Science.gov

Sample records for mature biofilm lifestyle

  1. Involvement in Denitrification is Beneficial to the Biofilm Lifestyle of Comamonas testosteroni: A Mechanistic Study and Its Environmental Implications.

    PubMed

    Wu, Yichao; Shukal, Sudha; Mukherjee, Manisha; Cao, Bin

    2015-10-01

    Comamonas is one of the most abundant microorganisms in biofilm communities driving wastewater treatment. Little has been known about the role of this group of organisms and their biofilm mode of life. In this study, using Comamonas testosteroni as a model organism, we demonstrated the involvement of Comamonas biofilms in denitrification under bulk aerobic conditions and elucidated the influence of nitrate respiration on its biofilm lifestyle. Our results showed that C. testosteroni could use nitrate as the sole electron acceptor for anaerobic growth. Under bulk aerobic condition, biofilms of C. testosteroni were capable of reducing nitrate, and intriguingly, nitrate reduction significantly enhanced viability of the biofilm-cells and reduced cell detachment from the biofilms. Nitrate respiration was further shown to play an essential role in maintaining high cell viability in the biofilms. RNA-seq analysis, quantitative polymerase chain reaction, and liquid chromatography-mass spectrometry revealed a higher level of bis(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) in cells respiring on nitrate than those grown aerobically (1.3 × 10(-4) fmol/cell vs 7.9 × 10(-6) fmol/cell; P < 0.01). C-di-GMP is one universal signaling molecule that regulates the biofilm mode of life, and a higher c-di-GMP concentration reduces cell detachment from biofilms. Taking these factors together, this study reveals that nitrate reduction occurs in mature biofilms of C. testosteroni under bulk aerobic conditions, and the respiratory reduction of nitrate is beneficial to the biofilm lifestyle by providing more metabolic energy to maintain high viability and a higher level of c-di-GMP to reduce cell detachment. PMID:26327221

  2. Bordetella biofilms: a lifestyle leading to persistent infections.

    PubMed

    Cattelan, Natalia; Dubey, Purnima; Arnal, Laura; Yantorno, Osvaldo M; Deora, Rajendar

    2016-02-01

    Bordetella bronchiseptica and B. pertussis are Gram-negative bacteria that cause respiratory diseases in animals and humans. The current incidence of whooping cough or pertussis caused by B. pertussis has reached levels not observed since the 1950s. Although pertussis is traditionally known as an acute childhood disease, it has recently resurged in vaccinated adolescents and adults. These individuals often become silent carriers, facilitating bacterial circulation and transmission. Similarly, vaccinated and non-vaccinated animals continue to be carriers of B. bronchiseptica and shed bacteria resulting in disease outbreaks. The persistence mechanisms of these bacteria remain poorly characterized. It has been proposed that adoption of a biofilm lifestyle allows persistent colonization of the mammalian respiratory tract. The history of Bordetella biofilm research is only a decade long and there is no single review article that has exclusively focused on this area. We systematically discuss the role of Bordetella factors in biofilm development in vitro and in the mouse respiratory tract. We further outline the implications of biofilms to bacterial persistence and transmission in humans and for the design of new acellular pertussis vaccines. PMID:26586694

  3. Dual lifestyle of Porphyromonas gingivalis in biofilm and gingival cells.

    PubMed

    Sakanaka, Akito; Takeuchi, Hiroki; Kuboniwa, Masae; Amano, Atsuo

    2016-05-01

    Porphyromonas gingivalis is deeply involved in the pathogenesis of marginal periodontitis, and recent findings have consolidated its role as an important and unique pathogen. This bacterium has a unique dual lifestyle in periodontal sites including subgingival dental plaque (biofilm) and gingival cells, as it has been clearly shown that P. gingivalis is able to exert virulence using completely different tactics in each environment. Inter-bacterial cross-feeding enhances the virulence of periodontal microflora, and such metabolic and adhesive interplay creates a supportive environment for P. gingivalis and other species. Human oral epithelial cells harbor a large intracellular bacterial load, resembling the polymicrobial nature of periodontal biofilm. P. gingivalis can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. Subsequently, from its intracellular position, the pathogen exploits cellular recycling pathways to exit invaded cells, by which it is able to control its population in infected tissues, allowing for persistent infection in gingival tissues. Here, we outline the dual lifestyle of P. gingivalis in subgingival areas and its effects on the pathogenesis of periodontitis. PMID:26456558

  4. Ecological changes in oral microcosm biofilm during maturation.

    PubMed

    Kim, Young-Seok; Kang, Si-Mook; Lee, Eun-Song; Lee, Ji Hyun; Kim, Bo-Ra; Kim, Baek-Il

    2016-10-01

    The aim of this study was to evaluate the ecological changes in the biofilm at different stages of maturation using 16S rDNA gene amplicon sequencing and to identify correlations between red/green (R/G) fluorescence ratio and ecological changes. An oral microcosm biofilm was initiated from the saliva of a single donor and grown anaerobically for up to 10 days in basal medium mucin. Quantitative light-induced fluorescence analysis was shown that the R/G ratio of the biofilm increased consistently, but the slope rapidly decreased after six days. The bacterial compositions of 10 species also consistently changed over time. However, there was no significant correlation between each bacteria and red fluorescence. The monitoring of the maturation process of oral microcosm biofilm over 10 days revealed that the R/G ratio and the bacterial composition within biofilm consistently changed. Therefore, the R/G fluorescence ratio of biofilm may be related with its ecological change rather than specific bacteria PMID:26950795

  5. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles.

    PubMed

    Chua, Song Lin; Liu, Yang; Yam, Joey Kuok Hoong; Chen, Yicai; Vejborg, Rebecca Munk; Tan, Bryan Giin Chyuan; Kjelleberg, Staffan; Tolker-Nielsen, Tim; Givskov, Michael; Yang, Liang

    2014-01-01

    Bacteria assume distinct lifestyles during the planktonic and biofilm modes of growth. Increased levels of the intracellular messenger c-di-GMP determine the transition from planktonic to biofilm growth, while a reduction causes biofilm dispersal. It is generally assumed that cells dispersed from biofilms immediately go into the planktonic growth phase. Here we use single-nucleotide resolution transcriptomic analysis to show that the physiology of dispersed cells from Pseudomonas aeruginosa biofilms is highly different from those of planktonic and biofilm cells. In dispersed cells, the expression of the small regulatory RNAs RsmY and RsmZ is downregulated, whereas secretion genes are induced. Dispersed cells are highly virulent against macrophages and Caenorhabditis elegans compared with planktonic cells. In addition, they are highly sensitive towards iron stress, and the combination of a biofilm-dispersing agent, an iron chelator and tobramycin efficiently reduces the survival of the dispersed cells. PMID:25042103

  6. Marine bacterial isolates inhibit biofilm formation and disrupt mature biofilms of Pseudomonas aeruginosa PAO1.

    PubMed

    Nithya, Chari; Begum, Mansur Farzana; Pandian, Shunmugiah Karutha

    2010-09-01

    According to the Centers for Disease Control and Prevention, biofilms cause 65% of infections in developed countries. Pseudomonas aeruginosa biofilm cause life threatening infections in cystic fibrosis infection and they are 1,000 times more tolerant to antibiotic than the planktonic cells. As quorum sensing, hydrophobicity index and extracellular polysaccharide play a crucial role in biofilm formation, extracts from 46 marine bacterial isolates were screened against these factors in P. aeruginosa. Eleven extracts showed antibiofilm activity. Extracts of S6-01 (Bacillus indicus = MTCC 5559) and S6-15 (Bacillus pumilus = MTCC 5560) inhibited the formation of PAO1 biofilm up to 95% in their Biofilm Inhibitory Concentration(BIC) of 50 and 60 microg/ml and 85% and 64% in the subinhibitory concentrations (1/4 and 1/8 of the BIC, respectively). Furthermore, the mature biofilm was disrupted to 70-74% in their BIC. The antibiofilm compound from S6-15 was partially purified using solvent extraction followed by TLC and silica column and further characterized by IR analysis. Current study for the first time reveals the antibiofilm and antiquorum-sensing activity of B. pumilus, B. indicus, Bacillus arsenicus, Halobacillus trueperi, Ferrimonas balearica, and Marinobacter hydrocarbonoclasticus from marine habitat. PMID:20665017

  7. Inhibitory activity of thymol on native and mature Gardnerella vaginalis biofilms: in vitro study.

    PubMed

    Braga, Pier Carlo; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra

    2010-01-01

    Bacterial vaginosis (BV) is the most frequent diagnosis made in women with lower genital tract symptoms. It has recently been observed that 90 % of subjects with BV show the growth of bacteria in the form of biofilms as against only 10% without BV, and that Gardnerella vaginalis was the predominant species. The propensity of G. vaginalis to form biofilm is clinically relevant because this form of growth allows it to tolerate higher concentrations of certain antibiotics, thus increasing the possibilty of recurrent BV even after apparently curative therapy. The aim of this study was to investigate whether thymol (CAS 89-83-8), a molecule present in thyme essential oil, that is credited with having a series of pharmacological properties including antimicrobial and antifungal effects, can interfere with newly formed and mature G. vaginalis biofilms. The ability of G. vaginalis ATCC 49145 and two G. vaginalis strains isolated from human BV to form biofilm in flat-bottomed 96-well microtitre plates was verified, and the effects of thymol concentrations ranging from 1 to 1/16 MIC (minimum inhibitory concentration) on preformed and mature biofilms was investigated by means of spectrophotometric analysis, Nomarski interference contrast microscopy, and fluorescence microscopy with live-dead cell visualisation (SYTO 9 and propidium iodide). Native biofilm was inhibited by concentrations ranging from 1 MIC to 1/8 MIC (32.77% +/- 2.37 to 11.39% +/- 1.46), and mature biofilm was inhibited by concentrations ranging from 1 MIC to 1/4 MIC (26.18% +/- 1.36 to 13.20% +/- 1.44). Nomarski interference contrast and fluorescence microscopy visually confirmed these findings. As biofilm is a multi-factorial phenomenon, the multiple mechanisms of thymol may act on different steps in the evolution of mature biofilm. PMID:21175040

  8. Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes.

    PubMed

    Saá Ibusquiza, P; Herrera, J J R; Cabo, M L

    2011-05-01

    Increase of resistance to the application of benzalkonium chloride (BAC), peracetic acid (PA) and nisin during biofilm formation at 25 °C by three strains of Listeria monocytogenes (CECT 911, CECT 4032, CECT 5873 and BAC-adapted CECT 5873) in different scenarios was compared. For this purpose, resistance after 4 and 11-days of biofilm formation was quantified in terms of lethal dose 90% values (LD(90)), determined according with a dose-response logistic mathematical model. Microscopic analyses after 4 and 11-days of L. monocytogenes biofilm formation were also carried out. Results demonstrated a relation between the microscopic structure and the resistance to the assayed biocides in matured biofilms. The worst cases being biofilms formed by the strain 4032 (in both stainless steel and polypropylene), which showed a complex "cloud-type" structure that correlates with the highest resistance of this strain against the three biocides during biofilm maturation. However, that increase in resistance and complexity appeared not to be dependent on initial bacterial adherence, thus indicating mature biofilms rather than planctonic cells or early-stage biofilms must be considered when disinfection protocols have to be optimized. PA seemed to be the most effective of the three disinfectants used for biofilms. We hypothesized both its high oxidizing capacity and low molecular size could suppose an advantage for its penetration inside the biofilm. We also demonstrated that organic material counteract with the biocides, thus indicating the importance of improving cleaning protocols. Finally, by comparing strains 5873 and 5873 adapted to BAC, several adaptative cross-responses between BAC and nisin or peracetic acid were identified. PMID:21356446

  9. Growth and Detachment of Cell Clusters from Mature Mixed-Species Biofilms

    PubMed Central

    Stoodley, Paul; Wilson, Suzanne; Hall-Stoodley, Luanne; Boyle, John D.; Lappin-Scott, Hilary M.; Costerton, J. W.

    2001-01-01

    Detachment from biofilms is an important consideration in the dissemination of infection and the contamination of industrial systems but is the least-studied biofilm process. By using digital time-lapse microscopy and biofilm flow cells, we visualized localized growth and detachment of discrete cell clusters in mature mixed-species biofilms growing under steady conditions in turbulent flow in situ. The detaching biomass ranged from single cells to an aggregate with a diameter of approximately 500 μm. Direct evidence of local cell cluster detachment from the biofilms was supported by microscopic examination of filtered effluent. Single cells and small clusters detached more frequently, but larger aggregates contained a disproportionately high fraction of total detached biomass. These results have significance in the establishment of an infectious dose and public health risk assessment. PMID:11722913

  10. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans.

    PubMed

    Verma-Gaur, Jiyoti; Qu, Yue; Harrison, Paul F; Lo, Tricia L; Quenault, Tara; Dagley, Michael J; Bellousoff, Matthew; Powell, David R; Beilharz, Traude H; Traven, Ana

    2015-10-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  11. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans

    PubMed Central

    Harrison, Paul F.; Lo, Tricia L.; Quenault, Tara; Dagley, Michael J.; Bellousoff, Matthew; Powell, David R.; Beilharz, Traude H.; Traven, Ana

    2015-01-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  12. Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants.

    PubMed

    Phillips, Priscilla L; Yang, Qingping; Davis, Stephen; Sampson, Edith M; Azeke, John I; Hamad, Afifa; Schultz, Gregory S

    2015-08-01

    An ex vivo porcine skin explant biofilm model that preserves key properties of biofilm attached to skin at different levels of maturity (0-3 days) was used to assess the efficacy of commercially available antimicrobial dressings and topical treatments. Assays were also performed on the subpopulation of antibiotic tolerant biofilm generated by 24 hours of pre-treatment with gentamicin (120× minimal inhibitory concentration) prior to agent exposure. Five types of antimicrobial agents (iodine, silver, polyhexamethylene biguanide, honey and ethanol) and four types of moisture dressings (cotton gauze, sodium carboxymethylcellulose fibre, calcium alginate fibre and cadexomer beads) were assessed. Time-release silver gel and cadexomer iodine dressings were the most effective in reducing mature biofilm [between 5 and 7 logarithmic (log) of 7-log total], whereas all other dressing formulations reduced biofilm between 0·3 and 2 log in 24 or 72 hours with a single exposure. Similar results were found after 24-hour exposure to silver release dressings using an in vivo pig burn wound model, demonstrating correlation between the ex vivo and in vivo models. Results of this study indicate that commonly used microbicidal wound dressings vary widely in their ability to kill mature biofilm and the efficacy is influenced by time of exposure, number of applications, moisture level and agent formulation (sustained release). PMID:24028432

  13. Exopolysaccharide Biosynthesis Enables Mature Biofilm Formation on Abiotic Surfaces by Herbaspirillum seropedicae

    PubMed Central

    Balsanelli, Eduardo; de Baura, Válter Antonio; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Monteiro, Rose Adele

    2014-01-01

    H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS) are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization. PMID:25310013

  14. Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms.

    PubMed

    Yang, Qingping; Phillips, Priscilla L; Sampson, Edith M; Progulske-Fox, Ann; Jin, Shouguang; Antonelli, Patrick; Schultz, Gregory S

    2013-01-01

    Bacterial biofilms have been proposed to be a major factor contributing to the failure of chronic wounds to heal because of their increased tolerance to antimicrobial agents and the prolonged inflammation they cause. Phenotypic characteristics of bacterial biofilms vary depending on the substratum to which they attach, the nutritional environment, and the microorganisms within the biofilm community. To develop an ex vivo biofilm model that more closely mimics biofilms in chronic skin wounds, we developed an optimal procedure to grow mature biofilms on a central partial-thickness wound in 12-mm porcine skin explants. Chlorine gas produced optimal sterilization of explants while preserving histological properties of the epidermis and dermis. Pseudomonas aeruginosa and Staphylococcus aureus developed mature biofilms after 3 days that had dramatically increased tolerance to gentamicin and oxacillin (∼100× and 8,000× minimal inhibitory concentration, respectively) and to sodium hypochlorite (0.6% active chlorine). Scanning electron microscopy and confocal microscopy verified extensive exopolymeric biofilm structures on the explants. Despite a significant delay, a ΔlasI quorum-sensing mutant of P. aeruginosa developed biofilm as antibiotic-tolerant as wild-type after 3 days. This ex vivo model simulates growth of biofilms on skin wounds and provides an accurate model to assess effects of antimicrobial agents on mature biofilms. PMID:23927831

  15. Outer membrane protein OmpQ of Bordetella bronchiseptica is required for mature biofilm formation.

    PubMed

    Cattelan, Natalia; Villalba, María Inés; Parisi, Gustavo; Arnal, Laura; Serra, Diego Omar; Aguilar, Mario; Yantorno, Osvaldo

    2016-02-01

    Bordetella bronchiseptica, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in Bordetella species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by B. bronchiseptica. We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of B. bronchiseptica under planktonic growth conditions. The ΔompQ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the ompQ gene attenuated the ability of B. bronchiseptica to form a mature biofilm. Analysis of ompQ gene expression during the biofilm formation process by B. bronchiseptica showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for B. bronchiseptica pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition. PMID:26673448

  16. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms

    PubMed Central

    Ferreira, Inês Santos; Bettencourt, Ana F; Gonçalves, Lídia MD; Kasper, Stefanie; Bétrisey, Bertrand; Kikhney, Judith; Moter, Annette; Trampuz, Andrej; Almeida, António J

    2015-01-01

    The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was

  17. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms.

    PubMed

    Ferreira, Inês Santos; Bettencourt, Ana F; Gonçalves, Lídia M D; Kasper, Stefanie; Bétrisey, Bertrand; Kikhney, Judith; Moter, Annette; Trampuz, Andrej; Almeida, António J

    2015-01-01

    The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was

  18. The horizontally-acquired response regulator SsrB drives a Salmonella lifestyle switch by relieving biofilm silencing

    PubMed Central

    Desai, Stuti K; Winardhi, Ricksen S; Periasamy, Saravanan; Dykas, Michal M; Jie, Yan; Kenney, Linda J

    2016-01-01

    A common strategy by which bacterial pathogens reside in humans is by shifting from a virulent lifestyle, (systemic infection), to a dormant carrier state. Two major serovars of Salmonella enterica, Typhi and Typhimurium, have evolved a two-component regulatory system to exist inside Salmonella-containing vacuoles in the macrophage, as well as to persist as asymptomatic biofilms in the gallbladder. Here we present evidence that SsrB, a transcriptional regulator encoded on the SPI-2 pathogenicity-island, determines the switch between these two lifestyles by controlling ancestral and horizontally-acquired genes. In the acidic macrophage vacuole, the kinase SsrA phosphorylates SsrB, and SsrB~P relieves silencing of virulence genes and activates their transcription. In the absence of SsrA, unphosphorylated SsrB directs transcription of factors required for biofilm formation specifically by activating csgD (agfD), the master biofilm regulator by disrupting the silenced, H-NS-bound promoter. Anti-silencing mechanisms thus control the switch between opposing lifestyles. DOI: http://dx.doi.org/10.7554/eLife.10747.001 PMID:26880544

  19. The horizontally-acquired response regulator SsrB drives a Salmonella lifestyle switch by relieving biofilm silencing.

    PubMed

    Desai, Stuti K; Winardhi, Ricksen S; Periasamy, Saravanan; Dykas, Michal M; Jie, Yan; Kenney, Linda J

    2016-01-01

    A common strategy by which bacterial pathogens reside in humans is by shifting from a virulent lifestyle, (systemic infection), to a dormant carrier state. Two major serovars of Salmonella enterica, Typhi and Typhimurium, have evolved a two-component regulatory system to exist inside Salmonella-containing vacuoles in the macrophage, as well as to persist as asymptomatic biofilms in the gallbladder. Here we present evidence that SsrB, a transcriptional regulator encoded on the SPI-2 pathogenicity-island, determines the switch between these two lifestyles by controlling ancestral and horizontally-acquired genes. In the acidic macrophage vacuole, the kinase SsrA phosphorylates SsrB, and SsrB~P relieves silencing of virulence genes and activates their transcription. In the absence of SsrA, unphosphorylated SsrB directs transcription of factors required for biofilm formation specifically by activating csgD (agfD), the master biofilm regulator by disrupting the silenced, H-NS-bound promoter. Anti-silencing mechanisms thus control the switch between opposing lifestyles. PMID:26880544

  20. The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development.

    PubMed

    Malamud, Florencia; Torres, Pablo S; Roeschlin, Roxana; Rigano, Luciano A; Enrique, Ramón; Bonomi, Hernán R; Castagnaro, Atilio P; Marano, María Rosa; Vojnov, Adrián A

    2011-03-01

    Xanthomonas axonopodis pv. citri (Xac) is the causative agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. To evaluate the participation of the single flagellum of Xac in biofilm formation, mutants in the fliC (flagellin) and the flgE (hook) genes were generated. Swimming motility, assessed on 0.25 % agar plates, was markedly reduced in fliC and flgE mutants. However, the fliC and flgE mutants exhibited a flagellar-independent surface translocation on 0.5 % agar plates. Mutation of either the rpfF or the rpfC gene, which both encode proteins involved in cell-cell signalling mediated by diffusible signal factor (DSF), led to a reduction in both flagellar-dependent and flagellar-independent surface translocation, indicating a regulatory role for DSF in both types of motility. Confocal laser scanning microscopy of biofilms produced in static culture demonstrated that the flagellum is also involved in the formation of mushroom-shaped structures and water channels, and in the dispersion of biofilms. The presence of the flagellum was required for mature biofilm development on lemon leaf surfaces. The absence of flagellin produced a slight reduction in Xac pathogenicity and this reduction was more severe when the complete flagellum structure was absent. PMID:21109564

  1. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics.

    PubMed

    Ren, Hang; Wu, Jianfeng; Colletta, Alessandro; Meyerhoff, Mark E; Xi, Chuanwu

    2016-01-01

    Fast eradication of mature biofilms is the 'holy grail' in the clinical management of device-related infections. Endogenous nitric oxide (NO) produced by macrophages plays an important role in host defense against intracellular pathogens, and NO is a promising agent in preventing biofilms formation in vitro. However, the rate of delivery of NO by various NO donors (e.g., diazeniumdiolates, S-nitrosothiols, etc.) is difficult to control, which hinders fundamental studies aimed at understanding the role of NO in biofilm control. In this study, by using a novel precisely controlled electrochemical NO releasing catheter device, we examine the effect of physiological levels of NO on eradicating mature Pseudomonas aeruginosa biofilm (7 days), as well as the potential application of the combination of NO with antimicrobial agents. It is shown that physiological levels of NO exhibit mixed effects of killing bacteria and dispersing ambient biofilm. The overall biofilm-eradicating effect of NO is quite efficient in a dose-dependent manner over a 3 h period of NO treatment. Moreover, NO also greatly enhances the efficacy of antimicrobial agents, including human beta-defensin 2 (BD-2) and several antibiotics, in eradicating biofilm and its detached cells, which otherwise exhibited high recalcitrance to these antimicrobial agents. The electrochemical NO release technology offers a powerful tool in evaluating the role of NO in biofilm control as well as a promising approach when combined with antimicrobial agents to treat biofilm-associated infections in hospital settings, especially infections resulting from intravascular catheters. PMID:27582732

  2. Development of an intracanal mature Enterococcus faecalis biofilm and its susceptibility to some antimicrobial intracanal medications; an in vitro study

    PubMed Central

    Saber, Shehab El-Din Mohamed; El-Hady, Soha A.

    2012-01-01

    Objectives: To develop a mature biofilm of Enterococcus faecalis inside the root canal system and to test its susceptibility to some antimicrobial medications in vitro. Methods: Single rooted premolars were mechanically enlarged, sterilized, and then infected with a clinical isolate of E. faecalis. Biofilm formation and maturation was monitored using SEM. Biofilm bacteria were exposed to Amoxicillin+clavulanate, Ciprofloxacin, Clindamycin, Doxycycline, and calcium hydroxide as intracanal medications for 1 week. Finally bacterial samples were collected, and colony-forming units were enumerated. Results: SEM examination confirmed the formation of a mature biofilm at the end of the incubation period. All the chemotherapeutic agents used were significantly better than Calcium hydroxide in elimination of biofilm bacteria. The antimicrobial effect of Amoxicillin + clavulanate, Ciprofloxacin and Clindamycin was significantly better than Doxycycline (P=.05). However the difference in the antimicrobial effectiveness among them was statistically non-significant (P=.05). Conclusions: The method used for bacterial biofilm development and maturation is reliable and can be used to assess the anti bacterial potential of endodontic materials. Also, the local application of antibacterial agents can be beneficial in resistant cases of apical periodontitis but only after careful culture and sensitivity testing to choose the appropriate agent for the existing flora. PMID:22229006

  3. Listeria monocytogenes Impact on Mature or Old Pseudomonas fluorescens Biofilms During Growth at 4 and 20°C

    PubMed Central

    Puga, Carmen H.; Orgaz, Belen; SanJose, Carmen

    2016-01-01

    Changes in spatial organization, as observed by confocal laser scanning microscopy (CLSM), viable cell content, biovolume, and substratum surface coverage of the biofilms formed on glass by Pseudomonas fluorescens resulting from co-culture with Listeria monocytogenes, were examined. Two strains of L. monocytogenes, two culture temperatures and two biofilm developmental stages were investigated. Both L. monocytogenes strains, a persistently sampled isolate (collected repeatedly along 3 years from a meat factory) and Scott A, induced shrinkage in matrix volume, both at 20°C and 4°C, in mature or old biofilms, without loss of P. fluorescens cell count per surface unit. The nearly homogeneous pattern of surface coverage shown by mono-species P. fluorescens biofilms, turned into more irregular layouts in co-culture with L. monocytogenes. The upper layer of both mono and dual-species biofilms turned to predominantly consist of matrix, with plenty of viable cells underneath, in old biofilms cultured at 20°C, but not in those grown at 4°C. Between 15 and 56% of the substratum area was covered by biofilm, the extent depending on temperature, time and L. monocytogenes strain. Real biofilms in food-related surfaces may thus be very heterogeneous regarding their superficial components, i.e., those more accessible to disinfectants. It is therefore a hygienic challenge to choose an adequate agent to disrupt them. PMID:26913024

  4. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics

    PubMed Central

    Ren, Hang; Wu, Jianfeng; Colletta, Alessandro; Meyerhoff, Mark E.; Xi, Chuanwu

    2016-01-01

    Fast eradication of mature biofilms is the ‘holy grail’ in the clinical management of device-related infections. Endogenous nitric oxide (NO) produced by macrophages plays an important role in host defense against intracellular pathogens, and NO is a promising agent in preventing biofilms formation in vitro. However, the rate of delivery of NO by various NO donors (e.g., diazeniumdiolates, S-nitrosothiols, etc.) is difficult to control, which hinders fundamental studies aimed at understanding the role of NO in biofilm control. In this study, by using a novel precisely controlled electrochemical NO releasing catheter device, we examine the effect of physiological levels of NO on eradicating mature Pseudomonas aeruginosa biofilm (7 days), as well as the potential application of the combination of NO with antimicrobial agents. It is shown that physiological levels of NO exhibit mixed effects of killing bacteria and dispersing ambient biofilm. The overall biofilm-eradicating effect of NO is quite efficient in a dose-dependent manner over a 3 h period of NO treatment. Moreover, NO also greatly enhances the efficacy of antimicrobial agents, including human beta-defensin 2 (BD-2) and several antibiotics, in eradicating biofilm and its detached cells, which otherwise exhibited high recalcitrance to these antimicrobial agents. The electrochemical NO release technology offers a powerful tool in evaluating the role of NO in biofilm control as well as a promising approach when combined with antimicrobial agents to treat biofilm-associated infections in hospital settings, especially infections resulting from intravascular catheters. PMID:27582732

  5. Comparative Transcriptome Analysis of Desulfovibrio Vulgaris Grown in Planktonic Culture and Mature Biofilm on a Steel Surface

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Nie, Lei; Scholten, Johannes C.

    2007-08-01

    The build-up of biofilms of sulphate -reducing bacteria (SRB) on metals surfaces may lead to severe corrosion of iron. To understand the processes at molecular level, in this study, a whole-genome oligonucleotide microarray was used to examine differential expression patterns between planktonic populations and mature biofilm of model SRB species Desulfovibrio vulgaris. Statistical analysis revealed that 472 genes were differentially expressed (1.5 fold or more with a p value less than 0.025) when comparing biofilm to planktonic cells. Among the differentially expressed genes were several that corresponded to biofilm formation genes identified in many aerobic bacterial biofilms (i.e., Pseudomonas species and Escherichia coli), such as down-regulation of genes encoding flagellin, flagellar motor switch protein and chemotaxis proteins involved in cell motility and induction of genes encoding sugar transferase and glycogen synthase involved in exopolysaccharide biosynthesis. In addition, D. vulgaris biofilm-bound cells exhibited decreased transcription of genes involved in protein synthesis, energy metabolism and sulfate reduction, as well as genes involved in general stress responses. These findings were all consistent with early suggestion that the average physiology of biofilm cells were similar to planktonic cells of stationary phases. Most notably, up-regulation of large number of outer membrane proteins was observed in D. vulgaris biofilm. Although their function is still unknown, the higher expression of these genes in D. vulgaris biofilm could implicate important roles formation and maintenance of multi-cellular consortium on metal surface. The study provided insights into the metabolic networks associated with D. vulgaris biofilm formation and maintenance on an iron surface.

  6. The role of the globin-coupled sensor YddV in a mature E. coli biofilm population.

    PubMed

    Donné, Joke; Van Kerckhoven, Marian; Maes, Louis; Cos, Paul; Dewilde, Sylvia

    2016-07-01

    Biofilm-associated infections are hard to treat because of their high antibiotic resistance and the presence of a very persistent subpopulation of bacteria. The second messenger molecule cyclic di-guanosine monophosphate (c-di-GMP) plays a very important role in this biofilm physiology. Here, we evaluated the role of YddV, an enzyme with a c-di-GMP synthesis function, in the formation and maturation of Escherichia coli biofilms. Our results suggest that YddV stimulates biofilm growth via its role in the production of c-di-GMP and this likely by influencing the production of matrix (e.g. poly-N-acetylglucosamine (PGA)). However, lowering the YddV expression did not alter the biofilm formation since there was no significant difference between the biofilm phenotypes of WT E. coli and YddV-knockout bacteria. Additionally, YddV expression had no significant influence on the amount of persister cells within the biofilm population, questioning the use of YddV as therapeutic target. PMID:27083533

  7. Interfacial separation of a mature biofilm from a glass surface - A combined experimental and cohesive zone modelling approach.

    PubMed

    Safari, Ashkan; Tukovic, Zeljko; Cardiff, Philip; Walter, Maik; Casey, Eoin; Ivankovic, Alojz

    2016-02-01

    A good understanding of the mechanical stability of biofilms is essential for biofouling management, particularly when mechanical forces are used. Previous biofilm studies lack a damage-based theoretical model to describe the biofilm separation from a surface. The purpose of the current study was to investigate the interfacial separation of a mature biofilm from a rigid glass substrate using a combined experimental and numerical modelling approach. In the current work, the biofilm-glass interfacial separation process was investigated under tensile and shear stresses at the macroscale level, known as modes I and II failure mechanisms respectively. The numerical simulations were performed using a Finite Volume (FV)-based simulation package (OpenFOAM®) to predict the separation initiation using the cohesive zone model (CZM). Atomic force microscopy (AFM)-based retraction curve was used to obtain the separation properties between the biofilm and glass colloid at microscale level, where the CZM parameters were estimated using the Johnson-Kendall-Roberts (JKR) model. In this study CZM is introduced as a reliable method for the investigation of interfacial separation between a biofilm and rigid substrate, in which a high local stress at the interface edge acts as an ultimate stress at the crack tip.This study demonstrated that the total interfacial failure energy measured at the macroscale, was significantly higher than the pure interfacial separation energy obtained by AFM at the microscale, indicating a highly ductile deformation behaviour within the bulk biofilm matrix. The results of this study can significantly contribute to the understanding of biofilm detachments. PMID:26474034

  8. Role of initial contamination levels, biofilm maturity and presence of salt and fat on desiccation survival of Listeria monocytogenes on stainless steel surfaces.

    PubMed

    Hingston, Patricia A; Stea, Emma C; Knøchel, Susanne; Hansen, Truelstrup

    2013-10-01

    This study investigated the effect of initial contamination levels, biofilm maturity and presence of salt and fatty food soils on desiccation survival of Listeria monocytogenes on stainless steel (SS) coupons. L. monocytogenes cultures grown (at 15 °C for 48 h) in Tryptic Soy Broth with 1% glucose (TSB-glu) containing either 0.5 or 5% (w/v) NaCl were re-suspended in TSB-glu containing either 0.5 or 5% NaCl and used to contaminate SS coupons at levels of 3.5, 5.5, and 7.5 log CFU/cm². Desiccation (at 15 °C for 20 days, 43% RH) commenced immediately (non-biofilm) or following biofilm formation (at 15 °C for 48 h, 100% RH). To study the impact of food lipids, non-biofilm L. monocytogenes cells were suspended in TSB-glu containing either canola oil (5-10%) or lard (20-60%) and desiccated as above on SS coupons. Following desiccation for 20 days, survivors decreased by 1.4-3.7 log CFU/cm² for non-biofilm L. monocytogenes cells. The contamination level had no significant (p > 0.05) effect on survival kinetics. SEM micrographs showed mature biofilms on coupons initially contaminated with 5.5 and 7.5 log CFU/cm². Mature biofilm cells were significantly (p < 0.05) more desiccation resistant than cells in immature biofilms formed by the lowest contamination level. Besides biofilm maturity/formation, previous osmoadaptation, exposure to lard (20-60%) or salt (5%) during desiccation significantly (p < 0.05) increased the bacterium's survival. In conclusion, L. monocytogenes desiccation survival can be greatly reduced by preventing presence of mature biofilms and salty or fatty soils on food contact surfaces. PMID:23764219

  9. Mature Biofilm Degradation by Potential Probiotics: Aggregatibacter actinomycetemcomitans versus Lactobacillus spp.

    PubMed Central

    Mizuno, Kouhei; Okinaga, Toshinori

    2016-01-01

    The biofilm degradation of Aggregatibacter actinomycetemcomitans is essential as a complete periodontal disease therapy, and here we show the effects of potential probiotic bacteria such as Lactobacillus spp. for the biofilm of several serotypes of A. actinomycetemcomitans strains. Eight of the 13 species showed the competent biofilm degradation of ≥ 90% reduction in biofilm values in A. actinomycetemcomitans Y4 (serotype b) as well as four of the seven species for the biofilm of A. actinomycetemcomitans OMZ 534 (serotype e). In contrast, the probiotic bacteria did not have a big impact for the degradation of A. actinomycetemcomitans SUNY 75 (serotype a) biofilm. The dispersed A. actinomycetemcomitans Y4 cells through the biofilm detachment were still viable and plausible factors for the biofilm degradation were not due to the lactic acid and low pH conditions. The three enzymes, protease, lipase, and amylase may be responsible for the biofilm degradation; in particular, lipase was the most effective enzyme for the biofilm degradation of A. actinomycetemcomitans Y4 along with the protease activity which should be also important for the other serotypes. Remarkable lipase enzyme activities were detected from some of the potential probiotics and a supporting result using a lipase inhibitor presented corroborating evidence that lipase activity is one of the contributing factors for biofilm degradation outside of the protease which is also another possible factor for the biofilm of the other serotype of A. actinomycetemcomitans strains. On the other hand, the biofilm of A. actinomycetemcomitans SUNY 75 (serotype a) was not powerfully degraded by the lipase enzyme because the lipase inhibitor was slightly functional for only two of potential probiotics. PMID:27438340

  10. Biofilms

    PubMed Central

    van Hoek, Monique L

    2013-01-01

    Our understanding of the virulence and pathogenesis of Francisella spp. has significantly advanced in recent years, including a new understanding that this organism can form biofilms. What is known so far about Francisella spp. biofilms is summarized here and future research questions are suggested. The molecular basis of biofilm production has begun to be studied, especially the role of extracellular carbohydrates and capsule, quorum sensing and two-component signaling systems. Further work has explored the contribution of amoebae, pili, outer-membrane vesicles, chitinases, and small molecules such as c-di-GMP to Francisella spp. biofilm formation. A role for Francisella spp. biofilm in feeding mosquito larvae has been suggested. As no strong role in virulence has been found yet, Francisella spp. biofilm formation is most likely a key mechanism for environmental survival and persistence. The significance and importance of Francisella spp.’s biofilm phenotype as a critical aspect of its microbial physiology is being developed. Areas for further studies include the potential role of Francisella spp. biofilms in the infection of mammalian hosts and virulence regulation. PMID:24225421

  11. Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations.

    PubMed

    Baqué, Mickael; Scalzi, Giuliano; Rabbow, Elke; Rettberg, Petra; Billi, Daniela

    2013-10-01

    When Chroococcidiopsis sp. strain CCMEE 057 from the Sinai Desert and strain CCMEE 029 from the Negev Desert were exposed to space and Martian simulations in the dried status as biofilms or multilayered planktonic samples, the biofilms exhibited an enhanced rate of survival. Compared to strain CCMEE 029, biofilms of strain CCME 057 better tolerated UV polychromatic radiation (5 × 10(5) kJ/m(2) attenuated with a 0.1% neutral density filter) combined with space vacuum or Martian atmosphere of 780 Pa. CCMEE 029, on the other hand, failed to survive UV polychromatic doses higher than 1.5 × 10(3) kJ/m(2). The induced damage to genomic DNA, plasma membranes and photosynthetic apparatus was quantified and visualized by means of PCR-based assays and CLSM imaging. Planktonic samples of both strains accumulated a higher amount of damage than did the biofilms after exposure to each simulation; CLSM imaging showed that photosynthetic pigment bleaching, DNA fragmentation and damaged plasma membranes occurred in the top 3-4 cell layers of both biofilms and of multilayered planktonic samples. Differences in the EPS composition were revealed by molecular probe staining as contributing to the enhanced endurance of biofilms compared to that of planktonic samples. Our results suggest that compared to strain CCMEE 029, biofilms of strain CCMEE 057 might better tolerate 1 year's exposure in space during the next EXPOSE-R2 mission. PMID:23955666

  12. Evaluation of Antimicrobial Effects of Different Concentrations of Triple Antibiotic Paste on Mature Biofilm of Enterococcus faecalis

    PubMed Central

    Frough Reyhani, Mohammad; Rahimi, Saeed; Fathi, Zahra; Shakouie, Sahar; Salem Milani, Amin; Soroush Barhaghi, Mohammad Hossein; Shokri, Javad

    2015-01-01

    Background and aims. Triple antibiotic paste (TAP) is widely used in endodontics for root canal disinfection, particularly in regenerative procedures. The aim of this in vitro study was to evaluate the antimicrobial effects of different concentrations of TAP at 1-, 2-, 3-, and 4-week intervals on mature Enterococcus faecalis biofilm. Materials and methods. A total of 287 extracted one-rooted human central incisors were infected with E. faecalis ATCC 29212 after removing the crown and preparation. The root canal space was filled with one of the 0.01-, 0.1-, 1-, 10-, 100-, and 1000-mg/mL concentrations of TAP or normal saline (control). The root canal dentin was sampled after 1, 2, 3, and 4 weeks. The dentinal shavings were cultured on Mueller-Hinton agar plates after serial dilutions. The classic colony-forming unit (CFU) counting technique was used to determine remaining bacterial counts. Data were analyzed by using the two-way ANOVA, post hoc Tukey tests and one-way ANOVA (P<0.05). Results. TAP completely eliminated E. faecalis biofilms at all the intervals at concentrations of 1000, 100, and 10 mg/mL, whereas 1-, 0.1-, and 0.01-mg/mL TAP resulted in significant reduction of CFU means compared with the control group. There were no statistically significant differences between the four time intervals. Conclusion. Use of lower concentrations of TAP at short term could eradicate E. faecalis biofilm and decrease high-concentration side effects. PMID:26697145

  13. Evaluation of Antimicrobial Effects of Different Concentrations of Triple Antibiotic Paste on Mature Biofilm of Enterococcus faecalis.

    PubMed

    Frough Reyhani, Mohammad; Rahimi, Saeed; Fathi, Zahra; Shakouie, Sahar; Salem Milani, Amin; Soroush Barhaghi, Mohammad Hossein; Shokri, Javad

    2015-01-01

    Background and aims. Triple antibiotic paste (TAP) is widely used in endodontics for root canal disinfection, particularly in regenerative procedures. The aim of this in vitro study was to evaluate the antimicrobial effects of different concentrations of TAP at 1-, 2-, 3-, and 4-week intervals on mature Enterococcus faecalis biofilm. Materials and methods. A total of 287 extracted one-rooted human central incisors were infected with E. faecalis ATCC 29212 after removing the crown and preparation. The root canal space was filled with one of the 0.01-, 0.1-, 1-, 10-, 100-, and 1000-mg/mL concentrations of TAP or normal saline (control). The root canal dentin was sampled after 1, 2, 3, and 4 weeks. The dentinal shavings were cultured on Mueller-Hinton agar plates after serial dilutions. The classic colony-forming unit (CFU) counting technique was used to determine remaining bacterial counts. Data were analyzed by using the two-way ANOVA, post hoc Tukey tests and one-way ANOVA (P<0.05). Results. TAP completely eliminated E. faecalis biofilms at all the intervals at concentrations of 1000, 100, and 10 mg/mL, whereas 1-, 0.1-, and 0.01-mg/mL TAP resulted in significant reduction of CFU means compared with the control group. There were no statistically significant differences between the four time intervals. Conclusion. Use of lower concentrations of TAP at short term could eradicate E. faecalis biofilm and decrease high-concentration side effects. PMID:26697145

  14. Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms

    PubMed Central

    Thwaite, Joanne E.; Burt, Rebecca; Laws, Thomas R.; Raguse, Marina; Moeller, Ralf; Webber, Mark A.; Oppenheim, Beryl A.

    2016-01-01

    ABSTRACT The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii, Enterobacter cloacae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, and Elizabethkingia meningoseptica. All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥5-log10 decrease in viability after 15 to 30 min of exposure (54 J/cm2 to 108 J/cm2). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications. IMPORTANCE Blue light shows great promise as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications (e.g., wound closure during surgery). This warrants further

  15. New insights into the lifestyle of the cold-loving SM1 euryarchaeon: natural growth as a monospecies biofilm in the subsurface.

    PubMed

    Henneberger, Ruth; Moissl, Christine; Amann, Thomas; Rudolph, Christian; Huber, Robert

    2006-01-01

    In the surface waters of sulfidic springs near Regensburg, Bavaria, Germany, the SM1 euryarchaeon, together with filamentous bacteria, forms the recently described unique string-of-pearls community. In addition to naturally occurring string-of-pearls communities, the growth of these communities was also observed on polyethylene nets provided as an artificial attachment material in the streamlets of springs. In order to learn more about the distribution and origin of the SM1 euryarchaeon and its possible occurrence in the subsurface, polyethylene nets were incubated as deeply as possible in different spring holes. After a short residence time, slime-like, milky drops, almost completely composed of SM1 euryarchaeon, were attached to the nets, indicating that this organism grows independent of a partner in deeper earth layers. A newly designed in situ biofilm trapping system allowed the quantitative harvesting of organisms exhibiting this newly discovered lifestyle of the SM1 euryarchaeon for detailed biological studies. The discovery of naturally occurring archaeal biofilms extends our knowledge of the biology and ecological significance of archaea in their environments. PMID:16391042

  16. Arginine Deiminase in Staphylococcus epidermidis Functions To Augment Biofilm Maturation through pH Homeostasis

    PubMed Central

    Lindgren, J. K.; Thomas, V. C.; Olson, M. E.; Chaudhari, S. S.; Nuxoll, A. S.; Schaeffer, C. R.; Lindgren, K. E.; Jones, J.; Zimmerman, M. C.; Dunman, P. M.; Bayles, K. W.

    2014-01-01

    Allelic replacement mutants were constructed within arginine deiminase (arcA1 and arcA2) to assess the function of the arginine deiminase (ADI) pathway in organic acid resistance and biofilm formation of Staphylococcus epidermidis 1457. A growth-dependent acidification assay (pH ∼5.0 to ∼5.2) determined that strain 1457 devoid of arginine deiminase activity (1457 ΔADI) was significantly less viable than the wild type following depletion of glucose and in the presence of arginine. However, no difference in viability was noted for individual 1457 ΔarcA1 (native) or ΔarcA2 (arginine catabolic mobile element [ACME]-derived) mutants, suggesting that the native and ACME-derived ADIs are compensatory in S. epidermidis. Furthermore, flow cytometry and electron paramagnetic resonance spectroscopy results suggested that organic acid stress resulted in oxidative stress that could be partially rescued by the iron chelator dipyridyl. Collectively, these results suggest that formation of hydroxyl radicals is partially responsible for cell death via organic acid stress and that ADI-derived ammonia functions to counteract this acid stress. Finally, static biofilm assays determined that viability, ammonia synthesis, and pH were reduced in strain 1457 ΔADI following 120 h of growth in comparison to strain 1457 and the arcA1 and arcA2 single mutants. It is hypothesized that ammonia synthesis via the ADI pathway is important to reduce pH stress in specific microniches that contain high concentrations of organic acids. PMID:24727224

  17. Efficacy of ciprofloxacin-clarithromycin combination against drug-resistant Pseudomonas aeruginosa mature biofilm using in vitro experimental model.

    PubMed

    Elkhatib, Walid; Noreddin, Ayman

    2014-12-01

    Pseudomonas aeruginosa is the main cause of mortality in cystic fibrosis patients and eradication of its biofilm represents a substantial problem clinically. In this study, biofilm of a cystic fibrosis strain P. aeruginosa PACI22 was established and confocal laser scanning microscopy was utilized for biofilm visualization. A quantitative time-kill biofilm model was implemented in vitro to assess the biocidal effect of ciprofloxacin, clarithromycin, and their combination at concentration levels ranged from 0.5× to 64× minimum biofilm inhibitory concentrations (MBIC) against the biofilm and the mean log bacterial densities (Log CFU/ml) retrieved from the biofilm were monitored by frequent sampling at 0, 3, 6, 9, 12, and 24 hr throughout the experiment. The results revealed that none of the tested antibiotics alone could completely eradicate the biofilm-ensconced bacteria at 0.5-64× MBIC values after 24 hr of treatment. Conversely, ciprofloxacin-clarithromycin combination at 32-64× MBIC entirely exterminated the biofilm. Furthermore, a substantial in vitro synergism between ciprofloxacin and clarithromycin against the biofilm was experimentally verified. This promising synergism affords scientific rationale for further in vivo investigations to evaluate the therapeutic potential of this combination for treatment of chronic pulmonary infections caused by P. aeruginosa biofilms. PMID:25050970

  18. Bacillus cereus Biofilms-Same, Only Different.

    PubMed

    Majed, Racha; Faille, Christine; Kallassy, Mireille; Gohar, Michel

    2016-01-01

    Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area. PMID:27458448

  19. Mechanisms of post-transcriptional gene regulation in bacterial biofilms

    PubMed Central

    Martínez, Luary C.; Vadyvaloo, Viveka

    2014-01-01

    Biofilms are characterized by a dense multicellular community of microorganisms that can be formed by the attachment of bacteria to an inert surface and to each other. The development of biofilm involves the initial attachment of planktonic bacteria to a surface, followed by replication, cell-to-cell adhesion to form microcolonies, maturation, and detachment. Mature biofilms are embedded in a self-produced extracellular polymeric matrix composed primarily of bacterial-derived exopolysaccharides, specialized proteins, adhesins, and occasionally DNA. Because the synthesis and assembly of biofilm matrix components is an exceptionally complex process, the transition between its different phases requires the coordinate expression and simultaneous regulation of many genes by complex genetic networks involving all levels of gene regulation. The finely controlled intracellular level of the chemical second messenger molecule, cyclic-di-GMP is central to the post-transcriptional mechanisms governing the switch between the motile planktonic lifestyle and the sessile biofilm forming state in many bacteria. Several other post-transcriptional regulatory mechanisms are known to dictate biofilm development and assembly and these include RNA-binding proteins, small non-coding RNAs, toxin-antitoxin systems, riboswitches, and RNases. Post-transcriptional regulation is therefore a powerful molecular mechanism employed by bacteria to rapidly adjust to the changing environment and to fine tune gene expression to the developmental needs of the cell. In this review, we discuss post-transcriptional mechanisms that influence the biofilm developmental cycle in a variety of pathogenic bacteria. PMID:24724055

  20. Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons

    EPA Science Inventory

    Legionella persistence and amplification in premise drinking water systems is a known contributor to legionellosis outbreaks, especially in the presence of suitable eukaryotic hosts. Here we examined Legionella pneumophila behavior within drinking water biofilms grown on copper ...

  1. Characterisation of two quorum sensing systems in the endophytic Serratia plymuthica strain G3: differential control of motility and biofilm formation according to life-style

    PubMed Central

    2011-01-01

    AHL-independent. In addition, QS in G3 positively regulated antifungal activity, production of exoenzymes, but negatively regulated production of indol-3-acetic acid (IAA), which is in agreement with previous reports in strain HRO-C48. However, in contrast to HRO-C48, swimming motility was not controlled by AHL-mediated QS. Conclusions This is the first report of the characterisation of two AHL-based quorum sensing systems in the same isolate of the genus Serratia. Our results show that the QS network is involved in the global regulation of biocontrol-related traits in the endophytic strain G3. However, although free-living and endophytic S. plymuthica share some conservation on QS phenotypic regulation, the control of motility and biofilm formation seems to be strain-specific and possible linked to the life-style of this organism. PMID:21284858

  2. Staphylococcus aureus biofilms

    PubMed Central

    Archer, Nathan K; Mazaitis, Mark J; Costerton, J William; Leid, Jeff G; Powers, Mary Elizabeth

    2011-01-01

    Increasing attention has been focused on understanding bacterial biofilms and this growth modality's relation to human disease. In this review we explore the genetic regulation and molecular components involved in biofilm formation and maturation in the context of the Gram-positive cocci, Staphylococcus aureus. In addition, we discuss diseases and host immune responses, along with current therapies associated with S. aureus biofilm infections and prevention strategies. PMID:21921685

  3. Antimicrobial Tolerance in Biofilms.

    PubMed

    Stewart, Philip S

    2015-06-01

    The tolerance of microorganisms in biofilms to antimicrobial agents is examined through a meta-analysis of literature data. A numerical tolerance factor comparing the rates of killing in the planktonic and biofilm states is defined to provide a quantitative basis for the analysis. Tolerance factors for biocides and antibiotics range over three orders of magnitude. This variation is not explained by taking into account the molecular weight of the agent, the chemistry of the agent, the substratum material, or the speciation of the microorganisms. Tolerance factors do depend on the areal cell density of the biofilm at the time of treatment and on the age of the biofilm as grown in a particular experimental system. This suggests that there is something that happens during biofilm maturation, either physical or physiological, that is essential for full biofilm tolerance. Experimental measurements of antimicrobial penetration times in biofilms range over orders of magnitude, with slower penetration (>12 min) observed for reactive oxidants and cationic molecules. These agents are retarded through the interaction of reaction, sorption, and diffusion. The specific physiological status of microbial cells in a biofilm contributes to antimicrobial tolerance. A conceptual framework for categorizing physiological cell states is discussed in the context of antimicrobial susceptibility. It is likely that biofilms harbor cells in multiple states simultaneously (e.g., growing, stress-adapted, dormant, inactive) and that this physiological heterogeneity is an important factor in the tolerance of the biofilm state. PMID:26185072

  4. Antimicrobial Tolerance in Biofilms

    PubMed Central

    Stewart, Philip S.

    2015-01-01

    The tolerance of microorganisms in biofilms to antimicrobial agents is examined through a meta-analysis of literature data. A numerical tolerance factor comparing the rates of killing in the planktonic and biofilm states is defined to provide a quantitative basis for the analysis. Tolerance factors for biocides and antibiotics range over three orders of magnitude. This variation is not explained by taking into account the molecular weight of the agent, the chemistry of the agent, the substratum material, or the speciation of the microorganisms. Tolerance factors do depend on the areal cell density of the biofilm at the time of treatment and on the age of the biofilm as grown in a particular experimental system. This suggests that there is something that happens during biofilm maturation, either physical or physiological, that is essential for full biofilm tolerance. Experimental measurements of antimicrobial penetration times in biofilms range over orders of magnitude, with slower penetration (>12 min) observed for reactive oxidants and cationic molecules. These agents are retarded through the interaction of reaction, sorption, and diffusion. The specific physiological status of microbial cells in a biofilm contributes to antimicrobial tolerance. A conceptual framework for categorizing physiological cell states is discussed in the context of antimicrobial susceptibility. It is likely that biofilms harbor cells in multiple states simultaneously (e.g., growing, stress-adapted, dormant, inactive) and that this physiological heterogeneity is an important factor in the tolerance of the biofilm state. PMID:26185072

  5. Vaccines Directed Against Microorganisms or Their Products Present During Biofilm Lifestyle: Can We Make a Translation as a Broad Biological Model to Tuberculosis?

    PubMed Central

    Flores-Valdez, Mario A.

    2016-01-01

    Tuberculosis (TB) remains as a global public health problem. In recent years, experimental evidence suggesting the relevance of in vitro pellicle (a type of biofilm formed at the air-liquid interface) production as a phenotype mimicking aspects found by Mycobacterium tuberculosis-complex bacteria during in vivo infection has started to accumulate. There are still opportunities for better diagnostic tools, therapeutic molecules as well as new vaccine candidates to assist in TB control programs worldwide and particularly in less developed nations. Regarding vaccines, despite the availability of a live, attenuated strain (Mycobacterium bovis BCG) since almost a century ago, its variable efficacy and lack of protection against pulmonary and latent disease has prompted basic and applied research leading to preclinical and clinical evaluation of up to 15 new candidates. In this work, I present examples of vaccines based on whole cells grown as biofilms, or specific proteins expressed under such condition, and the effect they have shown in relevant animal models or directly in the natural host. I also discuss why it might be worthwhile to explore these approaches, for constructing and developing new vaccine candidates for testing their efficacy against TB. PMID:26834732

  6. Vibrio cholerae Biofilms and Cholera Pathogenesis.

    PubMed

    Silva, Anisia J; Benitez, Jorge A

    2016-02-01

    Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i) the evidence for biofilm formation during infection, (ii) the coordinate regulation of biofilm and virulence gene expression, and (iii) the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv) we discuss a model for the role of V. cholerae biofilms in pathogenicity. PMID:26845681

  7. Vibrio cholerae Biofilms and Cholera Pathogenesis

    PubMed Central

    Silva, Anisia J.; Benitez, Jorge A.

    2016-01-01

    Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i) the evidence for biofilm formation during infection, (ii) the coordinate regulation of biofilm and virulence gene expression, and (iii) the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv) we discuss a model for the role of V. cholerae biofilms in pathogenicity. PMID:26845681

  8. Analysis of Structure and Composition of Bacterial Core Communities in Mature Drinking Water Biofilms and Bulk Water of a Citywide Network in Germany

    PubMed Central

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid

    2012-01-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373

  9. Biofilm formation by haloarchaea.

    PubMed

    Fröls, Sabrina; Dyall-Smith, Mike; Pfeifer, Felicitas

    2012-12-01

    A fluorescence-based live-cell adhesion assay was used to examine biofilm formation by 20 different haloarchaea, including species of Halobacterium, Haloferax and Halorubrum, as well as novel natural isolates from an Antarctic salt lake. Thirteen of the 20 tested strains significantly adhered (P-value  < 0.05) to a plastic surface. Examination of adherent cell layers on glass surfaces by differential interference contrast, fluorescence and confocal microscopy showed two types of biofilm structures. Carpet-like, multi-layered biofilms containing micro- and macrocolonies (up to 50 μm in height) were formed by strains of Halobacterium salinarum and the Antarctic isolate t-ADL strain DL24. The second type of biofilm, characterized by large aggregates of cells adhering to surfaces, was formed by Haloferax volcanii DSM 3757T and Halorubrum lacusprofundi DL28. Staining of the biofilms formed by the strongly adhesive haloarchaeal strains revealed the presence of extracellular polymers, such as eDNA and glycoconjugates, substances previously shown to stabilize bacterial biofilms. For Hbt. salinarum DSM 3754T and Hfx. volcanii DSM 3757T , cells adhered within 1 day of culture and remained viable for at least 2 months in mature biofilms. Adherent cells of Hbt. salinarum DSM 3754T showed several types of cellular appendages that could be involved in the initial attachment. Our results show that biofilm formation occurs in a surprisingly wide variety of haloarchaeal species. PMID:23057712

  10. Biofilms: an emergent form of bacterial life.

    PubMed

    Flemming, Hans-Curt; Wingender, Jost; Szewzyk, Ulrich; Steinberg, Peter; Rice, Scott A; Kjelleberg, Staffan

    2016-08-11

    Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle. PMID:27510863

  11. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms

    PubMed Central

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P.; Cleary, Ian A.; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário

    2014-01-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C.albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance. PMID:20012895

  12. In vitro activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia lifestyles under conditions relevant to pulmonary infection in cystic fibrosis, and relationship with SmeDEF multidrug efflux pump expression.

    PubMed

    Pompilio, Arianna; Crocetta, Valentina; Verginelli, Fabio; Bonaventura, Giovanni Di

    2016-07-01

    The activity of levofloxacin against planktonic and biofilm Stenotrophomonas maltophilia cells and the role played by the multidrug efflux pump SmeDEF were evaluated under conditions relevant to the cystic fibrosis (CF) lung. MIC, MBC and MBEC of levofloxacin were assessed, against five CF strains, under 'standard' (CLSI-recommended) and 'CF-like' (pH 6.8, 5% CO2, in a synthetic CF sputum) conditions. Levofloxacin was tested against biofilms at concentrations (10, 50 and 100 μg mL(-1)) corresponding to achievable serum levels and sputum levels by aerosolisation. smeD expression was evaluated, under both conditions, in planktonic and biofilm cells by RT-PCR. The bactericidal effect of levofloxacin was decreased, in three out of five strains tested, under 'CF-like' conditions (MBC: 2-4 vs 8-16 μg mL(-1), under 'standard' and 'CF-like' conditions, respectively). Biofilm was intrinsically resistant to levofloxacin, regardless of conditions tested (MBECs ≥ 100 μg mL(-1) for all strains). Only under 'CF-like' conditions, smeD expression increased during planktonic-to-biofilm transition, and in biofilm cells compared to stationary planktonic cells. Our findings confirmed that S. maltophilia biofilm is intrinsically resistant to therapeutic concentrations of levofloxacin. Under conditions relevant to CF, smeD overexpression could contribute to levofloxacin resistance. Further studies are warranted to define the clinical relevance of our findings. PMID:27242375

  13. The Challenging World of Biofilm Physiology.

    PubMed

    Donné, Joke; Dewilde, Sylvia

    2015-01-01

    Worldwide, infectious diseases are one of the leading causes of death among children. At least 65% of all infections are caused by the biofilm mode of bacterial growth. Bacteria colonise surfaces and grow as multicellular biofilm communities surrounded by a polymeric matrix as a common survival strategy. These sessile communities endow bacteria with high tolerance to antimicrobial agents and hence cause persistent and chronic bacterial infections, such as dental caries, periodontitis, otitis media, cystic fibrosis and pneumonia. The highly complex nature and the rapid adaptability of the biofilm population impede our understanding of the process of biofilm formation, but an important role for oxygen-binding proteins herein is clear. Much research on this bacterial lifestyle is already performed, from genome/proteome analysis to in vivo antibiotic susceptibility testing, but without significant progress in biofilm treatment or eradication. This review will present the multiple challenges of biofilm research and discuss possibilities to cross these barriers in future experimental studies. PMID:26616519

  14. Permeabilizing biofilms

    DOEpatents

    Soukos, Nikolaos S.; Lee, Shun; Doukas, Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  15. Lifestyle Habits

    PubMed Central

    Kilani, Hashem; Al-Hazzaa, Hazzaa; Waly, Mostafa I.; Musaiger, Abdulrahman

    2013-01-01

    Objectives: This study aimed to investigate the lifestyle habits—physical activity (PA), eating habits (EH), and sleep duration (SD)—of Omani adolescents, and to examine gender differences in such variables. Methods: 802 Omani adolescents (442 females and 360 males), aged 15–18 years were randomly recruited. Anthropometric indices, PA level, and EH and SD were evaluated by the Arab Teenage Lifestyle questionnaire. A semi-quantitative food frequency questionnaire for dietary assessment was also administered. Results: The results showed that although the study subjects had a sedentary lifestyle (lack of PA, average of 6.7 hours sleep, and consumption of high calorie foods), they maintained a normal body mass (less than 25 Kg/m2). Males were more than twice as active as females. With respect to EH, there were few gender differences, except in dairy and meat consumption where 62.5% and 55.5% of males consumed more than 3 servings, respectively, compared to 18.78 % and 35.2% of females, respectively. In addition, waist/height ratio, height, reasons for being active, energy drinks, potato consumption, eating sweets, vigorous PA and breakfast EHs were statistically significant independent predictors for BMI, P <0.05 for both males and females. Conclusion: This study revealed a high prevalence of sedentary behaviors and a low level of physical activity, especially among females. Unhealthy dietary habits were also widely found among both genders. There is an urgent need for more research as well as a national policy promoting active living and healthy eating and discouraging sedentary behaviour among Omani adolescents. PMID:24273660

  16. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials.

    PubMed

    Corcoran, M; Morris, D; De Lappe, N; O'Connor, J; Lalor, P; Dockery, P; Cormican, M

    2014-02-01

    Salmonellosis is the second most common cause of food-borne illness worldwide. Contamination of surfaces in food processing environments may result in biofilm formation with a risk of food contamination. Effective decontamination of biofilm-contaminated surfaces is challenging. Using the CDC biofilm reactor, the activities of sodium hypochlorite, sodium hydroxide, and benzalkonium chloride were examined against an early (48-h) and relatively mature (168-h) Salmonella biofilm. All 3 agents result in reduction in viable counts of Salmonella; however, only sodium hydroxide resulted in eradication of the early biofilm. None of the agents achieved eradication of mature biofilm, even at the 90-min contact time. Studies of activity of chemical disinfection against biofilm should include assessment of activity against mature biofilm. The difficulty of eradication of established Salmonella biofilm serves to emphasize the priority of preventing access of Salmonella to postcook areas of food production facilities. PMID:24362427

  17. Commonly Used Disinfectants Fail To Eradicate Salmonella enterica Biofilms from Food Contact Surface Materials

    PubMed Central

    Morris, D.; De Lappe, N.; O'Connor, J.; Lalor, P.; Dockery, P.; Cormican, M.

    2014-01-01

    Salmonellosis is the second most common cause of food-borne illness worldwide. Contamination of surfaces in food processing environments may result in biofilm formation with a risk of food contamination. Effective decontamination of biofilm-contaminated surfaces is challenging. Using the CDC biofilm reactor, the activities of sodium hypochlorite, sodium hydroxide, and benzalkonium chloride were examined against an early (48-h) and relatively mature (168-h) Salmonella biofilm. All 3 agents result in reduction in viable counts of Salmonella; however, only sodium hydroxide resulted in eradication of the early biofilm. None of the agents achieved eradication of mature biofilm, even at the 90-min contact time. Studies of activity of chemical disinfection against biofilm should include assessment of activity against mature biofilm. The difficulty of eradication of established Salmonella biofilm serves to emphasize the priority of preventing access of Salmonella to postcook areas of food production facilities. PMID:24362427

  18. Solid-state NMR for bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Reichhardt, Courtney; Cegelski, Lynette

    2014-04-01

    Bacteria associate with surfaces and one another by elaborating an extracellular matrix to encapsulate cells, creating communities termed biofilms. Biofilms are beneficial in some ecological niches, but also contribute to the pathogenesis of serious and chronic infectious diseases. New approaches and quantitative measurements are needed to define the composition and architecture of bacterial biofilms to help drive the development of strategies to interfere with biofilm assembly. Solid-state nuclear magnetic resonance (NMR) is uniquely suited to the examination of insoluble and complex macromolecular and whole-cell systems. This article highlights three examples that implement solid-state NMR to deliver insights into bacterial biofilm composition and changes in cell-wall composition as cells transition to the biofilm lifestyle. Most recently, solid-state NMR measurements provided a total accounting of the protein and polysaccharide components in the extracellular matrix of an Escherichia coli biofilm and transformed our qualitative descriptions of matrix composition into chemical parameters that permit quantitative comparisons among samples. We present additional data for whole biofilm samples (cells plus the extracellular matrix) that complement matrix-only analyses. The study of bacterial biofilms by solid-state NMR is an exciting avenue ripe with many opportunities and we close the article by articulating some outstanding questions and future directions in this area.

  19. Focus on the physics of biofilms

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-03-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

  20. L-Tryptophan prevents Escherichia coli biofilm formation and triggers biofilm degradation.

    PubMed

    Shimazaki, Junji; Furukawa, Soichi; Ogihara, Hirokazu; Morinaga, Yasushi

    2012-03-23

    The effect of deletion of trp operon and tna operon on the Escherichia coli biofilm formation was investigated in order to elucidate the role of L-tryptophan metabolism in biofilm formation. trp operon deletion mutants ΔtrpC, ΔtrpD and ΔtrpE deficient in L-tryptophan biosynthesis showed higher biofilm formation. In addition, ΔtnaC with increased L-tryptophan degradation activity showed higher biofilm formation. On the contrary, ΔtnaA deletion mutant which lost L-tryptophan degradation activity showed low biofilm formation. From these results, it was suggested that decrease of intracellular L-tryptophan level induced biofilm formation and increase of L-tryptophan repressed biofilm formation. So the effect of the addition of L-tryptophan to the medium on the E. coli biofilm formation was investigated. L-Tryptophan addition at starting culture decreased biofilm formation and furthermore L-tryptophan addition after 16 h culture induced the degradation of preformed biofilm. From the above results, it was suggested that maintenance of high intracellular L-tryptophan concentration prevents E. coli biofilm formation and elevation of intracellular L-tryptophan concentration triggers degradation of matured biofilm. PMID:22386992

  1. Global Gene Expression in Staphylococcus aureus Biofilms

    PubMed Central

    Beenken, Karen E.; Dunman, Paul M.; McAleese, Fionnuala; Macapagal, Daphne; Murphy, Ellen; Projan, Steven J.; Blevins, Jon S.; Smeltzer, Mark S.

    2004-01-01

    We previously demonstrated that mutation of the staphylococcal accessory regulator (sarA) in a clinical isolate of Staphylococcus aureus (UAMS-1) results in an impaired capacity to form a biofilm in vitro (K. E. Beenken, J. S. Blevins, and M. S. Smeltzer, Infect. Immun. 71:4206-4211, 2003). In this report, we used a murine model of catheter-based biofilm formation to demonstrate that a UAMS-1 sarA mutant also has a reduced capacity to form a biofilm in vivo. Surprisingly, mutation of the UAMS-1 ica locus had little impact on biofilm formation in vitro or in vivo. In an effort to identify additional loci that might be relevant to biofilm formation and/or the adaptive response required for persistence of S. aureus within a biofilm, we isolated total cellular RNA from UAMS-1 harvested from a biofilm grown in a flow cell and compared the transcriptional profile of this RNA to RNA isolated from both exponential- and stationary-phase planktonic cultures. Comparisons were done using a custom-made Affymetrix GeneChip representing the genomic complement of six strains of S. aureus (COL, N315, Mu50, NCTC 8325, EMRSA-16 [strain 252], and MSSA-476). The results confirm that the sessile lifestyle associated with persistence within a biofilm is distinct by comparison to the lifestyles of both the exponential and postexponential phases of planktonic culture. Indeed, we identified 48 genes in which expression was induced at least twofold in biofilms over expression under both planktonic conditions. Similarly, we identified 84 genes in which expression was repressed by a factor of at least 2 compared to expression under both planktonic conditions. A primary theme that emerged from the analysis of these genes is that persistence within a biofilm requires an adaptive response that limits the deleterious effects of the reduced pH associated with anaerobic growth conditions. PMID:15231800

  2. Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm

    PubMed Central

    Sauer, Karin; Camper, Anne K.; Ehrlich, Garth D.; Costerton, J. William; Davies, David G.

    2002-01-01

    Complementary approaches were employed to characterize transitional episodes in Pseudomonas aeruginosa biofilm development using direct observation and whole-cell protein analysis. Microscopy and in situ reporter gene analysis were used to directly observe changes in biofilm physiology and to act as signposts to standardize protein collection for two-dimensional electrophoretic analysis and protein identification in chemostat and continuous-culture biofilm-grown populations. Using these approaches, we characterized five stages of biofilm development: (i) reversible attachment, (ii) irreversible attachment, (iii) maturation-1, (iv) maturation-2, and (v) dispersion. Biofilm cells were shown to change regulation of motility, alginate production, and quorum sensing during the process of development. The average difference in detectable protein regulation between each of the five stages of development was 35% (approximately 525 proteins). When planktonic cells were compared with maturation-2 stage biofilm cells, more than 800 proteins were shown to have a sixfold or greater change in expression level (over 50% of the proteome). This difference was higher than when planktonic P. aeruginosa were compared with planktonic cultures of Pseudomonas putida. Las quorum sensing was shown to play no role in early biofilm development but was important in later stages. Biofilm cells in the dispersion stage were more similar to planktonic bacteria than to maturation-2 stage bacteria. These results demonstrate that P. aeruginosa displays multiple phenotypes during biofilm development and that knowledge of stage-specific physiology may be important in detecting and controlling biofilm growth. PMID:11807075

  3. Dental diagnostics: molecular analysis of oral biofilms.

    PubMed

    Hiyari, Sarah; Bennett, Katie M

    2011-01-01

    Dental biofilms are complex, multi-species bacterial communities that colonize the mouth in the form of plaque and are known to cause dental caries and periodontal disease. Biofilms are unique from planktonic bacteria in that they are mutualistic communities with a 3-dimensional structure and complex nutritional and communication pathways. The homeostasis within the biofilm colony can be disrupted, causing a shift in the bacterial composition of the colony and resulting in proliferation of pathogenic species. Because of this dynamic lifestyle, traditional microbiological techniques are inadequate for the study of biofilms. Many of the bacteria present in the oral cavity are viable but not culturable, which severely limits laboratory analysis. However, with the advent of new molecular techniques, the microbial makeup of oral biofilms can be better identified. Some of these techniques include DNA-DNA hybridization, 16S rRNA gene sequencing, denaturing gradient gel electrophoresis, terminal restriction fragment length polymorphism, denaturing high-performance liquid chromatography and pyrosequencing. This review provides an overview of biofilm formation and examines the major molecular techniques currently used in oral biofilm analysis. Future applications of the molecular analysis of oral biofilms in the diagnosis and treatment of caries and periodontal disease are also discussed. PMID:22309866

  4. Regulation of flagellar motility during biofilm formation

    PubMed Central

    Guttenplan, Sarah B.; Kearns, Daniel B.

    2013-01-01

    Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form non-motile multicellular aggregates held together by an extracellular matrix called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are likely diluted to extinction through growth. Both short term and long term control is likely important to the motility-to-biofilm transition to stabilize aggregates and optimize resource investment. We emphasize the newly discovered classes of flagellar functional regulators and speculate that others await discovery in the context of biofilm formation. PMID:23480406

  5. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    PubMed

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections. PMID:26397003

  6. Fungal Biofilms: In vivo models for discovery of anti-biofilm drugs

    PubMed Central

    Nett, Jeniel E.; Andes, David

    2015-01-01

    SUMMARY During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections, oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to development of new strategies for eradication of fungal biofilm infections. PMID:26397003

  7. Prevention of Biofilm Formation and Removal of Existing Biofilms by Extracellular DNases of Campylobacter jejuni

    PubMed Central

    Brown, Helen L.; Reuter, Mark; Hanman, Kate; Betts, Roy P.; van Vliet, Arnoud H. M.

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments. PMID:25803828

  8. Effect of Biofilm Formation by Oenococcus oeni on Malolactic Fermentation and the Release of Aromatic Compounds in Wine.

    PubMed

    Bastard, Alexandre; Coelho, Christian; Briandet, Romain; Canette, Alexis; Gougeon, Régis; Alexandre, Hervé; Guzzo, Jean; Weidmann, Stéphanie

    2016-01-01

    The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation (MLF). The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine's organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol) The results indicated that the biofilm culture of O. oeni conferred (i) increased tolerance to wine stress, and (ii) functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance. As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones, and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during MLF and aging by decreasing furfural, gaiacol, and eugenol in particular. This work showed that O

  9. Effect of Biofilm Formation by Oenococcus oeni on Malolactic Fermentation and the Release of Aromatic Compounds in Wine

    PubMed Central

    Bastard, Alexandre; Coelho, Christian; Briandet, Romain; Canette, Alexis; Gougeon, Régis; Alexandre, Hervé; Guzzo, Jean; Weidmann, Stéphanie

    2016-01-01

    The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation (MLF). The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine’s organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol) The results indicated that the biofilm culture of O. oeni conferred (i) increased tolerance to wine stress, and (ii) functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance. As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones, and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during MLF and aging by decreasing furfural, gaiacol, and eugenol in particular. This work showed that O

  10. Wound biofilms: lessons learned from oral biofilms

    PubMed Central

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relatively recently directed attentionto the role biofilms have in chronic wounds. This review discusses the biofilms in periodontal disease and chronic wounds with comparisons focusing on biofilm detection, biofilm formation, the immune response to biofilms, bacterial interaction and quorum sensing. Current treatment modalities used by both fields as well as future therapies are also discussed. PMID:23551419

  11. Anti-biofilm Activity as a Health Issue.

    PubMed

    Miquel, Sylvie; Lagrafeuille, Rosyne; Souweine, Bertrand; Forestier, Christiane

    2016-01-01

    The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health). Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients' organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections. PMID:27199924

  12. Anti-biofilm Activity as a Health Issue

    PubMed Central

    Miquel, Sylvie; Lagrafeuille, Rosyne; Souweine, Bertrand; Forestier, Christiane

    2016-01-01

    The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health). Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients’ organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections. PMID:27199924

  13. Fractal analysis of Xylella fastidiosa biofilm formation

    NASA Astrophysics Data System (ADS)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  14. Microscale Confinement features in microfluidic devices can affect biofilm

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh; Acharya, Rajesh K; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not only as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.

  15. In Vitro Models for Candida Biofilm Development.

    PubMed

    Krom, Bastiaan P; Willems, Hubertine M E

    2016-01-01

    Development of Candida spp. biofilms on medical devices such as catheters and voice prosthesis has been recognized as an increasing clinical problem. Different in vitro models are presented with increasing complexity. Each model system can be utilized for analysis of new active compounds to prevent or treat Candida biofilms as well as to study molecular processes involved in biofilm formation. Susceptibility studies of clinical isolates are generally performed in a simple 96-well model system similar to the CLSI standard. In the present chapter, optimized conditions that promote biofilm formation within individual wells of microtiter plates are described. In addition, the method has proven useful in preparing C. albicans biofilms for investigation by a variety of microscopic and molecular techniques. A more realistic and more complex biofilm system is presented by the Amsterdam Active Attachment (AAA) model. In this 24-well model all crucial steps of biofilm formation: adhesion, proliferation, and maturation, can be simulated on various surfaces, while still allowing a medium throughput approach. This model has been applied to study susceptibility, complex molecular mechanisms as well as interspecies (Candida-bacterium) interactions. Finally, a realistic microfluidics channel system is presented to follow dynamic processes in biofilm formation. In this Bioflux-based system, molecular mechanisms as well as dynamic processes can be studied at a high time-resolution. PMID:26519068

  16. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients

    PubMed Central

    de la Fuente-Núñez, César; Mansour, Sarah C.; Wang, Zhejun; Jiang, Lucy; Breidenstein, Elena B.M.; Elliott, Melissa; Reffuveille, Fany; Speert, David P.; Reckseidler-Zenteno, Shauna L.; Shen, Ya; Haapasalo, Markus; Hancock, Robert E.W.

    2014-01-01

    Cystic fibrosis (CF) patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive) resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electron microscopy, it was demonstrated that an anti-biofilm peptide 1018 prevented biofilm formation, eradicated mature biofilms and killed biofilms formed by a wide range of P. aeruginosa and B. cenocepacia clinical isolates. New peptide derivatives were designed that, compared to their parent peptide 1018, showed similar or decreased anti-biofilm activity against P. aeruginosa biofilms, but increased activity against biofilms formed by the Gram-positive bacterium methicillin resistant Staphylococcus aureus. In addition, some of these new peptide derivatives retained the immunomodulatory activity of 1018 since they induced the production of the chemokine monocyte chemotactic protein-1 (MCP-1) and suppressed lipopolysaccharide-mediated tumor necrosis factor-α (TNF-α) production by human peripheral blood mononuclear cells (PBMC) and were non-toxic towards these cells. Peptide 1018 and its derivatives provide promising leads for the treatment of chronic biofilm infections and hyperinflammatory lung disease in CF patients. PMID:26221537

  17. Biofilm-based central line-associated bloodstream infections.

    PubMed

    Yousif, Ammar; Jamal, Mohamed A; Raad, Issam

    2015-01-01

    Different types of central venous catheters (CVCs) have been used in clinical practice to improve the quality of life of chronically and critically ill patients. Unfortunately, indwelling devices are usually associated with microbial biofilms and eventually lead to catheter-related bloodstream infections (CLABSIs).An estimated 250,000-400,000 CLABSIs occur every year in the United States, at a rate of 1.5 per 1,000 CVC days and a mortality rate of 12-25 %. The annual cost of caring for patients with CLABSIs ranges from 296 million to 2.3 billion dollars.Biofilm formation occurs on biotic and abiotic surfaces in the clinical setting. Extensive studies have been conducted to understand biofilm formation, including different biofilm developmental stages, biofilm matrix compositions, quorum-sensing regulated biofilm formation, biofilm dispersal (and its clinical implications), and multi-species biofilms that are relevant to polymicrobial infections.When microbes form a matured biofilm within human hosts through medical devices such as CVCs, the infection becomes resistant to antibiotic treatment and can develop into a chronic condition. For that reason, many techniques have been used to prevent the formation of biofilm by targeting different stages of biofilm maturation. Other methods have been used to diagnose and treat established cases of CLABSI.Catheter removal is the conventional management of catheter associated bacteremia; however, the procedure itself carries a relatively high risk of mechanical complications. Salvaging the catheter can help to minimize these complications.In this article, we provide an overview of microbial biofilm formation; describe the involvement of various genetic determinants, adhesion proteins, organelles, mechanism(s) of biofilm formation, polymicrobial infections, and biofilm-associated infections on indwelling intravascular catheters; and describe the diagnosis, management, and prevention of catheter-related bloodstream infections

  18. [Lifestyle drugs in medicine].

    PubMed

    Harth, Wolfgang; Seikowski, Kurt; Hermes, Barbara; Gieler, Uwe

    2008-01-01

    Lifestyle drugs have become an important new group of medications, which are taken by healthy people to increase the individual well-being and quality of life. Nootropics, psychopharmaceuticals, hormones and "ecodrugs" are today the main groups. The wish for eternal youth, beauty and potency is central, and lifestyle medications are also requested to influence cosmetic findings, which are usually simply a result of the natural aging process. Lifestyle drugs seem to be harmless, but the physician must pay attention to possible abuse, side effects, risks and complications. Additionally, however, lifestyle drugs are also frequently used by patients suffering from emotional disorders such as somatoform disorders. Medicalization of physiological life is then expected to solve psychosocial problems, but without success. The use of lifestyle medications in somatoform disorders is contraindicated and psychotherapy or psychopharmacological treatment come first. With this overview article, we would like to make an update of new lifestyle drugs. PMID:18330527

  19. [Lifestyle diseases in dermatology].

    PubMed

    Harth, W; Hillert, A

    2007-10-01

    Psychosocial disorders and lifestyle trends have become more important in dermatology. Lifestyle diseases are a biopsychosocial phenomenon that can only be diagnosed and treated by paying attention to the quickly changing sociocultural aspects. The naming and popularization of the particular lifestyle diseases takes place by the media, but there is only an imprecise medical classification of these phenomena. This article gives an overview of the current situation and medical conditions of lifestyle diseases and try to assign them to an established psychosomatic diagnosis, based on the clinical symptomatic. Most often somatoform disorders, somatization disorders with a repeated presentation of physical symptoms which cannot be medically objectified or depressive disturbances are found. PMID:17701144

  20. Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms.

    PubMed

    Jackson, Desmond N; Yang, Lin; Wu, ShiBiao; Kennelly, Edward J; Lipke, Peter N

    2015-10-01

    Xanthochymol and garcinol, isoprenylated benzophenones purified from Garcinia xanthochymus fruits, showed multiple activities against Candida albicans biofilms. Both compounds effectively prevented emergence of fungal germ tubes and were also cytostatic, with MICs of 1 to 3 μM. The compounds therefore inhibited development of hyphae and subsequent biofilm maturation. Xanthochymol treatment of developing and mature biofilms induced cell death. In early biofilm development, killing had the characteristics of apoptosis, including externalization of phosphatidyl serine and DNA fragmentation, as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) fluorescence. These activities resulted in failure of biofilm maturation and hyphal death in mature biofilms. In mature biofilms, xanthochymol and garcinol caused the death of biofilm hyphae, with 50% effective concentrations (EC50s) of 30 to 50 μM. Additionally, xanthochymol-mediated killing was complementary with fluconazole against mature biofilms, reducing the fluconazole EC50 from >1,024 μg/ml to 13 μg/ml. Therefore, xanthochymol has potential as an adjuvant for antifungal treatments as well as in studies of fungal apoptosis. PMID:26195512

  1. Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms

    PubMed Central

    Jackson, Desmond N.; Yang, Lin; Wu, ShiBiao; Kennelly, Edward J.

    2015-01-01

    Xanthochymol and garcinol, isoprenylated benzophenones purified from Garcinia xanthochymus fruits, showed multiple activities against Candida albicans biofilms. Both compounds effectively prevented emergence of fungal germ tubes and were also cytostatic, with MICs of 1 to 3 μM. The compounds therefore inhibited development of hyphae and subsequent biofilm maturation. Xanthochymol treatment of developing and mature biofilms induced cell death. In early biofilm development, killing had the characteristics of apoptosis, including externalization of phosphatidyl serine and DNA fragmentation, as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) fluorescence. These activities resulted in failure of biofilm maturation and hyphal death in mature biofilms. In mature biofilms, xanthochymol and garcinol caused the death of biofilm hyphae, with 50% effective concentrations (EC50s) of 30 to 50 μM. Additionally, xanthochymol-mediated killing was complementary with fluconazole against mature biofilms, reducing the fluconazole EC50 from >1,024 μg/ml to 13 μg/ml. Therefore, xanthochymol has potential as an adjuvant for antifungal treatments as well as in studies of fungal apoptosis. PMID:26195512

  2. Ultrastructural morphologic changes in mycobacterial biofilm in different extreme condition.

    PubMed

    Kumar, Virendra; Sachan, Tarun Kumar; Sharma, Pragya; Rawat, Krishna Dutta

    2015-02-01

    The aim of this study was to investigate the morphologic and ultrastructural features of biofilms of slow and fast-growing mycobacteria in different stress conditions, presence and absence of oleic acid albumin dextrose catalase (OADC) enrichment and at different temperatures: 30, 37 and 42 °C. Four hundred mycobacterial isolates were taken. The biomass of each biofilm was quantified using a modified microtiter plate assay method. Isolates were divided into those that formed fully established biofilms, moderately attached biofilms and weakly adherent biofilms by comparison with a known biofilm-forming strain. The large quantity of biofilm was produced by Mycobacterium smegmatis at temperature 37 and 42 °C as compared to 30 °C. Mycobacterium fortuitum and M. avium developed large amount of biofilm at 30 °C as compared to 37 and 42 °C. Mycobacterium tuberculosis developed strong biofilm at 37 °C and no biofilm at 30 and 42 °C in Sauton's media. The selected non-tuberculous mycobacteria and H37Rv developed strong biofilm in the presence of OADC enrichment in Sauton's medium. Microscopic examination of biofilms by scanning electron microscopy revealed that poorly adherent biofilm formers failed to colonize the entire surface of the microtiter well. While moderately adherent biofilm formers grew in uniform monolayers but failed to develop a mature three-dimensional structure. SEM analysis of an isolate representative of the group formed fully established biofilms with a textured, multi-layered, three-dimensional structure. PMID:25192360

  3. Use of In-Biofilm Expression Technology To Identify Genes Involved in Pseudomonas aeruginosa Biofilm Development†

    PubMed Central

    Finelli, Antonio; Gallant, Claude V.; Jarvi, Keith; Burrows, Lori L.

    2003-01-01

    Mature Pseudomonas aeruginosa biofilms form complex three-dimensional architecture and are tolerant of antibiotics and other antimicrobial compounds. In this work, an in vivo expression technology system, originally designed to study virulence-associated genes in complex mammalian environments, was used to identify genes up-regulated in P. aeruginosa grown to a mature (5-day) biofilm. Five unique cloned promoters unable to promote in vitro growth in the absence of purines after recovery from the biofilm environment were identified. The open reading frames downstream of the cloned promoter regions were identified, and knockout mutants were generated. Insertional mutation of PA5065, a homologue of Escherichia coli ubiB, was lethal, while inactivation of PA0240 (a porin homologue), PA3710 (a putative alcohol dehydrogenase), and PA3782 (a homologue of the Streptomyces griseus developmental regulator adpA) had no effect on planktonic growth but caused defects in biofilm formation in static and flowing systems. In competition experiments, mutants demonstrated reduced fitness compared with the parent strain, comprising less than 0.0001% of total biofilm cells after 5 days. Therefore, using in-biofilm expression technology, we have identified novel genes that do not affect planktonic growth but are important for biofilm formation, development, and fitness. PMID:12700249

  4. Lifestyle and Mental Health

    ERIC Educational Resources Information Center

    Walsh, Roger

    2011-01-01

    Mental health professionals have significantly underestimated the importance of lifestyle factors (a) as contributors to and treatments for multiple psychopathologies, (b) for fostering individual and social well-being, and (c) for preserving and optimizing cognitive function. Consequently, therapeutic lifestyle changes (TLCs) are underutilized…

  5. Establishment of a multi-species biofilm model and metatranscriptomic analysis of biofilm and planktonic cell communities.

    PubMed

    Nakamura, Yuya; Yamamoto, Nao; Kino, Yuta; Yamamoto, Nozomi; Kamei, Shota; Mori, Hiroshi; Kurokawa, Ken; Nakashima, Nobutaka

    2016-08-01

    We collected several biofilm samples from Japanese rivers and established a reproducible multi-species biofilm model that can be analyzed in laboratories. Bacterial abundance at the generic level was highly similar between the planktonic and biofilm communities, whereas comparative metatranscriptomic analysis revealed many upregulated and downregulated genes in the biofilm. Many genes involved in iron-sulfur metabolism, stress response, and cell envelope function were upregulated; biofilm formation is mediated by an iron-dependent signaling mechanism and the signal is relayed to stress-responsive and cell envelope function genes. Flagella-related gene expression was regulated depending upon the growth phase, indicating different roles of flagella during the adherence, maturation, and dispersal steps of biofilm formation. Downregulation of DNA repair genes was observed, indicating that spontaneous mutation frequency would be elevated within the biofilm and that the biofilm is a cradle for generating novel genetic traits. Although the significance remains unclear, genes for rRNA methyltransferase, chromosome partitioning, aminoacyl-tRNA synthase, and cysteine, methionine, leucine, thiamine, nucleotide, and fatty acid metabolism were found to be differentially regulated. These results indicate that planktonic and biofilm communities are in different dynamic states. Studies on biofilm and sessile cells, which have received less attention, are important for understanding microbial ecology and for designing tailor-made anti-biofilm drugs. PMID:27102130

  6. Gene expression of lactobacilli in murine forestomach biofilms

    PubMed Central

    Schwab, Clarissa; Tveit, Alexander Tøsdal; Schleper, Christa; Urich, Tim

    2014-01-01

    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62–82% of rRNA reads), followed by Clostridiales (8–31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans. PMID:24702817

  7. Novel strategies against Candida biofilms: interest of synthetic compounds.

    PubMed

    Girardot, Marion; Imbert, Christine

    2016-01-01

    A biofilm is a consortium of microbial cells that are attached to a substratum or an interface. It should be considered a reservoir that may induce serious infections. Indeed, Candidaspp. biofilms may be involved in the persistence or worsening of some chronic inflammatory diseases as well as in systemic infections, which may lead to high morbidity and mortality rates. New strategies are currently being explored, utilizing several synthetic compounds to prevent or fight these Candida biofilms. This article focuses on active synthetic compounds classified with regards to their modes of action: inhibition of early adherence phase, inhibition or control of biofilm maturation and finally elimination of already formed biofilms. Some of them show promise in fighting biofilm. PMID:26673571

  8. Destruction of single-species biofilms of Escherichia coli or Klebsiella pneumoniae subsp. pneumoniae by dextranase, lactoferrin, and lysozyme

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activity of dextranase, lactoferrin, lysozyme, and nisin against biofilms composed of either Klebsiella pneumonia or Escherichia coli was examined using the MBEC Assay™. Mature biofilms were treated and then sonicated to remove the adherent biofilm. This material was quantified using a lumines...

  9. [Biofilm Formation by the Nonflagellated flhB1 Mutant of Azospirillum brasilense Sp245].

    PubMed

    Shelud'ko, A V; Filip'echeva, Yu A; Shumiliva, E M; Khlebtsov, B N; Burov, A M; Petrova, L P; Katsy, E I

    2015-01-01

    Azospirillum brasilense Sp245 with mixed flagellation are able to form biofilms on various surfaces. A nonflagellated mutant of this strain with inactivated chromosomal copy of the flhB gene (flhB1) was shown to exhibit specific traits at the later stages of biofilm formation on a hydrophilic (glass) surface. Mature biofilms of the flhB1::Omegon-Km mutant Sp245.1063 were considerably thinner than those of the parent strain Sp245. The biofilms of the mutant were more susceptible to the forces of hydrodynamic shear. A. brasilense Sp245 cells in biofilms were not found to possess lateral flagella. Cells with polar flagella were, however, revealed by atomic force microscopy of mature native biofilms of strain Sp245. Preservation of a polar flagellum (probably nonmotile) on the cells of A. brasilense Sp245 may enhance the biofilm stability. PMID:26263623

  10. Epigenetics and lifestyle

    PubMed Central

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2013-01-01

    The concept of “lifestyle” includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and microRNA expression. Several lifestyle factors have been identified that might modify epigenetic patterns, such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress, and working on night shifts. Most studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. Here, we review current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms. PMID:22122337

  11. Lifestyle Medicine Education

    PubMed Central

    Pojednic, Rachele M.; Phillips, Edward M.

    2015-01-01

    The actual causes of premature adult deaths, the preponderance of noncommunicable chronic diseases, and their associated costs are related to unhealthy behaviors, such as poor nutrition, physical inactivity, and tobacco use. Although recommended as the first line of prevention and management, providers often do not provide behavioral change counseling in their care. Medical education in lifestyle medicine is, therefore, proposed as a necessary intervention to allow all health providers to learn how to effectively and efficiently counsel their patients toward adopting and sustaining healthier behaviors. Lifestyle medicine curricula, including exercise, nutrition, behavioral change, and self-care, have recently evolved in all levels of medical education, together with implementation initiatives like Exercise is Medicine and the Lifestyle Medicine Education (LMEd) Collaborative. The goal of this review is to summarize the existing literature and to provide knowledge and tools to deans, administrators, faculty members, and students interested in pursuing lifestyle medicine training or establishing and improving an LMEd program within their institution. PMID:26413038

  12. Biofilm Growth and Detachment of Actinobacillus actinomycetemcomitans

    PubMed Central

    Kaplan, Jeffrey B.; Meyenhofer, Markus F.; Fine, Daniel H.

    2003-01-01

    The gram-negative, oral bacterium Actinobacillus actinomycetemcomitans has been implicated as the causative agent of several forms of periodontal disease in humans. When cultured in broth, fresh clinical isolates of A. actinomycetemcomitans form tenacious biofilms on surfaces such as glass, plastic, and saliva-coated hydroxyapatite, a property that probably plays an important role in the ability of this bacterium to colonize the oral cavity and cause disease. We examined the morphology of A. actinomycetemcomitans biofilm colonies grown on glass slides and in polystyrene petri dishes by using light microscopy and scanning and transmission electron microscopy. We found that A. actinomycetemcomitans developed asymmetric, lobed biofilm colonies that displayed complex architectural features, including a layer of densely packed cells on the outside of the colony and nonaggregated cells and large, transparent cavities on the inside of the colony. Mature biofilm colonies released single cells or small clusters of cells into the medium. These released cells adhered to the surface of the culture vessel and formed new colonies, enabling the biofilm to spread. We isolated three transposon insertion mutants which produced biofilm colonies that lacked internal, nonaggregated cells and were unable to release cells into the medium. All three transposon insertions mapped to genes required for the synthesis of the O polysaccharide (O-PS) component of lipopolysaccharide. Plasmids carrying the complementary wild-type genes restored the ability of mutant strains to synthesize O-PS and release cells into the medium. Our findings suggest that A. actinomycetemcomitans biofilm growth and detachment are discrete processes and that biofilm cell detachment evidently involves the formation of nonaggregated cells inside the biofilm colony that are destined for release from the colony. PMID:12562811

  13. Lifestyle medicine for depression

    PubMed Central

    2014-01-01

    The prevalence of depression appears to have increased over the past three decades. While this may be an artefact of diagnostic practices, it is likely that there are factors about modernity that are contributing to this rise. There is now compelling evidence that a range of lifestyle factors are involved in the pathogenesis of depression. Many of these factors can potentially be modified, yet they receive little consideration in the contemporary treatment of depression, where medication and psychological intervention remain the first line treatments. “Lifestyle Medicine” provides a nexus between public health promotion and clinical treatments, involving the application of environmental, behavioural, and psychological principles to enhance physical and mental wellbeing. This may also provide opportunities for general health promotion and potential prevention of depression. In this paper we provide a narrative discussion of the major components of Lifestyle Medicine, consisting of the evidence-based adoption of physical activity or exercise, dietary modification, adequate relaxation/sleep and social interaction, use of mindfulness-based meditation techniques, and the reduction of recreational substances such as nicotine, drugs, and alcohol. We also discuss other potential lifestyle factors that have a more nascent evidence base, such as environmental issues (e.g. urbanisation, and exposure to air, water, noise, and chemical pollution), and the increasing human interface with technology. Clinical considerations are also outlined. While data supports that some of these individual elements are modifiers of overall mental health, and in many cases depression, rigorous research needs to address the long-term application of Lifestyle Medicine for depression prevention and management. Critically, studies exploring lifestyle modification involving multiple lifestyle elements are needed. While the judicious use of medication and psychological techniques are still

  14. Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin.

    PubMed

    Doke, Sonali Kashinath; Raut, Jayant Shankar; Dhawale, Shashikant; Karuppayil, Sankunny Mohan

    2014-01-01

    Infections associated with the biofilms of Candida albicans are a challenge to antifungal treatment. Combinatorial therapy involving plant molecules with antifungal drugs would be an effective complementary approach against drug-resistant Candida biofilms. The aim of this study was to evaluate the efficacy of three bioactive terpenoids (carvacrol, eugenol and thymol) in combination with fluconazole against planktonic cells, biofilm development and mature biofilms of C. albicans. Activities of the selected molecules were tested using a microplate-based methodology, while their combinations with fluconazole were performed in a checkerboard format. Biofilms were quantitated by XTT-metabolic assay and confirmed by microscopic observations. Combinations of carvacrol and eugenol with fluconazole were found synergistic against planktonic growth of C. albicans, while that of thymol with fluconazole did not have any interaction. Biofilm development and mature biofilms were highly resistant to fluconazole, but susceptible to three terpenoids. Sensitization of cells by sub-inhibitory concentrations of carvacrol and eugenol resulted in prevention of biofilm formation at low fluconazole concentrations, i.e. 0.032 and 0.002 mg ml(-1), respectively. Addition of thymol could not potentiate activity of fluconazole against biofilm formation by C. albicans. Fractional inhibitory concentration indices (FICI) for carvacrol-fluconazole and eugenol-fluconazole combinations for biofilm formation were 0.311 and 0.25, respectively. The FICI value of 1.003 indicated a status of indifference for the combination of thymol and fluconazole against biofilm formation. Eugenol and thymol combinations with fluconazole did not have useful interaction against mature biofilms of C. albicans, but the presence of 0.5 mg ml(-1) of carvacrol caused inhibition of mature biofilms at a significantly low concentration (i.e. 0.032 mg ml(-1)) of fluconazole. The study indicated that carvacrol and eugenol

  15. Biophysics of Biofilm Infection

    PubMed Central

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could: 1) allow prevailing hydrodynamic shear to remove biofilm, 2) increase the efficacy of designed interventions for removing biofilms, 3) enable phagocytic engulfment of softened biofilm aggregates, and 4) improve phagocyte mobility and access to biofilm. PMID:24376149

  16. Biophysics of biofilm infection.

    PubMed

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. PMID:24376149

  17. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    PubMed

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth. PMID:26992071

  18. Active laser tweezers microrheometry of microbial biofilms

    NASA Astrophysics Data System (ADS)

    Osterman, N.; Slapar, V.; Boric, M.; Stopar, D.; Babič, D.; Poberaj, I.

    2010-08-01

    Microbial biofilms are present on biotic and abiotic surfaces and have a significant impact on many fields in industry, health care and technology. Thus, a better understanding of processes that lead to development of biofilms and their chemical and mechanical properties is needed. In the following paper we report the results of active laser tweezers microrheology study of optically inhomogeneous extracellular matrix secreted by Visbrio sp. bacteria. One particle and two particle active microrheology were used in experiments. Both methods exhibited high enough sensitivity to detect viscosity changes at early stages of bacterial growth. We also showed that both methods can be used in mature samples where optical inhomogeneity becomes significant.

  19. Lifestyles of plant viruses

    PubMed Central

    Roossinck, Marilyn J.

    2010-01-01

    The vast majority of well-characterized eukaryotic viruses are those that cause acute or chronic infections in humans and domestic plants and animals. However, asymptomatic persistent viruses have been described in animals, and are thought to be sources for emerging acute viruses. Although not previously described in these terms, there are also many viruses of plants that maintain a persistent lifestyle. They have been largely ignored because they do not generally cause disease. The persistent viruses in plants belong to the family Partitiviridae or the genus Endornavirus. These groups also have members that infect fungi. Phylogenetic analysis of the partitivirus RNA-dependent RNA polymerase genes suggests that these viruses have been transmitted between plants and fungi. Additional families of viruses traditionally thought to be fungal viruses are also found frequently in plants, and may represent a similar scenario of persistent lifestyles, and some acute or chronic viruses of crop plants may maintain a persistent lifestyle in wild plants. Persistent, chronic and acute lifestyles of plant viruses are contrasted from both a functional and evolutionary perspective, and the potential role of these lifestyles in host evolution is discussed. PMID:20478885

  20. Lifestyle modifications for GDM.

    PubMed

    Dhingra, Atul; Ahuja, Kamlesh

    2016-09-01

    Prevalence of gestational diabetes mellitus (GDM) is increasing worldwide more so in Southeast Asian countries like India and Pakistan. 1 GDM is associated with various adverse foetal and maternal effects. The management of GDM aims at reducing blood glucose to reduce maternal and foetal morbidity and mortality. Various studies have shown that lifestyle modifications are an important tool for reducing blood glucose levels in patients with GDM. Lifestyle modifications consist of dietary modifications and daily physical activity. Dietary modifications aim to achieve glycaemic control by providing adequate calories to the mother and foetus. Exercise is an obvious adjunct to dietary modifications for management of GDM. Therefore the purpose of this review is to summarize the benefits of lifestyle interventions in patients with GDM. PMID:27582149

  1. Health lifestyles in early childhood.

    PubMed

    Mollborn, Stefanie; James-Hawkins, Laurie; Lawrence, Elizabeth; Fomby, Paula

    2014-12-01

    This study integrates two important developments, the concept of health lifestyles (which has focused on adults and adolescents) and the increased attention to early childhood. We introduce the concept of children's health lifestyles, identifying differences from adult health lifestyles and articulating intergenerational transmission and socialization processes shaping children's health lifestyles. Using the nationally representative Early Childhood Longitudinal Study-Birth Cohort (2001-2007; N ≈ 6,150), latent class analyses identify predominant health lifestyles among U.S. preschoolers. Five distinct empirical patterns representing health lifestyles emerge, two capturing low and medium levels of overall risk across domains and three capturing domain-specific risks. Social background predicts children's health lifestyles, but lower household resources often explain these relationships. Across kindergarten measures of cognition, behavior, and health, preschool health lifestyles predict children's development even after controlling for social disadvantage and concurrent household resources. Further research on health lifestyles throughout childhood is warranted. PMID:25413801

  2. Role of Multicellular Aggregates in Biofilm Formation

    PubMed Central

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.

    2016-01-01

    ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463

  3. Lifestyle, Nutrition and Glaucoma

    PubMed Central

    Pasquale, Louis R.; Kang, Jae Hee

    2009-01-01

    The only proven strategy to prevent primary open-angle glaucoma (POAG) is the use of ocular hypotensive therapy among people diagnosed with ocular hypertension. In this review, various modifiable lifestyle factors, such as exercise, diet and cigarette smoking, that may influence intraocular pressure and that have been studied in relation to the risk of developing POAG are discussed. Epidemiologic studies on lifestyle factors are few, and the current evidence suggests that there are no environmental factors that are clearly associated with POAG; however, a few factors merit further study. This review also outlines future directions for research into the primary prevention of POAG. PMID:19680048

  4. Three-Dimensional Stratification of Bacterial Biofilm Populations in a Moving Bed Biofilm Reactor for Nitritation-Anammox

    PubMed Central

    Almstrand, Robert; Persson, Frank; Daims, Holger; Ekenberg, Maria; Christensson, Magnus; Wilén, Britt-Marie; Sörensson, Fred; Hermansson, Malte

    2014-01-01

    Moving bed biofilm reactors (MBBRs) are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox) processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB) and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH) to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers. PMID:24481066

  5. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  6. Bacterial Biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Postantibiotic Era

    PubMed Central

    Kostakioti, Maria; Hadjifrangiskou, Maria

    2013-01-01

    Biofilm formation constitutes an alternative lifestyle in which microorganisms adopt a multicellular behavior that facilitates and/or prolongs survival in diverse environmental niches. Biofilms form on biotic and abiotic surfaces both in the environment and in the healthcare setting. In hospital wards, the formation of biofilms on vents and medical equipment enables pathogens to persist as reservoirs that can readily spread to patients. Inside the host, biofilms allow pathogens to subvert innate immune defenses and are thus associated with long-term persistence. Here we provide a general review of the steps leading to biofilm formation on surfaces and within eukaryotic cells, highlighting several medically important pathogens, and discuss recent advances on novel strategies aimed at biofilm prevention and/or dissolution. PMID:23545571

  7. Child Lifestyles Predictors

    ERIC Educational Resources Information Center

    Özpolat, Ahmet Ragip

    2014-01-01

    The purpose of this study is to explain the effectiveness of parental attitudes, socio-economic status and gender in determining the predictors of child lifestyles. The study group consists of three hundred and fifty (350) eighth grade students studying in the province of Erzincan during the 2012-2013 academic year; the students are selected by…

  8. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-01-01

    and industrial settings. One of the defining features of a biofilm is its extracellular matrix. The matrix has a heterogeneous structure and is formed from a secretion of various biopolymers, including proteins, extracellular DNA, and polysaccharides. It is generally known to interact with biofilm cells, thus affecting cell physiology and cell-cell communication. Despite the fact that the matrix may comprise up to 90% of the biofilm dry weight, how the matrix properties affect biofilm structure, maturation, and interspecies interactions remain largely unexplored. This study reveals that bacteria can use specific extracellular polymers to modulate the physical properties of their microenvironment. This in turn impacts biofilm structure, differentiation, and interspecies interactions. PMID:25096883

  9. Pherotype Influences Biofilm Growth and Recombination in Streptococcus pneumoniae

    PubMed Central

    Carrolo, Margarida; Pinto, Francisco Rodrigues; Melo-Cristino, José; Ramirez, Mário

    2014-01-01

    In Streptococcus pneumoniae the competence-stimulating peptide (CSP), encoded by the comC gene, controls competence development and influences biofilm growth. We explored the influence of pherotype, defined by the two major comC allelic variants (comC1 and comC2), on biofilm development and recombination efficiency. Among isolates recovered from human infections those presenting comC1 show a higher capacity to form in vitro biofilms. The influence of pherotype on biofilm growth was confirmed by experiments with isogenic strains differing in their comC alleles. Biofilm architecture evaluated by confocal laser scanning microscopy showed that strains carrying comC1 form biofilms that are denser and thicker than those carrying the comC2 allele. Isogenic strains carrying the comC1 allele yielded more transformants than those carrying the comC2 allele in both planktonic and biofilm growth. Transformation assays with comC knockout strains show that ComD1 needs lower doses of the signaling peptide to reach the same biological outcomes. In contrast to mixed planktonic growth, within mixed biofilms inter-pherotype genetic exchange is less frequent than that occurring between bacteria of the same pherotype. Since biofilms are a major bacterial lifestyle, these observations may explain the genetic differentiation between populations with different pherotypes reported previously. Considering that biofilms have been associated with colonization our results suggest that strains carrying the comC1 allele may be more transmissible and more efficient at persisting in carriage. Both effects may help explain the higher prevalence of the comC1 allele in the pneumococcal population. PMID:24646937

  10. Biofilms: A microbial home

    PubMed Central

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms. PMID:21976832

  11. Nanocapsules with glycerol monolaurate: Effects on Candida albicans biofilms.

    PubMed

    Lopes, Leonardo Quintana Soares; Santos, Cayane Genro; Vaucher, Rodrigo de Almeida; Raffin, Renata Platcheck; Santos, Roberto Christ Vianna

    2016-08-01

    Candida albicans does not only occur in the free living planktonic form but also grows in surface-attached biofilm communities. Moreover, these biofilms appear to be the most common lifestyle and are involved in the majority of human Candida infections. Nanoparticles can be used as an alternative to conventional antimicrobial agents and can also act as carriers for antibiotics and other drugs. In view of this, the aim of the study was develop, characterize and verify the anti-biofilm potential of GML Nanocapsules against C. albicans. The GML Nanocapsules showed mean diameter of 193.2 nm, polydispersion index of 0.044, zeta potential of -23.3 mV and pH 6.32. The microdilution assay showed MIC of 15.5 μg mL(-1) to GML Nanocapsules and 31.25 μg mL(-1) to GML. The anti-biofilm assay showed the significantly reduction of biomass of C. albicans biofilm treated with GML Nanocapsules while the GML does not exhibit effect. The kinetic assay demonstrated that at 48 h, the GML Nanocapsules reduce 94% of formed biofilm. The positive results suggest the promisor alternative for this public health problem that is biofilm infections. PMID:27241236

  12. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    PubMed Central

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  13. Absolute Quantitation of Bacterial Biofilm Adhesion and Viscoelasticity by Microbead Force Spectroscopy

    PubMed Central

    Lau, Peter C.Y.; Dutcher, John R.; Beveridge, Terry J.; Lam, Joseph S.

    2009-01-01

    Bacterial biofilms are the most prevalent mode of bacterial growth in nature. Adhesive and viscoelastic properties of bacteria play important roles at different stages of biofilm development. Following irreversible attachment of bacterial cells onto a surface, a biofilm can grow in which its matrix viscoelasticity helps to maintain structural integrity, determine stress resistance, and control ease of dispersion. In this study, a novel application of force spectroscopy was developed to characterize the surface adhesion and viscoelasticity of bacterial cells in biofilms. By performing microbead force spectroscopy with a closed-loop atomic force microscope, we accurately quantified these properties over a defined contact area. Using the model gram-negative bacterium Pseudomonas aeruginosa, we observed that the adhesive and viscoelastic properties of an isogenic lipopolysaccharide mutant wapR biofilm were significantly different from those measured for the wild-type strain PAO1 biofilm. Moreover, biofilm maturation in either strain also led to prominent changes in adhesion and viscoelasticity. To minimize variability in force measurements resulting from experimental parameter changes, we developed standardized conditions for microbead force spectroscopy to enable meaningful comparison of data obtained in different experiments. Force plots measured under standard conditions showed that the adhesive pressures of PAO1 and wapR early biofilms were 34 ± 15 Pa and 332 ± 47 Pa, respectively, whereas those of PAO1 and wapR mature biofilms were 19 ± 7 Pa and 80 ± 22 Pa, respectively. Fitting of creep data to a Voigt Standard Linear Solid viscoelasticity model revealed that the instantaneous and delayed elastic moduli in P. aeruginosa were drastically reduced by lipopolysaccharide deficiency and biofilm maturation, whereas viscosity was decreased only for biofilm maturation. In conclusion, we have introduced a direct biophysical method for simultaneously quantifying

  14. Growth of Streptococcus mutans in Biofilms Alters Peptide Signaling at the Sub-population Level

    PubMed Central

    Shields, Robert C.; Burne, Robert A.

    2016-01-01

    Streptococcus mutans activates multiple cellular processes in response to the formation of a complex between comX-inducing peptide (XIP) and the ComR transcriptional regulator. Bulk phase and microfluidic experiments previously revealed that ComR-dependent activation of comX is altered by pH and by carbohydrate source. Biofilm formation is a major factor in bacterial survival and virulence in the oral cavity. Here, we sought to determine the response of S. mutans biofilm cells to XIP during different stages of biofilm maturation. Using flow cytometry and confocal microscopy, we showed that exogenous addition of XIP to early biofilms resulted in robust comX activation. However, as the biofilms matured, increasing amounts of XIP were required to activate comX expression. Single-cell analysis demonstrated that the entire population was responding to XIP with activation of comX in early biofilms, but only a sub-population was responding in mature biofilms. The sub-population response of mature biofilms was retained when the cells were dispersed and then treated with XIP. The proportion and intensity of the bi-modal response of mature biofilm cells was altered in mutants lacking the Type II toxins MazF and RelE, or in a strain lacking the (p)ppGpp synthase/hydrolase RelA. Thus, competence signaling is markedly altered in cells growing in mature biofilms, and pathways that control cell death and growth/survival decisions modulate activation of comX expression in these sessile populations. PMID:27471495

  15. Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics

    PubMed Central

    Lebeaux, David; Ghigo, Jean-Marc

    2014-01-01

    SUMMARY Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called “recalcitrance” and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections. PMID:25184564

  16. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil

    PubMed Central

    2009-01-01

    Background Microbial biofilms represent an incompletely understood, but fundamental mode of bacterial growth. These sessile communities typically consist of stratified, morphologically-distinct layers of extracellular material, where numerous metabolic processes occur simultaneously in close proximity. Limited reports on environmental isolates have revealed highly ordered, three-dimensional organization of the extracellular matrix, which may hold important implications for biofilm physiology in vivo. Results A Pseudomonas spp. isolated from a natural soil environment produced flocculent, nonmucoidal biofilms in vitro with unique structural features. These mature biofilms were made up of numerous viable bacteria, even after extended culture, and contained up to 50% of proteins and accumulated 3% (by dry weight) calcium, suggesting an important role for the divalent metal in biofilm formation. Ultrastructurally, the mature biofilms contained structural motifs consisting of dense, fibrillary clusters, nanofibers, and ordered, honeycomb-like chambers enveloped in thin sheets. Conclusion Mature biofilms contained living bacteria and were structurally, chemically, and physiologically heterogeneous. The principal architectural elements observed by electron microscopy may represent useful morphological clues for identifying bacterial biofilms in vivo. The complexity and reproducibility of the structural motifs observed in bacterial biofilms appear to be the result of organized assembly, suggesting that this environmental isolate may possess ecological advantages in its natural habitat. PMID:19460161

  17. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  18. The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms

    PubMed Central

    2015-01-01

    P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i) on P. aeruginosa biofilm lifestyle cycle, (ii) on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii) finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa. PMID:25866808

  19. On growth and form of Bacillus subtilis biofilms.

    PubMed

    Dervaux, Julien; Magniez, Juan Carmelo; Libchaber, Albert

    2014-12-01

    A general feature of mature biofilms is their highly heterogeneous architecture that partitions the microbial city into sectors with specific micro-environments. To understand how this heterogeneity arises, we have investigated the formation of a microbial community of the model organism Bacillus subtilis. We first show that the growth of macroscopic colonies is inhibited by the accumulation of ammoniacal by-products. By constraining biofilms to grow approximately as two-dimensional layers, we then find that the bacteria which differentiate to produce extracellular polymeric substances form tightly packed bacterial chains. In addition to the process of cellular chaining, the biomass stickiness also strongly hinders the reorganization of cells within the biofilm. Based on these observations, we then write a biomechanical model for the growth of the biofilm where the cell density is constant and the physical mechanism responsible for the spreading of the biomass is the pressure generated by the division of the bacteria. Besides reproducing the velocity field of the biomass across the biofilm, the model predicts that, although bacteria divide everywhere in the biofilm, fluctuations in the growth rates of the bacteria lead to a coarsening of the growing bacterial layer. This process of kinetic roughening ultimately leads to the formation of a rough biofilm surface exhibiting self-similar properties. Experimental measurements of the biofilm texture confirm these predictions. PMID:25485075

  20. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages.

    PubMed

    Abedon, Stephen T

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1) Furnishing of sufficiently effective antibacterial factors, (2) intimate interaction with biofilm bacteria over extended periods, (3) associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4) a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not. PMID:26371010

  1. On growth and form of Bacillus subtilis biofilms

    PubMed Central

    Dervaux, Julien; Magniez, Juan Carmelo; Libchaber, Albert

    2014-01-01

    A general feature of mature biofilms is their highly heterogeneous architecture that partitions the microbial city into sectors with specific micro-environments. To understand how this heterogeneity arises, we have investigated the formation of a microbial community of the model organism Bacillus subtilis. We first show that the growth of macroscopic colonies is inhibited by the accumulation of ammoniacal by-products. By constraining biofilms to grow approximately as two-dimensional layers, we then find that the bacteria which differentiate to produce extracellular polymeric substances form tightly packed bacterial chains. In addition to the process of cellular chaining, the biomass stickiness also strongly hinders the reorganization of cells within the biofilm. Based on these observations, we then write a biomechanical model for the growth of the biofilm where the cell density is constant and the physical mechanism responsible for the spreading of the biomass is the pressure generated by the division of the bacteria. Besides reproducing the velocity field of the biomass across the biofilm, the model predicts that, although bacteria divide everywhere in the biofilm, fluctuations in the growth rates of the bacteria lead to a coarsening of the growing bacterial layer. This process of kinetic roughening ultimately leads to the formation of a rough biofilm surface exhibiting self-similar properties. Experimental measurements of the biofilm texture confirm these predictions. PMID:25485075

  2. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    PubMed Central

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1) Furnishing of sufficiently effective antibacterial factors, (2) intimate interaction with biofilm bacteria over extended periods, (3) associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4) a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not. PMID:26371010

  3. Pseudomonas aeruginosa Cystic Fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa is considered to grow in a biofilm in cystic fibrosis (CF) chronic lung infections. Bacterial cell motility is one of the main factors that have been connected with P. aeruginosa adherence to both biotic and abiotic surfaces. In this investigation, we employed molecular and microscopic methods to determine the presence or absence of motility in P. aeruginosa CF isolates, and statistically correlated this with their biofilm forming ability in vitro. Results Our investigations revealed a wide diversity in the production, architecture and control of biofilm formation. Of 96 isolates, 49% possessed swimming motility, 27% twitching and 52% swarming motility, while 47% were non-motile. Microtitre plate assays for biofilm formation showed a range of biofilm formation ability from biofilm deficient phenotypes to those that formed very thick biofilms. A comparison of the motility and adherence properties of individual strains demonstrated that the presence of swimming and twitching motility positively affected biofilm biomass. Crucially, however, motility was not an absolute requirement for biofilm formation, as 30 non-motile isolates actually formed thick biofilms, and three motile isolates that had both flagella and type IV pili attached only weakly. In addition, CLSM analysis showed that biofilm-forming strains of P. aeruginosa were in fact capable of entrapping non-biofilm forming strains, such that these 'non-biofilm forming' cells could be observed as part of the mature biofilm architecture. Conclusions Clinical isolates that do not produce biofilms in the laboratory must have the ability to survive in the patient lung. We propose that a synergy exists between isolates in vivo, which allows "non biofilm-forming" isolates to be incorporated into the biofilm. Therefore, there is the potential for strains that are apparently non-biofilm forming in vitro to participate in biofilm-mediated pathogenesis in the CF lung. PMID:20141637

  4. [Stroke - lifestyle and environment].

    PubMed

    Gerischer, L M; Flöel, A; Endres, M

    2015-08-01

    Lifestyle modifications and environmental factors are important for stroke prevention and rehabilitation after stroke. The individual stroke risk may be modified by factors like physical activity, body weight and nutrition, special dietary supplements such as vitamins, smoking, consumption of tea, coffee and alcohol, psychological factors and by keeping a pet. The focus of this article lies on measures for stroke prevention. For certain topics, it also comments on factors that are important during rehabilitation after stroke. PMID:26105161

  5. Biofilm Formation by the Fish Pathogen Flavobacterium columnare: Development and Parameters Affecting Surface Attachment

    PubMed Central

    Cai, Wenlong; De La Fuente, Leonardo

    2013-01-01

    Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems. PMID:23851087

  6. Inhibition of Staphylococcus epidermidis Biofilm Formation by Traditional Thai Herbal Recipes Used for Wound Treatment

    PubMed Central

    Chusri, S.; Sompetch, K.; Mukdee, S.; Jansrisewangwong, S.; Srichai, T.; Maneenoon, K.; Limsuwan, S.; Voravuthikunchai, S. P.

    2012-01-01

    Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis. A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The results revealed that the ethanol extract of THR-SK004 (THR-SK004E) could inhibit the formation of S. epidermidis biofilm on polystyrene surfaces. Furthermore, treatments with the extract efficiently inhibit the biofilm formation of the pathogen on glass surfaces determined by scanning electron microscopy and crystal violet staining. In addition, THR-SK010 ethanol extract (THR-SK010E; 0.63–5 μg/mL) could decrease 30 to 40% of the biofilm development. Almost 90% of a 7-day-old staphylococcal biofilm was destroyed after treatment with THR-SK004E (250 and 500 μg/mL) and THR-SK010E (10 and 20 μg/mL) for 24 h. Therefore, our results clearly demonstrated THR-SK004E could prevent the staphylococcal biofilm development, whereas both THR-SK004E and THR-SK010E possessed remarkable eradication ability on the mature staphylococcal biofilm. PMID:22919409

  7. Metabolism of mineral-sorbed organic matter and microbial lifestyles in fluvial ecosystems

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Niederdorfer, Robert; Gernand, Anna; Veuger, Bart; Prommer, Judith; Mooshammer, Maria; Wanek, Wolfgang; Battin, Tom J.

    2016-02-01

    In fluvial ecosystems mineral erosion, carbon (C), and nitrogen (N) fluxes are linked via organomineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictably through fluvial networks. We tested how organomineral sorption affects aquatic microbial metabolism, using organomineral particles containing a mix of 13C, 15N-labeled amino acids. We traced 13C and 15N retention within biofilm and suspended aggregate biomass and its mineralization. Organomineral complexation restricted C and N retention within biofilms and aggregates and also their mineralization. This reduced the efficiency with which biofilms mineralize C and N by 30% and 6%. By contrast, organominerals reduced the C and N mineralization efficiency of suspended aggregates by 41% and 93%. Our findings show how organomineral complexation affects microbial C:N stoichiometry, potentially altering the biogeochemical fate of C and N within fluvial ecosystems.

  8. Escherichia coli and Enterococcus faecalis are able to incorporate and enhance a pre-formed Gardnerella vaginalis biofilm.

    PubMed

    Castro, Joana; Machado, Daniela; Cerca, Nuno

    2016-04-01

    Gardnerella vaginalis is the most frequent microorganism found in bacterial vaginosis (BV), while Escherichia coli and Enterococcus faecalis are amongst the most frequent pathogens found in urinary tract infections (UTIs). This study aimed to evaluate possible interactions between UTIs pathogens and G. vaginalis using an in vitro dual-species biofilm model. Our results showed that dual-species biofilms reached significantly higher bacterial concentration than monospecies biofilms. Moreover, visualization of dual-populations species in the biofilms, using the epifluorescence microscopy, revealed that all of the urogenital pathogens coexisted with G. vaginalis. In conclusion, our work demonstrates that uropathogens can incorporate into mature BV biofilms. PMID:26782142

  9. A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor.

    PubMed

    Goeres, Darla M; Hamilton, Martin A; Beck, Nicholas A; Buckingham-Meyer, Kelli; Hilyard, Jackie D; Loetterle, Linda R; Lorenz, Lindsey A; Walker, Diane K; Stewart, Philip S

    2009-01-01

    This protocol describes how to grow a Pseudomonas aeruginosa biofilm under low fluid shear close to the air-liquid interface using the drip flow reactor (DFR). The DFR can model environments such as food-processing conveyor belts, catheters, lungs with cystic fibrosis and the oral cavity. The biofilm is established by operating the reactor in batch mode for 6 h. A mature biofilm forms as the reactor operates for an additional 48 h with a continuous flow of nutrients. During continuous flow, the biofilm experiences a low shear as the media drips onto a surface set at a 10 degrees angle. At the end of 54 h, biofilm accumulation is quantified by removing coupons from the reactor channels, rinsing the coupons to remove planktonic cells, scraping the biofilm from the coupon surface, disaggregating the clumps, then diluting and plating for viable cell enumeration. The entire procedure takes 13 h of active time that is distributed over 5 d. PMID:19528953

  10. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles

    PubMed Central

    2014-01-01

    Background Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment. Results Ligand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm2 of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm2 of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm-1 × sr-1) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone). Conclusions Early diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm

  11. The role of bacterial biofilms in chronic infections.

    PubMed

    Bjarnsholt, Thomas

    2013-05-01

    Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most research into bacterial pathogenesis has focused on acute infections, but these diseases have now been supplemented by a new category of chronic infections caused by bacteria growing in slime-enclosed aggregates known as biofilms. Biofilm infections, such as pneumonia in cystic fibrosis patients, chronic wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful treatment depends on accurate and fast diagnosis. However, in cases where the bacteria succeed in forming a biofilm within the human host, the infection often turns out to be untreatable and will develop into a chronic state. The important hallmarks of chronic biofilm-based infections are extreme resistance to antibiotics and many other conventional antimicrobial agents, and an extreme capacity for evading the host defences. In this thesis, I will assemble the current knowledge on biofilms with an emphasis on chronic infections, guidelines for diagnosis and treatment of these infections, before relating this to my previous research into the area of biofilms. I will present evidence to support a view that the biofilm lifestyle dominates chronic bacterial infections, where bacterial

  12. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors.

    PubMed

    Hu, Huizhi; He, Junguo; Liu, Jian; Yu, Huarong; Zhang, Jie

    2016-07-01

    This study verified the effect of N-acyl homoserine lactone (AHL) concentrations on mature biofilm systems. Three concentrations of an AHL mixture were used in the batch test. Introducing of 5nM AHLs significantly increased biofilm activity and increased sludge characteristics, which resulted in better pollutant removal performance, whereas exogenous 50nM and 500nM AHLs limited pollutant removal, especially COD and nitrogen removal. To further identify how exogenous signal molecular affects biofilm system nitrogen removal, analyzing of nitrifying bacteria through real-time polymerase chain reaction (RT-PCR) revealed that these additional signal molecules affect nitrifying to total bacteria ratio. In addition, the running state of the system was stable during 15days of operation without an AHL dose, which suggests that the changes in the system due to AHL are irreversible. PMID:27030953

  13. Induction of Multidrug Resistance Mechanism in Escherichia coli Biofilms by Interplay between Tetracycline and Ampicillin Resistance Genes▿ †

    PubMed Central

    May, Thithiwat; Ito, Akinobu; Okabe, Satoshi

    2009-01-01

    Biofilms gain resistance to various antimicrobial agents, and the presence of antibiotic resistance genes is thought to contribute to a biofilm-mediated antibiotic resistance. Here we showed the interplay between the tetracycline resistance efflux pump TetA(C) and the ampicillin resistance gene (blaTEM-1) in biofilms of Escherichia coli harboring pBR322 in the presence of the mixture of ampicillin and tetracycline. E. coli in the biofilms could obtain the high-level resistance to ampicillin, tetracycline, penicillin, erythromycin, and chloramphenicol during biofilm development and maturation as a result of the interplay between the marker genes on the plasmids, the increase of plasmid copy number, and consequently the induction of the efflux systems on the bacterial chromosome, especially the EmrY/K and EvgA/S pumps. In addition, we characterized the overexpression of the TetA(C) pump that contributed to osmotic stress response and was involved in the induction of capsular colanic acid production, promoting formation of mature biofilms. However, this investigated phenomenon was highly dependent on the addition of the subinhibitory concentrations of antibiotic mixture, and the biofilm resistance behavior was limited to aminoglycoside antibiotics. Thus, marker genes on plasmids played an important role in both resistance of biofilm cells to antibiotics and in formation of mature biofilms, as they could trigger specific chromosomal resistance mechanisms to confer a high-level resistance during biofilm formation. PMID:19721076

  14. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state

    PubMed Central

    2012-01-01

    Background Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. Results The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from

  15. Lifestyle and diet.

    PubMed

    Opie, Lionel H

    2014-01-01

    Currently, there is widespread interest in many different diets. The best-known diets include the New Atkins diet in the USA, the Dukan diet in France, and in South Africa the Noakes diet. Two different approaches have emerged, one focusing on a life-long healthy lifestyle and the other emphasising weight loss. These are in fact complementary aims, as will be reviewed and reconciled. Furthermore, besides the dietary approach, there is a valid case for added drug therapy for selected lipid disorders with the use statins. In addition, new drugs are emerging that in the future might eventually considerably reduce the negative health impact of coronary artery disease. PMID:25629717

  16. Lifestyle and osteoporosis.

    PubMed

    Zhu, Kun; Prince, Richard L

    2015-02-01

    Osteoporosis is associated with a number of lifestyle factors, including nutritional factors such as intake of calcium, protein, dairy food, fruits and vegetables and vitamin D status, and behavioural factors such as physical activity, smoking and alcohol consumption. Ensuring adequate calcium intake and vitamin D status and having regular weight-bearing physical activity throughout life are important for bone health and the prevention of osteoporosis and related fractures. Studies have shown that smoking and excessive alcohol intake have adverse effects on bone health and increase the risk of fracture. There is evidence suggesting that adequate protein intake and higher intake of fruits and vegetables are beneficial to bone health. PMID:25416958

  17. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation.

    PubMed

    Fagerlund, Annette; Smith, Veronika; Røhr, Åsmund K; Lindbäck, Toril; Parmer, Marthe P; Andersson, K Kristoffer; Reubsaet, Leon; Økstad, Ole Andreas

    2016-08-01

    Biofilm formation can be considered a bacterial virulence mechanism. In a range of Gram-negatives, increased levels of the second messenger cyclic diguanylate (c-di-GMP) promotes biofilm formation and reduces motility. Other bacterial processes known to be regulated by c-di-GMP include cell division, differentiation and virulence. Among Gram-positive bacteria, where the function of c-di-GMP signalling is less well characterized, c-di-GMP was reported to regulate swarming motility in Bacillus subtilis while having very limited or no effect on biofilm formation. In contrast, we show that in the Bacillus cereus group c-di-GMP signalling is linked to biofilm formation, and to several other phenotypes important to the lifestyle of these bacteria. The Bacillus thuringiensis 407 genome encodes eleven predicted proteins containing domains (GGDEF/EAL) related to c-di-GMP synthesis or breakdown, ten of which are conserved through the majority of clades of the B. cereus group, including Bacillus anthracis. Several of the genes were shown to affect biofilm formation, motility, enterotoxin synthesis and/or sporulation. Among these, cdgF appeared to encode a master diguanylate cyclase essential for biofilm formation in an oxygenated environment. Only two cdg genes (cdgA, cdgJ) had orthologs in B. subtilis, highlighting differences in c-di-GMP signalling between B. subtilis and B. cereus group bacteria. PMID:27116468

  18. Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems

    PubMed Central

    Ezeuko, C C; Sen, A; Gates, I D

    2013-01-01

    Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non-trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth-limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non-persister, or non-viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes ‘innate’ and ‘biocide-induced’ factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm-induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm-forming cells at desired sites. PMID:23164434

  19. Bioinspired, dynamic, structured surfaces for biofilm prevention

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  20. Shifts in microbial community structure and function in light- and dark-grown biofilms driven by warming.

    PubMed

    Romaní, Anna M; Borrego, Carles M; Díaz-Villanueva, Verónica; Freixa, Anna; Gich, Frederic; Ylla, Irene

    2014-08-01

    Biofilms are dynamic players in biogeochemical cycling in running waters and are subjected to environmental stressors like those provoked by climate change. We investigated whether a 2°C increase in flowing water would affect prokaryotic community composition and heterotrophic metabolic activities of biofilms grown under light or dark conditions. Neither light nor temperature treatments were relevant for selecting a specific bacterial community at initial phases (7-day-old biofilms), but both variables affected the composition and function of mature biofilms (28-day-old). In dark-grown biofilms, changes in the prokaryotic community composition due to warming were mainly related to rotifer grazing, but no significant changes were observed in functional fingerprints. In light-grown biofilms, warming also affected protozoan densities, but its effect on prokaryotic density and composition was less evident. In contrast, heterotrophic metabolic activities in light-grown biofilms under warming showed a decrease in the functional diversity towards a specialized use of several carbohydrates. Results suggest that prokaryotes are functionally redundant in dark biofilms but functionally plastic in light biofilms. The more complex and self-serving light-grown biofilm determines a more buffered response to temperature than dark-grown biofilms. Despite the moderate increase in temperature of only 2°C, warming conditions drive significant changes in freshwater biofilms, which responded by finely tuning a complex network of interactions among microbial populations within the biofilm matrix. PMID:24552130

  1. Effect of Fluoride and Chlorhexidine Digluconate Mouthrinses on Plaque Biofilms

    PubMed Central

    Rabe, Per; Twetman, Svante; Kinnby, Bertil; Svensäter, Gunnel; Davies, Julia R

    2015-01-01

    Objective : To develop a model in which to investigate the architecture of plaque biofilms formed on enamel surfaces in vivo and to compare the effects of anti-microbial agents of relevance for caries on biofilm vitality. Materials and Methodology : Enamel discs mounted on healing abutments in the pre-molar region were worn by three subjects for 7 days. Control discs were removed before subjects rinsed with 0.1% chlorhexidine digluconate (CHX) or 0.2% sodium fluoride (NaF) for 1 minute. Biofilms were stained with Baclight Live/Dead and z-stacks of images created using confocal scanning laser micoscopy. The levels of vital and dead/damaged bacteria in the biofilms, assessed as the proportion of green and red pixels respectively, were analysed using ImageTrak® software. Results : The subjects showed individual differences in biofilm architecture. The thickness of the biofilms varied from 28-96µm although cell density was always the greatest in the middle layers. In control biofilms, the overall levels of vitality were high (71-98%) especially in the area closest to the enamel interface. Rinsing with either CHX or NaF caused a similar reduction in overall vitality. CHX exerted an effect throughout the biofilm, particularly on the surface of cell clusters whereas NaF caused cell damage/death mainly in the middle to lower biofilm layers. Conclusion : We describe a model that allows the formation of mature, undisturbed oral biofilms on human enamel surfaces in vivo and show that CHX and NaF have a similar effect on overall vitality but differ in their sites of action. PMID:25870718

  2. Host Responses to Biofilm.

    PubMed

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand. PMID:27571696

  3. [Biofilms and public health].

    PubMed

    Choisy, Claude

    2011-01-01

    Micro-organisms do not always exist in planctonic forms (single cells or small groups). To survive, especially in limiting media, they may adhere to inert or living surfaces. This enables them to multiply within a community protected by an extracellular matrix, thus forming a biofilm which protects them from antimicrobials. Biofilms have many potential consequences for public health. Some are positive, such as the commensal biofilms that protect against pathogenic bacteria, while environmental biofilms may be a source of outbreaks of respiratory or gastrointestinal diseases or infections associated with implanted medical devices. Respiratory tract infection can be caused by aerosols of fragmented biofilms growing in warm humid conditions (air cooling towers, hot springs, showers, etc.). Digestive tract infection can arise from biofilms formed during food manufacturing or packaging processes. Colonized implanted medical devices can lead to sepsis. This article examines the role of central venous catheters, taking into account the surgical site. In vivo studies show that the source of catheter infection may be exogenous or endogenous, while in vitro studies of biofilms show that ablation of the device is the best solution. Prevention is difficult, as biofilm formation is multifactorial. Physical and biological knowledge of biofilms may help to limit their formation and growth. PMID:22375373

  4. New insights on molecular regulation of biofilm formation in plant-associated bacteria.

    PubMed

    Castiblanco, Luisa F; Sundin, George W

    2016-04-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior. PMID:26377849

  5. Lifestyle and cancer risk.

    PubMed

    Weiderpass, Elisabete

    2010-11-01

    The main behavioural and environmental risk factors for cancer mortality in the world are related to diet and physical inactivity, use of addictive substances, sexual and reproductive health, exposure to air pollution and use of contaminated needles. The population attributable fraction for all cancer sites worldwide considering the joint effect of these factors is about 35% (34 % for low-and middle-income countries and 37% for high-income countries). Seventy-one percent(71%) of lung cancer deaths are caused by tobacco use (lung cancer is the leading cause of cancer death globally). The combined effects of tobacco use, low fruit and vegetable intake, urban air pollution, and indoor smoke from household use of solid fuels cause 76% of lung cancer deaths. Exposure to these behavioural and environmental factors is preventable; modifications in lifestyle could have a large impact in reducing the cancer burden worldwide (WHO, 2009). The evidence of association between lifestyle factors and cancer, as well as the main international recommendations for prevention are briefly reviewed and commented upon here. PMID:21139406

  6. Nickel Promotes Biofilm Formation by Escherichia coli K-12 Strains That Produce Curli▿

    PubMed Central

    Perrin, Claire; Briandet, Romain; Jubelin, Gregory; Lejeune, Philippe; Mandrand-Berthelot, Marie-Andrée; Rodrigue, Agnès; Dorel, Corinne

    2009-01-01

    The survival of bacteria exposed to toxic compounds is a multifactorial phenomenon, involving well-known molecular mechanisms of resistance but also less-well-understood mechanisms of tolerance that need to be clarified. In particular, the contribution of biofilm formation to survival in the presence of toxic compounds, such as nickel, was investigated in this study. We found that a subinhibitory concentration of nickel leads Escherichia coli bacteria to change their lifestyle, developing biofilm structures rather than growing as free-floating cells. Interestingly, whereas nickel and magnesium both alter the global cell surface charge, only nickel promotes biofilm formation in our system. Genetic evidence indicates that biofilm formation induced by nickel is mediated by the transcriptional induction of the adhesive curli-encoding genes. Biofilm formation induced by nickel does not rely on efflux mechanisms using the RcnA pump, as these require a higher concentration of nickel to be activated. Our results demonstrate that the nickel-induced biofilm formation in E. coli is an adaptational process, occurring through a transcriptional effect on genes coding for adherence structures. The biofilm lifestyle is obviously a selective advantage in the presence of nickel, but the means by which it improves bacterial survival needs to be investigated. PMID:19168650

  7. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA) Alters In Situ Oral Biofilms

    PubMed Central

    Al-Ahmad, A.; Bucher, M.; Anderson, A. C.; Tennert, C.; Hellwig, E.; Wittmer, A.; Vach, K.; Karygianni, L.

    2015-01-01

    Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT) in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA) has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm-2), toluidine blue (TB) and chlorine e6 (Ce6) for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU) of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB) and 4 (Ce6) in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis. PMID:26162100

  8. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA) Alters In Situ Oral Biofilms.

    PubMed

    Al-Ahmad, A; Bucher, M; Anderson, A C; Tennert, C; Hellwig, E; Wittmer, A; Vach, K; Karygianni, L

    2015-01-01

    Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT) in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA) has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm(-2)), toluidine blue (TB) and chlorine e6 (Ce6) for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU) of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB) and 4 (Ce6) in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis. PMID:26162100

  9. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms.

    PubMed

    Costa-Orlandi, C B; Sardi, J C O; Santos, C T; Fusco-Almeida, A M; Mendes-Giannini, M J S

    2014-01-01

    Dermatophytes are fungi responsible for a disease known as dermatophytosis. Biofilms are sessile microbial communities surrounded by extracellular polymeric substances (EPS) with increased resistance to antimicrobial agents and host defenses. This paper describes, for the first time, the characteristics of Trichophyton rubrum and T. mentagrophytes biofilms. Biofilm formation was analyzed by light microscopy, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) as well as by staining with crystal violet and safranin. Metabolic activity was determined using the XTT reduction assay. Both species were able to form mature biofilms in 72 h. T. rubrum biofilm produced more biomass and EPS and was denser than T. mentagrophytes biofilm. The SEM results demonstrated a coordinated network of hyphae in all directions, embedded within EPS in some areas. Research and characterization of biofilms formed by dermatophytes may contribute to the search of new drugs for the treatment of these mycoses and might inform future revisions with respect to the dose and duration of treatment of currently available antifungals. PMID:24856309

  10. Effect of Lactobacillus species on Streptococcus mutans biofilm formation.

    PubMed

    Ahmed, Ayaz; Dachang, Wu; Lei, Zhou; Jianjun, Liu; Juanjuan, Qiu; Yi, Xin

    2014-09-01

    Streptococcus mutans is the primary pathogen responsible for initiating dental caries and decay. The presence of sucrose, stimulates S. mutans to produce insoluble glucans to form oral biofilm also known as dental plaque to initiate caries lesion. The GtfB and LuxS genes of S. mutans are responsible for formation and maturation of biofilm. Lactobacillus species as probiotic can reduces the count of S. mutans. In this study effect of different Lactobacillus species against the formation of S. mutans biofilm was observed. Growing biofilm in the presence of sucrose was detected using 96 well microtiter plate crystal violet assay and biofilm formation by S. mutans in the presence of Lactobacillus was detected. Gene expression of biofilm forming genes (GtfB and LuxS) was quantified through Real-time PCR. All strains of Lactobacillus potently reduced the formation of S. mutans biofilm whereas Lactobacillus acidophilus reduced the genetic expression by 60-80%. Therefore, probiotic Lactobacillus species can be used as an alternative instead of antibiotics to decrease the chance of dental caries by reducing the count of S. mutans and their gene expression to maintain good oral health. PMID:25176247

  11. Market maturity

    SciTech Connect

    Meade, B.; Bowden, S.; Ellis, M

    1995-02-01

    The power sector in the Philipines provides one of the most mature independent power markets in Asia. Over the past five years, National Power Corp. (NPC), the government owned utility, has actively invited the power sector into power generation. Distribution has remained in the hands of private and rural cooperative utilities. Private utilities have been operating as full requirements customers of NPC while the growth in capacity additions by independent power producers (IPPs) has outpaced NPC`s for the second year in a row. With a recovering economy and regulatory reform proceeding, the outlook for independent power remains strong through the end of the decade. The Philipine Congress is now reviewing draft legislation that will decentralize NPC and begin the process of privatization and market-based reforms throughout the country`s power sector.

  12. Mechanical properties of the superficial biofilm layer determine the architecture of biofilms.

    PubMed

    Kundukad, Binu; Seviour, Thomas; Liang, Yang; Rice, Scott A; Kjelleberg, Staffan; Doyle, Patrick S

    2016-06-29

    Cells in biofilms sense and interact with their environment through the extracellular matrix. The physicochemical properties of the matrix, particularly at the biofilm-environment interface, determine how cells respond to changing conditions. In this study we describe the application of atomic force microscopy and confocal imaging to probe in situ the mechanical properties of these interfacial regions and to elucidate how key matrix components can contribute to the physical sensing by the cells. We describe how the Young's modulus of microcolonies differs according to the size and morphology of microcolonies, as well as the flow rate. The Young's modulus increased as a function of microcolony diameter, which was correlated with the production of the polysaccharide Psl at later stages of maturation for hemispherical or mushroom shaped microcolonies. The Young's modulus of the periphery of the biofilm colony was however independent of the hydrodynamic shear. The morphology of the microcolonies also influenced interfacial or peripheral stiffness. Microcolonies with a diffuse morphology had a lower Young's modulus than isolated, circular ones and this phenomenon was due to a deficiency of Psl. In this way, changes in the specific polysaccharide components imbue the biofilm with distinct physical properties that may modulate the way in which bacteria perceive or respond to their environment. Further, the physical properties of the polysaccharides are closely linked to the specific architectures formed by the developing biofilm. PMID:27273453

  13. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.

    PubMed

    Dreszer, C; Wexler, A D; Drusová, S; Overdijk, T; Zwijnenburg, A; Flemming, H-C; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    Biofouling causes performance loss in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane operation for process and drinking water production. The development of biofilm formation, structure and detachment was studied in-situ, non-destructively with Optical Coherence Tomography (OCT) in direct relation with the hydraulic biofilm resistance and membrane performance parameters: transmembrane pressure drop (TMP) and feed-channel pressure drop (FCP). The objective was to evaluate the suitability of OCT for biofouling studies, applying a membrane biofouling test cell operated at constant crossflow velocity (0.1 m s(-1)) and permeate flux (20 L m(-2)h(-1)). In time, the biofilm thickness on the membrane increased continuously causing a decline in membrane performance. Local biofilm detachment was observed at the biofilm-membrane interface. A mature biofilm was subjected to permeate flux variation (20 to 60 to 20 L m(-2)h(-1)). An increase in permeate flux caused a decrease in biofilm thickness and an increase in biofilm resistance, indicating biofilm compaction. Restoring the original permeate flux did not completely restore the original biofilm parameters: After elevated flux operation the biofilm thickness was reduced to 75% and the hydraulic resistance increased to 116% of the original values. Therefore, after a temporarily permeate flux increase the impact of the biofilm on membrane performance was stronger. OCT imaging of the biofilm with increased permeate flux revealed that the biofilm became compacted, lost internal voids, and became more dense. Therefore, membrane performance losses were not only related to biofilm thickness but also to the internal biofilm structure, e.g. caused by changes in pressure. Optical Coherence Tomography proved to be a suitable tool for quantitative in-situ biofilm thickness and morphology studies which can be carried out non-destructively and in real-time in transparent membrane biofouling monitors. PMID:25282092

  14. Synergistic activity between an antimicrobial polyacrylamide and daptomycin versus Staphylococcus aureus biofilm.

    PubMed

    Siala, Wafi; Van Bambeke, Françoise; Taresco, Vincenzo; Piozzi, Antonella; Francolini, Iolanda

    2016-07-01

    Antibiotic resistance of bacteria growing in biofilms compared to their planktonic counterparts enhances the difficulty to eradicate biofilm-associated infections. In the last decade, combination antibiotic therapy has emerged as an attractive strategy for treating biofilm infections, even if in most of tolerant biofilms the optimal combinations are still unknown. In this study, an antimicrobial cationic polyacrylamide was used in combination with daptomycin or moxifloxacin against mature biofilms of Staphylococcus aureus clinical isolates to examine a possible improvement of the antibiofilm activity of the two antibiotics. The polymer did not have an effect on moxifloxacin but significantly increased the antibiofilm efficacy of daptomycin. These findings are presumably related to the different mechanism of action of the two drugs. In summary, our data highlighted the ability of polycations to increase daptomycin antibiofilm activity providing a potential strategy to eradicate biofilms in industrial or medical settings. PMID:27154750

  15. Bacterial Adhesion: Seen Any Good Biofilms Lately?

    PubMed Central

    Dunne, W. Michael

    2002-01-01

    The process of surface adhesion and biofilm development is a survival strategy employed by virtually all bacteria and refined over millions of years. This process is designed to anchor microorganisms in a nutritionally advantageous environment and to permit their escape to greener pastures when essential growth factors have been exhausted. Bacterial attachment to a surface can be divided into several distinct phases, including primary and reversible adhesion, secondary and irreversible adhesion, and biofilm formation. Each of these phases is ultimately controlled by the expression of one or more gene products. Ultrastructurally, the mature bacterial biofilm resembles an underwater coral reef containing pyramidal or mushroom-shaped microcolonies of organisms embedded within an extracellular glycocalyx, with channels and cavities to allow the exchange of nutrients and waste. The biofilm protects its inhabitants from predators, dehydration, biocides, and other environmental extremes while regulating population growth and diversity through primitive cell signals. From a physiological standpoint, surface-bound bacteria behave quite differently from their planktonic counterparts. Recognizing that bacteria naturally occur as surface-bound and often polymicrobic communities, the practice of performing antimicrobial susceptibility tests using pure cultures and in a planktonic growth mode should be questioned. That this model does not reflect conditions found in nature might help explain the difficulties encountered in the management and treatment of biomedical implant infections. PMID:11932228

  16. Chronic Wound Biofilm Model

    PubMed Central

    Ganesh, Kasturi; Sinha, Mithun; Mathew-Steiner, Shomita S.; Das, Amitava; Roy, Sashwati; Sen, Chandan K.

    2015-01-01

    Significance: Multispecies microbial biofilms may contribute to wound chronicity by derailing the inherent reparative process of the host tissue. In the biofilm form, bacteria are encased within an extracellular polymeric substance and become recalcitrant to antimicrobials and host defenses. For biofilms of relevance to human health, there are two primary contributing factors: the microbial species involved and host response which, in turn, shapes microbial processes over time. This progressive interaction between microbial species and the host is an iterative process that helps evolve an acute-phase infection to a pathogenic chronic biofilm. Thus, long-term wound infection studies are needed to understand the longitudinal cascade of events that culminate into a pathogenic wound biofilm. Recent Advances: Our laboratory has recently published the first long-term (2 month) study of polymicrobial wound biofilm infection in a translationally valuable porcine wound model. Critical Issues: It is widely recognized that the porcine system represents the most translationally valuable approach to experimentally model human skin wounds. A meaningful experimental biofilm model must be in vivo, include mixed species of clinically relevant microbes, and be studied longitudinally long term. Cross-validation of such experimental findings with findings from biofilm-infected patient wounds is critically important. Future Directions: Additional value may be added to the experimental system described above by studying pigs with underlying health complications (e.g., metabolic syndrome), as is typically seen in patient populations. PMID:26155380

  17. Teaching Aerobic Lifestyles: New Perspectives.

    ERIC Educational Resources Information Center

    Goodrick, G. Ken; Iammarino, Nicholas K.

    1982-01-01

    New approaches to teaching aerobic life-styles in secondary schools are suggested, focusing on three components: (1) the psychological benefits of aerobic activity; (2) alternative aerobic programs at nonschool locations; and (3) the development of an aerobics curriculum to help maintain an active life-style after graduation. (JN)

  18. The Advent of Lifestyle Medicine

    PubMed Central

    Yeh, Byung-Il; Kong, In Deok

    2013-01-01

    The fact that lifestyle is closely associated with the pathogenesis of chronic diseases has been known for more than three decades. Smoking may cause lung cancer, and a lifestyle of fast food consumption and little exercise can cause metabolic diseases. The importance of lifestyle changes in terms of a new medical paradigm to solve chronic diseases is becoming popular in modern times. Lifestyle medicine is a medicine based on personal lifestyle. To apply it to patients and ordinary people, physicians have to cooperate with experts in many fields such as nutrition, exercise, psychology, etc. In addition, patients must be partners in the treatment rather than passive recipients. The advent of lifestyle medicine has been caused by changes in disease patterns. In the past, acute diseases like infectious disease were prevalent; however, in the late 20th century, chronic diseases such as metabolic diseases, cancers, neurological disease, etc. increased in occurrence. As lifestyle is closely related with these diseases, the attitudes toward medicine need to be changed. Recently, the concept of “Lifestyle Medicine” was proposed, and we predict it will be an important field in future medicine. PMID:26064831

  19. Building Wellness Lifestyles: Counselor's Manual.

    ERIC Educational Resources Information Center

    Koss, Larry; Ketcham, Michael

    A camp program is described which reflects the Young Men's Christian Association's traditional commitment to the development of the whole person, introducing the development of a "wellness" lifestyle. A wellness lifestyle is described as one that involves living fully and abundantly while recognizing and assuming responsibility for one's own…

  20. Osteocompatibility of Biofilm Inhibitors

    PubMed Central

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), farnesol, cis-2-decenoic acid (C2DA), and desformyl flustrabromine (dFBr). In this preliminary study, compatibility of these anti-biofilm agents with differentiating osteoblasts was examined over a 21 days period at levels above and below concentrations active against bacterial biofilm. Anti-biofilm compounds listed above were serially diluted in osteogenic media and added to cultures of MC3T3 cells. Cell viability and cytotoxicity, after exposure to each anti-biofilm agent, were measured using a DNA assay. Differentiation characteristics of osteoblasts were determined qualitatively by observing staining of mineral deposits and quantitatively with an alkaline phosphatase assay. D-AA, LS, and C2DA were all biocompatible within the reported biofilm inhibitory concentration ranges and supported osteoblast differentiation. Farnesol and dFBr induced cytotoxic responses within the reported biofilm inhibitory concentration range and low doses of dFBr were found to inhibit osteoblast differentiation. At high concentrations, such as those that may be present after local delivery, many of these biofilm inhibitors can have effects on cellular viability and osteoblast function. Concentrations at which negative effects on osteoblasts occur should serve as upper limits for delivery to orthopaedic trauma sites and guide development of these potential therapeutics for orthopaedics. PMID:25505496

  1. Patterns of virulence gene expression differ between biofilm and tissue communities of Streptococcus pyogenes.

    PubMed

    Cho, Kyu Hong; Caparon, Michael G

    2005-09-01

    The ability of Streptococcus pyogenes to form biofilm-like bacterial communities during infection of soft tissue has suggested that the capacity to produce biofilm may be important for pathogenesis. To examine this relationship, a panel of mutants was evaluated for their ability to form biofilm on abiotic surfaces in several assays. Several established virulence factors were crucial for biofilm formation, including the M protein, required for initial cell-surface interactions, and the hyaluronic acid capsule, required for subsequent maturation into a three-dimensional structure. Mutants lacking the transcription regulators Mga and CovR (CsrR) also failed to form biofilm. Comparison of transcriptional profiles revealed differential regulation of approximately 25% of the genome upon adaptation to biofilm. During infection of zebrafish, several virulence factors (notably cysteine protease and streptokinase) were regulated in a biofilm-like manner. However, the overall profile of virulence factor expression indicated that tissue communities have a pattern of gene expression different from biofilm. Taken together, these data show that while biofilm and tissue communities have many characteristics in common, that biofilm reproduces only a subset of the myriad cues used by tissue communities for regulation of virulence. PMID:16135223

  2. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution.

    PubMed

    Drescher, Knut; Dunkel, Jörn; Nadell, Carey D; van Teeffelen, Sven; Grnja, Ivan; Wingreen, Ned S; Stone, Howard A; Bassler, Bonnie L

    2016-04-01

    Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development. PMID:26933214

  3. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    PubMed

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli. PMID:27555592

  4. Studying the effect of alginate overproduction on Pseudomonas aeruginosa biofilm by atomic force microscopy.

    PubMed

    Lim, Jeesun; Cui, Yidan; Oh, Yoo Jin; Park, Ja Ryeong; Jo, William; Cho, You-Hee; Park, Sungsu

    2011-07-01

    Pseudomonas aeruginosa is the most important pathogen in cystic fibrosis patients and forms biofilms in the lung. P. aeruginosa strains isolated from the lungs of the patients have a mucoid phenotype overproducing alginate. The phenotype forms highly structured biofilms which are more resistant to antibiotics than biofilms formed by its nonmucoid phenotype. Conversion to the alginate-overproducing phenotype occurs through a mutation in rpoN gene in the strains. The biofilms formed by the alginate-overproducing phenotype are highly sticky, but their stickiness has not been measured. Herein, the stickiness of biofilms formed by the rpoN mutant was measured by atomic force microscopy (AFM). Confocal laser scanning microscopy showed that the biofilms formed by the slowly-growing rpoN mutant were more structured than those formed by the wild-type strain. AFM analysis indicated that the biofilms formed by the rpoN mutant were stickier than those formed by the wild type strain during the attachment and establishment stages, but the difference in stickiness was greatly reduced during the maturation stage possibly due to the cytosolic contents released from dead cells in the biofilms formed by the wild type. These results suggest that the alginate overproduction greatly affects the physical properties (topography and stickiness) of P. aeruginosa biofilms as well as the physiological properties (cell death and growth) of the bacterial cells inside the biofilms. PMID:22121590

  5. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K

    PubMed Central

    Ali Mohammed, Marwan Mansoor; Nerland, Audun H.; Al-Haroni, Mohammed; Bakken, Vidar

    2013-01-01

    Background Biofilms are organized communities of microorganisms embedded in a self-produced extracellular polymeric matrix (EPM), often with great phylogenetic variety. Bacteria in the subgingival biofilm are key factors that cause periodontal diseases; among these are the Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis. The objectives of this study were to characterize the major components of the EPM and to test the effect of deoxyribonuclease I (DNase I) and proteinase K. Methods F. nucleatum and P. gingivalis bacterial cells were grown in dynamic and static biofilm models. The effects of DNase I and proteinase K enzymes on the major components of the EPM were tested during biofilm formation and on mature biofilm. Confocal laser scanning microscopy was used in observing biofilm structure. Results Proteins and carbohydrates were the major components of the biofilm matrix, and extracellular DNA (eDNA) was also present. DNase I and proteinase K enzymes had little effect on biofilms in the conditions used. In the flow cell, F. nucleatum was able to grow in partially oxygenated conditions while P. gingivalis failed to form biofilm alone in similar conditions. F. nucleatum supported the growth of P. gingivalis when they were grown together as dual species biofilm. Conclusion DNase I and proteinase K had little effect on the biofilm matrix in the conditions used. F. nucleatum formed biofilm easily and supported the growth of P. gingivalis, which preferred anaerobic conditions. PMID:23372876

  6. The effects of different seeding ratios on nitrification performance and biofilm formation in marine recirculating aquaculture system biofilter.

    PubMed

    Zhu, Songming; Shen, Jiazheng; Ruan, Yunjie; Guo, Xishan; Ye, Zhangying; Deng, Yale; Shi, Mingming

    2016-07-01

    Rapid start-up of biofilter is essential for intensive marine recirculating aquaculture system (RAS) production. This study evaluated the nitrifying biofilm formation using mature biofilm as an inoculum to accelerate the process in RAS practice. The effects of inoculation ratios (0-15 %) on the reactor performance and biofilm structure were investigated. Complete nitrification was achieved rapidly in reactors with inoculated mature biofilm (even in 32 days when 15 % seeding ratio was applied). However, the growth of target biofilm on blank carrier was affected by the mature biofilm inoculated through substrate competition. The analysis of extracellular polymeric substance (EPS) and nitrification rates confirmed the divergence of biofilm cultivation among reactors. Besides, three N-acyl-homoserine lactones (AHLs) were found in the process, which might regulate the activities of biofilm. Multivariate analysis based on non-metric multidimensional scaling (nMDS) also indicated the great roles of AHLs and substrate supply which might fundamentally determine varied cultivation performance on target biofilm. PMID:27068911

  7. Electrical spiking in bacterial biofilms

    PubMed Central

    Masi, Elisa; Ciszak, Marzena; Santopolo, Luisa; Frascella, Arcangela; Giovannetti, Luciana; Marchi, Emmanuela; Viti, Carlo; Mancuso, Stefano

    2015-01-01

    In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial growth exhibited a one-peak maximum with a long tail, corresponding to the highest biofilm development. This peak was not observed for the non-biofilm-forming strain, demonstrating that the intensity of the electrical activity was not linearly related to the bacterial density, but was instead correlated with biofilm formation. Results obtained indicate that the analysis of the spatio-temporal electrical activity of bacteria during biofilm formation can open a new frontier in the study of the emergence of collective microbial behaviour. PMID:25392401

  8. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant.

    PubMed

    Liu, Nancy T; Nou, Xiangwu; Bauchan, Gary R; Murphy, Charles; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2015-01-01

    Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms. PMID:25581186

  9. Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms.

    PubMed

    Paule, A; Roubeix, V; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L

    2013-11-15

    Ecotoxicological experiments have been performed in laboratory-scale microcosms to investigate the sensitivity of phototrophic biofilm communities to the alachlor herbicide, in relation to the stages of phototrophic biofilm maturation (age of the phototrophic biofilms) and physical structure (intact biofilm versus recolonization). The phototrophic biofilms were initially cultivated on artificial supports in a prototype rotating annular bioreactor (RAB) with Taylor-Couette type flow under constant operating conditions. Biofilms were collected after 1.6 and 4.4 weeks of culture providing biofilms with different maturation levels, and then exposed to nominal initial alachlor concentration of 10 μg L(-1) in either intact or recolonized biofilms for 15 days in microcosms (mean time-weighted average concentration - TWAC of 5.52 ± 0.74 μg L(-1)). At the end of the exposure period, alachlor effects were monitored by a combination of biomass descriptors (ash-free dry mass - AFDM, chlorophyll a), structural molecular fingerprinting (T-RFLP), carbon utilization spectra (Biolog) and diatom species composition. We found significant effects that in terms of AFDM, alachlor inhibited growth of the intact phototrophic biofilms. No effect of alachlor was observed on diatom composition or functional and structural properties of the bacterial community regardless of whether they were intact or recolonized. The intact three-dimensional structure of the biofilm did not appear to confer protection from the effects of alachlor. Bacterial community structure and biomass level of 4.4 weeks - intact phototrophic biofilms were significantly influenced by the biofilm maturation processes rather than alachlor exposure. The diatom communities which were largely composed of mobile and colonizer life-form populations were not affected by alachlor. This study showed that the effect of alachlor (at initial concentration of 10 μg L(-1) or mean TWAC of 5.52 ± 0.74 μg L(-1)) is mainly limited to

  10. Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history

    SciTech Connect

    Ivorra, N.; Bremer, S.; Guasch, H.; Kraak, M.H.S.; Admiraal, W.

    2000-05-01

    Microbenthic biofilms are consortia of autotrophic and heterotrophic organisms imbedded in a matrix of polymers and particles. As biofilms develop, internal cycling of materials might predominate, and dependence on external conditions is reduced. The mature biofilm structure may act as a barrier against deleterious effects of metals on microphytobenthos. To validate this hypothesis, biofilms from two lowland streams near the Dutch-Belgian border, the extremely Zn- and Cd-polluted Eindergatloop and the relatively clean Keersop in the River Dommel subsystem, were collected after 2 weeks (young) and 6 weeks (old) of colonization. Young and old biofilms from both sites were subsequently exposed in the laboratory to Zn and Cd concentrations mimicking that of the heavily polluted stream for a period of 2 weeks. Diatom composition, chlorophyll a, total carbohydrates. Zn and Cd concentrations, minimal chlorophyll fluorescence, and photon yield demonstrated more pronounced metal effects on the young than on the old reference biofilms. In contrast, colonization time had less effect on the overall response of the extremely polluted biofilms. Therefore, biofilms in an early colonization stage are more vulnerable than mature biofilms to metal exposure, and exposure history determines the response of biofilms to metals.

  11. Role of capsular polysaccharide (CPS) in biofilm formation and regulation of CPS production by quorum-sensing in Vibrio vulnificus.

    PubMed

    Lee, Kyung-Jo; Kim, Jeong-A; Hwang, Won; Park, Soon-Jung; Lee, Kyu-Ho

    2013-11-01

    Extracellular polysaccharides, such as lipopolysaccharide and loosely associated exopolysaccharides, are essential for Vibrio vulnificus to form biofilms. The role of another major component of the V. vulnificus extracellular matrix, capsular polysaccharide (CPS), which contributes to colony opacity, has been characterized in biofilm formation. A CPS-deficient mutant, whose wbpP gene encoding UDP-GlcNAc C4-epimerase was knocked out, formed significantly more biofilm than wild type, due to increased hydrophobicity of the cell surface, adherence to abiotic surfaces and cell aggregation. To elucidate the direct effect of CPS on biofilm structure, extracted CPS and a CPS-degrading enzyme, α-N-acetylgalactosaminidase, were added in biofilm assays, resulting in reduction and increment of biofilm sizes respectively. Therefore, it is suggested that CPS play a critical role in determining biofilm size by restricting continual growth of mature biofilms. Since CPS is required after maturation, CPS biosynthesis should be controlled in a cell density-dependent manner, e.g. by quorum-sensing (QS) regulation. Analysing transcription of the CPS gene cluster revealed that it was activated by SmcR, a QS master regulator, via binding to the upstream region of the cluster. Therefore, CPS was produced when biofilm cell density reached high enough to turn on QS regulation and limited biofilms to appropriate sizes. PMID:24102883

  12. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus.

    PubMed

    Park, Jin Hwan; Jo, Youmi; Jang, Song Yee; Kwon, Haenaem; Irie, Yasuhiko; Parsek, Matthew R; Kim, Myung Hee; Choi, Sang Ho

    2015-09-01

    A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3',5'-cyclic diguanylic acid (c-di-GMP) and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose. PMID:26406498

  13. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus

    PubMed Central

    Park, Jin Hwan; Jo, Youmi; Jang, Song Yee; Kwon, Haenaem; Irie, Yasuhiko; Parsek, Matthew R.; Kim, Myung Hee; Choi, Sang Ho

    2015-01-01

    A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3′,5′-cyclic diguanylic acid (c-di-GMP) and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose. PMID:26406498

  14. Effects of green tea compound epigallocatechin-3-gallate against Stenotrophomonas maltophilia infection and biofilm.

    PubMed

    Vidigal, Pedrina G; Müsken, Mathias; Becker, Katrin A; Häussler, Susanne; Wingender, Jost; Steinmann, Eike; Kehrmann, Jan; Gulbins, Erich; Buer, Jan; Rath, Peter Michael; Steinmann, Jörg

    2014-01-01

    We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg), a green tea component, against Stenotrophomonas maltophilia (Sm) isolates from cystic fibrosis (CF) patients. In vitro effects of EGCg and the antibiotic colistin (COL) on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM). Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF. PMID:24690894

  15. Effects of Green Tea Compound Epigallocatechin-3-Gallate against Stenotrophomonas maltophilia Infection and Biofilm

    PubMed Central

    Vidigal, Pedrina G.; Müsken, Mathias; Becker, Katrin A.; Häussler, Susanne; Wingender, Jost; Steinmann, Eike; Kehrmann, Jan; Gulbins, Erich; Buer, Jan; Rath, Peter Michael; Steinmann, Jörg

    2014-01-01

    We investigated the in vitro and in vivo activities of epigallocatechin-3-gallate (EGCg), a green tea component, against Stenotrophomonas maltophilia (Sm) isolates from cystic fibrosis (CF) patients. In vitro effects of EGCg and the antibiotic colistin (COL) on growth inhibition, survival, and also against young and mature biofilms of S. maltophilia were determined. Qualitative and quantitative changes on the biofilms were assessed by confocal laser scanning microscopy (CLSM). Further, in vivo effects of nebulized EGCg in C57BL/6 and Cftr mutant mice during acute Sm lung infection were evaluated. Subinhibitory concentrations of EGCg significantly reduced not only biofilm formation, but also the quantity of viable cells in young and mature biofilms. CLSM showed that EGCg-exposed biofilms exhibited either a change in total biofilm biovolume or an increase of the fraction of dead cells contained within the biofilm in a dose depended manner. Sm infected wild-type and Cftr mutant mice treated with 1,024 mg/L EGCg by inhalation exhibited significantly lower bacterial counts than those undergoing no treatment or treated with COL. EGCg displayed promising inhibitory and anti-biofilm properties against CF Sm isolates in vitro and significantly reduced Sm bacterial counts in an acute infection model with wild type and CF mice. This natural compound may represent a novel therapeutic agent against Sm infection in CF. PMID:24690894

  16. Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms

    PubMed Central

    Manner, Suvi; Skogman, Malena; Goeres, Darla; Vuorela, Pia; Fallarero, Adyary

    2013-01-01

    When single-cell (or suspended) bacteria switch into the biofilm lifestyle, they become less susceptible to antimicrobials, imposing the need for anti-biofilms research. Flavonoids are among the most extensively studied natural compounds with an unprecedented amount of bioactivity claims. Most studies focus on the antibacterial effects against suspended cells; fewer reports have researched their anti-biofilm properties. Here, a high throughput phenotypic platform was utilized to screen for the inhibitory activity of 500 flavonoids, including natural and synthetic derivatives, against Staphylococcus aureus biofilms. Since discrepancies among results from earlier antibacterial studies on flavonoids had been noted, the current study aimed to minimize sources of variations. After the first screen, flavonoids were classified as inactive (443), moderately active (47) or highly active (10). Further, exclusion criteria combining bioactivity and selectivity identified two synthetic flavans as the most promising. The body of data reported here serves three main purposes. First, it offers an improved methodological workflow for anti-biofilm screens of chemical libraries taking into account the (many times ignored) connections between anti-biofilm and antibacterial properties. This is particularly relevant for the study of flavonoids and other natural products. Second, it provides a large and freely available anti-biofilm bioactivity dataset that expands the knowledge on flavonoids and paves the way for future structure-activity relationship studies and structural optimizations. Finally, it identifies two new flavans that can successfully act on biofilms, as well as on suspended bacteria and represent more feasible antibacterial candidates. PMID:24071942

  17. Personalized Lifestyle Medicine: Relevance for Nutrition and Lifestyle Recommendations

    PubMed Central

    Minich, Deanna M.; Bland, Jeffrey S.

    2013-01-01

    Public health recommendations for lifestyle modification, including diet and physical activity, have been widely disseminated for the prevention and treatment of disease. These guidelines are intended for the overall population without significant consideration for the individual with respect to one's genes and environment. Personalized lifestyle medicine is a newly developed term that refers to an approach to medicine in which an individual's health metrics from point-of-care diagnostics are used to develop lifestyle medicine-oriented therapeutic strategies for improving individual health outcomes in managing chronic disease. Examples of the application of personalized lifestyle medicine to patient care include the identification of genetic variants through laboratory tests and/or functional biomarkers for the purpose of designing patient-specific prescriptions for diet, exercise, stress, and environment. Personalized lifestyle medicine can provide solutions to chronic health problems by harnessing innovative and evolving technologies based on recent discoveries in genomics, epigenetics, systems biology, life and behavioral sciences, and diagnostics and clinical medicine. A comprehensive, personalized approach to medicine is required to promote the safety of therapeutics and reduce the cost of chronic disease. Personalized lifestyle medicine may provide a novel means of addressing a patient's health by empowering them with information they need to regain control of their health. PMID:23878520

  18. Microbiota diversity and gene expression dynamics in human oral biofilms

    PubMed Central

    2014-01-01

    Background Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied. Results Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries. Conclusions The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial

  19. Application of Dynamic Speckle Techniques in Monitoring Biofilms Drying Process

    NASA Astrophysics Data System (ADS)

    Enes, Adilson M.; Júnior, Roberto A. Braga; Dal Fabbro, Inácio M.; da Silva, Washington A.; Pereira, Joelma

    2008-04-01

    Horticultural crops exhibit losses far greater than grains in Brazil which are associated to inappropriate maturation, mechanical bruising, infestation by microorganisms, wilting, etc. Appropriate packing prevents excessive mass loss associated to transpiration as well as to respiration, by controlling gas exchanging with outside environment. Common packing materials are identified as plastic films, waxes and biofilms. Although research developed with edible films and biopolymers has increased during last years to attend the food industry demands, avoiding environmental problems, little efforts have been reported on biofilm physical properties investigations. These properties, as drying time and biofilm interactions with environment are considered of basic importance. This research work aimed to contribute to development of a methodology to evaluate yucca (Maniot vulgaris) based biofilms drying time supported by a biospeckle technique. Biospeckle is a phenomenon generated by a laser beam scattered on a dynamic active surface, producing a time varying pattern which is proportional to the surface activity level. By capturing and processing the biospeckle image it is possible to attribute a numerical quantity to the surface bioactivity. Materials exhibiting high moisture content will also show high activity, which will support the drying time determination. Tests were set by placing biofilm samples on polyetilen plates and further submitted to laser exposition at four hours interval to capture the pattern images, generating the Intensities Dispersion Modulus. Results indicates that proposed methodology is applicable in determining biofilm drying time as well as vapor losses to environment.

  20. Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters.

    PubMed

    Maisetta, Giuseppantonio; Grassi, Lucia; Di Luca, Mariagrazia; Bombardelli, Silvia; Medici, Chiara; Brancatisano, Franca Lisa; Esin, Semih; Batoni, Giovanna

    2016-08-01

    In search of new antimicrobials with anti-biofilm potential, in the present study activity of the frog-skin derived antimicrobial peptide temporin 1Tb (TB) against Staphylococcus epidermidis biofilms was investigated. A striking ability of TB to kill both forming and mature S. epidermidis biofilms was observed, especially when the peptide was combined with cysteine or EDTA, respectively. Kinetics studies demonstrated that the combination TB/EDTA was active against mature biofilms already after 2-4-h exposure. A double 4-h exposure of biofilms to TB/EDTA further increased the therapeutic potential of the same combination. Of note, TB/EDTA was able to eradicate S. epidermidis biofilms formed in vitro on silicone catheters. At eradicating concentrations, TB/EDTA did not cause hemolysis of human erythrocytes. The results shed light on the anti-biofilm properties of TB and suggest a possible application of the peptide in the lock therapy of catheters infected with S. epidermidis. PMID:27351824

  1. A Combined Pharmacodynamic Quantitative and Qualitative Model Reveals the Potent Activity of Daptomycin and Delafloxacin against Staphylococcus aureus Biofilms

    PubMed Central

    Bauer, Julia; Siala, Wafi; Tulkens, Paul M.

    2013-01-01

    Biofilms are associated with persistence of Staphylococcus aureus infections and therapeutic failures. Our aim was to set up a pharmacodynamic model comparing antibiotic activities against biofilms and examining in parallel their effects on viability and biofilm mass. Biofilms of S. aureus ATCC 25923 (methicillin-sensitive S. aureus [MSSA]) or ATCC 33591 (methicillin-resistant S. aureus [MRSA]) were obtained by culture in 96-well plates for 6 h/24 h. Antibiotic activities were assessed after 24/48 h of exposure to concentrations ranging from 0.5 to 512 times the MIC. Biofilm mass and bacterial viability were quantified using crystal violet and the redox indicator resazurin. Biofilms stained with Live/Dead probes were observed by using confocal microscopy. Concentration-effect curves fitted sigmoidal regressions, with a 50% reduction toward both matrix and viability obtained at sub-MIC or low multiples of MICs against young biofilms for all antibiotics tested. Against mature biofilms, maximal efficacies and potencies were reduced, with none of the antibiotics being able to completely destroy the matrix. Delafloxacin and daptomycin were the most potent, reducing viability by more than 50% at clinically achievable concentrations against both strains, as well as reducing biofilm depth, as observed in confocal microscopy. Rifampin, tigecycline, and moxifloxacin were effective against mature MRSA biofilms, while oxacillin demonstrated activity against MSSA. Fusidic acid, vancomycin, and linezolid were less potent overall. Antibiotic activity depends on biofilm maturity and bacterial strain. The pharmacodynamic model developed allows ranking of antibiotics with respect to efficacy and potency at clinically achievable concentrations and highlights the potential utility of daptomycin and delafloxacin for the treatment of biofilm-related infections. PMID:23571532

  2. "Fitness Freaks": A Healthier Lifestyle?

    ERIC Educational Resources Information Center

    Balding, John

    1989-01-01

    This article examines the extent to which the lifestyles of young people are affected by health and fitness considerations. An analysis of data from 3253 Health Related Behavior Questionnaires, completed by fourth-year secondary school pupils is presented. (IAH)

  3. Liquid Flow in Biofilm Systems

    PubMed Central

    Stoodley, Paul; deBeer, Dirk; Lewandowski, Zbigniew

    1994-01-01

    A model biofilm consisting of Pseudomonas aeruginosa, Pseudomonas fluorescens, and Klebsiella pneumoniae was developed to study the relationships between structural heterogeneity and hydrodynamics. Local fluid velocity in the biofilm system was measured by a noninvasive method of particle image velocimetry, using confocal scanning laser microscopy. Velocity profiles were measured in conduit and porous medium reactors in the presence and absence of biofilm. Liquid flow was observed within biofilm channels; simultaneous imaging of the biofilm allowed the liquid velocity to be related to the physical structure of the biofilm. Images PMID:16349345

  4. Invasibility of resident biofilms by allochthonous communities in bioreactors.

    PubMed

    Bellucci, Micol; Bernet, Nicolas; Harmand, Jérôme; Godon, Jean-Jacques; Milferstedt, Kim

    2015-09-15

    Invasion of non-native species can drastically affect the community composition and diversity of engineered and natural ecosystems, biofilms included. In this study, a molecular community fingerprinting method was used to monitor the putative establishment and colonization of allochthonous consortia in resident multi-species biofilms. To do this, biofilms inoculated with tap water or activated sludge were grown for 10 days in bubble column reactors W1 and W2, and S, respectively, before being exposed to non-native microbial consortia. These consortia consisted of fresh activated sludge suspensions for the biofilms inoculated with tap water (reactors W1 and W2) and of transplanted mature tap water biofilm for the activated sludge biofilm (reactor S). The introduction of virgin, unoccupied coupons into W1 and W2 enabled us to additionally investigate the competition for new resources (space) among the resident biofilm and the allochthonous consortia. CE-SSCP revealed that after the invasion event changes were mostly observed in the abundance of the dominant species in the native biofilms rather than their composition. This suggests that the resident communities within a bioreactor immediately outcompete the allochthonous microbes and shape the microbial community assemblage on both new coupons and already colonized surfaces for the short term. However, with time, latent members of the allochthonous community might grow up affecting the diversity and composition of the original biofilms. PMID:26072021

  5. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    NASA Astrophysics Data System (ADS)

    Birjiniuk, Alona; Billings, Nicole; Nance, Elizabeth; Hanes, Justin; Ribbeck, Katharina; Doyle, Patrick S.

    2014-08-01

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time.

  6. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66.

    PubMed

    You, JianLan; Xue, XiaoLi; Cao, LiXiang; Lu, Xin; Wang, Jian; Zhang, LiXin; Zhou, ShiNing

    2007-10-01

    China remains by far the largest aquaculture producer in the world. However, biofilms formed by pathogenic Vibrio strains pose serious problems to marine aquaculture. To provide a strategy for biofilm prevention, control, and eradication, extracts from 88 marine actinomycetes were screened. Thirty-five inhibited the biofilm formation of Vibrio harveyi, Vibrio vulnificus, and Vibrio anguillarum at a concentration of 2.5% (v/v). Thirty-three of the actinomycete extracts dispersed the mature biofilm. Six extracts inhibited the quorum-sensing system of V. harveyi by attenuating the signal molecules N-acylated homoserine lactones' activity. Strain A66, which was identified as Streptomyces albus, both attenuated the biofilms and inhibited their quorum-sensing system. It is suggested that strain A66 is a promising candidate to be used in future marine aquaculture. PMID:17624525

  7. Synthesis and Evaluation of Ciprofloxacin-Nitroxide Conjugates as Anti-Biofilm Agents.

    PubMed

    Verderosa, Anthony D; Mansour, Sarah C; de la Fuente-Núñez, César; Hancock, Robert E W; Fairfull-Smith, Kathryn E

    2016-01-01

    As bacterial biofilms are often refractory to conventional antimicrobials, the need for alternative and/or novel strategies for the treatment of biofilm related infections has become of paramount importance. Herein, we report the synthesis of novel hybrid molecules comprised of two different hindered nitroxides linked to the piperazinyl secondary amine of ciprofloxacin via a tertiary amine linker achieved utilising reductive amination. The corresponding methoxyamine derivatives were prepared alongside their radical-containing counterparts as controls. Subsequent biological evaluation of the hybrid compounds on preformed P. aeruginosa flow cell biofilms divulged significant dispersal and eradication abilities for ciprofloxacin-nitroxide hybrid compound 10 (up to 95% eradication of mature biofilms at 40 μM). Importantly, these hybrids represent the first dual-action antimicrobial-nitroxide agents, which harness the dispersal properties of the nitroxide moiety to circumvent the well-known resistance of biofilms to treatment with antimicrobial agents. PMID:27355936

  8. Investigations into Monochloramine Biofilm Penetration

    EPA Science Inventory

    Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct b...

  9. Mucosal biofilms of Candida albicans.

    PubMed

    Ganguly, Shantanu; Mitchell, Aaron P

    2011-08-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of C. albicans biofilm formation under diverse conditions, though the most relevant Bcr1 target genes can vary with the biofilm niche. An important determinant of mucosal biofilm formation is the interaction with host defenses. Finally, studies of interactions between bacterial species and C. albicans provide insight into the communication mechanisms that endow polymicrobial biofilms with unique properties. PMID:21741878

  10. Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro.

    PubMed

    Machado Vila, Taissa Vieira; Sousa Quintanilha, Natália; Rozental, Sonia

    2015-11-01

    Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as Fusarium spp., and yeasts, such as Candida spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of Fusarium oxysporum and Candida albicans formed on human nail fragments in vitro. Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For F. oxysporum, miltefosine at 8 μg ml- 1 inhibited biofilm formation by 93%, whilst 256 μg ml- 1 reduced the metabolic activity of pre-formed nail biofilms by 93%. Treatment with miltefosine at 1000 μg ml- 1 inhibited biofilm formation by 89% and reduced the metabolic activity of pre-formed C. albicans biofilms by 99%. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for in vivo efficacy studies, especially in topical formulations for refractory disease treatment. PMID:26404553

  11. Pentacyclic triterpenes combined with ciprofloxacin help to eradicate the biofilm formed in vitro by Escherichia coli

    PubMed Central

    Wojnicz, Dorota; Tichaczek-Goska, Dorota; Kicia, Marta

    2015-01-01

    Background & objectives: Ciprofloxacin is commonly used in clinical practice for the treatment of recurrent urinary tract infections caused by Escherichia coli. However, very often these recurrent infections are due to a failure in a complete eradication of the microorganisms colonizing the urinary tract, especially in catheterized patients. To enhance the bactericidal activity of ciprofloxacin against biofilm-forming uropathogenic E. coli (UPECs), we examined its effect in combination with two pentacyclic triterpenes – asiatic and ursolic acids. Methods: The anti-biofilm activity of ciprofloxacin and pentacyclic triterpenes - asiatic acid (AA) and ursolic acid (UA), as well as their synergistic effect were tested on two types of surfaces - polystyrene microtiter plates and silicone catheters. It was investigated using the time-killing and biofilm assays. Results: Anti-biofilm activity of ciprofloxacin was not observed on microtiter plates or on the catheters. Ciprofloxacin combined with ursolic acid inhibited the biofilm formation on microtitre plates. This mixture, however, did not express such a strong activity against the synthesis of biofilm on the surface of catheters. Ciprofloxacin combined with asiatic acid had very weak inhibiting effect on the synthesis of biofilm mass on microtitre plates as well as on the catheters. Despite this, both mixtures – ciprofloxacin and asiatic acid, as well as ciprofloxacin and ursolic acid, exhibited strong and significant impact on the eradication of mature biofilm (P < 0.05). Interpretation & conclusions: Although ciprofloxacin is recommended in the treatment of urinary tract infections caused by UPECs, but its efficacy is arguable. Subinhibitory concentrations of ciprofloxacin did not inhibit the formation of biofilm. Pentacyclic triterpenes used in combination with ciprofloxacin enhanced its anti-biofilm effectiveness. However, this anti-biofilm activity was found to depend on the type of surface on which biofilm was

  12. Inactivation of biofilm bacteria.

    PubMed Central

    LeChevallier, M W; Cawthon, C D; Lee, R G

    1988-01-01

    The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria. Images PMID:2849380

  13. Telomeres, lifestyle, cancer, and aging

    PubMed Central

    Shammas, Masood A.

    2012-01-01

    Purpose of review There has been growing evidence that lifestyle factors may affect the health and lifespan of an individual by affecting telomere length. The purpose of this review was to highlight the importance of telomeres in human health and aging and to summarize possible lifestyle factors that may affect health and longevity by altering the rate of telomere shortening. Recent findings Recent studies indicate that telomere length, which can be affected by various lifestyle factors, can affect the pace of aging and onset of age-associated diseases. Summary Telomere length shortens with age. Progressive shortening of telomeres leads to senescence, apoptosis, or oncogenic transformation of somatic cells, affecting the health and lifespan of an individual. Shorter telomeres have been associated with increased incidence of diseases and poor survival. The rate of telomere shortening can be either increased or decreased by specific lifestyle factors. Better choice of diet and activities has great potential to reduce the rate of telomere shortening or at least prevent excessive telomere attrition, leading to delayed onset of age-associated diseases and increased lifespan. This review highlights the role of telomeres in aging and describes the lifestyle factors which may affect telomeres, human health, and aging. PMID:21102320

  14. Pronounced Metabolic Changes in Adaptation to Biofilm Growth by Streptococcus pneumoniae

    PubMed Central

    Allan, Raymond N.; Skipp, Paul; Jefferies, Johanna; Clarke, Stuart C.; Faust, Saul N.

    2014-01-01

    Streptococcus pneumoniae accounts for a significant global burden of morbidity and mortality and biofilm development is increasingly recognised as important for colonization and infection. Analysis of protein expression patterns during biofilm development may therefore provide valuable insights to the understanding of pneumococcal persistence strategies and to improve vaccines. iTRAQ (isobaric tagging for relative and absolute quantification), a high-throughput gel-free proteomic approach which allows high resolution quantitative comparisons of protein profiles between multiple phenotypes, was used to interrogate planktonic and biofilm growth in a clinical serotype 14 strain. Comparative analyses of protein expression between log-phase planktonic and 1-day and 7-day biofilm cultures representing nascent and late phase biofilm growth were carried out. Overall, 244 proteins were identified, of which >80% were differentially expressed during biofilm development. Quantitatively and qualitatively, metabolic regulation appeared to play a central role in the adaptation from the planktonic to biofilm phenotype. Pneumococci adapted to biofilm growth by decreasing enzymes involved in the glycolytic pathway, as well as proteins involved in translation, transcription, and virulence. In contrast, proteins with a role in pyruvate, carbohydrate, and arginine metabolism were significantly increased during biofilm development. Downregulation of glycolytic and translational proteins suggests that pneumococcus adopts a covert phenotype whilst adapting to an adherent lifestyle, while utilization of alternative metabolic pathways highlights the resourcefulness of pneumococcus to facilitate survival in diverse environmental conditions. These metabolic proteins, conserved across both the planktonic and biofilm phenotypes, may also represent target candidates for future vaccine development and treatment strategies. Data are available via ProteomeXchange with identifier PXD001182. PMID

  15. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly

    PubMed Central

    Pepe-Ranney, Charles; Hall, Edward K.

    2015-01-01

    The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289

  16. A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms.

    PubMed

    Zhao, Jia; Shen, Ya; Haapasalo, Markus; Wang, Zhejun; Wang, Qi

    2016-03-01

    We develop a 3D hydrodynamic model to investigate the mechanism of antimicrobial persistence in a multi-species oral biofilm and its recovery after being treated by bisbiguanide chlorhexidine gluconate (CHX). In addition to the hydrodynamic transport in the spatially heterogeneous biofilm, the model also includes mechanisms of solvent-biomass interaction, bacterial phenotype conversion, and bacteria-drug interaction. A numerical solver for the model is developed using a second order numerical scheme in 3D space and time and implemented on GPUs for high-performance computing. The model is calibrated against a set of experimental data obtained using confocal laser scan microscopy (CLSM) on multi-species oral biofilms, where a quantitative agreement is reached. Our numerical results reveal that quorum sensing molecules and growth factors in this model are instrumental in biofilm formation and recovery after the antimicrobial treatment. In particular, we show that (i) young biofilms are more susceptible to the antimicrobial treatment than the mature ones, (ii) this phenomenon is strongly correlated with volume fractions of the persister and EPS in the biofilm being treated. This suggests that antimicrobial treatment should be best administered to biofilms earlier before they mature to produce a thick protective EPS layer. In addition, the numerical study also indicates that an antimicrobial effect can be achieved should a proper mechanism be devised to minimize the conversion of susceptible bacteria to persisters during and even after the treatment. PMID:26739374

  17. Secret lifestyles of Neurospora crassa

    PubMed Central

    Kuo, Hsiao-Che; Hui, Sun; Choi, Jaeyoung; Asiegbu, Frederick O.; Valkonen, Jari P. T.; Lee, Yong-Hwan

    2014-01-01

    Neurospora crassa has a long history as an excellent model for genetic, cellular, and biochemical research. Although this fungus is known as a saprotroph, it normally appears on burned vegetations or trees after forest fires. However, due to a lack of experimental evidence, the nature of its association with living plants remains enigmatic. Here we report that Scots pine (Pinus sylvestris) is a host plant for N. crassa. The endophytic lifestyle of N. crassa was found in its interaction with Scots pine. Moreover, the fungus can switch to a pathogenic state when its balanced interaction with the host is disrupted. Our data reveal previously unknown lifestyles of N. crassa, which are likely controlled by both environmental and host factors. Switching among the endophytic, pathogenic, and saprotrophic lifestyles confers upon fungi phenotypic plasticity in adapting to changing environments and drives the evolution of fungi and associated plants. PMID:24875794

  18. Secret lifestyles of Neurospora crassa.

    PubMed

    Kuo, Hsiao-Che; Hui, Sun; Choi, Jaeyoung; Asiegbu, Frederick O; Valkonen, Jari P T; Lee, Yong-Hwan

    2014-01-01

    Neurospora crassa has a long history as an excellent model for genetic, cellular, and biochemical research. Although this fungus is known as a saprotroph, it normally appears on burned vegetations or trees after forest fires. However, due to a lack of experimental evidence, the nature of its association with living plants remains enigmatic. Here we report that Scots pine (Pinus sylvestris) is a host plant for N. crassa. The endophytic lifestyle of N. crassa was found in its interaction with Scots pine. Moreover, the fungus can switch to a pathogenic state when its balanced interaction with the host is disrupted. Our data reveal previously unknown lifestyles of N. crassa, which are likely controlled by both environmental and host factors. Switching among the endophytic, pathogenic, and saprotrophic lifestyles confers upon fungi phenotypic plasticity in adapting to changing environments and drives the evolution of fungi and associated plants. PMID:24875794

  19. Migraine and lifestyle in childhood.

    PubMed

    Casucci, Gerardo; Villani, Veronica; d'Onofrio, Florindo; Russo, Antonio

    2015-05-01

    Migraine is one of the most frequently reported somatic complaints in childhood, with a negative impact on health-related quality of life. The incidence of migraine in childhood has substantially increased over the past 30 years, probably due to both increased awareness of the disease and lifestyle changes in this age group. Indeed, several conditions have been identified as risk factors for migraine in childhood. Amongst these, dysfunctional family situation, the regular consumption of alcohol, caffeine ingestion, low level of physical activity, physical or emotional abuse, bullying by peers, unfair treatment in school and insufficient leisure time seem to play a critical role. Nevertheless, there are only few studies about the association between migraine and lifestyle in childhood, due to previous observations specifically focused on "headache" in children. In this brief review, we will concentrate upon recent studies aimed to explore migraine and lifestyle risk factors in childhood. PMID:26017522

  20. Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation.

    PubMed

    Li, Jinyun; Wang, Nian

    2011-01-01

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS) and/or lipopolysaccharide (LPS), 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS), encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic determinants and

  1. Biofilm in endodontics: A review.

    PubMed

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms' formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  2. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  3. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range

    PubMed Central

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H.; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures. PMID:27248687

  4. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range.

    PubMed

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures. PMID:27248687

  5. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ. PMID:21062489

  6. Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Oliveira, Jonathas Sales de; Evangelista, Antônio José de Jesus; Serpa, Rosana; Silva, Aline Lobão da; Aguiar, Felipe Rodrigues Magalhães de; Pereira, Vandbergue Santos; Castelo-Branco, Débora de Souza Collares Maia; Pereira-Neto, Waldemiro Aquino; Cordeiro, Rossana de Aguiar; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2016-08-30

    The aim of this study was to evaluate the in vitro hemolytic activity and biofilm antifungal susceptibility of veterinary and human Candida tropicalis strains, as well as their pathogenesis against Caenorhabditis elegans. Twenty veterinary isolates and 20 human clinical isolates of C. tropicalis were used. The strains were evaluated for their hemolytic activity and biofilm production. Biofilm susceptibility to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin was assessed using broth microdilution assay. The in vivo evaluation of strain pathogenicity was investigated using the nematode C. elegans. Hemolytic factor was observed in 95% of the strains and 97.5% of the isolates showed ability to form biofilm. Caspofungin and amphotericin B showed better results than azole antifungals against mature biofilms. Paradoxical effect on mature biofilm metabolic activity was observed at elevated concentrations of caspofungin (8-64μg/mL). Azole antifungals were not able to inhibit mature C. tropicalis biofilms, even at the higher tested concentrations. High mortality rates of C. elegans were observed when the worms were exposed to with C. tropicalis strains, reaching up to 96%, 96h after exposure of the worms to C. tropicalis strains. These results reinforce the high pathogenicity of C. tropicalis from veterinary and human sources and show the effectiveness of caspofungin and amphotericin B against mature biofilms of this species. PMID:27527785

  7. BV and non-BV associated Gardnerella vaginalis establish similar synergistic interactions with other BV-associated microorganisms in dual-species biofilms.

    PubMed

    Castro, Joana; Cerca, Nuno

    2015-12-01

    Dual-species biofilm formation between Gardnerella vaginalis strains isolated from women with or without bacterial vaginosis (BV) and other 24 BV-associated microorganisms support that the key difference in virulence potential between BV-negative and BV-positive G. vaginalis strains seems not to be related with biofilm maturation. PMID:26505928

  8. Manipulation of Biofilm Microbial Ecology

    SciTech Connect

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  9. Manipulatiaon of Biofilm Microbial Ecology

    SciTech Connect

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  10. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna

    2013-09-01

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s-1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ˜ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ˜ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ˜ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ˜ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.

  11. Biofilm-specific antibiotic resistance.

    PubMed

    Mah, Thien-Fah

    2012-09-01

    Bacterial biofilms are the basis of many persistent diseases. The persistence of these infections is primarily attributed to the increased antibiotic resistance exhibited by the cells within the biofilms. This resistance is multifactorial; there are multiple mechanisms of resistance that act together in order to provide an increased overall level of resistance to the biofilm. These mechanisms are based on the function of wild-type genes and are not the result of mutations. This article reviews the known mechanisms of resistance, including the ability of the biofilm matrix to prevent antibiotics from reaching the cells and the function of individual genes that are preferentially expressed in biofilms. Evidence suggests that these mechanisms have been developed as a general stress response of biofilms that enables the cells in the biofilm to respond to all of the changes in the environment that they may encounter. PMID:22953707

  12. Biofilms: Microbial Life on Surfaces

    PubMed Central

    2002-01-01

    Microorganisms attach to surfaces and develop biofilms. Biofilm-associated cells can be differentiated from their suspended counterparts by generation of an extracellular polymeric substance (EPS) matrix, reduced growth rates, and the up- and down- regulation of specific genes. Attachment is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surface. An established biofilm structure comprises microbial cells and EPS, has a defined architecture, and provides an optimal environment for the exchange of genetic material between cells. Cells may also communicate via quorum sensing, which may in turn affect biofilm processes such as detachment. Biofilms have great importance for public health because of their role in certain infectious diseases and importance in a variety of device-related infections. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management. PMID:12194761

  13. [Biofilms, tolerance and antimicrobial resistance].

    PubMed

    Bahar, Gül

    2002-01-01

    Virtually every surface examined in natural, industrial and pathogenic ecosystems are colonized by biofilms consisting of adherent populations of microorganisms surrounded with a glycocalyx matrix. The development of biofilms has important economic and medical consequences. The development and use of a broad range of medical devices made us recognize a variety of infections caused by microorganisms that were regarded previously as harmless. Infections caused by biofilms are difficult to eradicate with antimicrobial treatment, and in-vitro susceptibility tests show significant resistance of biofilm cells to be killed. Advances in our understanding of biofilm formation can assist in the development of novel strategies for the prevention and treatment of infections caused by biofilms. In this review article, structures, general properties and antimicrobial resistance mechanisms of biofilms were discussed under the light of recent literature. PMID:12838670

  14. Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics.

    PubMed

    Wang, Huhu; Ding, Shijie; Dong, Yang; Ye, Keping; Xu, Xinglian; Zhou, Guanghong

    2013-10-01

    Salmonella attached to meat contact surfaces encountered in meat processing facilities may serve as a source of cross-contamination. In this study, the influence of serotypes and media on biofilm formation of Salmonella was investigated in a simulated meat processing environment, and the relationships between biofilm formation and cell characteristics were also determined. All six serotypes (Salmonella enterica serotype Heidelberg, Salmonella Derby, Salmonella Agona, Salmonella Indiana, Salmonella Infantis, and Salmonella Typhimurium) can readily form biofilms on stainless steel surfaces, and the amounts of biofilms were significantly influenced by the serotypes, incubation media, and incubation time used in this study. Significant differences in cell surface hydrophobicity, autoaggregation, motility, and growth kinetic parameters were observed between individual serotypes tested. Except for growth kinetic parameters, the cell characteristics were correlated with the ability of biofilm formation incubated in tryptic soy broth, whereas no correlation with biofilm formation incubated in meat thawing-loss broth (an actual meat substrate) was found. Salmonella grown in meat thawing-loss broth showed a "cloud-shaped" morphology in the mature biofilm, whereas when grown in tryptic soy broth it had a "reticulum-shaped" appearance. Our study provides some practical information to understand the process of biofilm formation on meat processing contact surfaces. PMID:24112581

  15. Lifestyle Improvement Program for Seniors.

    ERIC Educational Resources Information Center

    Barclay, Ralph

    The Wayne State College Lifestyle Improvement Program for Seniors, based on the wellness concept, is designed to facilitate social interaction and health through physical activities. It is adaptable to a variety of individual needs and preferences, including exercises for cardiac rehabilitation patients. Any person over 50 can participate at no…

  16. Outdoor Play: Combating Sedentary Lifestyles

    ERIC Educational Resources Information Center

    Thigpen, Betsy

    2007-01-01

    Increasingly sedentary lifestyles are contributing to overweight and other health concerns as children spend less and less time outside engaged in active play. Outdoor play provides important opportunities to explore the natural world, interact with peers, engage in vigorous physical activity, and learn about our environment. However, outdoor…

  17. Peace Lifestyle and Peace Cultures.

    ERIC Educational Resources Information Center

    Allen, Judd

    Peace lifestyles are possible in social environments that endorse peace activism. This discussion of community change processes provides an outline of mechanisms needed for successful community activism working at the cultural level. The Community Peace Cultures Program (CPCP) is an approach to building supportive environments for peace…

  18. Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro

    PubMed Central

    Junka, Adam Feliks; Szymczyk, Patrycja; Smutnicka, Danuta; Kos, Marcin; Smolina, Iryna; Bartoszewicz, Marzenna; Chlebus, Edward; Turniak, Michal; Sedghizadeh, Parish P.

    2014-01-01

    Introduction It is widely thought that inflammation and osteoclastogenesis result in hydroxyapatite (HA) resorption and sequestra formation during osseous infections, and microbial biofilm pathogens induce the inflammatory destruction of HA. We hypothesized that biofilms associated with infectious bone disease can directly resorb HA in the absence of host inflammation or osteoclastogenesis. Therefore, we developed an in vitro model to test this hypothesis. Materials and Methods Customized HA discs were manufactured as a substrate for growing clinically relevant biofilm pathogens. Single-species biofilms of S.mutans, S.aureus, P.aeruginosa and C.albicans, and mixed-species biofilms of C.albicans + S.mutans were incubated on HA discs for 72 hours to grow mature biofilms. Three different non-biofilm control groups were also established for testing. HA discs were then evaluated by means of scanning electron microscopy, micro-CT metrotomography, x-ray spectroscopy and confocal microscopy with planimetric analysis. Additionally, quantitative cultures and pH assessment were performed. ANOVA was used to test for significance between treatment and control groups. Results All investigated biofilms were able to cause significant (P<0.05) and morphologically characteristic alterations in HA structure as compared to controls. The highest number of alterations observed was caused by mixed biofilms of C.albicans + S.mutans. S. mutans biofilm incubated in medium with additional sucrose content was the most detrimental to HA surfaces among single-species biofilms. Conclusion These findings suggest that direct microbial resorption of bone is possible in addition to immune-mediated destruction, which has important translational implications for the pathogenesis of chronic bone infections and for targeted antimicrobial therapeutics. PMID:25544303

  19. Biofilm in endodontics: A review

    PubMed Central

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  20. Medication or Lifestyle for Pre-Diabetes

    MedlinePlus

    ... is possible. By committing to and maintaining a healthy lifestyle, some people are able to reverse their pre- ... can avoid many diabetes complications by adopting a healthy lifestyle. How much can be avoided usually depends on ...

  1. Lifestyle Changes After Laryngeal or Hypopharyngeal Cancer

    MedlinePlus

    ... laryngeal or hypopharyngeal cancer affect your emotional health? Lifestyle changes after laryngeal or hypopharyngeal cancer You can’ ... people want to know if there are specific lifestyle changes they can make to reduce their risk ...

  2. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    PubMed Central

    Aggarwal, Srijan; Stewart, Philip S.; Hozalski, Raymond M.

    2015-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacterial biofilms appear to be designed to withstand extreme forces rather than typical or average loads. In scenarios requiring the removal or control of unwanted biofilms, this emphasizes the importance of considering strategies for structurally weakening the biofilms in conjunction with bacterial inactivation. PMID:26819559

  3. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth

    PubMed Central

    Ojha, Anil; Hatfull, Graham F

    2007-01-01

    Many species of mycobacteria form structured biofilm communities at liquid–air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 μM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes – especially those involved in siderophore synthesis and iron uptake – are strongly induced during biofilm formation reflecting a response to iron deprivation, even when 2 μM iron is present. The acquisition of iron under these conditions is specifically dependent on the exochelin synthesis and uptake pathways, and the strong defect of an iron–exochelin uptake mutant suggests a regulatory role of iron in the transition to biofilm growth. In contrast, although the expression of mycobactin and iron ABC transport operons is highly upregulated during biofilm formation, mutants in these systems form normal biofilms in low-iron (2 μM) conditions. A close correlation between iron availability and matrix-associated fatty acids implies a possible metabolic role in the late stages of biofilm maturation, in addition to the early regulatory role. M. smegmatis surface motility is similarly dependent on iron availability, requiring both supplemental iron and the exochelin pathway to acquire it. PMID:17854402

  4. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  5. [Urinary catheter biofilm infections].

    PubMed

    Holá, V; Růzicka, F

    2008-04-01

    Urinary tract infections, most of which are biofilm infections in catheterized patients, account for more than 40% of hospital infections. Bacterial colonization of the urinary tract and catheters causes not only infection but also other complications such as catheter blockage by bacterial encrustation, urolithiasis and pyelonephritis. About 50% of long-term catheterized patients face urinary flow obstruction due to catheter encrustation, but no measure is currently available to prevent it. Encrustation has been known either to result from metabolic dysfunction or to be of microbial origin, with urease positive bacterial species implicated most often. Infectious calculi account for about 15-20% of all cases of urolithiasis and are often associated with biofilm colonization of a long-term indwelling urinary catheter or urethral stent. The use of closed catheter systems is helpful in reducing such problems; nevertheless, such a system only delays the inevitable, with infections emerging a little later. Various coatings intended to prevent the bacterial adhesion to the surface of catheters and implants and thus also the emergence of biofilm infections, unfortunately, do not inhibit the microbial adhesion completely and permanently and the only reliable method for biofilm eradication remains the removal of the foreign body from the patient. PMID:18578409

  6. The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis

    PubMed Central

    Gerwig, Jan; Kiley, Taryn B.; Gunka, Katrin; Stanley-Wall, Nicola

    2014-01-01

    The Gram-positive soil bacterium Bacillus subtilis is able to choose between motile and sessile lifestyles. The sessile way of life, also referred to as biofilm, depends on the formation of an extracellular polysaccharide matrix and some extracellular proteins. Moreover, a significant proportion of cells in a biofilm form spores. The first two genes of the 15-gene operon for extracellular polysaccharide synthesis, epsA and epsB, encode a putative transmembrane modulator protein and a putative protein tyrosine kinase, respectively, with similarity to the TkmA/PtkA modulator/kinase couple. Here we show that the putative kinase EpsB is required for the formation of structured biofilms. However, an epsB mutant is still able to form biofilms. As shown previously, a ptkA mutant is also partially defective in biofilm formation, but this defect is related to spore formation in the biofilm. The absence of both kinases resulted in a complete loss of biofilm formation. Thus, EpsB and PtkA fulfil complementary functions in biofilm formation. The activity of bacterial protein tyrosine kinases depends on their interaction with modulator proteins. Our results demonstrate the specific interaction between the putative kinase EpsB and its modulator protein EpsA and suggest that EpsB activity is stimulated by its modulator EpsA. PMID:24493247

  7. The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis.

    PubMed

    Gerwig, Jan; Kiley, Taryn B; Gunka, Katrin; Stanley-Wall, Nicola; Stülke, Jörg

    2014-04-01

    The Gram-positive soil bacterium Bacillus subtilis is able to choose between motile and sessile lifestyles. The sessile way of life, also referred to as biofilm, depends on the formation of an extracellular polysaccharide matrix and some extracellular proteins. Moreover, a significant proportion of cells in a biofilm form spores. The first two genes of the 15-gene operon for extracellular polysaccharide synthesis, epsA and epsB, encode a putative transmembrane modulator protein and a putative protein tyrosine kinase, respectively, with similarity to the TkmA/PtkA modulator/kinase couple. Here we show that the putative kinase EpsB is required for the formation of structured biofilms. However, an epsB mutant is still able to form biofilms. As shown previously, a ptkA mutant is also partially defective in biofilm formation, but this defect is related to spore formation in the biofilm. The absence of both kinases resulted in a complete loss of biofilm formation. Thus, EpsB and PtkA fulfil complementary functions in biofilm formation. The activity of bacterial protein tyrosine kinases depends on their interaction with modulator proteins. Our results demonstrate the specific interaction between the putative kinase EpsB and its modulator protein EpsA and suggest that EpsB activity is stimulated by its modulator EpsA. PMID:24493247

  8. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface

    PubMed Central

    Madeira, Petrus L. B.; Carvalho, Letícia T.; Paschoal, Marco A. B.; de Sousa, Eduardo M.; Moffa, Eduardo B.; da Silva, Marcos A. dos Santos; Tavarez, Rudys de Jesus Rodolfo; Gonçalves, Letícia M.

    2016-01-01

    The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use. PMID:27446818

  9. Phenylpropanoids of plant origin as inhibitors of biofilm formation by Candida albicans.

    PubMed

    Raut, Jayant Shankar; Shinde, Ravikumar Bapurao; Chauhan, Nitin Mahendra; Karuppayil, Sankunny Mohan

    2014-09-01

    Biofilm-related infections of Candida albicans are a frequent cause of morbidity and mortality in hospitalized patients, especially those with immunocompromised status. Options of the antifungal drugs available for successful treatment of drug-resistant biofilms are very few, and as such, new strategies need to be explored against them. The aim of this study was to evaluate the efficacy of phenylpropanoids of plant origin against planktonic cells, important virulence factors, and biofilm forms of C. albicans. Standard susceptibility testing protocol was used to evaluate the activities of 13 phenylpropanoids against planktonic growth. Their effects on adhesion and yeast-to-hyphae morphogenesis were studied in microplate-based methodologies. An in vitro biofilm model analyzed the phenylpropanoid-mediated prevention of biofilm development and mature biofilms using XTT-metabolic assay, crystal violet assay, and light microscopy. Six molecules exhibited fungistatic activity at ≤0.5 mg/ml, of which four were fungicidal at low concentrations. Seven phenylpropanoids inhibited yeast-to-hyphae transition at low concentrations (0.031-0.5 mg/ml), whereas adhesion to the solid substrate was prevented in the range of 0.5-2 mg/ml. Treatment with ≤0.5 mg/ml concentrations of at least six small molecules resulted in significant (p < 0.05) inhibition of biofilm formation by C. albicans. Mature biofilms that are highly resistant to antifungal drugs were susceptible to low concentrations of 4 of the 13 molecules. This study revealed phenylpropanoids of plant origin as promising candidates to devise preventive strategies against drug-resistant biofilms of C. albicans. PMID:24851813

  10. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface.

    PubMed

    Madeira, Petrus L B; Carvalho, Letícia T; Paschoal, Marco A B; de Sousa, Eduardo M; Moffa, Eduardo B; da Silva, Marcos A Dos Santos; Tavarez, Rudys de Jesus Rodolfo; Gonçalves, Letícia M

    2016-01-01

    The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use. PMID:27446818

  11. Streptococcus thermophilus Biofilm Formation: A Remnant Trait of Ancestral Commensal Life?

    PubMed Central

    Gautier, Céline; Renault, Pierre; Briandet, Romain; Guédon, Eric

    2015-01-01

    Microorganisms have a long history of use in food production and preservation. Their adaptation to food environments has profoundly modified their features, mainly through genomic flux. Streptococcus thermophilus, one of the most frequent starter culture organisms consumed daily by humans emerged recently from a commensal ancestor. As such, it is a useful model for genomic studies of bacterial domestication processes. Many streptococcal species form biofilms, a key feature of the major lifestyle of these bacteria in nature. However, few descriptions of S. thermophilus biofilms have been reported. An analysis of the ability of a representative collection of natural isolates to form biofilms revealed that S. thermophilus was a poor biofilm producer and that this characteristic was associated with an inability to attach firmly to surfaces. The identification of three biofilm-associated genes in the strain producing the most biofilms shed light on the reasons for the rarity of this trait in this species. These genes encode proteins involved in crucial stages of biofilm formation and are heterogeneously distributed between strains. One of the biofilm genes appears to have been acquired by horizontal transfer. The other two are located in loci presenting features of reductive evolution, and are absent from most of the strains analyzed. Their orthologs in commensal bacteria are involved in adhesion to host cells, suggesting that they are remnants of ancestral functions. The biofilm phenotype appears to be a commensal trait that has been lost during the genetic domestication of S. thermophilus, consistent with its adaptation to the milk environment and the selection of starter strains for dairy fermentations. PMID:26035177

  12. Host contributions to construction of three device-associated Candida albicans biofilms.

    PubMed

    Nett, Jeniel E; Zarnowski, Robert; Cabezas-Olcoz, Jonathan; Brooks, Erin G; Bernhardt, Jörg; Marchillo, Karen; Mosher, Deane F; Andes, David R

    2015-12-01

    Among the most fascinating virulence attributes of Candida is the ability to transition to a biofilm lifestyle. As a biofilm, Candida cells adhere to a surface, such as a vascular catheter, and become encased in an extracellular matrix. During this mode of growth, Candida resists the normal immune response, often causing devastating disease. Based on scanning electron microscopy images, we hypothesized that host cells and proteins become incorporated into clinical biofilms. As a means to gain an understanding of these host-biofilm interactions, we explored biofilm-associated host components by using microscopy and liquid chromatography-mass spectrometry. Here we characterize the host proteins associated with several in vivo rat Candida albicans biofilms, including those from vascular catheter, denture, and urinary catheter models as well as uninfected devices. A conserved group of 14 host proteins were found to be more abundant during infection at each of the niches. The host proteins were leukocyte and erythrocyte associated and included proteins involved in inflammation, such as C-reactive protein, myeloperoxidase, and alarmin S100-A9. A group of 59 proteins were associated with both infected and uninfected devices, and these included matricellular and inflammatory proteins. In addition, site-specific proteins were identified, such as amylase in association with the denture device. Cellular analysis revealed neutrophils as the predominant leukocytes associating with biofilms. These experiments demonstrate that host cells and proteins are key components of in vivo Candida biofilms, likely with one subset associating with the device and another being recruited by the proliferating biofilm. PMID:26371129

  13. Host Contributions to Construction of Three Device-Associated Candida albicans Biofilms

    PubMed Central

    Nett, Jeniel E.; Zarnowski, Robert; Cabezas-Olcoz, Jonathan; Brooks, Erin G.; Bernhardt, Jörg; Marchillo, Karen; Mosher, Deane F.

    2015-01-01

    Among the most fascinating virulence attributes of Candida is the ability to transition to a biofilm lifestyle. As a biofilm, Candida cells adhere to a surface, such as a vascular catheter, and become encased in an extracellular matrix. During this mode of growth, Candida resists the normal immune response, often causing devastating disease. Based on scanning electron microscopy images, we hypothesized that host cells and proteins become incorporated into clinical biofilms. As a means to gain an understanding of these host-biofilm interactions, we explored biofilm-associated host components by using microscopy and liquid chromatography-mass spectrometry. Here we characterize the host proteins associated with several in vivo rat Candida albicans biofilms, including those from vascular catheter, denture, and urinary catheter models as well as uninfected devices. A conserved group of 14 host proteins were found to be more abundant during infection at each of the niches. The host proteins were leukocyte and erythrocyte associated and included proteins involved in inflammation, such as C-reactive protein, myeloperoxidase, and alarmin S100-A9. A group of 59 proteins were associated with both infected and uninfected devices, and these included matricellular and inflammatory proteins. In addition, site-specific proteins were identified, such as amylase in association with the denture device. Cellular analysis revealed neutrophils as the predominant leukocytes associating with biofilms. These experiments demonstrate that host cells and proteins are key components of in vivo Candida biofilms, likely with one subset associating with the device and another being recruited by the proliferating biofilm. PMID:26371129

  14. Mature Teachers Matter

    ERIC Educational Resources Information Center

    Berl, Patricia Scallan

    2005-01-01

    In this article, the author discusses the consequences of losing mature teachers due to voluntary separation or retirement and the mindset of a mature teacher that is different from younger teachers in a number of ways. Mature teachers are colleagues over 45 years of age possessing significant experience in the field. Future trends in teacher…

  15. Biofilm Formation by Neisseria gonorrhoeae

    PubMed Central

    Greiner, L. L.; Edwards, J. L.; Shao, J.; Rabinak, C.; Entz, D.; Apicella, M. A.

    2005-01-01

    Studies were performed in continuous-flow chambers to determine whether Neisseria gonorrhoeae could form a biofilm. Under these growth conditions, N. gonorrhoeae formed a biofilm with or without the addition of 10 μM sodium nitrite to the perfusion medium. Microscopic analysis of a 4-day growth of N. gonorrhoeae strain 1291 revealed evidence of a biofilm with organisms embedded in matrix, which was interlaced with water channels. N. gonorrhoeae strains MS11 and FA1090 were found to also form biofilms under the same growth conditions. Cryofield emission scanning electron microscopy and transmission electron microscopy confirmed that organisms were embedded in a continuous matrix with membranous structures spanning the biofilm. These studies also demonstrated that N. gonorrhoeae has the capability to form a matrix in the presence and absence of CMP-N-acetylneuraminic acid (CMP-Neu5Ac). Studies with monoclonal antibody 6B4 and the lectins soy bean agglutinin and Maackia amurensis indicated that the predominate terminal sugars in the biofilm matrix formed a lactosamine when the biofilm was grown in the absence of CMP-Neu5Ac and sialyllactosamine in the presence of CMP-Neu5Ac. N. gonorrhoeae strain 1291 formed a biofilm on primary urethral epithelial cells and cervical cells in culture without loss of viability of the epithelial cell layer. Our studies demonstrated that N. gonorrhoeae can form biofilms in continuous-flow chambers and on living cells. Studies of these biofilms may have implications for understanding asymptomatic gonococcal infection. PMID:15784536

  16. Effect of ciprofloxacin and N-acetylcysteine on bacterial adherence and biofilm formation on ureteral stent surfaces.

    PubMed

    El-Feky, Mohamed A; El-Rehewy, Mostafa S; Hassan, Mona A; Abolella, Hassan A; Abd El-Baky, Rehab M; Gad, Gamal F

    2009-01-01

    The aim of this study was to evaluate the effect of ciprofloxacin (CIP), N-acetylcysteine (NAC) alone and in combination on biofilm production and pre-formed mature biofilms on ureteral stent surfaces. Two strains each of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa and Proteus vulgaris, recently isolated from patients undergoing ureteral stent removal and shown to be capable of biofilm production, were used in this study. The inhibitory effects of ciprofloxacin, N-acetylcysteine and ciprofloxacin/N-acetylcysteine combination were determined by static adherence assay. Ciprofloxacin (MIC and 2 MIC) and N-acetylcysteine (2 and 4 mg/ml) inhibited biofilm production by > or = 60% in all tested microorganisms. Disruption of pre-formed biofilms of all tested microorganisms was found to be > or = 78% in the presence of ciprofloxacin (MIC and 2 MIC) and > or = 62% in the presence of N-acetylcysteine (2 and 4 mg/ml), compared to controls. Ciprofloxacin/N-acetylcysteine showed the highest inhibitory effect on biofilm production (94-100%) and the highest disruptive effect on the pre-formed biofilms (86-100%) in comparison to controls. N-acetylcysteine was found to increase the therapeutic efficacy of ciprofloxacin by degrading the extracellular polysaccharide matrix of biofilms. These data are statistically significant. The inhibitory effects of ciprofloxacin and N-acetylcysteine on biofilm production were also verified by scanning electron microscope (SEM). In conclusion, Ciprofloxacin/N-acetylcysteine combinations have the highest inhibitory effect on biofilm production and the highest ability to eradicate pre-formed mature biofilms. PMID:19899620

  17. Focusing on Environmental Biofilms With Variable-Pressure Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Joubert, L.; Wolfaardt, G. M.; Du Plessis, K.

    2006-12-01

    Since the term biofilm has been coined almost 30 years ago, visualization has formed an integral part of investigations on microbial attachment. Electron microscopic (EM) biofilm studies, however, have been limited by the hydrated extracellular matrix which loses structural integrity with conventional preparative techniques, and under required high-vacuum conditions, resulting in a loss of information on spatial relationships and distribution of biofilm microbes. Recent advances in EM technology enable the application of Variable Pressure Scanning Electron Microscopy (VP SEM) to biofilms, allowing low vacuum and hydrated chamber atmosphere during visualization. Environmental biofilm samples can be viewed in situ, unfixed and fully hydrated, with application of gold-sputter-coating only, to increase image resolution. As the impact of microbial biofilms can be both hazardous and beneficial to man and his environment, recognition of biofilms as a natural form of microbial existence is needed to fully assess the potential role of microbial communities on technology. The integration of multiple techniques to elucidate biofilm processes has become imperative for unraveling complex phenotypic adaptations of this microbial lifestyle. We applied VP SEM as integrative technique with traditional and novel analytical techniques to (1)localize lignocellulosic microbial consortia applied for producing alternative bio-energy sources in the mining wastewater industry, (2) characterize and visualize wetland microbial communities in the treatment of winery wastewater, and (3)determine the impact of recombinant technology on yeast biofilm behavior. Visualization of microbial attachment to a lignocellulose substrate, and degradation of exposed plant tissue, gave insight into fiber degradation and volatile fatty acid production for biological sulphate removal from mining wastewater. Also, the 3D-architecture of complex biofilms developing in constructed wetlands was correlated with

  18. Lifestyle Change: A Critical Look

    PubMed Central

    Elford, R.W.; Yeo, M.A.; Hougesen, B.; Todd, V.

    1989-01-01

    Many relationships between behaviour and disease are now recognized by both health care professionals and the public. In lifestyle counselling, caregivers help patients to change their unhealthy habits. The primary care office seems an ideal setting for implementing behaviour change strategies, but studies suggest that physicians only sporadically elicit behavioural risk factors and infrequently counsel patients to modify risky behaviours. Physicians have been introduced to the goals of clinical prevention, but with the limited application of clinical prevention research to practical office approaches, they often lack the necessary knowledge and skills to achieve them. The individual intervention and group program strategies described in this paper have been adapted to the primary care setting, and we hope they will help family physicians to play an effective role in lifestyle change.

  19. Lifestyle, pregnancy and epigenetic effects.

    PubMed

    Barua, Subit; Junaid, Mohammed A

    2015-01-01

    Rapidly growing evidences link maternal lifestyle and prenatal factors with serious health consequences and diseases later in life. Extensive epidemiological studies have identified a number of factors such as diet, stress, gestational diabetes, exposure to tobacco and alcohol during gestation as influencing normal fetal development. In light of recent discoveries, epigenetic mechanisms such as alteration of DNA methylation, chromatin modifications and modulation of gene expression during gestation are believed to possibly account for various types of plasticity such as neural tube defects, autism spectrum disorder, congenital heart defects, oral clefts, allergies and cancer. The purpose of this article is to review a number of published studies to fill the gap in our understanding of how maternal lifestyle and intrauterine environment influence molecular modifications in the offspring, with an emphasis on epigenetic alterations. To support these associations, we highlighted laboratory studies of rodents and epidemiological studies of human based on sampling population cohorts. PMID:25687469

  20. Tryptophan Inhibits Biofilm Formation by Pseudomonas aeruginosa

    PubMed Central

    Brandenburg, Kenneth S.; Rodriguez, Karien J.; McAnulty, Jonathan F.; Murphy, Christopher J.; Abbott, Nicholas L.; Schurr, Michael J.

    2013-01-01

    Biofilm formation by Pseudomonas aeruginosa has been implicated in the pathology of chronic wounds. Both the d and l isoforms of tryptophan inhibited P. aeruginosa biofilm formation on tissue culture plates, with an equimolar ratio of d and l isoforms producing the greatest inhibitory effect. Addition of d-/l-tryptophan to existing biofilms inhibited further biofilm growth and caused partial biofilm disassembly. Tryptophan significantly increased swimming motility, which may be responsible in part for diminished biofilm formation by P. aeruginosa. PMID:23318791

  1. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus

    PubMed Central

    2013-01-01

    Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low

  2. New Technologies for Studying Biofilms.

    PubMed

    Franklin, Michael J; Chang, Connie; Akiyama, Tatsuya; Bothner, Brian

    2015-08-01

    Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level. PMID:26350329

  3. Biofilm Formation by Cryptococcus neoformans.

    PubMed

    Martinez, Luis R; Casadevall, Arturo

    2015-06-01

    The fungus Cryptococcus neoformans possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, C. neoformans biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into C. neoformans biology. PMID:26185073

  4. New Technologies for Studying Biofilms

    PubMed Central

    FRANKLIN, MICHAEL J.; CHANG, CONNIE; AKIYAMA, TATSUYA; BOTHNER, BRIAN

    2016-01-01

    Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level. PMID:26350329

  5. Electrochemical biofilm control: a review.

    PubMed

    Sultana, Sujala T; Babauta, Jerome T; Beyenal, Haluk

    2015-01-01

    One of the methods of controlling biofilms that has widely been discussed in the literature is to apply a potential or electrical current to a metal surface on which the biofilm is growing. Although electrochemical biofilm control has been studied for decades, the literature is often conflicting, as is detailed in this review. The goals of this review are: (1) to present the current status of knowledge regarding electrochemical biofilm control; (2) to establish a basis for a fundamental definition of electrochemical biofilm control and requirements for studying it; (3) to discuss current proposed mechanisms; and (4) to introduce future directions in the field. It is expected that the review will provide researchers with guidelines on comparing datasets across the literature and generating comparable datasets. The authors believe that, with the correct design, electrochemical biofilm control has great potential for industrial use. PMID:26592420

  6. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    PubMed

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants. PMID:27214244

  7. Interception of Small Particles by Flocculent Structures, Sessile Ciliates, and the Basic Layer of a Wastewater Biofilm

    PubMed Central

    Eisenmann, Heinrich; Letsiou, Ioanna; Feuchtinger, Anette; Beisker, Wolfgang; Mannweiler, Ernst; Hutzler, Peter; Arnz, Patrik

    2001-01-01

    We investigated attachment processes of hydrophobic and hydrophilic particles (diameter = 1 μm) to mature biofilms grown on clay marbles in a sequencing batch biofilm reactor. During a treatment cycle with filtered wastewater containing different fluorescent beads, the progression of particle density in various biofilm compartments (carrier biofilm, basic biofilm layer, biofilm flocs, and sessile ciliates) was determined by flow cytometry, confocal laser scanning microscopy and automated image analysis. Particles were almost completely removed from wastewater by typical processes of particle retention: up to 58% of particles attached to clay marbles, up to 15% were associated with suspended flocs, and up to 10% were ingested by sessile ciliates. Ingestion of particles by ciliates was exceptionally high immediately after wastewater addition (1,200 particles grazer−1 h−1) and continued until approximately 14% of the water had been cleared by ciliate filter feeding. Most probably, ciliate bioturbation increases particle sorption to the basic biofilm. Backwashing of the reactor detached pieces of biofilm and thus released approximately 50% of the particles into rinsing water. Clay marbles in the upper part of the reactor were more efficiently abraded than in the lower part. No indications for selective attachment of the applied hydrophobic and hydrophilic beads were found. As a consequence of interception patterns, organisms at elevated biofilm structures are probably major profiteers of wastewater particles; among them, ciliates may be of major importance because of their highly active digestive food vacuoles. PMID:11526035

  8. Role of Tec1 in the Development, Architecture, and Integrity of Sexual Biofilms of Candida albicans

    PubMed Central

    Daniels, Karla J.; Srikantha, Thyagarajan; Pujol, Claude; Park, Yang-Nim

    2015-01-01

    MTL-homozygous (a/a or α/α) white cells form a complex sexual biofilm that exhibits the same architecture as that of MTL-heterozygous (a/α) pathogenic biofilms. However, the former is regulated by the mitogen-activated protein (MAP) kinase pathway, while the latter is regulated by the Ras1/cyclic AMP (cAMP) pathway. We previously demonstrated that in the formation of an MTL-homozygous, mature (48 h) sexual biofilm in RPMI 1640 medium, the MAP kinase pathway targets Tec1 rather than Cph1, the latter of which is the target of the same pathway, but for the opaque cell mating response. Here we continued our analysis of the role of Tec1 by comparing the effects of deleting TEC1 on initial adhesion to silicone elastomer, high-resolution confocal microscopy assessments of the stages and cellular phenotypes during the 48 h of biofilm development, human white cell penetration, and biofilm fragility. We show that although Tec1 plays only a minor role in initial adhesion to the silicone elastomer, it does play a major role in the growth of the basal yeast cell polylayer, vertical extension of hyphae and matrix deposition in the upper portion of the biofilm, final biofilm thickness, penetrability of human white blood cells, and final biofilm integrity (i.e., resistance to fluid flow). These results provide a more detailed description of normal biofilm development and architecture and confirm the central role played by the transcription factor Tec1 in the biofilm model employed here. PMID:25556183

  9. Effects of Current Velocity on the Nascent Architecture of Stream Microbial Biofilms

    PubMed Central

    Battin, Tom J.; Kaplan, Louis A.; Newbold, J. Denis; Cheng, Xianhao; Hansen, Claude

    2003-01-01

    Current velocity affected the architecture and dynamics of natural, multiphyla, and cross-trophic level biofilms from a forested piedmont stream. We monitored the development and activity of biofilms in streamside flumes operated under two flow regimes (slow [0.065 m s−1] and fast [0.23 m s−1]) by combined confocal laser scanning microscopy with cryosectioning to observe biofilm structure and composition. Biofilm growth started as bacterial microcolonies embedded in extracellular polymeric substances and transformed into ripple-like structures and ultimately conspicuous quasihexagonal networks. These structures were particularly pronounced in biofilms grown under slow current velocities and were characterized by the prominence of pennate diatoms oriented along their long axes to form the hexagons. Microstructural heterogeneity was dynamic, and biofilms that developed under slower velocities were thicker and had larger surface sinuosity and higher areal densities than their counterparts exposed to higher velocities. Surface sinuosity and biofilm fragmentation increased with thickness, and these changes likely reduced resistance to the mass transfer of solutes from the water column into the biofilms. Nevertheless, estimates of dissolved organic carbon uptake and microbial growth suggested that internal cycling of carbon was more important in thick biofilms grown in slow flow conditions. High-pressure liquid chromatography-pulsed amperometric detection analyses of exopolysaccharides documented a temporal shift in monosaccharide composition as the glucose levels decreased and the levels of rhamnose, galactose, mannose, xylose, and arabinose increased. We attribute this change in chemical composition to the accumulation of diatoms and increased incorporation of detrital particles in mature biofilms. PMID:12957933

  10. Understanding Biofilms in Chronic Sinusitis.

    PubMed

    Tajudeen, Bobby A; Schwartz, Joseph S; Palmer, James N

    2016-02-01

    Chronic sinusitis is a burdensome disease that has substantial individual and societal impact. Although great advances in medical and surgical therapies have been made, some patients continue to have recalcitrant infections. Microbial biofilms have been implicated as a cause of recalcitrant chronic sinusitis, and recent studies have tried to better understand the pathogenesis of chronic sinusitis as it relates to microbial biofilms. Here, we provide an overview of biofilms in chronic sinusitis with emphasis on pathogenesis, treatment, and future directions. In addition, recent evidence is presented, elucidating the role of bitter taste receptors as a possible key factor leading to biofilm formation. PMID:26758863