Science.gov

Sample records for matter supramolecular chemistry

  1. Nanophotonics and supramolecular chemistry

    NASA Astrophysics Data System (ADS)

    Ariga, Katsuhiko; Komatsu, Hirokazu; Hill, Jonathan P.

    2013-10-01

    Supramolecular chemistry has become a key area in emerging bottom-up nanoscience and nanotechnology. In particular, supramolecular systems that can produce a photonic output are increasingly important research targets and present various possibilities for practical applications. Accordingly, photonic properties of various supramolecular systems at the nanoscale are important in current nanotechnology. In this short review, nanophotonics in supramolecular chemistry will be briefly summarized by introducing recent examples of control of photonic responses of supramolecular systems. Topics are categorized according to the fundamental actions of their supramolecular systems: (i) self-assembly; (ii) recognition; (iii) manipulation.

  2. Dodecaamide cages: organic 12-arm building blocks for supramolecular chemistry.

    PubMed

    Culshaw, Jamie L; Cheng, Ge; Schmidtmann, Marc; Hasell, Tom; Liu, Ming; Adams, Dave J; Cooper, Andrew I

    2013-07-10

    A simple, one-step amidation reaction is used to produce a range of 12-arm organic building blocks for supramolecular chemistry via the derivatization of porous imine cages. As an example, microporous dendrimers are prepared. PMID:23786167

  3. 8th International Symposium on Supramolecular and Macrocyclic Chemistry

    SciTech Connect

    Davis, Jeffery T.

    2015-09-18

    This report summarizes the 8th International Conference on Supramolecular and Macrocyclic Chemistry (ISMSC-8). DOE funds were used to make it more affordable for students, post-docs and junior faculty to attend the conference by covering their registration costs. The conference was held in Crystal City, VA from July 7-11, 2013. See http://www.indiana.edu/~ismsc8/ for the conference website. ISMSC-8 encompassed the broad scope and interdisciplinary nature of the field. We met our goal to bring together leading scientists in molecular recognition and supramolecular chemistry. New research directions and collaborations resulted this conference. The DOE funding was crucial for us achieving our primary goal.

  4. A Supramolecular Approach to Medicinal Chemistry: Medicine Beyond the Molecule

    NASA Astrophysics Data System (ADS)

    Smith, David K.

    2005-03-01

    This article focuses on the essential roles played by intermolecular forces in mediating the interactions between chemical molecules and biological systems. Intermolecular forces constitute a key topic in chemistry programs, yet can sometimes seem disconnected from real-life applications. However, by taking a "supramolecular" view of medicinal chemistry and focusing on interactions between molecules, it is possible to come to a deeper understanding of recent developments in medicine. This allows us to gain a real insight into the interface between biology and chemistry—an interdisciplinary area that is crucial for the development of modern medicinal products. This article emphasizes a conceptual view of medicinal chemistry, which has important implications for the future, as the supramolecular approach to medicinal-chemistry products outlined here is rapidly allowing nanotechnology to converge with medicine. In particular, this article discusses recent developments including the rational design of drugs such as Relenza and Tamiflu, the mode of action of vancomycin, and the mechanism by which bacteria develop resistance, drug delivery using cyclodextrins, and the importance of supramolecular chemistry in understanding protein aggregation diseases such as Alzheimer's and Creutzfield Jacob. The article also indicates how taking a supramolecular approach will enable the development of new nanoscale medicines.

  5. From steroids to aqueous supramolecular chemistry: an autobiographical career review

    PubMed Central

    2016-01-01

    Summary The focus of my group’s research is aqueous supramolecular chemistry; we try to understand how chemical entities interact with water and consequently how they interact with each other. This personal history recounts my career experiences that led to his involvement with this fascinating area of science. PMID:27340461

  6. Statistical mechanics approach to lock-key supramolecular chemistry interactions.

    PubMed

    Odriozola, Gerardo; Lozada-Cassou, Marcelo

    2013-03-01

    In the supramolecular chemistry field, intuitive concepts such as molecular complementarity and molecular recognition are used to explain the mechanism of lock-key associations. However, these concepts lack a precise definition, and consequently this mechanism is not well defined and understood. Here we address the physical basis of this mechanism, based on formal statistical mechanics, through Monte Carlo simulation and compare our results with recent experimental data for charged or uncharged lock-key colloids. We find that, given the size range of the molecules involved in these associations, the entropy contribution, driven by the solvent, rules the interaction, over that of the enthalpy. A universal behavior for the uncharged lock-key association is found. Based on our results, we propose a supramolecular chemistry definition. PMID:23521272

  7. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces.

    PubMed

    Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A

    2014-07-15

    CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments

  8. SUPRAMOLECULAR CHEMISTRY OF SELECTIVE ANION RECOGNITION FOR ANIONS OF ENVIRONMENTAL RELEVANCE

    EPA Science Inventory

    The supramolecular chemistry of selective anion recognition by synthetic polyammonium macrocycles will be explored in a comprehensive, long term program designed to provide new solutions to problems critical to the environmental initiative of DOE. Highly shape- and charge selecti...

  9. Information processing in the CNS: a supramolecular chemistry?

    PubMed

    Tozzi, Arturo

    2015-10-01

    How does central nervous system process information? Current theories are based on two tenets: (a) information is transmitted by action potentials, the language by which neurons communicate with each other-and (b) homogeneous neuronal assemblies of cortical circuits operate on these neuronal messages where the operations are characterized by the intrinsic connectivity among neuronal populations. In this view, the size and time course of any spike is stereotypic and the information is restricted to the temporal sequence of the spikes; namely, the "neural code". However, an increasing amount of novel data point towards an alternative hypothesis: (a) the role of neural code in information processing is overemphasized. Instead of simply passing messages, action potentials play a role in dynamic coordination at multiple spatial and temporal scales, establishing network interactions across several levels of a hierarchical modular architecture, modulating and regulating the propagation of neuronal messages. (b) Information is processed at all levels of neuronal infrastructure from macromolecules to population dynamics. For example, intra-neuronal (changes in protein conformation, concentration and synthesis) and extra-neuronal factors (extracellular proteolysis, substrate patterning, myelin plasticity, microbes, metabolic status) can have a profound effect on neuronal computations. This means molecular message passing may have cognitive connotations. This essay introduces the concept of "supramolecular chemistry", involving the storage of information at the molecular level and its retrieval, transfer and processing at the supramolecular level, through transitory non-covalent molecular processes that are self-organized, self-assembled and dynamic. Finally, we note that the cortex comprises extremely heterogeneous cells, with distinct regional variations, macromolecular assembly, receptor repertoire and intrinsic microcircuitry. This suggests that every neuron (or group of

  10. Astronomy Matters for Chemistry Teachers.

    ERIC Educational Resources Information Center

    Huebner, Jay S.; And Others

    1996-01-01

    Describes basic misconceptions about the origin of elements and forms of matter found in chemistry texts that need modification in light of modern observational data and interpretations given in astronomy. Notes that there are forms of matter other than elements and compounds. Confounding examples from astronomy include white dwarfs, neutron…

  11. A journey in bioinspired supramolecular chemistry: from molecular tweezers to small molecules that target myotonic dystrophy

    PubMed Central

    2016-01-01

    Summary This review summarizes part of the author’s research in the area of supramolecular chemistry, beginning with his early life influences and early career efforts in molecular recognition, especially molecular tweezers. Although designed to complex DNA, these hosts proved more applicable to the field of host–guest chemistry. This early experience and interest in intercalation ultimately led to the current efforts to develop small molecule therapeutic agents for myotonic dystrophy using a rational design approach that heavily relies on principles of supramolecular chemistry. How this work was influenced by that of others in the field and the evolution of each area of research is highlighted with selected examples. PMID:26877815

  12. Synthesis and Characterization of Calixarene Tetraethers: An Exercise in Supramolecular Chemistry for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Debbert, Stefan L.; Hoh, Bradley D.; Dulak, David J.

    2016-01-01

    In this experiment for an introductory undergraduate organic chemistry lab, students tetraalkylate tertbutylcalix[4]arene, a bowl-shaped macrocyclic oligophenol, and examine the supramolecular chemistry of the tetraether product by proton nuclear magnetic resonance (NMR) spectroscopy. Complexation with a sodium ion reduces the conformational…

  13. Combining coordination and supramolecular chemistry for the formation of uranyl-organic hybrid materials

    SciTech Connect

    Deifel, N. P.; Cahill, Christopher L.

    2011-01-01

    Three hybrid compounds have been synthesized through hydrothermal reactions of UO{sub 2}(NO{sub 3}){sub 2}·6H{sub 2}O with 4-halobenzoic acid (X = Cl, Br, I). The formation of these compounds utilizes a composite synthesis methodology that explicitly employs aspects of both coordination chemistry and supramolecular chemistry (namely halogen---halogen interactions).

  14. Supramolecular Chemistry: Computer-Assisted Instruction in Undergraduate and Graduate Chemistry Courses

    NASA Astrophysics Data System (ADS)

    Varnek, Alexandre A.; Dietrich, Bernard; Wipff, Georges; Lehn, Jean-Marie; Boldyreva, Elena V.

    2000-02-01

    An interactive electronic textbook (SC-WEB) based on Supramolecular Chemistry, by J.-M. Lehn, is described. It includes the text, which has been specially adapted for teaching, and data on the structures of molecules and supermolecules. The list includes about 100 structures retrieved from the Cambridge Structural Database (version 1997) as well as those obtained from molecular dynamics simulations in solution. The structures can be retrieved either from the text or, independently, from the list. SC-WEB uses two types of programs: the first one reads files in HTML format (Word97, Netscape, or Internet Explorer), and WebLab Viewer Lite is used for visualizing and manipulating the structures. It can run on any PC (W95/NT4.0) computer. The application of SC-WEB for a course in supramolecular chemistry, as well as in other chemical courses, is discussed. A few examples related to the binding of alkali cations by organic and inorganic receptors, and of R-NH3+ cations by organic receptors, are considered in more detail.

  15. Art, auto-mechanics, and supramolecular chemistry. A merging of hobbies and career

    PubMed Central

    2016-01-01

    Summary While the strict definition of supramolecular chemistry is “chemistry beyond the molecule”, meaning having a focus on non-covalent interactions, the field is primarily associated with the creation of synthetic receptors and self-assembly. For synthetic ease, the receptors and assemblies routinely possess a high degree of symmetry, which lends them an aspect of aesthetic beauty. Pictures of electron orbitals similarly can be seen as akin to works of art. This similarity was an early draw for me to the fields of supramolecular chemistry and molecular orbital theory, because I grew up in a household filled with art. In addition to art, my childhood was filled with repairing and constructing mechanical entities, such as internal combustion motors, where many components work together to achieve a function. Analogously, the field of supramolecular chemistry creates systems of high complexity that achieve functions or perform tasks. Therefore, in retrospect a career in supramolecular chemistry appears to be simply an extension of childhood hobbies involving art and auto-mechanics. PMID:26977197

  16. Supramolecular Chemistry and Mechanochemistry of Macromolecules: Recent Advances by Single-Molecule Force Spectroscopy.

    PubMed

    Cheng, Bo; Cui, Shuxun

    2015-01-01

    Atomic force spectroscopy (AFM)-based single-molecule force spectroscopy (SMFS) was invented in the 1990s. Since then, SMFS has been developed into a powerful tool to study the inter- and intra-molecular interactions of macromolecules. Using SMFS, a number of problems in the field of supramolecular chemistry and mechanochemistry have been studied at the single-molecule level, which are not accessible by traditional ensemble characterization methods. In this review, the principles of SMFS are introduced, followed by the discussion of several problems of contemporary interest at the interface of supramolecular chemistry and mechanochemistry of macromolecules, including single-chain elasticity of macromolecules, interactions between water and macromolecules, interactions between macromolecules and solid surface, and the interactions in supramolecular polymers. PMID:25860255

  17. Supramolecular chemistry: from aromatic foldamers to solution-phase supramolecular organic frameworks.

    PubMed

    Li, Zhan-Ting

    2015-01-01

    This mini-review covers the growth, education, career, and research activities of the author. In particular, the developments of various folded, helical and extended secondary structures from aromatic backbones driven by different noncovalent forces (including hydrogen bonding, donor-acceptor, solvophobicity, and dimerization of conjugated radical cations) and solution-phase supramolecular organic frameworks driven by hydrophobically initiated aromatic stacking in the cavity of cucurbit[8]uril (CB[8]) are highlighted. PMID:26664626

  18. Supramolecular chemistry: from aromatic foldamers to solution-phase supramolecular organic frameworks

    PubMed Central

    2015-01-01

    Summary This mini-review covers the growth, education, career, and research activities of the author. In particular, the developments of various folded, helical and extended secondary structures from aromatic backbones driven by different noncovalent forces (including hydrogen bonding, donor–acceptor, solvophobicity, and dimerization of conjugated radical cations) and solution-phase supramolecular organic frameworks driven by hydrophobically initiated aromatic stacking in the cavity of cucurbit[8]uril (CB[8]) are highlighted. PMID:26664626

  19. Perspectives in chemistry--steps towards complex matter.

    PubMed

    Lehn, Jean-Marie

    2013-03-01

    Chemistry is progressively unraveling the processes that underlie the evolution of matter towards states of higher complexity and the generation of novel features along the way by self-organization under the pressure of information. Chemistry has evolved from molecular to supramolecular to become adaptive chemistry by way of constitutional dynamics, which allow for adaptation, through component selection in an equilibrating set. Dynamic systems can be represented by weighted dynamic networks that define the agonistic and antagonistic relationships between the different constituents linked through component exchange. Such networks can be switched through amplification/up-regulation of the best adapted/fittest constituent(s) in a dynamic set. Accessing higher level functions such as training, learning, and decision making represent future lines of development for adaptive chemical systems. PMID:23420704

  20. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing.

    PubMed

    Sambrook, M R; Notman, S

    2013-12-21

    Supramolecular chemistry presents many possible avenues for the mitigation of the effects of chemical warfare agents (CWAs), including sensing, catalysis and sequestration. To-date, efforts in this field both to study fundamental interactions between CWAs and to design and exploit host systems remain sporadic. In this tutorial review the non-covalent recognition of CWAs is considered from first principles, including taking inspiration from enzymatic systems, and gaps in fundamental knowledge are indicated. Examples of synthetic systems developed for the recognition of CWAs are discussed with a focus on the supramolecular complexation behaviour and non-covalent approaches rather than on the proposed applications. PMID:24048279

  1. Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry.

    PubMed

    Ogoshi, Tomoki; Yamagishi, Tada-Aki; Nakamoto, Yoshiaki

    2016-07-27

    In 2008, we reported a new class of pillar-shaped macrocyclic hosts, known as "pillar[n]arenes". Today, pillar[n]arenes are recognized as key players in supramolecular chemistry because of their facile synthesis, unique pillar shape, versatile functionality, interesting host-guest properties, and original supramolecular assembly characteristics, which have resulted in numerous electrochemical and biomedical material applications. In this Review, we have provided historical background to macrocyclic chemistry, followed by a detailed discussion of the fundamental properties of pillar[n]arenes, including their synthesis, structure, and host-guest properties. Furthermore, we have discussed the applications of pillar[n]arenes to materials science, as well as their applications in supramolecular chemistry, in terms of their fundamental properties. Finally, we have described the future perspectives of pillar[n]arene chemistry. We hope that this Review will provide a useful reference for researchers working in the field and inspire discoveries concerning pillar[n]arene chemistry. PMID:27337002

  2. Supramolecular Electrochemistry

    NASA Astrophysics Data System (ADS)

    Kaifer, Angel E.; Gomez-Kaifer, Marielle

    1999-12-01

    This book describes the electrochemical behavior of supramolecular systems. Special emphasis will be given to the electrochemistry of host-guest complexes, monolayer and multilayer assemblies, dendrimers, and other supramolecular assemblies. A fundamental theme throughout the book is to explore the effects that supramolecular structure exerts on the thermodynamics and kinetics of electrochemical reactions. Conversely, attention will be placed to the various ways in which electrochemical or redox conversions can be utilized to control or affect the structure or properties of supramolecular systems. This first book on this topic will be of value for graduate students and advanced researchers in both electrochemistry and supramolecular chemistry.

  3. Supramolecular organic frameworks: engineering periodicity in water through host-guest chemistry.

    PubMed

    Tian, Jia; Chen, Lan; Zhang, Dan-Wei; Liu, Yi; Li, Zhan-Ting

    2016-05-11

    The development of homogeneous, water-soluble periodic self-assembled structures comprise repeating units that produce porosity in two-dimensional (2D) or three-dimensional (3D) spaces has become a topic of growing interest in the field of supramolecular chemistry. Such novel self-assembled entities, known as supramolecular organic frameworks (SOFs), are the result of programmed host-guest interactions, which allows for the thermodynamically controlled generation of monolayer sheets or a diamondoid architecture with regular internal cavities or pores under mild conditions. This feature article aims at propagating the conceptually novel SOFs as a new entry into conventional supramolecular polymers. In the first section, we will describe the background of porous solid frameworks and supramolecular polymers. We then introduce the self-assembling behaviour of several multitopic flexible molecules, which is closely related to the design of periodic SOFs from rigid multitopic building blocks. This is followed by a brief discussion of cucurbit[8]uril (CB[8])-encapsulation-enhanced aromatic stacking in water. The three-component host-guest pattern based on this stacking motif has been utilized to drive the formation of most of the new SOFs. In the following two sections, we will highlight the main advances in the construction of 2D and 3D SOFs and the related functional aspects. Finally, we will offer our opinions on future directions for both structures and functions. We hope that this article will trigger the interest of researchers in the field of chemistry, physics, biology and materials science, which should help accelerate the applications of this new family of soft self-assembled organic frameworks. PMID:27094341

  4. Supramolecular ferroelectrics

    NASA Astrophysics Data System (ADS)

    Tayi, Alok S.; Kaeser, Adrien; Matsumoto, Michio; Aida, Takuzo; Stupp, Samuel I.

    2015-04-01

    Supramolecular chemistry uses non-covalent interactions to coax molecules into forming ordered assemblies. The construction of ordered materials with these reversible bonds has led to dramatic innovations in organic electronics, polymer science and biomaterials. Here, we review how supramolecular strategies can advance the burgeoning field of organic ferroelectricity. Ferroelectrics -- materials with a spontaneous and electrically reversible polarization -- are touted for use in non-volatile computer memories, sensors and optics. Historically, this physical phenomenon has been studied in inorganic materials, although some organic examples are known and strong interest exists to extend the search for ferroelectric molecular systems. Other undiscovered applications outside this regime could also emerge. We describe the key features necessary for molecular and supramolecular dipoles in organic ferroelectrics and their incorporation into ordered systems, such as porous frameworks and liquid crystals. The goal of this Review is to motivate the development of innovative supramolecular ferroelectrics that exceed the performance and usefulness of known systems.

  5. The supramolecular chemistry of lipid oxidation and antioxidation in bulk oils

    PubMed Central

    Budilarto, Elizabeth S; Kamal-Eldin, Afaf

    2015-01-01

    The microenvironment formed by surface active compounds is being recognized as the active site of lipid oxidation. Trace amounts of water occupy the core of micro micelles and several amphiphilic minor components (e.g., phospholipids, monoacylglycerols, free fatty acids, etc.) act as surfactants and affect lipid oxidation in a complex fashion dependent on the structure and stability of the microemulsions in a continuous lipid phase such as bulk oil. The structures of the triacylglycerols and other lipid-soluble molecules affect their organization and play important roles during the course of the oxidation reactions. Antioxidant head groups, variably located near the water-oil colloidal interfaces, trap and scavenge radicals according to their location and concentration. According to this scenario, antioxidants inhibit lipid oxidation not only by scavenging radicals via hydrogen donation but also by physically stabilizing the micelles at the microenvironments of the reaction sites. There is a cut-off effect (optimum value) governing the inhibitory effects of antioxidants depending inter alias on their hydrophilic/lipophilic balance and their concentrations. These complex effects, previously considered as paradoxes in antioxidants research, are now better explained by the supramolecular chemistry of lipid oxidation and antioxidants, which is discussed in this review. PMID:26448722

  6. New developments in theoretical thermochemistry and electronic structure applications in supramolecular chemistry and cluster science

    NASA Astrophysics Data System (ADS)

    Ramabhadran, Raghunath Ozhapakkam

    In a concise display of the power and diversity of electronic structure theory (EST), the work presented herein involves the development of new computational methods to advance the practical utility of quantum chemistry, as well as solving different types of challenging chemical problems by applying existing EST tools. The research presented is highly interdisciplinary in nature and features synergistic collaborations to solve real-life problems such as regulating toxic chemicals and generating alternative sources of energy. In the first chapter of this dissertation, the solution to a long-standing problem in theoretical thermochemistry is accomplished by the development of the automated, chemically intuitive and generalized thermochemical hierarchy, Connectivity-Based Hierarchy (CBH) to accurately predict the thermochemical properties of organic molecules. The extension of the hierarchy to predict the enthalpies of formations of biomonomers such as amino acids is also presented. The development of a computationally efficient protocol to accurately extrapolate to high CCSD(T) energies based on MP2 and DFT energies using CBH is presented in the second chapter, thus merging theoretical thermochemistry with fragment-based methods in quantum chemistry. This merger drastically reduces the computational cost involved in a CCSD(T) calculation, while retaining the impeccable accuracy it offers. The practical utility of the CH hydrogen bond, commonly thought as being too weak to be used in supramolecular applications has been demonstrated by DFT calculations (along with experimental results from the Flood group) in the third chapter. This is accomplished by systematically studying the binding of monoatomic chloride, diatomic and toxic cyanide and the polyatomic bi-fluoride anions for the first time using only CH hydrogen bonds within a triazolophane macrocycle. The fourth chapter contains the introduction of the concept of fluxionality in the chemical reactions of

  7. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    SciTech Connect

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization

  8. Factors Controlling the Spectroscopic Properties and Supramolecular Chemistry of an Electron Deficient 5,5-Dimethylphlorin Architecture

    PubMed Central

    2015-01-01

    A new 5,5-dimethylphlorin derivative (3H(PhlCF3)) was prepared and studied through a combination of redox, photophysical, and computational experiments. The phlorin macrocycle is significantly distorted from planarity compared to more traditional tetrapyrrole architectures and displays solvatochroism in the soret region of the UV–vis spectrum (∼370–420 nm). DFT calculations indicate that this solvatochromic behavior stems from the polarized nature of the frontier orbital (LUMO+1) that is most heavily involved in these transitions. Compound 3H(PhlCF3) also displays an intriguing supramolecular chemistry with certain anions; this phlorin can cooperatively hydrogen-bond two equivalents of fluoride to form 3H(PhlCF3)·2F– but does not bind larger halides such as Cl– or Br–. Analogous studies revealed that the phlorin can hydrogen-bond with carboxylate anions such as acetate to form 1:1 complexes such as 3H(PhlCF3)·OAc–. These supramolecular assemblies are robust and form even in relatively polar solvents such as MeCN. Hydrogen-bonding of fluoride and acetate anions to the phlorin N–H residues significantly attenuates the redox and photophysical properties of the phlorin. Moreover, The ability to independently vary the size and pKa of a series of carboxylate hydrogen-bond acceptors has allowed us to probe how phlorin–anion association is controlled by the anion’s size and/or basicity. These studies elucidate the physical properties and the electronic effects that shape the supramolecular chemistry displayed by the phlorin platform. PMID:25018789

  9. Factors Controlling the Spectroscopic Properties and Supramolecular Chemistry of an Electron Deficient 5,5- Dimethylphlorin Architecture

    SciTech Connect

    Pistner, Allen; Lutterman, Daniel A; Ghidiu, Michael J.; Walker, Eric; Yapp, Glenn P. A.; Rosenthal, Joel

    2014-01-01

    A new 5,5-dimethylphlorin derivative (3H-(PhlCF3)) was prepared and studied through a combination of redox, photophysical, and computational experiments. The phlorin macrocycle is significantly distorted from planarity compared to more traditional tetrapyrrole architectures and displays solvatochroism in the soret region of the UV vis spectrum ( 370 420 nm). DFT calculations indicate that this solvatochromic behavior stems from the polarized nature of the frontier orbital (LUMO+1) that is most heavily involved in these transitions. Compound 3H(PhlCF3) also displays an intriguing supramolecular chemistry with certain anions; this phlorin can cooperatively hydrogen-bond two equivalents of fluoride to form 3H(PhlCF3) 2F but does not bind larger halides such as Cl or Br . Analogous studies revealed that the phlorin can hydrogen-bond with carboxylate anions such as acetate to form 1:1 complexes such as 3H(PhlCF3) OAc . These supramolecular assemblies are robust and form even in relatively polar solvents such as MeCN. Hydrogen-bonding of fluoride and acetate anions to the phlorin N H residues significantly attenuates the redox and photophysical properties of the phlorin. Moreover, The ability to independently vary the size and pKa of a series of carboxylate hydrogen-bond acceptors has allowed us to probe how phlorin anion association is controlled by the anion s size and/or basicity. These studies elucidate the physical properties and the electronic effects that shape the supramolecular chemistry displayed by the phlorin platform.

  10. 'Supramolecular wrapping chemistry' by helix-forming polysaccharides: a powerful strategy for generating diverse polymeric nano-architectures.

    PubMed

    Numata, Munenori; Shinkai, Seiji

    2011-02-21

    We have exploited novel supramolecular wrapping techniques by helix-forming polysaccharides, β-1,3-glucans, which have strong tendency to form regular helical structures on versatile nanomaterials in an induced-fit manner. This approach is totally different from that using the conventional interpolymer interactions seen in both natural and synthetic polymeric architectures, and therefore has potential to create novel polymeric architectures with diverse and unexpected functionalities. The wrapping by β-1,3-glucans enforces the entrapped guest polymer to adopt helical or twisted conformations through the convergent interpolymer interactions. On the contrary, the wrapping by chemically modified semi-artificial β-1,3-glucans can bestow the divergent self-assembling abilities on the entrapped guest polymer to create hierarchical polymeric architectures, where the polymer/β-1,3-glucan composite acts as a huge one-dimensional building block. Based on the established wrapping strategy, we have further extended the wrapping techniques toward the creation of three-dimensional polymeric architectures, in which the polymer/β-1,3-glucan composite behaves as a sort of amphiphilic block copolymers. The present wrapping system would open several paths to accelerate the development of the polymeric supramolecular assembly systems, giving the strong stimuli to the frontier of polysaccharide-based functional chemistry. PMID:21246150

  11. The supramolecular chemistry of thiosemicarbazones derived from pyrrole: a structural view

    NASA Astrophysics Data System (ADS)

    Alonso, Ruben; Bermejo, Elena; Carballo, Rosa; Castiñeiras, Alfonso; Pérez, Teresa

    2002-03-01

    Condensation of 2-formylpyrrole or 2-acetylpyrrole with thiosemicarbazide or with N-methyl-, N-ethyl-, N-phenyl- or (for 2-formylpyrrole) N-dimethylthiosemicarbazide afforded nine thiosemicarbazones that were characterized by elemental analysis, mass spectrometry, IR and NMR spectroscopy and, when possible, X-ray-diffractometric structure analysis. N-H⋯S hydrogen bonds (and N-H⋯O and/or O-H⋯S bonds in the structures with water or DMSO of crystallization) give rise to supramolecular structures that in some cases are probably stabilized by π-π interactions.

  12. Semiconducting single-walled carbon nanotubes sorting with a removable solubilizer based on dynamic supramolecular coordination chemistry

    NASA Astrophysics Data System (ADS)

    Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2014-10-01

    Highly pure semiconducting single-walled carbon nanotubes (SWNTs) are essential for the next generation of electronic devices, such as field-effect transistors and photovoltaic applications; however, contamination by metallic SWNTs reduces the efficiency of their associated devices. Here we report a simple and efficient method for the separation of semiconducting- and metallic SWNTs based on supramolecular complex chemistry. We here describe the synthesis of metal-coordination polymers (CP-Ms) composed of a fluorene-bridged bis-phenanthroline ligand and metal ions. On the basis of a difference in the ‘solubility product’ of CP-M-solubilized semiconducting SWNTs and metallic SWNTs, we readily separated semiconducting SWNTs. Furthermore, the CP-M polymers on the SWNTs were simply removed by adding a protic acid and inducing depolymerization to the monomer components. We also describe molecular mechanics calculations to reveal the difference of binding and wrapping mode between CP-M/semiconducting SWNTs and CP-M/metallic SWNTs. This study opens a new stage for the use of such highly pure semiconducting SWNTs in many possible applications.

  13. Diffuse cloud chemistry. [in interstellar matter

    NASA Technical Reports Server (NTRS)

    Van Dishoeck, Ewine F.; Black, John H.

    1988-01-01

    The current status of models of diffuse interstellar clouds is reviewed. A detailed comparison of recent gas-phase steady-state models shows that both the physical conditions and the molecular abundances in diffuse clouds are still not fully understood. Alternative mechanisms are discussed and observational tests which may discriminate between the various models are suggested. Recent developments regarding the velocity structure of diffuse clouds are mentioned. Similarities and differences between the chemistries in diffuse clouds and those in translucent and high latitude clouds are pointed out.

  14. Supramolecular Based Membrane Sensors

    PubMed Central

    Ganjali, Mohammad Reza; Norouzi, Parviz; Rezapour, Morteza; Faridbod, Farnoush; Pourjavid, Mohammad Reza

    2006-01-01

    Supramolecular chemistry can be defined as a field of chemistry, which studies the complex multi-molecular species formed from molecular components that have relatively simpler structures. This field has been subject to extensive research over the past four decades. This review discusses classification of supramolecules and their application in design and construction of ion selective sensors.

  15. Science: Applied Chemistry I Living With Chemistry, Chemistry of Biology, Matter and Its Changes. Authorized Course of Instruction for the Quinmester Program.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Performance objectives are stated for each of the secondary school units included in this package of instructional guides prepared for the Dade County Florida Quinmester Program. All three units are concerned with chemistry: "Applied Chemistry 1,""Chemistry of Biology," and "Matter and Its Changes." The last unit deals with chemistry at a very…

  16. Does Size Really Matter? The Steric Isotope Effect in a Supramolecular Host?Guest Exchange Reaction

    SciTech Connect

    Mugridge, Jeffrey; Bergman, Robert; Raymond, Kenneth

    2010-01-29

    Isotope effects (IEs), which arise from differences in zero point energies (ZPEs) between a parent and isotopically substituted bond, have been used extensively by chemists to probe molecular interactions and reactivity. Due to the anharmonicity of the C-H/D vibrational potential energy function and the lower ZPE of a C-D bond, the average C-D bond length is typically {approx}0.005 {angstrom} shorter than an equivalent C-H bond. It is this difference in size that is often invoked to explain the observation of secondary, inverse kinetic isotope effects (KIEs) in chemical processes which proceed through a sterically strained transition state. This so-called 'steric isotope effect' (SIE) has been observed in processes such as the racemization of ortho-substituted biphenyls[6] and phenanthrenes, ring flipping of cyclophanes, and more recently in the deslipping of rotaxanes, where substitution of the sterically less demanding deuterium for protium results in rate accelerations for these processes. Herein, we use deuterium substitution in a cationic guest molecule to probe the sensitivity limits of the guest exchange process from a highly-charged supramolecular host.

  17. Use of Multiple Representations in Developing Preservice Chemistry Teachers' Understanding of the Structure of Matter

    ERIC Educational Resources Information Center

    Yakmaci-Guzel, Buket; Adadan, Emine

    2013-01-01

    The purpose of this study was to examine the changes in 19 preservice chemistry teachers' understandings of the structure of matter, including the aspects of the physical states of matter, the physical composition of matter, and the chemical composition of matter, before, immediately after, and months after they received a specific instruction.…

  18. Representations of Fundamental Chemistry Concepts in Relation to the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Kirbulut, Zubeyde Demet; Beeth, Michael Edward

    2013-01-01

    This study investigated high school students' understanding of fundamental chemistry concepts - states of matter, melting, evaporation, condensation, boiling, and vapor pressure, in relation to their understanding of the particulate nature of matter. A sample of six students (four females and two males) enrolled in a second year chemistry course…

  19. Using PARSEL Modules to Contextualizing the States-of-Matter Approach (SOMA) to Introductory Chemistry

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios

    2008-01-01

    SOMA (States-Of-Matter Approach) is an introductory chemistry program for all students in the tenth or eleventh grade (age 16-17), which introduces chemistry through the separate study of the three states of matter. SOMA is basically a formalistic approach. In this paper, we discuss the use of PARSEL modules in providing a teaching approach to…

  20. Supramolecular pyridyl urea gels as soft matter with antibacterial properties against MRSA and/or E. coli.

    PubMed

    Pandurangan, Komala; Kitchen, Jonathan A; Blasco, Salvador; Paradisi, Francesca; Gunnlaugsson, Thorfinnur

    2014-09-25

    The synthesis and characterisation of novel aryl-pyridyl ureas are described, which form self-assembly structures via extended hydrogen bonding and π-π interactions in the solid state, and in selected cases, form supramolecular gels with antimicrobial properties against Staphylococcus aureus and/or Escherichia coli. PMID:25089301

  1. Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli.

    PubMed

    Alberti, Sebastián; Soler-Illia, Galo J A A; Azzaroni, Omar

    2015-04-11

    This review presents and discusses recent advances in the emerging field of "gated nanochemistry", outlining the substantial progress made so far. The development of hybrid mesoporous silica with complex tailored pore nanoarchitectures bridges the gap between molecular materials and the requirements of nanodevices for controlled nanoscale chemistry. In the last decade, membranes, particles and thin film porous architectures have been designed, synthesized and selectively modified by molecular, polymeric, organometallic or biologically active groups. The exquisite manipulation of mesopore morphology and interconnection combined with molecular or supramolecular functionalities, and the intrinsic biological compatibility of silica have made these materials a potential platform for selective sensing and drug delivery. The wide répertoire of these hard-soft architectures permit us to envisage sophisticated intelligent nano-systems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined response implies exploiting spatial and physico-chemical effects such as charge distribution, steric constraints, equilibria displacements, or local changes in ionic concentration, just to name a few examples. As expected, this "positional mesochemistry" can be only attained through the concerted control of assembly, surface tailoring and, confinement conditions, thus giving birth to a new class of stimuli-responsive materials with modulable transport properties. As a guiding framework the emerging field of "gated nanochemistry" offers methodologies and tools for building up stimuli-sensitive porous architectures equipped with switchable entities whose transport properties can be triggered at will. The gated nanoscopic hybrid materials discussed here not only herald a new era in the integrative design of "smart" drug delivery systems, but also give the reader a perspective of

  2. The Heart of Matter: A Nuclear Chemistry Module.

    ERIC Educational Resources Information Center

    Viola, Vic

    This book is one in a series of Interdisciplinary Approaches to Chemistry (IAC) designed to help students discover that chemistry is a lively science and actively used to pursue solutions to the important problems of today. It is expected for students to see how chemistry takes place continuously all around and to readily understand the daily…

  3. Supramolecular aromaticity

    NASA Astrophysics Data System (ADS)

    Karabıyık, Hande; Sevinçek, Resul; Karabıyık, Hasan

    2014-05-01

    We report experimental and theoretical evidences for supramolecular aromaticity as a new concept to be widely used in researches about molecular crystals. CSD survey regarding frequently encountered resonance-assisted H-bonds (RAHBs) in formic acid, formamide, formimidamide, formic acid-formamide, and formamide-formimidamide dimers shows that supramolecular quasirings formed by RAHBs have remarkable electronic delocalization within themselves, which is reminiscent of aromaticity at supramolecular level. This study criticizes and reevaluates the validity of conventional judgment which states that ring systems formed by intermolecular H-bonds cannot be aromatic. Thus, the term aromaticity can be extended to supramolecular systems formed by RAHBs. Supramolecular aromaticity has a multi-fold nature involving both σ- and π-delocalization, and σ-delocalization through RAHBs takes on a task of compensating σ-deficiency within quasirings. Atomic composition in donor-acceptor set of the dimers is descriptive for supramolecular aromaticity. We revised bond-valence parameters for RAHBs and they suggest that hypervalent character of H atoms is more pronounced than their hypovalent character in RAHBs. The σ-delocalized bonding within H-bonded quasirings necessitates hypervalent character of H atoms. Quantum chemical calculations based on adiabatic Hydrogen Atom Transfer (HAT) between the monomers reveal that topological parameters at ring critical points (RCPs) of the quasirings correlate well with Shannon's entropic aromaticity index. The presence of additional LP orbital on O atoms implying more diffused LP-orbitals in donor-acceptor set leads to the formation of resonance-disabling states reducing supramolecular aromaticity of a quasiring and energetic cost of the electron transfer between the monomers. There is a nonignorable electron transfer between the monomers even in the cases where H atoms are close to donor or acceptor atom. NBO analyses have revealed that

  4. Supramolecular biomaterials

    NASA Astrophysics Data System (ADS)

    Webber, Matthew J.; Appel, Eric A.; Meijer, E. W.; Langer, Robert

    2016-01-01

    Polymers, ceramics and metals have historically dominated the application of materials in medicine. Yet rationally designed materials that exploit specific, directional, tunable and reversible non-covalent interactions offer unprecedented advantages: they enable modular and generalizable platforms with tunable mechanical, chemical and biological properties. Indeed, the reversible nature of supramolecular interactions gives rise to biomaterials that can sense and respond to physiological cues, or that mimic the structural and functional aspects of biological signalling. In this Review, we discuss the properties of several supramolecular biomaterials, as well as their applications in drug delivery, tissue engineering, regenerative medicine and immunology. We envision that supramolecular biomaterials will contribute to the development of new therapies that combine highly functional materials with unmatched patient- and application-specific tailoring of both material and biological properties.

  5. Data Mining as a Guide for the Construction of Cross-Linked Nanoparticles with Low Immunotoxicity via Control of Polymer Chemistry and Supramolecular Assembly.

    PubMed

    Elsabahy, Mahmoud; Wooley, Karen L

    2015-06-16

    The potential immunotoxicity of nanoparticles that are currently being approved, in different phases of clinical trials, or undergoing rigorous in vitro and in vivo characterizations in several laboratories has recently raised special attention. Products with no apparent in vitro or in vivo toxicity may still trigger various components of the immune system unintentionally and lead to serious adverse reactions. Cytokines are one of the useful biomarkers for predicting the effect of biotherapeutics on modulation of the immune system and for screening the immunotoxicity of nanoparticles both in vitro and in vivo, and they were recently found to partially predict the in vivo pharmacokinetics and biodistribution of nanomaterials. Control of polymer chemistry and supramolecular assembly provides a great opportunity for the construction of biocompatible nanoparticles for biomedical clinical applications. However, the sources of data collected regarding immunotoxicities of nanomaterials are diverse, and experiments are usually conducted using different assays under specific conditions. As a result, making direct comparisons nearly impossible, and thus, tailoring the properties of nanomaterials on the basis of the available data is challenging. In this Account, the effects of chemical structure, cross-linking, degradability, morphology, concentration, and surface chemistry on the immunotoxicity of an expansive array of polymeric nanomaterials will be highlighted, with a focus on assays conducted using the same in vitro and in vivo models and experimental conditions. Furthermore, numerical descriptive values have been utilized uniquely to stand for induction of cytokines by nanoparticles. This treatment of available data provides a simple way to compare the immunotoxicities of various nanomaterials, and the values were found to correlate well with published data. On the basis of the polymeric systems investigated in this study, valuable information has been collected that

  6. Teacher's Guide to SERAPHIM Software VI. Chemistry: The Study of Matter.

    ERIC Educational Resources Information Center

    Bogner, Donna J.

    Designed to assist chemistry teachers in selecting appropriate software programs, this publication is the sixth in a series of six teacher's guides from Project SERAPHIM, a program sponsored by the National Science Foundation. This guide is keyed to the chapters of the text "Chemistry: The Study of Matter." Program suggestions are arranged in the…

  7. Data Mining as a Guide for the Construction of Crosslinked Nanoparticles with Low Immunotoxicity via Controlling Polymer Chemistry and Supramolecular Assembly

    PubMed Central

    Elsabahy, Mahmoud; Wooley, Karen L.

    2015-01-01

    CONSPECTUS The potential immunotoxicity of nanoparticles that are currently being approved or in different phases of clinical trials or under rigorous in vitro and in vivo characterizations in several laboratories has recently raised special attention. Products with no apparent in vitro or in vivo toxicity may still trigger the various components of the immune system, unintentionally, and lead to serious adverse reactions. Cytokines are one of the useful biomarkers to predict the effect of biotherapeutics on modulating the immune system and for screening the immunotoxicity of nanoparticles, both in vitro and in vivo, and were found recently to partially predict the in vivo pharmacokinetics and biodistribution of nanomaterials. Control of polymer chemistry and supramolecular assembly provides a great opportunity for construction of biocompatible nanoparticles for biomedical clinical applications. However, the sources of data collected regarding immunotoxicities of nanomaterials are diverse and experiments are usually conducted using different assays and under specific conditions, making direct comparisons nearly impossible and, thus, tailoring properties of nanomaterials based on the available data is challenging. In this account, the effects of chemical structure, crosslinking, degradability, morphology, concentration and surface chemistry on the immunotoxicity of an expansive array of polymeric nanomaterials will be highlighted, with focus being given on assays conducted using the same in vitro and in vivo models and experimental conditions. Furthermore, numerical descriptive values have been utilized, uniquely, to stand for induction of cytokines by nanoparticles. This treatment of available data provides a simple and easy way to compare the immunotoxicity of various nanomaterials, and the values were found to correlate-well with published data. Based on the investigated polymeric systems in this study, valuable information has been collected that aids in the

  8. Supramolecular Polymerization Engineered with Molecular Recognition.

    PubMed

    Haino, Takeharu

    2015-10-01

    Supramolecular polymeric assemblies represent an emerging, promising class of molecular assemblies with enormous versatility compared with their covalent polymeric counterparts. Although a large number of host-guest motifs have been produced over the history of supramolecular chemistry, only a limited number of recognition motifs have been utilized as supramolecular connections in polymeric assemblies. This account describes the molecular recognition of host molecules based on calix[5]arene and bisporphyrin that demonstrate unique guest encapsulations; subsequently, these host-guest motifs are applied to the synthesis of supramolecular polymers that display polymer-like properties in solution and solid states. In addition, new bisresorcinarenes are developed to form supramolecular polymers that are connected via a rim-to-rim hydrogen-bonded dimeric structure, which is composed of two resorcinarene moieties. PMID:26178364

  9. Interstellar chemistry recorded in organic matter from primitive meteorites.

    PubMed

    Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R

    2006-05-01

    Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system. PMID:16675696

  10. Host-guest supramolecular chemistry in solid-state nanopores: potassium-driven modulation of ionic transport in nanofluidic diodes

    NASA Astrophysics Data System (ADS)

    Pérez-Mitta, Gonzalo; Albesa, Alberto G.; Knoll, Wolfgang; Trautmann, Christina; Toimil-Molares, María Eugenia; Azzaroni, Omar

    2015-09-01

    We describe the use of asymmetric nanopores decorated with crown ethers for constructing robust signal-responsive chemical devices. The modification of single conical nanopores with 18-crown-6 units led to a nanodevice whose electronic readout, derived from the transmembrane ion current, can be finely tuned over a wide range of K+ concentrations. The electrostatic characteristics of the nanopore environment arising from host-guest ion-recognition processes taking place on the pore walls are responsible for tuning the transmembrane ionic transport and the rectification properties of the pore. This work illustrates the potential and versatility of host-guest chemistry, in combination with nanofluidic elements, as a key enabler to achieve addressable chemical nanodevices mimicking the ion transport properties and gating functions of specific biological channels.We describe the use of asymmetric nanopores decorated with crown ethers for constructing robust signal-responsive chemical devices. The modification of single conical nanopores with 18-crown-6 units led to a nanodevice whose electronic readout, derived from the transmembrane ion current, can be finely tuned over a wide range of K+ concentrations. The electrostatic characteristics of the nanopore environment arising from host-guest ion-recognition processes taking place on the pore walls are responsible for tuning the transmembrane ionic transport and the rectification properties of the pore. This work illustrates the potential and versatility of host-guest chemistry, in combination with nanofluidic elements, as a key enabler to achieve addressable chemical nanodevices mimicking the ion transport properties and gating functions of specific biological channels. Electronic supplementary information (ESI) available: Experimental details of the preparation and characterization of the brush-modified nanopores. See DOI: 10.1039/c5nr04645a

  11. The Heart of Matter: A Nuclear Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Viola, Vic; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching nuclear chemistry. In this book, the fundamental concepts of nuclear science and the applications of nuclear energy are discussed. The material in this book can be integrated with the other modules in a sequence that helps students…

  12. Communicating about Matter with Symbols: Evolving from Alchemy to Chemistry

    ERIC Educational Resources Information Center

    Fabbrizzi, Luigi

    2008-01-01

    Modern chemists know that alchemists were their historical predecessors, yet they are not proud of this relationship, which chemists today tend to hide or forget. However, no discontinuity exists between alchemy and chemistry and we still use laboratory techniques that were invented by alchemists hundreds or thousands of years ago. Alchemists used…

  13. Supramolecularly self-organized nanomaterials: A voyage from inorganic particles to organic light-harvesting materials

    NASA Astrophysics Data System (ADS)

    Varotto, Alessandro

    In 2009 the U.S. National Science Foundation announced the realignment of the Chemistry Divisions introducing the new interdisciplinary program of "Macromolecular, Supramolecular and Nanochemistry." This statement officially recognizes a field of studies that has already seen the publication of many thousands of works in the past 20 years. Nanotechnology and supramolecular chemistry can be found in the most diverse disciplines, from biology to engineering, to physics. Furthermore, many technologies rely on nanoscale dimensions for more than one component. Nanomaterials and technologies are on the market with a range of applications from composite materials, to electronics, to medicine, to sensing and more. This thesis will introduce a variety of studies and applications of supramolecular chemistry to form nanoscale photonic materials from soft matter. We will first illustrate a method to synthesize metallic nanoparticles using plasmids DNA as a mold. The circular DNA functions as a sacrificial template to shape the particles into narrowly monodispersed nanodiscs. Secondly, we will describe the synthesis of a highly fluorinated porphyrin derivative and how the fluorines improve the formation of ultra thin films when the porphyrin is blended with fullerene C60. Finally, we will show how to increase the short-circuit current in a solar cell built with an internal parallel tandem light harvesting design. A blend of phthalocyanines, each with a decreasing optical band gap, is supramolecularly self-organized with pyridyl-C60 within thin films. The different band gaps of the single phthalocyanines capture a wider segment of the solar spectrum increasing the overall efficiency of the device. In conclusion, we have presented a number of studies for the preparation of inorganic and organic nanomaterials and their application in supramolecularly organized photonic devices.

  14. Vegetation effects on soil organic matter chemistry of aggregate fractions in a Hawaiian forest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined chemical changes from live plant tissue to soil organic matter (SOM) to determine the persistence of individual plant compounds into soil aggregate fractions. We characterized the tissue chemistry of a slow- (Dicranopteris linearis) and fast-decomposing species (Cheirodendron trigynum) a...

  15. Supramolecular Chemistry: A Capstone Course

    ERIC Educational Resources Information Center

    Urbach, Adam R.; Pursell, Christopher J.; Spence, John D.

    2007-01-01

    A fourth-year capstone course offers students an opportunity to integrate topics covered in the core disciplinary courses, to learn an advanced interdisciplinary topic, and to approach unfamiliar problems and literature. This article describes a fourth-year capstone course designed to incorporate components of faculty lectures, student seminars,…

  16. Programmable Supramolecular Polymerizations.

    PubMed

    van der Zwaag, Daan; de Greef, Tom F A; Meijer, E W

    2015-07-13

    Living large: Rational design of self-assembly pathways has been demonstrated in supramolecular polymers. By controlling the concentration of an aggregation-competent monomer through intramolecular interactions, living supramolecular polymerization conditions were achieved. This universal approach can be used to obtain aggregates of well-defined length and narrow dispersity, and allows access to new supramolecular polymer architectures. PMID:26095705

  17. Effective integrative supramolecular polymerization.

    PubMed

    Zhang, Qiwei; Tian, He

    2014-09-26

    Exercise control: By taking advantage of self-sorting processes among host-guest components, a controlled supramolecular polymerization can be realized, as demonstrated recently with the preparation of a cucurbit[n]uril-based supramolecular polymer. This method may be used for the design of more ordered supramolecular polymers from complex and discrete components. PMID:25080388

  18. Multicomponent Supramolecular Polymers as a Modular Platform for Intracellular Delivery.

    PubMed

    Bakker, Maarten H; Lee, Cameron C; Meijer, E W; Dankers, Patricia Y W; Albertazzi, Lorenzo

    2016-02-23

    Supramolecular polymers are an emerging family of nanosized structures with potential use in materials chemistry and medicine. Surprisingly, application of supramolecular polymers in the field of drug delivery has received only limited attention. Here, we explore the potential of PEGylated 1,3,5-benzenetricarboxamide (BTA) supramolecular polymers for intracellular delivery. Exploiting the unique modular approach of supramolecular chemistry, we can coassemble neutral and cationic BTAs and control the overall properties of the polymer by simple monomer mixing. Moreover, this platform offers a versatile approach toward functionalization. The core can be efficiently loaded with a hydrophobic guest molecule, while the exterior can be electrostatically complexed with siRNA. It is demonstrated that both compounds can be delivered in living cells, and that they can be combined to enable a dual delivery strategy. These results show the advantages of employing a modular system and pave the way for application of supramolecular polymers in intracellular delivery. PMID:26811943

  19. Modification of chemical and conformational properties of natural organic matter by click chemistry as revealed by ESI-Orbitrap mass spectrometry.

    PubMed

    Nebbioso, Antonio; Piccolo, Alessandro

    2015-11-01

    A click reaction is reported here for the first time as a useful technique to control the conformational stability of natural organic matter (NOM) suprastructures. Click conjugates were successfully formed between a previously butynylated NOM hydrophobic fraction and a hydrophilic polyethylene glycol (PEG)-amino chain. The click products were shown by size exclusion chromatography (HPSEC) hyphenated with Orbitrap mass spectrometry (MS) in electrospray ionization (ESI) (+), while precursors were visible in ESI (-). Despite their increase in molecular weight, HPSEC elution of click conjugates occurred after that of precursors, thus showing their departure from the NOM supramolecular association. This indicates that the click-conjugated NOM molecules were varied in their hydrophilic and cationic character and lost the capacity to accommodate in the original hydrophobic suprastructures. The most abundant product had the C16H30O5N4 formula, a click conjugate of butanoic acid, while other products were short-chained (C4-C8) linear unsaturated and hydroxylated carboxylic acids. Tandem MS revealed formation of triazole rings in clicked conjugates and their two fragmentations at the ester and the C-N alkyl-aryl bonds. The behavior of NOM molecules modified by click chemistry confirms that hydrophobicity and ionic charge of humic molecules play a pivotal role in stabilizing intermolecular forces in NOM. Moreover, the versatility of the click reaction may become useful to decorate NOM molecules with a variety of substrates, in order to alter NOM conformational and chemical properties and diversify its applications in the environment. PMID:26363779

  20. Stimuli-responsive supramolecular polymers in aqueous solution.

    PubMed

    Ma, Xiang; Tian, He

    2014-07-15

    CONSPECTUS: Aiming to construct various novel supramolecular polymeric structures in aqueous solution beyond small supramolecular self-assembly molecules and develop functional supramolecular polymeric materials, research interest on functional supramolecular polymers has been prevailing in recent years. Supramolecular polymers are formed by bridging monomers or components together via highly directional noncovalent interactions such as hydrogen bonding, hydrophobic interaction, π-π interaction, metal-ligand coordination, electrostatic interaction, and so forth. They can be easily functionalized by employing diverse building components with specific functions besides the traditional polymeric properties, a number of which are responsive to such external stimuli as pH variance, photoirradiation, chemically or electrochemically redox with the controllable conformation or construction switching, polymerization building and rebuilding, and function adjustment reversibly owing to the reversibility of noncovalent interactions. Supramolecular polymers are "soft matters" and can be functionalized with specific properties such as morphology adjustment, controllable luminescence, shape memory, self-healing, and so forth. Supramolecular polymers constructed based on macrocycle recognition and interlocked structures represent one typical branch of the supramolecular polymer family. Cyclodextrin (CD), cucurbituril (CB), and hydrophilic calixarene derivatives are usually employed to construct hydrophilic supramolecular polymers in aqueous solution. Stimuli-responsive hydrophilic supramolecular polymers, constructed in aqueous solution particularly, can be promising candidates for mimicking biocompatible or vital functional materials. This Account mainly focuses on the recent stimuli-responsive supramolecular polymers based on the host-guest interaction in aqueous solution. We describe the hydrophilic supramolecular polymers constructed via hydrophobic effects, electrostatic

  1. Pre-Service Chemistry Teachers' Pedagogical Content Knowledge of the Nature of Science in the Particle Nature of Matter

    ERIC Educational Resources Information Center

    Bektas, Oktay; Ekiz, Betul; Tuysuz, Mustafa; Kutucu, Elif Selcan; Tarkin, Aysegul; Uzuntiryaki-Kondakci, Esen

    2013-01-01

    This study investigated pre-service chemistry teachers' pedagogical content knowledge of the nature of science (NOS) in the content of the particle nature of matter. Qualitative research design was utilized. Data were collected from seven pre-service chemistry teachers (PCTs) by using open-ended questions, interviews, observations, lesson plans,…

  2. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    USGS Publications Warehouse

    MacAlady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  3. Synergistic Assembly of Covalent and Supramolecular Polymers.

    PubMed

    Bai, Linyi; Zhao, Yanli

    2016-06-01

    Integrating irreplaceable features of both covalent chemistry and noncovalent interactions into a single entity to maximize the applicability is highly desired. Here, a discovery of this type of hybrid, developed by Stupp and co-workers, is developed, where a synergistic combination of covalent and noncovalent compartments enables them to assemble by each other perfectively. The covalent compartments can grow into polymer chains assisted by a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure. The obtained soft materials can serve as functional platforms for molecular delivery or self-repairing materials. PMID:27076255

  4. Do Long-Term Changes in Organic Matter Inputs to Forest Soils Affect Dissolved Organic Matter Chemistry and Export?

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Strid, A.; Lee, B. S.

    2014-12-01

    Dissolved organic matter (DOM) production and transport play an important role in regulating organic matter (OM) distribution through a soil profile and ultimately, OM stabilization or export to aquatic systems. The contributions of varying OM inputs to the quality and amount of DOM as it passes through a soil profile remain relatively unknown. The Detrital Input and Removal Treatment (DIRT) site at the H. J. Andrews Experimental Forest in Oregon has undergone 17 years of litter, wood and root input manipulations and allows us to guage shifts in DOM chemistry induced by long-term changes to aboveground and belowground OM additions and exclusions. Using fluorescence and UV spectroscopy to characterize fluorescent properties, extent of decomposition, and sources of DOM in streams and soil solutions collected with lysimeters and soil extractions, we have assessed the importance of fresh OM inputs to DOM chemistry. Soil extracts from DIRT plots had a higher fluorescence index (FI) than lysimeter solutions or stream water. A high FI in surface water is generally interpreted as indicative of a high proportion of microbially-derived DOM. However, we suspect that the high FI in soil extracts is due to a higher proportion of non-aromatic DOM from fresh soil that microorganisms consume in transit through the soil profile to lysimeters or to streams. High redox index (RI) values were observed in lysimeters from the April 2014 sampling compared with the November 2013 sampling. These RI values show evidence of more reducing conditions at the end of the rainy season in the spring compared to the onset of the rainy season in the fall. Lysimeter water collected in No Input, No Litter, and No Root treatments contained high proportions of protein, suggesting the absence of carbon inputs changes activities of the microbial community. Observed variations reflect the viability of using fluorescent properties to explore the terrestrial-aquatic interface.

  5. Supramolecular Nanofibers of Peptide Amphiphiles for Medicine

    PubMed Central

    Webber, Matthew J.; Berns, Eric J.; Stupp, Samuel I.

    2014-01-01

    Peptide nanostructures are an exciting class of supramolecular systems that can be designed for novel therapies with great potential in advanced medicine. This paper reviews progress on nanostructures based on peptide amphiphiles capable of forming one-dimensional assemblies that emulate in structure the nanofibers present in extracellular matrices. These systems are highly tunable using supramolecular chemistry, and can be designed to signal cells directly with bioactive peptides. Peptide amphiphile nanofibers can also be used to multiplex functions through co-assembly and designed to deliver proteins, nucleic acids, drugs, or cells. We illustrate here the functionality of these systems describing their use in regenerative medicine of bone, cartilage, the nervous system, the cardiovascular system, and other tissues. In addition, we highlight recent work on the use of peptide amphiphile assemblies to create hierarchical biomimetic structures with order beyond the nanoscale, and also discuss the future prospects of these supramolecular systems. PMID:24532851

  6. Climate, Litter Chemistry, and Nitrogen Controls on Litter Decomposition and Organic Matter Stabilization

    NASA Astrophysics Data System (ADS)

    DelGrosso, S.; Parton, W. J.; Adair, C.

    2012-12-01

    Climate interacts with N availability and other factors to control organic matter decomposition rates and carbon cycling. We analyzed data from the LIDET (Long-Term Inter-site Decomposition Experiment Team) experiment to investigate the controls on litter decomposition rates and organic matter stabilization. Bags containing vegetative litter from different woody and herbaceous species were placed in 28 sites representing a wide array of biomes. Samples were collected approximately ten times, once per year for all sites except tropical sites, which were sampled every 3-6 months. Each sample was analyzed for total N, ash, lignin, and cellulose using near infrared reflectance spectroscopy. To account for water and temperature impacts on decomposition, we calculated a Climate Decomposition Index (CDI) for each site based on long term weather data. We then performed step-wise regression analyses to test how well CDI and litter chemistry were correlated with the amount of biomass remaining in litter bags after 1, 5, and 10 years. CDI was the primary control, accounting for 74, 48, and 58% of variability in biomass remaining at 1, 5, and 10 years, respectively. In addition to CDI, The C/N ratio of labile organic matter and lignin content significantly impacted biomass remaining at 1 and 5 years, while lignin and cellulose content were significant for biomass remaining at 10 years. Increased C/N ratio was associated with slower initial decomposition rate. Lignin content was positively, and cellulose negatively, correlated with long term organic matter stabilization. If CDI and lignin content were similar, then C/N did not influence long term stabilization. If N was not limiting, cellulose decomposed quickly.

  7. Supramolecular interactions in the solid state

    PubMed Central

    Resnati, Giuseppe; Boldyreva, Elena; Bombicz, Petra; Kawano, Masaki

    2015-01-01

    In the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state. The topics covered are: (1) an overview and historical review of halogen bonding; (2) exploring non-ambient conditions to investigate intermolecular interactions in crystals; (3) the role of intermolecular interactions in morphotropy, being the link between isostructurality and polymorphism; (4) strategic realisation of kinetic coordination polymers by exploiting multi-interactive linker molecules. The discussion touches upon many of the prerequisites for controlled preparation and characterization of crystalline materials. PMID:26594375

  8. Distinct Optical Chemistry of Dissolved Organic Matter in Urban Pond Ecosystems

    PubMed Central

    McEnroe, Nicola A.; Williams, Clayton J.; Xenopoulos, Marguerite A.; Porcal, Petr; Frost, Paul C.

    2013-01-01

    Urbanization has the potential to dramatically alter the biogeochemistry of receiving freshwater ecosystems. We examined the optical chemistry of dissolved organic matter (DOM) in forty-five urban ponds across southern Ontario, Canada to examine whether optical characteristics in these relatively new ecosystems are distinct from other freshwater systems. Dissolved organic carbon (DOC) concentrations ranged from 2 to 16 mg C L-1 across the ponds with an average value of 5.3 mg C L-1. Excitation-emission matrix (EEM) spectroscopy and parallel factor analysis (PARAFAC) modelling showed urban pond DOM to be characterized by microbial-like and, less importantly, by terrestrial derived humic-like components. The relatively transparent, non-humic DOM in urban ponds was more similar to that found in open water, lake ecosystems than to rivers or wetlands. After irradiation equivalent to 1.7 days of natural solar radiation, DOC concentrations, on average, decreased by 38% and UV absorbance decreased by 25%. Irradiation decreased the relative abundances of terrestrial humic-like components and increased protein-like aspects of the DOM pool. These findings suggest that high internal production and/or prolonged exposure to sunlight exerts a distinct and significant influence on the chemistry of urban pond DOM, which likely reduces its chemical similarity with upstream sources. These properties of urban pond DOM may alter its biogeochemical role in these relatively novel aquatic ecosystems. PMID:24348908

  9. Supramolecular dendritic polymers: from synthesis to applications.

    PubMed

    Dong, Ruijiao; Zhou, Yongfeng; Zhu, Xinyuan

    2014-07-15

    applications in a wide range of fields. A variety of synthetic methods using non-covalent interactions have been established to prepare different types of SDPs based on varied mono- or multifunctionalized building blocks (e.g., monomer, dendron, dendrimer, and hyperbranched polymer) with homo- or heterocomplementary units. In addition, SDPs can be further endowed with excellent functionalities by employing different modification approaches involving terminal, focal-point, and backbone modification. Similar to conventional dendritic polymers, SDPs can self-assemble into diverse supramolecular structures such as micelles, vesicles, fibers, nanorings, tubes, and many hierarchical structures. Finally, we highlight some typical examples of recent applications of SDP-based systems in biomedical fields (e.g., controlled drug/gene/protein delivery, bioimaging, and biomimetic chemistry), nanotechnology (e.g., nanoreactors, catalysis, and molecular imprinting), and functional materials. The current research on SDPs is still at the very early stage, and much more work needs to be done. We anticipate that future studies of SDPs will focus on developing multifunctional, hierarchical supramolecular materials toward their practical applications by utilization of cooperative non-covalent interactions. PMID:24779892

  10. Kant and the nature of matter: Mechanics, chemistry, and the life sciences.

    PubMed

    Gaukroger, Stephen

    2016-08-01

    Kant believed that the ultimate processes that regulate the behavior of material bodies can be characterized exclusively in terms of mechanics. In 1790, turning his attention to the life sciences, he raised a potential problem for his mechanically-based account, namely that many of the operations described in the life sciences seemed to operate teleologically. He argued that the life sciences do indeed require us to think in teleological terms, but that this is a fact about us, not about the processes themselves. Nevertheless, even were we to concede his account of the life sciences, this would not secure the credentials of mechanics as a general theory of matter. Hardly any material properties studied in the second half of the eighteenth century were, or could have been, conceived in mechanical terms. Kant's concern with teleology is tangential to the problems facing a general matter theory grounded in mechanics, for the most pressing issues have nothing to do with teleology. They derive rather from a lack of any connection between mechanical forces and material properties. This is evident in chemistry, which Kant dismisses as being unscientific on the grounds that it cannot be formulated in mechanical terms. PMID:27474191

  11. Reasoning Using Particulate Nature of Matter: An Example of a Sociochemical Norm in a University-Level Physical Chemistry Class

    ERIC Educational Resources Information Center

    Becker, Nicole; Rasmussen, Chris; Sweeney, George; Wawro, Megan; Towns, Marcy; Cole, Renee

    2013-01-01

    In college level chemistry courses, reasoning using molecular and particulate descriptions of matter becomes central to understanding physical and chemical properties. In this study, we used a qualitative approach to analyzing classroom discourse derived from Toulmin's model of argumentation in order to describe the ways in which students develop…

  12. Perceptions of Student-Teacher Relationships, Self-Efficacy, and Subject Matter Retention in a Secondary Chemistry Course

    ERIC Educational Resources Information Center

    Bechtel, Michael Dean

    2012-01-01

    This was a study of students who had completed a chemistry course taught by one instructor in a large urban high school during 2009-2010. It was conducted in two phases: Phase One assessed self-efficacy, teaching practices, and subject matter retention taken 16 months after course completion. Phase Two consisted of a multiple-choice final exam…

  13. Chemistry of Living Matter, Energy Capture & Growth, Parts Three & Four of an Integrated Science Sequence, Student Guide, 1971 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    This student guide is divided into two sections, "Chemistry of Living Matter" and "Energy Capture and Growth," constituting parts three and four of the third year of the Portland Project, a three-year high school integrated science curriculum. The underlying intention of the third year is to study energy and its importance to life. Energy-related…

  14. Synthesis and Characterization of Supramolecular Colloids.

    PubMed

    Vilanova, Neus; De Feijter, Isja; Voets, Ilja K

    2016-01-01

    Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer. PMID:27168201

  15. Clear effects of soil organic matter chemistry, as determined by NMR spectroscopy, on the sorption of diuron.

    PubMed

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2008-01-01

    Organic matter has long been recognized as the main sorbent phase in soils for hydrophobic organic compounds (HOCs). In recent times, there has been an increasing realization that not only the amount, but also the chemical composition, of organic matter can influence the sorption properties of a soil. Here, we show that the organic carbon-normalized sorption coefficient (K(OC)) for diuron is 27-81% higher in 10 A11 horizons than in 10 matching A12 horizons for soils collected from a small (2ha) field. K(OC) was generally greater for the deeper (B) horizons, although these values may be inflated by sorption of diuron to clays. Organic matter chemistry of the A11 and A12 horizons was determined using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. K(OC) was positively correlated with aryl C (r2=0.59, significance level 0.001) and negatively correlated with O-alkyl C (r2=0.84, significance level <0.001). This is only the second report of correlations between whole soil K(OC) and NMR-derived measures of organic matter chemistry. We suggest that this success may be a consequence of limiting this study to a very small area (a single field). There is growing evidence that interactions between organic matter and clay minerals strongly affect K(OC). However, because the soil mineralogy varies little across the field, the influence of these interactions is greatly diminished, allowing the effect of organic matter chemistry on K(OC) to be seen clearly. This study in some way reconciles studies that show strong correlations between K(OC) and the chemistry of purified organic materials and the general lack of such correlations for whole soils. PMID:17919682

  16. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    PubMed

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. PMID:24972176

  17. Transforming Matter: A History of Chemistry from Alchemy to the Buckyball by Trevor H. Levere

    NASA Astrophysics Data System (ADS)

    Truman Schwartz, A.

    2001-08-01

    By and large, the chemistry is presented in a logical and comprehensible form. People and ideas are emphasized. However, because of Transforming Matter's brevity and its intended audience, there are inevitable oversimplifications and sins of omission. There were also a few sins of commission in the uncorrected proof that I read. On page 159 there is an implication that equilibrium does not exist in "irreversible" processes such as the precipitation of silver chloride. The author rushes through electron orbitals in one paragraph (page 178) in which he mistakenly refers to something he calls "Planck's equation" and appears to identify p orbitals with n = 2. On the next page we are told that "overlapping p orbitals produced a pi bond." True, but they can also produce a sigma bond. And on page 198 we learn that "a single Freon molecule can cause the decomposition of millions of ozone molecules." The most frequently cited estimate is 100,000 ozone molecules decomposed per Freon molecule. This may be the nit picking of a physical chemist, but it does reflect some of the hazards of trying to achieve an admirable goal--introducing readers to the fascinating history of our fascinating science.

  18. Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry.

    PubMed

    Engel, Maya; Chefetz, Benny

    2016-06-01

    Increasing use of carbon nanotubes (CNTs) has led to their introduction into the environment where they can interact with dissolved organic matter (DOM). This study focuses on solution chemistry effects on DOM adsorption/desorption processes by single-walled CNTs (SWCNTs). Our data show that DOM adsorption is controlled by the attachment of DOM molecules to the SWCNTs, and that the initial adsorption rate is dependent on solution parameters. Adsorbed amount of DOM at high ionic strength was limited, possibly due to alterations in SWCNT bundling. Desorption of DOM performed at low pH resulted in additional DOM adsorption, whereas at high pH, adsorbed DOM amount decreased. The extent of desorption conducted at increased ionic strength was dependent on pre-adsorbed DOM concentration: low DOM loading stimulated additional adsorption of DOM, whereas high DOM loading facilitated release of adsorbed DOM. Elevated ionic strength and increased adsorbed amount of DOM reduced the oxidation temperature of the SWCNTs, suggesting that changes in the assembly of the SWCNTs had occurred. Moreover, DOM-coated SWCNTs at increased ionic strength provided fewer sites for atrazine adsorption. This study enhances our understanding of DOM-SWCNT interactions in aqueous systems influenced by rapid changes in salinity, and facilitates potential use of SWCNTs in water-purification technologies. PMID:26878603

  19. Chemistry characterization of jet aircraft engine particulate matter by XPS: Results from APEX III

    NASA Astrophysics Data System (ADS)

    Vander Wal, Randy L.; Bryg, Victoria M.; Huang, Chung-Hsuan

    2016-09-01

    This paper reports X-ray photoelectron spectroscopy (XPS) analysis of jet exhaust particulate matter (PM) from a B737, Lear, ERJ and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and powers. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20% or more. By survey scans various elements including transition metals are identified along with lighter elements such as S, N and O in the form of oxides. Additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their collective presence could serve as an environmental tracer for identifying PM originating from aircraft engines and serving as a diagnostic for engine performance and wear.

  20. Hollow spherical supramolecular dendrimers.

    PubMed

    Percec, Virgil; Peterca, Mihai; Dulcey, Andrés E; Imam, Mohammad R; Hudson, Steven D; Nummelin, Sami; Adelman, Peter; Heiney, Paul A

    2008-10-01

    The synthesis of a library containing 12 conical dendrons that self-assemble into hollow spherical supramolecular dendrimers is reported. The design principles for this library were accessed by development of a method that allows the identification of hollow spheres, followed by structural and retrostructural analysis of their Pm3n cubic lattice. The first hollow spherical supramolecular dendrimer was made by replacing the tapered dendron, from the previously reported tapered dendritic dipeptide that self-assembled into helical pores, with its constitutional isomeric conical dendron. This strategy generated a conical dendritic dipeptide that self-assembled into a hollow spherical supramolecular dendrimer that self-organizes in a Pm3n cubic lattice. Other examples of hollow spheres were assembled from conical dendrons without a dipeptide at their apex. These are conical dendrons originated from tapered dendrons containing additional benzyl ether groups at their apex. The inner part of the hollow sphere assembled from the dipeptide resembles the path of a spherical helix or loxodrome and, therefore, is chiral. The spheres assembled from other conical dendrons are nonhelical, even when they contain stereocenters on the alkyl groups from their periphery. Functionalization of the apex of the conical dendrons with diethylene glycol allowed the encapsulation of LiOTf and RbOTf in the center of the hollow sphere. These experiments showed that hollow spheres function as supramolecular dendritic capsules and therefore are expected to display functions complementary to those of other related molecular and supramolecular structures. PMID:18771261

  1. Coordination Chemistry of 2,2'-Bipyridyl- and 2,2':6',2″-Terpyridyl-Substituted BEDT-TTFs: Formation of a Supramolecular Capsule Motif by the Iron(II) Tris Complex of 2,2'-Bipyridine-4-thiomethyl-BEDT-TTF.

    PubMed

    Wang, Qiang; Martin, Lee; Blake, Alexander J; Day, Peter; Akutsu, Hiroki; Wallis, John D

    2016-09-01

    Molecules of tris(2,2'-bipyridine-4-thiomethyl-BEDT-TTF)iron(II) (BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) assemble in pairs to form a novel supramolecular capsular structure in the solid state. Three BEDT-TTF residues from one complex lie in the three grooves between coordinated bipyridines of the other complex, and vice versa, to form a capsule with 3-fold rotational symmetry and an internal volume of ca. 160 Å(3). Further aspects of the coordination chemistry of this ligand, its 6-substituted isomer, and the 2,2':6'2″-terpyridyl-4'-thiomethyl-BEDT-TTF analogue are described. PMID:27517741

  2. Emerging Supramolecular Therapeutic Carriers Based on Host-Guest Interactions.

    PubMed

    Karim, Anis Abdul; Dou, Qingqing; Li, Zibiao; Loh, Xian Jun

    2016-05-01

    Recent advances in host-guest chemistry have significantly influenced the construction of supramolecular soft biomaterials. The highly selective and non-covalent interactions provide vast possibilities of manipulating supramolecular self-assemblies at the molecular level, allowing a rational design to control the sizes and morphologies of the resultant objects as carrier vehicles in a delivery system. In this Focus Review, the most recent developments of supramolecular self-assemblies through host-guest inclusion, including nanoparticles, micelles, vesicles, hydrogels, and various stimuli-responsive morphology transition materials are presented. These sophisticated materials with diverse functions, oriented towards therapeutic agent delivery, are further summarized into several active domains in the areas of drug delivery, gene delivery, co-delivery and site-specific targeting deliveries. Finally, the possible strategies for future design of multifunctional delivery carriers by combining host-guest chemistry with biological interface science are proposed. PMID:26833861

  3. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    PubMed Central

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-01-01

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455

  4. Supramolecular Dynamics of Mucus

    PubMed Central

    Verdugo, Pedro

    2012-01-01

    Our purpose here is not to address specific issues of mucus pathology, but to illustrate how polymer networks theory and its remarkable predictive power can be applied to study the supramolecular dynamics of mucus. Avoiding unnecessary mathematical formalization, in the light of available theory, we focus on the rather slow progress and the still large number of missing gaps in the complex topology and supramolecular dynamics of airway mucus. We start with the limited information on the polymer physics of respiratory mucins to then converge on the supramolecular organization and resulting physical properties of the mucus gel. In each section, we briefly discuss progress on the subject, the uncertainties associated with the established knowledge, and the many riddles that still remain. PMID:23125200

  5. Functional Supramolecular Polymers*

    PubMed Central

    Aida, T.; Meijer, E.W.; Stupp, S.I.

    2012-01-01

    Supramolecular polymers can be random and entangled coils with the mechanical properties of plastics and elastomers, but with great capacity for processability, recycling, and self-healing due to their reversible monomer-to-polymer transitions. At the other extreme, supramolecular polymers can be formed by self-assembly among designed subunits to yield shape-persistent and highly ordered filaments. The use of strong and directional interactions among molecular subunits can achieve not only rich dynamic behavior but also high degrees of internal order that are not known in ordinary polymers. They can resemble, for example, the ordered and dynamic one-dimensional supramolecular assemblies of the cell cytoskeleton, and possess useful biological and electronic functions. PMID:22344437

  6. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  7. The Examination of Secondary Education Chemistry Curricula Published between 1957-2007 in Terms of the Dimensions of Rationale, Goals, and Subject-Matter

    ERIC Educational Resources Information Center

    Pekdag, Bulent; Erol, Hilal

    2013-01-01

    Fifteen secondary education chemistry curricula published from 1957 until 2007 were examined based on the dimensions of rationale, goals, and subject matter. An examination of documents in the scope of qualitative research was carried out in the study. The goals included in the examined chemistry curricula were analyzed according to the cognitive,…

  8. Correction: Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR.

    PubMed

    Piana, Francesca; Case, David H; Ramalhete, Susana M; Pileio, Giuseppe; Facciotti, Marco; Day, Graeme M; Khimyak, Yaroslav Z; Angulo, Jesús; Brown, Richard C D; Gale, Philip A

    2016-06-28

    Correction for 'Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR' by Francesca Piana et al., Soft Matter, 2016, 12, 4034-4043. PMID:27254024

  9. Nature of Matter, Chemistry K-6, Elementary Science Unit No. 4.

    ERIC Educational Resources Information Center

    Bethlehem Area Schools, PA.

    This unit emphasizes concept-learning through the discovery approach and child-centered activities. "Discovering Matter" is treated in the kindergarten, "Matter Around Us" in grade 1, "Changes in Matter" in grade 4 and "Atoms and Molecules" in grade 6. The unit for each grade contains (1) understandings to be discovered, (2) activities and (3)…

  10. Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin.

    PubMed

    Mallon, Madeleine; Dutt, Som; Schrader, Thomas; Crowley, Peter B

    2016-04-15

    Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb. PMID:26818656

  11. Preparation for College General Chemistry: More than Just a Matter of Content Knowledge Acquisition

    ERIC Educational Resources Information Center

    Cracolice, Mark S.; Busby, Brittany D.

    2015-01-01

    This study investigates the potential of five factors that may be predictive of success in college general chemistry courses: prior knowledge of common alternate conceptions, intelligence, scientific reasoning ability, proportional reasoning ability, and attitude toward chemistry. We found that both prior knowledge and scientific reasoning ability…

  12. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.

    PubMed

    Dong, Shengyi; Zheng, Bo; Wang, Feng; Huang, Feihe

    2014-07-15

    CONSPECTUS: Supramolecular polymers, fabricated via the combination of supramolecular chemistry and polymer science, are polymeric arrays of repeating units held together by reversible, relatively weak noncovalent interactions. The introduction of noncovalent interactions, such as hydrogen bonding, aromatic stacking interactions, metal coordination, and host-guest interactions, endows supramolecular polymers with unique stimuli responsiveness and self-adjusting abilities. As a result, diverse monomer structures have been designed and synthesized to construct various types of supramolecular polymers. By changing the noncovalent interaction types, numbers, or chemical structures of functional groups in these monomers, supramolecular polymeric materials can be prepared with tailored chemical and physical properties. In recent years, the interest in supramolecular polymers has been extended from the preparation of intriguing topological structures to the discoveries of potential applications as functional materials. Compared with traditional polymers, supramolecular polymers show some advantages in the fabrication of reversible or responsive materials. The development of supramolecular polymers also offers a platform to construct complex and sophisticated materials with a bottom-up approach. Macrocylic hosts, including crown ethers, cyclodextrins, calixarenes, cucurbiturils, and pillararenes, are the most commonly used building blocks in the fabrication of host-guest interaction-based supramolecular polymers. With the introduction of complementary guest molecules, macrocylic hosts demonstrate selective and stimuli-responsive host-guest complexation behaviors. By elaborate molecular design, the resultant supramolecular polymers can exhibit diverse structures based on the self-selectivity of host-guest interactions. The introduction of reversible host-guest interactions can further endow these supramolecular polymers with interesting and fascinating chemical

  13. Applying and assessing some semi-local density functionals for condensed matter physics and quantum chemistry

    NASA Astrophysics Data System (ADS)

    Hao, Pan

    Density functional theory (DFT) is a widely used quantum mechanical method for the simulation of the electronic structure of atoms, molecules, and solids. The only part that needs to be approximated is the exchange-correlation energy as a functional of the electron density. After many-year development, there is a huge variety of exchange-correlation functionals. According to the ingredients, an exchange-correlation functional can be classified as a semi-local functional or beyond. A semi-local functional can be nonempirical or empirical and only uses locality information, such as electron density, gradient of the density, Laplacian of the density, and kinetic energy density. Unlike a non-local functional that uses non-locality information, a semi-local functional is computationally efficient and can be applied to large systems. The meta-generalized gradient approximation (meta-GGA), which is the highest-level semi-local functional, has the potential to give a good description for condensed matter physics and quantum chemistry. We built the self-consistent revised Tao-Perdew-Staroverov-Scuseria (revTPSS) meta-GGA into the band-structure program BAND to test the performances of some self-consistent semi-local functionals on lattice constant with a 58-solid test set. The self-consistent effect of revTPSS was also discussed. The vibration of a crystal has a contribution to the ground state energy of a system, which is the zero-point energy at zero temperature. It has anharmonicity at the equilibrium geometry. The standard DFT doesn't consider the zero-point energy of a crystal. We used density functional perturbation theory (DFPT), which is a powerful and flexible theoretical technique within the density functional framework, to study the zero-point energy and make a correction to the lattice constant. The method was compared to a traditional zero-point anharmonic expansion method that is based on the Debye and Dugdale-MacDonald approximations. We also tested some new

  14. Supramolecular Interactions in Chemomechanical Polymers

    PubMed Central

    SCHNEIDER, HANS-JÖRG; STRONGIN, ROBERT M.

    2009-01-01

    Conspectus Molecular recognition is the basis for the operation of most biological functions; outside of nature, it has also been developed to a high degree of sophistication within the framework of supramolecular chemistry. More recently, selective noncovalent interactions—which constitute molecular recognition—are being used in intelligent new materials that transform chemical signals into actions, such as the release of drugs. The presence of supramolecular binding sites allows chemomechanical polymers to operate as sensors and actuators within a single unit without the need for any additional devices such as transducers or power supplies. A polymer can be designed so that a particular chemical substance, most often in aqueous surroundings, will trigger either a large expansion or a large contraction, depending on the mechanism. The translation of binding energy into mechanical motion can, with a suitable arrangement of the materials in tubes or on flexible films, be harnessed for unidirectional drives, flow control, the liberation of drugs, or the uptake of toxic compounds, among other applications. Miniaturization of the polymer particles allows one to enhance both the sensitivity and speed of the response, which is of particular importance in sensing. The basis for the selective response to external effector compounds, such as metal ions, amino acids, peptides, or nucleotides, is their noncovalent interaction with complementary functions covalently bound to the polymer network. With suitable polymers, selectivity between structural isomers—and even between enantiomers—as triggers can be achieved. As with supramolecular complexes in solution, the underlying interactions in polymers comprise a variety of noncovalent binding mechanisms, which are not easy to distinguish and quantify—and more so with polymers, which are not monodisperse. In this Account, we present systematic comparisons of different polymers and effector classes that allow, for the

  15. Sterilization affects soil organic matter chemistry and bioaccumulation of spiked p,p'-DDE and anthracene by earthworms.

    PubMed

    Kelsey, Jason W; Slizovskiy, Ilya B; Peters, Richard D; Melnick, Adam M

    2010-06-01

    Laboratory experiments were conducted to assess the effects of soil sterilization on the bioavailability of spiked p,p'-DDE and anthracene to the earthworms Eisenia fetida and Lumbricus terrestris. Physical and chemical changes to soil organic matter (SOM) induced by sterilization were also studied. Uptake of both compounds added after soil was autoclaved or gamma irradiated increased for E. fetida. Sterilization had no effect on bioaccumulation of p,p'-DDE by L. terrestris, and anthracene uptake increased only in gamma-irradiated soils. Analyses by FT-IR and DSC indicate sterilization alters SOM chemistry and may reduce pollutant sorption. Chemical changes to SOM were tentatively linked to changes in bioaccumulation, although the effects were compound and species specific. Artifacts produced by sterilization could lead to inaccurate risk assessments of contaminated sites if assumptions derived from studies carried out in sterilized soil are used. Ultimately, knowledge of SOM chemistry could aid predictions of bioaccumulation of organic pollutants. PMID:20227150

  16. Supramolecular Polymers in Aqueous Media.

    PubMed

    Krieg, Elisha; Bastings, Maartje M C; Besenius, Pol; Rybtchinski, Boris

    2016-02-24

    This review discusses one-dimensional supramolecular polymers that form in aqueous media. First, naturally occurring supramolecular polymers are described, in particular, amyloid fibrils, actin filaments, and microtubules. Their structural, thermodynamic, kinetic, and nanomechanical properties are highlighted, as well as their importance for the advancement of biologically inspired supramolecular polymer materials. Second, five classes of synthetic supramolecular polymers are described: systems based on (1) hydrogen-bond motifs, (2) large π-conjugated surfaces, (3) host-guest interactions, (4) peptides, and (5) DNA. We focus on recent studies that address key challenges in the field, providing mechanistic understanding, rational polymer design, important functionality, robustness, or unusual thermodynamic and kinetic properties. PMID:26727633

  17. Encoding complexity within supramolecular analogues of frustrated magnets.

    PubMed

    Cairns, Andrew B; Cliffe, Matthew J; Paddison, Joseph A M; Daisenberger, Dominik; Tucker, Matthew G; Coudert, François-Xavier; Goodwin, Andrew L

    2016-05-01

    The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom-namely, the relative vertical shifts of neighbouring chains-are mathematically equivalent to the phase angles of rotating planar ('XY') spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets-including collective spin-vortices of relevance to data storage applications-are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible 'toy' spin models and also how the theoretical understanding of those models allows control over collective ('emergent') phenomena in supramolecular systems. PMID:27102677

  18. A supramolecular tubular nanoreactor.

    PubMed

    Li, Zhi-Qiang; Zhang, Ying-Ming; Chen, Yong; Liu, Yu

    2014-07-01

    The extremely strong noncovalent complexation between the rigid host of phthalocyanine-bridged β-cyclodextrins and the amphiphilic guest carboxylated porphyrin is employed to construct a hollow tubular structure as a supramolecular nanoreactor. A representative coupling reaction occurs in the hydrophobic interlayers of the tubular walls in pure water at room temperature, leading to an enhancement of ten times higher reaction rate without any adverse effect on catalytic activity and conversion. PMID:24890802

  19. Supramolecular organization of nanoparticles

    NASA Astrophysics Data System (ADS)

    Porta Linnell, Brenda M.

    The study of supramolecular structures with nano-architectures has become an active area of research in recent years. They have the potential to generate functional materials with applications in medicine and emerging technologies. In this dissertation, the supramolecular organization of gold nanoparticles (AuNP) and other nano-scale structures such as discrete styrene-based polymers was investigated. The synthesis and characterization of metal-mediated AuNPs systems using pendant ligands on the AuNP such as 11-diethylenetriamine-undecane-1-thiol, 11-Mercapto-undecanoic acid [2-(2-amino-ethylamino)-ethyl]-amide, Bis(11-oxo-nicotinic acid, undecine)disulfide, and 11-mercaptoundecanoic acid, and using Cu(II) to mediate the formation of supramolecular AuNP systems with sizes of 200 nm -- 3 microm, are presented. The use of polymers to trap and organize AuNP within polymeric frameworks is discussed. The synthesis and characterization of AuNP embedded within a norborene-based polymeric matrix produced spherical supamolecular AuNP which in the presence of Cu(II) present a morphological change branching out in systems with promising carrier properties. The synthesis and characterization of AuNP-hydrogels using 11-mercapto undecanoic diester with tetraethylene glycol was explored. These hydro gels have the property of encapsulating water and they present solubility in CHCl3, H 2O and Hexanes. Such network makes the first example of AuNP-gels where the AuNP form part of the network. The synthesis and characterization of second-generation AuNP-gels derived from tetraethyleneglycol diacrylate having AuNP embedded in their matrix generates a new AuNP template with high stabilization properties. The effect on the pH was studied. They form discrete supramolecular structures that suitably keep the properties of single AuNP.

  20. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    SciTech Connect

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  1. Conformational equilibrium in supramolecular chemistry: Dibutyltriuret case

    PubMed Central

    Mroczyńska, Karina; Kaczorowska, Małgorzata; Kolehmainen, Erkki; Grubecki, Ireneusz; Pietrzak, Marek

    2015-01-01

    Summary The association of substituted benzoates and naphthyridine dianions was used to study the complexation of dibutyltriuret. The title molecule is the simplest molecule able to form two intramolecular hydrogen bonds. The naphthyridine salt was used to break two intramolecular hydrogen bonds at a time while with the use of substituted benzoates the systematic approach to study association was achieved. Both, titrations and variable temperature measurements shed the light on the importance of conformational equilibrium and its influence on association in solution. Moreover, the associates were observed by mass spectrometry. The DFT-based computations for complexes and single bond rotational barriers supports experimental data and helps understanding the properties of multiply hydrogen bonded complexes. PMID:26664631

  2. Supramolecular polymer networks: hydrogels and bulk materials.

    PubMed

    Voorhaar, Lenny; Hoogenboom, Richard

    2016-07-21

    Supramolecular polymer networks are materials crosslinked by reversible supramolecular interactions, such as hydrogen bonding or electrostatic interactions. Supramolecular materials show very interesting and useful properties resulting from their dynamic nature, such as self-healing, stimuli-responsiveness and adaptability. Here we will discuss recent progress in polymer-based supramolecular networks for the formation of hydrogels and bulk materials. PMID:27206244

  3. Prospective Chemistry Teachers' Conceptions of the Conservation of Matter and Related Concepts.

    ERIC Educational Resources Information Center

    Haidar, Abdullateef

    1997-01-01

    Reports a study of the quality and extent of understanding of certain well-known theoretical concepts which are held by prospective teachers (N=173) of chemistry in Yemen. Results indicate that teacher understanding ranges from a partial understanding with a specific misconception to no understanding. Contains 25 references. (DDR)

  4. Learning Processes in Chemistry: Drawing upon Cognitive Resources to Learn about the Particulate Structure of Matter

    ERIC Educational Resources Information Center

    Taber, Keith S.; Garcia-Franco, Alejandra

    2010-01-01

    This article explores 11- to 16-year-old students' explanations for phenomena commonly studied in school chemistry from an inclusive cognitive resources or knowledge-in-pieces perspective that considers that student utterances may reflect the activation of knowledge elements at a range of levels of explicitness. We report 5 themes in student…

  5. Does Teaching Sequence Matter When Teaching High School Chemistry with Scientific Visualisations?

    ERIC Educational Resources Information Center

    Fogarty, Ian; Geelan, David; Mukherjee, Michelle

    2012-01-01

    Five Canadian high school Chemistry classes in one school, taught by three different teachers, studied the concepts of dynamic chemical equilibria and Le Chatelier's Principle. Some students received traditional teacher-led explanations of the concept first and used an interactive scientific visualisation second, while others worked with the…

  6. Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels

    PubMed Central

    Fox, Courtney H.; ter Hurrne, Gijs M.; Wojtecki, Rudy J.; Jones, Gavin O.; Horn, Hans W.; Meijer, E. W.; Frank, Curtis W.; Hedrick, James L.; García, Jeannette M.

    2015-01-01

    Dynamic covalent materials are stable materials that possess reversible behaviour triggered by stimuli such as light, redox conditions or temperature; whereas supramolecular crosslinks depend on the equilibrium constant and relative concentrations of crosslinks as a function of temperature. The combination of these two reversible chemistries can allow access to materials with unique properties. Here, we show that this combination of dynamic covalent and supramolecular chemistry can be used to prepare organogels comprising distinct networks. Two materials containing hemiaminal crosslink junctions were synthesized; one material is comprised of dynamic covalent junctions and the other contains hydrogen-bonding bis-hemiaminal moieties. Under specific network synthesis conditions, these materials exhibited self-healing behaviour. This work reports on both the molecular-level detail of hemiaminal crosslink junction formation as well as the macroscopic behaviour of hemiaminal dynamic covalent network (HDCN) elastomeric organogels. These materials have potential applications as elastomeric components in printable materials, cargo carriers and adhesives. PMID:26174864

  7. Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter

    ERIC Educational Resources Information Center

    Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia

    2011-01-01

    This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…

  8. Conceptual versus Algorithmic Problem-Solving: Focusing on Problems Dealing with Conservation of Matter in Chemistry

    ERIC Educational Resources Information Center

    Salta, Katerina; Tzougraki, Chryssa

    2011-01-01

    The students' performance in various types of problems dealing with the conservation of matter during chemical reactions has been investigated at different levels of schooling. The participants were 499 ninth grade (ages 14, 15 years) and 624 eleventh grade (ages 16, 17 years) Greek students. Data was collected using a written questionnaire…

  9. Supramolecular transformations within discrete coordination-driven supramolecular architectures.

    PubMed

    Wang, Wei; Wang, Yu-Xuan; Yang, Hai-Bo

    2016-05-01

    In this review, a comprehensive summary of supramolecular transformations within discrete coordination-driven supramolecular architectures, including helices, metallacycles, metallacages, etc., is presented. Recent investigations have demonstrated that coordination-driven self-assembled architectures provide an ideal platform to study supramolecular transformations mainly due to the relatively rigid yet dynamic nature of the coordination bonds. Various stimuli have been extensively employed to trigger the transformation processes of metallosupramolecular architectures, such as solvents, concentration, anions, guests, change in component fractions or chemical compositions, light, and post-modification reactions, which allowed for the formation of new structures with specific properties and functions. Thus, it is believed that supramolecular transformations could serve as another highly efficient approach for generating diverse metallosupramolecular architectures. Classified by the aforementioned various stimuli used to induce the interconversion processes, the emphasis in this review will be on the transformation conditions, structural changes, mechanisms, and the output of specific properties and functions upon induction of structural transformations. PMID:27009833

  10. Soil warming affects soil organic matter chemistry of all density fractions of a mountain forest soil

    NASA Astrophysics Data System (ADS)

    Schnecker, Jörg; Wanek, Wolfgang; Borken, Werner; Schindlbacher, Andreas

    2016-04-01

    Rising temperatures enhance microbial decomposition of soil organic matter (SOM) and increase thereby the soil CO2 efflux. Elevated microbial activity might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition. We here investigated the chemical and isotopic composition of bulk soil and three different density fractions of forest soils from a long term warming experiment in the Austrian Alps. At the time of sampling the soils in this experiment had been warmed during the snow-free period for 8 consecutive years. During that time no thermal adaptation of the microbial community could be identified and CO2 release from the soil continued to be elevated by the warming treatment. Our results which included organic C content, total N content, δ13C, δ 14C, δ 15N and the chemical composition, identified by pyrolysis-GC/MS, showed no significant differences in bulk soil between warming treatment and control. The differences in the three individual fractions (free particulate organic matter, occluded particulate organic matter and mineral associated organic matter) were mostly small and the direction of warming induced change was variable with fraction and sampling depth. We did however find statistically significant effects of warming in all density fractions from 0-10 cm depth, 10-20 cm depth or both. Our results also including significant changes in the supposedly more stable mineral associated organic matter fraction where δ 13C values decreased at both sampling depths and the relative proportion of N-bearing compounds decreased at a sampling depth of 10-20 cm. All the observed changes can be attributed to an interplay of enhanced microbial decomposition of SOM and increased root litter input. This study suggests that soil warming destabilizes all density fractions of

  11. The effect of fertilization levels and genetic deployment on soil organic matter chemistry and turnover in managed loblolly pine forests

    NASA Astrophysics Data System (ADS)

    Vogel, J. G.; Jokela, E. J.; He, D.; Hockaday, W. C.; Schuur, E. A.

    2013-12-01

    Soil organic matter (SOM) dynamics were examined for two managed loblolly pine forests (Pinus taeda L.) located in north-central Florida on sandy Spodosols. The study designs were split-plots with the whole plots designated as fertilization levels, and the split-plots full-sib families of loblolly pine. The forests were aged 9 and 10 years at sampling. Roots, wood, and charcoal were hand-picked from SOM and density fractionation (1.6 g/ml) used to further separate SOM into a light (LF) and heavy fraction (HF). LF turnover rates were estimated using radiocarbon and LF chemistry determined with nuclear magnetic resonance (NMR). Family or fertilization level effects on the mass of SOM components were not significant at both sites. The largest proportions of SOM were in the LF (83% and 85%) and wood (6% and 9%). Varying in relative contributions were charcoal (2% and 3%) and the HF (4% and 1%) while fine dead roots were between 1-2% of total SOM. Higher fertilization levels generally depressed fine root (<1 mm) biomass, but whether the effect was significant varied with family and soil horizon. The turnover rate for one family under low fertilization was significantly slower (14 yrs) than the other treatments. This treatment also had a greater proportion of lignin, and given the slow turnover, the results suggest this lignin derived from the previous stand. At the other site lignin and lipids differed significantly (p<0.05) between families. These results suggest that tree genetics in forests can influence SOM chemistry, but that family and the degree of fertilization have little net effect on SOM chemistry and turnover.

  12. Catalysis of Supramolecular Hydrogelation.

    PubMed

    Trausel, Fanny; Versluis, Frank; Maity, Chandan; Poolman, Jos M; Lovrak, Matija; van Esch, Jan H; Eelkema, Rienk

    2016-07-19

    One often thinks of catalysts as chemical tools to accelerate a reaction or to have a reaction run under more benign conditions. As such, catalysis has a role to play in the chemical industry and in lab scale synthesis that is not to be underestimated. Still, the role of catalysis in living systems (cells, organisms) is much more extensive, ranging from the formation and breakdown of small molecules and biopolymers to controlling signal transduction cascades and feedback processes, motility, and mechanical action. Such phenomena are only recently starting to receive attention in synthetic materials and chemical systems. "Smart" soft materials could find many important applications ranging from personalized therapeutics to soft robotics to name but a few. Until recently, approaches to control the properties of such materials were largely dominated by thermodynamics, for instance, looking at phase behavior and interaction strength. However, kinetics plays a large role in determining the behavior of such soft materials, for instance, in the formation of kinetically trapped (metastable) states or the dynamics of component exchange. As catalysts can change the rate of a chemical reaction, catalysis could be used to control the formation, dynamics, and fate of supramolecular structures when the molecules making up these structures contain chemical bonds whose formation or exchange are susceptible to catalysis. In this Account, we describe our efforts to use synthetic catalysts to control the properties of supramolecular hydrogels. Building on the concept of synthesizing the assembling molecule in the self-assembly medium from nonassembling precursors, we will introduce the use of catalysis to change the kinetics of assembler formation and thereby the properties of the resulting material. In particular, we will focus on the synthesis of supramolecular hydrogels where the use of a catalyst provides access to gel materials with vastly different appearance and mechanical

  13. Fermentation, phlogiston and matter theory: chemistry and natural philosophy in Georg Ernst Stahl's Zymotechnia Fundamentalis.

    PubMed

    Chang, Ku-Ming Kevin

    2002-01-01

    This paper examines Georg Ernst Stahl's first book, the Zymotechnia Fundamentalis, in the context of contemporary natural philosophy and the author's career. I argue that the Zymotechnia was a mechanical theory of fermentation written consciously against the influential "fermentational program" of Joan Baptista van Helmont and especially Thomas Willis, Stahl's theory of fermentation introduced his first conception of phlogiston, which was in part a corpuscular transformation of the Paracelsian sulphur principle. Meanwhile some assumptions underlying this theory, such as the composition of matter, the absolute passivity of matter and the "passions" of sulphur, reveal the combined scholastic and mechanistic character of Stahl's natural philosophy. In the conclusion I show that Stahl's theory of fermentation undermined the old fermentational program and paved the way for his dualist vitalism. PMID:12049065

  14. Polyoxometalate-based Supramolecular Gel

    NASA Astrophysics Data System (ADS)

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-05-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing.

  15. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    PubMed Central

    Ariga, Katsuhiko; Richards, Gary J.; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P.

    2010-01-01

    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized. PMID:22163577

  16. Living supramolecular polymerization realized through a biomimetic approach

    NASA Astrophysics Data System (ADS)

    Ogi, Soichiro; Sugiyasu, Kazunori; Manna, Swarup; Samitsu, Sadaki; Takeuchi, Masayuki

    2014-03-01

    Various conventional reactions in polymer chemistry have been translated to the supramolecular domain, yet it has remained challenging to devise living supramolecular polymerization. To achieve this, self-organization occurring far from thermodynamic equilibrium—ubiquitously observed in nature—must take place. Prion infection is one example that can be observed in biological systems. Here, we present an ‘artificial infection’ process in which porphyrin-based monomers assemble into nanoparticles, and are then converted into nanofibres in the presence of an aliquot of the nanofibre, which acts as a ‘pathogen’. We have investigated the assembly phenomenon using isodesmic and cooperative models and found that it occurs through a delicate interplay of these two aggregation pathways. Using this understanding of the mechanism taking place, we have designed a living supramolecular polymerization of the porphyrin-based monomers. Despite the fact that the polymerization is non-covalent, the reaction kinetics are analogous to that of conventional chain growth polymerization, and the supramolecular polymers were synthesized with controlled length and narrow polydispersity.

  17. Supramolecular Hydrogels Made of the Basic Biological Building Blocks

    PubMed Central

    Du, Xuewen; Zhou, Jie; Xu, Bing

    2014-01-01

    As a consequence of the self-assembly of small organic molecules in water, supramolecular hydrogels are evolving from serendipitous events during organic synthesis to become a new type of materials that promise increased applications in biomedicine. In this focus review, we describe the recent development on the use of basic biological building blocks for creating molecules that act as hydrogelators and the potential applications of the corresponding hydrogels. After introducing the concept of supramolecular hydrogels and defining the scope of this review, we briefly describe the methods for making and characterizing supramolecular hydrogels. Then, we discuss representative hydrogelators according to the categories of their building blocks, such as amino acids, nucleobases, and saccharides, and highlight the applications of the hydrogels when necessary. Finally, we offer our perspectives and outlooks on this fast-growing field at the interface of organic chemistry, materials, biology, and medicine. By providing a snapshot for chemists, engineers, and medical scientists, we hope that this focus review will contribute to the development of multidisciplinary research on supramolecular hydrogels for a wide range of applications in different fields. PMID:24623474

  18. Supramolecular hydrogels made of basic biological building blocks.

    PubMed

    Du, Xuewen; Zhou, Jie; Xu, Bing

    2014-06-01

    As a consequence of the self-assembly of small organic molecules in water, supramolecular hydrogels are evolving from serendipitous events during organic synthesis to become a new type of materials that hold promise for applications in biomedicine. In this Focus Review, we describe recent advances in the use of basic biological building blocks for creating molecules that act as hydrogelators and the potential applications of the corresponding hydrogels. After introducing the concept of supramolecular hydrogels and defining the scope of this review, we briefly describe the methods for making and characterizing supramolecular hydrogels. We then discuss representative hydrogelators according to the categories of their building blocks, such as amino acids, nucleobases, and saccharides, and highlight the applications of the hydrogels when necessary. Finally, we offer our perspective and outlook on this fast-growing field at the interface of organic chemistry, materials, biology, and medicine. By providing a snapshot for chemists, engineers, and medical scientists, we hope that this Focus Review will contribute to the development of multidisciplinary research on supramolecular hydrogels for a wide range of applications in different fields. PMID:24623474

  19. What matters? Assessing and developing inquiry and multivariable reasoning skills in high school chemistry

    NASA Astrophysics Data System (ADS)

    Daftedar Abdelhadi, Raghda Mohamed

    Although the Next Generation Science Standards (NGSS) present a detailed set of Science and Engineering Practices, a finer grained representation of the underlying skills is lacking in the standards document. Therefore, it has been reported that teachers are facing challenges deciphering and effectively implementing the standards, especially with regards to the Practices. This analytical study assessed the development of high school chemistry students' (N = 41) inquiry, multivariable causal reasoning skills, and metacognition as a mediator for their development. Inquiry tasks based on concepts of element properties of the periodic table as well as reaction kinetics required students to conduct controlled thought experiments, make inferences, and declare predictions of the level of the outcome variable by coordinating the effects of multiple variables. An embedded mixed methods design was utilized for depth and breadth of understanding. Various sources of data were collected including students' written artifacts, audio recordings of in-depth observational groups and interviews. Data analysis was informed by a conceptual framework formulated around the concepts of coordinating theory and evidence, metacognition, and mental models of multivariable causal reasoning. Results of the study indicated positive change towards conducting controlled experimentation, making valid inferences and justifications. Additionally, significant positive correlation between metastrategic and metacognitive competencies, and sophistication of experimental strategies, signified the central role metacognition played. Finally, lack of consistency in indicating effective variables during the multivariable prediction task pointed towards the fragile mental models of multivariable causal reasoning the students had. Implications for teacher education, science education policy as well as classroom research methods are discussed. Finally, recommendations for developing reform-based chemistry

  20. Linking soils and streams: Sources and chemistry of dissolved organic matter in a small coastal watershed

    NASA Astrophysics Data System (ADS)

    Sanderman, Jonathan; Lohse, Kathleen A.; Baldock, Jeffrey A.; Amundson, Ronald

    2009-03-01

    To understand the hydrologic and biogeochemical controls on the age and recalcitrance of dissolved organic matter (DOM) found in stream waters, we combined hydrometric monitoring along a topographic gradient from ridge to channel with isotopic (13C and 14C) and spectroscopic (UV and 13C nuclear magnetic resonance) analyses of soil and stream water samples in a small coastal watershed in California. With increasing discharge, dissolved organic carbon concentrations increased from 2.2 to 10.9 mg C L-1, Δ14C values increased from -125 to +120‰, δ13C values decreased from -24 to -29‰, C:N ratios increased from 6.5 to 15.4, and specific UV adsorption increased from 1.4 to 3.8 L mg C-1 m-1. These changes in DOM composition are consistent with a shift in source from old and recalcitrant soil organic matter (OM) sources found in deep soil horizons to young and relatively fresh OM sources found in the surface horizons. Results from this study suggest upland soils of the watershed become DOM production limited as indicated by a seasonal depletion and chemical shift in soil DOM, whereas highly productive soils in the hollow act as a near-infinite DOM source. Hydrologic connectivity of this DOM-rich riparian source region to the stream ultimately constrains DOM export, and the stream DOM composition reflects the combined influence of soil biogeochemical cycling of OM and hydrologic routing of water through the landscape.

  1. Synthesis of Organic Matter of Prebiotic Chemistry at the Protoplanetary Disc

    NASA Astrophysics Data System (ADS)

    Snytnikov, Valeriy; Stoynovskaya, Olga; Rudina, Nina

    We have carried out scanning electron microscopic examination of CM carbonaceous chondrites meteorites Migey, Murchison, Staroe Boriskino aged more than 4.56 billion years (about 50 million years from the beginning of the formation of the Solar system). Our study confirmed the conclusion of Rozanov, Hoover and other researchers about the presence of microfossils of bacterial origin in the matrix of all these meteorites. Since the time of the Solar system formation is 60 - 100 million years, the primary biocenosis emerged in the protoplanetary disc of the Solar system before meteorites or simultaneously with them. It means that prebiological processes and RNA world appeared even earlier in the circumsolar protoplanetary disc. Most likely, this appearance of prebiotic chemistry takes place nowday in massive and medium-massive discs of the observed young stellar objects (YSO) class 0 and I. The timescale of the transition from chemical to biological evolution took less than 50 million years for the Solar system. Further evolution of individual biocenosis in a protoplanetary disc associated with varying physico-chemical conditions during the formation of the Solar system bodies. Biocenosis on these bodies could remove or develop under the influence of many cosmic factors and geological processes in the case of Earth. To complete the primary biosphere formation in short evolution time - millions of years - requires highly efficient chemical syntheses. In industrial chemistry for the efficient synthesis of ammonia, hydrogen cyanide, methanol and other organic species, that are the precursors to obtain prebiotic compounds, catalytic reactors of high pressure are used. Thus (1) necessary amount of the proper catalyst in (2) high pressure areas of the disc can trigger these intense syntheses. The disc contains the solids with the size from nanoparticle to pebble. Iron and magnesium is catalytically active ingredient for such solids. The puzzle is a way to provide hydrogen

  2. Tailoring Supramolecular Nanofibers for Air Filtration Applications.

    PubMed

    Weiss, Daniel; Skrybeck, Dominik; Misslitz, Holger; Nardini, David; Kern, Alexander; Kreger, Klaus; Schmidt, Hans-Werner

    2016-06-15

    The demand of new materials and processes for nanofiber fabrication to enhance the performance of air filters is steadily increasing. Typical approaches to obtain nanofibers are based on top-down processes such as melt blowing, centrifugal spinning, and electrospinning of polymer materials. However, fabrication of polymer nanofibers is limited with respect to either a sufficiently high throughput or the smallest achievable fiber diameter. This study reports comprehensively on a fast and simple bottom-up process to prepare supramolecular nanofibers in situ inside viscose/polyester microfiber nonwovens. Here, selected small molecules of the materials class of 1,3,5-benzenetrisamides are employed. The microfiber-nanofiber composites exhibit a homogeneous nanofiber distribution and morphology throughout the entire nonwoven scaffold. Small changes in molecular structure and processing solvent have a strong influence on the final nanofiber diameter and diameter distribution and, consequently, on the filtration performance. Choosing proper processing conditions, microfiber-nanofiber composites with surprisingly high filtration efficiencies of particulate matter are obtained. In addition, the microfiber-nanofiber composite integrity at elevated temperatures was determined and revealed that the morphology of supramolecular nanofibers is maintained compared to that of the utilized polymer nonwoven. PMID:27183242

  3. Alchemy as studies of life and matter: reconsidering the place of vitalism in early modern chemistry.

    PubMed

    Chang, Ku-ming

    2011-06-01

    Early modern alchemy studied both matter and life, much like today's life sciences. What material life is and how it comes about intrigued alchemists. Many found the answer by assuming a vital principle that served as the source and cause of life. Recent literature has presented important cases in which vitalist formulations incorporated corpuscular or mechanical elements that were characteristic of the New Science and other cases in which vitalist thinking influenced important figures of the Scientific Revolution. Not merely speculative, vitalist ideas also motivated chymical practice. The unity of life science and material science that is found in many formulations of Renaissance alchemy disintegrated in Georg Ernst Stahl's version of post-Cartesian vitalism. PMID:21874692

  4. Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: size does matter.

    PubMed

    Bradley, Amanda J; Murad, Kari L; Regan, Katy L; Scott, Mark D

    2002-04-12

    Immunocamouflaged red blood cells (RBC) are produced by cell surface derivatization with methoxypolyethylene glycol (mPEG). These immunologically attenuated cells may reduce the risk of allosensitization in chronically transfused patients. To characterize the effects of differing linker chemistries and polymer lengths, RBC were modified with cyanuric chloride activated mPEG (C-mPEG 5 kDa), benzotriazole carbonate methoxyPEG (BTC-mPEG; 5 or 20 kDa) or N-hydroxysuccinimidyl ester of mPEG propionic acid (SPA-mPEG; 2, 5 or 20 kDa). Biophysical methods including particle electrophoresis and aqueous two-phase polymer partitioning were employed to compare the PEG derivatives. While C-mPEG was faster reacting, both BTC-mPEG and SPA-mPEG gave comparable findings after 1 h. Both PEG surface density and molecular mass had a large effect on RBC surface properties. Proportional changes in electrophoretic mobility and preferential phase partitioning were achieved by increasing either the quantity of surface PEG or the PEG molecular mass. In addition, two-phase partitioning may provide a means for efficiently removing unmodified or lightly modified (hence potentially immunogenic) RBC in the clinical setting. Furthermore, mPEG modification significantly inhibits cell-cell interaction as evidenced by loss of Rouleaux formation and, consequently, sedimentation rate. Importantly, BTC-mPEG 20 kDa RBC showed normal in vivo survival in mice at immunoprotective concentrations (up to 2 mM). PMID:11997115

  5. Programming supramolecular biohybrids as precision therapeutics.

    PubMed

    Ng, David Yuen Wah; Wu, Yuzhou; Kuan, Seah Ling; Weil, Tanja

    2014-12-16

    CONSPECTUS: Chemical programming of macromolecular structures to instill a set of defined chemical properties designed to behave in a sequential and precise manner is a characteristic vision for creating next generation nanomaterials. In this context, biopolymers such as proteins and nucleic acids provide an attractive platform for the integration of complex chemical design due to their sequence specificity and geometric definition, which allows accurate translation of chemical functionalities to biological activity. Coupled with the advent of amino acid specific modification techniques, "programmable" areas of a protein chain become exclusively available for any synthetic customization. We envision that chemically reprogrammed hybrid proteins will bridge the vital link to overcome the limitations of synthetic and biological materials, providing a unique strategy for tailoring precision therapeutics. In this Account, we present our work toward the chemical design of protein- derived hybrid polymers and their supramolecular responsiveness, while summarizing their impact and the advancement in biomedicine. Proteins, in their native form, represent the central framework of all biological processes and are an unrivaled class of macromolecular drugs with immense specificity. Nonetheless, the route of administration of protein therapeutics is often vastly different from Nature's biosynthesis. Therefore, it is imperative to chemically reprogram these biopolymers to direct their entry and activity toward the designated target. As a consequence of the innate structural regularity of proteins, we show that supramolecular interactions facilitated by stimulus responsive chemistry can be intricately designed as a powerful tool to customize their functions, stability, activity profiles, and transportation capabilities. From another perspective, a protein in its denatured, unfolded form serves as a monodispersed, biodegradable polymer scaffold decorated with functional side

  6. Aqueous Self-Sorting in Extended Supramolecular Aggregates

    PubMed Central

    Rest, Christina; Mayoral, María José; Fernández, Gustavo

    2013-01-01

    Self-organization and self-sorting processes are responsible for the regulation and control of the vast majority of biological processes that eventually sustain life on our planet. Attempts to unveil the complexity of these systems have been devoted to the investigation of the binding processes between artificial molecules, complexes or aggregates within multicomponent mixtures, which has facilitated the emergence of the field of self-sorting in the last decade. Since, artificial systems involving discrete supramolecular structures, extended supramolecular aggregates or gel-phase materials in organic solvents or—to a lesser extent—in water have been investigated. In this review, we have collected diverse strategies employed in recent years to construct extended supramolecular aggregates in water upon self-sorting of small synthetic molecules. We have made particular emphasis on co-assembly processes in binary mixtures leading to supramolecular structures of remarkable complexity and the influence of different external variables such as solvent and concentration to direct recognition or discrimination processes between these species. The comprehension of such recognition phenomena will be crucial for the organization and evolution of complex matter. PMID:23344056

  7. Aggregate morphology of nano-TiO2: role of primary particle size, solution chemistry, and organic matter.

    PubMed

    Chowdhury, Indranil; Walker, Sharon L; Mylon, Steven E

    2013-01-01

    A systematic investigation was conducted to understand the role of aquatic conditions on the aggregate morphology of nano-TiO2, and the subsequent impact on their fate in the environment. In this study, three distinctly sized TiO2 nanoparticles (6, 13, and 23 nm) that had been synthesized with flame spray pyrolysis were employed. Nanoparticle aggregate morphology was measured using static light scattering (SLS) over a wide range of solution chemistry, and in the presence of natural organic matter (NOM). Results showed that primary nanoparticle size can significantly affect the fractal dimension of stable aggregates. A linear relationship was observed between surface areas of primary nanoparticles and fractal dimension indicating that smaller primary nanoparticles can form more compact aggregate in the aquatic environment. The pH, ionic strength, and ion valence also influenced the aggregate morphology of TNPs. Increased pH resulted a decrease in fractal dimension, whereas higher ionic strength resulted increased fractal dimension particularly for monovalent ions. When NOM was present, aggregate fractal dimension was also affected, which was also notably dependent on solution chemistry. Fractal dimension of aggregate increase for 6 nm system in the presence of NOM, whereas a drop in fractal dimension was observed for 13 nm and 23 nm aggregates. This effect was most profound for aggregates comprised of the smallest primary particles suggesting that interactions of NOM with smaller primary nanoparticles are more significant than those with larger ones. The findings from this study will be helpful for the prediction of nanoparticle aggregate fate in the aquatic environment. PMID:24592445

  8. Supramolecular approaches for drug development.

    PubMed

    Kawakami, K; Ebara, M; Izawa, H; Sanchez-Ballester, N M; Hill, J P; Ariga, K

    2012-01-01

    Various supramolecular systems can be used as drug carriers to alter physicochemical and pharmacokinetic characteristics of drugs. Representative supramolecular systems that can be used for this purpose include surfactant/polymer micelles, (micro)emulsions, liposomes, layer-by-layer assemblies, and various molecular conjugates. Notably, liposomes are established supramolecular drug carriers, which have already been marketed in formulations including AmBisome(®) (for treatment of fungal infection), Doxil(®) (for Kaposi's sarcoma), and Visudyne(®) (for age-related macular degeneration and choroidal neovascularization). Microemulsions have been used oral drug delivery of poorly soluble drugs due to improvements in bioavailability and predictable of absorption behavior. Neoral(®), an immunosuppressant used after transplant operations, is one of the most famous microemulsion-based drugs. Polymer micelles are being increasingly investigated as novel drug carriers and some formulations have already been tested in clinical trials. Supramolecular systems can be functionalized by designing the constituent molecules to achieve efficient delivery of drugs to desired sites in the body. In this review, representative supramolecular drug delivery systems, that may improve usability of candidate drugs or add value to existing drugs, are introduced. PMID:22455591

  9. Supramolecular inclusion-based molecular integral rigidity: a feasible strategy for controlling the structural connectivity of uranyl polyrotaxane networks.

    PubMed

    Mei, Lei; Wang, Lin; Yuan, Li-yong; An, Shu-wen; Zhao, Yu-liang; Chai, Zhi-fang; Burns, Peter C; Shi, Wei-qun

    2015-08-01

    The assembly of two-dimensional (2D) large channel uranyl-organic polyrotaxane networks as well as structural regulation of uranyl-bearing units using jointed cucurbit[6]uril-based pseudorotaxanes with integral rigidity based on supramolecular inclusion is presented for the first time. This construction strategy concerning controlling molecular integral rigidity based on supramolecular inclusion may afford an entirely new methodology for coordination chemistry. PMID:26121567

  10. General principles of pharmaceutical solid polymorphism: a supramolecular perspective.

    PubMed

    Rodríguez-Spong, Barbara; Price, Christopher P; Jayasankar, Adivaraha; Matzger, Adam J; Rodríguez-Hornedo, Naír

    2004-02-23

    The diversity of solid-state forms that an active pharmaceutical ingredient (API) may attain relies on the repertoire of non-covalent interactions and molecular assemblies, the range of order, and the balance between entropy and enthalpy that defines the free energy landscape. It is recognized that crystallization is associated with molecular recognition events that lead to self-assembly, and that pharmaceutical function and thermodynamic stability can be altered with a slight change in the interacting molecules or their molecular network motifs. Our current understanding of pharmaceutical solids in terms of molecular recognition and complementarity provides new insights into the design and function of single and fully miscible, multiple-component solids with varying degrees of order, from amorphous to crystalline states, and in this way is leading the path to supramolecular pharmaceutics. This review describes pharmaceutical solids in terms of supramolecular chemistry and crystal engineering concepts, and discusses the events that control crystallization and solid phase transformations. PMID:14962581

  11. Ultrafast internal dynamics of flexible hydrogen-bonded supramolecular complexes.

    PubMed

    Olschewski, Martin; Knop, Stephan; Seehusen, Jaane; Lindner, Jörg; Vöhringer, Peter

    2011-02-24

    Supramolecular chemistry is intimately linked to the dynamical interplay between intermolecular forces and intramolecular flexibility. Here, we studied the ultrafast equilibrium dynamics of a supramolecular hydrogen-bonded receptor-substrate complex, 18-crown-6 monohydrate, using Fourier transform infrared (FTIR) and two-dimensional infrared (2DIR) spectroscopy in combination with numerical simulations based on molecular mechanics, density functional theory, and transition state theory. The theoretical calculations suggest that the flexibility of the macrocyclic crown ether receptor is related to an ultrafast crankshaft isomerization occurring on a time scale of several picoseconds and that the OH stretching vibrations of the substrate can serve as internal probes for the receptor's flexibility. The importance of population transfer among the vibrational modes of a given binding motif and of chemical exchange between spectroscopically distinguishable binding motifs for shaping the two-dimensional infrared spectrum and its temporal evolution is discussed. PMID:21271721

  12. Assessing the Influence of Mineral Surface Chemistry on Soil Organic Matter Stability in the US in Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Toledo, A.; Heckman, K.; Rasmussen, C.; Harden, J. W.; Johnson, M.; Swanston, C.

    2014-12-01

    Soils represent a significant pool for carbon storage and sequestration. Previous field experiments have indicated that some mineral compositions are more effective in preserving soil organic matter (SOM) from microbial degradation. Due to climate change, it is important to quantify which soil types are changing in mineral surface chemistry. One way to do that is by differentiating the SOM stabilization mechanisms in different soil types at various depths. This study focused on examining the distribution of soil mass and composition by the soils density and mineral classification and the soils stability by measuring the amount of carbon and radiocarbon abundance. The United States Geological Survey collected the soils in Oregon, Mississippi, Alaska, and Arizona. The four different soil types were separated by density using density fractionation. Radiocarbon analysis of the different soils varying in density was conducted at Lawrence Livermore National Lab-Center for Accelerator Mass Spectrometry to determine the 13C/14C ratios. The ratios were used to determine the average age of the carbon in the samples. To determine the composition of the soil types, the soils were processed at Lawrence Berkeley National Lab using Fourier Transform Infrared-Attenuated Total Reflection. Results confirmed the amount of carbon, radiocarbon abundance and composition varied among the sites, thus SOM responds differently to climate change depending on the soil type.

  13. Concurrent Covalent and Supramolecular Polymerization.

    PubMed

    Hou, Xisen; Ke, Chenfeng; Zhou, Yu; Xie, Zhuang; Alngadh, Ahmed; Keane, Denis T; Nassar, Majed S; Botros, Youssry Y; Mirkin, Chad A; Stoddart, J Fraser

    2016-08-22

    Covalent and supramolecular polymerizations, both of which offer their own unique advantages, have emerged as popular strategies for making artificial materials. Herein, we describe a concurrent covalent and supramolecular polymerization strategy-namely, one which utilizes 1) a bis-azide-functionalized diazaperopyrenium dication that undergoes polymeriation covalently with a bis-alkyne-functionalized biphenyl derivative in one dimension as a result of a rapid and efficient β-cyclodextrin(CD)-accelerated, cucurbit[6]uril(CB)-templated azide-alkyne cycloaddition, while 2) the aromatic core of the dication is able to dimerize in a criss-cross fashion by dint of π-π interactions, enabling simultaneous supramolecular assembly, resulting in an extended polymer network in an orthogonal dimension. PMID:27338246

  14. Polyoxometalate-based Supramolecular Gel

    PubMed Central

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-01-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing. PMID:23666013

  15. Sweet supramolecular elastomers from α,ω-(β-cyclodextrin terminated) PDMS.

    PubMed

    Rambarran, Talena; Bertrand, Arthur; Gonzaga, Ferdinand; Boisson, Fernande; Bernard, Julien; Fleury, Etienne; Ganachaud, François; Brook, Michael A

    2016-05-10

    Azido β-cyclodextrins were attached to propiolate-functionalized polydimethylsiloxanes by metal-free click chemistry. The obtained telechelic copolymers spontaneously produced elastomeric gums. Demixing and supramolecular associations are the driving forces for the construction of these strongly associated (but reversible) physical networks. PMID:27115741

  16. Pathological-Condition-Driven Construction of Supramolecular Nanoassemblies for Bacterial Infection Detection.

    PubMed

    Li, Li-Li; Ma, Huai-Lei; Qi, Guo-Bin; Zhang, Di; Yu, Faquan; Hu, Zhiyuan; Wang, Hao

    2016-01-13

    A pyropheophorbide-α-based building block (Ppa-PLGVRG-Van) can be used to construct self-aggregated superstructures in vivo for highly specific and sensitive diagnosis of bacterial infection by noninvasive photoacoustic tomography. This in vivo supramolecular chemistry approach opens a new avenue for efficient, rapid, and early-stage disease diagnosis with high sensitivity and specificity. PMID:26568542

  17. Supramolecular polymerization: Living it up

    NASA Astrophysics Data System (ADS)

    Würthner, Frank

    2014-03-01

    Protein fibril formation is involved in many human diseases and thus has been mechanistically elucidated in the context of understanding -- and in turn treating -- them. This biological phenomenon has now also inspired the design of a supramolecular system that undergoes living polymerization.

  18. Effect of invader litter chemistries on soil organic matter compositions: consequences of Polygonum cuspidatum and Pueraria lobata invasions

    NASA Astrophysics Data System (ADS)

    Tharayil, N.; Tamura, M.

    2012-12-01

    Carbon fixation during photosynthesis forms the precursor of all organic carbon in soil and the predominant source of energy that drives soil microbial processes; hence the molecular identity of the fixed carbon could influence the formation of soil organic matter (SOM). Due to their high resource acquisition and resource use efficiencies, some invasive plants can input disproportionately high quantities of litter that are qualitatively distinctive, and this could influence the accrual of organic carbon and overall carbon cycling in invaded habitats. Hence, we hypothesized that invasive plants with unique litter chemistries would significantly influence the overall carbon cycling in the invaded soils. We tested this hypothesis by comparing plants exhibiting recalcitrant vs. labile litter chemistries using japanese knotweed (Polygonum cuspidatum) and kudzu (Pueraria lobata), respectively. Japanese knotweed produces low litter abundant in polyphenols which selectively hinders microbially mediated decomposition and re-synthesis; whereas kudzu produces low C:N, high quality litter that can stimulate microbial decomposition. Soil samples were collected at 5-cm intervals and from inside and outside 15 to 20 year old stands of the invasive species. The novelty of our study was that both of our study species were invading into soils of contrasting substrate qualities relative to the invading litter quality. The molecular composition of carbon in the soils and the degradation stage of the SOM were assessed with a biomarker approach using gas chromatography-mass spectrometry to determine the source of biomolecules (plant or microbes). Stability of SOM fractions was assessed through oxidation with hydrogen peroxide, serving as a proxy of biological degradation, followed by stable isotope analysis. Fungal communities dominated the uppermost soils under knotweed whereas kudzu litter suppressed fungal biomass in the top 10-cm. In constrast, increase in active microbial biomass C

  19. Revisiting the concept of recalcitrance and organic matter persistence in soils and aquatic systems: Does environment trump chemistry?

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.

    2014-12-01

    Most ecological models of decomposition rely on plant litter chemistry. However, growing evidence suggests that the chemical composition of organic matter (OM) is not a good predictor of its eventual fate in terrestrial or aquatic environments. New data on variable decomposition rates of select organic compounds challenge concepts of chemical recalcitrance, i.e. the inherent ability of certain molecular structures to resist biodegradation. The role of environmental or "ecosystem" properties on influencing decomposition dates back to some of the earliest research on soil OM. Despite early recognition that the physical and aqueous matrices are critical in determining the fate of organic compounds, the prevailing paradigm hinges on intrinsic chemical properties as principal predictors of decay rate. Here I build upon recent reviews and discuss new findings that contribute to three major transformations in our understanding of OM persistence: (1) a shift away from an emphasis on chemical recalcitrance as a primary predictor of turnover, (2) new interpretations of radiocarbon ages which challenge predictions of reactivity, and (3) the recognition that most detrital OM accumulating in soils and in water has been microbially processed. Predictions of OM persistence due to aromaticity are challenged by high variability in lignin and black C turnover observed in terrestrial and aquatic environments. Contradictions in the behavior of lignin are, in part, influenced by inconsistent methodologies among research communities. Even black C, long considered to be one of the most recalcitrant components of OM, is susceptible to biodegradation, challenging predictions of the stability of aromatic structures. At the same time, revised interpretations of radiocarbon data suggest that organic compounds can acquire long mean residence times by various mechanisms independent of their molecular structure. Understanding interactions between environmental conditions and biological

  20. Encoding complexity within supramolecular analogues of frustrated magnets

    NASA Astrophysics Data System (ADS)

    Cairns, Andrew B.; Cliffe, Matthew J.; Paddison, Joseph A. M.; Daisenberger, Dominik; Tucker, Matthew G.; Coudert, François-Xavier; Goodwin, Andrew L.

    2016-05-01

    The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom—namely, the relative vertical shifts of neighbouring chains—are mathematically equivalent to the phase angles of rotating planar (‘XY’) spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets—including collective spin-vortices of relevance to data storage applications—are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible ‘toy’ spin models and also how the theoretical understanding of those models allows control over collective (‘emergent’) phenomena in supramolecular systems.

  1. Monte Carlo Simulation of Exciton Dynamics in Supramolecular Semiconductor Architectures

    NASA Astrophysics Data System (ADS)

    Silva, Carlos; Beljonne, David; Herz, Laura; Hoeben, Freek

    2005-03-01

    Supramolecular chemistry is useful to construct molecular architectures with functional semiconductor properties. To explore the consequences of this approach in molecular electronics, we have carried out ultrafast measurements of exciton dynamics in supramolecular assemblies of an oligo-p-phenyl-ene-vinyl-ene derivative functionalized to form chiral stacks in dodecane solution in a thermotropically reversible manner. We apply a model of incoherent exciton hopping within a Monte Carlo scheme to extract microscopic physical quantities. The simulation first builds the chiral stacks with a Gaussian disorder of site energies and then simulates exciton hopping on the structure and exciton-exciton annihilation to reproduce ensemble-averaged experimental data. The exciton transfer rates are calculated beyond the point-dipole approximation using the so-called line-dipole approach in combination with the Förster expression. The model of incoherent hopping successfully reproduces the data and we extract a high diffusion coefficient illustrating the polymeric properties of such supramolecular assemblies. The scope and limitations of the line-dipole approximation as well as the resonance energy transfer concept in this system are discussed.

  2. Three-dimensional bicomponent supramolecular nanoporous self-assembly on a hybrid all-carbon atomically flat and transparent platform.

    PubMed

    Li, Juan; Wieghold, Sarah; Öner, Murat Anil; Simon, Patrick; Hauf, Moritz V; Margapoti, Emanuela; Garrido, Jose A; Esch, Friedrich; Palma, Carlos-Andres; Barth, Johannes V

    2014-08-13

    Molecular self-assembly is a versatile nanofabrication technique with atomic precision en route to molecule-based electronic components and devices. Here, we demonstrate a three-dimensional, bicomponent supramolecular network architecture on an all-carbon sp(2)-sp(3) transparent platform. The substrate consists of hydrogenated diamond decorated with a monolayer graphene sheet. The pertaining bilayer assembly of a melamine-naphthalenetetracarboxylic diimide supramolecular network exhibiting a nanoporous honeycomb structure is explored via scanning tunneling microscopy initially at the solution-highly oriented pyrolytic graphite interface. On both graphene-terminated copper and an atomically flat graphene/diamond hybrid substrate, an assembly protocol is demonstrated yielding similar supramolecular networks with long-range order. Our results suggest that hybrid platforms, (supramolecular) chemistry and thermodynamic growth protocols can be merged for in situ molecular device fabrication. PMID:25115337

  3. Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectives.

    PubMed

    Zhou, Yongfeng; Yan, Deyue

    2009-03-14

    This feature article describes the supramolecular self-assembly of hyperbranched polymers (HBPs), including the progress, unique characteristics and future perspectives. HBPs are irregular in molecular structure compared with that of linear block copolymers and dendrimers. However, similar to these well-defined polymer tectons, HBPs have displayed great potential to be excellent precursors in solution self-assembly, interfacial self-assembly and hybrid self-assembly. Many impressive supramolecular aggregates and hybrids at all scales and dimensions, such as macroscopic tubes, micro- or nano-vesicles, fibers, spherical micelles and honeycomb films, have been generated. In addition, HBPs also demonstrate unique characteristics or advantages in supramolecular self-assembly behaviours, including controllable morphologies and structures, special properties, characteristic self-assembly mechanism and facile functionalization process. Although still being at the early stage, self-assembly of HBPs has provided a new avenue for the development of supramolecular chemistry. PMID:19240868

  4. Linkages between land Cover, enzymes, and soil organic matter chemistry following encroachment of leguminous woody plant into grasslands

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Stott, D. E.; Boutton, T. W.; Creamer, C. A.; Olk, D.

    2009-12-01

    In the Rio Grande Plains of southern Texas, subtropical thorn woodlands dominated by the N-fixing tree Prosopis glandulosa have largely replaced native grasslands over the last 150 years as a result of fire suppression and over grazing. This land cover change has resulted in the increase of belowground stocks of C, N, and P, changes to the amount and chemical nature of soil-stabilized plant biopolymers, and the composition and activity of soil microbes. Given that extracellular enzymes produced by plants and microbes are the principal means by which complex compounds are degraded and the production of such enzymes is triggered or suppressed by changes in primary input and nutrient availability we sought to relate how these fundamental changes in this ecosystem are reflected in the activity of soil stabilized extracellular enzymes and soil organic matter (SOM) chemistry in this system. We focused upon a successional chronosequence from C4-dominant grassland to woody patches of up to 86 yrs age since mesquite establishment. We related the molecular composition and concentration of hydrolysable amino acids and amino sugars, as well as CuO extractable lignin and substituted fatty acid to the potential activities of five extracellular enzymes (arylamidase, acid phosphatase, β-glucosidase, β-glucosaminidase (NAGase, polyphenoloxidase (PPO)) and a general marker for hydrolytic activity, fluorescein diacetate (FDA). Each of these enzymes, with the exception of PPO, showed higher potential activity in soils from woody clusters than grasslands and had activities generally well correlated to carbon content. PPO, often defined as a proxy for microbial lignin decay activity, showed no statistical difference between grassland and forest sites and no significant relationship to soil C content. Yields of total amino acids and amino sugars all show increases in content with cluster age when normalized to soil mass, as did the enzyme activities targeted to their decomposition, but

  5. Evidence for linkages between ecoenzyme activity and soil organic matter chemistry following encroachment of leguminous woody plant into grasslands.

    NASA Astrophysics Data System (ADS)

    Filley, Timothy; Stott, Diane; Boutton, Thomas; Creamer, Courtney; Olk, Dan

    2010-05-01

    The encroachment of woody plants into grasslands is a worldwide phenomenon. In the Rio Grande Plains of southern Texas, subtropical thorn woodlands dominated by the N-fixing tree Prosopis glandulosa have largely replaced native grasslands as a result of fire suppression and extensive cattle grazing. This land cover change has resulted in the increase of belowground stocks of C, N, and P, changes to the amount and chemical nature of soil-stabilized plant biopolymers, and the composition and activity of soil microbes. Given that extracellular enzymes produced by plants and microbes are the principal means by which complex compounds are degraded and that the production of such enzymes is triggered or suppressed by changes in substrate and nutrient availability we sought to relate how these fundamental changes in this ecosystem are reflected in the activity of soil stabilized ecoenzymes and soil organic matter (SOM) chemistry in this system. We investigated a chronosequence of woody encroachment (14-86 yrs) into a C4-dominant grassland. We related the potential activities of five extracellular enzymes (arylamidase, acid phosphatase, β-glucosidase, β-glucosaminidase (NAGase, polyphenoloxidase (PPO)) and a general marker for hydrolytic activity, fluorescein diacetate (FDA) to the molecular composition and concentration of total hydrolysable amino acids and amino sugars, sugars, as well as CuO extractable lignin and substituted fatty acid to. When normalized to dry weight soil all chemical components increase in concentration with cluster age and all clusters have greater concentrations than background grasslands. All enzymes activities exhibit higher potential activity in woody clusters than grasslands but only NAGase and FDA increase with cluster age when normalized to dry weight of soil. Conversely, when normalized to SOC only lignin phenols, hydroxyl proline, and glucose from cellulose are positively correlated with cluster age indicating a selective accrual with

  6. A Molecular Artisans Guide to Supramolecular Coordination Complexes and Metal Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Wu, Xialu; Young, David J.; Hor, T. S. Andy

    2015-10-01

    As molecular synthesis advances, we are beginning to learn control of not only the chemical reactivity (and function) of molecules, but also of their interactions with other molecules. It is this basic idea that has led to the current explosion of supramolecular science and engineering. Parallel to this development, chemists have been actively pursuing the design of very large molecules using basic molecular building blocks. Herein, we review the general development of supramolecular chemistry and particularly of two new branches: supramolecular coordination complexes (SCCs) and metal organic frameworks (MOFs). These two fields are discussed in detail with typical examples to illustrate what is now possible and what challenges lie ahead for tomorrow's molecular artisans.

  7. Supramolecular thermoplastic with 0.5 Pa·s melt viscosity.

    PubMed

    Agnaou, Réda; Capelot, Mathieu; Tencé-Girault, Sylvie; Tournilhac, François; Leibler, Ludwik

    2014-08-13

    Design of materials with polymer-like properties at service temperature but able to flow like simple liquids when heated remains one of the important challenges of supramolecular chemistry. Combining these antagonistic properties is highly desirable to provide durability, processability, and recyclability of materials. Here, we explore a new strategy based on polycondensation reactions to design supramolecular polymer materials with stress at break above 10 MPa and melt viscosity lower than 1 Pa·s. We report the synthesis and rheological and mechanical properties (uniaxial tensile tests) of supramolecular polymers based on a multiblock polyamide architecture. The flexibility of polycondensation reactions made it possible to control the molecular size distribution, the strength of hydrogen bonds, and the crystallization of middle and end groups and to achieve targeted properties. PMID:25072654

  8. Seeded on-surface supramolecular growth for large area conductive donor-acceptor assembly.

    PubMed

    Goudappagouda; Chithiravel, Sundaresan; Krishnamoorthy, Kothandam; Gosavi, Suresh W; Babu, Sukumaran Santhosh

    2015-07-01

    Charge transport features of organic semiconductor assemblies are of paramount importance. However, large-area extended supramolecular structures of donor-acceptor combinations with controlled self-assembly pathways are hardly accessible. In this context, as a representative example, seeded on-surface supramolecular growth of tetrathiafulvalene and tetracyano-p-quinodimethane (TTF-TCNQ) using active termini of solution-formed sheaves has been introduced to form an extended assembly. We demonstrate for the first time, the creation of a large-area donor-acceptor assembly on the surface, which is practically very tedious, using a seeded, evaporation-assisted growth process. The excellent molecular ordering in this assembly is substantiated by its good electrical conductivity (~10⁻² S cm⁻¹). The on-surface assembly via both internally formed and externally added sheaf-like seeds open new pathways in supramolecular chemistry and device applications. PMID:26036616

  9. Beyond molecules: mesoporous supramolecular frameworks self-assembled from coordination cages and inorganic anions.

    PubMed

    Luo, Dong; Zhou, Xiao-Ping; Li, Dan

    2015-05-18

    Biological function arises by the assembly of individual biomolecular modules into large aggregations or highly complex architectures. A similar strategy is adopted in supramolecular chemistry to assemble complex and highly ordered structures with advanced functions from simple components. Here we report a series of diamond-like supramolecular frameworks featuring mesoporous cavities, which are assembled from metal-imidazolate coordination cages and various anions. Small components (metal ions, amines, aldehydes, and anions) are assembled into the hierarchical complex structures through multiple interactions including covalent bonds, dative bonds, and weak C-H⋅⋅⋅X (X=O, F, and π) hydrogen bonds. The mesoporous cavities are large enough to trap organic dye molecules, coordination cages, and vitamin B12. The study is expected to inspire new types of crystalline supramolecular framework materials based on coordination motifs and inorganic ions. PMID:25850862

  10. Optically responsive supramolecular polymer glasses

    PubMed Central

    Balkenende, Diederik W. R.; Monnier, Christophe A.; Fiore, Gina L.; Weder, Christoph

    2016-01-01

    The reversible and dynamic nature of non-covalent interactions between the constituting building blocks renders many supramolecular polymers stimuli-responsive. This was previously exploited to create thermally and optically healable polymers, but it proved challenging to achieve high stiffness and good healability. Here we present a glass-forming supramolecular material that is based on a trifunctional low-molecular-weight monomer ((UPyU)3TMP). Carrying three ureido-4-pyrimidinone (UPy) groups, (UPyU)3TMP forms a dynamic supramolecular polymer network, whose properties are governed by its cross-linked architecture and the large content of the binding motif. This design promotes the formation of a disordered glass, which, in spite of the low molecular weight of the building block, displays typical polymeric behaviour. The material exhibits a high stiffness and offers excellent coating and adhesive properties. On account of reversible dissociation and the formation of a low-viscosity liquid upon irradiation with ultraviolet light, rapid optical healing as well as (de)bonding on demand is possible. PMID:26983805

  11. Optically responsive supramolecular polymer glasses.

    PubMed

    Balkenende, Diederik W R; Monnier, Christophe A; Fiore, Gina L; Weder, Christoph

    2016-01-01

    The reversible and dynamic nature of non-covalent interactions between the constituting building blocks renders many supramolecular polymers stimuli-responsive. This was previously exploited to create thermally and optically healable polymers, but it proved challenging to achieve high stiffness and good healability. Here we present a glass-forming supramolecular material that is based on a trifunctional low-molecular-weight monomer ((UPyU)3TMP). Carrying three ureido-4-pyrimidinone (UPy) groups, (UPyU)3TMP forms a dynamic supramolecular polymer network, whose properties are governed by its cross-linked architecture and the large content of the binding motif. This design promotes the formation of a disordered glass, which, in spite of the low molecular weight of the building block, displays typical polymeric behaviour. The material exhibits a high stiffness and offers excellent coating and adhesive properties. On account of reversible dissociation and the formation of a low-viscosity liquid upon irradiation with ultraviolet light, rapid optical healing as well as (de)bonding on demand is possible. PMID:26983805

  12. Optically responsive supramolecular polymer glasses

    NASA Astrophysics Data System (ADS)

    Balkenende, Diederik W. R.; Monnier, Christophe A.; Fiore, Gina L.; Weder, Christoph

    2016-03-01

    The reversible and dynamic nature of non-covalent interactions between the constituting building blocks renders many supramolecular polymers stimuli-responsive. This was previously exploited to create thermally and optically healable polymers, but it proved challenging to achieve high stiffness and good healability. Here we present a glass-forming supramolecular material that is based on a trifunctional low-molecular-weight monomer ((UPyU)3TMP). Carrying three ureido-4-pyrimidinone (UPy) groups, (UPyU)3TMP forms a dynamic supramolecular polymer network, whose properties are governed by its cross-linked architecture and the large content of the binding motif. This design promotes the formation of a disordered glass, which, in spite of the low molecular weight of the building block, displays typical polymeric behaviour. The material exhibits a high stiffness and offers excellent coating and adhesive properties. On account of reversible dissociation and the formation of a low-viscosity liquid upon irradiation with ultraviolet light, rapid optical healing as well as (de)bonding on demand is possible.

  13. Topological dynamics in supramolecular rotors.

    PubMed

    Palma, Carlos-Andres; Björk, Jonas; Rao, Francesco; Kühne, Dirk; Klappenberger, Florian; Barth, Johannes V

    2014-08-13

    Artificial molecular switches, rotors, and machines are set to establish design rules and applications beyond their biological counterparts. Herein we exemplify the role of noncovalent interactions and transient rearrangements in the complex behavior of supramolecular rotors caged in a 2D metal-organic coordination network. Combined scanning tunneling microscopy experiments and molecular dynamics modeling of a supramolecular rotor with respective rotation rates matching with 0.2 kcal mol(-1) (9 meV) precision, identify key steps in collective rotation events and reconfigurations. We notably reveal that stereoisomerization of the chiral trimeric units entails topological isomerization whereas rotation occurs in a topology conserving, two-step asynchronous process. In supramolecular constructs, distinct displacements of subunits occur inducing a markedly lower rotation barrier as compared to synchronous mechanisms of rigid rotors. Moreover, the chemical environment can be instructed to control the system dynamics. Our observations allow for a definition of mechanical cooperativity based on a significant reduction of free energy barriers in supramolecules compared to rigid molecules. PMID:25078022

  14. Supramolecular nanoparticles that target phosphatidylinositol-3-kinase overcome insulin resistance and exert pronounced antitumor efficacy

    PubMed Central

    Kulkarni, Ashish A.; Roy, Bhaskar; Rao, Poornima S.; Wyant, Gregory A.; Mahmoud, Ayaat; Ramachandran, Madhumitha; Sengupta, Poulomi; Goldman, Aaron; Kotamraju, Venkata Ramana; Basu, Sudipta; Mashelkar, Raghunath A; Ruoslahti, Erkki; Dinulescu, Daniela M.; Sengupta, Shiladitya

    2013-01-01

    The centrality of phosphatidylinositol-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intra-tumoral concentration and an insulin resistance ‘class effect’. The current study was designed to explore the use of supramolecular nanochemistry for targeting PI3K to enhance antitumor efficacy and potentially overcome these limitations. PI3K inhibitor structures were rationally modified using a cholesterol-based derivative, facilitating supramolecular nanoassembly with L-α-phosphatidylcholine and DSPE-PEG. The supramolecular nanoparticles that were assembled were physicochemically characterized and functionally evaluated in vitro. Antitumor efficacy was quantified in vivo using 4T1 breast cancer and K-RasLSL/+/Ptenfl/fl ovarian cancer models, with effects on glucose homeostasis evaluated using an insulin sensitivity test. The use of PI103 and PI828 as surrogate molecules to engineer the supramolecular nanoparticles highlighted the need to keep design principles in perspective; specifically, potency of the active molecule and the linker chemistry were critical principles for efficacy, similar to antibody-drug conjugates. We found that the supramolecular nanoparticles exerted a temporally-sustained inhibition of phosphorylation of Akt, mTOR, S6K and 4EBP in vivo. These effects were associated with increased antitumor efficacy and survival as compared with PI103 and PI828. Efficacy was further increased by decorating the nanoparticle surface with tumor-homing peptides. Notably, the use of supramolecular nanoparticles abrogated the insulin resistance that has been associated widely with other PI3K inhibitors. This study provides a preclinical foundation for the use of supramolecular nanochemistry to overcome current challenges associated with PI3K inhibitors, offering a paradigm for extension to other molecularly targeted therapeutics being explored for cancer treatment

  15. Supramolecular polymers: Chain growth in control

    NASA Astrophysics Data System (ADS)

    Deng, Renren; Liu, Xiaogang

    2015-06-01

    Supramolecular polymerizations typically proceed through stepwise intermolecular mechanisms, concomitant with many side reactions to yield aggregates of unpredictable size, shape and mass. Now, a chain-growth strategy is shown to allow assembly of molecules into supramolecular chain structures endowed with precisely controlled characteristics.

  16. Metallo/clusto hybridized supramolecular polymers.

    PubMed

    Li, Haolong; Wu, Lixin

    2014-12-01

    The introduction of metal centers to a supramolecular polymer system is an important approach to fabricate hybrid supramolecular polymers with synergistic properties between their inorganic and organic components, which is mainly realized through two strategies: one is the embedment of metal ions through metal-ligand coordination to form metallo-supramolecular polymers (MSPs); the other is using metal-containing clusters as hybrid building blocks to prepare clusto-supramolecular polymers (CSPs). The available paradigms of MSPs and CSPs not only exhibit the unique functions of metal centers but also hold the good processing ability and the stimuli-responsibility of dynamically bonded polymeric structures, thus representing a new class of hybrid soft materials. In this review, the development and recent progress of MSPs and CSPs are discussed in detail, including their structure design, synthetic procedures and related properties. Finally, challenges and potential areas in metal-containing supramolecular polymers are outlooked. PMID:25301009

  17. Chemistry on Stamps.

    ERIC Educational Resources Information Center

    Schreck, James O.

    1986-01-01

    Suggests how postage stamps can be incorporated into chemistry teaching. Categories considered include emergence of chemistry as a science, metric system, atoms (and molecules and ions), stoichiometry, energy relationships in chemical systems, chemical bonding, nuclear chemistry, biochemistry, geochemistry, matter (gases, liquids, and solids),…

  18. EFFECT OF SIZE AND CHEMISTRY OF AMBIENT, COMBUSTION AND SURROGATE PARTICULATE MATTER (PM) ON PULMONARY INFLAMMATORY RESPONSES IN RODENTS

    EPA Science Inventory

    While there is much evidence that airborne particulate matter (PM) can create adverse health effects including increased morbidity and mortality, the actual physico-chemical characteristics of particles which cause these effects remains elusive. One central hypothesis is that PM ...

  19. Supramolecular photochemistry and solar cells

    PubMed

    Iha

    2000-01-01

    Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i) cage-type coordination compounds; (ii) second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii) covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies. PMID:10932106

  20. Supercooled Water in Supramolecular Hydrogels

    NASA Astrophysics Data System (ADS)

    Wiener, Clinton; Vogt, Bryan; Weiss, R. A.

    The suppression of water crystallization with appreciable water supercooling is challenging due to its large enthalpy of fusion. A common theme to supercool water is to confine the water in the pores of microporous/mesoporous solids where mechanical confinement prevents water crystallization. Nature takes a different approach with crystallization suppression through a combination of preferential adsorption on ice nuclei and confinement between hydrophobic residues using organic components only. Here, we demonstrate that mechanically robust confinement within a hard material is not necessary to significantly supercool water. In this case, a supramolecular hydrogel, based on a random amphiphilic copolymer, is used to provide soft confinement of water between the hydrophobic aggregates with an interdomain spacing <8 nm. Small angle neutron scattering (SANS) provides insight into the structural evolution of the supramolecular structure of the hydrogel on supercooling. The structural changes are sensitive to the composition of the copolymer as determined by contrast variation SANS. Similarly, the dynamics of both the copolymer and water are probed using quasielastic neutron scattering (QENS). Using QENS, a highly mobile water phase (tau ~23 ps) is identified to be present even when slowly cooling to as low as 220K.

  1. Supramolecular nanocarriers with photoresponsive cargo

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Tang, Sicheng; Thapaliya, Ek Raj; Raymo, FranÒ«isco M.

    2016-03-01

    The covalent integration of fluorescent and photoswitchable components within the same molecular skeleton can be exploited to activate fluorescence under optical control. Specifically, a photoswitchable oxazine heterocycle can be connected to either a coumarin or a borondipyrromethene fluorophore. Illumination of the resulting molecular dyads at an appropriate activation wavelength either opens the heterocycle reversibly or cleaves it irreversibly, depending on the relative positions of its methylene and nitro substituents. These photochemical transformations shift bathochromically the main absorption band of the fluorophore and allow its selective excitation at a given wavelength. These hydrophobic molecular dyads can be entrapped within the hydrophobic interior of self-assembling nanoparticles of amphiphilic polymer. The supramolecular envelope around the switchable compounds enables their transfer into aqueous environments and their operation under these conditions with minimal influence on their photochemical and photophysical properties. The reversible fluorescence activation, possible in one instance, imposes intermittence on the detected emission and offers the opportunity to resolve closely-spaced nanocarriers in time to reconstruct images with subdiffraction resolution. The irreversible fluorescence activation, possible in the other, maintains emission on after the activation event and permits the monitoring of the diffusion of the activated nanocarriers in real time with the sequential acquisition of images. Thus, these operating principles to solubilize and operate photoswitchable fluorophores in aqueous environments with the aid of supramolecular nanocarriers can lead to valuable protocols to image specimens with subdiffraction resolution and to monitor dynamic events noninvasively.

  2. Transition Metal Complexes of Bidentate and Tridentate Ligands: From Optoelectronic Studies to Supramolecular Assemblies.

    PubMed

    Pal, Amlan K

    2015-01-01

    This article depicts an overview of some of the research in supramolecular chemistry performed by the author over the past few years. This work includes the synthesis of building blocks, bidentate and tridentate 'super donor' ligands that are comprised of H-hpp (where H-hpp = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a] pyrimidine) coupled with various N-heterocycles as well as the synthesis and characterization of the transition metal complexes in self-assembled superstructures. The article also includes the studies of photophysical, electrochemical and density functional theory calculation of the complexes. Thus, the work relies on a combination of synthetic work and optoelectronic studies, and the results are relevant in the greater context of supramolecular chemistry, solar energy harvesting, and its conversion to chemical energy, photovoltaics and inorganic light-emitting device applications. PMID:26671049

  3. The fate or organic matter during planetary accretion - Preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Tingle, Tracy N.; Tyburczy, James A.; Ahrens, Thomas J.; Becker, Christopher H.

    1992-01-01

    The fate of organic matter in carbonaceous meteorites during hypervelocity (1-2 km/sec) impacts is investigated using results of experiments in which three samples of the Murchison (CM2) carbonaceous chondrite were shocked to 19, 20, and 36 GPa and analyzed by highly sensitive thermal-desorption photoionization mass spectrometry (SALI). The thermal-desorptive SALI mass spectra of unshocked CM2 material revealed presence of indigenous aliphatic, aromatic, sulfur, and organosulfur compounds, and samples shocked to about 20 GPa showed little or no loss of organic matter. On the other hand, samples shocked to 36 GPa exhibited about 70 percent loss of organic material and a lower alkene/alkane ratio than did the starting material. The results suggest that it is unlikely that the indigenous organic matter in carbonaceous chondritelike planetesimals could have survived the impact on the earth in the later stages of earth's accretion.

  4. New insights into the fouling mechanism of dissolved organic matter applying nanofiltration membranes with a variety of surface chemistries.

    PubMed

    Mustafa, Ghulam; Wyns, Kenny; Buekenhoudt, Anita; Meynen, Vera

    2016-04-15

    Nanofiltration (NF) membrane fouling by DOM remains a major and poorly understood issue. To acquire a better insight we studied the fouling of the DOM fractions humic acids (HAs) and fulvic acids (FAs), with and without Ca(2+), on native and grafted ceramic NF membranes. Grafting with two methods and three different grafting groups allowed to create a range of membranes with a variety of surface chemistries, and a wide range of surface polarity, much broader than ever used in previous studies. A typical polymer (polyamide) NF membrane was included for comparison. All obtained results reveal that membrane fouling is not determined by membrane hydrophilicity/hydrophobicity as a general and sole criterion, but rather on the whole of the surface chemistry determining the amount and strength of the possible foulant-membrane interactions. As a consequence the effect of inorganic ions on the fouling is also dependent on the surface chemistry. Important new insight in the DOM fouling mechanism was acquired, shedding new light on the state-of-the-art knowledge. PMID:26905798

  5. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.

    PubMed

    Rineau, Francois; Roth, Doris; Shah, Firoz; Smits, Mark; Johansson, Tomas; Canbäck, Björn; Olsen, Peter Bjarke; Persson, Per; Grell, Morten Nedergaard; Lindquist, Erika; Grigoriev, Igor V; Lange, Lene; Tunlid, Anders

    2012-06-01

    Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter-protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter-protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems. PMID:22469289

  6. Supramolecular materials: Self-organized nanostructures

    SciTech Connect

    Stupp, S.I.; LeBonheur, V.; Walker, K.

    1997-04-18

    Miniaturized triblock copolymers have been found to self-assemble into nanostructures that are highly regular in size and shape. Mushroom-shaped supramolecular structures of about 200 kilodaltons form by crystallization of the chemically identical blocks and self-organize into films containing 100 or more layers stacked in a polar arrangement. The polar supramolecular material exhibits spontaneous second-harmonic generation from infrared to green photons and has an adhesive tape-like character with nonadhesive-hydrophobic and hydrophilic-sticky opposite surfaces. The films also have reasonable shear strength and adhere tenaciously to glass surfaces on one side only. The regular and finite size of the supramolecular units is believed to be mediated by repulsive forces among some of the segments in the triblock molecules. A large diversity of multifunctional materials could be formed from regular supramolecular units weighing hundreds of kilodaltons. 21 refs., 10 figs.

  7. Radiolytic syntheses of nanoparticles in supramolecular assemblies.

    PubMed

    Chen, Qingde; Shen, Xinghai; Gao, Hongcheng

    2010-08-11

    Ionizing radiation is a powerful method in the syntheses of nanoparticles (NPs). The application of ionizing radiation in supramolecular assemblies can afford us more unique conditions to control the composition and morphology of the NPs. So far, most work focused on water-in-oil (W/O) microemulsions or reversed micelles. In this supramolecular organization, it has been proved that the effects of many conditions on the yield of e(aq)(-) play a key role, remarkably different from the mechanism in routine chemical method. Besides, some supramolecular assemblies of cyclodextrins and ionic liquids have been used in the syntheses of NPs by ionizing radiation, and many novel and interesting phenomena appeared. This review is intended to underline the three significant aspects of the radiolytic syntheses of NPs in supramolecular assemblies. PMID:20653087

  8. Supramolecular catalysis: Terpenes in tight spaces

    NASA Astrophysics Data System (ADS)

    Roach, Jeremy J.; Shenvi, Ryan A.

    2015-03-01

    The ability of enzymes to direct the synthesis of complex natural products from simple starting materials is epitomized by terpene biosynthesis. Now, a supramolecular catalyst has been shown to mimic some of the reactivity of this process.

  9. Supramolecular polymers: Molecular machines muscle up

    NASA Astrophysics Data System (ADS)

    Bruns, Carson J.; Stoddart, J. Fraser

    2013-01-01

    A supramolecular polymer made of thousands of bistable [c2]daisy chains amplifies individual nanometric displacements up to the micrometre-length scale, in a concerted process reminiscent of muscular cells.

  10. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity†

    PubMed Central

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.

    2016-01-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure–property–activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications. PMID:26524425

  11. Synthesis and supramolecular assembly of biomimetic polymers

    NASA Astrophysics Data System (ADS)

    Marciel, Amanda Brittany

    A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic

  12. Supramolecular Archimedean Cages Assembled with 72 Hydrogen Bonds

    SciTech Connect

    Liu, Yuzhou; Hu, Chunhua; Comotti, Angiolina; Ward, Michael D.

    2011-12-09

    Self-assembly of multiple components into well-defined and predictable structures remains one of the foremost challenges in chemistry. Here, we report on the rational design of a supramolecular cage assembled from 20 ions of three distinct species through 72 hydrogen bonds. The cage is constructed from two kinds of hexagonal molecular tiles, a tris(guanidinium)nitrate cluster and a hexa(4-sulfonatophenyl)benzene, joined at their edges through complementary and metrically matched N-H {hor_ellipsis} O-S hydrogen bonds to form a truncated octahedron, one of the Archimedean polyhedra. The truncated octahedron, with an interior volume of 2200 cubic angstroms, serves as the composite building unit of a body-centered cubic zeolite-like framework, which exhibits an ability to encapsulate a wide range of differently charged species, including organic molecules, transition metal complexes, and 'ship-in-a-bottle' nanoclusters not observed otherwise.

  13. Modular self-assembly, characterization, and host-guest chemistry of nanoscale organometallic architectures

    SciTech Connect

    Manna, J.; Kuehl, C.J.; Stang, P.J.; Muddiman, D.C.; Smith, R.D.

    1997-12-31

    The supramolecular synthesis and chemistry of organic macrocycles has been the focus of considerable study for over thirty years. In contrast, the chemistry of analogous inorganic and organometallic macrocycles is in it infancy; little is know about the stability, spectroscopic and physical properties, and chemistry of these species. We will report on the design of several unique supramolecular macrocycles and the characterization of these species by a range of spectroscopic techniques, including electrospray-ionization Fourier transform ion cyclotron resonance spectrometry. Preliminary data concerning the host-guest chemistry of these macrocycles will also be presented.

  14. Supramolecular Polymer Nanocomposites - Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hinricher, Jesse; Neikirk, Colin; Priestley, Rodney

    2015-03-01

    Supramolecular polymers differ from traditional polymers in that their repeat units are connected by hydrogen bonds that can reversibly break and form under various stimuli. They can be more easily recycled than conventional materials, and their highly temperature dependent viscosities result in reduced energy consumption and processing costs. Furthermore, judicious selection of supramolecular polymer architecture and functionality allows the design of advanced materials including shape memory and self-healing materials. Supramolecular polymers have yet to see widespread use because they can't support much weight due to their inherent mechanical weakness. In order to address this issue, the mechanical strength of supramolecular polymer nanocomposites based on ureidopyrmidinone (UPy) telechelic poly(caprolactone) doped with surface activated silica nanoparticles was investigated by tensile testing and dynamic mechanical analysis. The effects of varying amounts and types of nanofiller surface functionality were investigated to glean insight into the contributions of filler-filler and filler-matrix interactions to mechanical reinforcement in supramolecular polymer nanocomposites. MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja)

  15. Transmetalation of self-assembled, supramolecular complexes.

    PubMed

    Carnes, Matthew E; Collins, Mary S; Johnson, Darren W

    2014-03-21

    Substituting one metal for another in inorganic and organometallic systems is a proven strategy for synthesizing complex molecules, and in some cases, provides the only route to a particular system. The multivalent nature of the coordination in metal-ligand assemblies lends itself more readily to some types of transmetalation. For instance, a binding site can open up for exchange without greatly effecting the many other interactions holding the structure together. In addition to exchanging the metal and altering the local binding environment, transmetalation in supramolecular systems can also lead to substantial changes in the nature of the secondary and tertiary structure of a larger assembly. In this tutorial review we will cover discrete supramolecular assemblies in which metals are exchanged. First we will address fully formed structures where direct substitution replaces one type of metal for another without changing the overall supramolecular assembly. We will then address systems where the disruptive exchange of one metal for another leads to a larger change in the supramolecular assembly. When possible we have tried to highlight systems that use supramolecular self-assembly in tandem with transmetalation to synthesize new structures not accessible through a more direct approach. At the end of this review, we highlight the use of transmetalation in self-assembled aqueous inorganic clusters and discuss the consequences for material science applications. PMID:24346298

  16. Supramolecular nesting of cyclic polymers

    NASA Astrophysics Data System (ADS)

    Kondratuk, Dmitry V.; Perdigão, Luís M. A.; Esmail, Ayad M. S.; O'Shea, James N.; Beton, Peter H.; Anderson, Harry L.

    2015-04-01

    Advances in template-directed synthesis make it possible to create artificial molecules with protein-like dimensions, directly from simple components. These synthetic macromolecules have a proclivity for self-organization that is reminiscent of biopolymers. Here, we report the synthesis of monodisperse cyclic porphyrin polymers, with diameters of up to 21 nm (750 C-C bonds). The ratio of the intrinsic viscosities for cyclic and linear topologies is 0.72, indicating that these polymers behave as almost ideal flexible chains in solution. When deposited on gold surfaces, the cyclic polymers display a new mode of two-dimensional supramolecular organization, combining encapsulation and nesting; one nanoring adopts a near-circular conformation, thus allowing a second nanoring to be captured within its perimeter, in a tightly folded conformation. Scanning tunnelling microscopy reveals that nesting occurs in combination with stacking when nanorings are deposited under vacuum, whereas when they are deposited directly from solution under ambient conditions there is stacking or nesting, but not a combination of both.

  17. A novel supramolecular polymer gel constructed by crosslinking pillar[5]arene-based supramolecular polymers through metal-ligand interactions.

    PubMed

    Wang, Pi; Xing, Hao; Xia, Danyu; Ji, Xiaofan

    2015-12-21

    A novel heteroditopic A-B monomer was synthesized and used to construct linear supramolecular polymers utilizing pillar[5]arene-based host-guest interactions. Specifically, upon addition of Cu(2+) ions, the supramolecular polymer chains are crosslinked through metal-ligand interactions, resulting in the formation of a supramolecular polymer gel. Interestingly, this self-organized supramolecular polymer can be used as a novel fluorescent sensor for detecting Cu(2+) ions. PMID:26466511

  18. The effect of learning styles and attitude on preservice elementary teachers' conceptual understanding of chemistry and the nature of matter in a simulation-based learning environment

    NASA Astrophysics Data System (ADS)

    Al-Jaroudi, Mo H.

    This causal-comparative descriptive study investigated the achievement of pre-service elementary teachers taking an introductory physical science course that integrates inquiry-based instruction with computer simulations. The study was intended to explore if pre-service elementary teachers with different attitudes towards science as well as students with different learning styles would benefit differentially. Four research questions including four hypotheses were developed. The first major question consist of four specific hypothesis that addressed preservice elementary teachers' learning styles (Active/Reflective, Sensing/Intuitive, Visual/Verbal, and Sequential/Global) and their conceptual understanding of chemistry and the particulate nature of matter in a science class which use hands-on learning integrated with computer based simulated activities. The second major question pertained to the relationship between preservice teachers learning science and chemistry and their attitude towards science. The third major question related to preservice elementary teachers science and chemistry achievement gain scores and attitude average affected by their learning styles. Finally, the fourth question pertained to the dissipation or the minimization of preservice elementary teachers' science and chemistry misconceptions over the course of study. Three instruments were given to preservice elementary teachers in three different classes: pretest/posttest for the science conceptual understanding examination, and pretest-only for the science attitude and learning styles instruments. Total usable science attitude surveys returned was 67 out of 70. The overall average mean was 3.13 (SD = .51) on a five point scale. Total return of science achievement instrument was 65, with a total mean test score (quantitative and qualitative together) of 6.38 (SD = 3.05) on the pretest, with a post test mean of 9.06 (SD = 4.19). Results revealed no statistically significant achievement gain

  19. Scope and Mechanism of Cooperativity at the Intersection of Organometallic and Supramolecular Catalysis.

    PubMed

    Levin, Mark D; Kaphan, David M; Hong, Cynthia M; Bergman, Robert G; Raymond, Kenneth N; Toste, F Dean

    2016-08-01

    The scope and mechanism of the microenvironment-catalyzed C(sp(3))-C(sp(3)) reductive elimination from transition metal complexes [Au(III), Pt(IV)] is explored. Experiments detailing the effect of structural perturbation of neutral and anionic spectator ligands, reactive alkyl ligands, solvent, and catalyst structure are disclosed. Indirect evidence for a coordinatively unsaturated encapsulated cationic intermediate is garnered via observation of several inactive donor-arrested inclusion complexes, including a crystallographically characterized encapsulated Au(III) cation. Finally, based on stoichiometric experiments under catalytically relevant conditions, a detailed mechanism is outlined for the dual supramolecular and platinum-catalyzed C-C coupling between methyl iodide and tetramethyltin. Determination of major platinum species present under catalytic conditions and subsequent investigation of their chemistry reveals an unexpected interplay between cis-trans isomerism and the supramolecular catalyst in a Pt(II)/Pt(IV) cycle, as well as several off-cycle reactions. PMID:27458778

  20. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions.

    PubMed

    Yan, Xuzhou; Cook, Timothy R; Pollock, J Bryant; Wei, Peifa; Zhang, Yanyan; Yu, Yihua; Huang, Feihe; Stang, Peter J

    2014-03-26

    An emerging strategy for the fabrication of advanced supramolecular materials is the use of hierarchical self-assembly techniques wherein multiple orthogonal interactions between molecular precursors can produce new species with attractive properties. Herein, we unify the spontaneous formation of metal-ligand bonds with the host/guest chemistry of crown ethers to deliver a 3D supramolecular polymer network (SPN). Specifically, we have prepared a highly directional dipyridyl donor decorated with a benzo-21-crown-7 moiety that undergoes coordination-driven self-assembly with a complementary organoplatinum acceptor to furnish hexagonal metallacycles. These hexagons subsequently polymerize into a supramolecular network upon the addition of a bisammonium salt due to the formation of [2]pseudorotaxane linkages between the crown ether and ammonium moieties. At high concentrations, the resulting 3D SPN becomes a gel comprising many cross-linked metallohexagons. Notably, thermo- and cation-induced gel-sol transitions are found to be completely reversible, reflecting the dynamic and tunable nature of such supramolecular materials. As such, these results demonstrate the structural complexity that can be obtained when carefully controlling multiple interactions in a hierarchical fashion, in this case coordination and host/guest chemistry, and the interesting dynamic properties associated with the materials thus obtained. PMID:24621148

  1. Energy landscapes and functions of supramolecular systems.

    PubMed

    Tantakitti, Faifan; Boekhoven, Job; Wang, Xin; Kazantsev, Roman V; Yu, Tao; Li, Jiahe; Zhuang, Ellen; Zandi, Roya; Ortony, Julia H; Newcomb, Christina J; Palmer, Liam C; Shekhawat, Gajendra S; de la Cruz, Monica Olvera; Schatz, George C; Stupp, Samuel I

    2016-04-01

    By means of two supramolecular systems-peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps-we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, functions and energy landscapes are linked, superseding the more traditional connection between molecular design and function. PMID:26779883

  2. Supramolecular Control over Split-Luciferase Complementation.

    PubMed

    Bosmans, Ralph P G; Briels, Jeroen M; Milroy, Lech-Gustav; de Greef, Tom F A; Merkx, Maarten; Brunsveld, Luc

    2016-07-25

    Supramolecular split-enzyme complementation restores enzymatic activity and allows for on-off switching. Split-luciferase fragment pairs were provided with an N-terminal FGG sequence and screened for complementation through host-guest binding to cucurbit[8]uril (Q8). Split-luciferase heterocomplex formation was induced in a Q8 concentration dependent manner, resulting in a 20-fold upregulation of luciferase activity. Supramolecular split-luciferase complementation was fully reversible, as revealed by using two types of Q8 inhibitors. Competition studies with the weak-binding FGG peptide revealed a 300-fold enhanced stability for the formation of the ternary heterocomplex compared to binding of two of the same fragments to Q8. Stochiometric binding by the potent inhibitor memantine could be used for repeated cycling of luciferase activation and deactivation in conjunction with Q8, providing a versatile module for in vitro supramolecular signaling networks. PMID:27356091

  3. Fibonacci Sequence and Supramolecular Structure of DNA.

    PubMed

    Shabalkin, I P; Grigor'eva, E Yu; Gudkova, M V; Shabalkin, P I

    2016-05-01

    We proposed a new model of supramolecular DNA structure. Similar to the previously developed by us model of primary DNA structure [11-15], 3D structure of DNA molecule is assembled in accordance to a mathematic rule known as Fibonacci sequence. Unlike primary DNA structure, supramolecular 3D structure is assembled from complex moieties including a regular tetrahedron and a regular octahedron consisting of monomers, elements of the primary DNA structure. The moieties of the supramolecular DNA structure forming fragments of regular spatial lattice are bound via linker (joint) sequences of the DNA chain. The lattice perceives and transmits information signals over a considerable distance without acoustic aberrations. Linker sequences expand conformational space between lattice segments allowing their sliding relative to each other under the action of external forces. In this case, sliding is provided by stretching of the stacked linker sequences. PMID:27265133

  4. Energy landscapes and functions of supramolecular systems

    NASA Astrophysics Data System (ADS)

    Tantakitti, Faifan; Boekhoven, Job; Wang, Xin; Kazantsev, Roman V.; Yu, Tao; Li, Jiahe; Zhuang, Ellen; Zandi, Roya; Ortony, Julia H.; Newcomb, Christina J.; Palmer, Liam C.; Shekhawat, Gajendra S.; de La Cruz, Monica Olvera; Schatz, George C.; Stupp, Samuel I.

    2016-04-01

    By means of two supramolecular systems--peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps--we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, functions and energy landscapes are linked, superseding the more traditional connection between molecular design and function.

  5. Internal dynamics of a supramolecular nanofibre.

    PubMed

    Ortony, Julia H; Newcomb, Christina J; Matson, John B; Palmer, Liam C; Doan, Peter E; Hoffman, Brian M; Stupp, Samuel I

    2014-08-01

    A large variety of functional self-assembled supramolecular nanostructures have been reported over recent decades. The experimental approach to these systems initially focused on the design of molecules with specific interactions that lead to discrete geometric structures, and more recently on the kinetics and mechanistic pathways of self-assembly. However, there remains a major gap in our understanding of the internal conformational dynamics of these systems and of the links between their dynamics and function. Molecular dynamics simulations have yielded information on the molecular fluctuations of supramolecular assemblies, yet experimentally it has been difficult to obtain analogous data with subnanometre spatial resolution. Using site-directed spin labelling and electron paramagnetic resonance spectroscopy, we measured the conformational dynamics of a self-assembled nanofibre in water through its 6.7 nm cross-section. Our measurements provide unique insight for the design of supramolecular functional materials. PMID:24859643

  6. Energy landscapes and function of supramolecular systems

    PubMed Central

    Tantakitti, Faifan; Boekhoven, Job; Wang, Xin; Kazantsev, Roman; Yu, Tao; Li, Jiahe; Zhuang, Ellen; Zandi, Roya; Ortony, Julia H.; Newcomb, Christina J.; Palmer, Liam C.; Shekhawat, Gajendra S.; de la Cruz, Monica Olvera; Schatz, George C.; Stupp, Samuel I.

    2015-01-01

    By means of two supramolecular systems - peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps - we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, function and energy landscape are linked, superseding the more traditional connection between molecular design and function. PMID:26779883

  7. A Supramolecular Antibiotic Switch for Antibacterial Regulation.

    PubMed

    Bai, Haotian; Yuan, Huanxiang; Nie, Chenyao; Wang, Bing; Lv, Fengting; Liu, Libing; Wang, Shu

    2015-11-01

    A supramolecular antibiotic switch is described that can reversibly "turn-on" and "turn-off" its antibacterial activity on demand, providing a proof-of-concept for a way to regulate antibacterial activity of biotics. The switch relies on supramolecular assembly and disassembly of cationic poly(phenylene vinylene) derivative (PPV) with cucurbit[7]uril (CB[7]) to regulate their different interactions with bacteria. This simple but efficient strategy does not require any chemical modification on the active sites of the antibacterial agent, and could also regulate the antibacterial activity of classical antibiotics or photosensitizers in photodynamic therapy. This supramolecular antibiotic switch may be a successful strategy to fight bacterial infections and decrease the emergence of bacterial resistance to antibiotics from a long-term point of view. PMID:26307170

  8. Triply triggered doxorubicin release from supramolecular nanocontainers.

    PubMed

    Loh, Xian Jun; del Barrio, Jesús; Toh, Pearl Pei Chern; Lee, Tung-Chun; Jiao, Dezhi; Rauwald, Urs; Appel, Eric A; Scherman, Oren A

    2012-01-01

    The synthesis of a supramolecular double hydrophilic block copolymer (DHBC) held together by cucurbit[8]uril (CB[8]) ternary complexation and its subsequent self-assembly into micelles is described. This system is responsive to multiple external triggers including temperature, pH and the addition of a competitive guest. The supramolecular block copolymer assembly consists of poly(N-isopropylacrylamide) (PNIPAAm) as a thermoresponsive block and poly(dimethylaminoethylmethacrylate) (PDMAEMA) as a pH-responsive block. Moreover, encapsulation and controlled drug release was demonstrated with this system using the chemotherapeutic drug doxorubicin (DOX). This triple stimuli-responsive DHBC micelle system represents an evolution over conventional double stimuli-responsive covalent diblock copolymer systems and displayed a significant reduction in the viability of HeLa cells upon triggered release of DOX from the supramolecular micellar nanocontainers. PMID:22148638

  9. Cooking with Chemistry.

    ERIC Educational Resources Information Center

    Grosser, Arthur E.

    1984-01-01

    Suggests chemistry of cooking and analysis of culinary recipes as subject matter for introducing chemistry to an audience, especially to individuals with neutral or negative attitudes toward science. Includes sample recipes and experiments and a table listing scientific topics with related cooking examples. (JN)

  10. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry

    PubMed Central

    Rineau, Francois; Roth, Doris; Shah, Firoz; Smits, Mark; Johansson, Tomas; Canbäck, Björn; Olsen, Peter Bjarke; Persson, Per; Grell, Morten Nedergaard; Lindquist, Erika; Grigoriev, Igor V; Lange, Lene; Tunlid, Anders

    2012-01-01

    Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter–protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter–protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems. PMID:22469289

  11. Enzymatic induction of supramolecular order and bioactivity

    NASA Astrophysics Data System (ADS)

    Yang, Chengbiao; Ren, Xinrui; Ding, Dan; Wang, Ling; Yang, Zhimou

    2016-05-01

    We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine adjuvant because it accelerated the DC maturation and elicited stronger T-cells cytokine production than the nanofibers. Our study demonstrated that biocatalytic triggering is a useful method for preparing supramolecular nanomaterials with higher supramolecular order and probably better bioactivity.We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine

  12. Spectroscopic characterization of the coordination chemistry and hydrolysis of gallium(III) in the presence of aquatic organic matter

    NASA Astrophysics Data System (ADS)

    Hagvall, Kristoffer; Persson, Per; Karlsson, Torbjörn

    2014-12-01

    Interactions between metals and natural organic matter (NOM) are of great environmental importance and one of the key factors influencing hydrolysis, solubility, and speciation of the metals. However, studying geochemically relevant metals like Al, Fe, and Cu is sometimes associated with analytical problems; for example Fe and Cu are both redox active. Gallium (Ga) is a non-redox active metal that usually occurs at very low concentrations in environmental samples and therefore a wide concentration range of metal(III)-NOM species can be explored by adding Ga(III) to such samples. This makes Ga(III) a good probe and analogue for other metal ions, in particular Al. In addition, due to the increased usage of Ga in society, a better understanding of how Ga interacts with NOM is of importance but such studies are scarce. In this work, Ga(III) interactions with two different organic materials (Suwannee River natural organic matter and Suwannee River fulvic acid) were studied using infrared (IR) and extended X-ray absorption fine structure (EXAFS) spectroscopy in a large experimental range (101-84,076 μg Ga g-1 dry weight; pH 3-8). Our IR spectroscopic results showed that Ga(III) is bonded mainly to carboxylic functional groups and suggested that only a fraction of the total number of carboxylic sites in the samples was actively involved in the bonding. Modeling of the EXAFS data revealed that Ga(III) formed mononuclear chelate complexes with NOM that strongly suppressed the hydrolysis and polymerization of Ga(III). At low Ga(III) concentrations (1675-16,649 μg g-1) organic complexes, consisting of 1-3 chelate ring structures, were the dominating species in the entire pH range while at higher concentrations (67,673-84,076 μg g-1, pH 3.0-7.0) we detected mixtures of mononuclear organic Ga(III) complexes, Ga(III) (hydr)oxide, and free Ga(III) (here defined as the hydrated Ga(III) ion and its soluble hydrolysis products). Moreover, the EXAFS results showed significantly

  13. Engineering Functionalization in a Supramolecular Polymer: Hierarchical Self-Organization of Triply Orthogonal Non-covalent Interactions on a Supramolecular Coordination Complex Platform.

    PubMed

    Zhou, Zhixuan; Yan, Xuzhou; Cook, Timothy R; Saha, Manik Lal; Stang, Peter J

    2016-01-27

    Here we present a method for the construction of functionalizable supramolecular polymers by controlling three orthogonal interactions within a single system: (i) coordination-driven self-assembly; (ii) H-bonding; and (iii) host-guest interactions between crown ether and dialkylammonium substrates. Three unique molecules constitute the supramolecular construct, including a 2-ureido-4-pyrimidinone (UPy)-functionalized rigid dipyridyl donor and a complementary organoplatinum(II) acceptor decorated with a crown ether moiety that provide the basis for self-assembly and polymerization. The final host-guest interaction is demonstrated by using one of two dialkylammonium molecules containing fluorophores that bind to the benzo-21-crown-7 (B21C7) groups of the acceptors, providing a spectroscopic handle to evaluate the functionalization. An initial coordination-driven self-assembly yields hexagonal metallacycles with alternating UPy and B21C7 groups at their vertices. The assembly does not interfere with H-bonding between the UPy groups, which link the discrete metallacycles into a supramolecular network, leaving the B21C7 groups free for functionalization via host-guest chemistry. The resultant network results in a cavity-cored metallogel at high concentrations or upon solvent swelling. The light-emitting properties of the dialkylammonium substrates were transferred to the network upon host-guest binding. This method is compatible with any dialkylammonium substrate that does not disrupt coordination nor H-bonding, and thus, the unification of these three orthogonal interactions represents a simple yet highly efficient strategy to obtain supramolecular polymeric materials with desirable functionality. PMID:26761393

  14. Potential Rapid Effects on Soil Organic Matter Characteristics and Chemistry Following a Change in Dominant Litter Inputs

    NASA Astrophysics Data System (ADS)

    Crow, S. E.; Filley, T.; Conyers, G.; Stott, D.; McCormick, M.; Whigham, D.; Taylor, D.

    2006-12-01

    Changes in vegetation structure are expected in forests globally under predicted future climate scenarios. Shifts in type or quantity of litter inputs, which will be associated with changes in plant community, may influence soil organic matter (SOM) characteristics. We altered litter inputs in a mixed-deciduous forest at the Smithsonian Environmental Research Center beginning in May 2004: litter removal, leaf amendment, and wood amendment plots were established in three old (120-150 y) and three young (50-70 y) forests. Plots were amended with wood and leaves collected locally from the dominant tree species, tulip poplar (Lirodendron tulipifera). 0-5 cm A horizon soil was collected in November 2005, 18 months after initial treatment, and physically fractionated first by dispersal in HMP and size separation (53 μm) to remove silts and clays then the >53 μm fraction by density (1.4 g cm-3) in SPT to separate the organic debris (light fraction, LF) from the mineral material. Soil with the greatest amount of C present within the LF came from the wood amendment treatment (35.2 ± 0.1%), followed by the leaf amendment (27.7 ± 0.0%) and the litter removal (24.5 ± 0.0%) treatments. In a pattern opposite of the other treatments, leaf amended soil from the old sites had less C within LF than the young. Potentially, a priming effect from the leaf addition at the old sites resulted in increased decomposition of soil LF. While at the young sites, invasive earthworms potentially provided a rapid, direct mode for incorporation of fresh leaf inputs into LF. Preliminary data indicate differences in lignin and cutin/suberin decay rates during litter decomposition between old and young sites. An investigation into the biopolymer composition of LF will determine whether altering litter inputs will ultimately influence SOM dynamics at both the old and young forest sites.

  15. An introduction to the chemistry of graphene.

    PubMed

    Wang, Xiluan; Shi, Gaoquan

    2015-11-21

    Pristine graphene and chemically modified graphenes (CMGs, e.g., graphene oxide, reduced graphene oxide and their derivatives) can react with a variety of chemical substances. These reactions have been applied to modulate the structures and properties of graphene materials, and to extend their functions and practical applications. This perspective outlines the chemistry of graphene, including functionalization, doping, photochemistry, catalytic chemistry, and supramolecular chemistry. The mechanisms of graphene related reactions will be introduced, and the challenges in controlling the chemical reactions of graphene will be discussed. PMID:26465215

  16. Supramolecular Allosteric Cofacial Porphyrin Complexes

    SciTech Connect

    Oliveri, Christopher G.; Gianneschi, Nathan C.; Nguyen, Son Binh T.; Mirkin, Chad A.; Stern, Charlotte L.; Wawrzak, Zdzislaw; Pink, Maren

    2008-04-12

    Nature routinely uses cooperative interactions to regulate cellular activity. For years, chemists have designed synthetic systems that aim toward harnessing the reactivity common to natural biological systems. By learning how to control these interactions in situ, one begins to allow for the preparation of man-made biomimetic systems that can efficiently mimic the interactions found in Nature. To this end, we have designed a synthetic protocol for the preparation of flexible metal-directed supramolecular cofacial porphyrin complexes which are readily obtained in greater than 90% yield through the use of new hemilabile porphyrin ligands with bifunctional ether-phosphine or thioether-phosphine substituents at the 5 and 15 positions on the porphyrin ring. The resulting architectures contain two hemilabile ligand-metal domains (Rh{sup I} or Cu{sup I} sites) and two cofacially aligned porphyrins (Zn{sup II} sites), offering orthogonal functionalities and allowing these multimetallic complexes to exist in two states, 'condensed' or 'open'. Combining the ether-phosphine ligand with the appropriate Rh{sup I} or Cu{sup I} transition-metal precursors results in 'open' macrocyclic products. In contrast, reacting the thioether-phosphine ligand with RhI or CuI precursors yields condensed structures that can be converted into their 'open' macrocyclic forms via introduction of additional ancillary ligands. The change in cavity size that occurs allows these structures to function as allosteric catalysts for the acyl transfer reaction between X-pyridylcarbinol (where X = 2, 3, or 4) and 1-acetylimidazole. For 3- and 4-pyridylcarbinol, the 'open' macrocycle accelerates the acyl transfer reaction more than the condensed analogue and significantly more than the porphyrin monomer. In contrast, an allosteric effect was not observed for 2-pyridylcarbinol, which is expected to be a weaker binder and is unfavorably constrained inside the macrocyclic cavity.

  17. Self-assembled supramolecular nanotube yarn.

    PubMed

    Liu, Yaqing; Wang, Tianyu; Huan, Yong; Li, Zhibo; He, Guowei; Liu, Minghua

    2013-11-01

    Metric length supramolecular nanotube yarns are fabricated though a spinning process from the diluted aqueous solution of self-assembled nanotubes, with bolaamphiphiles working as molecular building blocks. These non-covalent bonding based nanotube yarns show outstanding mechanical strength compared with some conventional polymers and could be operated under the macro conditions. PMID:23943418

  18. pH-controllable supramolecular systems.

    PubMed

    Leung, Ken Cham-Fai; Chak, Chun-Pong; Lo, Chui-Man; Wong, Wing-Yan; Xuan, Shouhu; Cheng, Christopher H K

    2009-03-01

    This Focus Review surveys representative examples of pH-controllable supramolecular systems with interesting features and state-of-the-art applications such as 1) conformational changes within individual molecules; 2) folding/unfolding of polymers; 3) simultaneous binding of cations and anions; 4) logic function; 5) ON-OFF switchable colorimetric sensing; 6) translocation of macrocycle-in-rotaxane molecules; 7) large-scale movement within molecules; and 8) regulation of the substrate flow in nanocontainers. In particular, systems will be discussed that involve: pH-induced conformational changes of a resorcinarene cavitand and a bis(iron porphyrin) complex; pH control in assembly and disassembly of supramolecular systems stabilized with different major noncovalent interactions; pH-driven movements of interlocked molecules involving rotaxanes, molecular elevators, and molecular muscles; and, finally, multicomponent supramolecular systems immobilized on solid supports as pH-responsive nanovalves for the controlled release of specific substrates. Recent advances in the understanding of pH-controllable supramolecular systems have led to the construction of meaningful molecular machines for electronic and biological applications that are amenable to control by simple perturbation with acids and bases. PMID:19090526

  19. Supramolecular sensing: Enzyme activity with a twist

    NASA Astrophysics Data System (ADS)

    Amabilino, David B.

    2015-04-01

    A supramolecular polymer comprising stacked artificial chromophores to which zinc(II) complexes are appended is able to respond to enzymatic hydrolysis in aqueous solution. The assembly of molecules can twist reversibly and quickly in response to changes in the type of adenosine phosphate present.

  20. Supramolecular polymers for organocatalysis in water.

    PubMed

    Neumann, Laura N; Baker, Matthew B; Leenders, Christianus M A; Voets, Ilja K; Lafleur, René P M; Palmans, Anja R A; Meijer, E W

    2015-07-28

    A water-soluble benzene-1,3,5-tricarboxamide (BTA) derivative that self-assembles into one-dimensional, helical, supramolecular polymers is functionalised at the periphery with one L-proline moiety. In water, the BTA-derivative forms micrometre long supramolecular polymers, which are stabilised by hydrophobic interactions and directional hydrogen bonds. Furthermore, we co-assemble a catalytically inactive, but structurally similar, BTA with the L-proline functionalised BTA to create co-polymers. This allows us to assess how the density of the L-proline units along the supramolecular polymer affects its activity and selectivity. Both the supramolecular polymers and co-polymers show high activity and selectivity as catalysts for the aldol reaction in water when using p-nitrobenzaldehyde and cyclohexanone as the substrates for the aldol reaction. After optimisation of the reaction conditions, a consistent conversion of 92 ± 7%, deanti of 92 ± 3%, and eeanti of 97 ± 1% are obtained with a concentration of L-proline as low as 1 mol%. PMID:26083675

  1. New supramolecular architectures using hydrogen bonding

    SciTech Connect

    Zimmerman, S.C.; Baloga, M.H.; Fenlon, E.E.; Murray, T.J.

    1993-12-31

    Heterocyclic compounds containing two and three adjacent hydrogen bond donor and acceptor sites in all possible arrangements have been synthesized. The strength and selectivity with which each compounds binds its complement has been determined. The incorporation of these heterocyclic subunits into large structures that form supramolecular assemblies will be described.

  2. Enzymatic induction of supramolecular order and bioactivity.

    PubMed

    Yang, Chengbiao; Ren, Xinrui; Ding, Dan; Wang, Ling; Yang, Zhimou

    2016-05-19

    We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine adjuvant because it accelerated the DC maturation and elicited stronger T-cells cytokine production than the nanofibers. Our study demonstrated that biocatalytic triggering is a useful method for preparing supramolecular nanomaterials with higher supramolecular order and probably better bioactivity. PMID:27161242

  3. Changes Matter!

    ERIC Educational Resources Information Center

    Lott, Kimberly; Jensen, Anitra

    2012-01-01

    Being able to distinguish between physical and chemical changes of matter is a foundational chemistry concept that at first seems like a simple elementary concept to teach, but students often have misconceptions that hinder their understanding. These misconceptions are seen among elementary students, but these ideas are perpetuated throughout…

  4. Toward a single-layer two-dimensional honeycomb supramolecular organic framework in water.

    PubMed

    Zhang, Kang-Da; Tian, Jia; Hanifi, David; Zhang, Yuebiao; Sue, Andrew Chi-Hau; Zhou, Tian-You; Zhang, Lei; Zhao, Xin; Liu, Yi; Li, Zhan-Ting

    2013-11-27

    The self-assembly of well-defined 2D supramolecular polymers in solution has been a challenge in supramolecular chemistry. We have designed and synthesized a rigid stacking-forbidden 1,3,5-triphenylbenzene compound that bears three 4,4'-bipyridin-1-ium (BP) units on the peripheral benzene rings. Three hydrophilic bis(2-hydroxyethyl)carbamoyl groups are introduced to the central benzene ring to suppress 1D stacking of the triangular backbone and to ensure solubility in water. Mixing the triangular preorganized molecule with cucurbit[8]uril (CB[8]) in a 2:3 molar ratio in water leads to the formation of the first solution-phase single-layer 2D supramolecular organic framework, which is stabilized by the strong complexation of CB[8] with two BP units of adjacent molecules. The periodic honeycomb 2D framework has been characterized by various (1)H NMR spectroscopy, dynamic light scattering, X-ray diffraction and scattering, scanning probe and electron microscope techniques and by comparing with the self-assembled structures of the control systems. PMID:24079461

  5. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits

    NASA Astrophysics Data System (ADS)

    Fernandez, Antonio; Ferrando-Soria, Jesus; Pineda, Eufemio Moreno; Tuna, Floriana; Vitorica-Yrezabal, Iñigo J.; Knappke, Christiane; Ujma, Jakub; Muryn, Christopher A.; Timco, Grigore A.; Barran, Perdita E.; Ardavan, Arzhang; Winpenny, Richard E. P.

    2016-01-01

    Quantum information processing (QIP) would require that the individual units involved--qubits--communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic-inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2CtBu)16]- coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron-electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates.

  6. Metal Coordination Stoichiometry Controlled Formation of Linear and Hyperbranched Supramolecular Polymers.

    PubMed

    Lin, Cuiling; Xu, Luonan; Huang, Libo; Chen, Jia; Liu, Yuanyuan; Ma, Yifan; Ye, Feixiang; Qiu, Huayu; He, Tian; Yin, Shouchun

    2016-09-01

    Controlling the topologies of polymers is a hot topic in polymer chemistry because the physical and/or chemical properties of polymers are determined (at least partially) by their topologies. This study exploits the host-guest interactions between dibenzo-24-crown-8 and secondary ammonium salts and metal coordination interactions between 2,6-bis(benzimidazolyl)-pyridine units with metal ions (Zn(II) and/or Eu(III) ) as orthogonal non-covalent interactions to prepare supramolecular polymers. By changing the ratios of the metal ion additives (Zn(NO3 )2 and Eu(NO3 )3 ) linkers to join the host-guest dimeric complex, the linear supramolecular polymers (100 mol% Zn(NO3 )2 per ligand) and hyperbranched supramolecular polymers (97 mol% Zn(NO3 )2 and 3 mol% Eu(NO3 )3 per ligand) are separately and successfully constructed. This approach not only expands topological control over polymeric systems, but also paves the way for the functionalization of smart and adaptive materials. PMID:27377646

  7. Supramolecular self-assembly of cyclodextrin and higher water soluble guest: thermodynamics and topological studies.

    PubMed

    De Sousa, Frederico B; Denadai, Angelo M Leite; Lula, Ivana S; Nascimento, Clebio S; Fernandes Neto, Nathália S G; Lima, Ana C; De Almeida, Wagner B; Sinisterra, Rubén D

    2008-07-01

    The supramolecular interactions between Imipramine hydrochloride (IMI), a tricyclic antidepressant, and beta-cyclodextrin (betaCD) have been investigated by experimental techniques and theoretical calculations. The association between these molecules might be lead to a host/guest compound, in which the physical chemistry properties of the guest molecule, such as high solubility, can be decreased. These new properties acquired by the inclusion phenomena are important to develop a strategy for pharmaceutical formulation. Nuclear magnetic resonance and horizontal attenuated total reflectance provided relevant information on the complex stoichiometries and the sites of interactions between the host and guest molecules. Stoichiometries of 1:2, 1:1, and 2:1 betaCD/IMI have been detected in solution. Self-diffusion coefficient and dynamic light scattering analysis provided information on the self-aggregation of the complex. Also, isothermal titration calorimetry studies indicated the existence of equilibrium between different complexes in solution. In order to determine the preferred arrangement for the inclusion complex formed by the IMI molecule and betaCD, theoretical calculations were performed. Of all proposed supramolecular structures, the 2:1 betaCD/IMI complex was calculated to be the most energetically favorable, in both gas and aqueous phases. The calculations indicated that the intermolecular hydrogen bonds involving the hydroxyl groups of betaCD play a major role in stabilizing the supramolecular 2:1 structure, corroborating experimental findings. PMID:18529008

  8. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits.

    PubMed

    Fernandez, Antonio; Ferrando-Soria, Jesus; Pineda, Eufemio Moreno; Tuna, Floriana; Vitorica-Yrezabal, Iñigo J; Knappke, Christiane; Ujma, Jakub; Muryn, Christopher A; Timco, Grigore A; Barran, Perdita E; Ardavan, Arzhang; Winpenny, Richard E P

    2016-01-01

    Quantum information processing (QIP) would require that the individual units involved--qubits--communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic-inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2C(t)Bu)16](-) coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron-electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates. PMID:26742716

  9. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits

    PubMed Central

    Fernandez, Antonio; Ferrando-Soria, Jesus; Pineda, Eufemio Moreno; Tuna, Floriana; Vitorica-Yrezabal, Iñigo J.; Knappke, Christiane; Ujma, Jakub; Muryn, Christopher A.; Timco, Grigore A.; Barran, Perdita E.; Ardavan, Arzhang; Winpenny, Richard E.P.

    2016-01-01

    Quantum information processing (QIP) would require that the individual units involved—qubits—communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic–inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2CtBu)16]– coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron–electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates. PMID:26742716

  10. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  11. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  12. On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white.

    PubMed

    Patra, Sudeshna; Ravulapalli, Sathyavathi; Hahm, Myung Gwan; Tadi, Kiran Kumar; Narayanan, Tharangattu N

    2016-10-14

    Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad. PMID:27608886

  13. Supramolecular Polymerization from Polypeptide-Grafted Comb Polymers

    SciTech Connect

    Wang, Jing; Lu, Hua; Kamat, Ranjan K; Pingali, Sai Venkatesh; Urban, Volker S; Cheng, Jianjun; Lin, Yao

    2011-01-01

    The helical and tubular structures self-assembled from proteins have inspired scientists to design synthetic building blocks that can be 'polymerized' into supramolecular polymers through coordinated noncovalent interactions. However, cooperative supramolecular polymerization from large, synthetic macromolecules remains a challenge because of the difficulty of controlling the structure and interactions of macromolecular monomers. Herein we report the synthesis of polypeptide-grafted comb polymers and the use of their tunable secondary interactions in solution to achieve controlled supramolecular polymerization. The resulting tubular supramolecular structures, with external diameters of hundreds of nanometers and lengths of tens of micrometers, are stable and resemble to some extent biological superstructures assembled from proteins. This study shows that highly specific intermolecular interactions between macromolecular monomers can enable the cooperative growth of supramolecular polymers. The general applicability of this strategy was demonstrated by carrying out supramolecular polymerization from gold nanoparticles grafted with the same polypeptides on the surface.

  14. Condensed matter physics and chemistry

    SciTech Connect

    Nellis, W.J.

    1995-10-01

    The proposed Los Alamos Neutron Science Center (LANSCE) upgrade is ideally suited for science-based stockpile stewardship (SBSS) because LANSCE is a highly-intensity pulsed neutron source located at a nuclear weapons design laboratory. The attributes of a high-intensity pulsed source are essential for performing experiments on Pu and other materials important for SBSS. Neutrons can accurately probe thick bulk specimens, probe thin layers both freestanding and embedded in thicker specimens, and provide time-resolution for some phenomena. Both ordered structures and disorder in solids, liquids, and amorphous materials can be characterized, as well as phase transition. Because LANSCE is at a nuclear design laboratory, specimens important for SBSS issues are available. Los Alamos National Laboratory is an appropriate place to develop the requisite hardware to accommodate SBSS specimens, such as Pu.

  15. Layer-by-layer growth of porphyrin supramolecular thin films

    SciTech Connect

    Nishiyama, Fumitaka; Yokoyama, Takashi; Kamikado, Toshiya; Yokoyama, Shiyoshi; Mashiko, Shinro

    2006-06-19

    Multilayer thin film growth of carboxyphenyl-substituted porphyrin on Au(111) was investigated by means of low-temperature scanning tunneling microscopy. The carboxyphenyl-substituted porphyrins are assembled into supramolecular wires on Au(111) by sequential hydrogen bonding between carboxyphenyl groups, and the dense aggregation of the supramolecular wires results in the formation of the first monolayer film. By further molecular deposition, the layer-by-layer growth of the supramolecular wires has been observed, leading to the supramolecular thin film growth.

  16. Supramolecular structure of electroactive polymer thin films

    NASA Astrophysics Data System (ADS)

    Kornilov, V. M.; Lachinov, A. N.; Karamov, D. D.; Nabiullin, I. R.; Kul'velis, Yu. V.

    2016-05-01

    This paper presents the results of an experimental investigation of the supramolecular structure of polydiphenylenephthalide thin films that exhibit effects of resistive switching. The supramolecular structure of the polymer has been investigated using small-angle neutron scattering in conjunction with atomic force microscopy. It has been found that the internal structure of polymer films consists of structural elements in the form of spheroids. The sizes of the structural elements, which were obtained from the neutron scattering data and analysis of the atomic force microscopy images, correlate well with each other. A model of the formation of polymer layers has been proposed. The observed structural elements in polymer films are formed due to the association of macromolecules in the initial polymer solution.

  17. Supramolecular Synthons: Will Giant Rigid Superspheres Do?

    PubMed Central

    2016-01-01

    For the first time, the concept of supramolecular synthons was applied to giant rigid superspheres based on pentaphosphaferrocene [CpRFe(η5-P5)] (R = Me, Et) and Cu(I) halides, which reach 2.1–3.0 nm in diameter. Two supramolecular synthons, σ–π and π–π, are discovered based on halogen···CpR and Cp*···Cp* specific interactions, respectively. The geometry of the synthons is reproducible in a series of crystal structures of various supramolecules. The σ–π synthon alone is realized more frequently for Br-containing superspheres. A combination of the σ–π and π–π synthons is more typical for Cl-containing supramolecules. Each supramolecule can bear up to nine synthons to give mostly 2D and 3D architectures. PMID:27081373

  18. Molecular dynamics simulations of supramolecular polymer rheology

    NASA Astrophysics Data System (ADS)

    Li, Zhenlong; Djohari, Hadrian; Dormidontova, Elena E.

    2010-11-01

    Using equilibrium and nonequilibrium molecular dynamics simulations, we studied the equilibrium and rheological properties of dilute and semidilute solutions of head-to-tail associating polymers. In our simulation model, a spontaneous complementary reversible association between the donor and the acceptor groups at the ends of oligomers was achieved by introducing a combination of truncated pseudo-Coulombic attractive potential and Lennard Jones repulsive potential between donor, acceptor, and neighboring groups. We have calculated the equilibrium properties of supramolecular polymers, such as the ring/chain equilibrium, average molecular weight, and molecular weight distribution of self-assembled chains and rings, which all agree well with previous analytical and computer modeling results. We have investigated shear thinning of solutions of 8- and 20-bead associating oligomers with different association energies at different temperatures and oligomer volume fractions. All reduced viscosity data for a given oligomer length can be collapsed into one master curve, exhibiting two power-law regions of shear-thinning behavior with an exponent of -0.55 at intermediate ranges of the reduced shear rate β and -0.8 (or -0.9) at larger shear rates. The equilibrium viscosity of supramolecular solutions with different oligomer lengths and associating energies is found to obey a power-law scaling dependence on oligomer volume fraction with an exponent of 1.5, in agreement with the experimental observations for several dilute or semidilute solutions of supramolecular polymers. This implies that dilute and semidilute supramolecular polymer solutions exhibit high polydispersity but may not be sufficiently entangled to follow the reptation mechanism of relaxation.

  19. Calix 2007:9th International Conference on Calixarene Chemistry

    SciTech Connect

    Jeffery Davis

    2011-09-09

    The DOE funds helped support an International Conference, Calix 2007, whose focus was on Supramolecular Chemistry. The conference was held at the University of Maryland from August 6-9, 2007 (Figure 1). The conference website is at www.chem.umd.edu/Conferences/Calix2007. This biannual conference had previously been held in the Czech Republic (2005), Canada (2003), Netherlands (2001), Australia (1999), Italy (1997), USA (Fort Worth, 1995) Japan (1993) and Germany (1991). Calixarenes are cup-shaped compounds that are a major part of Supramolecular Chemistry, for which Cram, Lehn and Pederson were awarded a Nobel Prize 20 years ago. Calixarene chemistry has expanded greatly in the last 2 decades, as these compounds are used in synthetic and mechanistic chemistry, separations science, materials science, nanoscience and biological chemistry. The organizing committee was quite happy that Calix 2007 encompassed the broad scope and interdisciplinary nature of the field. Our goal was to bring together leading scientists interested in calixarenes, molecular recognition, nanoscience and supramolecular chemistry. We believe that new research directions and collaborations resulted from an exchange of ideas between conferees. This grant from the DOE was crucial toward achieving that goal, as the funds helped cover some of the registration and accommodations costs for the speakers.

  20. Robust excitons inhabit soft supramolecular nanotubes

    PubMed Central

    Eisele, Dörthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.

    2014-01-01

    Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. PMID:25092336

  1. Photochromic supramolecular azopolyimides based on hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Schab-Balcerzak, Ewa; Flakus, Henryk; Jarczyk-Jedryka, Anna; Konieczkowska, Jolanta; Siwy, Mariola; Bijak, Katarzyna; Sobolewska, Anna; Stumpe, Joachim

    2015-09-01

    The approach of deriving new photoresponsive active supramolecular azopolymers based on the hydrogen bonds is described. Polymers with imide rings, i.e., poly(esterimide)s and poly(etherimide)s, with phenolic hydroxyl or carboxylic groups were applied as matrixes for the polymer-dye supramolecular systems. Supramolecular films were built on the basis of the hydrogen bonds between the functional groups of the polymers and various azochromophores, that is, 4-phenylazophenol, 4-[4-(6-hydroxyhexyloxy)phenylazo]benzene, 4-[4-(6-hexadecaneoxy)phenylazo]pyridine and 4-(4-hydroxyphenylazo)pyridine. The hydrogen bonding interaction in azo-systems were studied by Fourier transform infrared spectroscopy and for selected assembles by 1H NMR technique. The obtained polyimide azo-assembles were characterized by X-ray diffraction and DSC measurements. H-bonds allow attaching a chromophore to each repeating unit of the polymer, thereby suppressing the macroscopic phase separation except for the systems based on 4-[4-(6-hydroxyhexyloxy)phenylazo]benzene. H-bonds systems were amorphous and revealed glass transition temperatures lower than for the polyimide matrixes (170-260 °C). The photoresponsive behavior of the azo-assemblies was tasted in holographic recording experiment.

  2. Protein self-assembly via supramolecular strategies.

    PubMed

    Bai, Yushi; Luo, Quan; Liu, Junqiu

    2016-05-21

    Proteins, as the elemental basis of living organisms, mostly execute their biological tasks in the form of supramolecular self-assemblies with subtle architectures, dynamic interactions and versatile functionalities. Inspired by the structural harmony and functional beauty of natural protein self-assemblies to fabricate sophisticated yet highly ordered protein superstructures represents an adventure in the pursuit of nature's supreme wisdom. In this review, we focus on building protein self-assembly systems based on supramolecular strategies and classify recent progress by the types of utilized supramolecular driving forces. Especially, the design strategy, structure control and the thermodynamic/kinetic regulation of the self-assemblies, which will in turn provide insights into the natural biological self-assembly mechanism, are highlighted. In addition, recently, this research field is starting to extend its interest beyond constructing complex morphologies towards the potential applications of the self-assembly systems; several attempts to design functional protein complexes are also discussed. As such, we hope that this review will provide a panoramic sketch of the field and draw a roadmap towards the ultimate construction of advanced protein self-assemblies that even can serve as analogues of their natural counterparts. PMID:27080059

  3. Robust excitons inhabit soft supramolecular nanotubes.

    PubMed

    Eisele, Dörthe M; Arias, Dylan H; Fu, Xiaofeng; Bloemsma, Erik A; Steiner, Colby P; Jensen, Russell A; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G

    2014-08-19

    Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature's efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature's complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders' soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions--prerequisites for efficient energy transport--are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature's high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. PMID:25092336

  4. Robust excitons inhabit soft supramolecular nanotubes

    NASA Astrophysics Data System (ADS)

    Eisele, Dörthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.

    2014-08-01

    Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature's efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature's complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders' soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions-prerequisites for efficient energy transport-are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature's high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials.

  5. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Ju

    Over the past decades, significant efforts have been devoted to explore the use of various nanoparticle-based systems in the field of nanomedicine, including molecular imaging and therapy. Supramolecular synthetic approaches have attracted lots of attention due to their flexibility, convenience, and modularity for producing nanoparticles. In this dissertation, the developmental story of our size-controllable supramolecular nanoparticles (SNPs) will be discussed, as well as their use in specific biomedical applications. To achieve the self-assembly of SNPs, the well-characterized molecular recognition system (i.e., cyclodextrin/adamantane recognition) was employed. The resulting SNPs, which were assembled from three molecular building blocks, possess incredible stability in various physiological conditions, reversible size-controllability and dynamic disassembly that were exploited for various in vitro and in vivo applications. An advantage of using the supramolecular approach is that it enables the convenient incorporation of functional ligands onto SNP surface that confers functionality ( e.g., targeting, cell penetration) to SNPs. We utilized SNPs for molecular imaging such as magnetic resonance imaging (MRI) and positron emission tomography (PET) by introducing reporter systems (i.e., radio-isotopes, MR contrast agents, and fluorophores) into SNPs. On the other hand, the incorporation of various payloads, including drugs, genes and proteins, into SNPs showed improved delivery performance and enhanced therapeutic efficacy for these therapeutic agents. Leveraging the powers of (i) a combinatorial synthetic approach based on supramolecular assembly and (ii) a digital microreactor, a rapid developmental pathway was developed that is capable of screening SNP candidates for the ideal structural and functional properties that deliver optimal performance. Moreover, SNP-based theranostic delivery systems that combine reporter systems and therapeutic payloads into a

  6. Acid-base chemistry

    SciTech Connect

    Hand, C.W.; Blewit, H.L.

    1985-01-01

    The book is not a research compendium and there are no references to the literature. It is a teaching text covering the entire range of undergraduate subject matter dealing with acid-base chemistry (some of it remotely) as taught in inorganic, analytical, and organic chemistry courses. The excellent chapters VII through IX deal in detail with the quantitative aspects of aqueous acid-base equilibria (salt hydrolysis and buffer, titrations, polyprotic and amphoteric substances).

  7. Electron capture dissociation mass spectrometry of metallo-supramolecular complexes.

    PubMed

    Kaczorowska, Malgorzata A; Hotze, Anna C G; Hannon, Michael J; Cooper, Helen J

    2010-02-01

    The electron capture dissociation (ECD) of metallo-supramolecular dinuclear triple-stranded helicate Fe(2)L(3)(4+) ions was determined by Fourier transform ion cyclotron resonance mass spectrometry. Initial electron capture by the di-iron(II) triple helicate ions produces dinuclear double-stranded complexes analogous to those seen in solution with the monocationic metal centers Cu(I) or Ag(I). The gas-phase fragmentation behavior [ECD, collision-induced dissociation (CID), and infrared multiphoton dissociation (IRMPD)] of the di-iron double-stranded complexes, (i.e., MS(3) of the ECD product) was compared with the ECD, CID, and IRMPD of the Cu(I) and Ag(I) complexes generated from solution. The results suggest that iron-bound dimers may be of the form Fe(I)(2)L(2)(2+) and that ECD by metallo-complexes allows access, in the gas phase, to oxidation states and coordination chemistry that cannot be accessed in solution. PMID:20004114

  8. Self-assembly of supramolecular chiral insulated molecular wire.

    PubMed

    Li, Chun; Numata, Munenori; Bae, Ah-Hyun; Sakurai, Kazuo; Shinkai, Seiji

    2005-04-01

    Supramolecular chiral insulated molecular wire was constructed by self-assembly of a neutral one-dimensional schizophyllan host and a water-soluble polythiophene guest. The work presented here will not only open a door to a new application of polysaccharides but also provide an important clue to prepare stable supramolecular insulated molecular wires with one-handed helical structure. PMID:15796500

  9. Supramolecular fibres: Self-sorting shows its true colours

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Adams, Dave J.

    2016-08-01

    Self-sorting events in supramolecular assembly lead to complex systems that are attractive for the design of functional materials, but have remained difficult to understand and control. Now, the growth of self-sorted supramolecular nanofibres has been elucidated by direct imaging through real-time in situ confocal microscopy.

  10. Amphoteric Aqueous Hafnium Cluster Chemistry.

    PubMed

    Goberna-Ferrón, Sara; Park, Deok-Hie; Amador, Jenn M; Keszler, Douglas A; Nyman, May

    2016-05-17

    Selective dissolution of hafnium-peroxo-sulfate films in aqueous tetramethylammonium hydroxide enables extreme UV lithographic patterning of sub-10 nm HfO2 structures. Hafnium speciation under these basic conditions (pH>10), however, is unknown, as studies of hafnium aqueous chemistry have been limited to acid. Here, we report synthesis, crystal growth, and structural characterization of the first polynuclear hydroxo hafnium cluster isolated from base, [TMA]6 [Hf6 (μ-O2 )6 (μ-OH)6 (OH)12 ]⋅38 H2 O. The solution behavior of the cluster, including supramolecular assembly via hydrogen bonding is detailed via small-angle X-ray scattering (SAXS) and electrospray ionization mass spectrometry (ESI-MS). The study opens a new chapter in the aqueous chemistry of hafnium, exemplifying the concept of amphoteric clusters and informing a critical process in single-digit-nm lithography. PMID:27094575

  11. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan A.; Piepenbrock, Marc-Oliver M.; Lloyd, Gareth O.; Clarke, Nigel; Howard, Judith A. K.; Steed, Jonathan W.

    2010-12-01

    We describe the use of low-molecular-weight supramolecular gels as media for the growth of molecular crystals. Growth of a range of crystals of organic compounds, including pharmaceuticals, was achieved in bis(urea) gels. Low-molecular-weight supramolecular gelators allow access to an unlimited range of solvent systems, in contrast to conventional aqueous gels such as gelatin and agarose. A detailed study of carbamazepine crystal growth in four different bis(urea) gelators, including a metallogelator, is reported. The crystallization of a range of other drug substances, namely sparfloxacin, piroxicam, theophylline, caffeine, ibuprofen, acetaminophen (paracetamol), sulindac and indomethacin, was also achieved in supramolecular gel media without co-crystal formation. In many cases, crystals can be conveniently recovered from the gels by using supramolecular anion-triggered gel dissolution; however, crystals of substances that themselves bind to anions are dissolved by them. Overall, supramolecular gel-phase crystallization offers an extremely versatile new tool in pharmaceutical polymorph screening.

  12. Exploiting Biocatalysis in the Synthesis of Supramolecular Polymers

    NASA Astrophysics Data System (ADS)

    Roy, Sangita; Ulijn, Rein V.

    This chapter details the exploitation of biocatalysis in generating supramolecular polymers. This approach provides highly dynamic supramolecular structures, inspired by biological polymeric systems found in the intra- and extracellular space. The molecular design of the self-assembling precursors is discussed in terms of enzyme recognition, molecular switching mechanisms and non-covalent interactions that drive the supramolecular polymerisation process, with an emphasis on aromatic peptide amphiphiles. We discuss a number of unique features of these systems, including spatiotemporal control of nucleation and growth of supramolecular polymers and the possibility of kinetically controlling mechanical properties. Fully reversible systems that operate under thermodynamic control allow for defect correction and selection of the most stable structures from mixtures of monomers. Finally, a number of potential applications of enzymatic supramolecular polymerisations are discussed in the context of biomedicine and nanotechnology.

  13. Art in Chemistry: Chemistry in Art. Second Edition

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    2008-01-01

    This textbook integrates chemistry and art with hands-on activities and fascinating demonstrations that enable students to see and understand how the science of chemistry is involved in the creation of art. It investigates such topics as color integrated with electromagnetic radiation, atoms, and ions; paints integrated with classes of matter,…

  14. The Study of Matter.

    ERIC Educational Resources Information Center

    Campbell, Peter

    2000-01-01

    Reviews the booklet "The Study of Matter" produced by the Institute of Physics as part of their Shaping the Future series. This booklet is designed for teachers of chemistry, physics, design and technology, and biology. (Author/CCM)

  15. Supramolecular Explorations: Exhibiting the Extent of Extended Cationic Cyclophanes.

    PubMed

    Dale, Edward J; Vermeulen, Nicolaas A; Juríček, Michal; Barnes, Jonathan C; Young, Ryan M; Wasielewski, Michael R; Stoddart, J Fraser

    2016-02-16

    Acting as hosts, cationic cyclophanes, consisting of π-electron-poor bipyridinium units, are capable of entering into strong donor-acceptor interactions to form host-guest complexes with various guests when the size and electronic constitution are appropriately matched. A synthetic protocol has been developed that utilizes catalytic quantities of tetrabutylammonium iodide to make a wide variety of cationic pyridinium-based cyclophanes in a quick and easy manner. Members of this class of cationic cyclophanes with boxlike geometries, dubbed Ex(n)Boxm(4+) for short, have been prepared by altering a number of variables: (i) n, the number of "horizontal" p-phenylene spacers between adjoining pyridinium units, to modulate the "length" of the cavity; (ii) m, the number of "vertical" p-phenylene spacers, to modulate the "width" of the cavity; and (iii) the aromatic linkers, namely, 1,4-di- and 1,3,5-trisubstituted units for the construction of macrocycles (ExBoxes) and macrobicycles (ExCages), respectively. This Account serves as an exploration of the properties that emerge from these structural modifications of the pyridinium-based hosts, coupled with a call for further investigation into the wealth of properties inherent in this class of compounds. By variation of only the aforementioned components, the role of these cationic receptors covers ground that spans (i) synthetic methodology, (ii) extraction and sequestration, (iii) catalysis, (iv) molecular electronics, (v) physical organic chemistry, and (vi) supramolecular chemistry. Ex(1)Box(4+) (or simply ExBox(4+)) has been shown to be a multipurpose receptor capable of binding a wide range of polycyclic aromatic hydrocarbons (PAHs), while also being a suitable component in switchable mechanically interlocked molecules. Additionally, the electronic properties of some host-guest complexes allow the development of artificial photosystems. Ex(2)Box(4+) boasts the ability to bind both π-electron-rich and -poor aromatic

  16. Chemistry in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Henning, Thomas; Semenov, Dmitry

    2013-12-01

    This comprehensive review summarizes our current understanding of the evolution of gas, solids and molecular ices in protoplanetary disks. Key findings related to disk physics and chemistry, both observationally and theoretically, are highlighted. We discuss which molecular probes are used to derive gas temperature, density, ionization state, kinematics, deuterium fractionation, and study organic matter in protoplanetary disks.

  17. General Chemistry, 1970 Edition.

    ERIC Educational Resources Information Center

    Dunham, Orson W.; Franke, Douglas C.

    This publication is a syllabus for a senior high school chemistry course designed for the average ability, nonscience major. The content of the syllabus is divided into three basic core areas: Area I: Similarities and Dissimilarities of Matter (9 weeks); Area II: Preparation and Separation of Substances (10 weeks); Area III: Structure and…

  18. Inhibition of histone binding by supramolecular hosts

    PubMed Central

    Allen, Hillary F.; Daze, Kevin D.; Shimbo, Takashi; Lai, Anne; Musselman, Catherine A.; Sims, Jennifer K.; Wade, Paul A.; Hof†, Fraser; Kutateladze, Tatiana G.

    2015-01-01

    The tandem PHD (plant homeodomain) fingers of the CHD4 (chromodomain helicase DNA-binding protein 4) ATPase are epigenetic readers that bind either unmodified histone H3 tails or H3K9me3 (histone H3 trimethylated at Lys9). This dual function is necessary for the transcriptional and chromatin remodelling activities of the NuRD (nucleosome remodelling and deacetylase) complex. In the present paper, we show that calixarene-based supramolecular hosts disrupt binding of the CHD4 PHD2 finger to H3K9me3, but do not affect the interaction of this protein with the H3K9me0 (unmodified histone H3) tail. A similar inhibitory effect, observed for the association of chromodomain of HP1γ (heterochromatin protein 1γ) with H3K9me3, points to a general mechanism of methyl-lysine caging by calixarenes and suggests a high potential for these compounds in biochemical applications. Immunofluorescence analysis reveals that the supramolecular agents induce changes in chromatin organization that are consistent with their binding to and disruption of H3K9me3 sites in living cells. The results of the present study suggest that the aromatic macrocyclic hosts can be used as a powerful new tool for characterizing methylation-driven epigenetic mechanisms. PMID:24576085

  19. Dipole-moment-driven cooperative supramolecular polymerization.

    PubMed

    Kulkarni, Chidambar; Bejagam, Karteek K; Senanayak, Satyaprasad P; Narayan, K S; Balasubramanian, S; George, Subi J

    2015-03-25

    While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole-dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole-dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole-dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers. PMID:25756951

  20. Supramolecular approach to new inkjet printing inks.

    PubMed

    Hart, Lewis R; Harries, Josephine L; Greenland, Barnaby W; Colquhoun, Howard M; Hayes, Wayne

    2015-04-29

    Electronically complementary, low molecular weight polymers that self-assemble through tunable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly colored materials as a result of charge-transfer absorption bands in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final color of the deposited material can be tailored by varying the end-groups of the π-electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterization of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled in situ analysis of the ink drops as they formed and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications. PMID:25839743

  1. Healable supramolecular polymers as organic metals.

    PubMed

    Armao, Joseph J; Maaloum, Mounir; Ellis, Thomas; Fuks, Gad; Rawiso, Michel; Moulin, Emilie; Giuseppone, Nicolas

    2014-08-13

    Organic materials exhibiting metallic behavior are promising for numerous applications ranging from printed nanocircuits to large area electronics. However, the optimization of electronic conduction in organic metals such as charge-transfer salts or doped conjugated polymers requires high crystallinity, which is detrimental to their processability. To overcome this problem, the combination of the electronic properties of metal-like materials with the mechanical properties of soft self-assembled systems is attractive but necessitates the absence of structural defects in a regular lattice. Here we describe a one-dimensional supramolecular polymer in which photoinduced through-space charge-transfer complexes lead to highly coherent domains with delocalized electronic states displaying metallic behavior. We also reveal that diffusion of supramolecular polarons in the nanowires repairs structural defects thereby improving their conduction. The ability to access metallic properties from mendable self-assemblies extends the current understanding of both fields and opens a wide range of processing techniques for applications in organic electronics. PMID:25053238

  2. Supramolecular polymer transformation: a kinetic study.

    PubMed

    Baram, Jonathan; Weissman, Haim; Rybtchinski, Boris

    2014-10-16

    Investigation of supramolecular kinetics is essential for elucidating self-assembly mechanisms. Recently, we reported on a noncovalent system involving a bolaamphiphilic perylene diimide dimer that is kinetically trapped in water but can rearrange into a different, more ordered assembly in water/THF mixtures ( Angew. Chem. Int. Ed. 2014 , 53 , 4123 ). Here we present a kinetic mechanistic study of this process by employing UV-vis spectroscopy. The transformation exhibits a rapid decrease in the red-shifted absorption band, which is monitored in order to track the kinetics at different temperatures (15-50 °C) and concentrations. Fitting the data with the 1D KJMA (Kolmogorov-Johnson-Mehl-Avrami) model affords the activation parameters. The latter as well as seeding experiments indicates that the transformation occurs without the detachment of covalent units, and that hydration dynamics plays a significant role in nucleation, with entropic factors being dominant. Switching off the transformation, and the formation of off-pathway intermediates were observed upon heating to temperatures above 55 °C. These insights into kinetically controlled supramolecular polymer transformations provide mechanistic information that is needed for a fundamental understanding of noncovalent processes, and the rational design of noncovalent materials. PMID:25238603

  3. Immune responses to coiled coil supramolecular biomaterials

    PubMed Central

    Rudra, Jai S.; Tripathi, Pulak; Hildeman, David A.; Jung, Jangwook P.; Collier, Joel H.

    2010-01-01

    Self-assembly has been increasingly utilized in recent years to create peptide-based biomaterials for 3D cell culture, tissue engineering, and regenerative medicine, but the molecular determinants of these materials' immunogenicity have remained largely unexplored. In this study, a set of molecules that self-assembled through coiled coil oligomerization was designed and synthesized, and immune responses against them were investigated in mice. Experimental groups spanned a range of oligomerization behaviors and included a peptide from the coiled coil region of mouse fibrin that did not form supramolecular structures, an engineered version of this peptide that formed coiled coil bundles, and a peptide-PEG-peptide triblock bioconjugate that formed coiled coil multimers and supramolecular aggregates. In mice, the native peptide and engineered peptide did not produce any detectable antibody response, and none of the materials elicited detectable peptide-specific T cell responses, as evidenced by the absence of IL-2 and interferon-gamma in cultures of peptide-challenged splenocytes or draining lymph node cells. However, specific antibody responses were elevated in mice injected with the multimerizing peptide-PEG-peptide. Minimal changes in secondary structure were observed between the engineered peptide and the triblock peptide-PEG-peptide, making it possible that the triblock's multimerization was responsible for this antibody response. PMID:20708258

  4. Supramolecular cyclodextrin-based drug nanocarriers.

    PubMed

    Simões, Susana M N; Rey-Rico, Ana; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2015-04-14

    Supramolecular systems formed by the binding of several cyclodextrins (CDs) to polymers or lipids, either via non-covalent or covalent links, open a wide range of possibilities for the delivery of active substances. CDs can perform as multifunctionalizable cores to which very diverse (macro)molecules and drugs can be conjugated. Grafting with amphiphilic molecules can lead to nanoassemblies exhibiting a variety of architectures. CDs can also polymerize with other CDs or can be used to functionalize preexisting polymers to form polymers/networks with enhanced capability to form inclusion complexes. Alternatively, CDs can be exploited as transient cross-linkers to form poly(pseudo)rotaxane-based networks or zipper-like assemblies. Combination of mutifunctionality and complexation ability of CDs has been shown to be useful to develop depot-like formulations and colloidal nanocarriers with improved performances regarding easiness of administration, protection of the encapsulated substances, control of the delivery rate, and cell interactions. The aim of this review is to provide an overall view of the diversity of designs of CD-based supramolecular nanosystems with a special focus on the advances materialized in the last five years, including clinical trials. PMID:25679097

  5. A supramolecular helix that disregards chirality.

    PubMed

    Roche, Cécile; Sun, Hao-Jan; Leowanawat, Pawaret; Araoka, Fumito; Partridge, Benjamin E; Peterca, Mihai; Wilson, Daniela A; Prendergast, Margaret E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Ungar, Goran; Percec, Virgil

    2016-01-01

    The functions of complex crystalline systems derived from supramolecular biological and non-biological assemblies typically emerge from homochiral programmed primary structures via first principles involving secondary, tertiary and quaternary structures. In contrast, heterochiral and racemic compounds yield disordered crystals, amorphous solids or liquids. Here, we report the self-assembly of perylene bisimide derivatives in a supramolecular helix that in turn self-organizes in columnar hexagonal crystalline domains regardless of the enantiomeric purity of the perylene bisimide. We show that both homochiral and racemic perylene bisimide compounds, including a mixture of 21 diastereomers that cannot be deracemized at the molecular level, self-organize to form single-handed helical assemblies with identical single-crystal-like order. We propose that this high crystalline order is generated via a cogwheel mechanism that disregards the chirality of the self-assembling building blocks. We anticipate that this mechanism will facilitate access to previously inaccessible complex crystalline systems from racemic and homochiral building blocks. PMID:26673268

  6. A light-driven supramolecular nanowire actuator

    NASA Astrophysics Data System (ADS)

    Lee, Junho; Oh, Seungwhan; Pyo, Jaeyeon; Kim, Jong-Man; Je, Jung Ho

    2015-04-01

    A single photomechanical supramolecular nanowire actuator with an azobenzene-containing 1,3,5-tricarboxamide derivative is developed by employing a direct writing method. Single nanowires display photoinduced reversible bending and the bending behavior follows first-order kinetics associated with azobenzene photoisomerization. A wireless photomechanical nanowire tweezers that remotely manipulates a single micro-particle is also demonstrated.A single photomechanical supramolecular nanowire actuator with an azobenzene-containing 1,3,5-tricarboxamide derivative is developed by employing a direct writing method. Single nanowires display photoinduced reversible bending and the bending behavior follows first-order kinetics associated with azobenzene photoisomerization. A wireless photomechanical nanowire tweezers that remotely manipulates a single micro-particle is also demonstrated. Electronic supplementary information (ESI) available: Experimental details, X-ray powder diffraction (XRD) patterns of solution-crystallized sample, meniscus-guided microwires, and freeze-dried sample of Azo-1, Schematic of experimental set-up, 3D bending motion of Azo-1 nanowire, FE-SEM image of a bent Azo-1 nanowire after UV irradiation, real-time grazing incidence X-ray diffraction (GIXD) for an Azo-1 microwire, Imaging analyses, Absorption spectra of an Azo-1 film, and thermostability of Azo-1 nanowire. See DOI: 10.1039/c5nr01118c

  7. A supramolecular helix that disregards chirality

    NASA Astrophysics Data System (ADS)

    Roche, Cécile; Sun, Hao-Jan; Leowanawat, Pawaret; Araoka, Fumito; Partridge, Benjamin E.; Peterca, Mihai; Wilson, Daniela A.; Prendergast, Margaret E.; Heiney, Paul A.; Graf, Robert; Spiess, Hans W.; Zeng, Xiangbing; Ungar, Goran; Percec, Virgil

    2016-01-01

    The functions of complex crystalline systems derived from supramolecular biological and non-biological assemblies typically emerge from homochiral programmed primary structures via first principles involving secondary, tertiary and quaternary structures. In contrast, heterochiral and racemic compounds yield disordered crystals, amorphous solids or liquids. Here, we report the self-assembly of perylene bisimide derivatives in a supramolecular helix that in turn self-organizes in columnar hexagonal crystalline domains regardless of the enantiomeric purity of the perylene bisimide. We show that both homochiral and racemic perylene bisimide compounds, including a mixture of 21 diastereomers that cannot be deracemized at the molecular level, self-organize to form single-handed helical assemblies with identical single-crystal-like order. We propose that this high crystalline order is generated via a cogwheel mechanism that disregards the chirality of the self-assembling building blocks. We anticipate that this mechanism will facilitate access to previously inaccessible complex crystalline systems from racemic and homochiral building blocks.

  8. Implementation and Evaluation of Web-Based Learning Activities on Bonding and the Structure of Matter for 10-th Grade Chemistry

    NASA Astrophysics Data System (ADS)

    Frailich, Marcel

    This study deals with the development, implementation, and evaluation of web-based activities associated with the topic of chemical bonding , as taught in 10th grade chemistry. A website was developed entitled: "Chemistry and the Chemical Industry in the Service of Mankind", its URL is: http://stwww.weizmann.ac.il/g-chem/learnchem (Kesner, Frailich, & Hofstein, 2003). The main goal of this study was to assess the educational effectiveness of website activities dealing with the chemical bonding concept. These activities include visualization tools, as well as topics relevant to daily life and industrial applications. The study investigated the effectiveness of a web-based learning environment regarding the understanding of chemical bonding concepts, students' perceptions of the classroom learning environment, their attitudes regarding the relevance of learning chemistry to everyday life, and their interest in chemistry studies. As mentioned before, in the present study we focused on activities (from the website), all of which deal with chemical bonding concept. The following are the reasons for the decision to focus on this topic: (1) Chemical bonding is a key concept that is taught in 10th grade chemistry in high school. It provides the basis for many other chemistry topics that are taught later, and (2) Chemical bonding is a difficult for students using existing tools (e. g., static models in books, ball-and- stick models), which are insufficient to demonstrate the abstract nature phenomena associated with this topic. The four activities developed for this study are (1) models of the atomic structure, (2) metals -- structure and properties, (3) ionic substances in everyday life and in industry, and (4) molecular substances -- structure, properties, and uses. The study analyzed both quantitative and qualitative research. The quantitative tools of the study included: A Semantic Differential questionnaire and a Chemistry Classroom Web-Based Learning Environment

  9. Supramolecular control of [2 + 2] photodimerization via hydrogen bonding.

    PubMed

    Darcos, Vincent; Griffith, Kirsten; Sallenave, Xavier; Desvergne, Jean-Pierre; Guyard-Duhayon, Carine; Hasenknopf, Bernold; Bassani, Dario M

    2003-11-01

    The use of supramolecular catalysis to control the photoinduced dimerization of styrene, cinnamate, and stilbene chromophores is reported. The strategy employs the formation of a 2:1 supramolecular assembly in the presence of 5,5-dihexylbarbituric acid (DHB). A 3- to 10-fold increase in dimerization efficiency is observed in its presence, concomitant with accrued selectivity for the syn photodimers. The origin of the regioselectivity in the presence of DHB is discussed in terms of topochemical control within the supramolecular architecture. PMID:14690228

  10. Supramolecular polymers constructed by crown ether-based molecular recognition.

    PubMed

    Zheng, Bo; Wang, Feng; Dong, Shengyi; Huang, Feihe

    2012-03-01

    Supramolecular polymers, polymeric systems beyond the molecule, have attracted more and more attention from scientists due to their applications in various fields, including stimuli-responsive materials, healable materials, and drug delivery. Due to their good selectivity and convenient enviro-responsiveness, crown ether-based molecular recognition motifs have been actively employed to fabricate supramolecular polymers with interesting properties and novel applications in recent years. In this tutorial review, we classify supramolecular polymers based on their differences in topology and cover recent advances in the marriage between crown ether-based molecular recognition and polymer science. PMID:22012256

  11. Supramolecular photochemistry applied to artificial photosynthesis and molecular logic devices.

    PubMed

    Gust, Devens

    2015-01-01

    Supramolecular photochemical systems consist of photochemically active components such as chromophores, electron donors or electron acceptors that are associated via non-covalent or covalent interactions and that interact in some functional way. Examples of interactions are singlet-singlet energy transfer, triplet-triplet energy transfer, photoinduced electron transfer, quantum coherence and spin-spin magnetic interactions. Supramolecular photochemical "devices" may have applications in areas such as solar energy conversion, molecular logic, computation and data storage, biomedicine, sensing, imaging, and displays. This short review illustrates supramolecular photochemistry with examples drawn from artificial photosynthesis, molecular logic, analog photochemical devices and models for avian magnetic orientation. PMID:26515930

  12. Self-construction of supramolecular polyrotaxane films by an electrotriggered morphogen-driven process.

    PubMed

    Rydzek, Gaulthier; Garnier, Tony; Schaaf, Pierre; Voegel, Jean-Claude; Senger, Bernard; Frisch, Benoît; Haikel, Youssef; Petit, Corinne; Schlatter, Guy; Jierry, Loïc; Boulmedais, Fouzia

    2013-08-27

    The design of films using a one-pot process has recently attracted increasing interest in the field of polymer thin film formation. Herein we describe the preparation of one-pot supramolecular polyrotaxane (PRX) films using the morphogen-driven self-construction process. This one-pot buildup strategy where the film growth is triggered by the electrochemical formation and diffusion of a catalyst in close vicinity of the substrate has recently been introduced by our group. A one-pot mixture was used that contained (i) poly(acrylic acid) (PAA) functionalized by azide groups grafted on the polymer chain through oligo(ethylene glycol) (EG) arms, leading to PAA-EG13-N3, (ii) cyclodextrins (α and β CD), as macrocycles that can be threaded along EG arms, (iii) alkyne-functionalized stoppers (ferrocene or adamantane), to cap the PRX assembly by click chemistry, and (iv) copper sulfate. The one-pot mixture solution was brought into contact with a gold electrode. Cu(I), the morphogen, was generated electrochemically from Cu(II) at the electrode/one-pot solution interface. This electrotriggered click reaction leads to the capping of polypseudorotaxane yielding to PRXs. The PRXs can self-assemble through lateral supramolecular interactions to form aggregates and ensure the cohesion of the film. The film buildup was investigated using different types of CD and alkyne functionalized stoppers. Supramolecular PRX aggregates were characterized by X-ray diffraction measurements. The film topographies were imaged by atomic force microscopy. The influence of the concentration in CD and the presence of a competitor were studied as well. The stability of the resulting film was tested in contact with 8 M urea and during the electrochemical oxidation of ferrocene. PMID:23895332

  13. Mineral Process Chemistry: A Special Study.

    ERIC Educational Resources Information Center

    Dudeney, A. W. L.

    1982-01-01

    Mineral Process Chemistry is one of the special study options of the Nuffield Advanced Science course in chemistry. Following general comments on mineral process chemistry, the subject matter of the option is described, focusing on copper and china clay. (Author/JN)

  14. Supramolecular architectures and structural diversity in a series of lead (II) Chelates involving 5-Chloro/Bromo thiophene-2-carboxylate and N,N’-donor ligands

    PubMed Central

    2013-01-01

    Background Lead is a heavy toxic metal element in biological systems and is one of the major pollutants as a result of its widespread use in industries. In spite of its negative roles the coordination chemistry of Pb(II) complexes is a matter of interest. The N,N’-bidentate aromatic bases such as BPY,4-BPY and PHEN (BPY = 2,2′bipyridine, 4-BPY = 4,4′-dimethyl-2,2′-bipyridine, PHEN = 1,10-Phenanthroline) are widely used to build supramolecular architectures because of their excellent coordinating ability and large conjugated system that can easily form π-π interactions among their aromatic moieties. A series of novel Pb(II) complexes in concert with 5-CTPC, 5-BTPC (5-CTPC = 5-chlorothiophen-2-carboxylate, 5-BTPC = 5-bromothiophen-2-carboxylate) and corresponding bidentate chelating N.N′ ligands have been synthesized and characterized. Results Five new Pb (II) complexes [Pb(BPY)(5-CTPC)2] (1), [Pb(4-BPY)(5-CTPC)2] (2), [Pb2(PHEN)2(5-CTPC)4] (3), [Pb(4-BPY)(5-BTPC)2] (4) and [Pb2(PHEN)2(5-BTPC)2(ACE)2] (5) have been synthesized. Even though in all these complexes the molar ratio of Pb, carboxylate, N,N-chelating ligand are the same (1:2:1), there is a significant structural diversity. These complexes have been characterised and investigated by elemental analysis, IR, 1H-NMR,13C-NMR, TGA, and photoluminescence studies. Single crystal X-ray diffraction studies reveal that complexes (1, 2) and (4) are mononuclear while (3 and 5) are dinuclear in nature which may result from the chelating nature of the ligands, various coordination modes of the carboxylates, and the coordination geometry of the Pb(II) ions. Conclusions The observation of structures 2,4 and 3,5 show the structural changes made just chloro/bromo substituent of the thiophene ring. A detailed packing analysis has been undertaken to delineate the role of valuable non covalent interactions like X…π, H…X, (X = Cl/Br). A quadruple hydrogen bond linking the monomeric units

  15. Diffusion of a Highly-Charged Supramolecular Assembly: Direct Observation of Ion-Association in Water

    SciTech Connect

    University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth; Pluth, Michael D.; Tiedemann, Bryan E.F.; van Halbeek, Herman; Nunlist, Rudi; Raymond, Kenneth N.

    2007-10-22

    Understanding the solution behavior of supramolecular assemblies is essential for a full understanding of the formation and chemistry of synthetic host-guest systems. While the interaction between host and guest molecules is generally the focus of mechanistic studies of host-guest complexes, the interaction of the host-guest complex with other species in solution remains largely unknown, although in principle accessible by diffusion studies. Several NMR techniques are available to monitor diffusion and have recently been reviewed. Pulsed gradient spin-echo (PGSE) NMR methods have attracted increasing interest, since they allow diffusion coefficients to be measured with high accuracy; they have been successfully used with observation of {sup 7}Li and {sup 31}P nuclei as well as with {sup 1}H NMR. We report here the direct measurement of diffusion coefficients to observe ion-association interactions by counter cations with a highly-charged supramolecular assembly. Raymond and coworkers have described the design and chemistry of a class of metal-ligand supramolecular assemblies over the past decade. The [Ga{sub 4}L{sub 6}]{sup 12-} (L = 1,5-bis(2,3-dihydroxybenzamido)naphthalene) (1) (Figure 1) assembly has garnered the most attention, with the exploration of the dynamics and mechanism of guest exchange as well as the ability of 1 to achieve either stoichiometric or catalytic reactions inside its interior cavity. Recent studies have revealed the importance of counter cations in solution on the chemistry of 1. During the mechanistic study of the C-H bond activation of aldehydes by [Cp*Ir(PMe{sub 3})(olefin){sup +} {contained_in} 1]{sup 11-} a stepwise guest dissociation mechanism with an ion-paired intermediate was proposed. Similarly, in the mechanism for the hydrolysis of iminium cations generated from the 3-aza Cope rearrangement of enammonium cations in 1, the presence of an exterior ion association was part of the kinetic model. To further substantiate the

  16. A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation.

    PubMed

    Jiao, Yang; Li, Wan-Lu; Xu, Jiang-Fei; Wang, Guangtong; Li, Jun; Wang, Zhiqiang; Zhang, Xi

    2016-07-25

    Tuning the activity of radicals is crucial for radical reactions and radical-based materials. Herein, we report a supramolecular strategy to accelerate the Fenton reaction through the construction of supramolecularly activated radical cations. As a proof of the concept, cucurbit[7]uril (CB[7]) was introduced, through host-guest interactions, onto each side of a derivative of 1,4-diketopyrrolo[3,4-c]pyrrole (DPP), a model dye for Fenton oxidation. The DPP radical cation, the key intermediate in the oxidation process, was activated by the electrostatically negative carbonyl groups of CB[7]. The activation induced a drastic decrease in the apparent activation energy and greatly increased the reaction rate. This facile supramolecular strategy is a promising method for promoting radical reactions. It may also open up a new route for the catalytic oxidation of organic pollutants for water purification and widen the realm of supramolecular catalysis. PMID:27273046

  17. A supramolecular approach to combining enzymatic and transition metal catalysis

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane; Clary, Kristen N.; Bergman, Robert G.; Raymond, Kenneth N.; Toste, F. Dean

    2013-02-01

    The ability of supramolecular host-guest complexes to catalyse organic reactions collaboratively with an enzyme is an important goal in the research and discovery of synthetic enzyme mimics. Herein we present a variety of catalytic tandem reactions that employ esterases, lipases or alcohol dehydrogenases and gold(I) or ruthenium(II) complexes encapsulated in a Ga4L6 tetrahedral supramolecular cluster. The host-guest complexes are tolerated well by the enzymes and, in the case of the gold(I) host-guest complex, show improved reactivity relative to the free cationic guest. We propose that supramolecular encapsulation of organometallic complexes prevents their diffusion into the bulk solution, where they can bind amino-acid residues on the proteins and potentially compromise their activity. Our observations underline the advantages of the supramolecular approach and suggest that encapsulation of reactive complexes may provide a general strategy for carrying out classic organic reactions in the presence of biocatalysts.

  18. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency

    PubMed Central

    Albertazzi, Lorenzo; Martinez-Veracoechea, Francisco J.; Leenders, Christianus M. A.; Voets, Ilja K.; Frenkel, Daan; Meijer, E. W.

    2013-01-01

    Multivalency has an important but poorly understood role in molecular self-organization. We present the noncovalent synthesis of a multicomponent supramolecular polymer in which chemically distinct monomers spontaneously coassemble into a dynamic, functional structure. We show that a multivalent recruiter is able to bind selectively to one subset of monomers (receptors) and trigger their clustering along the self-assembled polymer, behavior that mimics raft formation in cell membranes. This phenomenon is reversible and affords spatiotemporal control over the monomer distribution inside the supramolecular polymer by superselective binding of single-strand DNA to positively charged receptors. Our findings reveal the pivotal role of multivalency in enabling structural order and nonlinear recognition in water-soluble supramolecular polymers, and it offers a design principle for functional, structurally defined supramolecular architectures. PMID:23836666

  19. Detection of nerve agent via perturbation of supramolecular gel formation.

    PubMed

    Hiscock, Jennifer R; Piana, Francesca; Sambrook, Mark R; Wells, Neil J; Clark, Alistair J; Vincent, Jack C; Busschaert, Nathalie; Brown, Richard C D; Gale, Philip A

    2013-10-14

    The formation of tren-based tris-urea supramolecular gels in organic solvents is perturbed by the presence of the nerve agent soman providing a new method of sensing the presence of organophosphorus warfare agents. PMID:23994877

  20. Layer-by-layer fabrication of supramolecular dyes on TiO2 surfaces for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiaoqing; Maguire, Shawn; Lye, Diane; Weck, Marcus; Lee, Stephanie

    We present a modular layer-by-layer approach based on metal coordination chemistry to assemble supramolecular dyes exhibiting increased absorption in the visible range on electrode surfaces. Specifically, palladiated bis-pincer complexes (Pd-BPCs) were employed as linkers between pyridyl-terminated organic molecules via dative bonding. By alternately immersing mesoporous TiO2-coated glass substrates in solutions containing dissolved zinc porphyin (ZnP) and Pd-BPCs, supramolecular dyes were assembled layer-by-layer on the TiO2 surfaces. UV-visible absorption spectra of these assembled structures revealed a linear increase in the Soret and Q bands of ZnP after each immersion of the substrate in the ZnP solution. Coordination of the ZnP layers with Pd-BPC resulted in a slight red shift (<10 nm) of the absorption bands. The modular nature of the assembly process afforded the incorporation of other pyridyl-terminated organic molecules in specific layers of the supramolecular assemblies. By assembling unique organic dyes that absorb different wavelengths of light, we expect to expand light absorption across the visible region of the solar spectrum for solar cell applications.

  1. Surface-directed modulation of supramolecular gel properties.

    PubMed

    Angelerou, Maria Galini Faidra; Sabri, Akmal; Creasey, Rhiannon; Angelerou, Polyxeni; Marlow, Maria; Zelzer, Mischa

    2016-03-10

    Supramolecular materials are widely studied and used for a variety of applications; in most applications, these materials are in contact with surfaces of other materials. Whilst much focus has been placed on elucidating factors that affect supramolecular material properties, the influence of the material surface on gel formation is poorly characterised. Here, we demonstrate that surface properties directly affect the fibre architecture and mechanical properties of self-assembled cytidine based gel films. PMID:26960905

  2. Layer-by-layer deposition of vesicles mediated by supramolecular interactions.

    PubMed

    Roling, Oliver; Wendeln, Christian; Kauscher, Ulrike; Seelheim, Patrick; Galla, Hans-Joachim; Ravoo, Bart Jan

    2013-08-13

    Vesicles are dynamic supramolecular structures with a bilayer membrane consisting of lipids or synthetic amphiphiles enclosing an aqueous compartment. Lipid vesicles have often been considered as mimics for biological cells. In this paper, we present a novel strategy for the preparation of three-dimensional multilayered structures in which vesicles containing amphiphilic β-cyclodextrin are interconnected by proteins using cyclodextrin guests as bifunctional linker molecules. We compared two pairs of adhesion molecules for the immobilization of vesicles: mannose-concanavalin A and biotin-streptavidin. Microcontact printing and thiol-ene click chemistry were used to prepare suitable substrates for the vesicles. Successful immobilization of intact vesicles through the mannose-concanavalin A and biotin-streptavidin motifs was verified by fluorescence microscopy imaging and dynamic light scattering, while the vesicle adlayer was characterized by quartz crystal microbalance with dissipation monitoring. In the case of the biotin-streptavidin motif, up to six layers of intact vesicles could be immobilized in a layer-by-layer fashion using supramolecular interactions. The construction of vesicle multilayers guided by noncovalent vesicle-vesicle junctions can be taken as a minimal model for artificial biological tissue. PMID:23898918

  3. Ion Exchange and Solvent Extraction: Supramolecular Aspects of Solvent Exchange Volume 21

    SciTech Connect

    Gloe, Karsten; Tasker, Peter A; Oshima, Tatsuya; Watarai, Hitoshi; Nilsson, Mikael

    2013-01-01

    Preface The theme of supramolecular chemistry (SC), entailing the organization of multiple species through noncovalent interactions, has permeated virtually all aspects of chemical endeavor over the past several decades. Given that the observed behavior of discrete molecular species depends upon their weak interactions with one another and with matrix components, one would have to conclude that SC must indeed form part of the fabric of chemistry itself. A vast literature now serves to categorize SC phenomena within a body of consistent terminology. The word supramolecular itself appears in the titles of dozens of books, several journals, and a dedicated encyclopedia. Not surprisingly, the theme of SC also permeates the field of solvent extraction (SX), inspiring the framework for this volume of Ion Exchange and Solvent Extraction. It is attempted in the six chapters of this volume to identify both how supramolecular behavior occurs and is studied in the context of SX and how SC is influencing the current direction of SX. Researchers and practitioners have long dealt with supramolecular interactions in SX. Indeed, the use of polar extractant molecules in nonpolar media virtually assures that aggregative interactions will dominate the solution behavior of SX. Analytical chemists working in the 1930s to the 1950s with simple mono- and bidentate chelating ligands as extractants noted that extraction of metal ions obeyed complicated mass-action equilibria involving complex stoichiometries. As chemists and engineers developed processes for nuclear and hydrometallurgical applications in the 1950s and 1960s, the preference for aliphatic diluents only enhanced the complexity and supramolecular nature of extraction chemistry. Use of physical techniques such as light scattering and vapor-pressure measurements together with various spectroscopic methods revealed organic-phase aggregates from well-defined dimers to small aggregates containing a few extractant molecules to large

  4. A systematic structural study of halogen bonding versus hydrogen bonding within competitive supramolecular systems

    PubMed Central

    Aakeröy, Christer B.; Spartz, Christine L.; Dembowski, Sean; Dwyre, Savannah; Desper, John

    2015-01-01

    As halogen bonds gain prevalence in supramolecular synthesis and materials chemistry, it has become necessary to examine more closely how such interactions compete with or complement hydrogen bonds whenever both are present within the same system. As hydrogen and halogen bonds have several fundamental features in common, it is often difficult to predict which will be the primary interaction in a supramolecular system, especially as they have comparable strength and geometric requirements. To address this challenge, a series of molecules containing both hydrogen- and halogen-bond donors were co-crystallized with various monotopic, ditopic symmetric and ditopic asymmetric acceptor molecules. The outcome of each reaction was examined using IR spectroscopy and, whenever possible, single-crystal X-ray diffraction. 24 crystal structures were obtained and subsequently analyzed, and the synthon preferences of the competing hydrogen- and halogen-bond donors were rationalized against a background of calculated molecular electrostatic potential values. It has been shown that readily accessible electrostatic potentials can offer useful practical guidelines for predicting the most likely primary synthons in these co-crystals as long as the potential differences are weighted appropriately. PMID:26306192

  5. Seamless growth of a supramolecular carpet.

    PubMed

    Kim, Ju-Hyung; Ribierre, Jean-Charles; Yang, Yu Seok; Adachi, Chihaya; Kawai, Maki; Jung, Jaehoon; Fukushima, Takanori; Kim, Yousoo

    2016-01-01

    Organic/metal interfaces play crucial roles in the formation of intermolecular networks on metal surfaces and the performance of organic devices. Although their purity and uniformity have profound effects on the operation of organic devices, the formation of organic thin films with high interfacial uniformity on metal surfaces has suffered from the intrinsic limitation of molecular ordering imposed by irregular surface structures. Here we demonstrate a supramolecular carpet with widely uniform interfacial structure and high adaptability on a metal surface via a one-step process. The high uniformity is achieved with well-balanced interfacial interactions and site-specific molecular rearrangements, even on a pre-annealed amorphous gold surface. Co-existing electronic structures show selective availability corresponding to the energy region and the local position of the system. These findings provide not only a deeper insight into organic thin films with high structural integrity, but also a new way to tailor interfacial geometric and electronic structures. PMID:26839053

  6. Aromatic Gain in a Supramolecular Polymer.

    PubMed

    Saez Talens, Victorio; Englebienne, Pablo; Trinh, Thuat T; Noteborn, Willem E M; Voets, Ilja K; Kieltyka, Roxanne E

    2015-09-01

    The synergy of aromatic gain and hydrogen bonding in a supramolecular polymer is explored. Partially aromatic bis(squaramide) bolaamphiphiles were designed to self-assemble through a combination of hydrophobic, hydrogen-bonding, and aromatic effects into stiff, high-aspect-ratio fibers. UV and IR spectroscopy show electron delocalization and geometric changes within the squaramide ring indicative of strong hydrogen bonding and aromatic gain of the monomer units. The aromatic contribution to the interaction energy was further supported computationally by nucleus-independent chemical shift (NICS) and harmonic oscillator model of aromaticity (HOMA) indices, demonstrating greater aromatic character upon polymerization: at least 30% in a pentamer. The aromatic gain-hydrogen bonding synergy results in a significant increase in thermodynamic stability and a striking difference in aggregate morphology of the bis(squaramide) bolamphiphile compared to isosteres that cannot engage in this effect. PMID:26179942

  7. Seamless growth of a supramolecular carpet

    NASA Astrophysics Data System (ADS)

    Kim, Ju-Hyung; Ribierre, Jean-Charles; Yang, Yu Seok; Adachi, Chihaya; Kawai, Maki; Jung, Jaehoon; Fukushima, Takanori; Kim, Yousoo

    2016-02-01

    Organic/metal interfaces play crucial roles in the formation of intermolecular networks on metal surfaces and the performance of organic devices. Although their purity and uniformity have profound effects on the operation of organic devices, the formation of organic thin films with high interfacial uniformity on metal surfaces has suffered from the intrinsic limitation of molecular ordering imposed by irregular surface structures. Here we demonstrate a supramolecular carpet with widely uniform interfacial structure and high adaptability on a metal surface via a one-step process. The high uniformity is achieved with well-balanced interfacial interactions and site-specific molecular rearrangements, even on a pre-annealed amorphous gold surface. Co-existing electronic structures show selective availability corresponding to the energy region and the local position of the system. These findings provide not only a deeper insight into organic thin films with high structural integrity, but also a new way to tailor interfacial geometric and electronic structures.

  8. Hemoprotein-based supramolecular assembling systems.

    PubMed

    Oohora, Koji; Hayashi, Takashi

    2014-04-01

    Hemoproteins are metalloproteins which include iron porphyrin as a cofactor. These proteins have received much attention as promising building blocks for development of new types of biomaterials. This review summarizes recent efforts in the rational design of supramolecular hemoprotein assemblies using myoglobin, horseradish peroxidase, cytochrome b562 and cytochrome c as a monomer unit. The processes of coordination bond-mediated assembly or domain swapping-mediated assembly provide defined oligomers, while hemoprotein reconstitution with synthetic heme derivatives provides submicrometer-sized structures such as fibrils, vesicles/micelles, or networks. Interestingly, several of these assembled structures maintain the intrinsic functions of monomer units. The chemical and/or biological strategies described in this review will lead to the creation of unique hemoprotein-based functional biomaterials. PMID:24658057

  9. Seamless growth of a supramolecular carpet

    PubMed Central

    Kim, Ju-Hyung; Ribierre, Jean-Charles; Yang, Yu Seok; Adachi, Chihaya; Kawai, Maki; Jung, Jaehoon; Fukushima, Takanori; Kim, Yousoo

    2016-01-01

    Organic/metal interfaces play crucial roles in the formation of intermolecular networks on metal surfaces and the performance of organic devices. Although their purity and uniformity have profound effects on the operation of organic devices, the formation of organic thin films with high interfacial uniformity on metal surfaces has suffered from the intrinsic limitation of molecular ordering imposed by irregular surface structures. Here we demonstrate a supramolecular carpet with widely uniform interfacial structure and high adaptability on a metal surface via a one-step process. The high uniformity is achieved with well-balanced interfacial interactions and site-specific molecular rearrangements, even on a pre-annealed amorphous gold surface. Co-existing electronic structures show selective availability corresponding to the energy region and the local position of the system. These findings provide not only a deeper insight into organic thin films with high structural integrity, but also a new way to tailor interfacial geometric and electronic structures. PMID:26839053

  10. Supramolecular Organic Nanowires as Plasmonic Interconnects.

    PubMed

    Armao, Joseph J; Domoto, Yuya; Umehara, Teruhiko; Maaloum, Mounir; Contal, Christophe; Fuks, Gad; Moulin, Emilie; Decher, Gero; Javahiraly, Nicolas; Giuseppone, Nicolas

    2016-02-23

    Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies. PMID:26814600

  11. Versatile Supramolecular Gene Vector Based on Host-Guest Interaction.

    PubMed

    Liu, Jia; Hennink, Wim E; van Steenbergen, Mies J; Zhuo, Renxi; Jiang, Xulin

    2016-04-20

    It is a great challenge to arrange multiple functional components into one gene vector system to overcome the extra- and intracellular obstacles for gene therapy. In this study, we developed a supramolecular approach for constructing a versatile gene delivery system composed of adamantyl-terminated functional polymers and a β-cyclodextrin based polymer. Adamantyl-functionalized low molecular weight PEIs (PEI-Ad) and PEG (Ad-PEG) as well as poly(β-cyclodextrin) (PCD) were synthesized by one-step chemical reactions. The supramolecular inclusion complex formed from PCD to assemble LMW PEI-Ad4 via host-guest interactions can condense plasmid DNA to form nanopolyplexes by electrostatic interactions. The supramolecular polyplexes can be further PEGylated with Ad-PEG to form inclusion complexes, which showed increased salt and serum stability. In vitro experiments revealed that these supramolecular assembly polyplexes had good cytocompatibility and showed high transfection activity close to that of the commercial ExGen 500 at high dose of DNA. Also, the supramolecular vector system exhibited about 60% silencing efficiency as a siRNA vector. Thus, a versatile effective supramolecular gene vector based on host-guest complexes was fabricated with good cytocompatbility and transfection activity. PMID:27019340

  12. Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs.

    PubMed

    Fu, CuiXiang; Lin, XiaoXiao; Wang, Jun; Zheng, XiaoQun; Li, XingYi; Lin, ZhengFeng; Lin, GuangYong

    2016-04-01

    In this paper, an injectable micellar supramolecular hydrogel composed of α-cyclodextrin (α-CD) and monomethoxy poly(ethylene glycol)-b-poly(ε-caplactone) (MPEG5000-PCL5000) micelles was developed by a simple method for hydrophobic anticancer drug delivery. By mixing α-CD aqueous solution and MPEG5000-PCL5000 micelles, an injectable micellar supramolecular hydrogel could be formed under mild condition due to the inclusion complexation between α-CD and MPEG segment of MPEG5000-PCL5000 micelles. The resultant supramolecular hydrogel was thereafter characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of α-CD amount on the gelation time, mechanical strength and thixotropic property was studied by a rheometer. Payload of hydrophobic paclitaxel (PTX) to supramolecular hydrogel was achieved by encapsulation of PTX into MPEG5000-PCL5000 micelles prior mixing with α-CD aqueous solution. In vitro release study showed that the release behavior of PTX from hydrogel could be modulated by change the α-CD amount in hydrogel. Furthermore, such supramolecular hydrogel could enhance the biological activity of encapsulated PTX compared to free PTX, as indicated by in vitro cytotoxicity assay. All these results indicated that the developed micellar supramolecular hydrogel might be a promising injectable drug delivery system for anticancer therapy. PMID:26886821

  13. The Chemistry and Applications of π-Gels

    NASA Astrophysics Data System (ADS)

    Ghosh, Samrat; Praveen, Vakayil K.; Ajayaghosh, Ayyappanpillai

    2016-07-01

    π-Gels are a promising class of functional soft materials formed out of short π-conjugated molecules. By utilizing the chemistry of noncovalent interactions, researchers have created a wide range of π-gels that are composed of supramolecular polymers. During the last two decades, supramolecular gel chemistry has been pursued with the hope of developing new materials for applications in, for example, organic electronics, energy harvesting, sensing, and imaging. The high expectations for π-gels were centered mainly around their electronic properties, such as tunable emission, energy transfer, electron transfer, charge transport, and electrical conductivity; such properties are amenable to modulation through size and shape control of molecular assemblies. Although a large number of exciting publications have appeared, a major technological breakthrough is yet to be realized. In this review, we analyze the recent advancements in the area of functional π-gels and their scope in future applications.

  14. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  15. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  16. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  17. ENVIRONMENTAL CHEMISTRY

    EPA Science Inventory

    Environmental chemistry is applied to estimating the exposure of ecosystems and humans to various chemical environmental stressors. Among the stressors of concern are mercury, pesticides, and arsenic. Advanced analytical chemistry techniques are used to measure these stressors ...

  18. Control over Structure and Function of Peptide Amphiphile Supramolecular Assemblies through Molecular Design and Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Tantakitti, Faifan

    Supramolecular chemistry is a powerful tool to create a material of a defined structure with tunable properties. This strategy has led to catalytically active, bioactive, and environment-responsive materials, among others, that are valuable in applications ranging from sensor technology to energy and medicine. Supramolecular polymers formed by peptide amphiphiles (PAs) have been especially relevant in tissue regeneration due to their ability to form biocompatible structures and mimic many important signaling molecules in biology. These supramolecular polymers can form nanofibers that create networks which mimic natural extracellular matrices. PA materials have been shown to induce growth of blood vessels, bone, cartilage, and nervous tissue, among others. The work described in this thesis not only studied the relationship between molecular structure and functions of PA assemblies, but also uncovered a powerful link between the energy landscape of their supramolecular self-assembly and the ability of PA materials to interact with cells. In chapter 2, it is argued that fabricating fibrous nanostructures with defined mechanical properties and decoration with bioactive molecules is not sufficient to create a material that can effectively communicate with cells. By systemically placing the fibronectin-derived RGDS epitope at increasing distances from the surface of PA nanofibers through a linker of one to five glycine residues, integrin-mediated RGDS signaling was enhanced. The results suggested that the spatial presentation of an epitope on PA nanofibers strongly influences the bioactivity of the PA substrates. In further improving functionality of a PA-based scaffold to effectively direct cell growth and differentiation, chapter 3 explored the use of a cell microcarrier to compartmentalize and simultaneously tune insoluble and soluble signals in a single matrix. PA nanofibers were incorporated at the surface of the microcarrier in order to promote cell adhesion, while

  19. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    SciTech Connect

    Not Available

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry.

  20. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  1. Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective

    PubMed Central

    Langton, Matthew J.

    2015-01-01

    Abstract The recognition of anions in water remains a key challenge in modern supramolecular chemistry, and is essential if proposed applications in biological, medical, and environmental arenas that typically require aqueous conditions are to be achieved. However, synthetic anion receptors that operate in water have, in general, been the exception rather than the norm to date. Nevertheless, a significant step change towards routinely conducting anion recognition in water has been achieved in the past few years, and this Review highlights these approaches, with particular focus on controlling and using the hydrophobic effect, as well as more exotic interactions such as C−H hydrogen bonding and halogen bonding. We also look beyond the field of small‐molecule recognition into the macromolecular domain, covering recent advances in anion recognition based on biomolecules, polymers, and nanoparticles. PMID:26612067

  2. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts

    NASA Astrophysics Data System (ADS)

    Tonga, Gulen Yesilbag; Jeong, Youngdo; Duncan, Bradley; Mizuhara, Tsukasa; Mout, Rubul; Das, Riddha; Kim, Sung Tae; Yeh, Yi-Cheun; Yan, Bo; Hou, Singyuk; Rotello, Vincent M.

    2015-07-01

    Bioorthogonal catalysis broadens the functional possibilities of intracellular chemistry. Effective delivery and regulation of synthetic catalytic systems in cells are challenging due to the complex intracellular environment and catalyst instability. Here, we report the fabrication of protein-sized bioorthogonal nanozymes through the encapsulation of hydrophobic transition metal catalysts into the monolayer of water-soluble gold nanoparticles. The activity of these catalysts can be reversibly controlled by binding a supramolecular cucurbit[7]uril ‘gate-keeper’ onto the monolayer surface, providing a biomimetic control mechanism that mimics the allosteric regulation of enzymes. The potential of this gated nanozyme for use in imaging and therapeutic applications was demonstrated through triggered cleavage of allylcarbamates for pro-fluorophore activation and propargyl groups for prodrug activation inside living cells.

  3. Cucurbit[8]uril Regulated Activatable Supramolecular Photosensitizer for Targeted Cancer Imaging and Photodynamic Therapy.

    PubMed

    Wang, Xiao-Qiang; Lei, Qi; Zhu, Jing-Yi; Wang, Wen-Jing; Cheng, Qian; Gao, Fan; Sun, Yun-Xia; Zhang, Xian-Zheng

    2016-09-01

    Activatable photosensitizers (aPSs) have emerged as promising photodynamic therapy (PDT) agents for simultaneous imaging and selective ablation of cancer. However, traditional synthetic aPSs are limited by complex design and tedious synthesis. Here, aPS regulated by cucurbit[8]uril (CB[8]) for targeted cancer imaging and PDT is reported. This system is based on the host-guest interaction between biotinylated toluidine blue (TB-B) and CB[8] to form 2TB-B@CB[8]. Moreover, a facile strategy to turn off/on the fluorescence and photodynamic activity of TB-B is developed through the reversible assembly/disassembly of 2TB-B@CB[8]. This established system can achieve selective accumulation in tumor, light-up cancer imaging, and enhanced anticancer behavior. Therefore, this work provides a novel and promising strategy for the aPS build via simple and facile regulation of supramolecular chemistry. PMID:27513690

  4. Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective.

    PubMed

    Langton, Matthew J; Serpell, Christopher J; Beer, Paul D

    2016-02-01

    The recognition of anions in water remains a key challenge in modern supramolecular chemistry, and is essential if proposed applications in biological, medical, and environmental arenas that typically require aqueous conditions are to be achieved. However, synthetic anion receptors that operate in water have, in general, been the exception rather than the norm to date. Nevertheless, a significant step change towards routinely conducting anion recognition in water has been achieved in the past few years, and this Review highlights these approaches, with particular focus on controlling and using the hydrophobic effect, as well as more exotic interactions such as C-H hydrogen bonding and halogen bonding. We also look beyond the field of small-molecule recognition into the macromolecular domain, covering recent advances in anion recognition based on biomolecules, polymers, and nanoparticles. PMID:26612067

  5. Versatile Small Molecule Motifs for Self-assembly in Water and Formation of Biofunctional Supramolecular Hydrogels

    PubMed Central

    Zhang, Ye; Kuang, Yi; Gao, Yuan; Xu, Bing

    2010-01-01

    This article introduces new structural motifs (referred as “samogen”) that serve as the building blocks of hydrogelators for molecular self-assembly in water to result in a series of supramolecular hydrogels. Using a compound that consists of two phenylalanine residues and a naphthyl group (also abbreviated as NapFF (1) in this text) as an example of the samogens, we demonstrated the ability of the samogens to convert bioactive molecules into molecular hydrogelators that self-assemble in water to result in nanofibers. By briefly summarizing the properties and applications (e.g., wound healing, drug delivery, controlling cell fate, typing bacteria, and catalysis) of these molecular hydrogelators derived from the samogens, we intend to illustrate the basic requirements and promises of the small molecule hydrogelators for applications in chemistry, materials science, and biomedicine. PMID:20608718

  6. Regio-, Stereo-, and Atropselective Synthesis of C60 Fullerene Bisadducts by Supramolecular-Directed Functionalization.

    PubMed

    Bottari, Giovanni; Trukhina, Olga; Kahnt, Axel; Frunzi, Michael; Murata, Yasujiro; Rodríguez-Fortea, Antonio; Poblet, Josep M; Guldi, Dirk M; Torres, Tomás

    2016-09-01

    The regio- and stereocontrolled synthesis of fullerene bisadducts is a topic of increasing interest in fullerene chemistry and a key point for the full exploitation of these derivatives in materials science. In this context, while the tether-directed remote functionalization strategy offers a valid approach to this synthetic challenge, no examples of such control have yet been reported using nontethered species. Presented here is a conceptually novel, supramolecular-directed functionalization approach in which noncovalent interactions between untethered residues have been used, for the first time, to amplify (>2800-fold) the regio-, stereo-, and atropselective formation of a C60 fullerene bisadduct racemate from a complex mixture of 130 bisadducts. Remarkably, both enantiomers, which present a sterically demanding cis-1 C60 addition pattern, represent the first examples of fullerene derivatives which combine central, axial, and helical chirality. PMID:27159570

  7. Supramolecular arrangement in mono and bi-camphor acyl hydrazones: A structural study

    NASA Astrophysics Data System (ADS)

    Galvão, Adelino M.; Carvalho, M. Fernanda N. N.; Ferreira, Ana S. D.

    2016-03-01

    New acyl hydrazones were synthesized by condensation with camphorquinone aiming at extending the range of applications of the biologically active camphor compounds and structural studies by XRD, 1H-NMR and IR were used in conjunction with advanced computational methodologies to understand the new structural chemistry enabled by the conjugation of the camphor ketone group to the hydrazone Ndbnd C double bond. In particular, were analysed supramolecular arrangements either by hydrogen bonding to water molecules or electrostatic interactions with non protic solvents. The relative stability of all conformers (E/Z) prompted by the hydrazone bond was addressed by state of the art methods such as CR-CCSD(T) and their inter-conversion in both S0 and S1 by CR-EOM-CCSD(T).

  8. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  9. Forensic Chemistry

    NASA Astrophysics Data System (ADS)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  10. Organic Chemistry in Space

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  11. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  12. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands.

    PubMed

    Barry, Dawn E; Caffrey, David F; Gunnlaugsson, Thorfinnur

    2016-06-01

    Herein some examples of the use of lanthanide ions (f-metal ions) to direct the synthesis of luminescent self-assembly systems (architectures) will be discussed. This area of lanthanide supramolecular chemistry is fast growing, thanks to the unique physical (magnetic and luminescent) and coordination properties of the lanthanides, which are often transferred to the resulting supermolecule. The emphasis herein will be on systems that are luminescent, and hence, generated by using either visibly emitting ions (such as Eu(III), Tb(III) and Sm(III)) or near infrared emitting ions (like Nd(III), Yb(III) and Er(III)), formed through the use of templating chemistry, by employing structurally simple ligands, possessing oxygen and nitrogen coordinating moieties. As the lanthanides have high coordination requirements, their use often allows for the formation of coordination compounds and supramolecular systems such as bundles, grids, helicates and interlocked molecules that are not synthetically accessible through the use of other commonly used templating ions such as transition metal ions. Hence, the use of the rare-earth metal ions can lead to the formation of unique and stable species in both solution and in the solid state, as well as functional and responsive structures. PMID:27137947

  13. Ion tunable of rheology of supramolecular metallogels

    NASA Astrophysics Data System (ADS)

    Clarke, Nigel; Steed, Jonathan; Piepenbrock, Marc-Oliver

    2011-03-01

    A bis(pyridylurea) ligand forms metallogels in methanol in the presence of up to 0.5 equiv of copper(II) chloride. The addition of further copper(II) chloride gives an unusual crystalline 4:3 coordination polymer, whereas in the presence of 0.5 equiv of copper(II) nitrate, a 2:1 crystalline coordination polymer arises. The latter represents a possible model for supramolecular gelators and highlights key interactions with counteranions that suggest a means to tune gel properties using anion binding. The influence of chloride and acetate anions on the rheological properties of the copper(II) chloride metallogels are investigated. The rheology of the anion-containing mixtures shows complex behavior with the gel structure evolving over time. We also observe shear-induced gelation, where vigorous shaking, rather than sonication, transforms a weak jelly like aggregate into a robust gel, exhibiting clear structural changes within the gel fibres. Reversible anion tuning allows these compounds to as responsive soft materials.

  14. Multifunctional, supramolecular, continuous artificial nacre fibres

    PubMed Central

    Hu, Xiaozhen; Xu, Zhen; Gao, Chao

    2012-01-01

    Nature has created amazing materials during the process of evolution, inspiring scientists to studiously mimic them. Nacre is of particular interest, and it has been studied for more than half-century for its strong, stiff, and tough attributes resulting from the recognized “brick-and-mortar” (B&M) layered structure comprised of inorganic aragonite platelets and biomacromolecules. The past two decades have witnessed great advances in nacre-mimetic composites, but they are solely limited in films with finite size (centimetre-scale). To realize the adream target of continuous nacre-mimics with perfect structures is still a great challenge unresolved. Here, we present a simple and scalable strategy to produce bio-mimic continuous fibres with B&M structures of alternating graphene sheets and hyperbranched polyglycerol (HPG) binders via wet-spinning assembly technology. The resulting macroscopic supramolecular fibres exhibit excellent mechanical properties comparable or even superior to nacre and bone, and possess fine electrical conductivity and outstanding corrosion-resistance. PMID:23097689

  15. Tuning supramolecular mechanics to guide neuron development

    PubMed Central

    Sur, Shantanu; Newcomb, Christina J.; Webber, Matthew J.; Stupp, Samuel I.

    2013-01-01

    The mechanical properties of the extracellular matrix (ECM) are known to influence neuronal differentiation and maturation, though the mechanism by which neuronal cells respond to these biophysical cues is not completely understood. Here we design ECM mimics using self-assembled peptide nanofibers, in which fiber rigidity is tailored by supramolecular interactions, in order to investigate the relationship between matrix stiffness and morphological development of hippocampal neurons. We observe that development of neuronal polarity is accelerated on soft nanofiber substrates, and results from the dynamics of neuronal processes. While the total neurite outgrowth of non-polar neurons remains conserved, weaker adhesion of neurites to soft PA substrate facilitates easier retraction, thus enhancing the frequency of “extension-retraction” events. We hypothesize that higher neurite motility enhances the probability of one neurite to reach a critical length relative to others, thereby initiating the developmental sequence of axon differentiation. Our results suggest that substrate stiffness can influence neuronal development by regulating its dynamics, thus providing useful information on scaffold design for applications in neural regeneration. PMID:23562052

  16. Supramolecular Assembly of DNA on Graphene Nanoribbons

    PubMed Central

    Reuven, Darkeyah G.; Shashikala, H. B. Mihiri; Mandal, Sanjay; Williams, Myron N. V.; Chaudhary, Jaideep; Wang, Xiao-Qian

    2013-01-01

    Graphene’s adhesive and charge delocalization properties offer the opportunity for the direct study of biological molecule in the nanoscale regime. The inherent charge on DNA base pairs and the associated phosphate backbone can be probed by non-covalent interactions with graphene, which is a useful platform for the creation of anisotropic nanopatterned biological assemblies. Here, we report the graphene nanoribbon (GNR) supported anisotropic supramolecular self-assembly of single stranded adenine (A), cytosine (C), guanine (G), thymine (T), AT, and GC 20mer oligonucleotides, as well as the unique ordering of double stranded plasmid (circular) and Herring sperm (linear) DNA. The GNRs serve as a double sided adhesive platform for attachment to the SiO2 substrate, as well as DNA oligomers and polymers. The self-assembly is attributed to donor-acceptor interactions between DNA and graphene. These findings demonstrate that the DNA-GNR assembly yields a prospective route to novel bio-relevant nanostructures. PMID:24032074

  17. Dynamics of Hydrogen-Bonded Supramolecular Polymers

    NASA Astrophysics Data System (ADS)

    Buhler, Eric; Candau, Jean; Kolomiets, Elena; Lehn, Jean-Marie

    2010-03-01

    Supramolecular polymers formed from molecular recognition directed association between monomers bearing complementary hydrogen bonding groups were studied by rheology, small-angle neutron and light scattering experiments. The semiflexible fibers consist of few aggregated monomolecular wires. At T= 25 C the formation of branched aggregates occurs around the crossover concentration, C^*, between the dilute and semi-dilute regimes, whereas the classical behaviour of equilibrium polymers is observed at T=65 C. For semi-dilute solutions the steady-state flow curves showed a shear banding type instability, namely the occurrence of a stress plateau σp above a critical shear rate γ̂c. The values of σp and γ̂c were found to be of the same order of magnitude as those of the elastic plateau modulus and the inverse stress relaxation time, respectively. The above features are in agreement with the theoretical predictions based on the reptation model. Dynamic light scattering experiments showed the presence in the autocorrelation function of the concentration fluctuations of a slow viscoelastic relaxation process that is likely to be of Rouse type.

  18. Simplified tube models for entangled supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Boudara, Victor; Read, Daniel

    2015-03-01

    This presentation describes current efforts investigating non-linear rheology of entangled, supramolecular polymeric materials. We describe two recently developed models: 1) We have developed a simplified model for the rheology of entangled telechelic star polymers. This is based on a pre-averaged orientation tensor, a stretch equation, and stretch-dependant probability of detachment of the sticker. In both linear and non-linear regimes, we produce maps of the whole parameter space, indicating the parameter values for which qualitative changes in response to flow are predicted. Results in the linear rheology regime are consistent with previous more detailed models and are in qualitative agreement with experimental data. 2) Using the same modelling framework, we investigate entangled linear polymers with stickers along the backbone. We use a set of coupled equations to describe the stretch between each stickers, and use equations similar to our star model for attachment/detachment of the sticky groups. This model is applicable to industrial polymers such as entangled thermoplastic elasomers, or functionalised model linear polymers. The work leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 607937 (SUPOLEN).

  19. Multifunctional, supramolecular, continuous artificial nacre fibres

    NASA Astrophysics Data System (ADS)

    Hu, Xiaozhen; Xu, Zhen; Gao, Chao

    2012-10-01

    Nature has created amazing materials during the process of evolution, inspiring scientists to studiously mimic them. Nacre is of particular interest, and it has been studied for more than half-century for its strong, stiff, and tough attributes resulting from the recognized ``brick-and-mortar'' (B&M) layered structure comprised of inorganic aragonite platelets and biomacromolecules. The past two decades have witnessed great advances in nacre-mimetic composites, but they are solely limited in films with finite size (centimetre-scale). To realize the adream target of continuous nacre-mimics with perfect structures is still a great challenge unresolved. Here, we present a simple and scalable strategy to produce bio-mimic continuous fibres with B&M structures of alternating graphene sheets and hyperbranched polyglycerol (HPG) binders via wet-spinning assembly technology. The resulting macroscopic supramolecular fibres exhibit excellent mechanical properties comparable or even superior to nacre and bone, and possess fine electrical conductivity and outstanding corrosion-resistance.

  20. Regulating Competing Supramolecular Interactions Using Ligand Concentration.

    PubMed

    Teunissen, Abraham J P; Paffen, Tim F E; Ercolani, Gianfranco; de Greef, Tom F A; Meijer, E W

    2016-06-01

    The complexity of biomolecular systems inevitably leads to a degree of competition between the noncovalent interactions involved. However, the outcome of biological processes is generally very well-defined often due to the competition of these interactions. In contrast, specificity in synthetic supramolecular systems is usually based on the presence of a minimum set of alternative assembly pathways. While the latter might simplify the system, it prevents the selection of specific structures and thereby limits the adaptivity of the system. Therefore, artificial systems containing competing interactions are vital to stimulate the development of more adaptive and lifelike synthetic systems. Here, we present a detailed study on the self-assembly behavior of a C2v-symmetrical tritopic molecule, functionalized with three self-complementary ureidopyrimidinone (UPy) motifs. Due to a shorter linker connecting one of these UPys, two types of cycles with different stabilities can be formed, which subsequently dimerize intermolecularly via the third UPy. The UPy complementary 2,7-diamido-1,8-naphthyridine (NaPy) motif was gradually added to this mixture in order to examine its effect on the cycle distribution. As a result of the C2v-symmetry of the tritopic UPy, together with small differences in binding strength, the cycle ratio can be regulated by altering the concentration of NaPy. We show that this ratio can be increased to an extent where one type of cycle is formed almost exclusively. PMID:27163942

  1. Experimental Binding Energies in Supramolecular Complexes.

    PubMed

    Biedermann, Frank; Schneider, Hans-Jörg

    2016-05-11

    On the basis of many literature measurements, a critical overview is given on essential noncovalent interactions in synthetic supramolecular complexes, accompanied by analyses with selected proteins. The methods, which can be applied to derive binding increments for single noncovalent interactions, start with the evaluation of consistency and additivity with a sufficiently large number of different host-guest complexes by applying linear free energy relations. Other strategies involve the use of double mutant cycles, of molecular balances, of dynamic combinatorial libraries, and of crystal structures. Promises and limitations of these strategies are discussed. Most of the analyses stem from solution studies, but a few also from gas phase. The empirically derived interactions are then presented on the basis of selected complexes with respect to ion pairing, hydrogen bonding, electrostatic contributions, halogen bonding, π-π-stacking, dispersive forces, cation-π and anion-π interactions, and contributions from the hydrophobic effect. Cooperativity in host-guest complexes as well as in self-assembly, and entropy factors are briefly highlighted. Tables with typical values for single noncovalent free energies and polarity parameters are in the Supporting Information. PMID:27136957

  2. Evidence of induced chirality in stirred solutions of supramolecular nanofibers.

    PubMed

    Arteaga, Oriol; Canillas, Adolf; Purrello, Roberto; Ribó, Josep M

    2009-07-15

    Two-modulator generalized ellipsometry is used to determine the spectroscopic Mueller matrix of a solution of porphyrin supramolecular aggregates that have fibrous form. During the measurements the solutions were stirred in clockwise and anticlockwise directions. The pseudopolar decompostion is applied to the experimental Mueller matrices to unveil the birefringent and dichroics properties of the sample. The vortex flow in the stirred solution is found to modify the optical response of the aggregates to polarized light, and, in particular, its chiral signature is determined by the stirring direction in a totally reversible process. The data found show that chirality can be induced by stirring in solutions of supramolecular fibers and that a effective transfer of chirality from a macroscopic phenomenon to the supramolecular structures takes place. PMID:19823540

  3. Negatively Charged Lipid Membranes Catalyze Supramolecular Hydrogel Formation.

    PubMed

    Versluis, Frank; van Elsland, Daphne M; Mytnyk, Serhii; Perrier, Dayinta L; Trausel, Fanny; Poolman, Jos M; Maity, Chandan; le Sage, Vincent A A; van Kasteren, Sander I; van Esch, Jan H; Eelkema, Rienk

    2016-07-20

    In this contribution we show that biological membranes can catalyze the formation of supramolecular hydrogel networks. Negatively charged lipid membranes can generate a local proton gradient, accelerating the acid-catalyzed formation of hydrazone-based supramolecular gelators near the membrane. Synthetic lipid membranes can be used to tune the physical properties of the resulting multicomponent gels as a function of lipid concentration. Moreover, the catalytic activity of lipid membranes and the formation of gel networks around these supramolecular structures are controlled by the charge and phase behavior of the lipid molecules. Finally, we show that the insights obtained from synthetic membranes can be translated to biological membranes, enabling the formation of gel fibers on living HeLa cells. PMID:27359373

  4. Hydrogen-Bonded Multifunctional Supramolecular Copolymers in Water.

    PubMed

    Xiang, Yunjie; Moulin, Emilie; Buhler, Eric; Maaloum, Mounir; Fuks, Gad; Giuseppone, Nicolas

    2015-07-21

    We have investigated the self-assembly in water of molecules having a single hydrophobic bis-urea domain linked to different hydrophilic functional side chains, i.e., bioactive peptidic residues and fluorescent cyanine dyes. By using a combination of spectroscopy, scattering, and microscopy techniques, we show that each one of these molecules can individually produce well-defined nanostructures such as twisted ribbons, two-dimensional plates, or branched fibers. Interestingly, when these monomers of different functionalities are mixed in an equimolar ratio, supramolecular copolymers are preferred to narcissistic segregation. Radiation scattering and imaging techniques demonstrate that one of the molecular units dictates the formation of a preferential nanostructure, and optical spectroscopies reveal the alternated nature of the copolymerization process. This work illustrates how social self-sorting in H-bond supramolecular polymers can give straightforward access to multifunctional supramolecular copolymers. PMID:26087392

  5. Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales†

    PubMed Central

    Janeček, Emma‐Rose; McKee, Jason R.; Tan, Cindy S. Y.; Nykänen, Antti; Kettunen, Marjo; Laine, Janne

    2015-01-01

    Abstract Hybrid nanocomposites were constructed based on colloidal nanofibrillar hydrogels with interpenetrating supramolecular hydrogels, displaying enhanced rheological yield strain and a synergistic improvement in storage modulus. The supramolecular hydrogel consists of naphthyl‐functionalized hydroxyethyl cellulose and a cationic polystyrene derivative decorated with methylviologen moieties, physically cross‐linked with cucurbit[8]uril macrocyclic hosts. Fast exchange kinetics within the supramolecular system are enabled by reversible cross‐linking through the binding of the naphthyl and viologen guests. The colloidal hydrogel consists of nanofibrillated cellulose that combines a mechanically strong nanofiber skeleton with a lateral fibrillar diameter of a few nanometers. The two networks interact through hydroxyethyl cellulose adsorption to the nanofibrillated cellulose surfaces. This work shows methods to bridge the length scales of molecular and colloidal hybrid hydrogels, resulting in synergy between reinforcement and dynamics. PMID:27478263

  6. Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales**

    PubMed Central

    Janeček, Emma-Rose; McKee, Jason R; Tan, Cindy S Y; Nykänen, Antti; Kettunen, Marjo; Laine, Janne; Ikkala, Olli; Scherman, Oren A

    2015-01-01

    Hybrid nanocomposites were constructed based on colloidal nanofibrillar hydrogels with interpenetrating supramolecular hydrogels, displaying enhanced rheological yield strain and a synergistic improvement in storage modulus. The supramolecular hydrogel consists of naphthyl-functionalized hydroxyethyl cellulose and a cationic polystyrene derivative decorated with methylviologen moieties, physically cross-linked with cucurbit[8]uril macrocyclic hosts. Fast exchange kinetics within the supramolecular system are enabled by reversible cross-linking through the binding of the naphthyl and viologen guests. The colloidal hydrogel consists of nanofibrillated cellulose that combines a mechanically strong nanofiber skeleton with a lateral fibrillar diameter of a few nanometers. The two networks interact through hydroxyethyl cellulose adsorption to the nanofibrillated cellulose surfaces. This work shows methods to bridge the length scales of molecular and colloidal hybrid hydrogels, resulting in synergy between reinforcement and dynamics. PMID:25772264

  7. Triggering activity of catalytic rod-like supramolecular polymers.

    PubMed

    Huerta, Elisa; van Genabeek, Bas; Lamers, Brigitte A G; Koenigs, Marcel M E; Meijer, E W; Palmans, Anja R A

    2015-02-23

    Supramolecular polymers based on benzene-1,3,5-tricarboxamides (BTAs) functionalized with an L- or D-proline moiety display high catalytic activity towards aldol reactions in water. High turnover frequencies (TOF) of up to 27×10(-4) s(-1) and excellent stereoselectivities (up to 96% de, up to 99% ee) were observed. In addition, the catalyst could be reused and remained active at catalyst loadings and substrate concentrations as low as 0.1 mol % and 50 mM, respectively. A temperature-induced conformational change in the supramolecular polymer triggers the high activity of the catalyst. The supramolecular polymer's helical sense in combination with the configuration of the proline (L- or D-) is responsible for the observed selectivity. PMID:25614098

  8. Reversible Guest Exchange Mechanisms in Supramolecular Host-GuestAssemblies

    SciTech Connect

    Pluth, Michael D.; Raymond, Kenneth N.

    2006-09-01

    Synthetic chemists have provided a wide array of supramolecular assemblies able to encapsulate guest molecules. The scope of this tutorial review focuses on supramolecular host molecules capable of reversibly encapsulating polyatomic guests. Much work has been done to determine the mechanism of guest encapsulation and guest release. This review covers common methods of monitoring and characterizing guest exchange such as NMR, UV-VIS, mass spectroscopy, electrochemistry, and calorimetry and also presents representative examples of guest exchange mechanisms. The guest exchange mechanisms of hemicarcerands, cucurbiturils, hydrogen-bonded assemblies, and metal-ligand assemblies are discussed. Special attention is given to systems which exhibit constrictive binding, a motif common in supramolecular guest exchange systems.

  9. Supramolecular polymer formed by reversible self-assembly of tetrakisporphyrin

    PubMed Central

    Haino, Takeharu; Fujii, Takashi; Watanabe, Akihide; Takayanagi, Urara

    2009-01-01

    S-shaped tetrakisporphyrin 2 forms supramolecular polymeric assemblies via a complementary affinity of its bisporphyrin units in solution. The self-association constant determined by applying the isodesmic model is >106 L mol−1, which suggests that a sizable polymer forms at millimolar concentrations at room temperature. The electron deficient aromatic guest (TNF) binds within the molecular clefts provided by the bisporphyrin units via a charge-transfer interaction. This guest complexation completely disrupts supramolecular polymeric assembly. The long, fibrous fragments of the polymeric assemblies were characterized by atomic-force microscopy imaging of a film cast on a mica surface. The polymeric assemblies have lengths of >1μm and show a coiled structure with a higher level of organization. The approach discussed in this report concerning the quick preparation of supramolecular polymeric assemblies driven by noncovalent forces sets the stage for the preparation of a previously undescribed class of macromolecular porphyrin architectures. PMID:19289843

  10. A supramolecular microenvironment strategy for transition metal catalysis.

    PubMed

    Kaphan, David M; Levin, Mark D; Bergman, Robert G; Raymond, Kenneth N; Toste, F Dean

    2015-12-01

    A self-assembled supramolecular complex is reported to catalyze alkyl-alkyl reductive elimination from high-valent transition metal complexes [such as gold(III) and platinum(IV)], the central bond-forming elementary step in many catalytic processes. The catalytic microenvironment of the supramolecular assembly acts as a functional enzyme mimic, applying the concepts of enzymatic catalysis to a reactivity manifold not represented in biology. Kinetic experiments delineate a Michaelis-Menten-type mechanism, with measured rate accelerations (k(cat)/k(uncat)) up to 1.9 × 10(7) (here k(cat) and k(uncat) are the Michaelis-Menten enzymatic rate constant and observed uncatalyzed rate constant, respectively). This modality has further been incorporated into a dual catalytic cross-coupling reaction, which requires both the supramolecular microenvironment catalyst and the transition metal catalyst operating in concert to achieve efficient turnover. PMID:26785485

  11. Supramolecular chirality in self-assembled peptide amphiphile nanostructures.

    PubMed

    Garifullin, Ruslan; Guler, Mustafa O

    2015-08-11

    Induced supramolecular chirality was investigated in the self-assembled peptide amphiphile (PA) nanosystems. Having shown that peptide chirality can be transferred to the covalently-attached achiral pyrene moiety upon PA self-assembly, the chiral information is transferred to molecular pyrene via weak noncovalent interactions. In the first design of a supramolecular chiral system, the chromophore was covalently attached to a peptide sequence (VVAGH) via an ε-aminohexanoic acid spacer. Covalent attachment yielded a PA molecule self-assembling into nanofibers. In the second design, the chromophore was encapsulated within the hydrophobic core of self-assembled nanofibers of another PA consisting of the same peptide sequence attached to lauric acid. We observed that supramolecular chirality was induced in the chromophore by PA assembly into chiral nanostructures, whether it was covalently attached, or noncovalently bound. PMID:26146021

  12. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new chemistry expermiments are described. Broad areas covered include atomic structure, solubility, gaseous diffusion, endothermic reactions, alcohols, equilibrium, atomic volumes, and some improvised apparatus. (PS)

  13. Technetium chemistry

    SciTech Connect

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-04-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  14. Prediction of Rate Constant for Supramolecular Systems with Multiconfigurations.

    PubMed

    Guo, Tao; Li, Haiyan; Wu, Li; Guo, Zhen; Yin, Xianzhen; Wang, Caifen; Sun, Lixin; Shao, Qun; Gu, Jingkai; York, Peter; Zhang, Jiwen

    2016-02-25

    The control of supramolecular systems requires a thorough understanding of their dynamics, especially on a molecular level. It is extremely difficult to determine the thermokinetic parameters of supramolecular systems, such as drug-cyclodextrin complexes with fast association/dissociation processes by experimental techniques. In this paper, molecular modeling combined with novel mathematical relationships integrating the thermodynamic/thermokinetic parameters of a series of isomeric multiconfigurations to predict the overall parameters in a range of pH values have been employed to study supramolecular dynamics at the molecular level. A suitable form of Eyring's equation was derived and a two-stage model was introduced. The new approach enabled accurate prediction of the apparent dissociation/association (koff/kon) and unbinding/binding (k-r/kr) rate constants of the ubiquitous multiconfiguration complexes of the supramolecular system. The pyronine Y (PY) was used as a model system for the validation of the presented method. Interestingly, the predicted koff value ((40 ± 1) × 10(5) s(-1), 298 K) of PY is largely in agreement with that previously determined by fluorescence correlation spectroscopy ((5 ± 3) × 10(5) s(-1), 298 K). Moreover, the koff/kon and k-r/kr for flurbiprofen-β-cylcodextrin and ibuprofen-β-cyclodextrin systems were also predicted and suggested that the association processes are diffusion-controlled. The methodology is considered to be especially useful in the design and selection of excipients for a supramolecular system with preferred association and dissociation rate constants and understanding their mechanisms. It is believed that this new approach could be applicable to a wide range of ligand-receptor supramolecular systems and will surely help in understanding their complex mechanism. PMID:26840799

  15. Chiral supramolecular polymers consisting of planar-chiral pillar[5]arene enantiomers.

    PubMed

    Ogoshi, Tomoki; Furuta, Takuya; Yamagishi, Tada-Aki

    2016-09-14

    Supramolecular polymers with diverse chiralities were constructed by supramolecular polymerization of planar-chiral host-guest conjugates in pS and pR forms. Hetero-chiral supramolecular polymerization using a racemic mixture of host-guest conjugates with pS and pR forms afforded a supramolecular polymer with a larger hydrodynamic radius than that obtained through homo-chiral supramolecular polymerization of host-guest conjugates with either pS or pR forms alone. PMID:27510359

  16. Phase Transition to Bundles of Flexible Supramolecular Polymers

    NASA Astrophysics Data System (ADS)

    Huisman, B. A. H.; Bolhuis, P. G.; Fasolino, A.

    2008-05-01

    We report Monte Carlo simulations of the self-assembly of supramolecular polymers based on a model of patchy particles. We find a first-order phase transition, characterized by hysteresis and nucleation, toward a solid bundle of polymers, of length much greater than the average gas phase length. We argue that the bundling transition is the supramolecular equivalent of the sublimation transition, which results from a weak chain-chain interaction. We provide a qualitative equation of state that gives physical insight beyond the specific values of the parameters used in our simulations.

  17. Proton Transport in Imidazoles: Unraveling the Role of Supramolecular Structure

    DOE PAGESBeta

    Cosby, James T.; Holt, Adam P.; Griffin, Phillip; Wang, Yangyang; Sangoro, Joshua R.

    2015-09-18

    The impact of supramolecular hydrogen bonded networks on dynamics and charge transport in 2-ethyl-4-methylimidazole (2E4MIm), a model proton-conducting system, is investigated by broadband dielectric spectroscopy, depolarized dynamic light scattering, viscometry, and calorimetry. It is observed that the slow, Debye-like relaxation reflecting the supramolecular structure in neat 2E4MIm is eliminated upon the addition of minute amounts of levulinic acid. This is attributed to the dissociation of imidazole molecules and the breaking down of hydrogen-bonded chains, which leads to a 10-fold enhancement of ionic conductivity.

  18. Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides.

    PubMed

    Ravi, Jascindra; Bella, Angelo; Correia, Ana J V; Lamarre, Baptiste; Ryadnov, Maxim G

    2015-06-28

    Host defence peptides (HDPs) are effector components of innate immunity that provide defence against pathogens. These are small-to-medium sized proteins which fold into amphipathic conformations toxic to microbial membranes. Here we explore the concept of supramolecular amphipathicity for probing antimicrobial propensity of HDPs using elementary HDP-like amphiphiles. Such amphiphiles are individually inactive, but when ordered into microscopic micellar assemblies, respond to membrane binding according to the orthogonal type of their primary structure. The study demonstrates that inducible supramolecular amphipathicity can discriminate against bacterial growth and colonisation thereby offering a physico-chemical rationale for tuneable targeting of biological membranes. PMID:25966444

  19. Bio-inspired supramolecular self-assembly towards soft nanomaterials

    PubMed Central

    LIN, Yiyang; MAO, Chuanbin

    2011-01-01

    Supramolecular self-assembly has proven to be a reliable approach towards versatile nanomaterials based on multiple weak intermolecular forces. In this review, the development of bio-inspired supramolecular self-assembly into soft materials and their applications are summarized. Molecular systems used in bio-inspired “bottom-up self-assembly” involve small organic molecules, peptides or proteins, nucleic acids, and viruses. Self-assembled soft nanomaterials have been exploited in various applications such as inorganic nanomaterial synthesis, drug or gene delivery, tissue engineering, and so on. PMID:21980594

  20. Efficient photosensitization by a chlorin-polyoxometalate supramolecular complex.

    PubMed

    Yoon, Il; Kim, Jung Hwa; Li, Jia Zhu; Lee, Woo Kyoung; Shim, Young Key

    2014-01-01

    The 4:1 supramolecular complexed ionic salt between pyridinium chlorin and polyanionic [α-SiMo12O40](4-) exhibits significantly enhanced photodynamic activity against A549 cell lines because of increased singlet oxygen photogeneration through high cellular penetration and localization of the chlorin molecules on the ionic salt into the cancer cell. Confocal laser scanning microscopy images clearly represent a higher uptake and photodynamic effect of this supramolecular complex corresponding to the lower IC50 value compared to the free chlorin. PMID:24320629

  1. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and…

  2. Quantum Chemistry via the Periodic Law.

    ERIC Educational Resources Information Center

    Blinder, S. M.

    1981-01-01

    Describes an approach to quantum mechanics exploiting the periodic structure of the elements as a foundation for the quantum theory of matter. Indicates that a quantum chemistry course can be developed using this approach. (SK)

  3. Chemistry in 1876: The Way It Was

    ERIC Educational Resources Information Center

    Bernheim, Robert A.

    1976-01-01

    Provides a brief history of chemistry up to the founding of the American Chemical Society in 1876. Includes developments in the understanding of matter, phlogiston theory, atomic theory, and chemical reactions. (MLH)

  4. Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry.

    PubMed

    Berkemeier, Thomas; Steimer, Sarah S; Krieger, Ulrich K; Peter, Thomas; Pöschl, Ulrich; Ammann, Markus; Shiraiwa, Manabu

    2016-05-14

    Heterogeneous and multiphase reactions of ozone are important pathways for chemical ageing of atmospheric organic aerosols. To demonstrate and quantify how moisture-induced phase changes can affect the gas uptake and chemical transformation of organic matter, we apply a kinetic multi-layer model to a comprehensive experimental data set of ozone uptake by shikimic acid. The bulk diffusion coefficients were determined to be 10(-12) cm(2) s(-1) for ozone and 10(-20) cm(2) s(-1) for shikimic acid under dry conditions, increasing by several orders of magnitude with increasing relative humidity (RH) due to phase changes from amorphous solid over semisolid to liquid. Consequently, the reactive uptake of ozone progresses through different kinetic regimes characterised by specific limiting processes and parameters. At high RH, ozone uptake is driven by reaction throughout the particle bulk; at low RH it is restricted to reaction near the particle surface and kinetically limited by slow diffusion and replenishment of unreacted organic molecules. Our results suggest that the chemical reaction mechanism involves long-lived reactive oxygen intermediates, likely primary ozonides or O atoms, which may provide a pathway for self-reaction and catalytic destruction of ozone at the surface. Slow diffusion and ozone destruction can effectively shield reactive organic molecules in the particle bulk from degradation. We discuss the potential non-orthogonality of kinetic parameters, and show how this problem can be solved by using comprehensive experimental data sets to constrain the kinetic model, providing mechanistic insights into the coupling of transport, phase changes, and chemical reactions of multiple species in complex systems. PMID:27095585

  5. Multi-functionalized side-chain supramolecular polymers: A methodology towards tunable functional materials

    NASA Astrophysics Data System (ADS)

    Nair, Kamlesh Prabhakaran

    Even as we see a significant growth in the field of supramolecular polymers in the last ten years, multi-functionalized systems have been scarcely studied. Noncovalent multi-functionalization provides unique advantages such as rapid materials optimization via reversible functionalization as well as for the tuning of materials properties by exploiting the differences in the nature of these reversible interactions. This thesis involves the design principles, synthesis & methodology of supramolecular side-chain multi-functionalized polymers. The combination of a functionally tolerant & controlled polymerization technique such as ROMP with multiple noncovalent interactions such as hydrogen bonding, metal coordination and ionic interactions has been successfully used to synthesize these polymers. Furthermore, the orthogonality between the above interactions in block/random copolymers has been studied in detail. It has been found that the studied interactions were orthogonal to each other. To validate the viability of this methodology using multiple orthogonal interactions towards materials design noncovalent crosslinking of polymers has been used as a potential application. Three classes of networks have been studied: complementary multiple hydrogen bonded networks, metal crosslinked networks, & multi-functionalized hydrogen bonded and metal coordinated networks. The first room temperature decrosslinking by exclusive complementary hydrogen bonded interactions has been successfully achieved. Furthermore network properties have been successfully tuned by varying the network micro-structure which in turn was tuned by the hydrogen bonding motifs used for inter-chain crosslinking. By combining two different noncovalent interactions used for inter-chain crosslinking, it was possible to make multi-functionalized materials whose properties could be controlled by varying the crosslinking strategy. Hence by employing multi-functionalization methodology, important materials

  6. Polymer Conjugation as a Strategy for Long-Range Order in Supramolecular Polymers.

    PubMed

    Benjamin, Ari; Keten, Sinan

    2016-04-01

    Supramolecular polymers are polymers in which the individual subunits self-assemble via noncovalent and reversible bonds. An important axis of control for systems of mixed subunit composition is the order in which the subunit types assemble. Existing ordering techniques, which rely on pairwise interactions through the inclusion of highly specific chemistry, have the downside that patterns of length n require n specific chemistries, making long-range order complicated to attain. Here we present a simple alternative method: we attach varying numbers of polymers to self-assembling subunits, in our case ring shaped macrocycles, and the polymers' aversion to confinement imposes system order. We evaluate the feasibility of the strategy using coarse-grained molecular dynamics simulations of polymer-conjugated rings designed to model cyclic peptide nanotubes. We discuss the effects of polymer conjugation on the energetics of association and predict the equilibrium orderings for various ratios of ring types. The emergent patterns are associated with a certain stochastic disorder, which we quantify by deriving and employing a formula for the expected statistical weight of any pattern within the ensemble of all possible orderings. PMID:26938206

  7. Supramolecular Nanoparticles via Single-Chain Folding Driven by Ferrous Ions.

    PubMed

    Wang, Fei; Pu, Hongting; Jin, Ming; Wan, Decheng

    2016-02-01

    Single-chain nanoparticles can be obtained via single-chain folding assisted by intramolecular crosslinking reversibly or irreversibly. Single-chain folding is also an efficient route to simulate biomacromolecules. In present study, poly(N-hydroxyethylacrylamide-co-4'-(propoxy urethane ethyl acrylate)-2,2':6',2''-terpyridine) (P(HEAm-co-EMA-Tpy)) is synthesized via reversible addition fragmentation chain transfer polymerization. Single-chain folding and intramolecular crosslinking of P(HEAm-co-EMA-Tpy) are achieved via metal coordination chemistry. The intramolecular interaction is characterized on ultraviolet/visible spectrophotometer (UV-vis spectroscopy), proton nuclear magnetic resonance ((1)H NMR), and differential scanning calorimetry (DSC). The supramolecular crosslinking mediated by Fe(2+) plays an important role in the intramolecular collapsing of the single-chain and the formation of the nanoparticles. The size and morphology of the nanoparticles can be controlled reversibly via metal coordination chemistry, which can be characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and atomic force microscope (AFM). PMID:26748641

  8. Controlled chiral electrochromism of polyoxometalates incorporated in supramolecular complexes.

    PubMed

    Zhang, Bin; Guan, Weiming; Zhang, Simin; Li, Bao; Wu, Lixin

    2016-04-01

    A three-component supramolecular system was constructed by combining host-guest recognition and electrostatic interaction for realization of induced circular dichroism of achiral polyanionic clusters in aqueous solution, while the induced chiral heteropoly blue was built and switched off by controlling the redox of the inorganic component via electrochemistry. PMID:27002653

  9. L-Rhamnose-containing supramolecular nanofibrils as potential immunosuppressive materials.

    PubMed

    Zhao, Fan; Heesters, Balthasar A; Chiu, Isaac; Gao, Yuan; Shi, Junfeng; Zhou, Ning; Carroll, Michael C; Xu, Bing

    2014-09-21

    An l-rhamnose-based hydrogelator self-assembles to form nanofibrils, which, in contrast to the properties of monomeric l-rhamnose, suppress the antibody response of mice to phycoerythrin (PE), a fluorescent protein antigen. As the first example of the supramolecular assemblies of a saccharide to suppress immunity, this work illustrates a new approach of immunomodulation. PMID:25078446

  10. Phase behaviors of supramolecular graft copolymers with reversible bonding

    SciTech Connect

    Zhang, Xu; Wang, Liquan E-mail: lq-wang@ecust.edu.cn; Jiang, Tao; Lin, Jiaping E-mail: lq-wang@ecust.edu.cn

    2013-11-14

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors. Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.

  11. Flexible metal–organic supramolecular isomers for gas separation

    SciTech Connect

    Motkuri, Radha K.; Tian, Jian; Thallapally, Praveen K.; Fernandez, Carlos A.; Dalgarno, Scott J.; Warren, John E.; McGrail, B. Peter; Atwood, Jerry L.

    2010-01-01

    Here in we report three porous metal-organic supramolecular isomers (PtS, Diamondoid and Lonsdaleite networks) generated from a single building block (tetrakis[4-(carboxyphenyl)oxamethyl]methane, 1), with the differences in solid-state packing, amount of gas uptake and selectivity towards other gases and so on

  12. Design and assembly of supramolecular dual-modality nanoprobes

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Zhang, Pengcheng; Ray Banerjee, Sangeeta; Xu, Jiadi; Pomper, Martin G.; Cui, Honggang

    2015-05-01

    We report the design and synthesis of self-assembling dual-modality molecular probes containing both a fluorophore for optical imaging and a metal ion chelator for imaging with MRI or radionuclide methods. These molecular probes can spontaneously associate into spherical nanoparticles under physiological conditions. We demonstrate the use of these supramolecular nanoprobes for live-cell optical imaging, as well as their potential use as MRI contrast agents after complexation with gadolinium. Our results suggest that self-assembly into supramolecular nanoprobes presents an effective means to enhance and tune the relaxivities of molecular probes.We report the design and synthesis of self-assembling dual-modality molecular probes containing both a fluorophore for optical imaging and a metal ion chelator for imaging with MRI or radionuclide methods. These molecular probes can spontaneously associate into spherical nanoparticles under physiological conditions. We demonstrate the use of these supramolecular nanoprobes for live-cell optical imaging, as well as their potential use as MRI contrast agents after complexation with gadolinium. Our results suggest that self-assembly into supramolecular nanoprobes presents an effective means to enhance and tune the relaxivities of molecular probes. Electronic supplementary information (ESI) available: Experimental methods, materials, synthesis schemes, sample characterization, fluorescence measurements, cellular uptake and MRI experimental details. See DOI: 10.1039/c5nr01518a

  13. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    PubMed

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. PMID:26890574

  14. Directed assembly of supramolecular copolymers in thin films

    NASA Astrophysics Data System (ADS)

    Muller, Marcus; Daoulas, Kostas Ch.; Cavallo, Anna; Shenhar, Roy

    2011-03-01

    Using computer simulation of a coarse-grained model for supramolecular polymers we investigate the potential of quasi-block copolymers (QBCP) assembled on chemically patterned substrates for creating device-oriented nanostructures. QBCP are comprised of AB diblock copolymers and supramolecular B segments that can reversibly bond to any available B terminus, either on the copolymers or the B oligomers, creating a polydisperse blend of B homopolymers, AB and ABA copolymers. We focus on an AB incompatibility, χ , and strength of supramolecular bonds where a lamellar morphology, a bicontinous structure and a macrophase-separated state have comparable free energy in the bulk. We consider substrate patterns with perpendicularly crossing, A-preferential lines and demonstrate their defect-free replication by QBCP. The same QBCP replicates simultaneously patterns differing by up to 50 % in their length scales, illustrating the high versatility of QBCP materials. We discuss the interplay between pattern geometry and distribution of molecular architectures and verify the key role of supramolecular associations for replicating patterns with different length scales.

  15. Protein-based supramolecular polymers: progress and prospect.

    PubMed

    Luo, Quan; Dong, Zeyuan; Hou, Chunxi; Liu, Junqiu

    2014-09-11

    Proteins are naturally evolved macromolecules with highly sophisticated structures and diverse properties. The design and controlled self-assembly of proteins into polymeric architectures via supramolecular interactions offers unique advantages in understanding the spontaneously self-organisational process and fabrication of various bioactive materials. This feature article highlights recent advances and future trends in supramolecular polymers that are directly assembled from the building blocks of proteins. Non-covalent interactions capable of inducing polymerization include aromatic π-π stacking, host-guest interactions, metal coordination, and interprotein interactions combined with site-selective protein modification to explore the dynamic and specific unidirectional aggregation behaviours among protein units. We also discuss some extended supramolecular protein polymers achieved by rational design and fine-tuning the protein-protein interactions, which may help to inspire future design of more complicated polymeric protein assemblies. The protein-based supramolecular polymer system provides a versatile platform for functionalization and thereby shows great potential in the development of novel biomaterials with controlled structures and properties. PMID:25005829

  16. Supramolecular Inclusion in Cyclodextrins: A Pictorial Spectroscopic Demonstration

    ERIC Educational Resources Information Center

    Haldar, Basudeb; Mallick, Arabinda; Chattopadhyay, Nitin

    2008-01-01

    A spectroscopic experiment is presented that reveals that the hydrophobically end-modified water-soluble polymeric fluorophore, pyrene end-capped poly(ethylene oxide) (PYPY), interacts differently with [alpha], [beta], and [gamma]-cyclodextrins (CD) to form supramolecular inclusion complexes. The emission spectrum of PYPY in aqueous solution shows…

  17. From structure to function via complex supramolecular dendrimer systems.

    PubMed

    Sun, Hao-Jan; Zhang, Shaodong; Percec, Virgil

    2015-06-21

    This tutorial review summarizes strategies elaborated for the discovery and prediction of programmed primary structures derived from quasi-equivalent constitutional isomeric libraries of self-assembling dendrons, dendrimers and dendronized polymers. These libraries demonstrate an 82% predictability, defined as the percentage of similar primary structures resulting in at least one conserved supramolecular shape with internal order. A combination of structural and retrostructural analysis that employs methodologies transplanted from structural biology, adapted to giant supramolecular assemblies was used for this process. A periodic table database of programmed primary structures was elaborated and used to facilitate the emergence of a diversity of functions in complex dendrimer systems via first principles. Assemblies generated by supramolecular and covalent polymer backbones were critically compared. Although by definition complex functional systems cannot be designed, this tutorial hints to a methodology based on database analysis principles to facilitate design principles that may help to mediate an accelerated emergence of chemical, physical and most probably also societal, political and economic complex systems on a shorter time scale and lower cost than by the current methods. This tutorial review is limited to the simplest, synthetically most accessible self-assembling minidendrons, minidendrimers and polymers dendronized with minidendrons that are best analyzed and elucidated at molecular, supramolecular and theoretical levels, and most used in other laboratories. These structures are all interrelated, and their principles expand in a simple way to their higher generations. PMID:25325787

  18. Creating coordination-based cavities in a multiresponsive supramolecular gel.

    PubMed

    Wei, Shi-Chao; Pan, Mei; Fan, Yuan-Zhong; Liu, Haoliang; Zhang, Jianyong; Su, Cheng-Yong

    2015-05-11

    Creating cavities in varying levels, from molecular containers to macroscopic materials of porosity, have long been motivated for biomimetic or practical applications. Herein, we report an assembly approach to multiresponsive supramolecular gels by integrating photochromic metal-organic cages as predefined building units into the supramolecular gel skeleton, providing a new approach to create cavities in gels. Formation of discrete O-Pd2 L4 cages is driven by coordination between Pd(2+) and a photochromic dithienylethene bispyridine ligand (O-PyFDTE). In the presence of suitable solvents (DMSO or MeCN/DMSO), the O-Pd2 L4 cage molecules aggregate to form nanoparticles, which are further interconnected through supramolecular interactions to form a three-dimensional (3D) gel matrix to trap a large amount of solvent molecules. Light-induced phase and structural transformations readily occur owing to the reversible photochromic open-ring/closed-ring isomeric conversion of the cage units upon UV/visible light radiation. Furthermore, such Pd2 L4 cage-based gels show multiple reversible gel-solution transitions when thermal-, photo-, or mechanical stimuli are applied. Such supramolecular gels consisting of porous molecules may be developed as a new type of porous materials with different features from porous solids. PMID:25876958

  19. Non-centrosymmetric homochiral supramolecular polymers of tetrahedral subphthalocyanine molecules.

    PubMed

    Guilleme, Julia; Mayoral, María J; Calbo, Joaquín; Aragó, Juan; Viruela, Pedro M; Ortí, Enrique; Torres, Tomás; González-Rodríguez, David

    2015-02-16

    A combination of spectroscopy (UV/Vis absorption, emission, and circular dichroism), microscopy (AFM and TEM), and computational studies reveal the formation of non-centrosymmetric homochiral columnar subphthalocyanine assemblies. These assemblies form through a cooperative supramolecular polymerization process driven by hydrogen-bonding between amide groups, π-π stacking, and dipolar interactions between axial B-F bonds. PMID:25597927

  20. Phase behaviors of supramolecular graft copolymers with reversible bonding

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Liquan; Jiang, Tao; Lin, Jiaping

    2013-11-01

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors. Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.

  1. Freestanding 3D supramolecular particle bridges: fabrication and mechanical behavior.

    PubMed

    Ling, Xing Yi; Phang, In Yee; Schönherr, Holger; Reinhoudt, David N; Vancso, G Julius; Huskens, Jurriaan

    2009-06-01

    Freestanding particle bridges with controlled composition and macroscopic robustness are demonstrated by the use of supramolecular nanoparticle assembly. Self-assembly of nanoparticles, templating, and supramolecular glue infiltration are combined to form stable and ordered three-dimensional polystyrene particle composites on a polydimethylsiloxane stamp. Freestanding hybrid polystyrene nanoparticle bridges are obtained by transfer printing of the hybrid structures onto topographically patterned substrates via host-guest interactions. The mechanical robustness and rigidity of the particle bridges can be controlled by manipulating the layer-by-layer cycles of supramolecular glues of gold nanoparticles and dendrimers. Atomic force microscopy-based microbending results, in particular the location and force-dependent deflection behavior, confirm that the particle bridge fulfills the classical supported-beam characteristics. As estimated from classical beam theory, the bending moduli of the particle bridges vary between 0.8 and 1.1 GPa, depending on the degree of filling by the supramolecular glues. Failure analysis on the particle structure indicates linear elastic behavior and a plastic deformation upon failure. PMID:19373830

  2. Supramolecular pathway selection of perylenediimides mediated by chemical fuels.

    PubMed

    Leira-Iglesias, Jorge; Sorrenti, Alessandro; Sato, Akihiro; Dunne, Peter A; Hermans, Thomas M

    2016-07-12

    We demonstrate supramolecular pathway selection of a perylenediimide derivative in aqueous solution using chemically fueled redox reactions to control assembly/disassembly cycles. The number and frequency of cycles affect the nucleation and growth process, providing control over the size and internal order of the resulting self-assembled structures. PMID:26924715

  3. Dynamic chemistry of anion recognition

    SciTech Connect

    Custelcean, Radu

    2012-01-01

    In the past 40 years, anion recognition by synthetic receptors has grown into a rich and vibrant research topic, developing into a distinct branch of Supramolecular Chemistry. Traditional anion receptors comprise organic scaffolds functionalized with complementary binding groups that are assembled by multistep organic synthesis. Recently, a new approach to anion receptors has emerged, in which the host is dynamically self-assembled in the presence of the anionic guest, via reversible bond formation between functional building units. While coordination bonds were initially employed for the self-assembly of the anion hosts, more recent studies demonstrated that reversible covalent bonds can serve the same purpose. In both cases, due to their labile connections, the molecular constituents have the ability to assemble, dissociate, and recombine continuously, thereby creating a dynamic combinatorial library (DCL) of receptors. The anionic guests, through specific molecular recognition, may then amplify (express) the formation of a particular structure among all possible combinations (real or virtual) by shifting the equilibria involved towards the most optimal receptor. This approach is not limited to solution self-assembly, but is equally applicable to crystallization, where the fittest anion-binding crystal may be selected. Finally, the pros and cons of employing dynamic combinatorial chemistry (DCC) vs molecular design for developing anion receptors, and the implications of both approaches to selective anion separations, will be discussed.

  4. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  5. An Introduction to Air Chemistry.

    ERIC Educational Resources Information Center

    Butcher, Samuel S.; Charlson, Robert J.

    Designed for those with no previous experience in the field, this book synthesizes the areas of chemistry and meteorology required to bring into focus some of the complex problems associated with the atmospheric environment. Subject matter moves from a review of the relevant chemical and meteorological principles to a discussion of the general…

  6. Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts.

    PubMed

    Raynal, Matthieu; Ballester, Pablo; Vidal-Ferran, Anton; van Leeuwen, Piet W N M

    2014-03-01

    Supramolecular catalysis is a rapidly expanding discipline which has benefited from the development of both homogeneous catalysis and supramolecular chemistry. The properties of classical metal and organic catalysts can now be carefully tailored by means of several suitable approaches and the choice of reversible interactions such as hydrogen bond, metal-ligand, electrostatic and hydrophobic interactions. The first part of these two subsequent reviews will be dedicated to catalytic systems for which non-covalent interactions between the partners of the reaction have been designed although mimicking enzyme properties has not been intended. Ligand, metal, organocatalyst, substrate, additive, and metal counterion are reaction partners that can be held together by non-covalent interactions. The resulting catalysts possess unique properties compared to analogues lacking the assembling properties. Depending on the nature of the reaction partners involved in the interactions, distinct applications have been accomplished, mainly (i) the building of bidentate ligand libraries (intra ligand-ligand), (ii) the building of di- or oligonuclear complexes (inter ligand-ligand), (iii) the alteration of the coordination spheres of a metal catalyst (ligand-ligand additive), and (iv) the control of the substrate reactivity (catalyst-substrate). More complex systems that involve the cooperative action of three reaction partners have also been disclosed. In this review, special attention will be given to supramolecular catalysts for which the observed catalytic activity and/or selectivity have been imputed to non-covalent interaction between the reaction partners. Additional features of these catalysts are the easy modulation of the catalytic performance by modifying one of their building blocks and the development of new catalytic pathways/reactions not achievable with classical covalent catalysts. PMID:24356298

  7. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in chemistry instruction, including among others, a rapid method to determine available chlorine in bleach, simple flame testing apparatus, and a simple apparatus demonstrating the technique of flash photolysis. (SK)

  8. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Several ideas are proposed for chemistry teachers to try in their classrooms. Subjects included are polymerization of acrylate, polymerization of styrene, conductivity, pollution, preparation of chlorine, redox equations, chemiluminescence, and molecular sieves. (PS)

  9. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  10. Catalytic Chemistry.

    ERIC Educational Resources Information Center

    Borer, Londa; And Others

    1996-01-01

    Describes an approach for making chemistry relevant to everyday life. Involves the study of kinetics using the decomposition of hydrogen peroxide by vegetable juices. Allows students to design and carry out experiments and then draw conclusions from their results. (JRH)

  11. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  12. Precolumbian Chemistry.

    ERIC Educational Resources Information Center

    Robinson, Janet Bond

    1995-01-01

    Describes the content and development of a curriculum that provides an approach to descriptive chemistry and the history of technology through consideration of the pottery, metallurgy, pigments, dyes, agriculture, and medicine of pre-Columbian people. (DDR)

  13. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  14. Soft matter: food for thought

    NASA Astrophysics Data System (ADS)

    Ogborn, Jon

    2004-01-01

    'Soft matter' is a lively current field of research, looking at fundamental theoretical questions about the structure and behaviour of complex forms of matter, and at very practical problems of, for example, improving the performance of glues or the texture of ice cream. Foodstuffs provide an excellent way in to this modern topic, which lies on the boundary between physics and chemistry.

  15. Muons in chemistry

    NASA Astrophysics Data System (ADS)

    Clayden, N. J.

    2013-12-01

    Positive muons have long been used as extrinsic probes in chemistry, offering unique properties for the investigation of local magnetism, dynamics, transport and radical kinetics. Exciting new developments in muon beam lines offer the opportunity of extending these studies selectively to surfaces permitting, for example, the detection of increased mobility of polymer chains at the surface of a polymer film. So called pump and probe methods, involving external perturbations by laser irradiation to manipulate vibrational and electronic states, can be followed by muon pulses allowing the probing of the properties of these states. Muoniated radical probes are finding greater use in soft matter. Selectivity is achieved in these complex systems through an appropriate target molecule giving the chance to measure partitioning and interfacial transfer in surfactant systems. Improvements in sample environments allow the observation of muons in increasingly extreme combinations of temperature and pressure, such as supercritical water, allowing the characterization of the chemistry in these systems.

  16. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  17. Synthesis of bi- and bis-1,2,3-triazoles by copper-catalyzed Huisgen cycloaddition: A family of valuable products by click chemistry

    PubMed Central

    Wang, Ding; Xu, Zheng

    2015-01-01

    Summary The Cu(I)-catalyzed azide-alkyne cycloaddition reaction, also known as click chemistry, has become a useful tool for the facile formation of 1,2,3-triazoles. Specifically, the utility of this reaction has been demonstrated by the synthesis of structurally diverse bi- and bis-1,2,3-triazoles. The present review focuses on the synthesis of such bi- and bistriazoles and the importance of using copper-promoted click chemistry (CuAAC) for such transformations. In addition, the application of bitriazoles and the related CuAAAC reaction in different fields, including medicinal chemistry, coordination chemistry, biochemistry, and supramolecular chemistry, have been highlighted. PMID:26734102

  18. Conductive oxygen barrier films using supramolecular assembly of graphene embedded polyelectrolyte multilayers.

    PubMed

    Gokhale, Ankush A; Lu, Jue; Parker, Nathan J; Izbicki, Andrew P; Sanyal, Oishi; Lee, Ilsoon

    2013-11-01

    The supramolecular self-assembly of polyelectrolyte multilayers (PEMs) provides robust bottom-up strategies to assemble a broad spectrum of nanostructures on the host substrates. In this study, we discuss the formation of graphene nanoplatelet (GNP) embedded polyelectrolyte films to enhance the oxygen barrier properties of poly(ethylene terephthalate) (PET) films. Despite cheaper costs and high mechanical strength, the diffusion of small gas molecules such as oxygen through PET films remains a matter of great concern. The simple yet robust supramolecular deposition of GNP/polyelectrolyte on PET substrates significantly increases the tortuous path the oxygen molecule has to travel, making it harder to diffuse through the PET film. With permeability coefficients in the range of 10-18 cc cm/cm(2) s Pa, the coatings developed in this study show three orders of magnitude reduction as compared to the permeability coefficient of the bare PET film, significantly lower than that of ethylene vinyl alcohol (EVOH) and comparable to silicon oxide thin films used in commercial gas barrier foils. The use of GNPs in the multilayered films also helped reduce the electrical sheet resistance to about 1MΩ which is five orders of magnitude lower than the original PET substrate opening up promising opportunities for future use in semiconductor and electronics industry. Making suitable modifications in the deposition process, three configurations of GNP embedded PEM multilayers namely hydrogen bonded, electrostatic, and composite films were developed and their effect on oxygen barrier property and sheet resistance was monitored. Oxygen permeability of films was tested in accordance with ASTM D-3985 using a MOCON 2/21 ML instrument, whereas electrical sheet resistance was quantified using a Gamry Femtostat Electrochemical Impedance station. PMID:23957926

  19. Problems of space chemistry

    NASA Astrophysics Data System (ADS)

    Voitkevich, Georgii V.

    The main problems of space chemistry are examined, including the origin and abundance of chemical elements, their migration to different regions of the universe, the formation of the chemical composition of cosmic bodies, and the chemical evolution of the solar system and the origin of life. Based on current astrophysical and space-chemical data, the main stages of the evolution of matter from the beginning of universe expansion to the formation of the solar system are described. The problem of the origin of life is examined in the light of space-chemical data on the formation of high-molecular compounds before the formation of the planets.

  20. Control over Structure and Function of Peptide Amphiphile Supramolecular Assemblies through Molecular Design and Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Tantakitti, Faifan

    Supramolecular chemistry is a powerful tool to create a material of a defined structure with tunable properties. This strategy has led to catalytically active, bioactive, and environment-responsive materials, among others, that are valuable in applications ranging from sensor technology to energy and medicine. Supramolecular polymers formed by peptide amphiphiles (PAs) have been especially relevant in tissue regeneration due to their ability to form biocompatible structures and mimic many important signaling molecules in biology. These supramolecular polymers can form nanofibers that create networks which mimic natural extracellular matrices. PA materials have been shown to induce growth of blood vessels, bone, cartilage, and nervous tissue, among others. The work described in this thesis not only studied the relationship between molecular structure and functions of PA assemblies, but also uncovered a powerful link between the energy landscape of their supramolecular self-assembly and the ability of PA materials to interact with cells. In chapter 2, it is argued that fabricating fibrous nanostructures with defined mechanical properties and decoration with bioactive molecules is not sufficient to create a material that can effectively communicate with cells. By systemically placing the fibronectin-derived RGDS epitope at increasing distances from the surface of PA nanofibers through a linker of one to five glycine residues, integrin-mediated RGDS signaling was enhanced. The results suggested that the spatial presentation of an epitope on PA nanofibers strongly influences the bioactivity of the PA substrates. In further improving functionality of a PA-based scaffold to effectively direct cell growth and differentiation, chapter 3 explored the use of a cell microcarrier to compartmentalize and simultaneously tune insoluble and soluble signals in a single matrix. PA nanofibers were incorporated at the surface of the microcarrier in order to promote cell adhesion, while

  1. Induction and control of supramolecular chirality by light in self-assembled helical nanostructures

    NASA Astrophysics Data System (ADS)

    Kim, Jisung; Lee, Jinhee; Kim, Woo Young; Kim, Hyungjun; Lee, Sanghwa; Lee, Hee Chul; Lee, Yoon Sup; Seo, Myungeun; Kim, Sang Youl

    2015-04-01

    Evolution of supramolecular chirality from self-assembly of achiral compounds and control over its handedness is closely related to the evolution of life and development of supramolecular materials with desired handedness. Here we report a system where the entire process of induction, control and locking of supramolecular chirality can be manipulated by light. Combination of triphenylamine and diacetylene moieties in the molecular structure allows photoinduced self-assembly of the molecule into helical aggregates in a chlorinated solvent by visible light and covalent fixation of the aggregate via photopolymerization by ultraviolet light, respectively. By using visible circularly polarized light, the supramolecular chirality of the resulting aggregates is selectively and reversibly controlled by its rotational direction, and the desired supramolecular chirality can be arrested by irradiation with ultraviolet circularly polarized light. This methodology opens a route to ward the formation of supramolecular chiral conducting nanostructures from the self-assembly of achiral molecules.

  2. A Physical Chemist Looks at Organic Chemistry Lab.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1988-01-01

    Criticizes the way organic chemistry teaching laboratory experiments are approached from the viewpoint of physical chemistry. Compares these experiments to cooking. Stresses that what matters is not the practice of the finger skills of organic chemistry but practice in the style of thinking of organic chemists. (CW)

  3. Radiation Chemistry

    NASA Astrophysics Data System (ADS)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  4. Binary supramolecular adduct based upon trimeric perfluoro-ortho-phenylenemercury and 4-chlorobenzaldehyde: Enumerating the strength of perfluorophenyl-perfluorophenyl interactions

    NASA Astrophysics Data System (ADS)

    Fisher, Steven P.; Krueger, Herman R.; Groeneman, Ryan H.; Reinheimer, Eric W.

    2016-01-01

    Due to its proximity of Hg(II) atoms, electron-withdrawing properties and inherent accessibility to electrophilic sites on the molecular surface, trimeric perfluoro-ortho-phenylenemercury, (o-C6F4Hg)3, has demonstrated a capacity to form supramolecular adducts with a variety of neutral and anionic substrates. Often within these complexes the Lewis acid, (o-C6F4Hg)3, interacts with a Lewis base rather than itself in the solid state via various supramolecular interactions. Among these, perfluorophenyl-perfluorophenyl interactions have been utilized in the construction of various supramolecular materials; however, within these molecular complexes, this category of non-covalent interaction is not often observed. Even though these perfluorophenyl-perfluorophenyl interactions have been used to produce new materials, their overall strength has not been generally reported in the literature. In this contribution, we highlight not only the synthesis, structural and spectroscopic properties of a novel binary supramolecular adduct between (o-C6F4Hg)3 and 4-chlorobenzaldehyde (4-ClBA) [(o-C6F4Hg)3(4-ClBA)] 1, but also report on the overall strength of the perfluorophenyl-perfluorophenyl interaction energies determined by means of computational chemistry. The carbonyl group of the 4-ClBA substrate was found to interact with all three mercury atoms within (o-C6F4Hg)3 via Hg⋯O contacts. An infrared spectroscopic analysis of 1 demonstrated a lower wavenumber for the carbonyl stretching frequency when compared to that for the free substrate confirming the presence of these Hg⋯O interactions.

  5. A Novel Anisotropic Supramolecular Hydrogel with High Stability over a Wide pH Range

    PubMed Central

    Zhao, Fan; Gao, Yuan; Shi, Junfeng; Browdy, Hayley M.; Xu, Bing

    2011-01-01

    The hydrolysis of carboxylic ester bond, by a base or catalyzed by an enzyme at weak basic condition, servers as the only path to obtain a novel anisotropic supramolecular hydrogel that is stable over a wide pH range. This result not only expands the molecular scope of supramolecular hydrogelators, but also illustrates the design principles for creating pH stable supramolecular soft materials. PMID:21138331

  6. Design and synthesis of supramolecular functional benzoxazines

    NASA Astrophysics Data System (ADS)

    Choi, Seong-Woo

    Dendritic macromolecules containing benzoxazine moieties are designed and synthesized using the Frechet type of ester dendritic building block via a convergent approach. Before proceeding with dendritic building synthesis, the compatibility of benzoxazine chemistry with four different types of 2,4-, 2,5-, 2,6-, and 3,5-dihydroxy benzoicacid isomers is evaluated using Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). Among isomers, 3,5-dihydroxybenzoic acid is the most compatible with benzoxazine chemistry and yields completely closed-ring benzoxazine monomer structure. Unlike 3,5-dihydroxybenzoic acid, the other three isomers show only partial ring closure or incompatibility with benzoxazine chemistry due to the existence of intramolecular hydrogen bonding between OH--O species. After finishing the model isomer study, dendritic macromolecules containing benzoxazine moieties are newly synthesized using various combinations of amine derivatives. Benzoxazine dendrimers show much lower maximum polymerization exotherm temperatures as the generation is increased as compared to ordinary benzoxazine monomers. Especially, it is revealed that the dendritic effect on benzoxazine curing temperature is more effective for the aromatic amine based benzoxazine dendrimer than for the aliphatic amine based system. By characterizing benzoxazine dendrimers, their self-catalyzed ring opening ability is elucidated and suggests their use as a curing initiator with other benzoxazine monomers. The dendritic multiplication effect on benzoxazine curing behavior and dynamic viscosity is further investigated using a combination of 6-[1-methyl-1-(3-phenyl(2H,4H-benzo[3,4-e]1,3-oxazaperhydroin-6-yl))ethyl]-3-phenyl-2H,4H-benzo[e]1,3-oxazine (abbreviated as BA-a) monomer with various phenolic derivatives. Another possibility is found for improving processibility by decreasing the polymerization temperature of ordinary benzoxazine monomer with

  7. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  8. Tropospheric chemistry

    NASA Technical Reports Server (NTRS)

    Mohnen, V. A.; Chameides, W.; Demerjian, K. L.; Lenschow, D. H.; Logan, J. A.; Mcneal, R. J.; Penkett, S. A.; Platt, U.; Schurath, U.; Dias, P. D.

    1985-01-01

    The chemistry of the background troposphere, the source region, and the transition regions are discussed. The troposphere is governed by heterogeneous chemistry far more so than the stratosphere. Heterogeneous processes of interest involve scavenging of trace gases by aerosols, cloud and precipitation elements leading to aqueous phase chemical reactions and to temporary and permanent removal of material from the gas phase. Dry deposition is a major removal process for ozone, as well as for other gases of importance in tropospheric photochemistry. These processes are also discussed.

  9. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  10. A multiple-responsive self-healing supramolecular polymer gel network based on multiple orthogonal interactions.

    PubMed

    Zhan, Jiayi; Zhang, Mingming; Zhou, Mi; Liu, Bin; Chen, Dong; Liu, Yuanyuan; Chen, Qianqian; Qiu, Huayu; Yin, Shouchun

    2014-08-01

    Supramolecular polymer networks have attracted considerable attention not only due to their topological importance but also because they can show some fantastic properties such as stimuli-responsiveness and self-healing. Although various supramolecular networks are constructed by supramolecular chemists based on different non-covalent interactions, supramolecular polymer networks based on multiple orthogonal interactions are still rare. Here, a supramolecular polymer network is presented on the basis of the host-guest interactions between dibenzo-24-crown-8 (DB24C8) and dibenzylammonium salts (DBAS), the metal-ligand coordination interactions between terpyridine and Zn(OTf)2 , and between 1,2,3-triazole and PdCl2 (PhCN)2 . The topology of the networks can be easily tuned from monomer to main-chain supramolecular polymer and then to the supramolecular networks. This process is well studied by various characterization methods such as (1) H NMR, UV-vis, DOSY, viscosity, and rheological measurements. More importantly, a supramolecular gel is obtained at high concentrations of the supramolecular networks, which demonstrates both stimuli-responsiveness and self-healing properties. PMID:24943122

  11. Blends of conjugated rigid-rod polymers: Novel supramolecular materials for electronics, optoelectronics and photonics

    SciTech Connect

    Jenekhe, S.A.

    1996-12-31

    Selected examples of binary blends of conjugated polymers will be presented to illustrate the vast scope of their supramolecular structures and electronic, optical, nonlinear optical, and optoelectronic properties.

  12. 25th Anniversary Article: Supramolecular Materials for Regenerative Medicine

    PubMed Central

    Boekhoven, Job

    2014-01-01

    In supramolecular materials, molecular building blocks are designed to interact with one another via non-covalent interactions in order to create function. This offers the opportunity to create structures similar to those found in living systems that combine order and dynamics through the reversibility of intermolecular bonds. For regenerative medicine there is a great need to develop materials that signal cells effectively, deliver or bind bioactive agents in vivo at controlled rates, have highly tunable mechanical properties, but at the same time, can biodegrade safely and rapidly after fulfilling their function. These requirements make supramolecular materials a great platform to develop regenerative therapies. This review illustrates the emerging science of these materials and their use in a number of applications for regenerative medicine. PMID:24496667

  13. Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Vonau, François; Shokri, Roozbeh; Aubel, Dominique; Bouteiller, Laurent; Guskova, Olga; Sommer, Jens-Uwe; Reiter, Günter; Simon, Laurent

    2014-06-01

    We studied the formation of hydrogen-bonded supramolecular polymers of Ethyl Hexyl Urea Toluene (EHUT) on a gold (111) surface by low temperature scanning tunneling microscopy. Tunneling spectroscopy performed along an individual molecule embedded in a self-assembled layer revealed strong changes in the value of the HOMO-LUMO gap. A variation of the LUMO state is attributed to the effect of space charge accumulation resulting from anisotropic adhesion of the molecule. In addition, for specific tunneling conditions, changes induced through the formation of hydrogen bonds became visible in the differential conductance (dI/dV) maps; isolated molecules, hydrogen bonded dimers and supramolecular polymers of EHUT were distinguishable through their electronic properties.

  14. Dielectric Relaxation and Rheological Behavior of Supramolecular Polymeric Liquid

    SciTech Connect

    Lou, Nan; Wang, Yangyang; Li, Xiaopeng; Li, Haixia; Wang, Ping

    2013-01-01

    A model self-complementary supramolecular polymer based on thymine and diamidopyridine triple hydrogen-bonding motifs has been synthesized, and its dielectric and rheological behavior has been investigated. The formation of supramolecular polymers has been unequivocally demonstrated by nuclear magnetic resonance, electrospray ionization mass spectrometry with traveling wave ion mobility separation, dielectric spectroscopy, and rheology. The dynamical behaviors of this associating polymer generally conform to those of type-A polymers, with a low-frequency chain relaxation and a high-frequency relaxation visible in both rheological and dielectric measurements. The dielectric chain relaxation shows the ideal symmetric Debye-like shape, resembling the peculiar features of hydrogen-bonding monoalcohols. Detailed analysis shows that there exists a weak decoupling between the mechanical terminal relaxation and dielectric Debye-like relaxation. The origin of the Debye-like dielectric relaxation is further discussed in the light of monoalcohols.

  15. Hierarchical Self-Assembly of Supramolecular Muscle-Like Fibers.

    PubMed

    Goujon, Antoine; Du, Guangyan; Moulin, Emilie; Fuks, Gad; Maaloum, Mounir; Buhler, Eric; Giuseppone, Nicolas

    2016-01-11

    An acid-base switchable [c2]daisy chain rotaxane terminated with two 2,6-diacetylamino pyridine units has been self-assembled with a bis(uracil) linker. The complementary hydrogen-bond recognition patterns, together with lateral van der Waals aggregations, result in the hierarchical formation of unidimensional supramolecular polymers associated in bundles of muscle-like fibers. Microscopic and scattering techniques reveal that the mesoscopic structure of these bundles depends on the extended or contracted states that the rotaxanes show within individual polymer chains. The observed local dynamics span over several length scales because of a combination of supramolecular and mechanical bonds. This work illustrates the possibility to modify the hierarchical mesoscopic structuring of large polymeric systems by the integrated actuation of individual molecular machines. PMID:26582752

  16. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    PubMed

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure. PMID:26766139

  17. Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules

    PubMed Central

    Parker, Richard M; Zhang, Jing; Zheng, Yu; Coulston, Roger J; Smith, Clive A; Salmon, Andrew R; Yu, Ziyi; Scherman, Oren A; Abell, Chris

    2015-01-01

    Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules—where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core–shell microcapsules, gives access to a new generation of innovative self-assembled constructs. PMID:26213532

  18. Supramolecular macrocycles reversibly assembled by Te…O chalcogen bonding

    PubMed Central

    Ho, Peter C.; Szydlowski, Patrick; Sinclair, Jocelyn; Elder, Philip J. W.; Kübel, Joachim; Gendy, Chris; Lee, Lucia Myongwon; Jenkins, Hilary; Britten, James F.; Morim, Derek R.; Vargas-Baca, Ignacio

    2016-01-01

    Organic molecules with heavy main-group elements frequently form supramolecular links to electron-rich centres. One particular case of such interactions is halogen bonding. Most studies of this phenomenon have been concerned with either dimers or infinitely extended structures (polymers and lattices) but well-defined cyclic structures remain elusive. Here we present oligomeric aggregates of heterocycles that are linked by chalcogen-centered interactions and behave as genuine macrocyclic species. The molecules of 3-methyl-5-phenyl-1,2-tellurazole 2-oxide assemble a variety of supramolecular aggregates that includes cyclic tetramers and hexamers, as well as a helical polymer. In all these aggregates, the building blocks are connected by Te…O–N bridges. Nuclear magnetic resonance spectroscopic experiments demonstrate that the two types of annular aggregates are persistent in solution. These self-assembled structures form coordination complexes with transition-metal ions, act as fullerene receptors and host small molecules in a crystal. PMID:27090355

  19. Novel biosensing platform based on self-assembled supramolecular hydrogel.

    PubMed

    Ma, Dong; Zhang, Li-Ming

    2013-07-01

    The supramolecular hydrogel self-assembled from α-cyclodextrin (α-CD) and an amphiphilic triblock copolymer was used for the first time as a biosensing platform by the in-situ incorporation of horseradish peroxidase and polyaniline (PANI) nanoparticles. It was found that the used triblock copolymer could disperse well PANI nanoparticles in aqueous system and then interact with α-CD in the presence of horseradish peroxidase for the formation of supramolecular hydrogel composite. The content of PANI nanoparticles was found to affect the gelation time and gel strength. The circular dichroism analyses showed that the entrapped horseradish peroxidase could retain its native conformation. By electrochemical experiments, the incorporated PANI nanoparticles were confirmed to improve the current response and enzymatic activity, and the fabricated biosensor was found to provide a fast amperometric response to hydrogen peroxide. PMID:23623078

  20. Enzyme-responsive protein/polysaccharide supramolecular nanoparticles.

    PubMed

    Hou, Xiao-Fang; Chen, Yong; Liu, Yu

    2015-03-28

    Biocompatible and enzyme-responsive supramolecular assemblies have attracted more and more interest in biomaterial fields, and find many feasible applications especially in the controlled drug release at specific sites where the target enzyme is located. In this work, novel supramolecular nanoparticles were successfully constructed from two biocompatible materials, i.e. a cyclic polysaccharide named sulfato-β-cyclodextrin (SCD) and a protein named protamine, through non-covalent association, and fully characterized by means of atomic force microscopy (AFM) and high-resolution transmission electron microscopy (TEM). Significantly, the disassembly of the resulting nanoparticles can respond especially to trypsin over other enzymes. Owing to their trypsin-triggered disassembly behaviors, these nanoparticles can efficiently release the encapsulated model substrate in a controlled manner. That is, the model substrate can be encapsulated inside the nanoparticles with a high stability and released when treated with trypsin. PMID:25679755

  1. Paramagnetic self-assembled nanoparticles as supramolecular MRI contrast agents.

    PubMed

    Besenius, Pol; Heynens, Joeri L M; Straathof, Roel; Nieuwenhuizen, Marko M L; Bomans, Paul H H; Terreno, Enzo; Aime, Silvio; Strijkers, Gustav J; Nicolay, Klaas; Meijer, E W

    2012-01-01

    Nanometer-sized materials offer a wide range of applications in biomedical technologies, particularly imaging and diagnostics. Current scaffolds in the nanometer range predominantly make use of inorganic particles, organic polymers or natural peptide-based macromolecules. In contrast we hereby report a supramolecular approach for the preparation of self-assembled dendritic-like nanoparticles for applications as MRI contrast agents. This strategy combines the benefits from low molecular weight imaging agents with the ones of high molecular weight. Their in vitro properties are confirmed by in vivo measurements: post injection of well-defined and meta-stable nanoparticles allows for high-resolution blood-pool imaging, even at very low Gd(III) doses. These dynamic and modular imaging agents are an important addition to the young field of supramolecular medicine using well-defined nanometer-sized assemblies. PMID:22539406

  2. Functionalised Clathrochelate Complexes--New Building Blocks for Supramolecular Structures.

    PubMed

    Wise, Matthew D; Severin, Kay

    2015-01-01

    Tris(dioxime) iron(II) clathrochelate complexes functionalised with 3- and 4-pyridyl groups have been employed as building blocks in the preparation of supramolecular structures by coordination-driven self-assembly. These complexes possess a number of desirable characteristics, being straightforward to synthesise and offering ample opportunity for steric and functional modification. Clathrochelate-based 4,4'-bipyridyl metalloligands from 1.5 nm to 5.4 nm in length were prepared in up to two steps and their potential as building blocks for supramolecular architectures demonstrated through the preparation of a discrete molecular square and a three dimensional (3D) coordination polymer. Furthermore, the structure-directing capability of clathrochelate building blocks was illustrated through the synthesis of octahedral cage compounds, which are capable of encapsulating the large, hydrophobic BPh4- anion in aqueous solvent mixtures. PMID:26668936

  3. Supramolecular gels made from nucleobase, nucleoside and nucleotide analogs.

    PubMed

    Peters, Gretchen Marie; Davis, Jeffery T

    2016-06-01

    Supramolecular or molecular gels are attractive for various applications, including diagnostics, tissue scaffolding and targeted drug release. Gelators derived from natural products are of particular interest for biomedical purposes, as they are generally biocompatible and stimuli-responsive. The building blocks of nucleic acids (i.e. nucleobases, nucleosides, and nucleotides) are desirable candidates for supramolecular gelation as they readily engage in reversible, noncovalent interactions. In this review, we describe a number of organo- and hydrogels formed through the assembly of nucleosides, nucleotides, and their derivatives. While natural nucleosides and nucleotides generally require derivatization to induce gelation, guanosine and its corresponding nucleotides are well known gelators. This unique gelating ability is due to propensity of the guanine nucleobase to self-associate into stable higher-order assemblies, such as G-ribbons, G4-quartets, and G-quadruplexes. PMID:27146863

  4. Self-assembly vesicles made from a cyclodextrin supramolecular complex.

    PubMed

    Jing, Bo; Chen, Xiao; Wang, Xudong; Yang, Chunjie; Xie, Yizhou; Qiu, Huayu

    2007-01-01

    Self-assembly vesicles have been made from a cyclodextrin (CD) supramolecular complex, which is cooperatively formed with natural beta-CD, 1-naphthylammonium chloride (NA), and sodium bis(2-ethyl-1-hexyl)sulfosuccinate (AOT) by weak noncovalent interactions. In the complex structure, a NA molecule is included inside a beta-CD molecule while it is coupled with an AOT molecule on one side. The supramolecular structure and morphology of the vesicles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. The mechanism of vesicle formation and transition is discussed along with the data obtained from induced circular dichroism (ICD) and UV/visible spectroscopy, polarized optical microscopy (POM), and (1)H NMR spectroscopy. Both the fabrication and the transition of vesicles are controlled by the inclusion equilibria and the cooperative binding of noncovalent interactions, which include the "key-lock" principle, electrostatic interactions, pi-pi stacking, and amphiphilic hydrophobic association. PMID:17663495

  5. Influence of perylenediimide–pyrene supramolecular interactions on the stability of DNA-based hybrids: Importance of electrostatic complementarity

    PubMed Central

    Winiger, Christian B; Langenegger, Simon M; Khorev, Oleg

    2014-01-01

    Summary Aromatic π–π stacking interactions are ubiquitous in nature, medicinal chemistry and materials sciences. They play a crucial role in the stacking of nucleobases, thus stabilising the DNA double helix. The following paper describes a series of chimeric DNA–polycyclic aromatic hydrocarbon (PAH) hybrids. The PAH building blocks are electron-rich pyrene and electron-poor perylenediimide (PDI), and were incorporated into complementary DNA strands. The hybrids contain different numbers of pyrene–PDI interactions that were found to directly influence duplex stability. As the pyrene–PDI ratio approaches 1:1, the stability of the duplexes increases with an average value of 7.5 °C per pyrene–PDI supramolecular interaction indicating the importance of electrostatic complementarity for aromatic π–π stacking interactions. PMID:25161715

  6. Azobenzene-based supramolecular polymers for processing MWCNTs

    NASA Astrophysics Data System (ADS)

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M.; Yoosaf, K.; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2012-12-01

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis --> trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans --> cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis --> trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans --> cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy

  7. Charged supramolecular assemblies of surfactant molecules in gas phase.

    PubMed

    Bongiorno, David; Ceraulo, Leopoldo; Indelicato, Sergio; Turco Liveri, Vincenzo; Indelicato, Serena

    2016-01-01

    The aim of this review is to critically analyze recent literature on charged supramolecular assemblies formed by surfactant molecules in gas phase. Apart our specific interest on this research area, the stimuli to undertake the task arise from the widespread theoretical and applicative benefits emerging from a comprehensive view of this topic. In fact, the study of the formation, stability, and physicochemical peculiarities of non-covalent assemblies of surfactant molecules in gas phase allows to unveil interesting aspects such as the role of attractive, repulsive, and steric intermolecular interactions as driving force of supramolecular organization in absence of interactions with surrounding medium and the size and charge state dependence of aggregate structural and dynamical properties. Other interesting aspects worth to be investigated are joined to the ability of these assemblies to incorporate selected solubilizates molecules as well as to give rise to chemical reactions within a single organized structure. In particular, the incorporation of large molecules such as proteins has been of recent interest with the objective to protect their structure and functionality during the transition from solution to gas phase. Exciting fall-out of the study of gas phase surfactant aggregates includes mass and energy transport in the atmosphere, origin of life and simulation of supramolecular aggregation in the interstellar space. Moreover, supramolecular assemblies of amphiphilic molecules in gas phase could find remarkable applications as atmospheric cleaning agents, nanosolvents and nanoreactors for specialized chemical processes in confined space. Mass spectrometry techniques have proven to be particularly suitable to generate these assemblies and to furnish useful information on their size, size polydispersity, stability, and structural organization. On the other hand molecular dynamics simulations have been very useful to rationalize many experimental findings and to

  8. A photoswitchable supramolecular complex with release-and-report capabilities.

    PubMed

    Nilsson, Jesper R; O'Sullivan, Melanie C; Li, S; Anderson, Harry L; Andréasson, Joakim

    2015-01-18

    A self-assembled supramolecular platform has been designed for reversibly controlling the concentration of a compound in solution, via a photochemical reaction. The system utilizes metal-ligand interactions between a Zn-porphyrin dimer and a pyridine-appended dithienylethene (DTE) photoswitch. In addition to reversible compound release, the spectral properties of the release scaffold provide a fluorescence-based reporting function. PMID:25426505

  9. Activation-deactivation of self-healing in supramolecular rubbers

    NASA Astrophysics Data System (ADS)

    Corte, Laurent; Maes, Florine; Montarnal, Damien; Cantournet, Sabine; Tournilhac, Francois; Leibler, Ludwik; Mines-Paristech Cnrs (Umr7633) Team; Espci-Paristech Cnrs (Umr7167) Team

    2011-03-01

    Self-healing materials have the ability to restore autonomously their structural integrity after damage. Such a remarkable property was obtained recently in supramolecular rubbers formed by a network of small molecules associated via hydrogen bonds. Here we explore this self-healing through an original tack experiment where two parts of supramolecular rubber are brought into contact and then separated. These experiments reveal that a strong self-healing ability is activated by damage even though the surfaces of a molded part are weakly self-adhesive. In our testing conditions, a five minute contact between crack faces is sufficient to recover most mechanical properties of the bulk while days are required to obtain such adhesion levels with melt-pressed surfaces. We show that the deactivation of this self-healing ability seems unexpectedly slow as compared to the predicted dynamics of supramolecular networks. Fracture faces stored apart at room temperature still self-heal after days but are fully deactivated within hours by annealing. Combining these results with microstructural observations gives us a deeper insight into the mechanisms involved in this self-healing process.

  10. Characterization of photosynthetic supramolecular assemblies using small angle neutron scattering

    SciTech Connect

    Tiede, D.M.; Marone, P.; Wagner, A.M.; Thiyagarajan, P.

    1995-12-31

    We are using small angle neutron scattering (SANS) to resolve structural features of supramolecular assemblies of photosynthetic proteins in liquid and frozen solutions. SANS resolves the size, shape, and structural homogeneity of macromolecular assemblies in samples identical to those used for spectroscopic assays of photosynthetic function. Likely molecular structures of the supramolecular assemblies can be identified by comparing experimental scattering data with scattering profiles calculated for model supramolecular assemblies built from crystal structures of the individual proteins. SANS studies of the Rhodobacter sphaeroides reaction center, RC, presented here, show that the detergent solubilized RC exists in a variety of monomeric and aggregation states. The distribution between monomer and aggregate was found to depend strongly upon detergent, temperature and nature of additives, such as ethylene glycol used for low temperature spectroscopy and polyethylene glycol used for crystallization. Likely aggregate structures are being identified by fitting the experimental scattering profiles with those calculated for model aggregates built-up using the RC crystal structure. This work establishes the foundation for using SANS to identify intermediates in the RC crystallization pathways, and for determining likely structures of complexes formed between the RC and its physiological reaction partners, cytochrome c, and the LHI antenna complex.

  11. Fragmentation and Coagulation in Supramolecular (Co)polymerization Kinetics

    PubMed Central

    2016-01-01

    The self-assembly of molecular building blocks into one-dimensional supramolecular architectures has opened up new frontiers in materials science. Due to the noncovalent interactions between the monomeric units, these architectures are intrinsically dynamic, and understanding their kinetic driving forces is key to rationally programming their morphology and function. To understand the self-assembly dynamics of supramolecular polymerizations (SP), kinetic models based on aggregate growth by sequential monomer association and dissociation have been analyzed. However, fragmentation and coagulation events can also play a role, as evident from studies on peptide self-assembly and the fact that aggregations can be sensitive to mechanical agitations. Here, we analyze how fragmentation and coagulation events influence SP kinetics by theoretical analysis of self-assembling systems of increasing complexity. Our analysis starts with single-component systems in which aggregates are able to grow via an isodesmic or cooperative nucleation–elongation mechanism. Subsequently, equilibration dynamics in cooperative two-component supramolecular copolymerizations are investigated. In the final part, we reveal how aggregate growth in the presence of competing, kinetically controlled pathways is influenced by fragmentation and coagulation reactions and reveal how seed-induced growth can give rise to block copolymers. Our analysis shows how fragmentation and coagulation reactions are able to modulate SP kinetics in ways that are highly system dependent. PMID:27163054

  12. Two supramolecular microporous frameworks stabilized by hydroxyl anionic water cluster

    NASA Astrophysics Data System (ADS)

    Jian, Fang Fang; Wang, Jing; Huang, Li Hua; Wang, Xian; Xiao, Hai Lian

    2010-06-01

    Two stable supramolecular microporous framework complexes, from the same [MCl(phen) 2] + (M = Cu, Ni), containing chiral hydroxyl anionic water cluster polymer, were synthesized, and their crystal structures were described. These supramolecular frameworks showed very high stability even if they were heated to 300 °C. Thermal analysis and powder X-ray diffraction results indicated that the water molecules were removed when heated from 150 °C to 300 °C without losing the main crystal framework. Water molecules can be reassembled by exposing the dehydrated form to an atmosphere saturated with water vapor. It indicated that the dehydrated form may be utilized as a potential absorbing agent for water and water vapor. The stable dehydrated form, [MCl(phen) 2][(OH)(H 2O)], suggested the stronger anionic H-bonding and intracluster proton transfer process OH -·H 2O → H 2O·OH -. The "anion- π interaction" was found in the crystal lattice of [MCl(phen) 2][(OH)(H 2O)]. This paper reported an example of supramolecular polymer with open channels that could be formed/collapse reversibly upon hydration/dehydration.

  13. Supramolecular clippers for controlling photophysical processes through preorganized chromophores.

    PubMed

    Kumar, Mohit; Ushie, Onumashi Afi; George, Subi J

    2014-04-22

    A novel supramolecular clipping design for influencing the photophysical properties of functional molecular assemblies, by the preorganization (clipping) of chromophores, is described. Several chromophores end functionalized with molecular recognition units were designed. These molecular recognition units serve as handles to appropriately position these systems upon noncovalent interactions with multivalent guest molecules (supramolecular clippers). Towards this goal, we have synthesized 1,5-dialkoxynaphthalene (DAN) and naphthalenediimide (NDI) functionalized with dipicolylethylenediamine (DPA) motifs. These molecules could preorganize upon noncovalent clipping with adenosine di- or triphosphates, which resulted in preassociated excimers and mixed (cofacial) charge-transfer (CT) assemblies. Chiral guest binding could also induce supramolecular chirality, not only into the individual chromophoric assembly but also into the heteromeric CT organization, as seen from the strong circular dichroism (CD) signal of the CT transition. The unique ability of this design to influence the intermolecular interactions by changing the binding strength of the clippers furthermore makes it very attractive for controlling the bimolecular photophysical processes. PMID:24623564

  14. Porphyrin-Based Supramolecular Nanoarchitectures for Solar Energy Conversion.

    PubMed

    Hasobe, Taku

    2013-06-01

    Photofunctional molecular architectures with well-defined shapes and sizes are of great interest because of various applications such as photovoltaics, photocatalysis, and electronics. Porphyrins are promising building blocks for organized nanoscale superstructures, which perform many of the essential light-harvesting and photoinduced electron/energy transfer reaction. In this Perspective, we present the recent advances in supramolecular architectures of porphyrins for solar energy conversion. First, we state preparation and light energy conversion properties of porphyrin (donor: D) and fullerene (acceptor: A)-based composite spherical nanoassemblies. The interfacial control of D/A molecules based on our supramolecular strategy successfully demonstrates the drastic enhancement of light energy conversion properties as compared to the corresponding nonorganized systems. Then, bar-shaped structures composed of two different D and A molecules with separated inside and outside layers are discussed. This unusual rod formation shows a possibility for a novel zeolite-like photoreaction cavity with efficient visible light absorption. Finally, photophysical and phoelectrochemical properties of supramolecular composites between porphyrins and carbon naotubes/graphenes are briefly described. PMID:26283108

  15. A new configurational bias scheme for sampling supramolecular structures

    NASA Astrophysics Data System (ADS)

    De Gernier, Robin; Curk, Tine; Dubacheva, Galina V.; Richter, Ralf P.; Mognetti, Bortolo M.

    2014-12-01

    We present a new simulation scheme which allows an efficient sampling of reconfigurable supramolecular structures made of polymeric constructs functionalized by reactive binding sites. The algorithm is based on the configurational bias scheme of Siepmann and Frenkel and is powered by the possibility of changing the topology of the supramolecular network by a non-local Monte Carlo algorithm. Such a plan is accomplished by a multi-scale modelling that merges coarse-grained simulations, describing the typical polymer conformations, with experimental results accounting for free energy terms involved in the reactions of the active sites. We test the new algorithm for a system of DNA coated colloids for which we compute the hybridisation free energy cost associated to the binding of tethered single stranded DNAs terminated by short sequences of complementary nucleotides. In order to demonstrate the versatility of our method, we also consider polymers functionalized by receptors that bind a surface decorated by ligands. In particular, we compute the density of states of adsorbed polymers as a function of the number of ligand-receptor complexes formed. Such a quantity can be used to study the conformational properties of adsorbed polymers useful when engineering adsorption with tailored properties. We successfully compare the results with the predictions of a mean field theory. We believe that the proposed method will be a useful tool to investigate supramolecular structures resulting from direct interactions between functionalized polymers for which efficient numerical methodologies of investigation are still lacking.

  16. A new configurational bias scheme for sampling supramolecular structures

    SciTech Connect

    De Gernier, Robin; Mognetti, Bortolo M.; Curk, Tine; Dubacheva, Galina V.; Richter, Ralf P.

    2014-12-28

    We present a new simulation scheme which allows an efficient sampling of reconfigurable supramolecular structures made of polymeric constructs functionalized by reactive binding sites. The algorithm is based on the configurational bias scheme of Siepmann and Frenkel and is powered by the possibility of changing the topology of the supramolecular network by a non-local Monte Carlo algorithm. Such a plan is accomplished by a multi-scale modelling that merges coarse-grained simulations, describing the typical polymer conformations, with experimental results accounting for free energy terms involved in the reactions of the active sites. We test the new algorithm for a system of DNA coated colloids for which we compute the hybridisation free energy cost associated to the binding of tethered single stranded DNAs terminated by short sequences of complementary nucleotides. In order to demonstrate the versatility of our method, we also consider polymers functionalized by receptors that bind a surface decorated by ligands. In particular, we compute the density of states of adsorbed polymers as a function of the number of ligand–receptor complexes formed. Such a quantity can be used to study the conformational properties of adsorbed polymers useful when engineering adsorption with tailored properties. We successfully compare the results with the predictions of a mean field theory. We believe that the proposed method will be a useful tool to investigate supramolecular structures resulting from direct interactions between functionalized polymers for which efficient numerical methodologies of investigation are still lacking.

  17. A new configurational bias scheme for sampling supramolecular structures.

    PubMed

    De Gernier, Robin; Curk, Tine; Dubacheva, Galina V; Richter, Ralf P; Mognetti, Bortolo M

    2014-12-28

    We present a new simulation scheme which allows an efficient sampling of reconfigurable supramolecular structures made of polymeric constructs functionalized by reactive binding sites. The algorithm is based on the configurational bias scheme of Siepmann and Frenkel and is powered by the possibility of changing the topology of the supramolecular network by a non-local Monte Carlo algorithm. Such a plan is accomplished by a multi-scale modelling that merges coarse-grained simulations, describing the typical polymer conformations, with experimental results accounting for free energy terms involved in the reactions of the active sites. We test the new algorithm for a system of DNA coated colloids for which we compute the hybridisation free energy cost associated to the binding of tethered single stranded DNAs terminated by short sequences of complementary nucleotides. In order to demonstrate the versatility of our method, we also consider polymers functionalized by receptors that bind a surface decorated by ligands. In particular, we compute the density of states of adsorbed polymers as a function of the number of ligand-receptor complexes formed. Such a quantity can be used to study the conformational properties of adsorbed polymers useful when engineering adsorption with tailored properties. We successfully compare the results with the predictions of a mean field theory. We believe that the proposed method will be a useful tool to investigate supramolecular structures resulting from direct interactions between functionalized polymers for which efficient numerical methodologies of investigation are still lacking. PMID:25554182

  18. Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers

    NASA Astrophysics Data System (ADS)

    Daniel, Clément; Herz, Laura M.; Silva, Carlos; Hoeben, Freek J.; Jonkheijm, Pascal; Schenning, Albertus P.; Meijer, E. W.

    2003-12-01

    We present femtosecond transient absorption measurements on π-conjugated supramolecular assemblies in a high-pump-fluence regime. Oligo(p-phenylenevinylene) monofunctionalized with ureido-s-triazine (MOPV) self-assembles into chiral stacks in dodecane solution below 75 °C at a concentration of 4×10-4 M. We observe exciton bimolecular annihilation in MOPV stacks at high excitation fluence, indicated by the fluence-dependent decay of 11Bu-exciton spectral signatures and by the sublinear fluence dependence of time- and wavelength-integrated photoluminescence (PL) intensity. These two characteristics are much less pronounced in MOPV solution where the phase equilibrium is shifted significantly away from supramolecular assembly, slightly below the transition temperature. A mesoscopic rate-equation model is applied to extract the bimolecular annihilation rate constant from the excitation fluence dependence of transient absorption and PL signals. The results demonstrate that the bimolecular annihilation rate is very high with a square-root dependence in time. The exciton annihilation results from a combination of fast exciton diffusion and resonance energy transfer. The supramolecular nanostructures studied here have electronic properties that are intermediate between molecular aggregates and polymeric semiconductors.

  19. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  20. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  1. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes some laboratory apparatus, chemistry experiments and demonstrations, such as a Kofler block melting point apparatus, chromatographic investigation of the phosphoric acid, x-ray diffraction, the fountain experiment, endothermic sherbet, the measurement of viscosity, ionization energies and electronic configurations. (GA)

  2. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and…

  3. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Presents 12 chemistry notes for British secondary school teachers. Some of these notes are: (1) a simple device for testing pH-meters; (2) portable fume cupboard safety screen; and (3) Mass spectroscopy-analysis of a mass peak. (HM)

  4. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes several chemistry projects, including solubility, formula for magnesium oxide, dissociation of dinitrogen tetroxide, use of 1-chloro-2, 4-dinitrobenzene, migration of ions, heats of neutralizations, use of pocket calculators, sonic cleaning, oxidation states of manganese, and cell potentials. Includes an extract from Chemical Age on…

  5. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  6. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the alkylation of aniline, the preparation and properties of perbromate, using scrap copper in chemistry instruction, a safe method of burning hydrogen, and the use of an ion-charge model as an alternative to the mole concept in secondary school instruction. (AL)

  7. Construction of Smart Supramolecular Polymeric Hydrogels Cross-linked by Discrete Organoplatinum(II) Metallacycles via Post-Assembly Polymerization.

    PubMed

    Zheng, Wei; Chen, Li-Jun; Yang, Guang; Sun, Bin; Wang, Xu; Jiang, Bo; Yin, Guang-Qiang; Zhang, Li; Li, Xiaopeng; Liu, Minghua; Chen, Guosong; Yang, Hai-Bo

    2016-04-13

    Postassembly modification strategy has been successfully employed in the construction of discrete metallosupramolecular assemblies. However, the most known reports have been limited to the simple structural conversion through the easy covalent reactions, thus hindering the development of organometallic functional materials. In this study, we first combined coordination-driven self-assembly and postassembly reversible addition-fragmentation chain-transfer (RAFT) polymerization to produce a new family of star supramolecular polymers containing well-defined metallacycles as cores, which featured typical lower critical solution temperature (LCST) behavior in water because of the existence of poly(N-isopropylacrylamide) (PNIPAAM) moieties. Moreover, the obtained star polymers could further form supramolecular hydrogels cross-linked by discrete hexagonal metallacycles at room temperature without heating-cooling process. Interestingly, the resultant polymeric hydrogels exhibited stimuli-responsive behavior toward temperature and bromide anion as well as self-healing property. We demonstrated that the dynamic nature of Pt-N bonds in the hexagonal metallacycles played an important role in determining the stimuli-responsive and self-healing property of the final soft matters. Thus, merging coordination-driven self-assembly and postassembly polymerization provided a new avenue to the preparation of functional materials containing well-defined, discrete metal-organic assemblies as main scaffolds. PMID:27011050

  8. Synthesis, characterization and applications of ionic supramolecular assemblies

    NASA Astrophysics Data System (ADS)

    Lin, Xinrong

    Supramolecular ionic assemblies not only provide alternatives to conventional polymers, but also introduce unique and interesting functions for the design of "smart" polymeric assemblies for use in a number of fields due to their programmable and reversible properties. Research in the area has led to an understanding of the connection between molecular contributions and macroscopic properties, as well as a range of applications from material processing/manufacuturing to energy transfer and storage. To this end, we have developed a library of charged building blocks based on ionic liquids to create functional supramolecular ionic assemblies. The polymeric ionic assemblies prepared from a di-phosphonium and poly (acrylic acid) were first studied and found to have the potential to be utilized as "smart" materials due to their ability to reversibly respond to stimuli such as temperature and pressure. With the interest of elucidating the molecular contributions to the bulk macroscopic material properties, six supramolecular assemblies were sequentially characterized in terms of thermal, rheological and X-ray studies. The effect of side alkyl chain was found to dramatically change the material properties. A second type of supramolecular assembly was investigated based on a poly-phosphonium ionic liquid, which was complexed with a number of carboxylic acids. The material properties were easily manipulated from a sticky fiber to a brittle solid by changing the composition of the carboxylic acid. A crosslinked supramolecular assembly combining ionic interactions and weak covalent bonds, specifically disulfide bonds, was next designed and characterized. The network properties could be switched between "on and off" using mild conditions. The polymeric ionic networks and their building block ionic liquids are also of interest as safe electrolytes in energy storage devices due to their non-flammability, non-volatility, etc. We have identified one ionic liquid with superior

  9. Controlling the Physical Dimensions of Peptide Nanotubes by Supramolecular Polymer Coassembly.

    PubMed

    Adler-Abramovich, Lihi; Marco, Pini; Arnon, Zohar A; Creasey, Rhiannon C G; Michaels, Thomas C T; Levin, Aviad; Scurr, David J; Roberts, Clive J; Knowles, Tuomas P J; Tendler, Saul J B; Gazit, Ehud

    2016-08-23

    Molecular self-assembly of peptides into ordered nanotubes is highly important for various technological applications. Very short peptide building blocks, as short as dipeptides, can form assemblies with unique mechanical, optical, piezoelectric, and semiconductive properties. Yet, the control over nanotube length in solution has remained challenging, due to the inherent sequential self-assembly mechanism. Here, in line with polymer chemistry paradigms, we applied a supramolecular polymer coassembly methodology to modulate peptide nanotube elongation. Utilizing this approach, we achieved a narrow, controllable nanotube length distribution by adjusting the molecular ratio of the diphenylalanine assembly unit and its end-capped analogue. Kinetic analysis suggested a slower coassembly organization process as compared to the self-assembly dynamics of each of the building blocks separately. This is consistent with a hierarchal arrangement of the peptide moieties within the coassemblies. Mass spectrometry analysis demonstrated the bimolecular composition of the coassembled nanostructures. Moreover, the peptide nanotubes' length distribution, as determined by electron microscopy, was shown to fit a fragmentation kinetics model. Our results reveal a simple and efficient mechanism for the control of nanotube sizes through the coassembly of peptide entities at various ratios, allowing for the desired end-product formation. This dynamic size control offers tools for molecular engineering at the nanoscale exploiting the advantages of molecular coassembly. PMID:27351519

  10. Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation.

    PubMed

    Walsh, Zarah; Janeček, Emma-Rose; Hodgkinson, James T; Sedlmair, Julia; Koutsioubas, Alexandros; Spring, David R; Welch, Martin; Hirschmugl, Carol J; Toprakcioglu, Chris; Nitschke, Jonathan R; Jones, Mark; Scherman, Oren A

    2014-12-16

    The preservation of our cultural heritage is of great importance to future generations. Despite this, significant problems have arisen with the conservation of waterlogged wooden artifacts. Three major issues facing conservators are structural instability on drying, biological degradation, and chemical degradation on account of Fe(3+)-catalyzed production of sulfuric and oxalic acid in the waterlogged timbers. Currently, no conservation treatment exists that effectively addresses all three issues simultaneously. A new conservation treatment is reported here based on a supramolecular polymer network constructed from natural polymers with dynamic cross-linking formed by a combination of both host-guest complexation and a strong siderophore pendant from a polymer backbone. Consequently, the proposed consolidant has the ability to chelate and trap iron while enhancing structural stability. The incorporation of antibacterial moieties through a dynamic covalent linkage into the network provides the material with improved biological resistance. Exploiting an environmentally compatible natural material with completely reversible chemistries is a safer, greener alternative to current strategies and may extend the lifetime of many culturally relevant waterlogged artifacts around the world. PMID:25385610

  11. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-01-01

    Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed.

  12. Multifunctional supramolecular polymer networks as next-generation consolidants for archaeological wood conservation

    PubMed Central

    Walsh, Zarah; Janeček, Emma-Rose; Hodgkinson, James T.; Sedlmair, Julia; Koutsioubas, Alexandros; Spring, David R.; Welch, Martin; Hirschmugl, Carol J.; Toprakcioglu, Chris; Nitschke, Jonathan R.; Jones, Mark; Scherman, Oren A.

    2014-01-01

    The preservation of our cultural heritage is of great importance to future generations. Despite this, significant problems have arisen with the conservation of waterlogged wooden artifacts. Three major issues facing conservators are structural instability on drying, biological degradation, and chemical degradation on account of Fe3+-catalyzed production of sulfuric and oxalic acid in the waterlogged timbers. Currently, no conservation treatment exists that effectively addresses all three issues simultaneously. A new conservation treatment is reported here based on a supramolecular polymer network constructed from natural polymers with dynamic cross-linking formed by a combination of both host-guest complexation and a strong siderophore pendant from a polymer backbone. Consequently, the proposed consolidant has the ability to chelate and trap iron while enhancing structural stability. The incorporation of antibacterial moieties through a dynamic covalent linkage into the network provides the material with improved biological resistance. Exploiting an environmentally compatible natural material with completely reversible chemistries is a safer, greener alternative to current strategies and may extend the lifetime of many culturally relevant waterlogged artifacts around the world. PMID:25385610

  13. Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems.

    PubMed

    Ambrosetti, Alberto; Alfè, Dario; DiStasio, Robert A; Tkatchenko, Alexandre

    2014-03-01

    Noncovalent interactions are ubiquitous in molecular and condensed-phase environments, and hence a reliable theoretical description of these fundamental interactions could pave the way toward a more complete understanding of the microscopic underpinnings for a diverse set of systems in chemistry and biology. In this work, we demonstrate that recent algorithmic advances coupled to the availability of large-scale computational resources make the stochastic quantum Monte Carlo approach to solving the Schrödinger equation an optimal contender for attaining "chemical accuracy" (1 kcal/mol) in the binding energies of supramolecular complexes of chemical relevance. To illustrate this point, we considered a select set of seven host-guest complexes, representing the spectrum of noncovalent interactions, including dispersion or van der Waals forces, π-π stacking, hydrogen bonding, hydrophobic interactions, and electrostatic (ion-dipole) attraction. A detailed analysis of the interaction energies reveals that a complete theoretical description necessitates treatment of terms well beyond the standard London and Axilrod-Teller contributions to the van der Waals dispersion energy. PMID:26274077

  14. Carbon nanotube/biocompatible bola-amphiphile supramolecular biohybrid materials: preparation and their application in bacterial cell agglutination.

    PubMed

    Yu, Guocan; Li, Jinying; Yu, Wei; Han, Chengyou; Mao, Zhengwei; Gao, Changyou; Huang, Feihe

    2013-11-26

    Supramolecular biohybrid materials were successfully constructed driven by non-covalent interactions between three biocompatible bolaform amphiphiles and single walled carbon nanotubes (SWNTs). The existence of galactoses in these supramolecular systems endowed the hybrid materials with interesting bio-function. By introducing the SWNTs as semi-flexible platforms, these supramolecular biohybrid materials display excellent agglutination ability for E. coli. PMID:23996208

  15. Dual-responsive aggregation-induced emission-active supramolecular nanoparticles for gene delivery and bioimaging.

    PubMed

    Dong, Ruijiao; Ravinathan, Screenath P; Xue, Lizhe; Li, Nan; Zhang, Yingjian; Zhou, Linzhu; Cao, Chengxi; Zhu, Xinyuan

    2016-06-28

    Dual-responsive aggregation-induced emission-active supramolecular fluorescent nanoparticles are reported, which have the ability to undergo a unique morphological transition combining with a cooperative optical variation in response to pH and light stimuli. The dynamic supramolecular nanoparticles show excellent biocompatibility and effective plasmid DNA condensation capability, further achieving efficient in vitro gene delivery and bioimaging. PMID:27251637

  16. Stimuli-Responsive Polyoxometalate/Ionic Liquid Supramolecular Spheres: Fabrication, Characterization, and Biological Applications.

    PubMed

    Gong, Yanjun; Hu, Qiongzheng; Wang, Chen; Zang, Ling; Yu, Li

    2016-01-19

    We report fabrication, characterization, and potential applications of polyoxometalate (POM)/ionic liquid (IL) supramolecular spheres in water for the first time. These supramolecular spheres have highly ordered structures and show excellent reversible self-assembly and tunable photoluminescence properties, which can be manipulated by adjusting pH of the aqueous solution. Specifically, the formation of POM/IL supramolecular spheres results in quenching of fluorescence emitted by Eu-POM because hopping of the d1 electron in the POM molecule is blocked by hydrogen bond existing between the oxygen atom of POM and the carboxylic acid group of IL. However, the fluorescence can be completely recovered by gradually increasing pH of the aqueous solution due to the pH-induced deprotonation of the carboxylic acid group of IL, which results in disassembly of the fabricated supramolecular spheres. Applications of these stimuli-responsive photoluminescent POM-based supramolecular materials are demonstrated in biological media. Dual signaling responses of turbidity and fluorescence are observed simultaneously in the detection of urease and heavy metals based on pH-induced disassembly of the supramolecular spheres during the biochemical events in aqueous solution. In addition, guest molecules are encapsulated into the supramolecular spheres, and controlled release of these entrapped molecules is demonstrated in the presence of external stimuli. This study shows potential of stimuli-responsive POM/IL supramolecular materials in biological applications. PMID:26704346

  17. Introductory College Chemistry Students' Understanding of Stoichiometry: Connections between Conceptual and Computational Understandings and Instruction.

    ERIC Educational Resources Information Center

    Wolfer, Adam J.; Lederman, Norman G.

    Many studies of college chemistry students have found a gap between students' success in solving computational chemistry problems and their success in solving conceptual chemistry problems. This paper examines college students' understanding of the concept of stoichiometry, the particulate nature of matter, and chemistry problem solving. This…

  18. Supramolecular Surface Photochemistry: Cascade Energy Transfer between Encapsulated Dyes Aligned on a Clay Nanosheet Surface.

    PubMed

    Tsukamoto, Takamasa; Ramasamy, Elamparuthi; Shimada, Tetsuya; Takagi, Shinsuke; Ramamurthy, V

    2016-03-29

    Three coumarin derivatives (7-propoxy coumarin, coumarin-480, and coumarin-540a, 2, 3, and 4, respectively) having different absorption and emission spectra were encapsulated within a water-soluble organic capsule formed by the two positively charged ammonium-functionalized cavitand octaamine (OAm, 1). Guests 2, 3, and 4 absorb in ultraviolet, violet, and blue regions and emit in violet, blue, and green regions, respectively. Energy transfer between the above three coumarin@(OAm)2 complexes assembled on the surface of a saponite clay nanosheet was investigated by steady-state and time-resolved emission techniques. Judging from their emission and excitation spectra, we concluded that the singlet-singlet energy transfer proceeded from 2 to 3, from 2 to 4, and from 3 to 4 when OAm-encapsulated 2, 3, and 4 were aligned on a clay surface as two-component systems. Under such conditions, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were calculated to be 33, 36, and 50% in two-component systems. When all three coumarins were assembled on the surface and 2 was excited, the energy transfer efficiencies for the paths 2* to 3, 2* to 4, and 3* to 4 were estimated to be 32, 34, and 33%. A comparison of energy transfer efficiencies of the two-component and three-component systems revealed that excitation of 2 leads to emission from 4. Successful merging of supramolecular chemistry and surface chemistry by demonstrating novel multi-step energy transfer in a three-component dye encapsulated system on a clay surface opens up newer opportunities for exploring such systems in an artificial light-harvesting phenomenon. PMID:26963843

  19. Terpyridine-based metallo-supramolecular architectures: From structure to function

    NASA Astrophysics Data System (ADS)

    El-batal, Hany

    The research and applications of functional materials continue to grow rapidly in order to match the materials and energy needs of an increasing population. In this regard, perylene is a stable, organic material that possesses a rich chemistry and unique chemical, physical, and electronic properties. The molecular organization into predesigned geometries such as: cages, dendrimers, macrocycles and polymers, can add a profound enhancement to the material functional characteristics. At the heart of metallosupramolecular chemistry, tpy-M-tpy binding is a pivotal tool to construct complex and functional architectures. This dissertation reviews the chemical, structural, physical, and electrochemical properties of perylene with an emphasize on its metallosupramolecular chemistry. The synthesis of perylene-containing bis-, tetra kis-, and hexakis-terpyridine ligands along with their corresponding heteroleptic complexes was achieved. These high molecular weight nano-dendritic architectures were characterized using 1H NMR, 13C NMR, COSY, and ESI-MS. These complexes exhibit broad absorption spectra (250-625 nm) and high molar absorption coefficients that are proportional to the number of photoactive units. The synthesis of supramolecular dyes based on motifs connected to perylene-core either in bay- or peri-positions was demonastrated. The structures of these materials were confirmed using a combination of 1H NMR, 13C NMR, COSY, ESI-MS, and their electrochemical properties were studied via Cyclic Voltametry. These dyes were utilized as active ingredients for DSSCs, of which the photovoltaic properties were described. Fluorescent cyclic metallosupramolecular architectures were obtained via mediated self-assembly of two aminobisterpyridine containing perylene ligands that were synthesized in a multistep procedure, the chemical structure and purity of both ligands and complexes were assured using a combination of 1H NMR, 13C NMR, COSY, and ESI-MS. DOSY was utilized to

  20. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer.

    PubMed

    Baker, Matthew B; Albertazzi, Lorenzo; Voets, Ilja K; Leenders, Christianus M A; Palmans, Anja R A; Pavan, Giovanni M; Meijer, E W

    2015-01-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers. PMID:25698667

  1. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    PubMed Central

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M.A.; Palmans, Anja R.A.; Pavan, Giovanni M.; Meijer, E.W.

    2015-01-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers. PMID:25698667

  2. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    NASA Astrophysics Data System (ADS)

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M. A.; Palmans, Anja R. A.; Pavan, Giovanni M.; Meijer, E. W.

    2015-02-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  3. Bolaform supramolecular amphiphiles as a novel concept for the buildup of surface-imprinted films.

    PubMed

    Zhang, Jiawei; Liu, Yiliu; Wu, Guanglu; Schönhoff, Monika; Zhang, Xi

    2011-09-01

    Stable multilayer films were fabricated on the basis of the alternating layer-by-layer assembly of a two-component bolaform supramolecular amphiphile and diazoresins, followed by photochemical cross-linking of the structure. UV-visible spectroscopy and atomic force microscopy revealed a uniform deposition process. Moreover, one component of the supramolecular amphiphile can be removed from the multilayer films after cross-linking between the second component and the diazoresin. The release and uptake of the imprinted supramolecular amphiphile component are shown to be reversible. Furthermore, uptake experiments of different molecules show the selectivity of the imprinted sites for the template molecule. Thus, surface-imprinted films can be formed by employing dissociable two-component supramolecular amphiphiles. This research reveals that supramolecular amphiphiles can be used as a novel concept for the construction of multilayer films, and it also provides a new method of generating surface-imprinted multilayers. PMID:21815646

  4. The Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Sessler, Jonathan L.

    2004-12-01

    In this first year of funding, progress has been made towards the stated project goal of generating useful sulfate extractants. A new series of bispyrrole-pyridine sulfate anion receptors was discovered and found to show very high sulfate-to-nitrate selectivity, a key prerequisite to generating a useful extractant. Progress was made towards developing the synthetic methodology needed to solubilize this system and other known receptors prepared by project collaborator, Prof. Kristin Bowman-James.

  5. ANNUAL REPORT. SUPRAMOLECULAR CHEMISTRY OF SELECTIVE ANION RECOGNITION FOR ANIONS OF ENVIRONMENTAL RELEVANCE

    EPA Science Inventory

    This project involves the design and synthesis of receptors for anions of environmental importance, including emphasis on high level and low activity waste. Polyammonium macrocycles as receptors and nitrate as target anion were the focus of the first phase of this project. A seco...

  6. PROGRESS REPORT. SUPRAMOLECULAR CHEMISTRY OF SELECTIVE ANION RECOGNITION FOR ANIONS OF ENVIRONMENTAL RELEVANCE

    EPA Science Inventory

    This project involves the design and synthesis of receptors for oxoanions of environmental importance and specifically those found in high level waste tanks. Polyammonium macrocycles as receptors and nitrate as anion were the focus of the first phase of this project. A second pha...

  7. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-12-11

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  8. Supramolecular Chemistry: Induced Circular Dichroism to Study Host-Guest Geometry

    ERIC Educational Resources Information Center

    Mendicuti, Francisco; Gonzalez-Alvarez, Maria Jose

    2010-01-01

    In this laboratory experiment, students obtain information about the structure of a host-guest complex from the interpretation of circular dichroism measurements. The value and sign of the induced circular dichroism (ICD) on an achiral chromophore guest when it complexes with a cyclodextrin can be related to the guest penetration and its…

  9. A Practical Integrated Approach to Supramolecular Chemistry III. Thermodynamics of Inclusion Phenomena

    ERIC Educational Resources Information Center

    Hernandez-Benito, Jesus; Garcia-Santos, M. Pilar; O'Brein, Emma; Calle, Emilio; Casado, Julio

    2004-01-01

    A practical approach for familiarizing students with the thermodynamics of the inclusion phenomena is described. The experiment facilitates calculation of the activation parameters corresponding to the reactions involved in the inclusion mechanism.

  10. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Jonathan L. Sessler

    2007-09-21

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  11. Intermolecular interactions and electrostatic properties of the β-hydroquinone apohost: implications for supramolecular chemistry.

    PubMed

    Clausen, Henrik F; Chen, Yu-Sheng; Jayatilaka, Dylan; Overgaard, Jacob; Koutsantonis, George A; Spackman, Mark A; Iversen, Bo B

    2011-11-17

    The crystal structure of the β-polymorph of hydroquinone (β-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated with the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/Å(2) (0.27 V/Å) 1 Å along the 3-fold axis and 0.0105 e/Å(2) (0.15 V/Å) 1 Å along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule. PMID:21809888

  12. Intermolecular Interactions and Electrostatic Properties of the [beta]-Hydroquinone Apohost: Implications for Supramolecular Chemistry

    SciTech Connect

    Clausen, Henrik F.; Chen, Yu-Sheng; Jayatilaka, Dylan; Overgaard, Jacob; Koutsantonis, George A.; Spackman, Mark A.; Iversen, Bo B.

    2012-02-07

    The crystal structure of the {beta}-polymorph of hydroquinone ({beta}-HQ), the apohost of a large family of clathrates, is reported with a specific focus on intermolecular interactions and the electrostatic nature of its cavity. Hirshfeld surface analysis reveals subtle close contacts between two interconnecting HQ networks, and the local packing and related close contacts were examined by breakdown of the fingerprint plot. An experimental multipole model containing anisotropic thermal parameters for hydrogen atoms has been successfully refined against 15(2) K single microcrystal synchrotron X-ray diffraction data. The experimental electron density model has been compared with a theoretical electron density calculated with the molecule embedded in its own crystal field. Hirshfeld charges, interaction energies and the electrostatic potential calculated for both models are qualitatively in good agreement, but small differences in the electrostatic potential persist due to charge transfer from all hydrogen atoms to the oxygen atoms in the theoretical model. The electrostatic potential in the center of the cavity is positive, very shallow and highly symmetric, suggesting that the inclusion of polar molecules in the void will involve a balance between opposing effects. The electric field is by symmetry zero in the center of the cavity, increasing to a value of 0.0185 e/{angstrom}{sup 2} (0.27 V/{angstrom}) 1 {angstrom} along the 3-fold axis and 0.0105 e/{angstrom}{sup 2} (0.15 V/{angstrom}) 1 {angstrom} along the perpendicular direction. While these values are substantial in a macroscopic context, they are quite small for a molecular cavity and are not expected to strongly polarize a guest molecule.

  13. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, Kristen

    2004-12-01

    This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical and structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.

  14. Supramolecular chemistry of selective anion recognition for anions of environmental relevance. 1998 annual progress report

    SciTech Connect

    Bowman-James, K.; Wilson, G.S.; Kuczera, K.; Moyer, B.

    1998-06-01

    'This project has as its focus the design and synthesis of polyammonium macrocyclic receptors for oxoanions of environmental importance. The basic research aspects of this project involve: (1) synthesis (and the search for improved synthetic methods); (2) solid state structure determination and thermodynamics studies (to ascertain structural criteria for and strength of anion binding); and (3) molecular dynamics simulations (to assess solution characteristics of the interactions between anions and their receptors). Applications-oriented goals include the fabrication of more selective anion-selective electrodes and the use of these compounds in liquid-liquid separations. The latter goal comprises the subcontract with Dr. Bruce Moyer at Oak Ridge National Laboratory. This report summarizes work after 1 year and 7 months of a 3-year project. To date, the authors have focussed on the design and synthesis of selective receptors for nitrate and phosphate.'

  15. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Moyer, Bruce a.; Bostick, Debra A.; Fowler, Christopher J.; Kang, Hyun-Ah; Ruas, Alexandre; Delmau, Laetitia H.; Haverlock, Tamara J.; Llinares, Jose M.; Hossain, Alamgir; Kang, S. O.; Bowman-James, Kristin; Shriver, James A.; Marquez, Manuel; Sessler, Jonathan L.

    2005-09-22

    The major thrust of this project led by the University of Kansas (Prof. Kristin Bowman-Jones) entails the exploration of the principles of recognition and separation of sulfate by the design, synthesis, and testing of novel sulfate extractants. A key science need for the cleanup of tank wastes at Hanford has been identified in developing methods to separate those bulk waste components that have low solubilities in borosilicate glass. Sulfate has been identified as a particularly difficult and expensive problem in that its concentration in the waste is relatively high, its solubility in glass is especially low, and it interferes with the performance of both vitrification equipment and the glass waste form. The new extractants will be synthesized by the University of Kansas and the University of Texas, Austin. Oak Ridge National Laboratory (ORNL) is subjecting the new extractants to experiments that will determine their properties and effectiveness in separating sulfate from the major competing anions in the waste, especially nitrate. Such experiments will entail primarily liquid-liquid extraction. Current efforts focus on exciting new systems in which the anion receptors act as synergists for anion exchange.

  16. Direct Detection of Supramolecular Reaction Centers in the Methanol-to-Olefins Conversion over Zeolite H-ZSM-5 by (13)C-(27)Al Solid-State NMR Spectroscopy.

    PubMed

    Wang, Chao; Wang, Qiang; Xu, Jun; Qi, Guodong; Gao, Pan; Wang, Weiyu; Zou, Yunyun; Feng, Ningdong; Liu, Xiaolong; Deng, Feng

    2016-02-12

    Hydrocarbon-pool chemistry is important in methanol to olefins (MTO) conversion on acidic zeolite catalysts. The hydrocarbon-pool (HP) species, such as methylbenzenes and cyclic carbocations, confined in zeolite channels during the reaction are essential in determining the reaction pathway. Herein, we experimentally demonstrate the formation of supramolecular reaction centers composed of organic hydrocarbon species and the inorganic zeolite framework in H-ZSM-5 zeolite by advanced (13)C-(27)Al double-resonance solid-state NMR spectroscopy. Methylbenzenes and cyclic carbocations located near Brønsted acid/base sites form the supramolecular reaction centers in the zeolite channel. The internuclear spatial interaction/proximity between the (13)C nuclei (associated with HP species) and the (27) Al nuclei (associated with Brønsted acid/base sites) determines the reactivity of the HP species. The closer the HP species are to the zeolite framework Al, the higher their reactivity in the MTO reaction. PMID:26732748

  17. Chapter 8: Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly

    SciTech Connect

    University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth; Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-09-27

    Nature uses enzymes to activate otherwise unreactive compounds in remarkable ways. For example, DNases are capable of hydrolyzing phosphate diester bonds in DNA within seconds,[1-3]--a reaction with an estimated half-life of 200 million years without an enzyme.[4] The fundamental features of enzyme catalysis have been much discussed over the last sixty years in an effort to explain the dramatic rate increases and high selectivities of enzymes. As early as 1946, Linus Pauling suggested that enzymes must preferentially recognize and stabilize the transition state over the ground state of a substrate.[5] Despite the intense study of enzymatic selectivity and ability to catalyze chemical reactions, the entire nature of enzyme-based catalysis is still poorly understood. For example, Houk and co-workers recently reported a survey of binding affinities in a wide variety of enzyme-ligand, enzyme-transition-state, and synthetic host-guest complexes and found that the average binding affinities were insufficient to generate many of the rate accelerations observed in biological systems.[6] Therefore, transition-state stabilization cannot be the sole contributor to the high reactivity and selectivity of enzymes, but rather, other forces must contribute to the activation of substrate molecules. Inspired by the efficiency and selectivity of Nature, synthetic chemists have admired the ability of enzymes to activate otherwise unreactive molecules in the confines of an active site. Although much less complex than the evolved active sites of enzymes, synthetic host molecules have been developed that can carry out complex reactions with their cavities. While progress has been made toward highly efficient and selective reactivity inside of synthetic hosts, the lofty goal of duplicating enzymes specificity remains.[7-9] Pioneered by Lehn, Cram, Pedersen, and Breslow, supramolecular chemistry has evolved well beyond the crown ethers and cryptands originally studied.[10-12] Despite the

  18. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  19. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization

    NASA Astrophysics Data System (ADS)

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Burjor, Captain; Sortino, Salvatore; Callan, John F.; Raymo, Françisco M.

    2015-08-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy.An amphiphilic

  20. Seeded Supramolecular Polymerization in a Three-Domain Self-Assembly of an N-Annulated Perylenetetracarboxamide.

    PubMed

    Greciano, Elisa E; Sánchez, Luis

    2016-09-12

    The three-domain cooperative supramolecular polymerization of 1, together with the lag time in which the monomeric species remains inactive, allows seeded supramolecular polymerization to be performed. The kinetic experiments demonstrate that only seeds based on the intermediate aggregate are able to propagate the supramolecular polymerization of 1 from their active sites. The results presented herein constitute a new example of kinetically controlled supramolecular systems and contribute to expanding knowledge about the structural requirements of a self-assembling molecule to experience seeded supramolecular polymerization. PMID:27534518

  1. A supramolecular microgel glutathione peroxidase mimic with temperature responsive activity.

    PubMed

    Yin, Yanzhen; Jiao, Shufei; Lang, Chao; Liu, Junqiu

    2014-05-21

    Glutathione peroxidase (GPx) protects cells from oxidative damage by scavenging surplus reactive oxygen species (ROS). Commonly, an appropriate amount of ROS acts as a signal molecule in the metabolism. A smart artificial GPx exhibits adjustable catalytic activity, which can potentially reduce the amount of ROS to an appropriate degree and maintain its important physiological functions in metabolism. To construct an optimum and excellent smart artificial GPx, a novel supramolecular microgel artificial GPx (SM-Te) was prepared based on the supramolecular host-guest interaction employing the tellurium-containing guest molecule (ADA-Te-ADA) and the cyclodextrin-containing host block copolymer (poly(N-isopropylacrylamide)-b-[polyacrylamides-co-poly(6-o-(triethylene glycol monoacrylate ether)-β-cyclodextrin)], PPAM-CD) as building blocks. Subsequently, based on these building blocks, SM-Te was constructed and the formation of its self-assembled structure was confirmed by dynamic light scattering, NMR, SEM, TEM, etc. Typically, benefitting from the temperature responsive properties of the PNIPAM scaffold, SM-Te also exhibited similar temperature responsive behaviour. Importantly, the GPx catalytic rates of SM-Te displayed a noticeable temperature responsive characteristic. Moreover, SM-Te exhibited the typical saturation kinetics behaviour of a real enzyme catalyst. It was proved that the changes of the hydrophobic microenvironment and the pore size in the supramolecular microgel network of SM-Te played significant roles in altering the temperature responsive catalytic behaviour. The successful construction of SM-Te not only overcomes the insurmountable disadvantages existing in previous covalent bond crosslinked microgel artificial GPx but also bodes well for the development of novel intelligent antioxidant drugs. PMID:24652520

  2. Supramolecular nanoreactors for intracellular singlet-oxygen sensitization.

    PubMed

    Swaminathan, Subramani; Fowley, Colin; Thapaliya, Ek Raj; McCaughan, Bridgeen; Tang, Sicheng; Fraix, Aurore; Captain, Burjor; Sortino, Salvatore; Callan, John F; Raymo, Françisco M

    2015-09-01

    An amphiphilic polymer with multiple decyl and oligo(ethylene glycol) chains attached to a common poly(methacrylate) backbone assembles into nanoscaled particles in aqueous environments. Hydrophobic anthracene and borondipyrromethene (BODIPY) chromophores can be co-encapsulated within the self-assembling nanoparticles and transported across hydrophilic media. The reversible character of the noncovalent bonds, holding the supramolecular containers together, permits the exchange of their components with fast kinetics in aqueous solution. Incubation of cervical cancer (HeLA) cells with a mixture of two sets of nanoparticles, pre-loaded independently with anthracene or BODIPY chromophores, results in guest scrambling first and then transport of co-entrapped species to the intracellular space. Alternatively, incubation of cells with the two sets of nanocarriers in consecutive steps permits the sequential transport of the anthracene and BODIPY chromophores across the plasma membrane and only then allows their co-encapsulation within the same supramolecular containers. Both mechanisms position the two sets of chromophores with complementary spectral overlap in close proximity to enable the efficient transfer of energy intracellularly from the anthracene donors to the BODIPY acceptors. In the presence of iodine substituents on the BODIPY platform, intersystem crossing follows energy transfer. The resulting triplet state can transfer energy further to molecular oxygen with the concomitant production of singlet oxygen to induce cell mortality. Furthermore, the donor can be excited with two near-infrared photons simultaneously to permit the photoinduced generation of singlet oxygen intracellularly under illumination conditions compatible with applications in vivo. Thus, these supramolecular strategies to control the excitation dynamics of multichromophoric assemblies in the intracellular environment can evolve into valuable protocols for photodynamic therapy. PMID:26238536

  3. (Pesticide chemistry)

    SciTech Connect

    Barnthouse, L.W.

    1990-09-04

    This report summarizes a trip by L. W. Barnthouse of the Environmental Sciences Division (ESD), Oak Ridge National Laboratory (ORNL), to Hamburg, Federal Republic of Germany (FRG), where he participated in the 7th International Congress of Pesticide Chemistry. He chaired a workshop on experimental systems for determining effects of pesticides on nontarget organisms and gave an oral presentation at a symposium on pesticide risk assessment. Before returning to the United States, Dr. Barnthouse visited the Netherlands Institute for Sea Research in Texel, the Netherlands.

  4. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    PubMed

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  5. Studies on the supramolecular shape memory polyurethane containing pyridine moieties

    NASA Astrophysics Data System (ADS)

    Shaojun, Chen

    Fabricating smart materials with supramolecular switch is an attractive research topic. In this study, supramolecular polyurethane networks containing pyridine moieties (PUPys) were synthesized from N,N-bis(2-hydroxylethyl)isonicotinamide (BINA), hexamethylene diisocyanate (HDI), 4, 4-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO). A series of studies were carried out to investigate the supramolecular structure, morphology and shape memory properties including of thermal-induced shape memory effect and moisture-sensitive shape memory effect. Results show that hydrogen-bonded supramolecular structure and phase separation morphology are formed in the PUPys. The glass transition temperature (Tg) of soft phase is controlled by the hydrogen bonding while the hard phase grows up from amorphous phase to crystalline phase as the BINA content increases. The addition of MDI-BDO promotes the formation of amorphous hard phase. PUPys have high shape fixity and high shape recovery with the recovery temperature of 45 °C-55 °C. To achieve satisfying shape recovery, 30wt% BINA contents are required. The addition of MDI-BDO improves the shape recovery force. In addition, PUPys have high moisture absorption which increases with the increase of temperature, relative humidity, BINA content as well as the decrease of MDI-BDO content. The final shape recovery decreases with the decrease of BINA content significantly and the strain recovery start time, strain recovery time, strain recovery end time and the time length are also short in the higher BINA content PUPys. Moreover, it is found that the low critical value of BINA unit for PUPys having moisture-sensitive SME is still 30wt%. The addition of MDI-BDO improves the moisture-sensitive shape recovery. Finally, it is proposed that the hydrogen bonding present in the pyridine ring serves as "switch" whereas the formed hard phase via hydrogen bonding present in the urethane groups acts as the physical netpoints for the both

  6. Preface: Special Topic on Supramolecular Self-Assembly at Surfaces

    SciTech Connect

    Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun; Thiel, Patricia A.

    2015-03-14

    Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.

  7. Electrochemical redox responsive polymeric micelles formed from amphiphilic supramolecular brushes.

    PubMed

    Feng, Anchao; Yan, Qiang; Zhang, Huijuan; Peng, Liao; Yuan, Jinying

    2014-05-11

    The end-decorated homopolymer poly(ε-caprolactone)-ferrocene threaded onto a β-cyclodextrin-functionalized main-chain polymer can form a class of amphiphilic noncovalent graft copolymers based on the host-guest interactions of the terminal groups on the side chains. These new supramolecular polymer brushes can further self-assemble into micellar aggregates that exhibit reversible assembly and disassembly behavior under an electrochemical redox trigger, which opens up a new route to building dynamic block copolymer topologies. PMID:24681929

  8. Fluorescent supramolecular micelles for imaging-guided cancer therapy

    NASA Astrophysics Data System (ADS)

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-02-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth

  9. Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy

    NASA Astrophysics Data System (ADS)

    Li, Xingyi; Wang, Yuqin; Yang, Chengbiao; Shi, Shuai; Jin, Ling; Luo, Zichao; Yu, Jing; Zhang, Zhaoliang; Yang, Zhimou; Chen, Hao

    2014-11-01

    Supramolecular nanofibers of prodrugs hold advantages for drug release due to their high drug payload, sustained and constant drug release behavior, and stimuli responsiveness. In this study, we report on a supramolecular hydrogel mainly formed by a clinically used drug triamcinolone acetonide (TA). Such a hydrogel could only be prepared via an ester bond hydrolysis process from its prodrug of succinated triamcinolone acetonide (STA). The resulting hydrogel could constantly release TA in the in vitro release experiment. The TA hydrogel possessed an excellent transscleral penetration ability, as evaluated by the in vitro transscleral transport study. The developed TA hydrogel also exhibited a great ocular compatibility in rats, as indicated by the optical coherence tomography (OCT) images, HE observation, and glial fibrillary acidic protein (GFAP) and vimentin immuno-staining assays of the retinas. Our TA hydrogel showed a decreased efficacy to inhibit ocular inflammation in the rat's experiment autoimmune uveitis (EAU) model compared to the commercial TA suspension (Transton®), but without causing complications such as high intraocular pressure and cataracts. These promising properties of the hydrogel indicated its great potential for the treatment of eye diseases.Supramolecular nanofibers of prodrugs hold advantages for drug release due to their high drug payload, sustained and constant drug release behavior, and stimuli responsiveness. In this study, we report on a supramolecular hydrogel mainly formed by a clinically used drug triamcinolone acetonide (TA). Such a hydrogel could only be prepared via an ester bond hydrolysis process from its prodrug of succinated triamcinolone acetonide (STA). The resulting hydrogel could constantly release TA in the in vitro release experiment. The TA hydrogel possessed an excellent transscleral penetration ability, as evaluated by the in vitro transscleral transport study. The developed TA hydrogel also exhibited a great ocular

  10. Supramolecular recognition of estrogens via molecularly imprinted polymers

    PubMed Central

    Ričanyová, Júlia; Gadzała-Kopciuch, Renata; Szumski, Michał

    2010-01-01

    The isolation and preconcentration of estrogens from new types of biological samples (acellular and protein-free simulated body fluid) by molecularly imprinted solid-phase extraction has been described. In this technique, supramolecular receptors, namely molecularly imprinted polymers (MIPs) are used as a sorbent material. The recognition sites of MIPs were prepared by non-covalent multiple interactions and formed with the target 17β-estradiol as a template molecule. High-performance liquid chromatography with spectroscopic UV, selective, and a sensitive electrochemical CoulArray detector was used for the determination of 17β-estradiol, estrone, and estriol in simulated body fluid which mimicked human plasma. PMID:20549493

  11. Switchable supramolecular catalysis using DNA-templated scaffolds.

    PubMed

    Aleman Garcia, Miguel Angel; Hu, Yuwei; Willner, Itamar

    2016-02-01

    Switchable β-cyclodextrin (β-CD)-induced hydrolysis of m-tert-butylphenyl acetate is demonstrated in the presence of supramolecular β-CD/adamantane oligonucleotide scaffolds. In one system, a duplex between a β-CD-functionalized nucleic acid and an adamantane-nucleic acid leads to a switchable catalytic system. In a second system, a β-CD/adamantane duplex is cooperatively generated by K(+)-stabilized G-quadruplex units. The binding of hemin to the second system yields a bifunctional DNA scaffold with alternate catalytic functions. PMID:26701068

  12. Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance.

    PubMed

    Bai, Haotian; Lv, Fengting; Liu, Libing; Wang, Shu

    2016-08-01

    Bacterial infectious disease is a serious public health concern throughout the world. Pathogen drug resistance, arising from both rational use and abuse/misuse of germicides, complicates the situation. Aside from developing novel antibiotics and antimicrobial agents, molecular approaches have become another significant method to overcome the problem of pathogen drug resistance. Established supramolecular systems, the antibiotic properties of which can be switched "on" and "off" through host-guest interactions, show great potential in combating issues regarding antibiotic resistance in the long term, as indicated by several recent studies. In this Concept, recently developed strategies for antibacterial regulation are summarized and further directions for research into antibiotic switches are proposed. PMID:27312106

  13. Mechanical Robust and Self-Healable Supramolecular Hydrogel.

    PubMed

    Zheng, Jing; Xiao, Peng; Liu, Wei; Zhang, Jiawei; Huang, Youju; Chen, Tao

    2016-02-01

    Development of self-healing polymers with spontaneous self-healing capability and good mechanical performance is highly desired and remains a great challenge. Here, mechanical robust and self-healable supramolecular hydrogels have been fabricated by using poly(2-dimethylaminoethyl methacrylate) brushes modified silica nanoparticles (SiO2 @PDMAEMA) as multifunctional macrocrosslinkers in a poly(acrylic acid) (PAA) network structure. The SiO2 nanoparticles serve as noncovalent crosslinkers, dissipating energy, whereas the electrostatic interactions between cationic PDMAEMA and anionic PAA render the hydrogel self-healing property. This process provides a simple and broadly applicable strategy to produce mechanical strong and self-healable materials. PMID:26647774

  14. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  15. Nanoplasmonics tuned "click chemistry".

    PubMed

    Tijunelyte, I; Guenin, E; Lidgi-Guigui, N; Colas, F; Ibrahim, J; Toury, T; Lamy de la Chapelle, M

    2016-04-01

    Nanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised "click" reaction in the vicinity of gold nanostructures under unfavourable experimental conditions. We demonstrate that this reaction can be controlled by the plasmonic properties of the nanostructures and we propose two physical mechanisms to interpret the observed plasmonic tuning of the "click" chemistry. PMID:26961136

  16. Nanoplasmonics tuned ``click chemistry''

    NASA Astrophysics Data System (ADS)

    Tijunelyte, I.; Guenin, E.; Lidgi-Guigui, N.; Colas, F.; Ibrahim, J.; Toury, T.; Lamy de La Chapelle, M.

    2016-03-01

    Nanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised ``click'' reaction in the vicinity of gold nanostructures under unfavourable experimental conditions. We demonstrate that this reaction can be controlled by the plasmonic properties of the nanostructures and we propose two physical mechanisms to interpret the observed plasmonic tuning of the ``click'' chemistry.Nanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised ``click'' reaction in the vicinity of gold nanostructures under unfavourable experimental conditions. We demonstrate that this reaction can be controlled by the plasmonic properties of the nanostructures and we propose two physical mechanisms to interpret the observed plasmonic tuning of the ``click'' chemistry. Electronic supplementary information (ESI) available: NMR study on reaction initiation, SERS spectra and temperature calculations. See DOI: 10.1039/c5nr09018k

  17. A History of ChemMatters Magazine

    ERIC Educational Resources Information Center

    Tinnesand, Michael J.

    2007-01-01

    ChemMatters, the chemistry magazine published since 1983, has always provided interesting topics for chemistry students. The American Chemical Society publishes the magazine and many well-known authors like Isaac Asimov, Glen Seaborg and Derek Davenport have contributed to the magazine and the magazine has succeeded in its goal of demystifying…

  18. Complex Protostellar Chemistry

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    Two decades ago, our understanding of the chemistry in protostars was simple-matter either fell into the central star or was trapped in planetary-scale objects. Some minor chemical changes might occur as the dust and gas fell inward, but such effects were overwhelmed by the much larger scale processes that occurred even in bodies as small as asteroids. The chemistry that did occur in the nebula was relatively easy to model because the fall from the cold molecular cloud into the growing star was a one-way trip down a well-known temperature-pressure gradient; the only free variable was time. However, just over 10 years ago it was suggested that some material could be processed in the inner nebula, flow outward, and become incorporated into comets (1, 2). This outward flow was confirmed when the Stardust mission returned crystalline mineral fragments (3) from Comet Wild 2 that must have been processed close to the Sun before they were incorporated into the comet. In this week's Science Express, Ciesla and Sandford (4) demonstrate that even the outermost regions of the solar nebula can be a chemically active environment. Their finding could have consequences for the rest of the nebula.

  19. Exploiting Supramolecular Interactions for the Intramolecular Folding of Side-Chain Functionalized Polymers and Assembly of Anisotropic Colloids

    NASA Astrophysics Data System (ADS)

    Romulus, Joy

    The overarching goal presented in this thesis is the self-assembly of synthetic systems into higher ordered structures utilizing supramolecular chemistry. Noncovalent interactions including charge-transfer and hydrogen bonding as well as DNA hybridization are exploited to induce the assembly of polymers and colloids into well-defined architectures. This strategy provides a tunable handle on materials bulk properties that can be adjusted by simply changing variables such as temperature and solvent. A brief overview of design principles for the supramolecular assembly of side-chain functionalized polymers is presented. The polymerization technique selected was living ring-opening metathesis polymerization (ROMP), thus affording control over molecular weight and molecular weight distributions. ROMP also allowed for the incorporation of functional groups that were used to assemble the polymers into ordered structures. Charge-transfer motifs were exploited and shown to drive the assembly of random and alternating copolymers via intramolecular side-chain interactions. Incorporation of complementary hydrogen bonding motifs was shown to guide the single-chain folding of a multifunctional triblock copolymer into sheet-like structures. Precision over the size, shape, and monomer sequence were identified as key elements for efficient self-assembly. The self-assembly of colloids using DNA hybridization was also investigated. Previously, the majority of colloid-based research relied upon the self-assembly of spherical isotropic particles into closed-packed arrangements. In contrast, anisotropic particles may allow for the realization of open structures. By expanding upon a method to permanently cross-link DNA strands incubated on a colloidal surface, a new strategy to engineer patchy particles is described. These functional DNA-coated patches are demonstrated to direct particle assembly. The self-assembly of polymer and colloidal systems utilizing noncovalent interactions

  20. Rational Design of MMP Degradable Peptide-Based Supramolecular Filaments

    PubMed Central

    2015-01-01

    One-dimensional nanostructures formed by self-assembly of small molecule peptides have been extensively explored for use as biomaterials in various biomedical contexts. However, unlike individual peptides that can be designed to be specifically degradable by enzymes/proteases of interest, their self-assembled nanostructures, particularly those rich in β-sheets, are generally resistant to enzymatic degradation because the specific cleavage sites are often embedded inside the nanostructures. We report here on the rational design of β-sheet rich supramolecular filaments that can specifically dissociate into less stable micellar assemblies and monomers upon treatment with matrix metalloproteases-2 (MMP-2). Through linkage of an oligoproline segment to an amyloid-derived peptide sequence, we first synthesized an amphiphilic peptide that can undergo a rapid morphological transition in response to pH variations. We then used MMP-2 specific peptide substrates as multivalent cross-linkers to covalently fix the amyloid-like filaments in the self-assembled state at pH 4.5. Our results show that the cross-linked filaments are stable at pH 7.5 but gradually break down into much shorter filaments upon cleavage of the peptidic cross-linkers by MMP-2. We believe that the reported work presents a new design platform for the creation of amyloid-like supramolecular filaments responsive to enzymatic degradation. PMID:24611531

  1. Supramolecular core-shell nanoparticles for photoconductive device applications.

    PubMed

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-12

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices. PMID:27353003

  2. Supramolecular nanofibrils inhibit cancer progression in vitro and in vivo

    PubMed Central

    Kuang, Yi; Du, Xuewen; Zhou, Jie; Xu, Bing

    2014-01-01

    The recent discovery of the inverse comorbidity between cancer and Alzheimer’s disease implies that one may use amyloids to inhibit tumors. During the conversion of a dipeptide segment (Phe-Phe) in β-amyloid into a supramolecular hydrogelator, we obtained a small molecule (1) that can self-assembly into nanofibrils via multiple intermolecular hydrogen bonding and aromatic-aromatic interactions. Interestingly, while the monomers of 1 are innocuous, the nanofibrils formed by 1 can selectively inhibit the growth of glioblastoma cells over neuronal cells. To further assess the potential of this small molecular nanofibrils as anti-cancer agent, we exam the biological activity of the nanofibrils and demonstrate that the nanofibrils of 1 efficiently inhibit the progression of cancer cells (e.g., HeLa cells) both in cell assays and on xenograft mice model. This work suggests that nanofibrils derived from core motif of amyloid are effective agents for inhibiting cancer progression. Thus, this work contributes to a new approach that uses supramolecular nanofibrils as de novo molecular amyloids for inhibiting the growth of cancer cells. PMID:24574174

  3. Supramolecular Packing Controls H2 Photocatalysis in Chromophore Amphiphile Hydrogels

    PubMed Central

    2015-01-01

    Light harvesting supramolecular assemblies are potentially useful structures as components of solar-to-fuel conversion materials. The development of these functional constructs requires an understanding of optimal packing modes for chromophores. We investigated here assembly in water and the photocatalytic function of perylene monoimide chromophore amphiphiles with different alkyl linker lengths separating their hydrophobic core and the hydrophilic carboxylate headgroup. We found that these chromophore amphiphiles (CAs) self-assemble into charged nanostructures of increasing aspect ratio as the linker length is increased. The addition of salt to screen the charged nanostructures induced the formation of hydrogels and led to internal crystallization within some of the nanostructures. For linker lengths up to seven methylenes, the CAs were found to pack into 2D crystalline unit cells within ribbon-shaped nanostructures, whereas the nine methylene CAs assembled into long nanofibers without crystalline molecular packing. At the same time, the different molecular packing arrangements after charge screening led to different absorbance spectra, despite the identical electronic properties of all PMI amphiphiles. While the crystalline CAs formed electronically coupled H-aggregates, only CAs with intermediate linker lengths showed evidence of high intermolecular orbital overlap. Photocatalytic hydrogen production using a nickel-based catalyst was observed in all hydrogels, with the highest turnovers observed for CA gels having intermediate linker lengths. We conclude that the improved photocatalytic performance of the hydrogels formed by supramolecular assemblies of the intermediate linker CA molecules likely arises from improved exciton splitting efficiencies due to their higher orbital overlap. PMID:26593389

  4. Enhancing SERS by Means of Supramolecular Charge Transfer

    NASA Technical Reports Server (NTRS)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  5. Supramolecular architecture of endoplasmic reticulum-plasma membrane contact sites.

    PubMed

    Fernández-Busnadiego, Rubén

    2016-04-15

    The endoplasmic reticulum (ER) forms membrane contact sites (MCS) with most other cellular organelles and the plasma membrane (PM). These ER-PM MCS, where the membranes of the ER and PM are closely apposed, were discovered in the early days of electron microscopy (EM), but only recently are we starting to understand their functional and structural diversity. ER-PM MCS are nowadays known to mediate excitation-contraction coupling (ECC) in striated muscle cells and to play crucial roles in Ca(2+)and lipid homoeostasis in all metazoan cells. A common feature across ER-PM MCS specialized in different functions is the preponderance of cooperative phenomena that result in the formation of large supramolecular assemblies. Therefore, characterizing the supramolecular architecture of ER-PM MCS is critical to understand their mechanisms of function. Cryo-electron tomography (cryo-ET) is a powerful EM technique uniquely positioned to address this issue, as it allows 3D imaging of fully hydrated, unstained cellular structures at molecular resolution. In this review I summarize our current structural knowledge on the molecular organization of ER-PM MCS and its functional implications, with special emphasis on the emerging contributions of cryo-ET. PMID:27068966

  6. Synthesis of Nonequilibrium Supramolecular Peptide Polymers on a Microfluidic Platform.

    PubMed

    Mason, Thomas O; Michaels, Thomas C T; Levin, Aviad; Gazit, Ehud; Dobson, Christopher M; Buell, Alexander K; Knowles, Tuomas P J

    2016-08-01

    The self-assembly of peptides and peptide mimetics into supramolecular polymers has been established in recent years as a route to biocompatible nanomaterials with novel mechanical, optical, and electronic properties. The morphologies of the resulting polymers are usually dictated by the strengths as well as lifetimes of the noncovalent bonds that lead to the formation of the structures. Together with an often incomplete understanding of the assembly mechanisms, these factors limit the control over the formation of polymers with tailored structures. Here, we have developed a microfluidic flow reactor to measure growth rates directly and accurately on the axial and radial faces of crystalline peptide supramolecular polymers. We show that the structures grow through two-dimensional nucleation mechanisms, with rates that depend exponentially on the concentration of soluble peptide. Using these mechanistic insights into the growth behavior of the axial and radial faces, we have been able to tune the aspect ratio of populations of dipeptide assemblies. These results demonstrate a general strategy to control kinetically self-assembly beyond thermodynamic products governed by the intrinsic properties of the building blocks in order to attain the required morphology and function. PMID:27387359

  7. Mechanism of formation of supramolecular DNA-templated polymer nanowires.

    PubMed

    Watson, Scott M D; Galindo, Miguel A; Horrocks, Benjamin R; Houlton, Andrew

    2014-05-01

    Details of the mechanism of formation of supramolecular polymer nanowires by templating on DNA are revealed for the first time using AFM. Overall these data reveal that the smooth, regular, structures produced are rendered by highly dynamic supramolecular transformations occurring over the micrometre scale. In the initial stages of the process a low density of conducting polymer (CP) binds to the DNA as, essentially, spherical particles. Further reaction time produces DNA strands which are more densely packed with particles giving a beads-on-a-string appearance. The particles subsequently undergo dynamic reconfiguration so as to elongate along the template axis and merge to yield the highly regular, smooth morphology of the final nanowire. MD simulations illustrate the early stages of the process showing the binding of globular CP to duplex DNA, while the latter stages can be modeled effectively by a linear thermodynamic description based on the balance between the line energy, which accounts for adhesion of the material to the template, and its surface tension. This model accounts for the phenomena observed in the AFM studies: the relative success of DNA templating of polymers compared to metals; the slow approach to equilibrium; and the observed thinning and 'necking' phenomena as the structures transform from beads-on-a-string to smooth nanowire. PMID:24712548

  8. Mesoscale Characterization of Supramolecular Transient Networks Using SAXS and Rheology

    PubMed Central

    Pape, A. C. H.; Bastings, Maartje M. C.; Kieltyka, Roxanne E.; Wyss, Hans M.; Voets, Ilja K.; Meijer, E. W.; Dankers, Patricia Y. W.

    2014-01-01

    Hydrogels and, in particular, supramolecular hydrogels show promising properties for application in regenerative medicine because of their ability to adapt to the natural environment these materials are brought into. However, only few studies focus on the structure-property relationships in supramolecular hydrogels. Here, we study in detail both the structure and the mechanical properties of such a network, composed of poly(ethylene glycol), end-functionalized with ureido-pyrimidinone fourfold hydrogen bonding units. This network is responsive to triggers such as concentration, temperature and pH. To obtain more insight into the sol-gel transition of the system, both rheology and small-angle X-ray scattering (SAXS) are used. We show that the sol-gel transitions based on these three triggers, as measured by rheology, coincide with the appearance of a structural feature in SAXS. We attribute this feature to the presence of hydrophobic domains where cross-links are formed. These results provide more insight into the mechanism of network formation in these materials, which can be exploited for tailoring their behavior for biomedical applications, where one of the triggers discussed might be used. PMID:24441567

  9. Supramolecular core–shell nanoparticles for photoconductive device applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core–shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  10. Supramolecular Nanostructure Formation of Coassembled Amyloid Inspired Peptides.

    PubMed

    Cinar, Goksu; Orujalipoor, Ilghar; Su, Chun-Jen; Jeng, U-Ser; Ide, Semra; Guler, Mustafa O

    2016-06-28

    Characterization of amyloid-like aggregates through converging approaches can yield deeper understanding of their complex self-assembly mechanisms and the nature of their strong mechanical stability, which may in turn contribute to the design of novel supramolecular peptide nanostructures as functional materials. In this study, we investigated the coassembly kinetics of oppositely charged short amyloid-inspired peptides (AIPs) into supramolecular nanostructures by using confocal fluorescence imaging of thioflavin T binding, turbidity assay and in situ small-angle X-ray scattering (SAXS) analysis. We showed that coassembly kinetics of the AIP nanostructures were consistent with nucleation-dependent amyloid-like aggregation, and aggregation behavior of the AIPs was affected by the initial monomer concentration and sonication. Moreover, SAXS analysis was performed to gain structural information on the size, shape, electron density, and internal organization of the coassembled AIP nanostructures. The scattering data of the coassembled AIP nanostructures were best fitted into to a combination of polydisperse core-shell cylinder (PCSC) and decoupling flexible cylinder (FCPR) models, and the structural parameters were estimated based on the fitting results of the scattering data. The stability of the coassembled AIP nanostructures in both fiber organization and bulk viscoelastic properties was also revealed via temperature-dependent SAXS analysis and oscillatory rheology measurements, respectively. PMID:27267733

  11. Fluorescent supramolecular micelles for imaging-guided cancer therapy.

    PubMed

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-03-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy. PMID:26881415

  12. A Supramolecular Approach toward Bioinspired PAMAM-Dendronized Fusion Toxins.

    PubMed

    Kuan, Seah Ling; Förtsch, Christina; Ng, David Yuen Wah; Fischer, Stephan; Tokura, Yu; Liu, Weina; Wu, Yuzhou; Koynov, Kaloian; Barth, Holger; Weil, Tanja

    2016-06-01

    Nature has provided a highly optimized toolbox in bacterial endotoxins with precise functions dictated by their clear structural division. Inspired by this streamlined design, a supramolecular approach capitalizing on the strong biomolecular (streptavidin (SA))-biotin interactions is reported herein to prepare two multipartite fusion constructs, which involves the generation 2.0 (D2) or generation 3.0 (D3) polyamidoamine-dendronized transporter proteins (dendronized streptavidin (D3SA) and dendronized human serum albumin (D2HSA)) non-covalently fused to the C3bot1 enzyme from Clostridium botulinum, a potent and specific Rho-inhibitor. The fusion constructs, D3SA-C3 and D2HSA-C3, represent the first examples of dendronized protein transporters that are fused to the C3 enzyme, and it is successfully demonstrated that the C3 Rho-inhibitor is delivered into the cytosol of mammalian cells as determined from the characteristic C3-mediated changes in cell morphology and confocal microscopy. The design circumvents the low uptake of the C3 enzyme by eukaryotic cells and holds great promise for reprogramming the properties of toxin enzymes using a supramolecular approach to broaden their therapeutic applications. PMID:26833574

  13. Deciphering preferential interactions within supramolecular protein complexes: the proteasome case

    PubMed Central

    Fabre, Bertrand; Lambour, Thomas; Garrigues, Luc; Amalric, François; Vigneron, Nathalie; Menneteau, Thomas; Stella, Alexandre; Monsarrat, Bernard; Van den Eynde, Benoît; Burlet-Schiltz, Odile; Bousquet-Dubouch, Marie-Pierre

    2015-01-01

    In eukaryotic cells, intracellular protein breakdown is mainly performed by the ubiquitin–proteasome system. Proteasomes are supramolecular protein complexes formed by the association of multiple sub-complexes and interacting proteins. Therefore, they exhibit a very high heterogeneity whose function is still not well understood. Here, using a newly developed method based on the combination of affinity purification and protein correlation profiling associated with high-resolution mass spectrometry, we comprehensively characterized proteasome heterogeneity and identified previously unknown preferential associations within proteasome sub-complexes. In particular, we showed for the first time that the two main proteasome subtypes, standard proteasome and immunoproteasome, interact with a different subset of important regulators. This trend was observed in very diverse human cell types and was confirmed by changing the relative proportions of both 20S proteasome forms using interferon-γ. The new method developed here constitutes an innovative and powerful strategy that could be broadly applied for unraveling the dynamic and heterogeneous nature of other biologically relevant supramolecular protein complexes. PMID:25561571

  14. Colloidal supramolecular aggregates for therapeutic application in neuromedicine.

    PubMed

    Cosco, Donato; Di Marzio, Luisa; Marianecci, Carlotta; Trapasso, Elena; Paolino, Donatella; Celia, Christian; Carafa, Maria; Fresta, Massimo

    2014-01-01

    Neuromedicine has recently been emerging on the research scene and presents interesting challenges in therapeutics. The range of therapies generally used to treat neurological disorders are limited in their efficacy and degree of patient compliance because of the necessity of multiple drug dosages, low drug concentration in the central nervous system and side effects. Moreover, therapeutics require standard drug dosages which cannot be personalized. The limiting obstacle in neuromedicine is still the blood-brain barrier, which prevents the accumulation of endogenous and exogenous compounds inside the brain. Various transporters located on the blood-brain barrier modulate the crossing of endogenous compounds. It has been discovered that these transporters can be used as pathways for the transport of therapeutic agents and macromolecules that pass the blood-brain barrier allowing the uptake of bioactive compounds into the central nervous system. Several attempts have recently been made to develop forms of nanomedicine capable of overcoming the limitations of conventional therapy, above all the crossing of the blood-brain barrier. An outstandingly promising option could be the use of colloidal supramolecular aggregates. These nanodrugs are safe, biodegradable, and biocompatible and can combine biomaterials useful for diagnostic and therapeutical applications. They can be modified using monoclonal antibodies, proteins, peptides and macromolecules, thus providing personalized neuromedicine, which can be used in the treatment of various neurological disorders. In this review, recent advancements of supramolecular colloidal devices as neuromedicines are discussed, with particular focus on the latest developments. PMID:25174931

  15. Supramolecular Packing Controls H₂ Photocatalysis in Chromophore Amphiphile Hydrogels.

    PubMed

    Weingarten, Adam S; Kazantsev, Roman V; Palmer, Liam C; Fairfield, Daniel J; Koltonow, Andrew R; Stupp, Samuel I

    2015-12-01

    Light harvesting supramolecular assemblies are potentially useful structures as components of solar-to-fuel conversion materials. The development of these functional constructs requires an understanding of optimal packing modes for chromophores. We investigated here assembly in water and the photocatalytic function of perylene monoimide chromophore amphiphiles with different alkyl linker lengths separating their hydrophobic core and the hydrophilic carboxylate headgroup. We found that these chromophore amphiphiles (CAs) self-assemble into charged nanostructures of increasing aspect ratio as the linker length is increased. The addition of salt to screen the charged nanostructures induced the formation of hydrogels and led to internal crystallization within some of the nanostructures. For linker lengths up to seven methylenes, the CAs were found to pack into 2D crystalline unit cells within ribbon-shaped nanostructures, whereas the nine methylene CAs assembled into long nanofibers without crystalline molecular packing. At the same time, the different molecular packing arrangements after charge screening led to different absorbance spectra, despite the identical electronic properties of all PMI amphiphiles. While the crystalline CAs formed electronically coupled H-aggregates, only CAs with intermediate linker lengths showed evidence of high intermolecular orbital overlap. Photocatalytic hydrogen production using a nickel-based catalyst was observed in all hydrogels, with the highest turnovers observed for CA gels having intermediate linker lengths. We conclude that the improved photocatalytic performance of the hydrogels formed by supramolecular assemblies of the intermediate linker CA molecules likely arises from improved exciton splitting efficiencies due to their higher orbital overlap. PMID:26593389

  16. Tropospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Mohnen, V.

    1984-01-01

    The fundamental processes that control the chemical composition and cycles of the global troposphere and how these processes and properties affect the physical behavior of the atmosphere are examined. The long-term information needs for tropospheric chemistry are: to be able to predict tropospheric responses to perturbations, both natural and anthropogenic, of these cycles, and to provide the information required for the maintenance and effective future management of the atmospheric component of our global life support system. The processes controlling global tropospheric biogeochemical cycles include: the input of trace species into the troposphere, their long-range transport and distribution as affected by the mean wind and vertical venting, their chemical transformations, including gas to particle conversion, leading to the appearance of aerosols or aqueous phase reactions inside cloud droplets, and their removal from the troposphere via wet (precipitation) and dry deposition.

  17. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  18. When matter matters

    SciTech Connect

    Easson, Damien A.; Sawicki, Ignacy; Vikman, Alexander E-mail: ignacy.sawicki@uni-heidelberg.de

    2013-07-01

    We study a recently proposed scenario for the early universe:Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed at most equal to the speed of light. This proof applies to all cosmological solutions — to the whole phase space. However, in a more realistic situation, when one includes any matter which is not directly coupled to the Galileon, there always exists a region of phase space where these perturbations propagate superluminally, indeed with arbitrarily high speed. We illustrate our analytic proof with numerical computations. We discuss the implications of this result for the possible UV completion of the model.

  19. An Elaborate Supramolecular Assembly for a Smart Nanodevice for Ratiometric Molecular Recognition and Logic Gates.

    PubMed

    Xie, Yu-Jie; Wu, Wen-Yu; Chen, Hao; Li, Xiang; Zhang, Hao-Li; Liu, Liang-Liang; Shao, Xing-Xin; Shan, Chang-Fu; Liu, Wei-Sheng; Tang, Yu

    2016-06-01

    Ingenious approaches to supramolecular assembly for fabricating smart nanodevices is one of the more significant topics in nanomaterials research. Herein, by using surface quaternized cationic carbon dots (CDots) as the assembly and fluorescence platform, anionic sulfonatocalix[4]arene with modifiable lower and upper rims as a connector, as well as in situ coordination of Tb(3+) ions, we propose an elaborate supramolecular assembly strategy for the facile fabrication of a multifunctional nanodevice. The dynamic equilibrium characteristics of the supramolecular interaction can eventually endow this nanodevice with functions of fluorescent ratiometric molecular recognition and as a nano-logic gate with two output channels. PMID:27106796

  20. Supramolecular hydrogels formed by the conjugates of nucleobases, Arg-Gly-Asp (RGD) peptides, and glucosamine

    PubMed Central

    Li, Xinming; Du, Xuewen; Gao, Yuan; Shi, Junfeng; Kuang, Yi

    2012-01-01

    Here we report the generation of a novel class of supramolecular hydrogelators based on the integration of nucleobase, Arg-Gly-Asp (RGD) peptides, and glucosamine in a single molecule. These novel small molecule hydrogelators self-assemble in water to form stable supramolecular nanofibers/hydrogels and exhibit useful biostability. This approach provides a new opportunity for systematic exploration of the self-assembly of small biomolecules by varying any individual segment to generate a large array of supramolecular hydrogels for biological functions and for biomedical applications. PMID:22844343

  1. Mesoscopic order and the dimensionality of long-range resonance energy transfer in supramolecular semiconductors

    NASA Astrophysics Data System (ADS)

    Daniel, Clément; Makereel, François; Herz, Laura M.; Hoeben, Freek J. M.; Jonkheijm, Pascal; Schenning, Albertus P. H. J.; Meijer, E. W.; Silva, Carlos

    2008-09-01

    We present time-resolved photoluminescence measurements on two series of oligo-p-phenylenevinylene materials that self-assemble into supramolecular nanostructures with thermotropic reversibility in dodecane. One set of derivatives form chiral helical stacks, while the second set form less organized "frustrated" stacks. Here we study the effects of supramolecular organization on the resonance energy transfer rates. We measure these rates in nanoassemblies formed with mixed blends of oligomers and compare them with the rates predicted by Förster theory. Our results and analysis show that control of supramolecular order in the nanometer length scale has a dominant effect on the efficiency and dimensionality of resonance energy transfer.

  2. A Study of Turkish Chemistry Undergraduates' Understandings of Entropy

    ERIC Educational Resources Information Center

    Sozbilir, Mustafa; Bennett, Judith M.

    2007-01-01

    Entropy is that fundamental concept of chemical thermodynamics, which explains the natural tendency of matter and energy in the Universe. The analysis presents the description of entropy, as understood by the Turkish chemistry undergraduates.

  3. Why Teach Environmental Chemistry?

    ERIC Educational Resources Information Center

    Gardner, Marjorie H.

    1974-01-01

    Discusses the importance of teaching environmental chemistry in secondary school science classes, and outlines five examples of environmental chemistry problems that focus on major concepts of chemistry and have critical implications for human survival and well-being. (JR)

  4. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  5. From linking of metal-oxide building blocks in a dynamic library to giant clusters with unique properties and towards adaptive chemistry.

    PubMed

    Müller, Achim; Gouzerh, Pierre

    2012-11-21

    Following Nature's lessons, today chemists can cross the boundary of the small molecule world to construct multifunctional and highly complex molecular nano-objects up to protein size and even cell-like nanosystems showing responsive sensing. Impressive examples emerge from studies of the solutions of some oxoanions of the early transition metals especially under reducing conditions which enable the controlled linking of metal-oxide building blocks. The latter are available from constitutional dynamic libraries, thus providing the option to generate multifunctional unique nanoscale molecular systems with exquisite architectures, which even opens the way towards adaptive and evolutive (Darwinian) chemistry. The present review presents the first comprehensive report of current knowledge (including synthesis aspects not discussed before) regarding the related giant metal-oxide clusters mainly of the type {Mo(57)M'(6)} (M' = Fe(III), V(IV)) (torus structure), {M(72)M'(30)} (M = Mo, M' = V(IV), Cr(III), Fe(III), Mo(V)), {M(72)Mo(60)} (M = Mo, W) (Keplerates), {Mo(154)}, {Mo(176)}, {Mo(248)} ("big wheels"), and {Mo(368)} ("blue lemon") - all having the important transferable pentagonal {(M)M(5)} groups in common. These discoveries expanded the frontiers of inorganic chemistry to the mesoscopic world, while there is probably no collection of discrete inorganic compounds which offers such a versatile chemistry and the option to study new phenomena of interdisciplinary interest. The variety of different properties of the sphere- and wheel-type metal-oxide-based clusters can directly be related to their unique architectures: The spherical Keplerate-type capsules having 20 crown-ether-type pores and tunable internal functionalities allow the investigation of confined matter as well as that of sphere-surface-supramolecular and encapsulation chemistry - including related new aspects of the biologically important hydrophobic effects - but also of nanoscale ion transport and

  6. Supramolecular solid-state architectures formed by co-crystallization of melamine and 2-, 3- and 4-chlorophenylacetic acids

    NASA Astrophysics Data System (ADS)

    Janczak, Jan

    2016-12-01

    A family of supramolecular complexes of melamine with chlorophenylacetic acid isomers using solvent-assisted and evaporation-based techniques has been prepared. Crystallization of melamine with 2-chlorophenylacetic acid yield hydrated ionic supramolecular complex (1), whereas crystallization of melamine with 3- and 4-chlorophenylacetic acids leads to formation of neutral supramolecular complexes (2, 3), all with base to acid ratio of 1:2. Within chlorophenylacetic acid isomers only in 2-chlorophenylacetic acid isomer as the stronger acid the proton transfer to melamine takes place. The crystal structures of supramolecular complexes have been determined. The supramolecular assembly is driven by the noncovalent interactions, most commonly by the hydrogen bonds. The components of the crystals interact via Nsbnd H⋯O and Osbnd H⋯N with a graph of R22(8) forming respective ionic or neutral supramolecular complexes. All three supramolecular complexes studied interact each other via a pair of Nsbnd H⋯O hydrogen bonds forming pseudo one-dimensional supramolecular chains along [1-10] and [-110] in 1 and along [010] in 2 and 3. Hirshfeld surface and analysis of 2D fingerprint plots have been analysed both quantitatively and qualitatively interactions governing the supramolecular organisation. The IR and Raman vibrational characterization of the supramolecular complexes 1-3 was supported by the spectra of their deuterated analogues.

  7. The Electrical Property of Matter.

    ERIC Educational Resources Information Center

    DeMeo, Stephen; Lythcott, Jean

    2001-01-01

    Describes a demonstration of static charge using balloons and crystals to illustrate the electrical nature of matter. Building on the classic physics demonstration that uses pieces of paper and a plastic rod, this approach adds a new dimension of chemistry. Offers suggestions for how to discuss the observed phenomenon. (DLH)

  8. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  9. Targeted Nitric Oxide Delivery by Supramolecular Nanofibers for the Prevention of Restenosis After Arterial Injury

    PubMed Central

    Bahnson, Edward S.M.; Kassam, Hussein A.; Moyer, Tyson J.; Jiang, Wulin; Morgan, Courtney E.; Vercammen, Janet M.; Jiang, Qun; Flynn, Megan E.; Stupp, Samuel I.

    2016-01-01

    Abstract Aims: Cardiovascular interventions continue to fail as a result of arterial restenosis secondary to neointimal hyperplasia. We sought to develop and evaluate a systemically delivered nanostructure targeted to the site of arterial injury to prevent neointimal hyperplasia. Nanostructures were based on self-assembling biodegradable molecules known as peptide amphiphiles. The targeting motif was a collagen-binding peptide, and the therapeutic moiety was added by S-nitrosylation of cysteine residues. Results: Structure of the nanofibers was characterized by transmission electron microscopy and small-angle X-ray scattering. S-nitrosylation was confirmed by mass spectrometry, and nitric oxide (NO) release was assessed electrochemically and by chemiluminescent detection. The balloon carotid artery injury model was performed on 10-week-old male Sprague-Dawley rats. Immediately after injury, nanofibers were administered systemically via tail vein injection. S-nitrosylated (S-nitrosyl [SNO])-targeted nanofibers significantly reduced neointimal hyperplasia 2 weeks and 7 months following balloon angioplasty, with no change in inflammation. Innovation: This is the first time that an S-nitrosothiol (RSNO)-based therapeutic was shown to have targeted local effects after systemic administration. This approach, combining supramolecular nanostructures with a therapeutic NO-based payload and a targeting moiety, overcomes the limitations of delivering NO to a site of interest, avoiding undesirable systemic side effects. Conclusion: We successfully synthesized and characterized an RSNO-based therapy that when administered systemically, targets directly to the site of vascular injury. By integrating therapeutic and targeting chemistries, these targeted SNO nanofibers provided durable inhibition of neointimal hyperplasia in vivo and show great potential as a platform to treat cardiovascular diseases. Antioxid. Redox Signal. 27, 401–418. PMID:26593400

  10. Teaching Chemistry in Primary Science: What Does the Research Suggest?

    ERIC Educational Resources Information Center

    Skamp, Keith

    2011-01-01

    The new Australian national science curriculum includes chemistry content at the primary level. Chemistry for young students is learning about changes in material stuff (matter) and, by implication, of what stuff is made. Pedagogy in this area needs to be guided by research if stepping stones to later learning of chemical ideas are to facilitate…

  11. Organic Chemistry Trivia: A Way to Interest Nonchemistry Majors

    ERIC Educational Resources Information Center

    Farmer, Steven C.

    2011-01-01

    The use of in-class stories is an excellent way to keep a class interested in subject matter. Many organic chemistry classes are populated by nonchemistry majors, such as pre-med, pre-pharm, and biology students. Trivia questions are presented that are designed to show how organic chemistry is an important subject to students regardless of their…

  12. Photochromism in sound-induced alignment of a diarylethene supramolecular nanofibre.

    PubMed

    Hotta, Yasuhisa; Fukushima, Satomi; Motoyanagi, Jin; Tsuda, Akihiko

    2015-02-18

    A photochromic supramolecular nanofibre, composed of a diarylethene derivative, exhibits hydrodynamic alignment upon exposure to the audible sound. The aligned nanofibre outputs linear dichroism (LD), whose wavelength region can be switched reversibly with UV and visible light. PMID:25582095

  13. Sonochemical procedures; the main synthetic method for synthesis of coinage metal ion supramolecular polymer nano structures.

    PubMed

    Shahangi Shirazi, Fatemeh; Akhbari, Kamran

    2016-07-01

    During the last two decades, supramolecular polymers have received great attention and the number of their synthesized compounds is still growing. Although people have long been interested in their crystalline network form it was only until 2005 that the first examples of nano- or microscale coordination polymers particles be demonstrated. This review tries to give an overview of all nano supramolecular compounds which were reported from coinage metal ions, their attributed synthetic procedures and to investigate the relation between the dimensions of coinage metal ions (Cu, Ag and Au) coordination and supramolecular polymers with their nano-structural morphologies and dimensions. Eleven compounds (from twenty compounds) with nano-structure morphology were prepared by sonochemical process and Ag(I) coordination and supramolecular polymer nano-structures can be easily prepared by sonochemical procedures. PMID:26964923

  14. Origins of Structural Flexibility in Protein-Based Supramolecular Polymers Revealed by DEER Spectroscopy

    PubMed Central

    2015-01-01

    Modular assembly of bio-inspired supramolecular polymers is a powerful technique to develop new soft nanomaterials, and protein folding is a versatile basis for preparing such materials. Previous work demonstrated a significant difference in the physical properties of closely related supramolecular polymers composed of building blocks in which identical coiled-coil-forming peptides are cross-linked by one of two subtly different organic linkers (one flexible and the other rigid). Herein, we investigate the molecular basis for this observation by isolating a single subunit of the supramolecular polymer chain and probing its structure and conformational flexibility by double electron–electron resonance (DEER) spectroscopy. Experimental spin–spin distance distributions for two different labeling sites coupled with molecular dynamics simulations provide insights into how the linker structure impacts chain dynamics in the coiled-coil supramolecular polymer. PMID:25060334

  15. Highly ordered nanoporous films from supramolecular diblock copolymers with hydrogen-bonding junctions.

    PubMed

    Montarnal, Damien; Delbosc, Nicolas; Chamignon, Cécile; Virolleaud, Marie-Alice; Luo, Yingdong; Hawker, Craig J; Drockenmuller, Eric; Bernard, Julien

    2015-09-14

    We designed efficient precursors that combine complementary associative groups with exceptional binding affinities and thiocarbonylthio moieties enabling precise RAFT polymerization. Well defined PS and PMMA supramolecular polymers with molecular weights up to 30 kg mol(-1) are synthesized and shown to form highly stable supramolecular diblock copolymers (BCPs) when mixed, in non-polar solvents or in the bulk. Hierarchical self-assembly of such supramolecular BCPs by thermal annealing affords morphologies with excellent lateral order, comparable to features expected from covalent diblock copolymer analogues. Simple washing of the resulting materials with protic solvents disrupts the supramolecular association and selectively dissolves one polymer, affording a straightforward process for preparing well-ordered nanoporous materials without resorting to crosslinking or invasive chemical degradations. PMID:26234749

  16. Origins of structural flexibility in protein-based supramolecular polymers revealed by DEER spectroscopy.

    PubMed

    Tavenor, Nathan A; Silva, K Ishara; Saxena, Sunil; Horne, W Seth

    2014-08-21

    Modular assembly of bio-inspired supramolecular polymers is a powerful technique to develop new soft nanomaterials, and protein folding is a versatile basis for preparing such materials. Previous work demonstrated a significant difference in the physical properties of closely related supramolecular polymers composed of building blocks in which identical coiled-coil-forming peptides are cross-linked by one of two subtly different organic linkers (one flexible and the other rigid). Herein, we investigate the molecular basis for this observation by isolating a single subunit of the supramolecular polymer chain and probing its structure and conformational flexibility by double electron-electron resonance (DEER) spectroscopy. Experimental spin-spin distance distributions for two different labeling sites coupled with molecular dynamics simulations provide insights into how the linker structure impacts chain dynamics in the coiled-coil supramolecular polymer. PMID:25060334

  17. Control of polythiophene redox potentials based on supramolecular complexation with helical schizophyllan.

    PubMed

    Haraguchi, Shuichi; Tsuchiya, Youichi; Shiraki, Tomohiro; Sada, Kazuki; Shinkai, Seiji

    2009-10-28

    A novel method to control polythiophene redox potentials based on supramolecular complexation with the native polysaccharide, schizophyllan (SPG) is reported, which can importantly improve air stability for easy handling and processing. PMID:19809652

  18. Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly

    PubMed Central

    Hasegawa, Masashi

    2015-01-01

    Summary The construction of redox-active supramolecular assemblies based on star-shaped and radially expanded tetrathiafulvalene (TTF) oligomers with divergent and extended conjugation is summarized. Star-shaped TTF oligomers easily self-aggregate with a nanophase separation to produce supramolecular structures, and their TTF units stack face-to-face to form columnar structures using the fastener effect. Based on redox-active self-organizing supramolecular structures, conducting nanoobjects are constructed by doping of TTF oligomers with oxidants after the formation of such nanostructures. Although radical cations derived from TTF oligomers strongly interact in solution to produce a mixed-valence dimer and π-dimer, it seems to be difficult to produce nanoobjects of radical cations different from those of neutral TTF oligomers. In some cases, however, radical cations form nanostructured fibers and rods by controlling the supramolecular assembly, oxidation states, and counter anions employed. PMID:26664579

  19. Versatile types of polysaccharide-based supramolecular polycation/pDNA nanoplexes for gene delivery.

    PubMed

    Hu, Yang; Zhao, Nana; Yu, Bingran; Liu, Fusheng; Xu, Fu-Jian

    2014-07-01

    Different polysaccharide-based supramolecular polycations were readily synthesized by assembling multiple β-cyclodextrin-cored star polycations with an adamantane-functionalized dextran via host-guest interaction in the absence or presence of bioreducible linkages. Compared with nanoplexes of the starting star polycation and pDNA, the supramolecular polycation/pDNA nanoplexes exhibited similarly low cytotoxicity, improved cellular internalization and significantly higher gene transfection efficiencies. The incorporation of disulfide linkages imparted the supramolecular polycation/pDNA nanoplexes with the advantage of intracellular bioreducibility, resulting in better gene delivery properties. In addition, the antitumor properties of supramolecular polycation/pDNA nanoplexes were also investigated using a suicide gene therapy system. The present study demonstrates that the proper assembly of cyclodextrin-cored polycations with adamantane-functionalized polysaccharides is an effective strategy for the production of new nanoplex delivery systems. PMID:24890703

  20. PHYSICS AND CHEMISTRY FOR THE AUTOMOTIVE TRADES.

    ERIC Educational Resources Information Center

    WORTHING, ROBERT

    DESIGNED FOR STUDENT USE, THIS MANUAL PRESENTS RELATED INFORMATION AND LABORATORY EXPERIMENTS FOR A 1-YEAR COURSE IN APPLIED PHYSICS AND CHEMISTRY. IT WAS DEVELOPED BY ESSEX COUNTY AUTOMOTIVE TEACHERS. CONTENT HEADINGS ARE -- (1) MATTER AND ITS PROPERTIES (15 EXPERIMENTS), (2) MECHANICS (4 EXPERIMENTS), (3) HEAT (3 EXPERIMENTS), (4) ELECTRICITY (8…