigned to resonance z 6P --> a 6S fluorescence. Emission bands at 438 (440) and 625 (626.8) nm, also produced with blue-site excitation, are broader than their red-site equivalents at 427.5 and 590 nm (427.8 and 585.7 nm in Kr) but from their millisecond and microsecond decay times are assigned to the a 4D and a 6D states. The line features observed in high resolution scans of the red-site emission at 427.5 and 427.8 nm in MnAr and MnKr, respectively, have been analyzed with the W(p) optical line shape function and identified as resolved phonon structure originating from very weak (S=0.4) electron-phonon coupling. The presence of considerable hot-phonon emission (even in 12 K spectra) and the existence of crystal field splittings of 35 and 45 cm(-1) on the excited a 4D72 level in Ar and Kr matrices have been identified in W(p) line shape fits. The measured matrix lifetimes for the narrow red-site a 6D state emissions (0.29 and 0.65 ms) in Ar and Kr are much shorter than the calculated (3 s) gas phase value. With
75 FR 13345 - Pricing for Certain United States Mint Products
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... United States Mint Pricing for Certain United States Mint Products AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the price of First... United States Mint Web site. FOR FURTHER INFORMATION CONTACT: B.B. Craig, Associate Director for...
NASA Technical Reports Server (NTRS)
Ellison, Donald; Conway, Bruce; Englander, Jacob
2015-01-01
A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.
Hase, Naoko; Ozeki, Nobuaki; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio
2015-08-01
We have previously reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation in mouse embryonic stem cell (ESC)-derived odontoblast-like cells, suggesting that MMP-3 plays a potentially unique physiological role in regeneration by odontoblast-like cells. MMPs are able to process virtually any component of the extracellular matrix, including collagen, laminin and bioactive molecules. Because odontoblasts produce dentin matrix protein-1 (DMP-1), we examined whether the degraded products of DMP-1 by MMP-3 contribute to enhanced proliferation in odontoblast-like cells. IL-1β increased mRNA and protein levels of odontoblastic marker proteins, including DMP-1, but not osteoblastic marker proteins, such as osteocalcin and osteopontin. The recombinant active form of MMP-3 could degrade DMP-1 protein but not osteocalcin and osteopontin in vitro. The exogenous degraded products of DMP-1 by MMP-3 resulted in increased proliferation of odontoblast-like cells in a dose-dependent manner. Treatment with a polyclonal antibody against DMP-1 suppressed IL-1β-induced cell proliferation to a basal level, but identical treatment had no effect on the IL-1β-induced increase in MMP-3 expression and activity. Treatment with siRNA against MMP-3 potently suppressed the IL-1β-induced increase in DMP-1 expression and suppressed cell proliferation (p < 0.05). Similarly, treatment with siRNAs against Wnt5a and Wnt5b suppressed the IL-1β-induced increase in DMP-1 expression and suppressed cell proliferation (p < 0.05). Rat KN-3 cells, representative of authentic odontoblasts, showed similar responses to the odontoblast-like cells. Taken together, our current study demonstrates the sequential involvement of Wnt5, MMP-3, DMP-1 expression, and DMP-1 degradation products by MMP-3, in effecting IL-1β-induced proliferation of ESC-derived odontoblast-like cells. PMID:26355224
Development of performance matrix for generic product equivalence of acyclovir topical creams.
Krishnaiah, Yellela S R; Xu, Xiaoming; Rahman, Ziyaur; Yang, Yang; Katragadda, Usha; Lionberger, Robert; Peters, John R; Uhl, Kathleen; Khan, Mansoor A
2014-11-20
The effect of process variability on physicochemical characteristics and in vitro performance of qualitatively (Q1) and quantitatively (Q2) equivalent generic acyclovir topical dermatological creams was investigated to develop a matrix of standards for determining their in vitro bioequivalence with reference listed drug (RLD) product (Zovirax®). A fractional factorial design of experiment (DOE) with triplicate center point was used to create 11 acyclovir cream formulations with manufacturing variables such as pH of aqueous phase, emulsification time, homogenization speed, and emulsification temperature. Three more formulations (F-12-F-14) with drug particle size representing RLD were also prepared where the pH of the final product was adjusted. The formulations were subjected to physicochemical characterization (drug particle size, spreadability, viscosity, pH, and drug concentration in aqueous phase) and in vitro drug release studies against RLD. The results demonstrated that DOE formulations were structurally and functionally (e.g., drug release) similar (Q3) to RLD. Moreover, in vitro drug permeation studies showed that extent of drug bioavailability/retention in human epidermis from F-12-F-14 were similar to RLD, although differed in rate of permeation. The results suggested generic acyclovir creams can be manufactured to obtain identical performance as that of RLD with Q1/Q2/Q3. PMID:25089511
Isolation and identification of oxidation products of guaiacol from brines and heated meat matrix.
Bölicke, Sarah-Maria; Ternes, Waldemar
2016-07-01
In this study we investigated the formation of the oxidation products of guaiacol in brines and heated meat matrix: 6-nitrosoguaiacol, 4-nitroguaiacol and 6-nitroguaiacol. For this purpose we applied a newly developed HPLC-UV and LC-MS method. For the first time, 6-nitrosoguaiacol was determined in brine and meat (containing guaiacol and sodium nitrite), which had been heated to 80°C and subsequently subjected to simulated digestion. Application of 500mg/L ascorbic acid to the brines reduced guaiacol degradation at pH3 and simultaneously inhibited the formation of 6-nitrosoguaiacol compared to brines containing only 100mg/L of ASC. The oxidation products were isolated with a new extraction method from meat samples containing 400mg/kg sodium nitrite at pH3.6 following simulated digestion. When oxygen was added, 6-nitrosoguaiacol was determined even at legally allowed levels (150mg/kg) of the curing agent. Finally, we developed a new LC-MS method for the separation and qualitative determination of the four main smoke methoxyphenols. PMID:26937586
ERIC Educational Resources Information Center
Turnbull, H. Rutherford, III; Stowe, Matt; Klein, Samara; Riffel, Brandon
2012-01-01
This matrix displays the decisions of the United States Supreme Court and the federal statutes most relevant to individuals with disabilities and their families. It is organized according to the core concepts of disability policy as identified by Rud Turnbull and his colleagues at the Beach Center on Disability, the University of Kansas, Lawrence,…
How do fibroblasts translate mechanical signals into changes in extracellular matrix production?
Chiquet, Matthias; Renedo, Ana Sarasa; Huber, François; Flück, Martin
2003-03-01
Mechanical forces are important regulators of connective tissue homeostasis. Our recent experiments in vivo indicate that externally applied mechanical load can lead to the rapid and sequential induction of distinct extracellular matrix (ECM) components in fibroblasts, rather than to a generalized hypertrophic response. Thus, ECM composition seems to be adapted specifically to changes in load. Mechanical stress can regulate the production of ECM proteins indirectly, by stimulating the release of a paracrine growth factor, or directly, by triggering an intracellular signalling pathway that activates the gene. We have evidence that tenascin-C is an ECM component directly regulated by mechanical stress: induction of its mRNA in stretched fibroblasts is rapid both in vivo and in vitro, does not depend on prior protein synthesis, and is not mediated by factors released into the medium. Fibroblasts sense force-induced deformations (strains) in their ECM. Findings by other researchers indicate that integrins within cell-matrix adhesions can act as 'strain gauges', triggering MAPK and NF-kappaB pathways in response to changes in mechanical stress. Our results indicate that cytoskeletal 'pre-stress' is important for mechanotransduction to work: relaxation of the cytoskeleton (e.g. by inhibiting Rho-dependent kinase) suppresses induction of the tenascin-C gene by cyclic stretch, and hence desensitizes the fibroblasts to mechanical signals. On the level of the ECM genes, we identified related enhancer sequences that respond to static stretch in both the tenascin-C and the collagen XII promoter. In the case of the tenascin-C gene, different promoter elements might be involved in induction by cyclic stretch. Thus, different mechanical signals seem to regulate distinct ECM genes in complex ways. PMID:12714044
Increasing the power density when using inert matrix fuels to reduce production of transuranics
Recktenwald, G.D.; Deinert, M.R.
2013-07-01
Reducing the production of transuranics is a goal of most advanced nuclear fuel cycles. One way to do this is to recycle the transuranics into the same reactors that are currently producing them using an inert matrix fuel. In previous work we have modeled such a reactor where 72%, of the core is comprised of standard enriched uranium fuel pins, with the remaining 28% fuel made from Yttria stabilized zirconium, in which transuranics are loaded. A key feature of this core is that all of the transuranics produced by the uranium fuel assemblies are later burned in inert matrix fuel assemblies. It has been shown that this system can achieve reductions in transuranic waste of more than 86%. The disadvantage of such a system is that the core power rating must be significantly lower than a standard pressurized water reactor. One reason for the lower power is that high burnup of the uranium fuel precludes a critical level of reactivity at the end of the campaign. Increasing the uranium enrichment and changing the pin pitch are two ways to increase burnup while maintaining criticality. In this paper we use MCNPX and a linear reactivity model to quantify the effect of these two parameters on the end of campaign reactivity. Importantly, we show that in the region of our proposed reactor, enrichment increases core reactivity by 0.02 per percent uranium 235 and pin pitch increases reactivity by 0.02 per mm. Reactivity is lost at a rate of 0.005 per MWd/kgIHM uranium burnup. (authors)
Effects of reclaimed water matrix on fate of pharmaceuticals and personal care products in soil.
Dodgen, L K; Zheng, W
2016-08-01
Reclaimed water is increasingly used to supplement water resources. However, reclaimed water has a complex matrix, which includes emerging chemical contaminants, that is introduced to the soil when this water is used for irrigation. The effects of microbial activity, dissolved matter, nutrients, and particulate matter in reclaimed water on half-life of 11 pharmaceutical and personal care products (PPCPs) in soil were investigated with 7 treatment waters, namely swine lagoon effluent (either unaltered, sterilized, or filtered and sterilized) and nanopure water (either unaltered or with added nitrogen, phosphorus, or potassium). The extractable residues of the parent PPCPs were measured over 35 d. Lagoon microbial activity was significantly (p ≤ 0.05) related to increased half-life of 4 PPCPs (carbamazepine, fluoxetine, ibuprofen, sulfamethoxazole) by 14-74%, and to decreased half-life of 3 others (caffeine, gemfibrozil, naproxen) by 13-25%. The presence of lagoon dissolved matter was significantly correlated with a 20-110% increase in half-life for 6 PPCPs (caffeine, estrone, gemfibrozil, ibuprofen, naproxen, triclocarban). However, lagoon particulate matter was significantly correlated with 9-52% decrease in half-life for these same compounds, as well as trimethoprim. The levels of nitrogen, phosphorous, and potassium in the lagoon effluent were not significantly related to half-life for most PPCPs, except caffeine. Overall, specific components of reclaimed water matrix had different effects on the soil half-lives of PPCPs, suggesting that the composition of reclaimed water needs to be considered when evaluating PPCP fate after land application. PMID:27179428
NASA Astrophysics Data System (ADS)
Claisse, Antoine; Klipfel, Marco; Lindbom, Niclas; Freyss, Michel; Olsson, Pär
2016-09-01
Uranium mononitride is studied in the DFT + U framework. Its ground state is investigated and a study of the incorporation of diverse fission products in the crystal is conducted. The U-ramping and occupation matrix control (OMC) schemes are used to eliminate metastable states. Beyond a certain amount of introduced correlation, the OMC scheme starts to find a lower total energy. The OMC scheme is chosen for the second part of this study. Furthermore, the influence of the magnetic ordering is studied using the U-ramping method, showing that antiferromagnetic order is the most stable one when the U parameter is larger than 1.75 eV. The effect on the density of states is investigated and elastic constants are provided for comparison with other methods and experiments. The incorporation energies of fission products in different defect configurations are calculated and these energies are corrected to take into account the limited size of the supercell.
Potato production in the United States
Technology Transfer Automated Retrieval System (TEKTRAN)
Potatoes have been a staple in the American diet for almost 250 years. The United States is the world's fifth biggest producer, behind China, India, the Russian Federation, and the Ukraine. Potatoes in the United States are grown in nearly every state. Idaho produces approximately 1/3 of all potatoe...
Zhao, Bin; Guo, Hua E-mail: hguo@unm.edu; Sun, Zhigang E-mail: hguo@unm.edu
2014-10-21
This work is concerned with the calculation of state-to-state S-matrix elements for four-atom reactions using a recently proposed method based on the quantum transition-state theory. In this approach, the S-matrix elements are computed from the thermal flux cross-correlation functions obtained in both the reactant and product arrangement channels. Since transition-state wave packets are propagated with only single arrangement channels, the bases/grids required are significantly smaller than those needed in state-to-state approaches based on a single set of scattering coordinates. Furthermore, the propagation of multiple transition-state wave packets can be carried out in parallel. This method is demonstrated for the H{sub 2}/D{sub 2} + OH → H/D + H{sub 2}O/HOD reactions (J = 0) and the reaction probabilities are in excellent agreement with benchmark results.
Kirsch, Matthias
2009-06-29
At particle accelerators the Standard Model has been tested and will be tested further to a great precision. The data analyzed in this thesis have been collected at the world's highest energetic-collider, the Tevatron, located at the Fermi National Accelerator Laboratory (FNAL) in the vicinity of Chicago, IL, USA. There, protons and antiprotons are collided at a center-of-mass energy of {radical}s = 1.96 TeV. The discovery of the top quark was one of the remarkable results not only for the CDF and D0 experiments at the Tevatron collider, but also for the Standard Model, which had predicted the existence of the top quark because of symmetry arguments long before already. Still, the Tevatron is the only facility able to produce top quarks. The predominant production mechanism of top quarks is the production of a top-antitop quark pair via the strong force. However, the Standard Model also allows the production of single top quarks via the electroweak interaction. This process features the unique opportunity to measure the |V_{tb}| matrix element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix directly, without assuming unitarity of the matrix or assuming that the number of quark generations is three. Hence, the measurement of the cross section of electroweak top quark production is more than the technical challenge to extract a physics process that only occurs one out of ten billion collisions. It is also an important test of the V-A structure of the electroweak interaction and a potential window to physics beyond the Standard Model in the case where the measurement of |V{sub tb}| would result in a value significantly different from 1, the value predicted by the Standard Model. At the Tevatron two production processes contribute significantly to the production of single top quarks: the production via the t-channel, also called W-gluon fusion, and the production via the s-channel, known as well as W* process. This analysis searches for the combined s+t channel
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.
2008-01-01
A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.
Matrix elements of the electromagnetic operator between kaon and pion states
Baum, I.; Lubicz, V.; Martinelli, G.; Orifici, L.; Simula, S.
2011-10-01
We compute the matrix elements of the electromagnetic operator sF{sub {mu}{nu}}{sigma}{sup {mu}{nu}}d between kaon and pion states, using lattice QCD with maximally twisted-mass fermions and two flavors of dynamical quarks (N{sub f}=2). The operator is renormalized nonperturbatively in the RI'/MOM scheme and our simulations cover pion masses as light as 270 MeV and three values of the lattice spacing from {approx_equal}0.07 up to {approx_equal}0.1 fm. At the physical point our result for the corresponding tensor form factor at zero-momentum transfer is f{sub T}{sup K{pi}}(0)=0.417(14{sub stat})(5{sub syst}), where the systematic error does not include the effect of quenching the strange and charm quarks. Our result differs significantly from the old quenched result f{sub T}{sup K{pi}}(0)=0.78(6) obtained by the SPQ{sub cd}R Collaboration with pion masses above 500 MeV. We investigate the source of this difference and conclude that it is mainly related to the chiral extrapolation. We also study the tensor charge of the pion and obtain the value f{sub T}{sup {pi}{pi}}(0)=0.195(8{sub stat})(6{sub syst}) in good agreement with, but more accurate than the result f{sub T}{sup {pi}{pi}}(0)=0.216(34) obtained by the QCDSF Collaboration using higher pion masses.
STATE TAXATION OF MINERAL DEPOSITS AND PRODUCTION
Development of energy resources in the more rural western states is likely to create severe financial problems for some state and local governments. This new economic activity, with population in-migration and greater demand for public services, will generate a need for more gove...
9 CFR 107.2 - Products under State license.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Products under State license. 107.2 Section 107.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTIONS FROM...
9 CFR 107.2 - Products under State license.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Products under State license. 107.2 Section 107.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTIONS FROM...
9 CFR 107.2 - Products under State license.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Products under State license. 107.2 Section 107.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTIONS FROM...
9 CFR 107.2 - Products under State license.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Products under State license. 107.2 Section 107.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTIONS FROM...
9 CFR 107.2 - Products under State license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Products under State license. 107.2 Section 107.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTIONS FROM...
Turner, Andrew D; Powell, Andy L; Burrell, Stephen
2014-11-01
The production of homogeneous and stable matrix reference materials for marine biotoxins is important for the validation and implementation of instrumental methods of analysis. High pressure processing was investigated to ascertain potential advantages this technique may have in stabilising paralytic shellfish poisoning toxins in shellfish tissues compared to untreated materials. Oyster tissues were subjected to a range of different temperatures and pressures, with results showing a significant reduction in biological activity in comparison to control samples, without significantly altering toxin profiles. Tissue subjected to pressures >600 MPa at 50 °C was assessed for homogeneity and stability. The sample homogeneity was determined using a pre-column oxidation LC-FLD method and shown to be within accepted levels of within batch repeatability. Short and long-term stability studies were conducted over a range of temperatures, with analysis by pre and post column oxidation LC-FLD demonstrating improved stability of toxins compared to the untreated materials and with epimerisation of toxins also notably reduced in treated materials. This study confirmed the technique of high pressure processing to improve the stability of PSP toxins compared to untreated wet tissues and highlighted its applicability in reference material preparation where removal of biological activity is of importance. PMID:25086341
Spin Density Matrix Elements in Exclusive Production of Omega Mesons at HERMES
NASA Astrophysics Data System (ADS)
Marukyan, Hrachya
2016-02-01
Exclusive electroproduction of ω mesons on unpolarized hydrogen and deuterium targets is studied at HERMES in the kinematic region of Q2 > 1.0GeV2, 3.0GeV < W < 6.3GeV, and ‑ t‧ < 0.2GeV2. The data were accumulated during the 1996-2007 running period using the 27.6GeV longitudinally polarized electron or positron beams at HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio shows that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are derived and presented in projections of Q2 or ‑ t‧. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse ω production by longitudinal and transverse virtual photons is determined for the first time. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions.
A Moebius-Strip Representation of the Matrix-Product Periodic System of Diatomic Molecules
NASA Astrophysics Data System (ADS)
Hefferlin, Ray
2007-04-01
Periodic systems of diatomic and triatomic molecules are well tested and documented [1]. The 3D form of the diatomic system consists of blocks, each having all molecules with two fixed-row atoms, on which the molecules are addressed by their atomic group numbers. The blocks can be replaced by tori [2], but in either case many redundancies exist (e.g., CO and OC). The tori [3] may be replaced by Moebius strips [4] which remove the redundancies. This representation of the periodic system will be presented. [1] Hefferlin, R., ``The Periodic Systems of Molecules, Presuppositions, Problems, and Prospects,'' Baird, D., Scerri, E., and McIntyre, L., Editors, Philosophy of Chemistry, Boston Studies in the Philosophy of Science, Springer, Dodrecht, the Netherlands, 2006. [2] Hefferlin, R,. ``Matrix-Product Periodic Systems of Molecules,'' J. Chem. Inf. Comput. Sci, 34, 314-317 (1994). [3] Hall, D. E, ``Quantitative Evaluation of Musical Scale Tunings,'' AJP, 42, 543-552 (1974). [4] Blau, S. K., ``Good Music unfolds in Small Steps,'' Physics Today, October 2006, pp. 19-21.
Korkakaki, Emmanouela; Mulders, Michel; Veeken, Adrie; Rozendal, Rene; van Loosdrecht, Mark C M; Kleerebezem, Robbert
2016-06-01
Leachate from the source separated organic fraction of municipal solid waste (OFMSW) was evaluated as a substrate for polyhydroxyalkanoates (PHA) production. Initially, the enrichment step was conducted directly on leachate in a feast-famine regime. Maximization of the cellular PHA content of the enriched biomass yielded to low PHA content (29 wt%), suggesting that the selection for PHA-producers was unsuccessful. When the substrate for the enrichment was switched to a synthetic volatile fatty acid (VFA) mixture -resembling the VFA carbon composition of the leachate-the PHA-producers gained the competitive advantage and dominated. Subsequent accumulation with leachate in nutrient excess conditions resulted in a maximum PHA content of 78 wt%. Based on the experimental results, enriching a PHA-producing community in a "clean" VFA stream, and then accumulating PHA from a stream that does not allow for enrichment but does enable a high cellular PHA content, such as OFMSW leachate, makes the overall process much more economically attractive. The estimated overall process yield can be increased four-fold, in comparison to direct use of the complex matrix for both enrichment and accumulation. PMID:27019467
NASA Astrophysics Data System (ADS)
Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif
2016-02-01
The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.
NASA Astrophysics Data System (ADS)
Edwards, Luke J.
2014-03-01
An algorithm for simulating coherence selection due to a pulse sequence element consisting of two pulsed field gradients separated by a short collection of pulses and delays is introduced. This algorithm involves computation of the matrix exponential of an auxiliary matrix twice the size of the system Liouvillian, a dimensional increase smaller than is required with other known computational methods. Approximations valid for most simulations of liquid-state NMR spectra are involved in the derivation. Diffusion is omitted, but could be treated in an approximate way as a damping over the pulse sequence element. Several NMR pulse sequences using gradients for coherence selection have been implemented, making use of the functionality of Spinach (http://spindynamics.org/Spinach.php). Example simulations testing these implementations are presented, and the extent to which the formal dimensional reduction can lead to a speedup in simulation time discussed. It is found that the previously known methods can be made competitive with the auxiliary matrix method by making use of their embarrassingly parallel nature. Cases where the relative dimensional reduction of the auxiliary matrix method is very large, or where efficient parallelization of the simulation independent of the nature of the algorithm used exists, are found to lead to situations beneficial for the auxiliary matrix algorithm in this comparison.
Steady state compact toroidal plasma production
Turner, William C.
1986-01-01
Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.
NASA Astrophysics Data System (ADS)
Luo, Q. J.; Feng, S. M.; Gu, L. H.; Liu, J. X.; Tang, X. F.
2016-01-01
In this paper, we mainly investigate the effect of the interior periodic potential and the surface potential on the energy of electronic state in quantum dot. Based on Chebyshev polynomials of the second kind and matrix theory, we deduced one expression, which can clearly describe the relation of energy of electronic state with the surface and interior periodic potential. The theoretical analysis shows that the energy of electronic state in quantum dot strongly depend on surface potential and the interior periodic potential. For the same quantum dot with different surface potential, the energy of electronic state with the determined quantum number is different. For the quantum dot of same size with different interior periodic potential, the energy of electronic state with the determined quantum number is also different. The further study indicates that there are two different energy of electronic state in quantum dot for the decided quantum number.
Das, Mousumi
2014-03-28
We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties. PMID:24697451
Das, Mousumi
2014-03-28
We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties.
Early state research on antifungal natural products.
Negri, Melyssa; Salci, Tânia P; Shinobu-Mesquita, Cristiane S; Capoci, Isis R G; Svidzinski, Terezinha I E; Kioshima, Erika Seki
2014-01-01
Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates. PMID:24609016
Ethanol Demand in United States Gasoline Production
Hadder, G.R.
1998-11-24
The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.
NASA Astrophysics Data System (ADS)
Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng
2014-05-01
The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.
Azerrad, Sara P; Lütke Eversloh, Christian; Gilboa, Maayan; Schulz, Manoj; Ternes, Thomas; Dosoretz, Carlos G
2016-10-15
Removal of micropollutants from reverse osmosis (RO) brines of wastewater desalination by oxidation processes is influenced by the scavenging capacity of brines components, resulting in the accumulation of transformation products (TPs) rather than complete mineralization. In this work the iodinated contrast media diatrizoate (DTZ) was used as model compound due to its relative resistance to oxidation. Identification of TPs was performed in ultrapure water (UPW) and RO brines applying nonthermal plasma (NTP) and UVA-TiO2 as oxidation techniques. The influence of main RO brines components in the formation and accumulation of TPs, such as chloride, bicarbonate alkalinity and humic acid, was also studied during UVA-TiO2. DTZ oxidation pattern in UPW resulted similar in both UVA-TiO2 and NTP achieving 66 and 61% transformation, respectively. However, DTZ transformation in RO brines was markedly lower in UVA-TiO2 (9%) than in NTP (27%). These differences can be attributed to the synergic effect of RO brines components during NTP. Moreover, reactive species other than hydroxyl radical contributed to DTZ transformation, i.e., direct photolysis in UVA-TiO2 and direct photolysis + O3 in NTP accounted for 16 and 23%, respectively. DTZ transformation led to iodide formation in both oxidation techniques but it further oxidized to iodate by ozone in NTP. In total 14 transformation products were identified in UPW of which 3 were present only in UVA-TiO2 and 2 were present exclusively in NTP; 5 of the 14 TPs were absent in RO brines. Five of them were new and were denoted as TP-474A/B, TP-522, TP-586, TP-602, TP-628. TP-522 (mono-chlorinated) was elucidated only in presence of high chloride titer-synthetic water matrix in NTP, most probably formed by active chlorine species generated in situ. TPs accumulation in RO brines was markedly different in comparison to UPW. This denotes the influence of RO brines components in the formation of reactive species that could further attack
Deformed Coherent State for Multiparticle Production Mechanism
NASA Astrophysics Data System (ADS)
Wang, W. Y.; Leong, Q.; Ng, W. K.; Dewanto, A.; Chan, A. H.; Oh, C. H.
2014-04-01
The deformation structure function describing the Generalised Multiplicities Distribution (GMD), Negative Binomial Distribution (NBD), Furry-Yule Distribution (FYD), and their corresponding deformed coherent states and second order correlation function g(2) are derived. A superposition model of the GMD and NBD states is then proposed as a general description of the mechanism that gives rise to the double NBD model first proposed by Giovannini. The model is applied to LHC multiplicity data at |η| ≤ 2.4 and 0.9, 2.36 and 7 TeV, from the CMS collaboration at CERN, and the second order correlation g(2) of the model is then compared with the normalised second factorial moment {F_2}/F_1^2 of the multiplicity.
Speech Production as State Feedback Control
Houde, John F.; Nagarajan, Srikantan S.
2011-01-01
Spoken language exists because of a remarkable neural process. Inside a speaker's brain, an intended message gives rise to neural signals activating the muscles of the vocal tract. The process is remarkable because these muscles are activated in just the right way that the vocal tract produces sounds a listener understands as the intended message. What is the best approach to understanding the neural substrate of this crucial motor control process? One of the key recent modeling developments in neuroscience has been the use of state feedback control (SFC) theory to explain the role of the CNS in motor control. SFC postulates that the CNS controls motor output by (1) estimating the current dynamic state of the thing (e.g., arm) being controlled, and (2) generating controls based on this estimated state. SFC has successfully predicted a great range of non-speech motor phenomena, but as yet has not received attention in the speech motor control community. Here, we review some of the key characteristics of speech motor control and what they say about the role of the CNS in the process. We then discuss prior efforts to model the role of CNS in speech motor control, and argue that these models have inherent limitations – limitations that are overcome by an SFC model of speech motor control which we describe. We conclude by discussing a plausible neural substrate of our model. PMID:22046152
NASA Astrophysics Data System (ADS)
Nuechterlein, Jacob
Self-propagating high-temperature synthesis (SHS) is a self-sustaining combustion reaction of reactant powders typically in the form of compacted pellets to form a desired product species. The reactants are ignited in one or more locations by several different techniques. After ignition the reaction travels as a wave through the pellet exothermically converting the reactants into products as it propagates. In this case the products are formed as discrete ceramic particles of TiC, Al2O3 and SiC. The goal of this research was to reduce the size of the particles formed by this technique from a diameter of 1-5μm to less than 100nm with the goal of then incorporating these nanoparticles as reinforcements in Al metal matrix composites. To accomplish this, many different SHS principles were studied and their associated variables were changed to reduce the combustion temperature of each reacting system. Several of these systems were investigated and discarded for a number of reasons such as: low ignition or high combustion temperatures, dangerous reaction conditions, or undesirable product densities and morphologies. The systems chosen exhibited low material costs, low combustion temperatures, and a wide range of stabilities when lowering the reaction temperature. The reacting systems pursued were based around the aluminothermic reduction of TiO2 in the presence of carbon to form TiC and Al2O 3. The combustion temperature of this reaction was reduced from 2053ºC to less than 1100ºC, which had a corresponding effect on the particle size of the products, reducing the average diameter of the particles to less than 100nm. This was accomplished by providing high heating rates, controlling the green density and adding diluents to the reaction such as Al, TiC, SiC or Al2O3. Cooling experiments were also investigated, but the cooling rate was found to have no effect on the particle size.
Production of number states of the electomagnetic field
NASA Astrophysics Data System (ADS)
Cummings, F. W.; Rajagopal, A. K.
1989-04-01
It has been demonstrated recently that it is possible to generate a pure number state, or Fock state, of the electromagnetic field in a resonant cavity when a ``micromaser'' is operated under the appropriate conditions. This prospect is examined here by a direct analysis of the equation for the density-matrix-governing operation of the lossless micromaser, without having to solve the equation or perform numerical analyses. This model micromaser affords a unique example of an open quantum system whose von Neumann entropy may increase at first, but must subsequently vanish.
NASA Technical Reports Server (NTRS)
Seidel, R. C.
1974-01-01
FORTRAN computer subroutines stemming from requirements to process state variable system equations for systems of high order are presented. They find the characteristic equation of a matrix using the method of Danilevsky, the number of roots with positive real parts using the Routh-Horwitz alternate formulation, convert a state variable system description to a Laplace transfer function using the method of Bollinger, and evaluate that transfer function and obtain its frequency response. A sample problem is presented to demonstrate use of the subroutines.
NASA Technical Reports Server (NTRS)
Harter, L. V.; Hruska, K. A.; Duncan, R. L.
1995-01-01
Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.
NASA Astrophysics Data System (ADS)
Oueslati, H.; Argoubi, F.; Bezzaouia, S.; Telmini, M.; Jungen, Ch.
2014-03-01
A variational R-matrix approach combined with multichannel quantum defect theory is used for a computational study of triplet gerade states of H2. Electron-ion reaction (quantum defect) matrices are calculated as functions of internuclear distance and energy for the bound and continuum ranges including singly and doubly excited configurations built on the 1σg (X+2Σg+) and 1σu (A+2Σu+) core states of the H2+ ion. It is shown how these matrices can be reduced to effective quantum defect functions adapted to the analysis of high-resolution spectra in the bound range. These R-matrix effective quantum defects are finally adjusted to the available experimental data [Sprecher et al., J. Phys. Chem. A 117, 9462 (2013), 10.1021/jp311793t], producing agreement with experiment to within 0.5 cm-1, nearly as good as obtained by Sprecher et al. In addition, the R-matrix calculations predict the evolution of the quantum defects for higher energies, in a range extending far into the electronic continuum.
Solid state production of ethanol from sorghum
Henk, L.L.; Linden, J.C.
1995-12-01
Ethanol, produced from renewable resources, such as corn, sugar cane and sweet sorghum, is used as an oxygenate in reformulated gasoline. For biofuels to become economical, means of lowering production costs must be found. Our research focuses on using a modified method of ensiling to produce ethanol from sorghum. Formic acid, +/- cellulase, and yeast were applied to fresh field-chopped sorghum and then packed tightly into five-gallon plastic silos. Counter-current extraction methods were used as a means of biofuel separation. Sorghum receiving 5 IU/grain dry weight cellulase produced 37.7 liters of ethanol per metric ton on a wet weight basis. Sorghum not receiving cellulose additives produced 23.4 liters of ethanol per metric ton. An ethanol plant of intermediate size (565,272 liters of anhydrous ethanol/year) can operate using sorghum grown on less than 1400 acres.
Eagle, M J; Rooney, P; Kearney, J N
2015-09-01
Demineralised bone matrix (DBM) is produced by grinding cortical bone into a powder, sieving the powder to obtain a desired size range and then demineralising the powder using acid. Protocols for the production of DBM powder have been published since 1965 and the powder can be used in lyophilised form or it can be mixed with a carrier to produce a paste or putty. The powder is generally produced from cortical bone which has been processed to remove blood, bone marrow and bone marrow components, including fat. Removal of fat is accomplished by incorporating incubation in an organic solvent, often chloroform, chloroform/methanol or acetone. The use of organic solvents in a clean room environment in a human tissue bank is problematic and involves operator exposure and the potential for the solvent to be trapped in air filters or recirculated throughout the clean room suite. Consequently, in this study, we have developed a cortical bone washing step which removes fat/lipid without the use of an organic solvent. Bone was prepared from six femoral shafts from three donors by dissecting soft tissue and bisecting the shaft, the shafts were then cut into ~9-10 cm lengths. These struts were then taken through a series of hot water washes at 56-59 °C, centrifugation and decontamination steps. Washed cortical struts were then lyophilised before being ground with a compressed air milling machine. The ground bone was sieved, demineralised, freeze-dried and terminally sterilised with a target dose of 25 kGy gamma irradiation. The DBM powder was evaluated for residual calcium content, in vitro cytotoxicity and osteoinductivity by implantation into the muscle of an athymic mouse. Data indicated that in addition to removing in excess of 97% DNA and extractable soluble protein, the washing protocol reduced lipid 10,000-fold. The processed bone was easily ground without clogging the grinder; the sterilised DBM powder was not cytotoxic but was osteoinductive in the animal model
Dekker, Sylvia; Toussaint, Wendy; Panayotou, George; de Wit, Ton; Visser, Pim; Grosveld, Frank; Drabek, Dubravka
2003-01-01
The presence of porcine endogenous retroviruses presents a potential risk of transmission of infectious diseases (xenozoonosis) if tissues and organs from genetically modified pigs are to be used in xenotransplantation. Here, we report that intracellular expression of a llama single-domain antibody against p15, the matrix domain protein of the porcine endogenous retrovirus Gag polyprotein, blocks retrovirus production, providing the possibility of eliminating the risk of infection in xenotransplantation. PMID:14581550
Bes, D. R.; Civitarese, O.
2010-01-15
Theoretical matrix elements, for the ground-state to ground-state two-neutrino double-{beta}-decay mode (2{nu}{beta}{sup -}{beta}{sup -}gs->gs) of {sup 128,130}Te isotopes, are calculated within a formalism that describes interactions between neutrons in a superfluid phase and protons in a normal phase. The elementary degrees of freedom of the model are proton-pair modes and pairs of protons and quasineutrons. The calculation is basically a parameter-free one, because all relevant parameters are fixed from the phenomenology. A comparison with the available experimental data is presented.
PRODUCTION OF MISSING cbar c and bbar b STATES
NASA Astrophysics Data System (ADS)
Godfrey, Stephen; Rosner, Jonathan L.
2003-08-01
The heavy quarkonium cbar c and bbar b resonances have a rich spectroscopy with numerous narrow S, P, and D-wave levels below the production threshold of open charm and beauty mesons. The mass predictions for these states are an important test of QCD calculations. We review some recent work describing the production of missing ηb(nS), 13 DJ(bbar b) and 11 P1(cbar c) and 11 P1(bbar b) states.
NASA Astrophysics Data System (ADS)
Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong
2009-11-01
The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.
Quantum correlation exists in any non-product state
Guo, Yu; Wu, Shengjun
2014-01-01
Simultaneous existence of correlation in complementary bases is a fundamental feature of quantum correlation, and we show that this characteristic is present in any non-product bipartite state. We propose a measure via mutually unbiased bases to study this feature of quantum correlation, and compare it with other measures of quantum correlation for several families of bipartite states. PMID:25434458
The Impact of Teachers Unions on State-Level Productivity
ERIC Educational Resources Information Center
Pantuosco, Louis J.; Ullrich, Laura D.
2010-01-01
Using a reduced form version of a theoretical expansion of Hoxby's (1996) education production model, we investigate whether bargaining teachers unions are a boon or a bust to the economy of the state. We anticipate teachers, being in the public sector veiled from competition, are less likely to be efficient. Yet, their product, education,…
State Policies and Planning to Increase Attainment, Quality, and Productivity
ERIC Educational Resources Information Center
Lingenfelter, Paul E.
2007-01-01
This article examines why state planning and policy for higher education are increasingly focused on increasing educational attainment, quality, and the productivity of the system. It presents four "stories" which illustrate initiatives to improve attainment, quality, and productivity, but fall far short of exhausting the available material.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2003-01-01
A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2002-01-01
A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.
Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J.; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I.
2015-01-01
Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro. PMID:25736020
Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I
2015-01-01
Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro. PMID:25736020
An Assay to Quantify Chemotactic Properties of Degradation Products from Extracellular Matrix
Sicari, Brian M.; Zhang, Li; Londono, Ricardo; Badylak, Stephen F.
2015-01-01
The endogenous chemotaxis of cells toward sites of tissue injury and/or biomaterial implantation is an important component of the host response. Implanted biomaterials capable of recruiting host stem/progenitor cells to a site of interest may obviate challenges associated with cell transplantation. An assay for the identification and quantification of chemotaxis induced by surgically placed biologic scaffolds composed of extracellular matrix is described herein. PMID:24155230
State regulation and power plant productivity: background and recommendations
Not Available
1980-09-01
This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements.
NASA Astrophysics Data System (ADS)
Zhu, Sha
This work has investigated the irradiation and incorporation effects of fission products in a yttria-stabilized zirconia (YSZ) based inert matrix fuel (IMF). The concept of inert matrix fuel is based on a new strategy for disposition of plutonium generated from the reprocessing of commercial nuclear fuel and the dismantling of nuclear weapons, i.e. using uranium-free oxides to "burn" plutonium and other actinides (Np, Cm, and Am) in reactors. This approach allows direct disposal, without reprocessing, after once-through burn-up. YSZ and MgAl2O4-YSZ composites are among the potential ceramics for IMF due to their high chemical durability and radiation resistance. The research involved investigating the production, nature, and accumulation of irradiation-induced defects, the behavior of the fission products in the ceramics, the structural stability and amorphization resistance of the YSZ during implantation. Ion implantations were conducted with 200--400 keV Cs+, Sr+, I+, Xe+ and Ti+ up to fluences of 1 x 1017/cm 2 at both room temperature and temperatures of 600--700°C. Thermal annealing was subsequently completed after room temperature ion implantations. In situ and ex situ transmission electron microscopy (TEM), optical absorption spectroscopy, photo-luminescence spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy were employed to characterize the irradiation induced defect evolution and analyze the defect structures. Various irradiation effects were observed and determined in the experiments, such as point defects (F type and V type color centers), defect clusters (dislocation loops), cavities (voids and bubbles), the crystalline-to-amorphous transition, and the phase transformation from fluorite to pyrochlore structure. The ion irradiation-induced amorphization mechanism, the retention ability of the fission products, and structural stability of YSZ are discussed in terms of ion incorporation effects, implanted ion radii, and the solubility
NASA Astrophysics Data System (ADS)
Connor, J. N. L.
2013-03-01
Three new contributions to the complex angular momentum (CAM) theory of differential cross sections (DCSs) for chemical reactions are reported. They exploit recent advances in the Padé reconstruction of a scattering (S) matrix in a region surrounding the {Renolimits} J axis, where J is the total angular momentum quantum variable, starting from the discrete values, J = 0, 1, 2, …. In particular, use is made of Padé continuations obtained by Sokolovski, Castillo, and Tully [Chem. Phys. Lett. 313, 225 (1999), 10.1016/S0009-2614(99)01016-7] for the S matrix of the benchmark F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H reaction. Here vi, ji, mi and vf, jf, mf are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. The three contributions are: (1) A new exact decomposition of the partial wave (PW) S matrix is introduced, which is called the QP decomposition. The P part contains information on the Regge poles. The Q part is then constructed exactly by subtracting a rapidly oscillating phase and the PW P matrix from the input PW S matrix. After a simple modification, it is found that the corresponding scattering subamplitudes provide insight into the angular-scattering dynamics using simple partial wave series (PWS) computations. It is shown that the leading n = 0 Regge pole contributes to the small-angle scattering in the centre-of-mass frame. (2) The Q matrix part of the QP decomposition has simpler properties than the input S matrix. This fact is exploited to deduce a parametrized (analytic) formula for the PW S matrix in which all terms have a direct physical interpretation. This is a long sort-after goal in reaction dynamics, and in particular for the state-to-state F + H2 reaction. (3) The first definitive test is reported for the accuracy of a uniform semiclassical (asymptotic) CAM theory for a DCS based on the Watson transformation. The parametrized S matrix obtained in contribution (2) is used in both
Analysis of steady-state shallow cell solidification in metal matrix composites
Michaud, V.J.; Mortensen, A.
1996-11-01
The influence of capillarity on the near-plane front solidification of metal matrix composites is examined by analysis of the one-sided solidification of a binary alloy in a planar interstice of constant width in the limit of low Peclet number. The authors assume that in this limit, solute isoconcentrates in the liquid are everywhere orthogonal to the growth direction. Capillary causes the alloy to solidify in a cellular mode, even in the absence of constitutional supercooling. Two solution branches are derived for this solidification mode, one for shallow symmetric cells, the other for asymmetric cells. Restricting attention to the former solution branch, as the growth velocity increases, or the temperature gradient decreases, the cell amplitude increases gradually, to reach a critical point which depends strongly on the contact angle along the reinforcement/solidification front triple line.
Theoretical Study of the Luminescent States and Electronic Spectra of UO2Cl2 in an Argon Matrix
Su, Jing; Wang, Yi-Lei; Wei, Fan; Schwarz, W H E.; Li, Jun
2011-08-25
The electronic absorption and emission spectra of freeUO2Cl2 and its Ar-coordinated complexes below 27 000 cm-1 are investigated at the levels of ab initio complete active space second-order perturbation theory (CASPT2) and coupled-cluster singles and doubles and perturbative triples [CCSD(T)] using valence 3ζ-polarized basis sets. The influence of the argon matrix in the 12K experiment on the electronic spectra is explored by investigating the excited states of argon complexes ArnUO2Cl2. The calculated two most stable complexes with n = 2, 3 can explain the observed two matrix sites corresponding to the experimental twocomponent luminescence decay. In these uranyl complexes, Ar-coordination is found to have little influence on the 3Φ (Ω = 2g) character of the luminescent state and on the electronic spectral shape. The calculations yield a coherent assignment of the experimental excitation spectra that improves on previous assignments. The simulated luminescence spectral curves based on the calculated spectral parameters of UO2Cl2 from both CASPT2 and CCSD(T) agree well with experiment.
Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai
2016-01-01
Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.
NASA Astrophysics Data System (ADS)
Zhu, W.; Gong, S. S.; Haldane, F. D. M.; Sheng, D. N.
2015-10-01
The non-Abelian topological order has attracted a lot of attention for its fundamental importance and exciting prospect of topological quantum computation. However, explicit demonstration or identification of the non-Abelian states and the associated statistics in a microscopic model is very challenging. Here, based on a density-matrix renormalization-group calculation, we provide a complete characterization of the universal properties of the bosonic Moore-Read state on a Haldane honeycomb lattice model at filling number ν =1 for larger systems, including both the edge spectrum and the bulk anyonic quasiparticle (QP) statistics. We first demonstrate that there are three degenerating ground states for each of which there is a definite anyonic flux threading through the cylinder. We identify the nontrivial countings for the entanglement spectrum in accordance with the corresponding conformal field theory. Through simulating a flux-inserting experiment, it is found that two of the Abelian ground states can be adiabatically connected, whereas the ground state in the Ising anyon sector evolves back to itself, which reveals the fusion rules between different QPs in real space. Furthermore, we calculate the modular matrices S and U , which contain all the information for the anyonic QPs, such as quantum dimensions, fusion rule, and topological spins.
Qi, Yulin; Hempelmann, Rolf; Volmer, Dietrich A
2016-07-01
Lignin is the second most abundant natural biopolymer, and lignin wastes are therefore potentially significant sources for renewable chemicals such as fuel compounds, as alternatives to fossil fuels. Waste valorisation of lignin is currently limited to a few applications such as in the pulp industry, however, because of the lack of effective extraction and characterisation methods for the chemically highly complex mixtures after decomposition. Here, we have implemented high resolution mass spectrometry and developed two-dimensional mass defect matrix plots as a data visualisation tool, similar to the Kendrick mass defect plots implemented in fields such as petroleomics. These 2D matrix plots greatly simplified the highly convoluted lignin mass spectral data acquired from Fourier transform ion cyclotron resonance (FTICR)-mass spectrometry, and the derived metrics provided confident peak assignments and strongly improved structural mapping of lignin decomposition product series from the various linkages within the lignin polymer after electrochemical decomposition. Graphical Abstract 2D mass defect matrix plot for a lignin sample after decomposition. PMID:27178557
Quantum state representation based on combinatorial Laplacian matrix of star-relevant graph
NASA Astrophysics Data System (ADS)
Li, Jian-Qiang; Chen, Xiu-Bo; Yang, Yi-Xian
2015-12-01
In this paper the density matrices derived from combinatorial Laplacian matrix of graphs is considered. More specifically, the paper places emphasis on the star-relevant graph, which means adding certain edges on peripheral vertices of star graph. Initially, we provide the spectrum of the density matrices corresponding to star-like graph (i.e., adding an edge on star graph) and present that the Von Neumann entropy increases under the graph operation (adding an edge on star graph) and the graph operation cannot be simulated by local operation and classical communication (LOCC). Subsequently, we illustrate the spectrum of density matrices corresponding to star-alike graph (i.e., adding one edge on star-like graph) and exhibit that the Von Neumann entropy increases under the graph operation (adding an edge on star-like graph) and the graph operation cannot be simulated by LOCC. Finally, the spectrum of density matrices corresponding to star-mlike graph (i.e., adding m nonadjacent edges on the peripheral vertices of star graph) is demonstrated and the relation between the graph operation and Von Neumann entropy, LOCC is revealed in this paper.
Girardet, C.; Maillard, D.; Fournier, J.
1986-04-15
The shortening of the /sup 1/S level lifetime of a rare gas trapped oxygen atom is interpreted according to the following scheme: a perturber disturbs the O/sub h/ ideal environment around the oxygen atom and induces a transition dipole moment for the /sup 1/S ..-->.. /sup 1/D normally quadrupolar transition. We choose to represent the perturber by a foreign rare gas atom also trapped in the matrix since (i) the rare gas--rare gas interaction potential is generally of good quality and (ii) double doping experiments are easily performed. The distortion induced by the perturber is calculated at any lattice point of the crystal in the framework of the Green static functions. The energies of the level correlating with /sup 1/S and of the five levels correlating with /sup 1/D are determined together with the transition dipole elements. The bar spectrum is then reconstructed and the lifetime of the /sup 1/S level calculated, as a function of the oxygen-perturber distance.
Xiao, Yangming; Liu, Qin; Han, Hai-Chao
2016-09-01
Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries. PMID:26913855
NASA Astrophysics Data System (ADS)
Kumamoto, Soichiro; Okubo, Kazuya; Fujii, Toru
2016-01-01
The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP). To change the locational states of submicron fibers, two kinds of fabrication processes were applied in preparing specimen by hand lay-up method. Submicron fibers were simply added into epoxy resin with ethanol after they were stirred by a dispersion process using homogenizer to be located far from the interface between reinforcement and matrix. In contrast, submicron fibers were attached onto the carbon fibers by injecting from a spray nozzle accompanying with ethanol to be located near the interface, after they were tentatively contained in ethanol. The plain-woven CFRP plates were fabricated by hand lay-up method and cured at 80 degree-C for 1 hour and then at 150 degree-C for 3 hours. After curing, the plain-woven CFRP plates were cut into the dimension of specimen. Tensile shear strength and Mode-II fracture toughness of CFRP were determined by tensile lap-shear test and End-notched flexure(ENF) test, respectively. When submicron fibers were located far from the interface between carbon fibers and epoxy resin, tensile shear strength and Mode-II fracture toughness of CFRP were improved 30% and 18% compared with those of unmodified case. The improvement ratio in modified case was rather low (about few percentages) in the case where submicron fibers were located near the interface. The result suggested that crack propagation should be prevented when submicron fibers were existed far from the interface due to the effective stress state around the crack tip.
ERIC Educational Resources Information Center
Tsai, Kuan Chen
2016-01-01
The purpose of the present study is to explore to what extent the use of a more structured mode of assessing creative products--specifically, the CPAM--could beneficially influence design students' product creativity and creative processes. For this qualitative inquiry, following our CPAM-based intervention, students wrote reflective papers in…
Wilkes, Jon G.; Buzantu, Dan A.; Dare, Diane J.; Dragan, Yvonne P.; Chiarelli, M. Paul; Holland, Ricky D.; Beaudoin, Michael; Heinze, Thomas M.; Nayak, Rajesh; Shvartsburg, Alexandre A.
2006-05-30
Robust, specific, and rapid identification of toxic strains of bacteria and viruses, to guide the mitigation of their adverse health effects and optimum implementation of other response actions, remains a major analytical challenge. This need has driven the development of methods for classification of microorganisms using mass spectrometry, particularly matrix-assisted laser desorption ionization MS (MALDI) that allows high throughput analyses with minimum sample preparation. We describe a novel approach to cell typing based on pattern recognition of MALDI spectra, which involves charge-state deconvolution in conjunction with a new correlation analysis procedure. The method is applicable to both prokaryotic and eukaryotic cells. Charge-state deconvolution improves the quantitative reproducibility of spectra because multiply-charged ions resulting from the same biomarker attaching a different number of protons are recognized and their abundances are combined. This allows a clearer distinction of bacterial strains or of cancerous and normal liver cells. Improved class distinction provided by charge-state deconvolution was demonstrated by cluster spacing on canonical variate score charts and by correlation analyses. Deconvolution may enhance detection of early disease state or therapy progress markers in various tissues analyzed by MALDI.
Entanglement purification protocol for a mixture of a pure entangled state and a pure product state
Czechlewski, Mikolaj; Wojcik, Antoni; Grudka, Andrzej; Ishizaka, Satoshi
2009-07-15
We present an entanglement purification protocol for a mixture of a pure entangled state and a pure product state, which are orthogonal to each other. The protocol is a combination of bisection method and one-way hashing protocol. We give recursive formula for the rate of the protocol for different states, i.e., the number of maximally entangled two-qubit pairs obtained with the protocol per a single copy of the initial state. We also calculate numerically the rate for some states.
Zhu, Guiyu; Jiang, Yunliang
2014-01-01
Matrix metalloproteinases (MMP) are key enzymes involved in cell and tissue remodeling during ovarian follicle development and ovulation. The control of MMP9 transcription in ovarian follicles occurs through a core promoter region (−2,400 to −1,700 bp). The aim of this study was to screen genetic variations in the core promoter region and examine MMP9 transcription regulation and reproduction performance. A single cytosine deletion/insertion polymorphism was found at −1954 C+/C−. Genetic association analysis indicated significant correlation between the deletion genotype (C−) with total egg numbers at 28 weeks (p = 0.031). Furthermore, luciferase-reporter assay showed the deletion genotype (C−) had significantly lower promoter activity than the insertion genotype (C+) in primary granulosa cells (p<0.01). Therefore, the identified polymorphism could be used for marker-assisted selection to improve chicken laying performance. PMID:25358310
NASA Technical Reports Server (NTRS)
Gray, Carl E., Jr.
1988-01-01
Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.
Prior, Stephen H; Byrne, Todd S; Tokmina-Roszyk, Dorota; Fields, Gregg B; Van Doren, Steven R
2016-04-01
Collagenolysis is essential in extracellular matrix homeostasis, but its structural basis has long been shrouded in mystery. We have developed a novel docking strategy guided by paramagnetic NMR that positions a triple-helical collagen V mimic (synthesized with nitroxide spin labels) in the active site of the catalytic domain of matrix metalloproteinase-12 (MMP-12 or macrophage metalloelastase) primed for catalysis. The collagenolytically productive complex forms by utilizing seven distinct subsites that traverse the entire length of the active site. These subsites bury ∼1,080 Å(2)of surface area, over half of which is contributed by the trailing strand of the synthetic collagen V mimic, which also appears to ligate the catalytic zinc through the glycine carbonyl oxygen of its scissile G∼VV triplet. Notably, the middle strand also occupies the full length of the active site where it contributes extensive interfacial contacts with five subsites. This work identifies, for the first time, the productive and specific interactions of a collagen triple helix with an MMP catalytic site. The results uniquely demonstrate that the active site of the MMPs is wide enough to accommodate two strands from collagen triple helices. Paramagnetic relaxation enhancements also reveal an extensive array of encounter complexes that form over a large part of the catalytic domain. These transient complexes could possibly facilitate the formation of collagenolytically active complexes via directional Brownian tumbling. PMID:26887942
Aneva, B L; Brankov, J G
2016-08-01
We apply the matrix-product ansatz to study the totally asymmetric simple exclusion process on a ring with a generalized discrete-time dynamics depending on two hopping probabilities, p and p[over ̃]. The model contains as special cases the TASEP with parallel update, when p[over ̃]=0, and with sequential backward-ordered update, when p[over ̃]=p. We construct a quadratic algebra and its two-dimensional matrix-product representation to obtain exact finite-size expressions for the partition function, the current of particles, and the two-point correlation function. Our main new result is the derivation of the finite-size pair correlation function. Its behavior is analyzed in different regimes of effective attraction and repulsion between the particles, depending on whether p[over ̃]>p or p[over ̃]
Tannase Production by Solid State Fermentation of Cashew Apple Bagasse
NASA Astrophysics Data System (ADS)
Podrigues, Tigressa H. S.; Dantas, Maria Alcilene A.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.
The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (gds). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/gds) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/gds and enzyme productivity of 128.5×10-3 U·gds -1·h-1.
NASA Astrophysics Data System (ADS)
Dehghani, Hossein; Mitra, Aditi
2016-06-01
Results are presented for an open Floquet topological system represented by Dirac fermions coupled to a circularly polarized laser and an external reservoir. It is shown that when the separation between quasienergy bands becomes small, and comparable to the coupling strength to the reservoir, the reduced density matrix in the Floquet basis, even at steady state, has nonzero off-diagonal elements, with the magnitude of the off-diagonal elements increasing with the strength of the coupling to the reservoir. In contrast, the coupling to the reservoir only weakly affects the diagonal elements, hence inducing an effective coherence. The steady-state reduced density matrix synchronizes with the periodic drive, and a Fourier analysis allows the extraction of the occupation probabilities of the Floquet quasienergy levels. The lack of detailed balance at steady state is quantified in terms of an entropy-production rate, and it is shown that this equals the heat current flowing out of the system and into the reservoir. It is also shown that the entropy-production rate mainly depends on the off-diagonal components of the Floquet density matrix. Thus, a stronger coupling to the reservoir leads to an enhanced entropy-production rate, implying a more efficient removal of heat from the system, which in turn helps the system maintain coherence. Analytic expressions in the vicinity of the Dirac point are derived which highlights these results, and also indicates how the reservoir may be engineered to enhance the coherence of the system.
Metabolic networks evolve towards states of maximum entropy production.
Unrean, Pornkamol; Srienc, Friedrich
2011-11-01
A metabolic network can be described by a set of elementary modes or pathways representing discrete metabolic states that support cell function. We have recently shown that in the most likely metabolic state the usage probability of individual elementary modes is distributed according to the Boltzmann distribution law while complying with the principle of maximum entropy production. To demonstrate that a metabolic network evolves towards such state we have carried out adaptive evolution experiments with Thermoanaerobacterium saccharolyticum operating with a reduced metabolic functionality based on a reduced set of elementary modes. In such reduced metabolic network metabolic fluxes can be conveniently computed from the measured metabolite secretion pattern. Over a time span of 300 generations the specific growth rate of the strain continuously increased together with a continuous increase in the rate of entropy production. We show that the rate of entropy production asymptotically approaches the maximum entropy production rate predicted from the state when the usage probability of individual elementary modes is distributed according to the Boltzmann distribution. Therefore, the outcome of evolution of a complex biological system can be predicted in highly quantitative terms using basic statistical mechanical principles. PMID:21903175
Recent Strawberry Production Innovations in the Eastern United States
Technology Transfer Automated Retrieval System (TEKTRAN)
Many strawberry farmers in the central and eastern United States operate small-acreage, diversified fruit and vegetable operations and direct market their products locally and regionally. Local and regional marketing of strawberries enables growers to harvest fruit at higher maturity stages and red...
Technical Efficiency and Productivity of Yam in Kogi State Nigeria
NASA Astrophysics Data System (ADS)
Ekunwe, Peter A.; Orewa, Sylvester I.
The study examined the technical efficiency and productivity of yam in Kogi States of Nigeria. Specifically the study examined the socioeconomic characteristics of yam producers in Kogi State, determined the technical efficiency and productivity of yam farmers in the study areas and made recommendations on ways of improving the efficiency of yam production in Kogi State. Primary data were collected using a set of structured questionnaire from 200 selected Agricultural Development Programme (ADP) contact yam farmers from the State. A multi-stage sampling technique was used in selecting the farmers. The first stage was a purposive sampling of 5 Local Government Areas (LGAs) each from Kogi States. The LGAs selected were Omala, Ofu, Ankpa, Dekina and Ida. This was based on the high concentration of the population of yam producers and the availability of market for yam products. The second stage involved a simple random sampling of 5 villages from each LGA and 8 yam farmers from each village. In all 200 yam farmers were interviewed by trained enumerators. Out of the 200 only 144 copies of the questionnaires were found adequate and used in the analysis for the study. Data collected were analyzed using descriptive statistics such as mean and standard deviation, as well as the stochastic frontier production function. Results from the study showed that on the average more males (98.6%) were involved in yam production as compared to 1.4% in the case of female. The mean age of farmers was 53 years. The average years of schooling by farmers was about 4 years suggesting that the farmers were not well educated. The average farming years was 25 years. In terms of cropping pattern all the farmers practiced sole yam cropping. Their average farm sizes were 0.97 ha. The technical efficiency of the farmers in the State varied. The technical efficiency of farmers varied from 0.05 to 0.95 with a mean of 0.62, while only about 23% of the farmers had technical efficiencies exceeding 0
Entanglement as a resource to distinguish orthogonal product states
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-01-01
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality. PMID:27458034
Varani, J.; Larson, B. K.; Perone, P.; Inman, D. R.; Fligiel, S. E.; Voorhees, J. J.
1993-01-01
Two-mm full-thickness punch biopsies of human skin were placed in organ culture in a serum-free, growth factor-free basal medium. Under conditions of low extracellular Ca2+ (0.15 mmol/L), the tissue quickly degenerated. However, degeneration was prevented when the extracellular Ca2+ concentration was increased to 1.4 mmol/L. The tissue remained histologically normal in appearance and biochemically active for up to 12 days. The addition of 3 mumol/L all-trans retinoic acid (RA) to the low-Ca2+ culture medium also prevented tissue degeneration. However, in contrast to what was seen in the presence of 1.4 mmol/L Ca2+, epidermal differentiation did not occur normally in the presence of RA. Rather, the upper layers of the epidermis routinely separated from the underlying basal cells. Fibronectin production by the organ cultured skin was examined. Biosynthetic labeling/immunoprecipitation studies demonstrated that incubation of the tissue in basal medium containing 1.4 mmol/L Ca2+ resulted in a high level of fibronectin production relative to the amount produced in basal medium containing 0.15 mmol/L Ca2+. In contrast, the addition of 3 mumol/L RA to the low Ca2+ basal medium did not stimulate fibronectin production. Similar results were observed in enzyme-linked immunosorbent assays where the addition of Ca2+ to a final concentration of 1.4 mmol/L stimulated fibronectin and thrombospondin production whereas RA (3 mumol/L) did not. Although RA by itself failed to stimulate extracellular matrix production, the addition of 3 mumol/L RA to basal medium containing 1.4 mmol/L Ca2+ led to a further increase in fibronectin production over that seen in the presence of 1.4 mmol/L Ca2+ alone. Taken together, these data indicate that although either 1.4 mmol/L Ca2+ or 3 mumol/L RA facilitates survival of organ-cultured skin in basal medium, they have very different effects on extracellular matrix production. This supports the view, based on histological appearance, that the two
Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin
2015-01-01
Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s−1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications. PMID:25996307
Fingerprint of Herb Product by Matrix-assisted Laser Desorption Ionization Mass Spectrometry
Technology Transfer Automated Retrieval System (TEKTRAN)
Product authentication, quality assurance, and identification of adulterants/contamination are major issues facing the dietary supplement industry. Scutellaria lateriflora is an herb widely used as a remedy for many ailments ranging from rabies to epilepsy. It could be easily contaminated by similar...
Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.
1995-07-01
A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.
Structure determination of individual electron-nuclear spin complexes in a solid-state matrix
NASA Astrophysics Data System (ADS)
Laraoui, Abdelghani; Pagliero, Daniela; Meriles, Carlos
2015-03-01
A spin-based quantum computer will store and process information via ``spin complexes'' formed by a small number of interacting electronic and nuclear spins within a solid-state host. Unlike present electronic circuits, differences in the atomic composition and local geometry make each of these spin clusters distinct from the rest. Integration of these units into a working network thus builds on our ability to determine the cluster atomic structure, a problem we tackle herein with the aid of a magnetic resonance protocol. Using the nitrogen-vacancy (NV) center in diamond as a model system, we show analytically and numerically that the spatial coordinates of weakly coupled 13C spins can be determined by selectively transferring and retrieving spin polarization. The technique's spatial resolution can reach up to 0.1 nm, limited by the NV spin coherence lifetime. No external magnetic field gradient is required, which makes this imaging scheme applicable to NV-13C complexes buried deep inside the crystal host. Further, this approach can be adapted to nuclear spins other than 13C, and thus applied to the characterization of individual molecules anchored to the diamond surface.
Variational Monte Carlo simulations using tensor-product projected states
NASA Astrophysics Data System (ADS)
Sikora, Olga; Chang, Hsueh-Wen; Chou, Chung-Pin; Pollmann, Frank; Kao, Ying-Jer
2015-04-01
We propose an efficient numerical method, which combines the advantages of recently developed tensor-network based methods and standard trial wave functions, to study the ground-state properties of quantum many-body systems. In this approach, we apply a projector in the form of a tensor-product operator to an input wave function, such as a Jastrow-type or Hartree-Fock wave function, and optimize the tensor elements via variational Monte Carlo. The entanglement already contained in the input wave function can considerably reduce the bond dimensions compared to the regular tensor-product state representation. In particular, this allows us to also represent states that do not obey the area law of entanglement entropy. In addition, for fermionic systems, the fermion sign structure can be encoded in the input wave function. We show that the optimized states provide good approximations of the ground-state energy and correlation functions in the cases of two-dimensional bosonic and fermonic systems.
Porous Alumina Silicate Matrix Gubka for Solidification of {sup 137}Cs Strip Product
Aloy, Albert; Strelnikov, Alexander; Essimantovskiy, Vyacheslav
2007-07-01
Separated liquid high-level radioactive waste (HLW) fractions, in particular, about 100 liters of a {sup 137}Cs strip product with activity up to {approx} 100 Ci/l (3.7 TBq/l) have been produced during the development and testing of partitioning technology and temporarily stored at V.G. Khlopin Radium Institute (KRI) (Saint-Petersburg, Russia). The bench-scale experimental unit designed for operation in the hot cell was developed for {sup 137}Cs strip product solidification using an alumina silicate porous inorganic material (PIM) called Gubka. Conditions of saturation, drying, and calcinations of the salts into Gubka pores were optimized, and the operations under a remote control regime were executed during tests using a simulated strip product doped with {sup 137}Cs. The volume reduction coefficients were equal by a factor of 3.2-3.9 and a {sup 137}Cs discharge into an off-gas system was not detected. {sup 137}Cs leach rates from Gubka blocks after calcination at 800 deg. C were 1.0-1.5.10{sup -3} g/m{sup 2}.per day. (authors)
Ion production from solid state laser ion sources
Gottwald, T.; Mattolat, C.; Raeder, S.; Wendt, K.; Havener, C.; Liu, Y.; Lassen, J.; Rothe, S.
2010-02-15
Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.
Fuzzy sphere: Star product induced from generalized squeezed states
Lubo, Musongela
2005-02-15
A family of states built from the uncertainty principle on the fuzzy sphere has been shown to reproduce the stereographic projection in the large j limit. These generalized squeezed states are used to construct an associative star product which involves a finite number of derivatives on its primary functional space. It is written in terms of a variable on the complex plane. We show that it actually coincides with the one found by Gross and Presnajder in the simplest cases, endowing the later with a supplementary physical interpretation. We also show how the spherical harmonics emerge in this setting.
Ion production from solid state laser ion sources
Gottwald, T.; Havener, Charles C; Lassen, J.; Liu, Yuan; Mattolat, C.; Raeder, S.; Rothe, S.; Wendt, K.
2010-01-01
Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.
The equation of state of predominant detonation products
NASA Astrophysics Data System (ADS)
Zaug, Joseph; Crowhurst, Jonathan; Bastea, Sorin; Fried, Laurence
2009-06-01
The equation of state of detonation products, when incorporated into an experimentally grounded thermochemical reaction algorithm can be used to predict the performance of explosives. Here we report laser based Impulsive Stimulated Light Scattering measurements of the speed of sound from a variety of polar and nonpolar detonation product supercritical fluids and mixtures. The speed of sound data are used to improve the exponential-six potentials employed within the Cheetah thermochemical code. We will discuss the improvements made to Cheetah in terms of predictions vs. measured performance data for common polymer blended explosives. Accurately computing the chemistry that occurs from reacted binder materials is one important step forward in our efforts.
Takahashi, Hiroki; Fernández-de-Alba, Carlos; Lee, Daniel; Maurel, Vincent; Gambarelli, Serge; Bardet, Michel; Hediger, Sabine; Barra, Anne-Laure; De Paëpe, Gaël
2014-02-01
Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to ∼100K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed. PMID:24480716
NASA Astrophysics Data System (ADS)
Takahashi, Hiroki; Fernández-de-Alba, Carlos; Lee, Daniel; Maurel, Vincent; Gambarelli, Serge; Bardet, Michel; Hediger, Sabine; Barra, Anne-Laure; De Paëpe, Gaël
2014-02-01
Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to ∼100 K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed.
Liquid hydrogen production and commercial demand in the United States
NASA Technical Reports Server (NTRS)
Heydorn, Barbara
1990-01-01
Kennedy Space Center, the single largest purchaser of liquid hydrogen (LH2) in the United States, evaluated current and anticipated hydrogen production and consumption in the government and commercial sectors. Specific objectives of the study are as follows: (1) identify LH2 producers in the United States and Canada during 1980-1989 period; (2) compile information in expected changes in LH2 production capabilities over the 1990-2000 period; (3) describe how hydrogen is used in each consuming industry and estimate U.S. LH2 consumption for the chemicals, metals, electronics, fats and oil, and glass industries, and report data on a regional basis; (4) estimate historical and future consumption; and (5) assess the influence of international demands on U.S. plants.
Cooper, Karen L.; Myers, Terrance Alix; Rosenberg, Martina; Chavez, Miquella; Hudson, Laurie G. . E-mail: lghudson@unm.edu
2004-11-01
The dermatotoxicity of arsenic is well established and epidemiological studies identify an increased incidence of keratinocytic tumors (basal cell and squamous cell carcinoma) associated with arsenic exposure. Little is known about the underlying mechanisms of arsenic-mediated skin carcinogenesis, but activation of mitogen-activated protein (MAP) kinases and subsequent regulation of downstream target genes may contribute to tumor promotion and progression. In this study, we investigated activation of the extracellular signal regulated kinase (ERK) and the stress-associated kinase p38 by arsenite in HaCat cells, a spontaneously immortalized human keratinocyte cell line. Arsenite concentrations {>=}100 {mu}M stimulate rapid activation of p38 and ERK MAP kinases. However, upon extended exposure (24 h), persistent stimulation of p38 and ERK MAP kinases was detected at low micromolar concentrations of arsenite. Although ERK and p38 were activated with similar time and concentration dependence, the mechanism of activation differed for these two MAP kinases. ERK activation by arsenite was fully dependent on the catalytic activity of the epidermal growth factor (EGF) receptor and partially dependent on Src-family kinase activity. In contrast, p38 activation was independent of EGF receptor or Src-family kinase activity. Arsenite-stimulated MAP kinase signal transduction resulted in increased production of matrix metalloproteinase (MMP)-9, an AP-1 regulated gene product. MMP-9 induction by arsenite was prevented when EGF receptor or MAP kinase signaling was inhibited. These studies indicate that EGF receptor activation is a component of arsenite-mediated signal transduction and gene expression in keratinocytes and that low micromolar concentrations of arsenite stimulate key signaling pathways upon extended exposure. Stimulation of MAP kinase cascades by arsenic and subsequent regulation of genes including c-fos, c-jun, and the matrix degrading proteases may play an important
Wang, Yu; Chen, Ligang
2015-10-01
A simple method based on matrix solid phase dispersion (MSPD) using molecularly imprinted polymers (MIPs) as sorbents for selective extraction of malachite green (MG) from aquatic products was developed. The MIPs were prepared by using carbon nanotube as support, MG as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as crosslinker and methylene chloride as solvent. The MIPs were characterized by Fourier transform infrared spectrometry and transmission electron microscopy. The isothermal adsorption, kinetics absorption and selective adsorption experiments were carried out. We optimized the extraction conditions as follows: the ratio of MIPs to sample was 2:3, the dispersion time was 15min, washing solvent was 4mL 50% aqueous methanol and elution solvent was 3mL methanol-acetic acid (98: 2, v/v). Once the MSPD process was completed, the MG extracted from aquatic products was determined by high performance liquid chromatography. The detection limit of MG was 0.7μgkg(-1). The relative standard deviations of intra-day and inter-day were obtained in the range of 0.9%-4.7% and 3.4%-9.8%, respectively. In order to evaluate the applicability and reliability of the proposed method, it was applied to determine MG in different aquatic products samples including fish, shrimp, squid and crabs. The satisfied recoveries were in the range of 89.2%-104.6%. The results showed that this method is faster, simpler and makes extraction and purification in the same system. PMID:26319302
Nam, Dong Hyun; Ge, Xin
2016-04-01
Human matrix metalloproteinase (MMP)-14, a membrane-bound zinc endopeptidase, is one of the most important cancer targets because it plays central roles in tumor growth and invasion. Large amounts of active MMP-14 are required for cancer research and the development of chemical or biological MMP-14 inhibitors. Current methods of MMP-14 production through refolding and activation are labor-intensive, time-consuming, and often associated with low recovery rates, lot-to-lot variation and heterogeneous products. Here, we report direct production of the catalytic domain of MMP-14 in the periplasmic space of Escherichia coli. 0.5 mg/L of functional MMP-14 was produced without tedious refolding or problematic activation process. MMP-14 prepared by simple periplasmic treatment can be readily utilized to evaluate the potencies of chemical and antibody-based inhibitors. Furthermore, co-expression of both MMP-14 and antibody Fab fragments in the periplasm facilitated inhibitory antibody screening by avoiding purification of MMP-14 or Fabs. We expect this MMP-14 expression strategy can expedite the development of therapeutic drugs targeting MMPs with biological significance. PMID:26416249
Matrix differentiation formulas
NASA Technical Reports Server (NTRS)
Usikov, D. A.; Tkhabisimov, D. K.
1983-01-01
A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.
Ocean state indicators from MyOcean altimeter products
NASA Astrophysics Data System (ADS)
Bessières, L.; Rio, M. H.; Dufau, C.; Boone, C.; Pujol, M. I.
2012-05-01
The Sea Level Thematic Assembly Center from the MyOcean project provides observations of the ocean dynamic topography from altimeter measurements. Three specific indicators have been developed, based on altimeter data only, in order to monitor the ocean state. The first ocean indicator observes the positive and negative phases of the ENSO events in the Tropical Pacific, the El Niño/La Niña events since 1992. The second ocean indicator checks the contracted or extended state of the Kuroshio Extension. The last ocean indicator is dedicated to the Ionian basin in the Mediterranean Sea and permits to separate "zonal-cyclonic" state (1998-2005 and since 2011 up to now) from the "anticyclonic" state (1993-1996) usually discussed in the literature. In addition it allows identifying a third state in which both the anticyclonic circulation around the northern part of the basin and the strong zonal Mid-Ionian jet co-exist (2008-2010). Besides providing useful indices to monitor the ocean state, these indicators are a new tool to assess the long-term quality of the SLTAC products.
Simulating Potential Switchgrass Production in the United States
Thomson, Allison M.; Izaurralde, Roberto C.; West, T. O.; Parrish, David J.; Tyler, Donald D.; Williams, Jimmy R.
2009-12-31
Using results from field trials of switchgrass (Panicum virgatum L.) in the United States, the EPIC (Environmental Policy Integrated Climate) process-level agroecosystem model was calibrated, validated, and applied to simulate potential productivity of switchgrass for use as a biofuel feedstock. The model was calibrated with a regional study of 10-yr switchgrass field trials and subsequently tested against a separate compiled dataset of field trials from across the eastern half of the country. An application of the model in a national database using 8-digit watersheds as the primary modeling unit produces 30-yr average switchgrass yield estimates that can be aggregated to 18 major watersheds. The model projects average annual switchgrass productivity of greater than 7 Mg ha-1 in the Upper Mississippi, Lower Mississippi, and Ohio watersheds. The major factors limiting simulated production vary by region; low precipitation is the primary limiting factor across the western half of the country, while moderately acidic soils limit yields on lands east of the Mississippi River. Average projected switchgrass production on all crop land in the continental US is 5.6 Mg ha-1. At this level of productivity, 28.6 million hectares of crop land would be required to produce the 16 billion gallons of cellulosic ethanol called for by 2022 in the 2007 Energy Independence and Security Act. The model described here can be applied as a tool to inform the land-use and environmental consequences of switchgrass production.
Rismani-Yazdi, Hamid; Hampel, Kristin H; Lane, Christopher D; Kessler, Ben A; White, Nicholas M; Moats, Kenneth M; Thomas Allnutt, F C
2015-04-01
A mixed trophic state production process for algal lipids for use as feedstock for renewable biofuel production was developed and deployed at subpilot scale using a green microalga, Auxenochlorella (Chlorella) protothecoides. The process is composed of two separate stages: (1) the photoautotrophic stage, focused on biomass production in open ponds, and (2) the heterotrophic stage focused on lipid production and accumulation in aerobic bioreactors using fixed carbon substrates (e.g., sugar). The process achieved biomass and lipid productivities of 0.5 and 0.27 g/L/h that were, respectively, over 250 and 670 times higher than those obtained from the photoautotrophic cultivation stage. The biomass oil content (over 60% w/DCW) following the two-stage process was predominantly monounsaturated fatty acids (~82%) and largely free of contaminating pigments that is more suitable for biodiesel production than photosynthetically generated lipid. Similar process performances were obtained using cassava hydrolysate as an alternative feedstock to glucose. PMID:25326061
Study of Metastable N2 Production Using an N2 Matrix Detector
NASA Astrophysics Data System (ADS)
McConkey, William; Kedzierski, Wladek; Cerkauskas, Cyrus
2015-05-01
Metastable N2 molecules produced in the interaction of electrons of carefully controlled energy with a thermal beam of N2 in a crossed beam set-up have been studied in the energy range from threshold to 400 eV. The e-beam is pulsed and the metastables produced drift to a solid nitrogen target held at 10 K. Here they form excimers which immediately radiate. The resultant photons are detected using a photomultiplier-filter combination. Time-of-flight techniques are used to separate these photons from prompt photons produced in the initial electron-N2 collision. The excimer emission is strongest in the green but still significant in the red spectral region. Excitation functions will be presented together with threshold measurements. These help to identify the metastable states being observed and the excitation mechanisms which are responsible. The authors thank NSERC and CFI, (Canada), for financial support.
Chen, He-Guei; Chiang, Hui-Hua Kenny; Lee, Oscar Kuang-Sheng
2013-01-01
Mesenchymal stromal cells (MSCs) hold great potential in skeletal tissue engineering and regenerative medicine. However, conventional methods that are used in molecular biology to evaluate osteogenic differentiation of MSCs require a relatively large amount of cells. Cell lysis and cell fixation are also required and all these steps are time-consuming. Therefore, it is imperative to develop a facile technique which can provide real-time information with high sensitivity and selectivity to detect the osteogenic maturation of MSCs. In this study, we use Raman spectroscopy as a biosensor to monitor the production of mineralized matrices during osteogenic induction of MSCs. In summary, Raman spectroscopy is an excellent biosensor to detect the extent of maturation level during MSCs-osteoblast differentiation with a non-disruptive, real-time and label free manner. We expect that this study will promote further investigation of stem cell research and clinical applications. PMID:23734254
Estimating the ground-state probability of a quantum simulation with product-state measurements
NASA Astrophysics Data System (ADS)
Yoshimura, Bryce; Freericks, James
2015-10-01
.One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know a priori what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these simple measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.
Grcar, Joseph F.
2002-02-04
A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.
Tobacco Product Use Among Adults - United States, 2013-2014.
Hu, S Sean; Neff, Linda; Agaku, Israel T; Cox, Shanna; Day, Hannah R; Holder-Hayes, Enver; King, Brian A
2016-01-01
While significant declines in cigarette smoking have occurred among U.S. adults during the past 5 decades, the use of emerging tobacco products* has increased in recent years (1-3). To estimate tobacco use among U.S. adults aged ≥18 years, CDC and the Food and Drug Administration (FDA) analyzed data from the 2013-2014 National Adult Tobacco Survey (NATS). During 2013-2014, 21.3% of U.S. adults used a tobacco product every day or some days, and 25.5% of U.S. adults used a tobacco product every day, some days, or rarely. Despite progress in reducing cigarette smoking, during 2013-2014, cigarettes remained the most commonly used tobacco product among adults. Young adults aged 18-24 years reported the highest prevalence of use of emerging tobacco products, including water pipes/hookahs and electronic cigarettes (e-cigarettes). Furthermore, racial/ethnic and sociodemographic differences in the use of any tobacco product were observed, with higher use reported among males; non-Hispanic whites, non-Hispanic blacks, and non-Hispanics of other races(†); persons aged <45 years; persons living in the Midwest or South; persons with a General Educational Development (GED) certificate; persons who were single/never married/not living with a partner or divorced/separated/widowed; persons with annual household income <$20,000; and persons who were lesbian, gay, or bisexual (LGB). Population-level interventions that focus on all forms of tobacco product use, including tobacco price increases, high-impact anti-tobacco mass media campaigns, comprehensive smoke-free laws, and enhanced access to help quitting tobacco use, in conjunction with FDA regulation of tobacco products, are critical to reducing tobacco-related diseases and deaths in the United States.(§). PMID:27416365
D׳Amore, Antonio; Soares, Joao S; Stella, John A; Zhang, Will; Amoroso, Nicholas J; Mayer, John E; Wagner, William R; Sacks, Michael S
2016-09-01
Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC biosynthetic behavior was quite sensitive to tissue strain maximum level, and that collagen was the primary ECM component synthesized. Moreover, we found that while a 30% peak strain level achieved maximum ECM synthesis rate, further increases in strain level lead to a reduction in ECM biosynthesis. Subsequent mechanical analysis of the formed collagen fiber network was performed by removing the scaffold mechanical responses using a strain-energy based approach, showing that the denovo collagen also demonstrated mechanical behaviors substantially better than previously obtained with small strain training and comparable to mature collagenous tissues. We conclude that the application of large deformations can play a critical role not only in the quantity of ECM synthesis (i.e. the rate of mass production), but also on the modulation of the stiffness of the newly formed ECM constituents. The improved understanding of the process of growth and development of ECM in these mechano-sensitive cell-scaffold systems will lead to more rational design and manufacturing of engineered tissues operating under highly demanding mechanical environments. PMID:27344402
McNiff, M L; Haynes, E P; Dixit, N; Gao, F P; Laurence, J S
2016-06-01
Matrix metalloproteinases (MMPs) are crucial proteases in maintaining the health and integrity of many tissues, however their dysregulation often facilitates disease progression. In disease states these remodeling and repair functions support, for example, metastasis of cancer by both loosening the matrix around tumors to enable cellular invasion and by affecting proliferation and apoptosis, and they promote degradation of biological restorations by weakening the substrate to which the restoration is attached. As such, MMPs are important therapeutic targets. MMP-8 participates in cancer, arthritis, asthma and failure of dental fillings. MMP-8 differs from other MMPs in that it has an insertion that enlarges its active site. To elucidate the unique features of MMP-8 and develop selective inhibitors to this therapeutic target, a stable and active form of the enzyme is needed. MMP-8 has been difficult to express at high yield in a soluble, active form. Typically recombinant MMPs accumulate in inclusion bodies and complex methods are applied to refold and purify protein in acceptable yield. Presented here is a streamlined approach to produce in Escherichia coli a soluble, active, stable MMP-8 fusion protein in high yield. This fusion shows much greater retention of activity when stored refrigerated without glycerol. A variant of this construct that contains the metal binding claMP Tag was also examined to demonstrate the ability to use this tag with a metalloprotein. SDS-PAGE, densitometry, mass spectrometry, circular dichroism spectroscopy and an activity assay were used to analyze the chemical integrity and function of the enzyme. PMID:26923061
Shan, Xiao; Connor, J N L
2016-08-18
We report two new contributions for understanding the quantum dynamics of the benchmark state-to-state reaction, F + H2(vi, ji, mi) → FH(vf, jf, mf) + H, where (vi, ji, mi) and (vf, jf, mf) are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. We analyze product differential cross sections (DCSs) for the transitions, 000 → 300, 000 → 310, and 000 → 320, at a translational energy of 0.04088 eV using the potential energy surface of Fu-Xu-Zhang. The two new contributions are as follows: (1) We exploit the recently introduced QP decomposition of J. N. L. Connor [ J. Chem. Phys . 2013 , 138 , 124310 ] to transform numerical partial-wave scattering (S) matrix elements for the three transitions into parametrized (analytic) formulas, in which all terms in the three parametrized S matrices have a direct physical interpretation. In particular, they contain the positions and residues of Regge poles in the first quadrant of the complex angular momentum (CAM) plane. We obtain very close agreement between the values of the parametrized and numerical S matrix elements. (2) We then apply a uniform asymptotic Watson/CAM theory, which allows a Regge pole to be close to a saddle point. It uses the parametrized S matrices and is applied to the partial wave series (PWS) representation for the scattering amplitude to understand structure in a DCS in terms of three contributing subamplitudes. We prove using this powerful CAM theory that resonance Regge poles contribute to the small-angle scattering in the DCSs for all three transitions, with the oscillations at larger angles arising from nearside-farside interference. We obtain very good agreement between the uniform asymptotic Watson/CAM DCSs and the corresponding PWS DCSs, except for angles close to the forward and backward directions, where (as expected) the Watson/CAM formulas become nonuniform. PMID:27434264
NASA Astrophysics Data System (ADS)
Douhal, A.; Sastre, R.
1994-03-01
7-hydroxyquinoline (7HQ) dissolved in a solid poly (2-hydroxyethylmethacrylate) (PHEMA) matrix shows dual fluorescence at room temperature: a blue one (376 nm) from enol forms and a green one (515 nm) from the keto tautomer. This isomer can be populated by an excited-state triple proton transfer in well-bridged complexes of 7HQPHEMA or by vertical excitation of the long-term stable keto tautomer in the ground state.
A theoretical equation of state for detonation products
Shaw, M.S.
1998-12-31
A theoretical equation of state for detonation products is described that places particular emphasis on the characterization of small carbon clusters (20{angstrom}--50{angstrom} in diameter) in the products. Diamond clusters are modeled with the dangling bonds on the surface atoms (up to 30% of the cluster) capped by various radicals composed of C, H, N, and O from the background molecular fluid mixture. Free energy methods for the surface groups are used to determine the chemical equilibrium composition of the cluster surface as well as the surrounding molecular fluid mixture. The surface composition shows dramatic changes in composition over some regions and varies slowly in others. A perturbation theory approach is used for the mixture of molecular fluids that also includes features based on Monte Carlo simulations.
Xia, Peng; Ren, Shasha; Lin, Qiang; Cheng, Kai; Shen, Shihao; Gao, Mingxia; Li, Xueping
2015-06-01
Although low-intensity pulsed ultrasound (LIPUS) regulates p38 mitogen-activated protein kinase (MAPK) and promotes cartilage repair in osteoarthritis, the role of integrin-mediated p38 MAPK in the effect of LIPUS on extracellular matrix (ECM) production of normal and OA chondrocytes remains unknown. The aim of this study was to investigate whether LIPUS affects ECM production in normal and OA rabbit chondrocytes through an integrin-p38 signaling pathway. A rabbit model of OA was established by anterior cruciate ligament transection, and chondrocytes were isolated from normal or OA cartilage and cultured in vitro. Chondrocytes were treated with LIPUS and then pre-incubated with the integrin inhibitor GRGDSP or the p38 inhibitor SB203580. Expression of type II collagen, MMP-13, integrin β1, p38 and phosphorylated p38 was assessed by Western blot analysis. We found that type II collagen and integrin β1 were upregulated (p < 0.05), whereas MMP-13 was downregulated (p < 0.05) in normal and OA chondrocytes. Furthermore, phosphorylated p38 was upregulated (p < 0.05) in normal chondrocytes, but downregulated (p < 0.05) in OA chondrocytes after LIPUS stimulation. Pre-incubation of chondrocytes with the integrin inhibitor disrupted the effects of LIPUS on normal and OA chondrocytes. Pre-incubation of chrondocytes with the p38 inhibitor reduced the effects of LIPUS on normal chondrocytes, but had no impact on OA chondrocytes. Our findings suggest that the integrin-p38 MAPK signaling pathway plays an important role in LIPUS-mediated ECM production in chondrocytes. PMID:25736607
King, Martin S.; Kerr, Matthew; Crichton, Paul G.; Springett, Roger; Kunji, Edmund R.S.
2016-01-01
Mitochondrial ADP/ATP carriers catalyze the equimolar exchange of ADP and ATP across the mitochondrial inner membrane. Structurally, they consist of three homologous domains with a single substrate binding site. They alternate between a cytoplasmic and matrix state in which the binding site is accessible to these compartments for binding of ADP or ATP. It has been proposed that cycling between states occurs by disruption and formation of a matrix and cytoplasmic salt bridge network in an alternating way, but formation of the latter has not been shown experimentally. Here, we show that state-dependent formation of the cytoplasmic salt bridge network can be demonstrated by measuring the effect of mutations on the thermal stability of detergent-solubilized carriers locked in a specific state. For this purpose, mutations were made to increase or decrease the overall interaction energy of the cytoplasmic network. When locked in the cytoplasmic state by the inhibitor carboxyatractyloside, the thermostabilities of the mutant and wild-type carriers were similar, but when locked in the matrix state by the inhibitor bongkrekic acid, they correlated with the predicted interaction energy of the cytoplasmic network, demonstrating its formation. Changing the interaction energy of the cytoplasmic network also had a profound effect on the kinetics of transport, indicating that formation of the network is a key step in the transport cycle. These results are consistent with a unique alternating access mechanism that involves the simultaneous rotation of the three domains around a central translocation pathway. PMID:26453935
King, Martin S; Kerr, Matthew; Crichton, Paul G; Springett, Roger; Kunji, Edmund R S
2016-01-01
Mitochondrial ADP/ATP carriers catalyze the equimolar exchange of ADP and ATP across the mitochondrial inner membrane. Structurally, they consist of three homologous domains with a single substrate binding site. They alternate between a cytoplasmic and matrix state in which the binding site is accessible to these compartments for binding of ADP or ATP. It has been proposed that cycling between states occurs by disruption and formation of a matrix and cytoplasmic salt bridge network in an alternating way, but formation of the latter has not been shown experimentally. Here, we show that state-dependent formation of the cytoplasmic salt bridge network can be demonstrated by measuring the effect of mutations on the thermal stability of detergent-solubilized carriers locked in a specific state. For this purpose, mutations were made to increase or decrease the overall interaction energy of the cytoplasmic network. When locked in the cytoplasmic state by the inhibitor carboxyatractyloside, the thermostabilities of the mutant and wild-type carriers were similar, but when locked in the matrix state by the inhibitor bongkrekic acid, they correlated with the predicted interaction energy of the cytoplasmic network, demonstrating its formation. Changing the interaction energy of the cytoplasmic network also had a profound effect on the kinetics of transport, indicating that formation of the network is a key step in the transport cycle. These results are consistent with a unique alternating access mechanism that involves the simultaneous rotation of the three domains around a central translocation pathway. PMID:26453935
NASA Astrophysics Data System (ADS)
Nœtinger, B.
2015-02-01
Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.
Equations of state of detonation products: ammonia and methane
NASA Astrophysics Data System (ADS)
Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian
2015-06-01
Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.
NASA Astrophysics Data System (ADS)
George, Lisa; Kalume, Aimable; Reid, Scott A.; El-Khoury, Patrick Z.; Tarnovsky, Alexander
2010-06-01
The photolysis products of dibromodifluoromethane following selected wavelength laser irradiation were characterized by matrix isolation infrared and UV/Visible spectroscopy, supported by ab initio calculations. Photolysis at wavelengths of 240 and 266 nm of CF2Br2:Ar samples (1:5000) held at 5 K yielded iso-CF2Br2 (F2CBrBr), a weakly bound isomer of CF2Br2, which is characterized here for the first time. The observed infrared and UV/Visible absorptions of iso-CF2Br2 are in excellent agreement with computational predictions at the B3LYP/aug-cc-pVTZ level. Single point energy calculations at the CCSD(T)/aug-cc-pVDZ level on the B3LYP optimized geometries show that the iso-form is a minimum on the CF2Br2 potential energy surface, lying some 55 kcal/mol above the CF2Br2 ground state. The energies of various stationary points on the CF2Br2 PES were characterized computationally; taken with our experimental results, these show that iso-CF2Br2 is an intermediate in the Br + CF2Br reaction leading to molecular products (CF2 + Br2). The photochemistry of the iso-form was also investigated; excitation into the intense 359 nm absorption band resulted in isomerization to CF2Br2. Our results are discussed in view of the rich literature on the gas-phase photochemistry of CF2Br2, particularly with respect to the existence of a roaming atom pathway leading to molecular products.
Sun, Zhengwang; Hwang, Eunson; Park, Sang Yong; Zhang, Mengyang; Gao, Wei; Lin, Pei; Yi, Tae-Hoo
2016-07-01
Angelica archangelia (AA), a traditional herb, has attracted attention as an agent with potential for use in the prevention of chronic skin diseases. This study examined the photoprotective effects of AA on the inhibition of matrix metalloproteinases (MMPs) and collagen degradation in UVB-irradiated normal human dermal fibroblasts. Our results showed that AA markedly blocked collagen degradation by restraining the production of MMPs in UVB-exposed fibroblasts. We also investigated the underlying mechanism behind the effects of AA. AA attenuated UVB-triggered interleukin-6 (IL-6) and promoted the expression of transforming growth factor β1. Application of AA extract (10, 100 μg mL(-1) ) significantly diminished UVB-induced extracellular signal-regulated kinase and Jun-N-terminal kinase phosphorylation, which consequently reduced phosphorylated c-Fos and c-Jun. Our results indicated that AA inhibited the UVB-induced expression of MMPs by inhibiting mitogen-activated protein kinase signaling pathways and activator protein-1 activation. Our results suggest that AA is a promising botanical agent for use against skin photoaging. PMID:27128690
Kim, Eun Ju; Kim, Yeon Kyung; Kim, Min-Kyoung; Kim, Sungsoo; Kim, Jin Yong; Lee, Dong Hun; Chung, Jin Ho
2016-01-01
Ultraviolet (UV) exposure to the human skin reduces triglycerides contents and lipid synthesis in the subcutaneous (SC) fat. Because adiponectin and leptin are the most abundant adipokines from the SC fat, we aim to investigate how they interact with UV exposure and skin aging. The expressions of adiponectin and leptin were significantly decreased in SC fat of sun-exposed forearm skin, in comparison with that of sun-protected buttock skin of the same elderly individuals, indicating that chronic UV exposure decreases both adipokines. Acute UV irradiation also decreased the expressions of adiponectin and leptin in SC fat. The expressions of adiponectin receptor 1/2 and leptin receptor were significantly decreased in the dermis as well as in SC fat. Moreover, while exogenous adiponectin and leptin administration prevented UV- and TNF-α induced matrix metalloproteinase (MMP)-1 expression, they also increased UV- and TNF-α induced reduction of type 1 procollagen production. Silencing of adiponectin, leptin or their receptors led to an increased MMP-1 and a decreased type 1 procollagen expression, which was reversed by treatment with recombinant human adiponectin or leptin. In conclusion, UV exposure decreases the expression of adiponectin and leptin, leading to the exacerbation of photoaging by stimulating MMP-1 expression and inhibiting procollagen synthesis. PMID:27161953
Joseph, Narcisse Ms; Ho, Kok Lian; Tey, Beng Ti; Tan, Chon Seng; Shafee, Norazizah; Tan, Wen Siang
2016-07-01
The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus-like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti-myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high-performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038-1045, 2016. PMID:27088434
Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.
2011-07-14
Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.
Wu, Xue-Feng; Fei, Ming-Jian; Shu, Ren-Geng; Tan, Ren-Xiang; Xu, Qiang
2005-09-01
In the present paper, the effect of Fumigaclavine C, a fungal metabolite, on experimental colitis was examined. Fumigaclavine C, when administered intraperitoneally once a day, significantly reduced the weight loss and mortality rate of mice with experimental colitis induced by intrarectally injection of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). This compound also markedly alleviated the macroscopic and microscopic appearances of colitis. Furthermore, Fumigaclavine C, given both in vivo and in vitro, showed a marked inhibition on the expression of several inflammatory cytokines, including IL-1beta, IL-2, IL-12alpha, IFN-gamma, TNF-alpha as well as MMP-9 in sacral lymph node cells, colonic patch lymphocytes and colitis tissues from the TNBS colitis mice. Meanwhile, the compound caused a dose-dependent reduction in IL-2 and IFN-gamma from the lymphocytes at the protein level and MMP-9 activity. These results suggest that Fumigaclavine C may alleviate experimental colitis mainly via down-regulating the production of Th1 cytokines and the activity of matrix metalloproteinase. PMID:16023606
Kim, Eun Ju; Kim, Yeon Kyung; Kim, Min-Kyoung; Kim, Sungsoo; Kim, Jin Yong; Lee, Dong Hun; Chung, Jin Ho
2016-01-01
Ultraviolet (UV) exposure to the human skin reduces triglycerides contents and lipid synthesis in the subcutaneous (SC) fat. Because adiponectin and leptin are the most abundant adipokines from the SC fat, we aim to investigate how they interact with UV exposure and skin aging. The expressions of adiponectin and leptin were significantly decreased in SC fat of sun-exposed forearm skin, in comparison with that of sun-protected buttock skin of the same elderly individuals, indicating that chronic UV exposure decreases both adipokines. Acute UV irradiation also decreased the expressions of adiponectin and leptin in SC fat. The expressions of adiponectin receptor 1/2 and leptin receptor were significantly decreased in the dermis as well as in SC fat. Moreover, while exogenous adiponectin and leptin administration prevented UV- and TNF-α induced matrix metalloproteinase (MMP)-1 expression, they also increased UV- and TNF-α induced reduction of type 1 procollagen production. Silencing of adiponectin, leptin or their receptors led to an increased MMP-1 and a decreased type 1 procollagen expression, which was reversed by treatment with recombinant human adiponectin or leptin. In conclusion, UV exposure decreases the expression of adiponectin and leptin, leading to the exacerbation of photoaging by stimulating MMP-1 expression and inhibiting procollagen synthesis. PMID:27161953
Sanchez, Zoe; Tani, Akio
2013-01-01
Treatment of Pseudomonas aeruginosa PAO1 flow biofilms with a d-amino acid mixture caused significant reductions in cell biomass by 75% and cell viability by 71%. No biofilm disassembly occurred, and matrix production increased by 30%, thereby providing a thick protective cover for remaining viable or persister cells. PMID:23220960
Makihara, Noriko; Arimura, Koichi; Ago, Tetsuro; Tachibana, Masaki; Nishimura, Ataru; Nakamura, Kuniyuki; Matsuo, Ryu; Wakisaka, Yoshinobu; Kuroda, Junya; Sugimori, Hiroshi; Kamouchi, Masahiro; Kitazono, Takanari
2015-02-01
Fibrosis is concomitant with repair processes following injuries in the central nervous system (CNS). Pericytes are considered as an origin of fibrosis-forming cells in the CNS. Here, we examined whether platelet-derived growth factor receptor β (PDGFRβ), a well-known indispensable molecule for migration, proliferation, and survival of pericytes, was involved in the production of extracellular matrix proteins, fibronectin and collagen type I, which is crucial for fibrosis after ischemic stroke. Immunohistochemistry demonstrated induction of PDGFRβ expression in vascular cells of peri-infarct areas at 3-7days in a mouse stroke model. The PDGFRβ-expressing cells extended from peri-infarct areas toward the ischemic core after day 7 while expressing fibronectin and collagen type I in the infarct areas. In contrast, desmin and α-smooth muscle actin, markers of pericytes, were only expressed in vascular cells. In PDGFRβ heterozygous knockout mice, the expression of fibronectin and collagen type I was attenuated at both mRNA and protein levels with an enlargement of the infarct volume after ischemic stroke compared with that in wild-type littermates. In cultured brain pericytes, the expression of PDGF-B, PDGFRβ, fibronectin, and collagen type I, but not desmin, was significantly increased by serum depletion (SD). The SD-induced upregulation of fibronectin and collagen type I was suppressed by SU11652, an inhibitor of PDGFRβ, while PDGF-B further increased the SD-induced upregulation. In conclusion, the expression level of PDGFRβ may be a crucial determinant of fibrosis after ischemic stroke. Moreover, PDGFRβ signaling participates in the production of fibronectin and collagen type I after ischemic stroke. PMID:25510317
Murray, Samuel S; Brochmann, Elsa J; Harker, Judith O; King, Edward; Lollis, Ryan J; Khaliq, Sameer A
2007-08-01
Demineralised bone matrix (DBM) products are complex mixtures of proteins known to influence bone growth, turnover, and repair. They are used extensively in orthopaedic surgery, and are bioassayed in vivo prior to being used in clinical applications. Many factors contribute to the osteogenic potency of DBM, but the relative contributions of these factors, as well as the possibility of interactive effects, are not completely defined. The "gold standard" measure of the therapeutic value of DBM, the in vivo assay for ectopic bone formation, is costly, time-consuming, and involves the use of numerous animal subjects. We have measured the levels of five growth factors released by the collagenase digestion of DBM, and statistically related these levels with osteogenic potency as determined by a standard in vivo model, in order to determine which value or combination of values of growth factors best predict osteogenic activity. We conclude that the level of BMP-2 is the best single predictor of osteogenic potency, and that adding the values of other growth factors only minimally increases the predictive power of the BMP-2 measurement. A small, but significant, interactive effect between BMP-2 and BMP-7 was demonstrated. We present a statistical model based on growth factor (e.g. BMP-2) analysis that best predicts the in vivo assay score for DBM. This model allows the investigator to predict which lots of DBM are likely to exhibit in vivo bioactivity and which are not, thus reducing the need to conduct in vivo testing of insufficiently active lots of DBM. This model uses cut-point analysis to allow the user to assign an estimate of acceptable uncertainty with respect to the "gold standard" test. This procedure will significantly reduce the number of animal subjects used to test DBM products. PMID:17850186
State-to-state mode selectivity in the HD + OH reaction: Perspectives from two product channels.
Zhao, Bin; Sun, Zhigang; Guo, Hua
2016-06-01
The state-to-state quantum dynamics (Jtot = 0) of the HD + OH(υ2 = 0, 1) reaction is studied using a reactant coordinate based method, which allows the analysis of both the H + DOH and D + HOH channels with a single propagation. The stretching vibration of the newly formed bond, namely, the OD bond in DOH and one OH bond in HOH, is excited, thanks to its strong coupling with the reaction coordinate at the transition state. On the other hand, the vibrational energy deposited into the OH reactant (υ2 = 1) is sequestered during the reaction in the spectator OH mode. The combined effect leads to the excitation of both the OD and OH stretching modes in the DOH product, and the dominance of the (002) normal-mode state population in the HOH product, which in the local-mode picture corresponds to the excitation of both OH bonds with one quantum each. The energy flow in this prototypical tetratomic reaction can be understood in terms of the sudden vector projection model. PMID:27276953
NASA Astrophysics Data System (ADS)
Cheng, Haowen; Liu, Jing; Xu, Yang
The evaluation of convariance-matrix is an inevitable step when estimating collision probability based on the theory. Generally, there are two different methods to compute convariance-matrix. One is so-called Tracking-Delta-Fitting method, first introduced when estimating the collision probability using TLE catalogue data, in which convariance-matrix is evaluated by fitting series of differences between propagated orbits of formal data and updated orbit data. In the second method, convariance-matrix is evaluated in the process of orbit determination. Both of the methods has there difficulties when introduced in collision probability estimation. In the first method, the value of convariance-matrix is evaluated based only on historical orbit data, ignoring information of latest orbit determination. As a result, the accuracy of the method strongly depends on the stability of convariance-matrix of latest updated orbit. In the second method, the evaluation of convariance-matrix is acceptable when the determined orbit satisfies weighted-least-square estimation, depending on the accuracy of observation error convariance, which is hard to obtain in real application, evaluated by analyzing the residuals of orbit determination in our research. In this paper we provided numerical tests to compare these two methods. A simulation of cataloguing objects in LEO, MEO and GEO regions has been carried out for a time span of 3 months. The influence of orbit maneuver has been included in GEO objects cataloguing simulation. For LEO objects cataloguing, the effect of atmospheric density variation has also been considered. At the end of the paper accuracies of evaluated convariance-matrix and estimated collision probability have been tested and compared.
United States Food and Drug Administration Product Label Changes.
Kircik, Leon; Sung, Julie C; Stein-Gold, Linda; Goldenberg, Gary
2016-01-01
Once a drug has been approved by the United States Food and Drug Administration and is on the market, the Food and Drug Administration communicates new safety information through product label changes. Most of these label changes occur after a spontaneous report to either the drug manufacturing companies or the Food and Drug Administration MedWatch program. As a result, 400 to 500 label changes occur every year. Actinic keratosis treatments exemplify the commonality of label changes throughout the postmarket course of a drug. Diclofenac gel, 5-fluorouracil cream, imiquimod, and ingenol mebutate are examples of actinic keratosis treatments that have all undergone at least one label revision. With the current system of spontaneous reports leading to numerous label changes, each occurrence does not necessarily signify a radical change in the safety of a drug. PMID:26962391
United States Food and Drug Administration Product Label Changes
Sung, Julie C.; Stein-Gold, Linda; Goldenberg, Gary
2016-01-01
Once a drug has been approved by the United States Food and Drug Administration and is on the market, the Food and Drug Administration communicates new safety information through product label changes. Most of these label changes occur after a spontaneous report to either the drug manufacturing companies or the Food and Drug Administration MedWatch program. As a result, 400 to 500 label changes occur every year. Actinic keratosis treatments exemplify the commonality of label changes throughout the postmarket course of a drug. Diclofenac gel, 5-fluorouracil cream, imiquimod, and ingenol mebutate are examples of actinic keratosis treatments that have all undergone at least one label revision. With the current system of spontaneous reports leading to numerous label changes, each occurrence does not necessarily signify a radical change in the safety of a drug. PMID:26962391
Vegetation Productivity Consequences of Sprawl in the Eastern United States
NASA Astrophysics Data System (ADS)
Zhao, T.; Brown, D. G.; Fang, H.; Liu, T.; Zhang, T.
2009-12-01
Urban, suburban, and exurban areas expanded rapidly in the United States during the 1990s, replacing the rural land that lay outside existing metropolitan areas, cities, and towns. The conversion of rural landscapes to urban infrastructures and land uses has significant consequences for the regional vegetation productivity, but these consequences are not yet fully understood. A previous study in the Detroit-Ann Arbor-Flint Consolidated Metropolitan Statistical Areas (CMSA) in Michigan showed that exurbanization and suburbanization, i.e., development at relatively low densities, occupied four times the area of urbanization (development at the highest densities). While urbanization was associated with a net carbon source from the landscape in this CMSA, exurban development from the previous rural areas enhanced the uptake of carbon on land measured by gross primary production (GPP). In this study, similar research approaches were extended to all areas east of the Mississippi River in the United States. Two research questions were of particular interest: 1) Are patterns of sprawl consistent throughout the various regions that make up the Eastern US? and 2) Are relationships between types of sprawl and changes in GPP retain consistent over a large geographic extent? In this study, development was quantitatively evaluated based on Census housing-unit data collected in 1990 and 2000. Changes in GPP over the same time period were estimated based on satellite-derived land cover and vegetation greenness, climate data, and empirical light-use-efficiency parameters for various land-cover types. Results indicated that patterns of sprawl are regionally distinctive; and that relationships between sprawl and changes in GPP are relatively consistent, except for the effects of exurbanization on GPP, which tend to vary by ecoregion.
The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle
Kleykamp, H.
1988-03-01
A survey of work at the Kernforschungszentrum Karlsruhe is presented on the chemical state of selected fission products that are relevant in the fuel cycle of light water reactor (LWR) and fast breeder reactor fuels. The influence of fuel type and irradiation progress on the composition of the Mo-Tc-Ru-Rh-Pd fission product alloys precipitated in the oxide matrix is examined using the respective multicomponent phase diagrams. The kinetics of dissolution of these phases in nitric acid at the reprocessing stage is discussed. Composition and structure of the residues, and the reprecipitation phenomena from highly active waste (HAW), are elucidated. A second metamorphosis of the fission products is recognized during the vitrification process. The formation of Ru(Rh) oxide and Pd(Rh, U, Te) alloys in simulated vitrified HAW concentrate and in HAW concentrate from the reprocessing of irradiated LWR fuels in interpreted on the basis of heterogeneous equilibria.
Patel, Aarti; Vasanthan, Vishnu; Fu, Wen; Fahlman, Richard P; MacTavish, David; Jhamandas, Jack H
2016-05-01
Accumulation of β-amyloid (Aβ) protein within the brain is a neuropathological hallmark of Alzheimer's disease (AD). One strategy to facilitate Aβ clearance from the brain is to promote Aβ catabolism. Matrix metalloproteinase-9 (MMP-9), a member of the family of Zn(+2)-containing endoproteases, known to be expressed and secreted by astrocytes, is capable of degrading Aβ. Histamine, a major aminergic brain neurotransmitter, stimulates the production of MMP-9 in keratinocytes through the histamine H1 receptor (H1R). In the present study, we show that histamine evokes a concentration- and calcium-dependent release of MMP-9 from human astrocytic U373 cells and primary cultures of human and rat astrocytes through the H1R subtype. Activation of H1R on astrocytes elevated intracellular levels of Ca(2+) that was accompanied by time-dependent increases in MAP kinase p44/p42 and PKC. In-cell western blots revealed dose-dependent increases in both enzymes, confirming involvement of these signal transduction pathways. We next investigated the extent of recombinant human MMP-9 (rhMMP-9) proteolytic activity on soluble oligomeric Aβ (soAβ). Mass spectrometry demonstrated time-dependent cleavage of soAβ (20 μM), but not another amyloidogenic protein amylin, upon incubation with rhMMP-9 (100 nM) at 1, 4 and 17 h. Furthermore, Western blots showed a shift in soAβ equilibrium toward lower order, less toxic monomeric species. In conclusion, both MAPK p44/p42 and PKC pathways appear to be involved in histamine-upregulated MMP-9 release via H1Rs in astrocytes. Furthermore, MMP-9 appears to cleave soAβ into less toxic monomeric species. Given the key role of histamine in MMP-9 release, this neurotransmitter may serve as a potential therapeutic target for AD. PMID:25682263
48 CFR 470.103 - United States origin of agricultural products.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false United States origin of agricultural products. 470.103 Section 470.103 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE FOOD ASSISTANCE PROGRAMS COMMODITY ACQUISITIONS 470.103 United States origin of agricultural products. (a) Products of United States...
Product State and Speed Distributions in Photochemical Triple Fragmentations
NASA Astrophysics Data System (ADS)
Quinn, M. S.; De Wit, G.; Heazlewood, B. R.; Nauta, K.; Kable, S. H.; Jordan, M. J. T.; Reid, S. A.; Maccarone, A. T.
2012-06-01
The clearest dynamical signature of a roaming reaction is a very cold distribution of energy into the rotational and translational degrees of freedom of the roaming donor fragment (e.g. CO) and an exceptionally hot vibrational distribution in the roaming acceptor fragment (e.g. H_2, CH_4). These signatures were initially identified in joint experimental/theoretical investigations of roaming in H_2CO and CH_3CHO and are now being used to infer the presence of roaming mechanisms in other photodissociating molecules. In this seminar we present a phase space theory (PST) model of triple fragmentation (3F) and show that the dynamical signature of triple fragmentation is very similar to that of the roaming donor fragment. The 3F-PST model assumes that the initial two-body fragmentation (2F) step occurs via a barrierless bond cleavage process (which is true for many many closed shell systems), and calculates the 2F-PST distribution of energy in each fragment. The 2F-PST model is benchmarked against H_2CO → H + HCO, CH_3CHO → HCO + CH_3, CH_3CHO → H + CH_3CO, and CH_3OCHO → H + CH_3OCO and shown to provide a good representation of the available experimental data. Every fragment with sufficient internal energy to undergo subsequent spontaneous dissociation is allowed to dissociate and the 3F-PST distribution of energy into secondary products is calculated. Using CH_3CHO → HCO + CH_3 → H + CO + CH_3 as an example, we calculate that the energy disposal into the product rotational and translational degrees of freedom of the secondary fragments is very low. In the case of the CO fragment this is similar to the dynamical signature for production of CO via a roaming mechanism. We compare the 3F-PST model with published experimental data for photodissociation of several molecules at energies above the 3F threshold, and demonstrate that, in some cases, 3F provides an alternative explanation for the observed product state distribution.
NASA Astrophysics Data System (ADS)
Kobayashi, Kaori; Sakai, Yusuke; Tsunekawa, Shozo; Miyamoto, Taihei; Fujitake, Masaharu; Ohashi, Nobukimi
2016-03-01
The trans-ethyl methyl ether has two inequivalent methyl internal rotors and shows tunneling splittings of maximum up to five components. However, the barrier of these two internal rotation potentials were relatively high and the five components were not resolved in the ground state microwave spectra. In this study, well-resolved Fourier transform microwave ground state spectrum was measured for the first time to resolve the five components. The ground state microwave spectra were reanalyzed based on these new measurements and the additional millimeter-wave spectra as well as those studied previously by Fuchs et al. Ninety Fourier transform microwave spectral lines were assigned to 107 transitions in the ground state and 3508 conventional microwave absorption lines were assigned up to Ka = 16 of the ground state, including all 707 lines reported by Fuchs et al. In addition, 10 transitions were observed by the double resonance experiment. They were least-squares-analyzed by the use of an internal axis method (IAM)-like tunneling matrix formalism based on an extended permutation-inversion group theoretical idea. Twenty-two molecular parameters composed of rotational constants, centrifugal distortion constants, internal rotation parameters and internal rotation tunneling parameters were determined for the ground state. The microwave spectra in the three torsionally excited states, that is, the ν28 = 1 C-CH3 torsional state, the ν29 = 1 O-CH3 torsional state and the ν30 = 1 skeletal torsional state, were also reanalyzed by using the IAM-like tunneling matrix formalism and somewhat extended line assignments.
NASA Technical Reports Server (NTRS)
Packard, A. K.; Sastry, S. S.
1986-01-01
A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.
Gardner, David; Woodward, Carol S.; Evans, Katherine J
2015-01-01
Efficient solution of global climate models requires effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a time step dictated by accuracy of the processes of interest rather than by stability governed by the fastest of the time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton s method is applied for these systems. Each iteration of the Newton s method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but this Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite-difference which may show a loss of accuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite-difference approximations of these matrix-vector products for climate dynamics within the spectral-element based shallow-water dynamical-core of the Community Atmosphere Model (CAM).
Woodward, Carol S.; Gardner, David J.; Evans, Katherine J.
2015-01-01
Efficient solutions of global climate models require effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a step size governed by accuracy of the processes of interest rather than by stability of the fastest time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton's method is applied to solve these systems. Each iteration of the Newton's method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but thismore » Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite difference approximation which may introduce inaccuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite difference approximations of these matrix-vector products for climate dynamics within the spectral element shallow water dynamical core of the Community Atmosphere Model.« less
Woodward, Carol S.; Gardner, David J.; Evans, Katherine J.
2015-01-01
Efficient solutions of global climate models require effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a step size governed by accuracy of the processes of interest rather than by stability of the fastest time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton's method is applied to solve these systems. Each iteration of the Newton's method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but this Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite difference approximation which may introduce inaccuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite difference approximations of these matrix-vector products for climate dynamics within the spectral element shallow water dynamical core of the Community Atmosphere Model.
NASA Astrophysics Data System (ADS)
Dorfner, F.; Heidrich-Meisner, F.
2016-06-01
We study properties of the single-site reduced density matrix in the Bose-Bose resonance model as a function of system parameters. This model describes a single-component Bose gas with a resonant coupling to a diatomic molecular state, here defined on a lattice. A main goal is to demonstrate that the eigenstates of the single-site reduced density matrix have structures that are characteristic for the various quantum phases of this system. Since the Hamiltonian conserves only the global particle number but not the number of bosons and molecules individually, these eigenstates, referred to as optimal modes, can be nontrivial linear combinations of bare eigenstates of the molecular and boson particle number. We numerically analyze the optimal modes and their weights, the latter giving the importance of the corresponding state, in the ground state of the Bose-Bose resonance model. We find that the single-site von Neumann entropy is sensitive to the location of the phase boundaries. We explain the structure of the optimal modes and their weight spectra using perturbation theory and via a comparison to results for the single-component Bose-Hubbard model. We further study the dynamical evolution of the optimal modes and of the single-site entanglement entropy in two quantum quenches that cross phase boundaries of the model and show that these quantities are thermal in the steady state. For our numerical calculations, we use the density-matrix renormalization group method for ground-state calculations and time evolution in a Krylov subspace for the quench dynamics as well as exact diagonalization.
Biodiesel production--current state of the art and challenges.
Vasudevan, Palligarnai T; Briggs, Michael
2008-05-01
Biodiesel is a clean-burning fuel produced from grease, vegetable oils, or animal fats. Biodiesel is produced by transesterification of oils with short-chain alcohols or by the esterification of fatty acids. The transesterification reaction consists of transforming triglycerides into fatty acid alkyl esters, in the presence of an alcohol, such as methanol or ethanol, and a catalyst, such as an alkali or acid, with glycerol as a byproduct. Because of diminishing petroleum reserves and the deleterious environmental consequences of exhaust gases from petroleum diesel, biodiesel has attracted attention during the past few years as a renewable and environmentally friendly fuel. Since biodiesel is made entirely from vegetable oil or animal fats, it is renewable and biodegradable. The majority of biodiesel today is produced by alkali-catalyzed transesterification with methanol, which results in a relatively short reaction time. However, the vegetable oil and alcohol must be substantially anhydrous and have a low free fatty acid content, because the presence of water or free fatty acid or both promotes soap formation. In this article, we examine different biodiesel sources (edible and nonedible), virgin oil versus waste oil, algae-based biodiesel that is gaining increasing importance, role of different catalysts including enzyme catalysts, and the current state-of-the-art in biodiesel production. PMID:18205018
Blard, P.-H.; Pik, R.; Lave, J.; Bourles, D.; Burnard, P.G.; Yokochi, R.; Marty, B.; Trusdell, F.
2006-01-01
Measurements of the cosmogenic 3He (3Hec) content of various size aliquots of exposed olivines show that the fine fraction (<140 μm) has 3Hec concentrations between 14 and 100% lower than that of the coarse fractions (0.14–1 mm). Such differences attest to a grain size dependent partial release of 3Hec from the phenocrysts matrix during the preliminary in vacuo crushing. This result might have important implications since most 3Hec measurements have used for ∼20 yr a standard routine based on the fusion of bulk powdered phenocrysts, whatever their grain size. A suite of new data obtained from coarse olivine grains yielded a mean Sea Level High Latitude 3Hec production rate (SLHL P3) of 128±5 and 136±6 at. g−1 yr−1, depending on the scaling factors used. This new value, which is ∼15% higher than previously published rates, is obtained from 5 ropy flow surfaces of Mt Etna (38°N) and Hawaiian (19°N) volcanoes, at elevations between sea level and 870 m and ranging in age from 1.47±0.05 to 149±23 ka according to independent 14C or K/Ar dating. 3He loss during the crushing step might account for the discrepancy between the standard reference value of 110–115 at. g−1 y−1 and the higher SLHL P3 proposed here. More generally, removal of the powdered fraction before fusion is an important point to consider in further studies in order to avoid any 3Hec systematic underestimates.An altitudinal section has also been sampled on the ropy surface of a ∼1500 yr single flow of Mauna Loa (19°N) which allowed a new empirical atmospheric attenuation length of 149±22 g cm−2 to be documented for 3Hec in olivines between 2400 and 4000 m elevations.
NASA Astrophysics Data System (ADS)
Whiting, Daniel J.; Keaveney, James; Adams, Charles S.; Hughes, Ifan G.
2016-04-01
Applying large magnetic fields to gain access to the hyperfine Paschen-Back regime can isolate three-level systems in a hot alkali metal vapors, thereby simplifying usually complex atom-light interactions. We use this method to make the first direct measurement of the |<5 P ||e r ||5 D >| matrix element in 87Rb. An analytic model with only three levels accurately models the experimental electromagnetically induced transparency spectra and extracted Rabi frequencies are used to determine the dipole matrix element. We measure |<5 P3 /2||e r ||5 D5 /2>| =(2.290 ±0 .002stat±0 .04syst) e a0 , which is in excellent agreement with the theoretical calculations of Safronova, Williams, and Clark [Phys. Rev. A 69, 022509 (2004), 10.1103/PhysRevA.69.022509].
Linnemann, Amelia K.; Krawetz, Stephen A.
2010-01-01
Summary The ordered packaging of DNA within the nucleus of somatic cells reflects a dynamic supportive structure that facilitates stable transcription interrupted by intermittent cycles of extreme condensation. This dynamic mode of packing and unpacking chromatin is intimately linked to the ability of the genome to specifically complex with both histones and non-histone proteins. Understanding the underlying mechanism that governs the formation of higher order chromatin structures is a key to understanding how local architecture modulates transcription. In part, the formation of these structures appears to be regulated through genomic looping that is dynamically mediated by attachment to the nuclear scaffold/matrix at S/MARs, i.e., Scaffold/Matrix Attachment Regions. Although the mechanism guiding the formation and use of these higher-ordered structures remains unknown, S/MARs continue to reveal a multitude of roles in development and the pathogenesis of disease. PMID:20948980
Nims, Robert J.; Cigan, Alexander D.; Albro, Michael B.; Hung, Clark T.; Ateshian, Gerard A.
2013-01-01
Large-sized cartilage constructs suffer from inhomogeneous extracellular matrix deposition due to insufficient nutrient availability. Computational models of nutrient consumption and tissue growth can be utilized as an efficient alternative to experimental trials to optimize the culture of large constructs; models require system-specific growth and consumption parameters. To inform models of the [bovine chondrocyte]-[agarose gel] system, total synthesis rate (matrix accumulation rate + matrix release rate) and matrix retention fractions of glycosaminoglycans (GAG), collagen, and cartilage oligomeric matrix protein (COMP) were measured either in the presence (continuous or transient) or absence of TGF-β3 supplementation. TGF-β3’s influence on pyridinoline content and mechanical properties was also measured. Reversible binding kinetic parameters were characterized using computational models. Based on our recent nutrient supplementation work, we measured glucose consumption and critical glucose concentration for tissue growth to computationally simulate the culture of a human patella-sized tissue construct, reproducing the experiment of Hung et al., (2003). Transient TGF-β3 produced the highest GAG synthesis rate, highest GAG retention ratio, and highest binding affinity; collagen synthesis was elevated in TGF-β3 supplementation groups over control, with the highest binding affinity observed in the transient supplementation group; both COMP synthesis and retention were lower than those for GAG and collagen. These results informed the modeling of GAG deposition within a large patella construct; this computational example was similar to previous experimental results without further adjustments to modeling parameters. These results suggest that these nutrient consumption and matrix synthesis models are an attractive alternative for optimizing the culture of large-sized constructs. PMID:24284199
NASA Astrophysics Data System (ADS)
Pankratov, Oleg; Kuvshinov, Alexey
2015-03-01
3-D electromagnetic (EM) studies of the Earth have advanced significantly over the past decade. Despite a certain success of the 3-D EM inversions of real data sets, the quantitative assessment of the recovered models is still a challenging problem. It is known that one can gain valuable information about model uncertainties from the analysis of Hessian matrix. However, even with modern computational capabilities the calculation of the Hessian matrix based on numerical differentiation is extremely time consuming. Much more efficient way to compute the Hessian matrix is provided by an `adjoint sources' methodology. The computation of Hessian matrix (and Hessian-vector products) using adjoint formulation is now well-established approach, especially in seismic inverse modelling. As for EM inverse modelling we did not find in the literature a description of the approach, which would allow EM researchers to apply this methodology in a straightforward manner to their scenario of interest. In the paper, we present formalism for the efficient calculation of the Hessian matrix using adjoint sources approach. We also show how this technique can be implemented to calculate multiple Hessian-vector products very efficiently. The formalism is general in the sense that it allows to work with responses that arise in EM problem set-ups either with natural- or controlled-source excitations. The formalism allows for various types of parametrization of the 3-D conductivity distribution. Using this methodology one can readily obtain appropriate formulae for the specific sounding methods. To illustrate the concept we provide such formulae for two EM techniques: magnetotellurics and controlled-source sounding with vertical magnetic dipole as a source.
Liu, Chen; Zhu, Caihong; Li, Jun; Zhou, Pinghui; Chen, Min; Yang, Huilin; Li, Bin
2015-01-01
Annulus fibrosus (AF) tissue engineering has recently received increasing attention as a treatment for intervertebral disc (IVD) degeneration; however, such engineering remains challenging because of the remarkable complexity of AF tissue. In order to engineer a functional AF replacement, the fabrication of cell-scaffold constructs that mimic the cellular, biochemical and structural features of native AF tissue is critical. In this study, we fabricated aligned fibrous polyurethane scaffolds using an electrospinning technique and used them for culturing AF-derived stem/progenitor cells (AFSCs). Random fibrous scaffolds, also prepared via electrospinning, were used as a control. We compared the morphology, proliferation, gene expression and matrix production of AFSCs on aligned scaffolds and random scaffolds. There was no apparent difference in the attachment or proliferation of cells cultured on aligned scaffolds and random scaffolds. However, compared to cells on random scaffolds, the AFSCs on aligned scaffolds were more elongated and better aligned, and they exhibited higher gene expression and matrix production of collagen-I and aggrecan. The gene expression and protein production of collagen-II did not appear to differ between the two groups. Together, these findings indicate that aligned fibrous scaffolds may provide a favourable microenvironment for the differentiation of AFSCs into cells similar to outer AF cells, which predominantly produce collagen-I matrix. PMID:26273539
9 CFR 325.3 - Product transported within the United States as part of export movement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Product transported within the United States as part of export movement. 325.3 Section 325.3 Animals and Animal Products FOOD SAFETY AND... PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION TRANSPORTATION § 325.3 Product...
Complete solution for unambiguous discrimination of three pure states with real inner products
Sugimoto, H.; Hashimoto, T.; Horibe, M.; Hayashi, A.
2010-09-15
Complete solutions are given in a closed analytic form for unambiguous discrimination of three general pure states with real mutual inner products. For this purpose, we first establish some general results on unambiguous discrimination of n linearly independent pure states. The uniqueness of solution is proved. The condition under which the problem is reduced to an (n-1)-state problem is clarified. After giving the solution for three pure states with real mutual inner products, we examine some difficulties in extending our method to the case of complex inner products. There is a class of set of three pure states with complex inner products for which we obtain an analytical solution.
Li, Zhendong; Suo, Bingbing; Liu, Wenjian
2014-12-28
The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects. PMID:25554131
NASA Astrophysics Data System (ADS)
Li, Zhendong; Suo, Bingbing; Liu, Wenjian
2014-12-01
The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects.
Li, Zhendong; Suo, Bingbing; Liu, Wenjian
2014-12-28
The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects.
Kim, Ho Myeong; Cho, Eun Jin; Bae, Hyeun-Jong
2016-08-01
Jack bean (JB, Canavalia ensiformis) is the source of bio-based products, such as proteins and bio-sugars that contribute to modern molecular biology and biomedical research. In this study, the use of jack bean was evaluated as a source for concanavalin A (Con A) and bio-sugar production. A novel method for purifying Con A from JBs was successfully developed using a glucosylated magnetic nano matrix (GMNM) as a physical support, which facilitated easy separation and purification of Con A. In addition, the enzymatic conversion rate of 2% (w/v) Con A extracted residue to bio-sugar was 98.4%. Therefore, this new approach for the production of Con A and bio-sugar is potentially useful for obtaining bio-based products from jack bean. PMID:26923569
Dantas, Noelio O; Silva, Alessandra S; Freitas Neto, Ernesto S; Lourenço, Sidney A
2012-03-14
Zn(1-x)Mn(x)Te nanocrystals (NCs), at various concentrations x, were successfully grown in a host glass matrix by the fusion method after appropriate annealing. Growth of these NCs was evidenced by optical absorption (OA), X-Ray Diffraction (XRD), magnetic force microscopy (MFM) and photoluminescence (PL) measurements. From the room temperature OA spectra, it was possible to observe the formation of two well defined, different sized groups of NCs, one attributed to quantum dots (QDs) and the other to bulk-like nanocrystals (NCs). XRD results have confirmed that the cubic zincblend structure of nanoparticles is not altered by the substitutional incorporation of Mn(2+) ions into the ZnTe NCs. MFM images supported the OA spectra results and thus provided additional confirmation of the formation of Zn(1-x)Mn(x)Te magnetic nanoparticles in the host glass matrix. The two groups of NCs were also observed in the PL spectra as well as deep defects attributed to the presence of oxygen centers in the electronic structure of the Zn(1-x)Mn(x)Te NCs. Strong agreement between the fitting model, based on rate equation, and experimental PL intensity data at different temperatures demonstrates that this model adequately describes the energy transfer processes between the NCs and the defects of the Zn(1-x)Mn(x)Te system at different temperatures. PMID:22307452
Lee, Myung-Shik; Gu, Danling; Feng, Lili; Curriden, Scott; Arnush, Marc; Krahl, Troy; Gurushanthaiah, Deepak; Wilson, Curtis; Loskutoff, David L.; Fox, Howard; Sarvetnick, Nora
1995-01-01
Transgenic mice expressing transforming growth factor-β1 (TGF-β1) in the pancreatic β-islet cells directed by human insulin promoter were produced to study in vivo effects of TGF-β1. Fibroblast proliferation and abnormal deposition of extracellular matrix were observed from birth onward, finally replacing almost all the exocrine pancreas. Cellular infiltrates comprising macrophages and neutrophils were also observed. Plasminogen activator inhibitor was induced in the transgenic pancreas as well as fibronectin and laminin, partly explaining accumulation of extracellular matrix. TGF-β1 inhibited proliferation of acinar cells in vivo as evidenced by decreased bromodeoxyuridine incorporation. Development of pancreatic islets was dysregulated, resulting in small islet cell clusters without formation of normal adult islets; however, the overall islet cell mass was not signfifcantly diminished. Additional transgenic lines with less pronounced phenotypes had less expression of TGF-β1 transgene. These findings suggest that TGF-β1 might be a mediator of diseases associated with extracellular matrix deposition such as chronic pancreatitis, and this mouse model will be useful for further analysis of the in vivo effects of TGF-β1, including its potential for immunosuppression. Imagesp43-aFigure 2Figure 3Figure 4Figure 5Figure 6 PMID:7604884
NASA Technical Reports Server (NTRS)
Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.
1992-01-01
State-to-state reaction probabilities are found to be highly final-state specific at state-selected threshold energies for the reactions O + H2 yield OH + H and H + H2 yield H2 + H. The study includes initial rotational states with quantum numbers 0-15, and the specificity is especially dramatic for the more highly rotationally excited reactants. The analysis is based on accurate quantum mechanical reactive scattering calculations. Final-state specificity is shown in general to increase with the rotational quantum number of the reactant diatom, and the trends are confirmed for both zero and nonzero values of the total angular momentum.
Lyon, Jonathan T; Cho, Han-Gook; Andrews, Lester
2015-12-24
Laser-ablated vanadium, niobium, and tantalum atoms were reacted with CH2X2, CHX3, and CX4 (X = F and Cl) molecules in condensing argon, and the products were investigated by matrix isolation infrared spectroscopy. The major reaction products are new CH2-MX2, CHX-MX2, HC-MX3, and XC-MX3 complexes. These reactive species were identified by comparing their matrix infrared spectra with frequencies, intensities, and isotopic shifts from density functional theory calculations. Product structures and energies from these calculations are also presented. Results from previously studied Group 4 and 6 metal reaction products are compared. Little change is found in the calculated metal-carbon bond lengths in the early first row CH2═MF2 methylidene σ(2)π(2) series; however, the methylidyne complexes HC{}MF3 show considerable increase in bond strength for the nominally σ(2)π(1)π(1)(Ti), σ(2)π(2)π(1)(V), and σ(2)π(2)π(2)(Cr) carbon{}metal bonds left to right. The Group 5 HC{}MF3 complexes have only a plane of symmetry whereas the Group 4 and 6 analogues have 3-fold symmetry. PMID:26601564
Synthetic Organic Chemicals: United States Production and Sales, 1976.
ERIC Educational Resources Information Center
Adams, Roger; And Others
This is the sixth annual report of the U.S. Trade Commission on domestic production and sales of synthetic organic chemicals and the raw materials from which they are made. The report consists of 15 sections, each covering a specified group (based primarily on use) of organic chemicals as follows: tar and tar crudes; primary products from…
Site Specific Management of Cotton Production in the United States
Technology Transfer Automated Retrieval System (TEKTRAN)
Site-specific management or precision agriculture, as it is evolving in large-scale crop production, offers promising new methods for managing cotton production for optimized yields, maximized profitability, and minimized environmental pollution. However, adaptation of site-specific theory and meth...
Inner products of Bethe states as partial domain wall partition functions
NASA Astrophysics Data System (ADS)
Kostov, Ivan; Matsuo, Yutaka
2012-10-01
We study the inner product of Bethe states in the inhomogeneous periodic XXX spin-1/2 chain of length L, which is given by the Slavnov determinant formula. We show that the inner product of an on-shell M -magnon state with a generic M -magnon state is given by the same expression as the inner product of a 2 M -magnon state with a vacuum descendent. The second inner product is proportional to the partition function of the six-vertex model on a rectangular L × 2 M grid, with partial domain-wall boundary conditions.
Low charge state heavy ion production with sub-nanosecond laser
NASA Astrophysics Data System (ADS)
Kanesue, T.; Kumaki, M.; Ikeda, S.; Okamura, M.
2016-02-01
We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.
The economics of biomass production in the United States
Graham, R.L.; Walsh, M.E.; Lichtenberg, E.; Roningen, V.O.; Shapouri, H.
1995-12-31
Biomass crops (e.g. poplar, willow, switchgrass) could become important feedstocks for power, liquid fuel, and chemical production. This paper presents estimates of the potential production of biomass in the US under a range of assumptions. Estimates of potential biomass crop yields and production costs from the Department of Energy`s (DOE) Oak Ridge National Laboratories (ORNL) are combined with measures of land rents from USDA`s Conservation Reserve Program (CRP), to estimate a competitive supply of biomass wood and grass crops. Estimates are made for one potential biomass use--electric power production--where future costs of electricity production from competing fossil fuels set the demand price. The paper outlines the methodology used and limitations of the analysis.
NASA Astrophysics Data System (ADS)
Grover, Rakhi; Jauhari, Himanshi; Saxena, Kanchan
2016-05-01
Dye sensitized solar cells (DSSCs) are considered to be emerging alternatives to the low cost indoor photovoltaic technologies. However, to make the application of these cells economically feasible, the stability of the cells need to be enhanced. This can be achieved by employing solid or quasi solid state electrolytes to reduce the leakage and sealing problems in DSSCs. In the present work, a gel state electrolyte composition was successfully prepared using thiourea and solid state ionic conductor succinonitrile along with other components. The composition has been used for the fabrication of quasi solid state DSSCs using Eosin B as the sensitizer material. The cells fabricated exhibited consistent photovoltaic properties even after 24 hours of storage under ambient conditions without sealing. The present work therefore, demonstrates a rapid and simple preparation of electrolyte medium for quasi solid state DSSCs.
Park, Jin-Young; Kim, Tae-Kyung; Choi, Juli; Lee, Jung-Eun; Kim, Hannah; Lee, Eun-Hwa
2014-01-01
Animal models of depression are used to study pathophysiology of depression and to advance therapeutic strategies. Stress-induced depression models in rodents are widely used. However, amenable behavioral criteria and experimental procedures that are suitable for animal models have not been established. Given that depression is clinically diagnosed by multiple symptomatic criteria and stress effects are imposed to the brain non-specifically in stress-induced depression models, analyses of depression states in rodents using multiple symptomatic criteria may provide more power than any methods relying on a single symptomatic criterion. To address this, C57BL/6 inbred mice were restrained for 2 h daily for 14 d, and depression states of individual mice were assessed using the U-field test, behavioral assessment developed to measure animal's sociability, and the tail suspension test and/or forced swim test, which are the typical methods that measure psychomotor withdrawal states. Although the majority of these mice showed severe depressive behaviors in both tests, a significant proportion of them, which were all inbred mice and received the same amount of restraints, expressed differential depression states in the sociability test and psychomotor withdrawal tests. To easily read-out differential depression states of individuals in two different tests, a standard method and basic parameters required to construct two-way behavior matrix were introduced. The utility and features of this two-way behavior analysis method for studies of different depressive states of individuals were discussed. PMID:25258568
NASA Technical Reports Server (NTRS)
Ingber, D. E.
1992-01-01
Angiogenesis, the growth of blood capillaries, is regulated by soluble growth factors and insoluble extracellular matrix (ECM) molecules. Soluble angiogenic mitogens act over large distances to initiate capillary growth whereas changes in ECM govern whether individual cells will grow, differentiate, or involute in response to these stimuli in the local tissue microenvironment. Analysis of this local control mechanism has revealed that ECM molecules switch capillary endothelial cells between differentiation and growth by both binding specific transmembrane integrin receptors and physically resisting cell-generated mechanical loads that are applied to these receptors. Control of capillary endothelial cell form and function therefore may be exerted by altering the mechanical properties of the ECM as well as its chemical composition. Understanding of this mechanochemical control mechanism has led to the development of new angiogenesis inhibitors that may be useful for the treatment of cancer.
Quantum hyperparallel algorithm for matrix multiplication
NASA Astrophysics Data System (ADS)
Zhang, Xin-Ding; Zhang, Xiao-Ming; Xue, Zheng-Yuan
2016-04-01
Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N2), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is separated to N paths. With the assistance of hyperentangled states, the inner product of two vectors can be calculated with a time complexity independent of dimension N. Our algorithm shows that hyperparallel quantum computation may provide a useful tool in quantum machine learning and “big data” analysis.
Quantum hyperparallel algorithm for matrix multiplication.
Zhang, Xin-Ding; Zhang, Xiao-Ming; Xue, Zheng-Yuan
2016-01-01
Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N(2)), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is separated to N paths. With the assistance of hyperentangled states, the inner product of two vectors can be calculated with a time complexity independent of dimension N. Our algorithm shows that hyperparallel quantum computation may provide a useful tool in quantum machine learning and "big data" analysis. PMID:27125586
Continuous Optical Production of Ultracold Vibronic Ground State Polar Molecules
NASA Astrophysics Data System (ADS)
Bruzewicz, Colin David
We present recent results on the formation of ultracold polar molecules via photoassociation. Beginning with pre-cooled samples of Rb and Cs atoms, we produce electronically-excited molecules that inherit the ultracold temperature of their atomic precursors. In order to create large samples of ultracold molecules in their vibrational and rotational X 1Sigma+(upsilon=J=0) ground state, we study two different photoassociative regimes. In the first, molecules are created in a particular highly vibrationally-excited molecular state and decay strongly to a weakly-bound vibrational level in the ground a3Sigma + state. To study a possible population transfer scheme from this state to the X1Sigma+(upsilon=J=0) ground state, we present high-resolution depletion spectroscopy of the a 3Sigma+ c3Sigma+ transition for use in the first stage of a proposed Stimulated Raman Adiabatic Passage (STIRAP) transfer. In the second photoassociative regime, molecules are created in deeply-bound, electronically-excited vibrational levels that decay directly to the X1Sigma+(upsilon=0) state, obviating the need for population transfer. Through theoretical analysis and subsequent experimental verification, we demonstrate continuous formation of X 1Sigma+(upsilon=0) RbCs molecules at rates in excess of 103/s. We then conclude with detailed calculations of a method to purify the molecular sample of unwanted excited molecular states, based on inelastic scattering with ultracold Cs atoms.
STATE OF THE ART: SWINE WASTE PRODUCTION AND PRETREATMENT PROCESSES
A review of waste generation and pretreatment processes was compiled, expanded, and interpreted for the swine production industry. Typical swine units based upon waste management techniques were detailed as concrete slab facilities, slotted floorpit units, and swine drylot or pas...
The state of autotrophic ethanol production in Cyanobacteria.
Dexter, J; Armshaw, P; Sheahan, C; Pembroke, J T
2015-07-01
Ethanol production directly from CO2 , utilizing genetically engineered photosynthetic cyanobacteria as a biocatalyst, offers significant potential as a renewable and sustainable source of biofuel. Despite the current absence of a commercially successful production system, significant resources have been deployed to realize this goal. Utilizing the pyruvate decarboxylase from Zymomonas species, metabolically derived pyruvate can be converted to ethanol. This review of both peer-reviewed and patent literature focuses on the genetic modifications utilized for metabolic engineering and the resultant effect on ethanol yield. Gene dosage, induced expression and cassette optimizat-ion have been analyzed to optimize production, with production rates of 0·1-0·5 g L(-1) day(-1) being achieved. The current 'toolbox' of molecular manipulations and future directions focusing on applicability, addressing the primary challenges facing commercialization of cyanobacterial technologies are discussed. PMID:25865951
NASA Astrophysics Data System (ADS)
Zhao, Yanran; Wu, Chuan; Peng, Gang; Chen, Xiaotian; Yao, Xiayin; Bai, Ying; Wu, Feng; Chen, Shaojie; Xu, Xiaoxiong
2016-01-01
Li10GeP2S12 (LGPS) is incorporated into polyethylene oxide (PEO) matrix to fabricate composite solid polymer electrolyte (SPE) membranes. The lithium ion conductivities of as-prepared composite membranes are evaluated, and the optimal composite membrane exhibits a maximum ionic conductivity of 1.21 × 10-3 S cm-1 at 80 °C and an electrochemical window of 0-5.7 V. The phase transition behaviors for electrolytes are characterized by DSC, and the possible reasons for their enhanced ionic conductivities are discussed. The LGPS microparticles, acting as active fillers incorporation into the PEO matrix, have a positive effect on the ionic conductivity, lithium ion transference number and electrochemical stabilities. In addition, two kinds of all-solid-state lithium batteries (LiFeO4/SPE/Li and LiCoO2/SPE/Li) are fabricated to demonstrate the good compatibility between this new SPE membrane and different electrodes. And the LiFePO4/Li battery exhibits fascinating electrochemical performance with high capacity retention (92.5% after 50 cycles at 60 °C) and attractive capacities of 158, 148, 138 and 99 mAh g-1 at current rates of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C, respectively. It is demonstrated that this new composite SPE should be a promising electrolyte applied in solid state batteries based on lithium metal electrode.
NASA Astrophysics Data System (ADS)
Li, Zhendong; Liu, Wenjian
2014-07-01
Analytic expressions for the first-order nonadiabatic coupling matrix elements between electronically excited states are first formulated exactly via both time-independent equation of motion and time-dependent response theory, and are then approximated at the configuration interaction singles, particle-hole/particle-particle random phase approximation, and time-dependent density functional theory/Hartree-Fock levels of theory. Note that, to get the Pulay terms arising from the derivatives of basis functions, the standard response theory designed for electronic perturbations has to be extended to nuclear derivatives. The results are further recast into a Lagrangian form that is similar to that for excited-state energy gradients and allows to use atomic orbital based direct algorithms for large molecules.
Survey of fura production in some northern states of Nigeria.
Jideani, V A; Nkama, I; Agbo, E B; Jideani, I A
2001-01-01
The objective of this research was to conduct a survey related to the production process for fura. Fura is a staple food for the Fulanis and Hausas. The single most important cereal grain for fura production is millet. A significant difference exists among respondents on the variety of millet chosen for fura production. A significantly (p = 0.05) greater proportion indicated that 'gero' is the variety in common use. Spices are indispensable as an ingredient in fura production with ginger being the single most important spice (p = 0.01). The traditional pounding method for processing millet into flour is still very much used. The implication of this is highlighted and a possible solution of optimizing the fura production process is recommended. Strictly speaking, fura is distributed with a minimum of packaging. The choice of suitable packaging provided protection during a generally short shelf-life and for local distribution. With increasing influence of advertising upon customers, small food processing enterprises making fura will have to improve the packaging and preservation of their products if they are to survive the competition. PMID:11213166
Biohythane production from organic wastes: present state of art.
Roy, Shantonu; Das, Debabrata
2016-05-01
The economy of an industrialized country is greatly dependent on fossil fuels. However, these nonrenewable sources of energy are nearing the brink of extinction. Moreover, the reliance on these fuels has led to increased levels of pollution which have caused serious adverse impacts on the environment. Hydrogen has emerged as a promising alternative since it does not produce CO2 during combustion and also has the highest calorific value. The biohythane process comprises of biohydrogen production followed by biomethanation. Biological H2 production has an edge over its chemical counterpart mainly because it is environmentally benign. Maximization of gaseous energy recovery could be achieved by integrating dark fermentative hydrogen production followed by biomethanation. Intensive research work has already been carried out on the advancement of biohydrogen production processes, such as the development of suitable microbial consortium (mesophiles or thermophiles), genetically modified microorganism, improvement of the reactor designs, use of different solid matrices for the immobilization of whole cells, and development of two-stage process for higher rate of H2 production. Scale-up studies of the dark fermentation process was successfully carried out in 20- and 800-L reactors. However, the total gaseous energy recovery for two stage process was found to be 53.6 %. From single-stage H2 production, gaseous energy recovery was only 28 %. Thus, two-stage systems not only help in improving gaseous energy recovery but also can make biohythane (mixture of H2 and CH4) concept commercially feasible. PMID:26507735
Matrix cracking in ceramic-matrix composites
Danchaivijit, S.; Shetty, D.K. . Dept. of Materials Science and Engineering)
1993-10-01
Matrix cracking in ceramic-matrix composites with unbonded frictional interface has been studied using fracture mechanics theory. The critical stress for extension of a fiber-bridged crack has been analyzed using the stress-intensity approach. The analysis uses a new shear-lag formulation of the crack-closure traction applied by the bridging fibers based on the assumption of a constant sliding friction stress over the sliding length of the fiber-matrix interface. The new formulation satisfies two required limiting conditions: (a) when the stress in the bridging fiber approaches the far-field applied stress, the crack-opening displacement approaches a steady-state upper limit that is in agreement with the previous formulations; and (b) in the limit of zero crack opening, the stress in the bridging fiber approaches the far-field fiber stress. This lower limit of the bridging stress is distinctly different from the previous formulations. For all other conditions, the closure traction is a function of the far-field applied stress in addition to the local crack-opening displacement, the interfacial sliding friction stress, and the material properties. Numerical calculations using the stress-intensity approach indicate that the critical stress for crack extension decreases with increasing crack length and approaches a constant steady-state value for large cracks. The steady-state matrix-cracking stress agrees with a steady-state energy balance analysis applied to the continuum model, but it is slightly less than the matrix-cracking stress predicted by such theories of steady-state cracking as that of Aveston, Cooper, and Kelly. The origin of this difference and a method for reconciliation of the two theoretical approaches are discussed.
Ocean state indicators from MyOcean altimeter products
NASA Astrophysics Data System (ADS)
Bessières, L.; Rio, M. H.; Dufau, C.; Boone, C.; Pujol, M. I.
2013-06-01
The European MyOcean project (http://www.myocean.eu.org) provides observations of the ocean dynamic topography from altimeter measurements. Three specific indicators have been developed, based on altimeter data only, in order to monitor the ocean state. The first ocean indicator observes the positive and negative phases of the ENSO events in the tropical Pacific, the El Niño/La Niña events, since 1992. The second ocean indicator tracks the contracted or extended state of the Kuroshio Extension. The last ocean indicator is dedicated to the Ionian Basin in the Mediterranean Sea and permits separation of "zonal-cyclonic" state (1998-2005 and since 2011 up to now) from the "anticyclonic" state (1993-1996) usually discussed in the literature. In addition, it allows identifying a third state in which both the anticyclonic circulation around the northern part of the basin and the strong zonal Mid-Ionian Jet co-exist (2008-2010).
NASA Astrophysics Data System (ADS)
Cao, Gao-Qing; He, Lian-Yi
2015-12-01
The Ginzburg-Landau (GL) free energy of crystalline color superconductors is important for understanding the nature of the phase transition to the normal quark matter and predicting the preferred crystal structure. So far the GL free energy at zero temperature has only been evaluated up to the sixth order in the condensate. To give quantitative reliable predictions we need to evaluate the higher-order terms. In this work, we present a new derivation of the GL free energy by using the discrete Bloch representation of the fermion field. This derivation introduces a simple matrix formalism without any momentum constraint, which may enable us to calculate the GL free energy to arbitrary order by using a computer. Supported by the National Natural Science Foundation of China under Grant No. 11335005 and the Ministry of Science and Technology under Grant Nos. 2013CB922000 and 2014CB845400, and by the US Department of Energy Topical Collaboration “Neutrinos and Nucleosynthesis in Hot and Dense Matter”
Positron-molecule bound states and positive ion production
NASA Technical Reports Server (NTRS)
Leventhal, M.; Passner, A.; Surko, C. M.
1990-01-01
The interaction was studied of low energy positrons with large molecules such as alkanes. These data provide evidencce for the existence of long lived resonances and bound states of positrons with neutral molecules. The formation process and the nature of these resonances are discussed. The positive ions produced when a positron annihilates with an electron in one of these resonances were observed and this positive ion formation process is discussed. A review is presented of the current state of the understanding of these positron-molecule resonances and the resulting positive ion formation. A number of outstanding issues in this area is also discussed.
Squeezed States and Particle Production in High Energy Collisions
NASA Technical Reports Server (NTRS)
Bambah, Bindu A.
1996-01-01
Using the 'quantum optical approach' we propose a model of multiplicity distributions in high energy collisions based on squeezed coherent states. We show that the k-mode squeezed coherent state is the most general one in describing hadronic multiplicity distributions in particle collision processes, describing not only p(bar-p) collisions but e(+)e(-), vp and diffractive collisions as well. The reason for this phenomenological fit has been gained by working out a microscopic theory in which the squeezed coherent sources arise naturally if one considers the Lorentz squeezing of hadrons and works in the covariant phase space formalism.
Trends in United States cotton yield productivity since 1980
Technology Transfer Automated Retrieval System (TEKTRAN)
Cotton is produced in over 30 countries and provides a major fiber source of textile manufacturers. In the U.S., upland cotton is produced along the southern most portion of the country in sixteen states from California to Virginia. In 2012, the direct market value of 17.0 million bales of U.S. cott...
Influenza Virus Surveillance in Coordinated Swine Production Systems, United States.
Kaplan, Bryan S; DeBeauchamp, Jennifer; Stigger-Rosser, Evelyn; Franks, John; Crumpton, Jeri Carol; Turner, Jasmine; Darnell, Daniel; Jeevan, Trushar; Kayali, Ghazi; Harding, Abbey; Webby, Richard J; Lowe, James F
2015-10-01
To clarify the epidemiology of influenza A viruses in coordinated swine production systems to which no animals from outside the system are introduced, we conducted virologic surveillance during September 2012-September 2013. Animal age, geographic location, and farm type were found to affect the prevalence of these viruses. PMID:26402228
Measurement of the WW+WZ Production Cross Section Using the Lepton+Jets Final State at CDF II
Aaltonen, T.; Adelman, J.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; /Waseda U. /Dubna, JINR
2009-11-01
We report two complementary measurements of the diboson (WW + WZ) cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using p{bar p} collision data at {radical}s = 1.96 TeV collected by the Collider Detector at Fermilab. The first method uses the dijet invariant mass distribution while the second method uses more of the kinematic information in the event through matrix-element calculations of the signal and background processes and has a higher sensitivity. The result from the second method has a signal significance of 5.4{sigma} and is the first observation of WW + WZ production using this signature. Combining the results from both methods gives {sigma}{sub WW+WZ} = 16.0 {+-} 3.3 pb, in agreement with the standard model prediction.
NASA Astrophysics Data System (ADS)
Kinghorn, Donald Bruce
The matrix differential calculus is introduced to the quantum chemistry community via new matrix derivations of integral formulas and gradients for Hamiltonian matrix elements in a basis of correlated Gaussian functions. Requisite mathematical background material on Kronecker products, Hadamard products, the vec and vech operators, linear structures, and matrix differential calculus is presented. New matrix forms for the kinetic and potential energy operators are presented. Integrals for overlap, kinetic energy and potential energy matrix elements are derived in matrix form using matrix calculus. The gradient of the energy functional with respect to the correlated Gaussian exponent matrices is derived. Burdensome summation notation is entirely replaced with a compact matrix notation that is both theoretically and computationally insightful. These new formulas in the basis of explicitly correlated Gaussian basis functions, are implemented and applied to find variational upper bounds for non-relativistic ground states of ^4He, ^{infty}He, Ps_2, ^9Be, and ^ {infty}Be. Analytic gradients of the energy are included to speed optimization of the exponential variational parameters. Five different nonlinear optimization subroutines (algorithms) are compared: TN, truncated Newton; DUMING, quasi-Newton; DUMIDH, modified Newton; DUMCGG, conjugate gradient; POWELL, direction set (non-gradient). The new analytic gradient formulas are found to significantly accelerate optimizations that require gradients. The truncated Newton algorithm is found to outperform the other optimizers for the selected test cases. Computer timings and energy bounds are reported. The new TN bounds surpass previously reported bounds with the same basis size.
NASA Astrophysics Data System (ADS)
Bierenbaum, Isabella; Blümlein, Johannes; Klein, Sebastian
2007-09-01
We calculate the O(αs2) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q≫m. The calculation has been performed using light-cone expansion techniques. We confirm an earlier result obtained in [M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Nucl. Phys. B 472 (1996) 611, arxiv:/hep-ph/9601302]. The calculation is carried out without using the integration-by-parts method and in Mellin space using harmonic sums, which lead to a significant compactification of the analytic results derived previously. The results allow to determine the heavy flavor Wilson coefficients for F(x,Q) to O(αs2) and for F(x,Q) to O(αs3) for all but the power suppressed terms ∝(/Q)k,k⩾1.
NASA Astrophysics Data System (ADS)
Hosaka, Naoto; Koda, Ren; Onogi, Shinya; Mochizuki, Takashi; Masuda, Kohji
2013-07-01
We have developed a new matrix array transducer for controlling the behavior of microbubbles, which is different from that for high-intensity focused ultrasound (HIFU) therapy, in order to emit continuous wave by designing an acoustic field including multiple focal points. In the experiment using a thin-channel model, a wider acoustic field has an advantage for trapping microbubbles. In the experiment using a straight-path model, we have confirmed that a higher concentration of acoustic energy does not result in more aggregates. The dispersion of acoustic energy is important because the trapping performance is affected by the relationship between the shape of the acoustic field and the concentration of the suspension.
NASA Astrophysics Data System (ADS)
Beck, Warren F.; Homoelle, Bradley J.; Diffey, William M.
1998-03-01
We have employed two third-order femtosecond spectroscopic methods, stimulated-photon-echo peak-shift (3PEPS) and transient-grating (TG) spectroscopy, to characterize solvation dynamics at physiological temperatures in phycobiliprotein systems, the α subunit of C-phycocyanin and allophycocyanin in the trimeric aggregation state. Both systems exhibit a biphasic solvation response: an inertial phase, arising from librational motions of the amino acids or included water molecules in the chromophore-binding site, contributes a 80--100-fs component to the 3PEPS profile and appears as a rapidly-damped 72-cm-1 modulation of the TG signal; the diffusive phase, arising from collective protein-matrix motions, exhibits a component in the TG signal and 3PEPS profile on the 5--20-ps and longer time scales. The 3PEPS profile observed with allophycocyanin exhibits additional fast decay components, with time constants of 56 fs and 220 fs, that report the additional contributions to electronic dephasing that arise from interexciton-state radiationless decay and vibrational relaxation in the lower exciton state, respectively. These results, taken along with those of previous transient hole-burning experiments, show that the exciton states in allophycocyanin are imperfectly correlated.
Takino, Y; Okura, F; Kitazawa, M; Iwasaki, K; Tagami, H
2012-02-01
Reduced collagen matrix in the dermis constitutes one of the characteristic features of chronologically aged skin, which is further enhanced on the sun-exposed portions of the body by chronic ultraviolet light (UV) irradiation, inducing the unique changes associated with skin photoageing. The zinc salt of l-pyrrolidone carboxylate (Zinc PCA) has long been used as a cosmetic ingredient, because of its astringent and anti-microbial properties. In the present study, by employing cultured normal human dermal fibroblasts, we found that Zinc PCA suppressed UVA-induced activation of activator protein-1 (AP-1) and reduced matrix metalloproteinase-1 production in these cells, which is thought to be involved in collagen degradation in photoaged skin. Moreover, Zinc PCA treatment of the cells increased the expression of an ascorbic acid transporter mRNA, SVCT2, but not SVCT1, resulting in the enhanced production of type I collagen. Based on these in vitro findings, we consider Zinc PCA to be a promising candidate for an anti-skin ageing agent. PMID:21834944
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-16
... From the Federal Register Online via the Government Publishing Office OFFICE OF THE UNITED STATES TRADE REPRESENTATIVE WTO Dispute Settlement Proceeding Regarding United States-- Measures Affecting the Production and Sale of Clove Cigarettes AGENCY: Office of the United States Trade Representative....
Oxygen production using solid-state zirconia electrolyte technology
NASA Technical Reports Server (NTRS)
Suitor, Jerry W.; Clark, Douglas J.
1991-01-01
High purity oxygen is required for a number of scientific, medical, and industrial applications. Traditionally, these needs have been met by cryogenic distillation or pressure swing adsorption systems designed to separate oxygen from air. Oxygen separation from air via solid-state zirconia electrolyte technology offers an alternative to these methods. The technology has several advantages over the traditional methods, including reliability, compactness, quiet operation, high purity output, and low power consumption.
Trends in Braille and Large-Print Production in the United States: 2000-2004
ERIC Educational Resources Information Center
Emerson, Robert Wall; Corn, Anne; Sille, Mary Ann
2006-01-01
This study investigated practices in the production and distribution of braille and large-print textbooks, highlighting changes in production and delivery systems from 2000 to 2004. The findings indicate that fewer states use production models for the statewide acquisition and distribution of special materials and that there is a greater reliance…
Improving rapeseed production practices in the southeastern United States
Thomas, D.L.; Breve, M.A.; Raymer, P.L.; Minton, N.A.; Sumner, D.R. . Georgia Coastal Plain Experiment Station)
1990-04-01
Oilseed rape or rapeseed is a crop which offers a potential for double-cropping in the southeastern United States. This final project report describes the results from a three year study aimed at evaluating the effect of different planting and harvesting practices on establishment and yield of three rape cultivars, and the double cropping potential of rapeseed in the southeastern United States. The project was conducted on two yield sites in Tifton, Georgia during 1986--87, 1987--88 and 1988--89. The general objective of this research is to improve the seed and biomass yield of winter rapeseed in the southeastern United States by developing appropriate agronomic practices for the region. The primary constraint is to grow rapeseed within the allowable period for double cropping with an economically desirable crop, such as peanut or soybean. Planting and harvesting are the most critical steps in this process. Therefore, the specific objectives of this research were: evaluate and improve the emergence of rapeseed by developing planting techniques that enhance the soil, water and seed regimes for winter rapeseed in the southeast, and evaluate and improve the yields of harvested rapeseed by developing techniques for determining the optimum timing of harvest and efficient methods for harvesting winter rapeseed in the southeast. 6 refs., 12 figs., 9 tabs.
NASA Astrophysics Data System (ADS)
Nikitin, Anatoly G.; Karadzhov, Yuri
2011-07-01
We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.
Guo, Hangyuan; Lee, Jong-Dae; Uzui, Hiroyasu; Yue, Hong; Wang, Ping; Toyoda, Kiyohiro; Geshi, Tooru; Ueda, Takanori
2007-01-01
OBJECTIVE: To study the effects of heparin on the production of homocysteine-induced extracellular matrix metalloproteinase-2 (MMP-2) in cultured rat vascular smooth muscle cells. METHODS: The effects of different homocysteine levels (0 μmol/L to 1000 μmol/L) on MMP-2 production and the effects of different heparin concentrations (0 μg/mL to 100 μg/mL) on homocysteine-induced MMP-2 in cultured rat vascular smooth muscle cells were examined using gelatin zymography and Western blotting. The changes in MMP-2 were further compared with various treatments for 24 h, 48 h and 72 h. RESULTS: Homocysteine (50 μmol/L to 1000 μmol/L) increased the production of MMP-2 significantly in a dose-dependent manner. Increased production of MMP-2 induced by homocysteine was reduced by the extracellular addition of heparin in a dose-dependent manner. Production of MMP-2 with various treatment regimens for 72 h was greater than for 24 h and 48 h. CONCLUSIONS: Extracellular addition of heparin decreased homocysteine-induced MMP-2 secretion. Data suggest a mechanism by which hyperhomocysteinemia is involved in the pathogenesis of coronary artery disease and demonstrate a beneficial effect of heparin on these conditions. PMID:17380220
Ding, Zhenyang; Liang, Chia-Pin; Tang, Qinggong; Chen, Yu
2015-05-01
We present a simple but effective method to quantitatively measure the birefringence of tissue by an all single-mode fiber (SMF) based polarization-sensitive optical coherence tomography (PS-OCT) with single input polarization state. We theoretically verify that our SMF based PS-OCT system can quantify the phase retardance and optic axis orientation after a simple calibration process using a quarter wave plate (QWP). Based on the proposed method, the quantification of the phase retardance and optic axis orientation of a Berek polarization compensator and biological tissues were demonstrated. PMID:26137383
NASA Astrophysics Data System (ADS)
Kuijlaars, A. B. J.
2001-08-01
The asymptotic behavior of polynomials that are orthogonal with respect to a slowly decaying weight is very different from the asymptotic behavior of polynomials that are orthogonal with respect to a Freud-type weight. While the latter has been extensively studied, much less is known about the former. Following an earlier investigation into the zero behavior, we study here the asymptotics of the density of states in a unitary ensemble of random matrices with a slowly decaying weight. This measure is also naturally connected with the orthogonal polynomials. It is shown that, after suitable rescaling, the weak limit is the same as the weak limit of the rescaled zeros.
Harapanahalli, Akshay K.; Chen, Yun; Li, Jiuyi; Busscher, Henk J.
2015-01-01
The majority of human infections are caused by biofilms. The biofilm mode of growth enhances the pathogenicity of Staphylococcus spp. considerably, because once they adhere, staphylococci embed themselves in a protective, self-produced matrix of extracellular polymeric substances (EPSs). The aim of this study was to investigate the influence of forces of staphylococcal adhesion to different biomaterials on icaA (which regulates the production of EPS matrix components) and cidA (which is associated with cell lysis and extracellular DNA [eDNA] release) gene expression in Staphylococcus aureus biofilms. Experiments were performed with S. aureus ATCC 12600 and its isogenic mutant, S. aureus ATCC 12600 Δpbp4, deficient in peptidoglycan cross-linking. Deletion of pbp4 was associated with greater cell wall deformability, while it did not affect the planktonic growth rate, biofilm formation, cell surface hydrophobicity, or zeta potential of the strains. The adhesion forces of S. aureus ATCC 12600 were the strongest on polyethylene (4.9 ± 0.5 nN), intermediate on polymethylmethacrylate (3.1 ± 0.7 nN), and the weakest on stainless steel (1.3 ± 0.2 nN). The production of poly-N-acetylglucosamine, eDNA presence, and expression of icaA genes decreased with increasing adhesion forces. However, no relation between adhesion forces and cidA expression was observed. The adhesion forces of the isogenic mutant S. aureus ATCC 12600 Δpbp4 (deficient in peptidoglycan cross-linking) were much weaker than those of the parent strain and did not show any correlation with the production of poly-N-acetylglucosamine, eDNA presence, or expression of the icaA and cidA genes. This suggests that adhesion forces modulate the production of the matrix molecule poly-N-acetylglucosamine, eDNA presence, and icaA gene expression by inducing nanoscale cell wall deformation, with cross-linked peptidoglycan layers playing a pivotal role in this adhesion force sensing. PMID:25746995
Harapanahalli, Akshay K; Chen, Yun; Li, Jiuyi; Busscher, Henk J; van der Mei, Henny C
2015-05-15
The majority of human infections are caused by biofilms. The biofilm mode of growth enhances the pathogenicity of Staphylococcus spp. considerably, because once they adhere, staphylococci embed themselves in a protective, self-produced matrix of extracellular polymeric substances (EPSs). The aim of this study was to investigate the influence of forces of staphylococcal adhesion to different biomaterials on icaA (which regulates the production of EPS matrix components) and cidA (which is associated with cell lysis and extracellular DNA [eDNA] release) gene expression in Staphylococcus aureus biofilms. Experiments were performed with S. aureus ATCC 12600 and its isogenic mutant, S. aureus ATCC 12600 Δpbp4, deficient in peptidoglycan cross-linking. Deletion of pbp4 was associated with greater cell wall deformability, while it did not affect the planktonic growth rate, biofilm formation, cell surface hydrophobicity, or zeta potential of the strains. The adhesion forces of S. aureus ATCC 12600 were the strongest on polyethylene (4.9 ± 0.5 nN), intermediate on polymethylmethacrylate (3.1 ± 0.7 nN), and the weakest on stainless steel (1.3 ± 0.2 nN). The production of poly-N-acetylglucosamine, eDNA presence, and expression of icaA genes decreased with increasing adhesion forces. However, no relation between adhesion forces and cidA expression was observed. The adhesion forces of the isogenic mutant S. aureus ATCC 12600 Δpbp4 (deficient in peptidoglycan cross-linking) were much weaker than those of the parent strain and did not show any correlation with the production of poly-N-acetylglucosamine, eDNA presence, or expression of the icaA and cidA genes. This suggests that adhesion forces modulate the production of the matrix molecule poly-N-acetylglucosamine, eDNA presence, and icaA gene expression by inducing nanoscale cell wall deformation, with cross-linked peptidoglycan layers playing a pivotal role in this adhesion force sensing. PMID:25746995
Production of rovibronic ground-state 85 Rb133 Cs molecules via photoassociation to Ω = 1 states
NASA Astrophysics Data System (ADS)
Shimasaki, Toshihiko; Kim, Jin Tae; Demille, David
2016-05-01
We have extensively investigated short-range photoassociation (PA) to the (2) 3Π1 , (2) 1Π1 , and (3) 3Σ1+ states of 85 Rb133 Cs in the region between 11650 cm-1 and 12100 cm-1, where strong mixing between triplet and singlet states is expected. In contrast to the previously observed two-photon cascade decay from the (2) 3Π0 states, here we observe that the PA excited states can directly decay to the rovibronic ground state X1Σ+(v = 0 , J = 0) by a one-photon transition. We have observed rich hyperfine structures of the PA states, which were unresolved in previous cold beam experiments in the same region. Based on the analysis of vibrational and rotational branching ratios in the decay process to the X1Σ+ state, we will discuss the molecule production rate in comparison with that for PA to the (2) 3Π0 states. We will also report on a similar study of PA to the B1 Π and (2) 3Σ1+ states of 85 Rb133 Cs, which also produce the rovibronic ground state X1Σ+(v = 0 , J = 0) via direct one-photon decay.
Kajala, Ilkka; Mäkelä, Jari; Coda, Rossana; Shukla, Shraddha; Shi, Qiao; Maina, Ndegwa Henry; Juvonen, Riikka; Ekholm, Päivi; Goyal, Arun; Tenkanen, Maija; Katina, Kati
2016-04-01
The consumption of fiber-rich foods such as cereal bran is highly recommended due to its beneficial health effects. Pre-fermentation of bran with lactic acid bacteria can be used to improve the otherwise impaired flavor and textural qualities of bran-rich products. These positive effects are attributed to enzymatic modification of bran components and the production of functional metabolites like organic acids and exopolysaccharides such as dextrans. The aim of this study was to investigate dextran production in wheat and rye bran by fermentation with two Weissella confusa strains. Bran raw materials were analyzed for their chemical compositions and mineral content. Microbial growth and acidification kinetics were determined from the fermentations. Both strains produced more dextran in rye bran in which the fermentation-induced acidification was slower and the acidification lag phase longer than in wheat bran. Higher dextran production in rye bran is expected to be due to the longer period of optimal pH for dextran synthesis during fermentation. The starch content of wheat bran was higher, which may promote isomaltooligosaccharide formation at the expense of dextran production. W. confusa Cab3 produced slightly higher amounts of dextran than W. confusa VTT E-90392 in all raw materials. Fermentation with W. confusa Cab3 also resulted in lower residual fructose content which has technological relevance. The results indicate that wheat and particularly rye bran are promising matrices for producing technologically significant amounts of dextran, which facilitates the use of nutritionally valuable raw bran in food applications. PMID:26649737
GR@PPA 2.8: Initial-state jet matching for weak-boson production processes at hadron collisions
NASA Astrophysics Data System (ADS)
Odaka, Shigeru; Kurihara, Yoshimasa
2012-04-01
The initial-state jet matching method introduced in our previous studies has been applied to the event generation of single W and Z production processes and diboson (WW, WZ and ZZ) production processes at hadron collisions in the framework of the GR@PPA event generator. The generated events reproduce the transverse momentum spectra of weak bosons continuously in the entire kinematical region. The matrix elements (ME) for hard interactions are still at the tree level. As in previous versions, the decays of weak bosons are included in the matrix elements. Therefore, spin correlations and phase-space effects in the decay of weak bosons are exact at the tree level. The program package includes custom-made parton shower programs as well as ME-based hard interaction generators in order to achieve self-consistent jet matching. The generated events can be passed to general-purpose event generators to make the simulation proceed down to the hadron level. Catalogue identifier: ADRH_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRH_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 112 146 No. of bytes in distributed program, including test data, etc.: 596 667 Distribution format: tar.gz Programming language: Fortran; with some included libraries coded in C and C++ Computer: All Operating system: Any UNIX-like system RAM: 1.6 Mega bytes at minimum Classification: 11.2 Catalogue identifier of previous version: ADRH_v2_0 Journal reference of previous version: Comput. Phys. Comm. 175 (2006) 665 External routines: Bash and Perl for the setup, and CERNLIB, ROOT, LHAPDF, PYTHIA according to the user's choice. Does the new version supersede the previous version?: No, this version supports only a part of the processes included in the previous versions. Nature of problem: We
González-Ramos, Marta; Calleros, Laura; López-Ongil, Susana; Raoch, Viviana; Griera, Mercedes; Rodríguez-Puyol, Manuel; de Frutos, Sergio; Rodríguez-Puyol, Diego
2013-02-01
The circulating levels of heat shock proteins (HSP) are increased in cardiovascular diseases; however, the implication of this for the fibrotic process typical of such diseases remains unclear. HSP70 can interact with the vascular smooth muscle cells (SMC), the major producer of extracellular matrix (ECM) proteins, through the Toll-like receptors 4 (TLR4). The transforming growth factor type-β1 (TGF-β1) is a well known vascular pro-fibrotic cytokine that is regulated in part by AP-1-dependent transcriptional mechanisms. We hypothesized that extracellular HSP70 could interact with SMCs, inducing TGF-β1 synthesis and subsequent changes in the vascular ECM. We demonstrate that extracellular HSP70 binds to human aorta SMC TLR4, which up-regulates the AP-1-dependent transcriptional activity of the TGF-β1 promoter. This is achieved through the mitogen activated protein kinases JNK and ERK, as demonstrated by the use of specific blockers and the knockdown of TLR4 with specific small interfering RNAs. The TGF-β1 upregulation increase the expression of the ECM proteins type I collagen and fibronectin. This novel observation may elucidate the mechanisms by which HSP70 contributes in the inflammation and fibrosis present in atherosclerosis and other fibrosis-related diseases. PMID:23084979
NASA Astrophysics Data System (ADS)
Romanenko, A. I.; Dybtsev, D. N.; Fedin, V. P.; Aliev, S. B.; Limaev, K. M.
2015-01-01
Conducting polyaniline PANI has been obtained inside dielectric nanoporous coordination polymer MIL-101. The application of an electric field transforms both bulk PANI and nanocomposite PANI@MIL to a metastable high-conductive state. After a decrease in the applied electric field, PANI and PANI@MIL relax toward a state low-conductive stable by the law ln[σ( t)/σ(τ)] = -( t/τ) n , which is typical of disordered systems with the characteristic time τ of about six hours for PANI and with three times larger time for composite PANI@MIL. The temperature dependences of the electrical conductivity σ( T) of the samples in both high- and low-ohmic states are described by the fluctuation-induced conductivity model. Significant changes in relaxation processes and in the parameters of the fluctuation-induced tunneling conduction in nanocomposite PANI@MIL are due to a decrease in the sizes of polyaniline particles in the MIL-101 matrix to nanometers.
Solid-state production of ethanol from sorghum
Henk, L.L.; Linden, J.C.
1996-12-31
The main goal of this research is to study the solid-state fermentation of sorghum-sudangrass, Grazex II (F{sub 1} hybrid of Sorghum vulgare X Sorghum sudanese), to ethanol. Our research focuses on using a modified method of ensiling to produce ethanol directly in the silo. Thirty-eight liters of ethanol/metric ton (L/MT) on a wet-weight basis were produced from sorghum receiving cellulose compared to 23.4 L/MT for sorghum not receiving cellulose additives. Based on total free sugar content, 101 and 84% of theoretical yield are achieved for cellulase-amended and nonamended sorghum, respectively. 47 refs., 4 figs., 4 tabs.
Electromagnetic methods for development and production: State of the art
Wilt, M.; Alumbaugh, D.
1997-10-01
Electromagnetic (EM) methods, long used for borehole logging as a formation evaluation tool in developed oil fields, are rarely applied in surface or crosshole configurations or applied in cased wells. This is largely due to the high levels of cultural noise and the preponderance of steel well casing. However, recent experimental success with crosshole EM systems for water and steam flood monitoring using fiberglass cased wells has shown promise in applying these techniques to development and production (D & P) problems. This paper describes technological solutions that will allow for successful application of EM techniques in oil fields, despite surface noise and steel casing. First an example sites the application of long offset logging to map resistivity structure away from the borehole. Next, a successful application of crosshole EM where one of the wells is steel cased is described. The potential application of earth`s field nuclear magnetic resonance (NMR) to map fluid saturation at large distances from the boreholes is also discussed.
Succinoglycan production by solid-state fermentation with Agrobacterium tumefaciens.
Stredansky, M; Conti, E
1999-09-01
Succinoglycan was produced by cultivating Agrobacterium tumefaciens on various solid substrates, including agar medium, spent malt grains, ivory nut shavings, and grated carrots, impregnated with a nutrient+ solution. Fermentations were performed on a laboratory scale, both under static conditions and with agitation, using bottles and a prototype horizontal bioreactor. Several fermentation parameters were examined and optimized, including carbon and nitrogen composition, water content and layer thickness of the substrate. The yields and rheological properties of the polymers obtained under different fermentation conditions were compared. The highest succinoglycan yield was achieved in static cultivation, reaching 42 g/l of impregnating solution, corresponding to 30 g/kg of wet substrate. The polymer production in the horizontal bioreactor was faster, but the final yield was lower (29 g/l of impregnating solution). PMID:10531645
NASA Technical Reports Server (NTRS)
Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.
2013-01-01
Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.
NASA Astrophysics Data System (ADS)
Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.
2013-09-01
Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 µm, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 µm contain large fractions of organic material, internally mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.
Lopez-Perez, M; Rodriguez-Gomez, D; Loera, O
2015-01-01
Beauveria bassiana is an important entomopathogenic fungus widely commercialized in the world. Recent progress and achievements on conidia production have focused on a yield goal of 10(9) to 10(10) conidia per gram of dry substrate. Due to cost-competitive perspectives, these yields should be associated with better production rates or productivities. This study presents a review of relevant studies of B. bassiana conidia production on solid-state cultures and the parameters that should be taken into account to maintain constant quality in the product to be commercialized. Conditions for maximizing production and infectivity of B. bassiana conidia are also analysed. PMID:24494702
Alvarez-Rivera, Gerardo; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta
2015-04-17
The photochemical transformation of widely used cosmetic preservatives including benzoates, parabens, BHA, BHT and triclosan has been investigated in this work applying an innovative double-approach strategy: identification of transformation products in aqueous photodegradation experiments (UV-light, 254nm), followed by targeted screening analysis of such photoproducts in UV-irradiated cosmetic samples. Solid-phase microextraction (SPME) was applied, using different fiber coatings, in order to widen the range of detectable photoproducts in water, whereas UV-irradiated personal care products (PCPs) containing the target preservatives were extracted by micro-matrix solid-phase dispersion (micro-MSPD). Both SPME and micro-MSPD-based methodologies were successfully optimized and validated. Degradation kinetics of parent species, and photoformation of their transformation by-products were monitored by gas chromatography coupled to mass spectrometry (GC-MS). Thirty nine photoproducts were detected in aqueous photodegradation experiments, being tentatively identified based on their mass spectra. Transformation pathways between structurally related by-products, consistent with their kinetic behavior were postulated. The photoformation of unexpected photoproducts such as 2- and 4-hydroxybenzophenones, and 2,8-dichlorodibenzo-p-dioxin in PCPs are reported in this work for the first time. PMID:25757820
Chen, Ying Ju; Tsai, Keh Sung; Chan, Ding Cheng; Lan, Kuo Cheng; Chen, Cheng Feng; Yang, Rong Sen; Liu, Shing Hwa
2014-04-01
Proinflammatory cytokine interleukin-1β (IL-1β) stimulates several mediators of cartilage degradation and plays an important role in the pathogenesis of osteoarthritis (OA). Honokiol, a low molecular weight natural product isolated from the Magnolia officinalis, has been shown to possess anti-inflammatory effect. Here, we used an in vitro model of cartilage inflammation to investigate the therapeutic potential of honokiol in OA. Human OA chondrocytes were cultured and pretreated with honokiol (2.5-10 µM) with or without IL-1β (10 ng/ml). Nitric oxide (NO) production was quantified by Griess reagent. Prostaglandin (PG)E2 , metalloproteinase-13 (MMP-13), and interleukin-6 (IL-6) productions were quantified by enzyme-linked immunosorbent assay. The expressions of collagen II, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor κB (NF-κB)-related signaling molecules were determined by Western blotting. Our data showed that IL-1β markedly stimulated the expressions of iNOS and COX-2 and the productions of NO, PGE2 , and IL-6, which could be significantly reversed by honokiol. Honokiol could also suppress the IL-1β-triggered activation of IKK/IκBα/NF-κB signaling pathway. Moreover, honokiol significantly inhibited the IL-1β-induced MMP-13 production and collagen II reduction. Taken together, the present study suggests that honokiol may have a chondroprotective effect and may be a potential therapeutic choice in the treatment of OA patients. PMID:24375705
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.
2016-05-01
This Letter presents evidence for single top-quark production in the s-channel using proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. The analysis is performed on events containing one isolated electron or muon, large missing transverse momentum and exactly two b-tagged jets in the final state. The analysed data set corresponds to an integrated luminosity of 20.3 fb-1. The signal is extracted using a maximum-likelihood fit of a discriminant which is based on the matrix element method and optimized in order to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and W boson production in association with heavy-flavour jets. The measurement leads to an observed signal significance of 3.2 standard deviations and a measured cross-section of σs = 4.8 ± 0.8(stat.)-1.3+1.6 (syst.) pb, which is consistent with the Standard Model expectation. The expected significance for the analysis is 3.9 standard deviations.
NASA Astrophysics Data System (ADS)
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Ryzhov, A.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.
2016-05-01
This Letter presents evidence for single top-quark production in the s-channel using proton-proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. The analysis is performed on events containing one isolated electron or muon, large missing transverse momentum and exactly two b-tagged jets in the final state. The analysed data set corresponds to an integrated luminosity of 20.3 fb-1. The signal is extracted using a maximum-likelihood fit of a discriminant which is based on the matrix element method and optimized in order to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and W boson production in association with heavy-flavour jets. The measurement leads to an observed signal significance of 3.2 standard deviations and a measured cross-section of σs = 4.8 ± 0.8(stat.)-1.3+1.6 (syst.) pb, which is consistent with the Standard Model expectation. The expected significance for the analysis is 3.9 standard deviations.
Virasoro irregular conformal block and beta deformed random matrix model
NASA Astrophysics Data System (ADS)
Choi, Sang Kwan; Rim, Chaiho; Zhang, Hong
2015-03-01
Virasoro irregular conformal block is presented as the expectation value of Jack-polynomials of the beta-deformed Penner-type matrix model and is compared with the inner product of Gaiotto states with arbitrary rank. It is confirmed that there are non-trivial modifications of the Gaiotto states due to the normalization of the states. The relation between the two is explicitly checked for rank 2 irregular conformal block.
Tan, Inn Shi; Lee, Keat Teong
2015-05-01
A novel concept for the synthesis of a stable polymer hybrid matrix bead was developed in this study. The beads were further applied for enzyme immobilization to produce stable and active biocatalysts with low enzyme leakage, and high immobilization efficiency, enzyme activity, and recyclability. The immobilization conditions, including PEI concentration, activation time and pH of the PEI solution were investigated and optimized. All formulated beads were characterized for its functionalized groups, composition, surface morphology and thermal stability. Compared with the free β-glucosidase, the immobilized β-glucosidase on the hybrid matrix bead was able to tolerate broader range of pH values and higher reaction temperature up to 60 °C. The immobilized β-glucosidase was then used to hydrolyse pretreated macroalgae cellulosic residue (MCR) for the production of reducing sugar and a hydrolysis yield of 73.4% was obtained. After repeated twelve runs, immobilized β-glucosidase retained about 75% of its initial activity. PMID:25465785
Dvořánková, Barbora; Szabo, Pavol; Lacina, Lukas; Gal, Peter; Uhrova, Jana; Zima, Tomas; Kaltner, Herbert; André, Sabine; Gabius, Hans-Joachim; Sykova, Eva; Smetana, Karel
2011-01-01
Members of the galectin family of endogenous lectins are potent adhesion/growth-regulatory effectors. Their multifunctionality opens possibilities for their use in bioapplications. We studied whether human galectins induce the conversion of human dermal fibroblasts into myofibroblasts (MFBs) and the production of a bioactive extracellular matrix scaffold is suitable for cell culture. Testing a panel of galectins of all three subgroups, including natural and engineered variants, we detected activity for the proto-type galectin-1 and galectin-7, the chimera-type galectin-3 and the tandem-repeat-type galectin-4. The activity of galectin-1 required the integrity of the carbohydrate recognition domain. It was independent of the presence of TGF-β1, but it yielded an additive effect. The resulting MFBs, relevant, for example, for tumor progression, generated a matrix scaffold rich in fibronectin and galectin-1 that supported keratinocyte culture without feeder cells. Of note, keratinocytes cultured on this substratum presented a stem-like cell phenotype with small size and keratin-19 expression. In vivo in rats, galectin-1 had a positive effect on skin wound closure 21 days after surgery. In conclusion, we describe the differential potential of certain human galectins to induce the conversion of dermal fibroblasts into MFBs and the generation of a bioactive cell culture substratum. PMID:21494018
Shrinkage estimation of the realized relationship matrix
Technology Transfer Automated Retrieval System (TEKTRAN)
The additive relationship matrix plays an important role in mixed model prediction of breeding values. For genotype matrix X (loci in columns), the product XX' is widely used as a realized relationship matrix, but the scaling of this matrix is ambiguous. Our first objective was to derive a proper ...
NASA Astrophysics Data System (ADS)
Chen, Jo-Yun T.; Mossoba, Madgi M.; Varner, S. L.; Roach, J. A.; Sphon, J. A.; Page, Samuel W.
1989-12-01
Irganox 1010 is an antioxidant used in food packaging. The degradation products of Irganox 1010 in a 50% aqueous ethanol system at 90C were examined by GC/MS and GC/MI/FTIR. The data suggest Irganox 10101 is hydrolyzed to form (3) benzenepropanoic acid, 3,5-bis (1,1-dimethylethyl)4-hydroxy-which reacts with solvent ethanol to form (f) its ethyl ester. The 4 other decomposition products (a) 2.5 cyclohexadiene-I,4-dione, 2,6-bis(1.1-dimethylethyl)-; (B) 3.5-bis-(1,1,-dimethylethyl)-2.5 cyclohexadiene-4-one spiro (5'-tetrahydrofuran-2'-one); (C) benzofuran, 2,3-dihydro-3.3-dimethyl-5 ethenyl-7-(1,1-dimethylethyl)-and (D) benzaldehyede, 3.5-bis-(1,1-dimethylethyl)-4-hydroxy-, can result from osidation, dehydration and decarboxylation processes of (E).
Production and elliptic flow of dileptons and photons in a matrix model of the quark-gluon plasma.
Gale, Charles; Hidaka, Yoshimasa; Jeon, Sangyong; Lin, Shu; Paquet, Jean-François; Pisarski, Robert D; Satow, Daisuke; Skokov, Vladimir V; Vujanovic, Gojko
2015-02-20
We consider a nonperturbative approach to the thermal production of dileptons and photons at temperatures near the critical temperature in QCD. The suppression of colored excitations at low temperature is modeled by including a small value of the Polyakov loop, in a "semi"-quark-gluon plasma (QGP). Comparing the semi-QGP to the perturbative QGP, we find a mild enhancement of thermal dileptons. In contrast, to leading logarithmic order in weak coupling there are far fewer hard photons from the semi-QGP than the usual QGP. To illustrate the possible effects on photon and dilepton production in heavy-ion collisions, we integrate the rate with a simulation using ideal hydrodynamics. Dileptons uniformly exhibit a small flow, but the strong suppression of photons in the semi-QGP tends to weight the elliptical flow of photons to that generated in the hadronic phase. PMID:25763954
Simulation Study on E-commerce Recommender System Based on a Customer-Product Purchase-Matrix
NASA Astrophysics Data System (ADS)
Kwon, Chi-Myung; Kim, Seong-Yeon
This paper investigates the efficiencies of CF method and SVD-based recommender system for producing useful recommendations to customers when large-scale customer-product purchase data are available. Simulation experiments on synthetic transaction data show SVD-based recommender system yields a better performance than the CF method. Reduced product dimensionality from SVD may be more effective in generating a reliable neighborhood than CF method, and thereby it may improve the efficiency of recommendation performance. In applying SVD-based recommender system, the recommendation quality increases as the size of the neighborhood increase up to a certain point, but after that point, the improvement gains diminish. Our simulation results also show that an appropriate number of products for recommendation would be 10 in term of the error of false positives since around this point, the recall is not small, and both precision and F1 metric appear to be maximal. Even though the recommendation quality depends upon the dimension and structure of transaction data set, we consider such information may be useful in applying recommender system
State-of-the-Art Fuel Cell Voltage Durability Status: Spring 2013 Composite Data Products
Kurtz, J.; Sprik, S.; Saur, G.; Peters, M.; Post, M.; Ainscough, C.
2013-05-01
This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes composite data products (CDPs) produced in 2013 for state-of-the-art fuel cell voltage durability status.
NASA Technical Reports Server (NTRS)
Miller, F. R.
1972-01-01
Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.
Low charge state heavy ion production with sub-nanosecond laser.
Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M
2016-02-01
We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target. PMID:26931977
Kelber, Olaf; Wegener, Tankred; Steinhoff, Barbara; Staiger, Christiane; Wiesner, Jacqueline; Knöss, Werner; Kraft, Karin
2014-01-01
An assessment of genotoxicity is a precondition for marketing authorization respectively registration of herbal medicinal products (HMPs), as well as for inclusion into the 'Community list of herbal substances, preparations and combinations thereof for use in traditional herbal medicinal products' established by the European Commission in accordance with Directive 2001/83/EC as amended, and based on proposals from the Committee on Herbal Medicinal Products (HMPC). In the 'Guideline on the assessment of genotoxicity of herbal substances/preparations' (EMEA/HMPC/107079/2007) HMPC has described a stepwise approach for genotoxicity testing, according to which the Ames test is a sufficient base for the assessment of genotoxicity in case of an unequivocally negative result. For reducing efforts for testing of individual herbal substances/preparations, HMPC has also developed the 'guideline on selection of test materials for genotoxicity testing for traditional herbal medicinal products/herbal medicinal products' (EMEA/HMPC/67644/2009) with the aim to allow testing of a standard range of test materials which could be considered representative of the commonly used preparations from a specific herbal drug according to a 'bracketing/matrixing' approach. The purpose of this paper is to provide data on the practical application of this bracketing and matrixing concept using the example of Valerianae radix, with the intention of facilitating its inclusion in the "Community list". Five extraction solvents, representing the extremes of the polarity range and including also mid-range extraction solvents, were used, covering the entire spectrum of phytochemical constituents of Valerianae radix, thereby including polar and non-polar constituents. Extracts were tested in the Ames test according to all relevant guidelines. Results were unequivocally negative for all extracts. A review of the literature showed that this result is in accordance with the available data, thus
Mukherjee, Saikat; Bandyopadhyay, Sudip; Paul, Amit Kumar; Adhikari, Satrajit
2013-04-25
We present the molecular symmetry (MS) adapted treatment of nonadiabatic coupling terms (NACTs) for the excited electronic states (2(2)E' and 1(2)A1') of Na3 cluster, where the adiabatic potential energy surfaces (PESs) and the NACTs are calculated at the MRCI level by using an ab initio quantum chemistry package (MOLPRO). The signs of the NACTs at each point of the configuration space (CS) are determined by employing appropriate irreducible representations (IREPs) arising due to MS group, and such terms are incorporated into the adiabatic to diabatic transformation (ADT) equations to obtain the ADT angles. Since those sign corrected NACTs and the corresponding ADT angles demonstrate the validity of curl condition for the existence of three-state (2(2)E' and 1(2)A1') sub-Hilbert space, it becomes possible to construct the continuous, single-valued, symmetric, and smooth 3 × 3 diabatic Hamiltonian matrix. Finally, nuclear dynamics has been carried out on such diabatic surfaces to explore whether our MS-based treatment of diabatization can reproduce the pattern of the experimental spectrum for system B of Na3 cluster. PMID:23521047
Schieferdecker, Philipp; /Munich U.
2005-08-01
The mass of the top quark is a fundamental parameter of the Standard Model. Its precise knowledge yields valuable insights into unresolved phenomena in and beyond the Standard Model. A measurement of the top quark mass with the matrix element method in the lepton+jets final state in D0 Run II is presented. Events are selected requiring an isolated energetic charged lepton (electron or muon), significant missing transverse energy, and exactly four calorimeter jets. For each event, the probabilities to originate from the signal and background processes are calculated based on the measured kinematics, the object resolutions and the respective matrix elements. The jet energy scale is known to be the dominant source of systematic uncertainty. The reference scale for the mass measurement is derived from Monte Carlo events. The matrix element likelihood is defined as a function of both, m{sub top} and jet energy scale JES, where the latter represents a scale factor with respect to the reference scale. The top mass is obtained from a two-dimensional correlated fit, and the likelihood yields both the statistical and jet energy scale uncertainty. Using a dataset of 320 pb{sup -1} of D0 Run II data, the mass of the top quark is measured to be: m{sub top}{sup {ell}+jets} = 169.5 {+-} 4.4(stat. + JES){sub -1.6}{sup +1.7}(syst.) GeV; m{sub top}{sup e+jets} = 168.8 {+-} 6.0(stat. + JES){sub -1.9}{sup +1.9}(syst.) GeV; m{sub top}{sup {mu}+jets} = 172.3 {+-} 9.6(stat.+JES){sub -3.3}{sup +3.4}(syst.) GeV. The jet energy scale measurement in the {ell}+jets sample yields JES = 1.034 {+-} 0.034, suggesting good consistency of the data with the simulation. The measurement forecasts significant improvements to the total top mass uncertainty during Run II before the startup of the LHC, as the data sample will grow by a factor of ten and D0's tracking capabilities will be employed in jet energy reconstruction and flavor identification.
NASA Astrophysics Data System (ADS)
Snyder, Douglas
2014-03-01
The applicability of the reduced density matrix is shown to depend on the existence of the states of both of two entangled particles even though the probabilities of the specific states of one of the particles are not known or ignored (traced out). The reduced density matrix is shown theoretically not to be applicable to where the states of one of two entangled particles relevant to the entanglement of the particles are eliminated before any particle detections are made, specifically in the case where the eliminated states had provided which way information to the other particle. In contrast, Cantrell and Scully wrote concerning the use of the reduced density matrix with entangled particles, specifically in EPR: ``If at any time we are asking only about a part (e.g., spin 2 only) of our entire system (e.g., spin 1 and 2 of two entangled particles taken together), we must characterize our system by a reduced density matrix'' (p. 504; Cantrell, C.D. and Scully, M.O. 1978. Physics Reports, 43: 499-508). An experiment is proposed that would test the hypothesis through a delayed choice on the particle whose states relevant to the entanglement can be eliminated, the delayed choice being whether to eliminate these states. If the hypothesis is correct, different distributions (interference or which-way) of the other particle are obtained depending on the delayed choice that is made.
Park, Jin Sung; Kim, Dong Kyu; Shin, Hyun-Dae; Lee, Hyun Jae; Jo, Ho Seung; Jeong, Jin Hoon; Choi, Young Lac; Lee, Choong Jae; Hwang, Sun-Chul
2016-03-01
We examined whether apigenin affects the gene expression, secretion and activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the knee joint of rat to evaluate the potential chondroprotective effects of apigenin. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription - polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and ADAMTS-5. In rabbit articular chondrocytes, the effects of apigenin on IL-1β-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of apigenin on MMP-3 protein production was also examined in vivo. In rabbit articular chondrocytes, apigenin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5. Furthermore, apigenin inhibited the secretion and proteolytic activity of MMP-3 in vitro, and inhibited production of MMP-3 protein in vivo. These results suggest that apigenin can regulate the gene expression, secretion, and activity of MMP-3, by directly acting on articular chondrocytes. PMID:26902085
Park, Jin Sung; Kim, Dong Kyu; Shin, Hyun-Dae; Lee, Hyun Jae; Jo, Ho Seung; Jeong, Jin Hoon; Choi, Young Lac; Lee, Choong Jae; Hwang, Sun-Chul
2016-01-01
We examined whether apigenin affects the gene expression, secretion and activity of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the knee joint of rat to evaluate the potential chondroprotective effects of apigenin. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription - polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and ADAMTS-5. In rabbit articular chondrocytes, the effects of apigenin on IL-1β-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of apigenin on MMP-3 protein production was also examined in vivo. In rabbit articular chondrocytes, apigenin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5. Furthermore, apigenin inhibited the secretion and proteolytic activity of MMP-3 in vitro, and inhibited production of MMP-3 protein in vivo. These results suggest that apigenin can regulate the gene expression, secretion, and activity of MMP-3, by directly acting on articular chondrocytes. PMID:26902085
Fox, J Trent; Reinstein, Shelby; Jacob, Megan E; Nagaraja, T G
2008-10-01
Niche-marketed food products are rapidly gaining market share in today's society. Consumers are willing to pay premium prices for food perceived to be safer, healthier, more nutritious, and better tasting than conventional food. This review outlines typical production practices for niche-market beef production systems in the United States and compares prevalence estimates of foodborne pathogens in animals and produce from conventional and niche-market production systems. The two main niches for food animal production are organic and natural productions. Organic and natural beef productions are becoming increasingly popular and there is high consumer demand. Two major differences between conventional beef production systems and niche-market production systems (natural and organic) are in the use of antimicrobials and growth-promoting hormones. The impacts of these production systems on foodborne pathogens in beef cattle are variable and often data are nonexistent. Studies directly comparing conventional and niche-market production systems for dairy, swine, poultry, and produce have observed that the prevalence of foodborne pathogens was seldom statistically different between production systems, but when differences were observed, prevalence was typically greater for the niche-market production systems than the conventional production system. The published literature suggests that the perception of niche-marketed food products being safer and healthier for consumers with regard to foodborne pathogens may not be justified. PMID:18681794
Mori, Kohsuke; Aoyama, Junya; Kawashima, Masayoshi; Yamashita, Hiromi
2014-07-21
Intercalation of photosensitizer cyclometalated iridium(III) ([Ir(ppy)2(bpy)]BF6) and proton reduction catalyst tris-2,2'-bipyridyl rhodium(III) ([Rh(bpy)3](BF6)3) complexes into a layered zirconium phosphate (ZrP) with an interlayer distance of 10.3 Å has been attained with the aim of developing a visible-light responsible photocatalyst for H2 production in aqueous media. Ir L(III)-edge and Rh K-edge X-ray absorption fine structure (XAFS) measurement indicates that both Ir and Rh complexes are intercalated into the layered interspace without structural change around metal environments. The photoluminescence emission of the exchanged Ir complex due to a triplet ligand-to-ligand charge transfer ((3)LLCT) and a metal-to-ligand charge-transfer ((3)MLCT) transition near 560 nm decreases with increasing the amount of adjacent Rh complexes, suggesting the occurrence of electron transfer from Ir complex to Rh complex. The Ir-Rh/ZrP catalyst exhibits both visible-light sensitization and H2 production from aqueous solution in the absence of an electron mediator. The photocatalytic activities are strongly dependent on the ratio of the components, and the maximum activity can be attained with a molar ratio of Ir : Rh = 10 : 1. PMID:24695787
NASA Technical Reports Server (NTRS)
Irwin, E. L.; Farnsworth, D. L.
1972-01-01
A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.
Matrix Embedded Organic Synthesis
NASA Astrophysics Data System (ADS)
Kamakolanu, U. G.; Freund, F. T.
2016-05-01
In the matrix of minerals such as olivine, a redox reaction of the low-z elements occurs. Oxygen is oxidized to the peroxy state while the low-Z-elements become chemically reduced. We assign them a formula [CxHyOzNiSj]n– and call them proto-organics.
Coherent States for Kronecker Products of Non Compact Groups: Formulation and Applications
NASA Technical Reports Server (NTRS)
Bambah, Bindu A.; Agarwal, Girish S.
1996-01-01
We introduce and study the properties of a class of coherent states for the group SU(1,1) X SU(1,1) and derive explicit expressions for these using the Clebsch-Gordan algebra for the SU(1,1) group. We restrict ourselves to the discrete series representations of SU(1,1). These are the generalization of the 'Barut Girardello' coherent states to the Kronecker Product of two non-compact groups. The resolution of the identity and the analytic phase space representation of these states is presented. This phase space representation is based on the basis of products of 'pair coherent states' rather than the standard number state canonical basis. We discuss the utility of the resulting 'bi-pair coherent states' in the context of four-mode interactions in quantum optics.
Energy Science and Technology Software Center (ESTSC)
2004-12-31
Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.
ERIC Educational Resources Information Center
Ofuoku, A. U.; Olele, N. F.; Emah, G. N.
2008-01-01
This study was conducted to isolate the determinants of improved fish production technologies in Delta State, Nigeria. Data were collected from a sample population of 250 fish farmers from ten randomly selected Local Government Areas of Delta State. The data were elicited from respondents with the use of structured interview schedule while…
Bachelor's Degree Productivity X-Inefficiency: The Role of State Higher Education Policy
ERIC Educational Resources Information Center
Titus, Marvin A.
2010-01-01
Using stochastic frontier analysis and dynamic fixed-effects panel modeling, this study examines how changes in the x-inefficiency of bachelor's degree production are influenced by changes in state higher education policy. The findings from this research show that increases in need-based state financial aid help to mitigate the convergence among…
ERIC Educational Resources Information Center
Titus, Marvin A.
2009-01-01
Although several studies have examined the extent to which tuition influences college enrollment at the undergraduate level (e.g., Heller, 1999; Kane, 1995, 1999), there is no known research that examines how changes in financial aspects of state higher education policy affect the production of postsecondary degrees. Using state-level data…
Economic Growth, Productivity, and Public Education Funding: Is South Carolina a Death Spiral State?
ERIC Educational Resources Information Center
Driscoll, Lisa G.; Knoeppel, Robert C.; Della Sala, Matthew R.; Watson, Jim R.
2014-01-01
As a result of the Great Recession of 2007-2009, most states experienced declines in employment, consumer spending, and economic productivity (Alm, Buschman, and Sjoquist 2011). In turn, these events led to historic declines in state tax revenues (Mikesell and Mullins 2010; Boyd and Dadayan 2009), resulting in major cuts in public spending. Local…
ERIC Educational Resources Information Center
Uchendu, C. C.; Osim, R. O.; Odigwe, F. N.; Alade, F. N.
2014-01-01
This study examined lecturers' perception of research activities for knowledge production in universities in Cross River State, Nigeria. Two hypotheses were isolated to give direction to this investigation. 240 university lecturers were sampled from a population of 1,868 from the two universities in Cross River State, using stratified random…
Myriad and its implications for patent protection of isolated natural products in the United States.
Wong, Alice Yuen-Ting; Chan, Albert Wai-Kit
2014-01-01
Extracts and compounds of natural products have potential as alternatives to current Western medicines. However, these products may not be patentable under the statutory requirements because of their naturally-occurring nature. This article analyzes the current patenting practices for natural products in the United States, particularly in light of the recent Supreme Court ruling in Myriad, and suggests an advantageous strategy for patenting these products. Briefly, isolated natural products per se are not patentable in the United States. Therefore, patenting focus should be placed on the modification, formulation, manufacture, and application of natural products. A detailed description of each invention is highly recommended for stronger support and broader coverage of the claims. PMID:25006347
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... Production and Sale of Clove Cigarettes AGENCY: Office of the United States Trade Representative. ACTION... clove. This ] request may be found at http://www.wto.org in a document designated as WT/DS406/1. USTR..., including clove, but would continue to permit the production and sale of other cigarettes,...
21 CFR 1010.5 - Exemptions for products intended for United States Government use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Exemptions for products intended for United States Government use. 1010.5 Section 1010.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR ELECTRONIC PRODUCTS: GENERAL General Provisions § 1010.5...
Technology Transfer Automated Retrieval System (TEKTRAN)
This report addresses the development of dryland oilseed crops to provide feedstock for production of biofuels in semiarid portions of the northwestern United States. Bioenergy feedstocks derived from Brassica oilseed crops have been considered for production of hydrotreated renewable jet fuel, but...
ERIC Educational Resources Information Center
Holcomb, John W.; And Others
The competencies necessary for entry and advancement in cotton production were determined by surveying people in the cotton production industry from nine of the ten leading cotton producing states. A preliminary listing of competencies was developed from a review of the literature and from a survey of specialized personnel in soil and crop…
48 CFR 470.103 - United States origin of agricultural products.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the products of agricultural commodities acquired for use in international feeding and development... agricultural products. 470.103 Section 470.103 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE FOOD ASSISTANCE PROGRAMS COMMODITY ACQUISITIONS 470.103 United States origin of agricultural...
State Taxation of Mineral Deposits and Production. Rural Development Research Report No. 2.
ERIC Educational Resources Information Center
Stinson, Thomas F.
Alternative methods for taxing the mineral industry at the State level include four types of taxes: the ad valorem tax, severance tax, gross production tax, and net production tax. An ad valorem tax is a property tax levied on a mineral deposit's assessed value and due whether the deposit is being worked or not. The severance tax is usually an…
10 CFR 431.402 - Preemption of State regulations for commercial HVAC & WH products.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Preemption of State regulations for commercial HVAC & WH products. 431.402 Section 431.402 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM... regulation concerning the energy efficiency or energy use of that product, except as provided for in...
10 CFR 431.402 - Preemption of State regulations for commercial HVAC & WH products.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Preemption of State regulations for commercial HVAC & WH products. 431.402 Section 431.402 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM... regulation concerning the energy efficiency or energy use of that product, except as provided for in...
10 CFR 431.402 - Preemption of State regulations for commercial HVAC & WH products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Preemption of State regulations for commercial HVAC & WH products. 431.402 Section 431.402 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM... regulation concerning the energy efficiency or energy use of that product, except as provided for in...
10 CFR 431.402 - Preemption of State regulations for commercial HVAC & WH products.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Preemption of State regulations for commercial HVAC & WH products. 431.402 Section 431.402 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM... regulation concerning the energy efficiency or energy use of that product, except as provided for in...
10 CFR 431.402 - Preemption of State regulations for commercial HVAC & WH products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Preemption of State regulations for commercial HVAC & WH products. 431.402 Section 431.402 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM... regulation concerning the energy efficiency or energy use of that product, except as provided for in...
Optical coherency matrix tomography
Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.
2015-01-01
The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452
Saratale, Ganesh D; Kshirsagar, Siddheshwar D; Sampange, Vilas T; Saratale, Rijuta G; Oh, Sang-Eun; Govindwar, Sanjay P; Oh, Min-Kyu
2014-12-01
Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources. PMID:25374139
Improvement of xylanase production by Cochliobolus sativus in solid state fermentation
Bakri, Yasser; Jawhar, Mohammed; Arabi, Mohammed Imad Eddin
2008-01-01
The xylanase production by Cochliobolus sativus strain Cs6 was improved under solid state fermentation (SSF). High xylanase activity (1079 U/g) was obtained when wheat straw was used after 8 days of incubation. Combinations of sodium nitrate with peptone or yeast extract resulted in an increased xylanase production (1543 and 1483 U/g, respectively). The Cs6 strain grown in SSF in a simple medium, proved to be a promising microorganism for xylanase production. PMID:24031273
Bohari, Siti PM; Grover, Liam M; Hukins, David WL
2015-01-01
This study evaluated the effect of pulsed low-intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by human dermal fibroblasts encapsulated in alginate. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content, dimethylmethylene blue assay for glycosaminoglycan content and scanning electron microscopy were performed on the encapsulated cells treated with pulsed low-intensity ultrasound and a control group that remained untreated. Pulsed low-intensity ultrasound showed a significant effect on cell proliferation and collagen deposition but no consistent pattern for glycosaminoglycan content. Alcian blue staining showed that glycosaminoglycans were deposited around the cells in both treated and control groups. These results suggest that pulsed low-intensity ultrasound alone shows a positive effect on cell proliferation and collagen deposition even without growth factor supplements. PMID:26668710
QCD radiation in the production of high s-hat final states
Skands, Peter; Plehn, Tilman; Rainwater, David; /Rochester U.
2005-11-01
In the production of very heavy final states--high Mandelstam {cflx s}--extra QCD radiation can play a significant role. By comparing several different parton shower approximations to results obtained with fixed-order perturbation theory, they quantify the degree to which these approaches agree (or disagree), focusing on initial state radiation above p{perpendicular} = 50 GeV, for top pair production at the Tevatron and at the LHC, and for SUSY pair production at the LHC. Special attention is paid to ambiguities associated with the choice of the maximum value of the ordering variable in parton shower models.
NASA Astrophysics Data System (ADS)
Brockt, C.; Dorfner, F.; Vidmar, L.; Heidrich-Meisner, F.; Jeckelmann, E.
2015-12-01
We present a method for simulating the time evolution of one-dimensional correlated electron-phonon systems which combines the time-evolving block decimation algorithm with a dynamical optimization of the local basis. This approach can reduce the computational cost by orders of magnitude when boson fluctuations are large. The method is demonstrated on the nonequilibrium Holstein polaron by comparison with exact simulations in a limited functional space and on the scattering of an electronic wave packet by local phonon modes. Our study of the scattering problem reveals a rich physics including transient self-trapping and dissipation.
Target life time of laser ion source for low charge state ion production
Kanesue,T.; Tamura, J.; Okamura, M.
2008-06-23
Laser ion source (LIS) produces ions by irradiating pulsed high power laser shots onto the solid state target. For the low charge state ion production, laser spot diameter on the target can be over several millimeters using a high power laser such as Nd:YAG laser. In this case, a damage to the target surface is small while there is a visible crater in case of the best focused laser shot for high charge state ion production (laser spot diameter can be several tens of micrometers). So the need of target displacement after each laser shot to use fresh surface to stabilize plasma is not required for low charge state ion production. We tested target lifetime using Nd:YAG laser with 5 Hz repetition rate. Also target temperature and vacuum condition were recorded during experiment. The feasibility of a long time operation was verified.
Rodríguez Couto, Susana
2008-07-01
Biological wastes contain several reusable substances of high value such as soluble sugars and fibre. Direct disposal of such wastes to soil or landfill causes serious environmental problems. Thus, the development of potential value-added processes for these wastes is highly attractive. These biological wastes can be used as support-substrates in solid-state fermentation (SSF) to produce industrially relevant metabolites with great economical advantage. In addition, it is an environmentally friendly method of waste management. This paper reviews the reutilization of biological wastes for the production of value-added products using the SSF technique. PMID:18543242
Peter G. Stansberry; John W. Zondlo
2001-07-01
The Consortium for premium Carbon Products from Coal, with funding from the US Department of Energy, National Energy Technology Laboratory continue with the development of innovative technologies that will allow coal or coal-derived feedstocks to be used in the production of value-added carbon materials. In addition to supporting eleven independent projects during budget period 3, three meetings were held at two separate locations for the membership. The first was held at Nemacolin Woodlands Resort on May 15-16, 2000. This was followed by two meetings at Penn State, a tutorial on August 11, 2000 and a technical progress meeting on October 26-27.
Guerra, Eugenia; Celeiro, Maria; Lamas, J Pablo; Llompart, Maria; Garcia-Jares, Carmen
2015-10-01
A simple method based on micro-matrix solid phase dispersion (MSPD) followed by liquid chromatography-mass spectrometry (LC-MS/MS) has been developed for the rapid and simultaneous determination of nine regulated water-soluble dyes in personal care and decorative products. The proposed miniaturized extraction procedure was optimized by means of experimental designs in order to obtain the highest extraction efficiency. Under the optimal selected conditions, the method was validated showing satisfactory performance in terms of linearity, sensitivity, and intra-day and inter-day precision. Recoveries were evaluated in different cosmetic matrices and they can be considered quantitative with average values between 70 and 120% with relative standard deviations (RSD) lower than 15%. Finally, the validated method was applied to 24 samples of cosmetic and personal care products, including decorative makeup, lipsticks, lip gloss, toothpastes, regenerating creams, shampoos, and eye shadows, among others, to cover a broad range of commercial real samples. Seven of the analyzed dyes were detected, being declared all of them in the label list of ingredients. More than 50% of the samples contained at least two dyes. Tartrazine was the most frequently found (50% of the samples) at concentration levels of 0.243-79.9μgg(-1). Other targets were found in 1-9 samples, highlighting the presence of Quinoline at high concentration (>500μgg(-1)) in a toothpaste sample. PMID:26363949
Jeong, Jin-Woo; Lee, Hye Hyeon; Choi, Eun-Ok; Lee, Ki Won; Kim, Ki Young; Kim, Sung Goo; Hong, Su Hyun; Kim, Gi-Young; Park, Cheol; Kim, Ho Kyoung; Choi, Young Whan; Choi, Yung Hyun
2015-12-01
Proinflammatory cytokine interleukin-1 beta (IL-1β) plays a crucial role in the pathogenesis of osteoarthritis (OA) by stimulating several mediators that contribute to cartilage degradation. Schisandrae Fructus (SF), the dried fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae), is widely used in traditional medicine for the treatment of a number of chronic inflammatory diseases. This study investigated the antiosteoarthritis properties of an ethanol extract of SF on IL-1β-stimulated SW1353 chondrocytes. SF attenuated IL-1β-induced expression and activity of matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 and also reduced the elevated levels of cyclooxygenase-2 and inducible nitric oxide synthase associated with the inhibition of prostaglandin E2 and nitric oxide production in IL-1β-stimulated SW1353 chondrocytes. In addition, SF markedly suppressed the nuclear translocation of nuclear factor-kappa B (NF-κB) by blocking inhibitor κB-alpha degradation and inhibited the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). These results indicate that the inhibitory effect of SF on IL-1β-stimulated expression of MMPs and inflammatory mediators production in SW1353 cells were associated with the suppression of the NF-κB and JNK/p38 MAPK signaling pathways. The results from this study indicate that SF may have therapeutic potential for the treatment of OA due to its anti-inflammatory and chondroprotective features. PMID:26443270
Han, Lijun; Matarrita, Jessie; Sapozhnikova, Yelena; Lehotay, Steven J
2016-06-01
This study demonstrates the application of a novel lipid removal product to the residue analysis of 65 pesticides and 52 environmental contaminants in kale, pork, salmon, and avocado by fast, low pressure gas chromatography - tandem mass spectrometry (LPGC-MS/MS). Sample preparation involves QuEChERS extraction followed by use of EMR-Lipid ("enhanced matrix removal of lipids") and an additional salting out step for cleanup. The optimal amount of EMR-Lipid was determined to be 500mg for 2.5mL extracts for most of the analytes. The co-extractive removal efficiency by the EMR-Lipid cleanup step was 83-98% for fatty samples and 79% for kale, including 76% removal of chlorophyll. Matrix effects were typically less than ±20%, in part because analyte protectants were used in the LPGC-MS/MS analysis. The recoveries of polycyclic aromatic hydrocarbons and diverse pesticides were mostly 70-120%, whereas recoveries of nonpolar polybrominated diphenyl ethers and polychlorinated biphenyls were mostly lower than 70% through the cleanup procedure. With the use of internal standards, method validation results showed that 76-85 of the 117 analytes achieved satisfactory results (recoveries of 70-120% and RSD≤20%) in pork, avocado, and kale, while 53 analytes had satisfactory results in salmon. Detection limits were 5-10ng/g for all but a few analytes. EMR-Lipid is a new sample preparation tool that serves as another useful option for cleanup in multiresidue analysis, particularly of fatty foods. PMID:27139213
Xie, Xiangcheng; Xia, Wenkai; Fei, Xiao; Xu, Qunhong; Yang, Xiu; Qiu, Donghao; Wang, Ming
2015-01-01
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). DN is characterized by glomerular extracellular matrix accumulation, mesangial expansion, basement membrane thickening, and renal interstitial fibrosis. To date, mounting evidence has shown that H2 relaxin possesses powerful antifibrosis properties; however, the mechanisms of H2 relaxin on diabetic nephropathy remain unknown. Here, we aimed to explore whether H2 relaxin can reduce production of extracellular matrix (ECM) secreted by human mesangial cells (HMC). HMC were exposed to 5.5 mM glucose (NG) or 30 mM glucose (HG) with or without H2 relaxin. Fibronectin (FN) and collagen type IV levels in the culture supernatants were examined by solid-phase enzyme-linked immunoadsorbent assay (ELISA). Western blot was used to detect the expression of α-smooth muscle actin (α-SMA) protein. Quantitative polymerase chain reaction (qPCR) method was employed to analyze transforming growth factor (TGF)-β1 mRNA expression. Compared with the normal glucose group, the levels of fibronectin and collagen type were markedly increased after being cultured in high glucose medium. Compared with the high glucose group, remarkable decreases of fibronectin, collagen type IV, α-smooth muscle actin, and TGF-β1 mRNA expression were observed in the H2 relaxin-treated group. The mechanism by which H2 relaxin reduced high glucose-induced overproduction of ECM may be associated with inhibition of TGF-β1 mRNA expression and mesangial cells' phenotypic transition. H2 relaxin is a potentially effective modality for the treatment of DN. PMID:26424011
Li, Mingyue; Sun, Qian; Li, Yan; Lv, Min; Lin, Lifeng; Wu, Yang; Ashfaq, Muhammad; Yu, Chang-Ping
2016-07-01
Pharmaceuticals and personal care products (PPCPs) are a class of emerging contaminants widely distributed in the wastewater treatment system. The simultaneous analysis of multiple PPCPs in the sludge, which is a complex matrix, is still not fully studied. In this study, a procedure based on matrix solid-phase dispersion (MSPD) for the extraction of PPCPs from the sludge with determination by liquid chromatography tandem mass spectrometry (LC-MS/MS) was investigated. Forty-five PPCPs, including antibiotics, nonsteroidal anti-inflammatory drugs, β-blockers, antidepressants, antimicrobial agents, preservatives, UV filters, and so on, were studied. MSPD parameters, including the sorbent materials, the ratio of sample to sorbent, the eluent composition, and the elution volumes, were sequentially optimized. Best results were achieved by 0.1 g of sludge homogenized with 0.4 g of C18-bonded silica sorbent and elution by 6 mL methanol and 10 mL acetonitrile/5 % oxalic acid (8/2, v/v). The method quantification limits for the 45 PPCPs ranged 0.117-5.55 μg/kg. The PPCP recoveries ranged from 50.3 to 107 % with relative standard deviation lower than 15 %. The proposed method was applied to analyze PPCPs in the sludge collected from a domestic wastewater treatment plant over 1 year. Thirteen PPCPs were detected, with the concentrations of ofloxacin and triclocarban more than 1000 μg/kg. Temporal variations of the PPCP levels were observed. Thus, MSPD-LC-MS/MS method could achieve good sensitivity and recovery for the target PPCP analysis in the sludge samples, while MSPD provided one-step sample preparation which was easier and faster to perform compared to the commonly used methods. Graphical abstract Workflow of MSPD and LC-MS/MS chromatograms for PPCP analysis. PMID:27137519
γ production as a probe for early state dynamics in high energy nuclear collisions at RHIC
Liu, Yunpeng; Chen, Baoyi; Xu, Nu; Zhuang, Pengfei
2011-02-01
γ production in heavy ion collisions at RHIC energy is investigated. While the transverse momentum spectra of the ground state γ(1s) are controlled by the initial state Cronin effect, the excited bb⁻ states are characterized by the competition between the cold and hot nuclear matter effects and sensitive to the dissociation temperatures determined by the heavy quark potential. We emphasize that it is necessary to measure the excited heavy quark states in order to extract the early stage information in high energy nuclear collisions at RHIC.
Ushenko, Yu A; Trifonyuk, L Yu; Dubolazov, A V; Karachevtsev, A O
2014-04-01
This article presents the theoretical background of an azimuthally stable method of Jones-matrix mapping of histological sections of a uterine wall biopsy on the basis of spatial-frequency selection of the mechanisms of linear and circular birefringence. The diagnostic application of a new correlation parameter--a complex degree of mutual anisotropy--is analytically substantiated. The method of measuring coordinate distributions of a complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with linear and circular birefringence parameters of the uterine-wall-endometrium histological sections are found. The comparative results of measuring the coordinate distributions of a complex degree of mutual anisotropy formed by fibrillar networks of myosin and collagen fibrils of uterus wall tissue of different pathological states--pre-cancer (dysplasia) and cancer (adenocarcinoma)--are shown. The values and ranges of change of the statistical (moments of the first to fourth orders) parameters of complex degree of mutual-anisotropy coordinate distributions are studied. The objective criteria of diagnosing the pathology and differentiation of its severity degree are determined. PMID:24787205
Belogorokhov, I. A.; Tikhonov, E. V.; Dronov, M. A.; Belogorokhova, L. I.; Ryabchikov, Yu. V.; Tomilova, L. G.; Khokhlov, D. R.
2012-01-15
The vibronic properties of semiconductor structures based on non-metal naphthalocyanine molecules are studied using IR and Raman spectroscopy methods. New absorption lines in the transmission spectra of such materials are detected and identified. Three transmission lines are observed in the range 2830-3028 cm{sup -1}, which characterize carbon-hydrogen bonds of peripheral molecular groups. Their spectral positions are 2959, 2906, and 2866 cm{sup -1}. It is detected that the phthalocyanine ring can also exhibit its specific vibronic properties in the Raman spectra at 767, 717, and 679 cm{sup -1}. The naphthalocyanine molecule in the organic dielectric matrix of microfibers is described using IR spectroscopy. It is shown that the set of vibrations characterizing the isoindol group, pyrrole ring, naphtha group, and C-H bonds, allows an accurate enough description of the vibronic states of the naphthalocyanine complex in complex heterostructures to be made. The spectral range with fundamental modes, characterizing a naphthalocyanine semiconductor in a heterostructure, is 600-1600 cm{sup -1}. A comparison of the compositions of complex systems with a similar heterostructure containing lutetium diphthalocyanine demonstrated few errors.
Park, Min Hee; Park, Ji Eun; Kim, Min Seong; Lee, Kwon Young; Hwang, Jae Yeon; Yun, Jung Im; Choi, Jung Hoon; Lee, Eunsong; Lee, Seung Tae
2016-10-01
In general, the seminiferous tubule basement membrane (STBM), comprising laminin, collagen IV, perlecan, and entactin, plays an important role in self-renewal and spermatogenesis of spermatogonial stem cells (SSCs) in the testis. However, among the diverse extracellular matrix (ECM) proteins constituting the STBM, the mechanism by which each regulates SSC fate has yet to be revealed. Accordingly, we investigated the effects of various ECM proteins on the maintenance of the undifferentiated state of SSCs in pigs. First, an extracellular signaling-free culture system was optimized, and alkaline phosphatase (AP) activity and transcriptional regulation of SSC-specific genes were analyzed in porcine SSCs (pSSCs) cultured for 1, 3, and 5 days on non-, laminin- and collagen IV-coated Petri dishes in the optimized culture system. The microenvironment consisting of glial cell-derived neurotrophic factor (GDNF)-supplemented mouse embryonic stem cell culture medium (mESCCM) (GDNF-mESCCM) demonstrated the highest efficiency in the maintenance of AP activity. Moreover, under the established extracellular signaling-free microenvironment, effective maintenance of AP activity and SSC-specific gene expression was detected in pSSCs experiencing laminin-derived signaling. From these results, we believe that laminin can serve as an extracellular niche factor required for the in vitro maintenance of undifferentiated pSSCs in the establishment of the pSSC culture system. PMID:26954208
Richard R. Schultz; Paul D. Bayless; Richard W. Johnson; William T. Taitano; James R. Wolf; Glenn E. McCreery
2010-09-01
The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is
Ascenzi, R; Ingram, J L; Massel, M; Thompson, W F; Spiker, S; Weissinger, A K
2001-10-01
The tobacco nuclear matrix attachment region (MAR), RB7, has been shown to have a much greater effect on transgene expression in cultured cells than in transgenic plants. This is comparable to work in mouse systems showing that MARs have a positive effect on transgene expression in embryonic tissues but not adult tissues. There are several possible explanations for these observations. One is that cell differentiation state and proliferation rate can affect MAR function. We tested this possibility by initiating suspension cell cultures from well-characterized transgenic plants transformed with 35S::GUS with and without flanking MARs and then comparing GUS specific activity in the cell lines to those of the transgenic plants from which the cell lines were derived. If cell differentiation state and proliferation rate do affect MAR function, we would expect the ratio of transgene expression (cell suspensions : plants) to be greater in MAR lines than in control lines. This turned out not to be the case. Thus, it appears that MAR function is not enhanced simply because cells in culture divide rapidly and are not differentiated. Because in animal systems the chromosomal protein HMG-I/Y has been shown to be upregulated in proliferating cells and may have a role in MAR function, we have also examined the levels of the tobacco HMG-I/Y homolog by immunoblotting. The level of this protein does not differ between primary transformant cultured cells (NT-1) and Nicotiana tabacum plants (SR-1). However, a higher molecular weight cross-reacting polypeptide was found in nuclei from the NT-1 cell suspensions but was not detected in SR-1 leaf nuclei or cell suspensions derived from the SR-1 plants. PMID:11708656