Science.gov

Sample records for maturity alpha amylase

  1. Grain Development Mutants of Barley ([alpha]-Amylase Production during Grain Maturation and Its Relation to Endogenous Gibberellic Acid Content).

    PubMed Central

    Green, L. S.; Faergestad, E. M.; Poole, A.; Chandler, P. M.

    1997-01-01

    Barley (Hordeum vulgare L. Himalaya) mutants with altered grain morphology were isolated to investigate whether defects in grain development, possibly involving gibberellins (GAs) and abscisic acid, would lead to altered patterns of [alpha]-amylase gene expression. Following treatment with sodium azide, 75 mutants, typically showing grain shriveling, were identified. At grain maturity 15 of the 75 mutants had higher [alpha]-amylase activities in shriveled grains compared with either phenotypically normal grains that developed on the same heterozygous plant or with grains of cv Himalaya. Studies of four of these mutants demonstrated increased levels of both high- and low-isoelectric point [alpha]-amylase isozymes midway through grain development. This category of mutant has been designated pga, for premature grain [alpha]-amylase. One such mutant (M326) showed an endosperm-determined inheritance pattern. When crossed into a (GA-deficient) dwarfing background there was a 10- to 20-fold reduction in [alpha]-amylase activity, suggesting a requirement for GA biosynthesis. Endogenous GAs and abscisic acid were quantified by combined gas chromatography-specific ion monitoring in normal and mutant grains of heterozygous M326 plants during the period of [alpha]-amylase accumulation. Mutant grains had significantly higher (5.8-fold) levels of the bioactive GA1 compared with normal grains but much lower (approximately 10-fold) levels of the 2[beta]-hydroxylated ("inactive") GAs, typical of developing barley grains (e.g. GA8, GA34, GA48). We propose that a reduced extent of 2[beta]-hydroxylation in the mutant grains results in an increased level of GA1, which is responsible for premature [alpha]-amylase gene expression. PMID:12223700

  2. Proteinaceous alpha-amylase inhibitors.

    PubMed

    Svensson, Birte; Fukuda, Kenji; Nielsen, Peter K; Bønsager, Birgit C

    2004-02-12

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous alpha-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological approaches have been outlined for exploitation of the inhibitory function. PMID:14871655

  3. Intracellular alpha-amylase of Streptococcus mutans.

    PubMed

    Simpson, C L; Russell, R R

    1998-09-01

    Sequencing upstream of the Streptococcus mutans gene for a CcpA gene homolog, regM, revealed an open reading frame, named amy, with homology to genes encoding alpha-amylases. The deduced amino acid sequence showed a strong similarity (60% amino acid identity) to the intracellular alpha-amylase of Streptococcus bovis and, in common with this enzyme, lacked a signal sequence. Amylase activity was found only in S. mutans cell extracts, with no activity detected in culture supernatants. Inactivation of amy by insertion of an antibiotic resistance marker confirmed that S. mutans has a single alpha-amylase activity. The amylase activity was induced by maltose but not by starch, and no acid was produced from starch. S. mutans can, however, transport limit dextrins and maltooligosaccharides generated by salivary amylase, but inactivation of amy did not affect growth on these substrates or acid production. The amylase digested the glycogen-like intracellular polysaccharide (IPS) purified from S. mutans, but the amy mutant was able to digest and produce acid from IPS; thus, amylase does not appear to be essential for IPS breakdown. However, when grown on excess maltose, the amy mutant produced nearly threefold the amount of IPS produced by the parent strain. The role of Amy has not been established, but Amy appears to be important in the accumulation of IPS in S. mutans grown on maltose. PMID:9721315

  4. Production of alpha-amylase by yeast

    SciTech Connect

    Thomse, K.K.

    1987-01-01

    The enzyme alpha-amylase confers to an organism the enzymatic activity for the degradation of polyglucosides with alpha-1,4 glycosidic bonds such as starch and glycogen which are among the major storage compounds in plants and animals. Most alpha-amylases are single polypeptides of molecular weights around 50,000 dalton. They are generally found in the digestive tract of animals and in germinating seeds. Among the products released upon enzymatic degradation of polyglucosides maltose, a sugar that can be utilized as carbon source by yeast, is a major constituent. A cDNA segment complementary to mouse salivary amylase messenger RNA has been inserted into the yeast expression vector pMA56 behind the promoter of the gene encoding alcohol dehydrogenase I of yeast. Yeast transformants harboring plasmids with the normal orientation of the promoter and the mouse amylase cDNA gene produce amylase and release the enzyme in free form into the culture medium. Approximately 90% of the amylase activity is found in the medium. Yeast strains carrying MAL allele and transformed with a plasmid which directed the synthesis of mouse alpha-amylase were tested on plates containing starch and in batch fermentations using different high molecular weight sugars and oligosaccharides as carbon source. The results of these experiments will be discussed. (Refs. 21).

  5. Alpha-amylase from the Hyperthermophilic Archaeon Thermococcus thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, E. C. M. J.; Pusey, M. L.; Ng, M. L.; Garriott, O. K.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments such as hot springs. The ability of survival at extreme conditions has rendered enzymes from extremophiles to be of interest in industrial applications. One approach to producing these extremozymes entails the expression of the enzyme-encoding gene in a mesophilic host such as E.coli. This method has been employed in the effort to produce an alpha-amylase from a hyperthermophile (an organism that displays optimal growth above 80 C) isolated from a hydrothermal vent at the Rainbow vent site in the Atlantic Ocean. alpha-amylases catalyze the hydrolysis of starch to produce smaller sugars and constitute a class of industrial enzymes having approximately 25% of the enzyme market. One application for thermostable alpha-amylases is the starch liquefaction process in which starch is converted into fructose and glucose syrups. The a-amylase encoding gene from the hyperthermophile Thermococcus thioreducens was cloned and sequenced, revealing high similarity with other archaeal hyperthermophilic a-amylases. The gene encoding the mature protein was expressed in E.coli. Initial characterization of this enzyme has revealed an optimal amylolytic activity between 85-90 C and around pH 5.3-6.0.

  6. Purification, characterization, and nucleotide sequence of an intracellular maltotriose-producing alpha-amylase from Streptococcus bovis 148.

    PubMed

    Satoh, E; Uchimura, T; Kudo, T; Komagata, K

    1997-12-01

    An intracellular alpha-amylase from Streptococcus bovis 148 was purified and characterized. The enzyme was induced by maltose and soluble starch and produced about 80% maltotriose from soluble starch. Maltopentaose was hydrolyzed to maltotriose and maltose and maltohexaose was hydrolyzed mainly to maltotriose by the enzyme. Maltotetraose, maltotriose, and maltose were not hydrolyzed. This intracellular enzyme was considered to be a maltotriose-producing enzyme. The enzymatic characteristics and hydrolysis product from soluble starch were different from those of the extracellular raw-starch-hydrolyzing alpha-amylase of strain 148. The deduced amino acid sequence of the intracellular alpha-amylase was similar to the sequences of the mature forms of extracellular liquefying alpha-amylases from Bacillus strains, although the intracellular alpha-amylase did not contain a signal peptide. No homology between the intracellular and extracellular alpha-amylases of S. bovis 148 was observed. PMID:9406414

  7. Purification, characterization, and nucleotide sequence of an intracellular maltotriose-producing alpha-amylase from Streptococcus bovis 148.

    PubMed Central

    Satoh, E; Uchimura, T; Kudo, T; Komagata, K

    1997-01-01

    An intracellular alpha-amylase from Streptococcus bovis 148 was purified and characterized. The enzyme was induced by maltose and soluble starch and produced about 80% maltotriose from soluble starch. Maltopentaose was hydrolyzed to maltotriose and maltose and maltohexaose was hydrolyzed mainly to maltotriose by the enzyme. Maltotetraose, maltotriose, and maltose were not hydrolyzed. This intracellular enzyme was considered to be a maltotriose-producing enzyme. The enzymatic characteristics and hydrolysis product from soluble starch were different from those of the extracellular raw-starch-hydrolyzing alpha-amylase of strain 148. The deduced amino acid sequence of the intracellular alpha-amylase was similar to the sequences of the mature forms of extracellular liquefying alpha-amylases from Bacillus strains, although the intracellular alpha-amylase did not contain a signal peptide. No homology between the intracellular and extracellular alpha-amylases of S. bovis 148 was observed. PMID:9406414

  8. A single gene directs synthesis of a precursor protein with beta- and alpha-amylase activities in Bacillus polymyxa.

    PubMed Central

    Uozumi, N; Sakurai, K; Sasaki, T; Takekawa, S; Yamagata, H; Tsukagoshi, N; Udaka, S

    1989-01-01

    The Bacillus polymyxa amylase gene comprises 3,588 nucleotides. The mature amylase comprises 1,161 amino acids with a molecular weight of 127,314. The gene appeared to be divided into two portions by the direct-repeat sequence located at almost the middle of the gene. The 5' region upstream of the direct-repeat sequence was shown to be responsible for the synthesis of beta-amylase. The 3' region downstream of the direct-repeat sequence contained four sequences homologous with those in other alpha-amylases, such as Taka-amylase A. The 48-kilodalton (kDa) amylase isolated from B. polymyxa was proven to have alpha-amylase activity. The amino acid sequences of the peptides generated from the 48-kDa amylase showed complete agreement with the predicted amino acid sequence of the C-terminal portion. The B. polymyxa amylase gene was therefore concluded to contain in-phase beta- and alpha-amylase-coding sequences in the 5' and 3' regions, respectively. A precursor protein, a 130-kDa amylase, directed by a plasmid, pYN520, carrying the entire amylase gene, had both beta- and alpha-amylase activities. This represents the first report of a single protein precursor in procaryotes that gives rise to two enzymes. Images PMID:2464578

  9. Additive-dominance genetic model analyses for late-maturity alpha-amylase activity in a bread wheat factorial crossing population.

    PubMed

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Ibrahim, Amir M H

    2015-12-01

    Elevated level of late maturity α-amylase activity (LMAA) can result in low falling number scores, reduced grain quality, and downgrade of wheat (Triticum aestivum L.) class. A mating population was developed by crossing parents with different levels of LMAA. The F2 and F3 hybrids and their parents were evaluated for LMAA, and data were analyzed using the R software package 'qgtools' integrated with an additive-dominance genetic model and a mixed linear model approach. Simulated results showed high testing powers for additive and additive × environment variances, and comparatively low powers for dominance and dominance × environment variances. All variance components and their proportions to the phenotypic variance for the parents and hybrids were significant except for the dominance × environment variance. The estimated narrow-sense heritability and broad-sense heritability for LMAA were 14 and 54%, respectively. High significant negative additive effects for parents suggest that spring wheat cultivars 'Lancer' and 'Chester' can serve as good general combiners, and that 'Kinsman' and 'Seri-82' had negative specific combining ability in some hybrids despite of their own significant positive additive effects, suggesting they can be used as parents to reduce LMAA levels. Seri-82 showed very good general combining ability effect when used as a male parent, indicating the importance of reciprocal effects. High significant negative dominance effects and high-parent heterosis for hybrids demonstrated that the specific hybrid combinations; Chester × Kinsman, 'Lerma52' × Lancer, Lerma52 × 'LoSprout' and 'Janz' × Seri-82 could be generated to produce cultivars with significantly reduced LMAA level. PMID:26403988

  10. On the mechanism of alpha-amylase.

    PubMed

    Oudjeriouat, Naïma; Moreau, Yann; Santimone, Marius; Svensson, Birte; Marchis-Mouren, Guy; Desseaux, Véronique

    2003-10-01

    Two inhibitors, acarbose and cyclodextrins (CD), were used to investigate the active site structure and function of barley alpha-amylase isozymes, AMY1 and AMY2. The hydrolysis of DP 4900-amylose, reduced (r) DP18-maltodextrin and maltoheptaose (catalysed by AMY1 and AMY2) was followed in the absence and in the presence of inhibitor. Without inhibitor, the highest activity was obtained with amylose, kcat/Km decreased 103-fold using rDP18-maltodextrin and 10(5) to 10(6)-fold using maltoheptaose as substrate. Acarbose is an uncompetitive inhibitor with inhibition constant (L1i) for amylose and maltodextrin in the micromolar range. Acarbose did not bind to the active site of the enzyme, but to a secondary site to give an abortive ESI complex. Only AMY2 has a second secondary binding site corresponding to an ESI2 complex. In contrast, acarbose is a mixed noncompetitive inhibitor of maltoheptaose hydrolysis. Consequently, in the presence of this oligosaccharide substrate, acarbose bound both to the active site and to a secondary binding site. alpha-CD inhibited the AMY1 and AMY2 catalysed hydrolysis of amylose, but was a very weak inhibitor compared to acarbose.beta- and gamma-CD are not inhibitors. These results are different from those obtained previously with PPA. However in AMY1, as already shown for amylases of animal and bacterial origin, in addition to the active site, one secondary carbohydrate binding site (s1) was necessary for activity whereas two secondary sites (s1 and s2) were required for the AMY2 activity. The first secondary site in both AMY1 and AMY2 was only functional when substrate was bound in the active site. This appears to be a general feature of the alpha-amylase family. PMID:14511369

  11. Method for using a yeast alpha-amylase promoter

    DOEpatents

    Gao, Johnway; Skeen, Rodney S.; Hooker, Brian S.; Anderson, Daniel B.

    2003-04-22

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  12. The activity of granulocyte alpha-amylase in acute appendicitis.

    PubMed

    Zakrzewska, I; Gajda, R

    1994-01-01

    The activity of alpha-amylase was measured in isolated granulocytes, serum and urine of 35 patients with acute appendicitis. The measurements were performed before operation and on the 7th day after operation. Slightly increased activity of alpha-amylase was found in the serum and urine of 15 patients. On the 7th day after operation the activity of this enzyme reached normal value. The activity of granulocyte alpha-amylase was elevated in 22 patients. In 2 of them the increased activity still maintained on the 7th day after operation. Positive correlation between the serum and granulocyte alpha-amylase activities was found. These observations allow to conclude that granulocytes are the source of increased alpha-amylase activity in the serum of patients with acute appendicitis. PMID:7497089

  13. alpha. -Amylase of Clostridium thermosulfurogenes EM1: Nucleotide sequence of the gene, processing of the enzyme, and comparison to other. alpha. -amylases

    SciTech Connect

    Bahl, H.; Burchhardt, G.; Spreinat, A.; Haeckel, K.; Wienecke, A.; Antranikian, G.; Schmidt, B. )

    1991-05-01

    The nucleotide sequence of the {alpha}-amylase gene (amyA) from Clostridium thermosulfurogenes EM1 cloned in Escherichia coli was determined. The reading frame of the gene consisted of 2,121 bp. Comparison of the DNA sequence data with the amino acid sequence of the N terminus of the purified secreted protein of C. thermosulfurogenes Em1 suggested that the {alpha}-amylase is translated form mRNA as a secretory precursor with a signal peptide of 27 amino acid residues. The deduced amino acid sequence of the mature {alpha}-amylase contained 679 residues, resulting in a protein with a molecular mass of 75,112 Da. In E. coli the enzyme was transported to the periplasmic space and the signal peptide was cleaved at exactly the same site between two alanine residues. Comparison of the amino acid sequence of the C. thermosulfurogenes EM1 {alpha}-amylase with those from other bacterial and eukaryotic {alpha}-amylases showed several homologous regions, probably in the enzymatically functioning regions. The tentative Ca{sup 2+}-binding site (consensus region I) of this Ca{sub 2+}-independent enzyme showed only limited homology. The deduced amino acid sequence of a second obviously truncated open reading frame showed significant homology to the malG gene product of E. coli. Comparison of the {alpha}-amylase gene region of C. thermosulfurogenes EM1 (DSM3896) with the {beta}-amylase gene region of C. thermosulfurogenes (ATCC 33743) indicated that both genes have been exchanged with each other at identical sites in the chromosomes of these strains.

  14. Alpha-amylase gene transcription in tissues of normal dog.

    PubMed

    Mocharla, H; Mocharla, R; Hodes, M E

    1990-02-25

    We studied the distribution of alpha-amylase mRNA in normal dog tissues by northern blotting (NB) and reverse transcription-polymerase chain reaction (RT-PCR) with human pancreatic (AMY2) and salivary (AMY1) alpha-amylase cDNA-specific primers. Analysis of poly(A+) RNA from various normal tissues by NB indicated the presence of detectable levels of alpha-amylase mRNA transcripts only in pancreas. Dot-blot analysis of DNA amplified with primers common to both (human) isoamylase mRNAs showed presence of alpha-amylase gene transcripts not only in pancreas but also in liver, small intestine, large intestine and fallopian tube. Traces of amylase gene transcripts were also observed in ovary, uterus and lung. Interestingly, amylase transcripts were not detectable in the parotid gland by NB or RT-PCR. We have also localized alpha-amylase mRNA transcripts to dog pancreas by in situ transcription and in situ hybridization. Our results suggest that there is high degree of homology between the alpha-amylase mRNA sequences in dog and human at least in the exon 3-4 regions of the human gene. PMID:2315015

  15. Classification and evolution of alpha-amylase genes in plants.

    PubMed

    Huang, N; Stebbins, G L; Rodriguez, R L

    1992-08-15

    The DNA sequences for 17 plant genes for alpha-amylase (EC 3.2.1.1) were analyzed to determine their phylogenetic relationship. A phylogeny for these genes was obtained using two separate approaches, one based on molecular clock assumptions and the other based on a comparison of sequence polymorphisms (i.e., small and localized insertions) in the alpha-amylase genes. These polymorphisms are called "alpha-amylase signatures" because they are diagnostic of the gene subfamily to which a particular alpha-amylase gene belongs. Results indicate that the cereal alpha-amylase genes fall into two major classes: AmyA and AmyB. The AmyA class is subdivided into the Amy1 and Amy2 subfamilies previously used to classify alpha-amylase genes in barley and wheat. The AmyB class includes the Amy3 subfamily to which most of the alpha-amylase genes of rice belong. Using polymerase chain reaction and oligonucleotide primers that flank one of the two signature regions, we show that the AmyA and AmyB gene classes are present in approximately equal amounts in all grass species examined except barley. The AmyB (Amy3 subfamily) genes in the latter case are comparatively underrepresented. Additional evidence suggests that the AmyA genes appeared recently and may be confined to the grass family. PMID:1502164

  16. THE CELL-BOUND ALPHA-AMYLASES OF STREPTOCOCCUS BOVIS.

    PubMed

    WALKER, G J

    1965-02-01

    1. The cell-bound alpha-amylase of Streptococcus bovis has been isolated from other carbohydrases in the cell extract by chromatography on DEAE-cellulose. The enzyme has been compared with the extracellular alpha-amylase produced by this organism. 2. The two amylases had similar action patterns on amylose, the main product being maltotriose with smaller amounts of maltose and a little glucose. 3. The cell-bound amylase hydrolysed maltopentaose and maltohexaose at a similar rate to the hydrolysis of amylose. Maltotetraose was hydrolysed six times more slowly, and maltotriose 280 times more slowly, than amylose. 4. Studies with end-labelled maltodextrins revealed that the cell-bound alpha-amylase preferentially hydrolysed the third linkage from the non-reducing end, liberating maltotriose. The linkage at the reducing end of maltotriose was more easily hydrolysed than the other. 5. Egg-white lysozyme and the extracellular enzymes of Streptomyces albus lysed the cell walls of Streptococcus bovis, releasing amylase into the medium. In the presence of 0.6 m-sucrose 10% of the maximal amylase activity was released by lysozyme. Suspension of the spheroplasts in dilute buffer caused the rupture of the cytoplasmic membrane and the liberation of amylase. 6. A sensitive method for determining the ability of amylases to degrade starch granules is described. PMID:14346085

  17. Protein structures of common bean (Phaseolus vulgaris) alpha-amylase inhibitors.

    PubMed

    Lee, Shih-Chieh; Gepts, Paul L; Whitaker, John R

    2002-10-23

    Two nucleotide sequences for genes that encode alpha-amylase inhibitor 4 (alphaAI-4) from white kidney bean (WKB) cv. 858, designated gene alphaAI-4 (Accession No. ), and alpha-amylase inhibitor 5 (alphaAI-5) from black bean (BB), designated gene alphaAI-5 (Accession No. ), were determined. Genes alphaAI-4 and alphaAI-5 encode 244 amino acid prepro-alphaAI-4 and prepro-alphaAI-5 polypeptides that are 93 and 95% identical with alpha-amylase inhibitor l (alphaAI-l; Hoffman, L. M.; Ma, Y.; Barker, R. F. Nucleic Acids Res. 1982, 10, 7819-7828), 40 and 43% identical with red kidney bean lectin, and 52 and 55% identical with arcelin l of wild-type bean. The high degree of sequence similarity indicates the evolutionary relationship among these genes. PCR analysis of genomic DNA purified from six genotypes of Phaseolus vulgaris showed very similar band patterns in 2% agarose gel, another indication of the conserved size homology among these genes. Proteolytic processing sites were located between Asn77 and Ser78 for pro-alphaAI-4 and pro-alphaAI-5. A bend next to Asn77 in three-dimensional model structures of alphaAI-4 and alphaAI-5 proinhibitors indicates that the proteolytic cleavage is necessary to remove the conformational constraint for activation to the mature protein. Mature WKB alphaAI-4 was composed of four subunits (2alpha2beta) and had a molecular weight of 50000 determined by multiangle laser light scattering and 56714 determined by laser-assisted time-of-flight mass spectrometry. PMID:12381161

  18. A chimera-like alpha-amylase inhibitor suggesting the evolution of Phaseolus vulgaris alpha-amylase inhibitor.

    PubMed

    Wato, S; Kamei, K; Arakawa, T; Philo, J S; Wen, J; Hara, S; Yamaguchi, H

    2000-07-01

    White kidney bean (Phaseolus vulgaris) contains two kinds of alpha-amylase inhibitors, one heat-stable (alpha AI-s) and one heat-labile (alpha AI-u). alpha AI-s has recently been revealed to be a tetrameric complex, alpha(2)beta(2), with two active sites [Kasahara et al. (1996) J. Biochem. 120, 177-183]. The present study was undertaken to reveal the molecular features of alpha AI-u, which is composed of three kinds of subunits, alpha, beta, and gamma. The gamma-subunit, in contrast to the alpha- and beta-subunits that are indistinguishable from the alpha- and beta-subunits of alpha AI-s, was found to correspond to a subunit of an alpha-amylase inhibitor-like protein, which has been identified as an inactive, evolutionary intermediate between arcelin and the alpha-amylase inhibitor in a P. vulgaris defense protein family. The polypeptide molecular weight of alpha AI-u determined by the light-scattering technique, together with the polypeptide molecular weights of the subunits, suggests that alpha AI-u is a trimeric complex, alpha beta gamma. The inhibition of alpha AI-u by increasing amounts of porcine pancreatic alpha-amylase (PPA) indicates that an inactive 1:1 complex is formed between alpha AI-u and PPA. Molecular weight estimation of the complex by the light-scattering technique confirmed that it is a complex of alpha AI-u with one PPA molecule. Thus it seems probable that alpha AI-u is an evolutionary intermediate of the P. vulgaris alpha-amylase inhibitor. PMID:10876168

  19. Characterization of salivary alpha-amylase binding to Streptococcus sanguis

    SciTech Connect

    Scannapieco, F.A.; Bergey, E.J.; Reddy, M.S.; Levine, M.J. )

    1989-09-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase was the prominent salivary component eluted from S. sanguis. Studies with {sup 125}I-labeled HSMSL or {sup 125}I-labeled HPS also demonstrated a component with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of ({sup 125}I)alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch.

  20. Characterization of salivary alpha-amylase binding to Streptococcus sanguis.

    PubMed Central

    Scannapieco, F A; Bergey, E J; Reddy, M S; Levine, M J

    1989-01-01

    The purpose of this study was to identify the major salivary components which interact with oral bacteria and to determine the mechanism(s) responsible for their binding to the bacterial surface. Strains of Streptococcus sanguis, Streptococcus mitis, Streptococcus mutans, and Actinomyces viscosus were incubated for 2 h in freshly collected human submandibular-sublingual saliva (HSMSL) or parotid saliva (HPS), and bound salivary components were eluted with 2% sodium dodecyl sulfate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western transfer, alpha-amylase (EC 3.2.1.1) was the prominent salivary component eluted from S. sanguis. Studies with 125I-labeled HSMSL or 125I-labeled HPS also demonstrated a component with an electrophoretic mobility identical to that of alpha-amylase which bound to S. sanguis. Purified alpha-amylase from human parotid saliva was radiolabeled and found to bind to strains of S. sanguis genotypes 1 and 3 and S. mitis genotype 2, but not to strains of other species of oral bacteria. Binding of [125I]alpha-amylase to streptococci was saturable, calcium independent, and inhibitable by excess unlabeled alpha-amylases from a variety of sources, but not by secretory immunoglobulin A and the proline-rich glycoprotein from HPS. Reduced and alkylated alpha-amylase lost enzymatic and bacterial binding activities. Binding was inhibited by incubation with maltotriose, maltooligosaccharides, limit dextrins, and starch. Images PMID:2788139

  1. Some studies of alpha-amylase production using Aspergillus oryzae.

    PubMed

    Esfahanibolandbalaie, Z; Rostami, K; Mirdamadi, S S

    2008-11-15

    The extracellular alpha-amylase production by Aspergillus oryzae was studied in submerged fermentation using an Adlof-Kuhner orbital shaker. The effect of initial pH values in the range of 4 to 7.5 on enzyme production was investigated and initial pH medium of 6.2 +/- 0.1 resulted in enhanced alpha-amylase production. The effect of carbon and nitrogen source and composition was examined and it has been observed that corn starch concentration of 15 g L(-1) has sound effect on enzyme production. The medium containing corn starch, sodium nitrate resulted in considerable higher enzyme production. Further, the yeast extract of 2.5 g L(-1) in the medium produced higher enzyme in view to other organic nitrogen sources. The effect of temperature on alpha-amylase production from 20 to 40 degrees C has been studied and at 35 +/- 1 degrees C higher alpha-amylase has been obtained. The effect of shaker's speed on alpha-amylase production from 50 to 200 rpm was investigated. And at about 180 rpm higher enzyme production has been observed. In the present study, it has been found that glucose has repressing effect on a-amylase production using A. oryzae PTCC5164. PMID:19260332

  2. Alcoholysis reactions from starch with alpha-amylases.

    PubMed

    Santamaría, R I; Del Río, G; Saab, G; Rodríguez, M E; Soberón, X; López-Manguía, A

    1999-06-11

    The ability of alpha-amylases from different sources to carry out reactions of alcoholysis was studied using methanol as substrate. It was found that while the enzymes from Aspergillus niger and Aspergillus oryzae, two well-studied saccharifying amylases, are capable of alcoholysis reactions, the classical bacterial liquefying alpha-amylases from Bacillus licheniformis and Bacillus stearothermophilus are not. The effect of starch and methanol concentration, temperature and pH on the synthesis of glucosides with alpha-amylase from A. niger was studied. Although methanol may inactivate alpha-amylase, a 90% substrate relative conversion can be obtained in 20% methanol at a high starch concentration (15% w/v) due to a stabilizing effect of starch on the enzyme. As the products of alcoholysis are a series of methyl-oligosaccharides, from methyl-glucoside to methyl-hexomaltoside, alcoholysis was indirectly quantified by high performance liquid chromatography analysis of the total methyl-glucoside produced after the addition of glucoamylase to the alpha-amylase reaction products. More alcoholysis was obtained from intact soluble starch than with maltodextrins or pre-hydrolyzed starch. The biotechnological implications of using starch as substrate for the production of alkyl-glucosides is analyzed in the context of these results. PMID:10386619

  3. Effect of chemicals on fungal alpha-amylase activity.

    PubMed

    Ali, F S; Abdel-Moneim, A A

    1989-01-01

    The effect of 8 growth regulators at concentrations of 1,000, 5,000 and 10,000 ppm on the activity of fungal (Aspergillus flavus var. columnaris) alpha-amylase was studied. Indol acetic acid (IAA) and naphthalene acetic acid (NAA) inhibited alpha-amylase activity by 2% and 7% at 1,000 ppm. The other 6 growth regulators, indol butyric acid (IBA), gibberellic acid, cumarin, cycocel (CCC), atonik-G and kylar, did not inhibit but stimulated alpha-amylase activity (0 to 9%) at 1,000 ppm. All growth regulators studied inhibited alpha-amylase activity at 5,000 and 10,000 ppm concentration except kylar. The effect of organic acids and formaldehyde at 0.01, 0.005, and 0.001 M was studied. Acetic acid stimulated alpha-amylase at all concentrations, but formic acid, oxalic acid, lactic acid and citric acid inhibited alpha-amylase activity by 91, 100, 100 and 79%, respectively, at a concentration of 0.01 M, while by 31, 100, 15 and 20%, respectively, at 0.005 M. Formaldehyde induced 7, 3 and 2% inhibition at 0.01, 0.005 and 0.001 M, respectively. At 0.01 M either sorbitol or fructose inhibited alpha-amylase by 8%, Maltose 7%, sucrose 6%, phenol, glucose and galactose each by 5%, ethanol, glycerol, arabinose and sodium benzoate each by 4%, isopropanol and mannitol 1%, but methanol and ammonium citrate dibasic did not inhibit alpha-amylase. The results indicate that CuCl2, SnCl2, AgNO3 and Fe2(SO4)3 were the strongest inhibitors, followed by Cd(C2H3O2), HgCl2, Na2-EDTA, Na2HPO4, and CaCl2 in decreasing order. NaCl, NaBr and Mn SO4 did not inhibit alpha-amylase at concentrations from 10 mM to 0.01 mM. PMID:2515680

  4. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    NASA Astrophysics Data System (ADS)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  5. Activation of bean (Phaseolus vulgaris) [alpha]-amylase inhibitor requires proteolytic processing of the proprotein

    SciTech Connect

    Pueyo, J.J.; Hunt, D.C.; Chrispeels, M.J. )

    1993-04-01

    Seeds of the common bean (Phaseolus vulgaris) contain a plant defense protein that inhibits the [alpha]-amylases of mammals and insects. This [alpha]-amylase inhibitor ([alpha]Al) is synthesized as a proprotein on the endoplasmic reticulum and is proteolytically processed after arrival in the protein storage vacuoles to polypeptides of relative molecular weight (M[sub r]) 15,000 to 18,000. The authors report two types of evidence that proteolytic processing is linked to activation of the inhibitory activity. First, by surveying seed extracts of wild accessions of P. vulgaris and other species in the genus Phaseolus, they found that antibodies to [alpha]Al recognize large (M[sub r] 30,000-35,000) polypeptides as well as typical [alpha]Al processing products (M[sub r] 15,000-18,000). [alpha]Al activity was found in all extracts that had the typical [alpha]Al processed polypeptides, but was absent from seed extracts that lacked such polypeptides. Second, they made a mutant [alpha]Al in which asparagine-77 is changed to aspartic acid-77. This mutation slows down the proteolytic processing of pro-[alpha]Al when the gene is expressed in tobacco. When pro-[alpha]Al was separated from mature [alpha]Al by gel filtration, pro-[alpha]Al was found not to have [alpha]-amylase inhibitory activity. The authors interpret these results to mean that formation of the active inhibitor is causally related to proteolytic processing of the proprotein. They suggest that the polypeptide cleavage removes a conformation constraint on the precursor to produce the biochemically active molecule. 43 refs., 5 figs., 1 tab.

  6. Activation of bean (Phaseolus vulgaris) alpha-amylase inhibitor requires proteolytic processing of the proprotein.

    PubMed Central

    Pueyo, J J; Hunt, D C; Chrispeels, M J

    1993-01-01

    Seeds of the common bean (Phaseolus vulgaris) contain a plant defense protein that inhibits the alpha-amylases of mammals and insects. This alpha-amylase inhibitor (alpha AI) is synthesized as a proprotein on the endoplasmic reticulum and is proteolytically processed after arrival in the protein storage vacuoles to polypeptides of relative molecular weight (M(r)) 15,000 to 18,000. We report two types of evidence that proteolytic processing is linked to activation of the inhibitory activity. First, by surveying seed extracts of wild accessions of P. vulgaris and other species in the genus Phaseolus, we found that antibodies to alpha AI recognize large (M(r) 30,000-35,000) polypeptides as well as typical alpha AI processing products (M(r) 15,000-18,000). Alpha AI activity was found in all extracts that had the typical alpha AI processed polypeptides, but was absent from seed extracts that lacked such polypeptides. Second, we made a mutant alpha AI in which asparagine-77 is changed to aspartic acid-77. This mutation slows down the proteolytic processing of pro-alpha AI when the gene is expressed in tobacco. When pro-alpha AI was separated from mature alpha AI by gel filtration, pro-alpha AI was found not to have alpha-amylase inhibitory activity. We interpret these results to mean that formation of the active inhibitor is causally related to proteolytic processing of the proprotein. We suggest that the polypeptide cleavage removes a conformational constraint on the precursor to produce the biochemically active molecule. PMID:8310064

  7. Optimization of alpha-amylase application in raw sugar manufacture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some U.S. refineries that there may be a penalty for high starch concentration sin raw sugar if starch control is not improved. Most commercial alpha-amylases used by the U.S. sugar industry to control starch have intermediate temperature stability (up to...

  8. Genetics of alpha-amylases in hexaploid oat species.

    PubMed

    Sharopova, N R; Portyanko, V A; Sozinov, A A

    1998-06-01

    The inheritance of alpha-amylases was studied in six F2 populations of hexaploid oats (Avena sativa, A. byzantina, A. fatua, A. sterillis) using polyacrylamide gel electrophoresis. A total of 22 loci was identified and described. Three main linkages of four or five loci each and an additional two pairs of linked loci were detected. It seems likely that the three main linkage groups represent homeologous chromosomes. Matching of alpha-amylase profiles of hexaploid (AACCDD), tetraploid (AACC), and diploid (AA) species was made to assign the linkage groups to particular subgenomes in the hexaploid oat. It was proposed that Linkage 1 (Amy12-Amy10-1-Amy4-Amy13-Amy11) belongs to the D-subgenome; Linkage 2 (Amy10-2, Amy9-Amy8-Amy6) belongs to the A-subgenome; and Linkage 3 (Amy7-Amy3-Amy5-Amy2) belongs to the C-subgenome of the hexaploid oat. The "malt" and "green" alpha-amylases in hexaploid and tetraploid oats have been identified. Isozymes of "green" alpha-amylase were lower in electrophoretic mobility than other isozymes and were governed by loci assigned to the A- and D-subgenomes. PMID:9775349

  9. Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-glucosidase.

    PubMed

    McDougall, Gordon J; Shpiro, Faina; Dobson, Patricia; Smith, Pauline; Blake, Alison; Stewart, Derek

    2005-04-01

    Polyphenol-rich extracts from soft fruits were tested for their ability to inhibit alpha-amylase and alpha-glucosidase. All extracts tested caused some inhibition of alpha-amylase, but there was a 10-fold difference between the least and most effective extracts. Strawberry and raspberry extracts were more effective alpha-amylase inhibitors than blueberry, blackcurrant, or red cabbage. Conversely, alpha-glucosidase was more readily inhibited by blueberry and blackcurrant extracts. The extent of inhibition of alpha-glucosidase was related to their anthocyanin content. For example, blueberry and blackcurrant extracts, which have the highest anthocyanin content, were the most effective inhibitors of alpha-glucosidase. The extracts most effective in inhibiting alpha-amylase (strawberry and raspberry) contain appreciable amounts of soluble tannins. Other tannin-rich extracts (red grape, red wine, and green tea) were also effective inhibitors of alpha-amylase. Indeed, removing tannins from strawberry extracts with gelatin also removed inhibition. Fractionation of raspberry extracts on Sephadex LH-20 produced an unbound fraction enriched in anthocyanins and a bound fraction enriched in tannin-like polyphenols. The unbound anthocyanin-enriched fraction was more effective against alpha-glucosidase than the original extract, whereas the alpha-amylase inhibitors were concentrated in the bound fraction. The LH-20 bound sample was separated by preparative HPLC, and fractions were assayed for inhibition of alpha-amylase. The inhibitory components were identified as ellagitannins using LC-MS-MS. This study suggests that different polyphenolic components of fruits may influence different steps in starch digestion in a synergistic manner. PMID:15796622

  10. Clinical and immunological responses to occupational exposure to alpha-amylase in the baking industry.

    PubMed Central

    Brisman, J; Belin, L

    1991-01-01

    alpha-Amylase is a starch cleaving enzyme often used in the baking industry as a flour additive. It is usually of fungal origin, produced by Aspergillus oryzae. One previous report has shown IgE antibodies and positive skin prick test against alpha-amylase in asthmatic bakers. This paper describes four alpha-amylase sensitised index cases with occupational asthma or rhinitis and the results of a cross sectional study of 20 workers from the same factory who were also exposed to alpha-amylase powder. Air sampling detected airborne alpha-amylase at a concentration of 0.03 mg/m3. Significantly more work related symptoms such as rhinitis and dermatitis were found among the alpha-amylase exposed workers compared with referents. A skin prick test to alpha-amylase was positive in 30% (6/20) of the exposed workers. Most of the persons showing a positive skin prick test had work related symptoms and were also skin prick test positive to common allergens. Nasal challenge tests with amylase were performed in selected cases and validated three cases of alpha-amylase induced rhinitis. Two non-symptomatic workers had precipitins to alpha-amylase. Specific IgG antibodies were shown by two further serological techniques. The nature and relevance of these antibodies are currently being studied. It is concluded that alpha-amylase powder is a potent occupational sensitiser. Precautions should be taken when handling this allergenic enzyme. PMID:1832939

  11. Clinical and immunological responses to occupational exposure to alpha-amylase in the baking industry.

    PubMed

    Brisman, J; Belin, L

    1991-09-01

    alpha-Amylase is a starch cleaving enzyme often used in the baking industry as a flour additive. It is usually of fungal origin, produced by Aspergillus oryzae. One previous report has shown IgE antibodies and positive skin prick test against alpha-amylase in asthmatic bakers. This paper describes four alpha-amylase sensitised index cases with occupational asthma or rhinitis and the results of a cross sectional study of 20 workers from the same factory who were also exposed to alpha-amylase powder. Air sampling detected airborne alpha-amylase at a concentration of 0.03 mg/m3. Significantly more work related symptoms such as rhinitis and dermatitis were found among the alpha-amylase exposed workers compared with referents. A skin prick test to alpha-amylase was positive in 30% (6/20) of the exposed workers. Most of the persons showing a positive skin prick test had work related symptoms and were also skin prick test positive to common allergens. Nasal challenge tests with amylase were performed in selected cases and validated three cases of alpha-amylase induced rhinitis. Two non-symptomatic workers had precipitins to alpha-amylase. Specific IgG antibodies were shown by two further serological techniques. The nature and relevance of these antibodies are currently being studied. It is concluded that alpha-amylase powder is a potent occupational sensitiser. Precautions should be taken when handling this allergenic enzyme. PMID:1832939

  12. Action of human pancreatic and salivary alpha-amylases on maltooligosaccharides: evaluation of kinetic parameters.

    PubMed

    Saito, N; Horiuchi, T; Yoshida, M; Imai, T

    1979-10-01

    The kinetic studies on the reactions of human pancreatic and salivary alpha-amylases with several maltooligosaccharides (maltotetraose, maltopentaose, maltohexaose, and maltoheptaose) were carried out. The susceptibility to hydrolysis with human pancreatic alpha-amylase decreased in the order of maltopentaose, maltohexaose, maltotetraose, and maltoheptaose, while with human salivary alpha-amylase maltopentaose was hydrolysed slightly slower than maltohexaose but fairly faster than maltotetraose or maltoheptaose from a viewpoint of the rates of reactions based on the amount of substrate changed. The relative rates of production of substrates, utilized in the coupled yeast alpha-glucosidase reaction, increased in the order of maltoheptaose, maltohexaose, maltotetraose, and maltopentaose with human pancreatic alpha-amylase, while with human salivary alpha-amylase in the order of maltoheptaose, maltotetraose, maltohexaose, and maltopentaose. Thus, maltopentaose was considered to be the best substrate over maltotetraose, maltohexaose or maltoheptaose for the alpha-glucosidase coupled method of alpha-amylase determination. PMID:385176

  13. Characterization of the L. manihotivorans alpha-amylase gene.

    PubMed

    Morlon-Guyot, J; Mucciolo-Roux, F; Rodriguez Sanoja, R; Guyot, J P

    2001-07-01

    Primers and probes were established from the sequences of the alpha-amylase genes (amyA) of L. amylovorus CIP 102989 and of L. plantarum A6 (Giraud and Cuny 1997). They were successfully used for the detection of the amyA gene in L. manihotivorans strain LMG 18010T and a 2842 bp region, containing the entire gene (2706 bp) with its putative promoter has been sequenced. More than 98% nucleotide sequence identities was found with L. amylovorus and L. plantarum amyA genes. The deduced amino acid sequence shares more than 96% amino acid sequence identities with L. amylovorus and L. plantarum alpha-amylases, and also 65% and 59% identities with the alpha-amylases of B. subtilis and S. bovis, respectively. The 3' terminal part of L. manihotivorans LMG 18010T amyA gene contained four repeated sequences (SRU). The amyA genes of the three lactobacilli species differed mainly in the number of SRU and in the size of the flanking regions of the SRU. PMID:11697143

  14. Thermal stability of alpha-amylase in aqueous cosolvent systems.

    PubMed

    Yadav, Jay Kant; Prakash, V

    2009-09-01

    The activity and thermal stability of alpha-amylase were studied in the presence of different concentrations of trehalose, sorbitol, sucrose and glycerol. The optimum temperature of the enzyme was found to be 50 +/- 2 degrees C. Further increase in temperature resulted in irreversible thermal inactivation of the enzyme. In the presence of cosolvents, the rate of thermal inactivation was found to be significantly reduced. The apparent thermal denaturation temperature (Tm) app and activation energy (Ea) of alpha-amylase were found to be significantly increased in the presence of cosolvents in a concentration-dependent manner. In the presence of 40% trehalose, sorbitol, sucrose and glycerol, increments in the (Tm)app were 20 degrees C, 14 degrees C, 13 degrees C and 9 degrees C, respectively. The Ea of thermal denaturation of alpha-amylase in the presence of 20% (w/v) trehalose, sorbitol, sucrose and glycerol was found to be 126, 95, 90 and 43 kcal/mol compared with a control value of 40 kcal/mol. Intrinsic and 8-anilinonaphathalene-1-sulphonic acid (ANS) fluorescence studies indicated that thermal denaturation of the enzyme was accompanied by exposure of the hydrophobic cluster on the protein surface. Preferential interaction parameters indicated extensive hydration of the enzyme in the presence of cosolvents. PMID:19805899

  15. Location of the alpha-amylase gene in rumen Streptococcus bovis strains distinguished by unstable amylase activity.

    PubMed

    Mareková, M; Jonecová, Z; Kmeĭ, V

    1995-01-01

    Genetic stability of amylase activity after serial subcultivation experiments with amylolytic ruminal Streptococcus bovis strains was investigated. Two strains Amy+ and Amy- were obtained. Loss of amylase activity connected with the loss of plasmid DNA was not found in these strains. The presence of the gene responsible for the amylase activity in the chromosome of these strains was revealed by hybridization of the alpha-amylase gene on pJK108 against chromosomal DNA of S. bovis and Bacillus subtilis after a complete restriction with EcoRI. PMID:8851562

  16. Circadian rhythm of alpha-amylase in rat parotid gland.

    PubMed

    Bellavía, S L; Sanz, E G; Chiarenza, A P; Sereno, R; Vermouth, N T

    1990-01-01

    The circadian rhythm of alpha-amylase, E.C. 3.2.1.1. (alpha-1,4-glucan-4-glucanohydrolase) in parotid gland of 25 day old rats was studied under different experimental conditions (fast, reversed photoperiod, constant light or darkness and treatment with reserpine and alpha-methyl-p-tyrosine). The rhythm of rats fasted or exposed for 7 days to constant darkness did not change. There were modifications in the rhythm of rats submitted to a reversed photoperiod and it disappeared in animals submitted to constant light or darkness for 15 days or treated with reserpine or alpha-methyl-p-tyrosine. The rhythm persisted, with minor changes in the acrophase, in parotids of rats kept during their gestation and post-natal life in constant light or darkness. Results suggest that the circadian rhythm of alpha-amylase in parotid gland of young rats is endogenous, synchronized by the photoperiod, under autonomous nervous system control and maternal coordination. This model appears to be useful in the study of sympathetic nervous system control of target organs and circadian rhythms in general. PMID:2076161

  17. [The contribution of different alpha-amylase isoenzymes of the commodity grain spring wheat in the formation of falling number values].

    PubMed

    Mamytova, N S; Kuzovlev, V A; Khakimzhanov, A A; Fursov, O V

    2014-01-01

    The participation of various isoenzymes of alpha-amylase in the formation of falling number values of the commodity grain of wheat grown in the Republic of Kazakhstan was investigated. It was found that active isoenzymes alpha-AMY1 and alpha-AMY2 of the embryonic shield were present in the grain with an index over 200. A significant decrease in the falling number depended mainly on the synthesis of alpha-AMY1 and alpha-AMY2 isoenzymes in the aleurone layer. In the grain, isoenzymes with high isoelectric points (p1 > or = 7.3) were found; these isoenzymes belong to alpha-amylase or late maturing or alpha-amylase of practically mature grains. It was discovered that the exogenous hormone (gibberellic acid) induced synthesis of alpha-amylase isoenzymes of scutellum, whole caryopses, and aleurone. It was shown that the impact of exogenous gibberellic acid on the activity and structure of alpha-amylase is reduced in grain with a low falling number. PMID:25707111

  18. Isomaltose formed by alpha-glucosidases triggers amylase induction in Aspergillus nidulans.

    PubMed

    Kato, Naoki; Murakoshi, Yuriko; Kato, Masashi; Kobayashi, Tetsuo; Tsukagoshi, Norihiro

    2002-10-01

    Among various alpha-glucobioses examined, isomaltose was the most effective inducer for amylase synthesis in Aspergillus nidulans. Amylase induction by maltose was completely inhibited by addition of castanospermine or cycloheximide, while induction by isomaltose was not affected by the inhibitors, suggesting that amylase induction by maltose requires inducible alpha-glucosidases. Disruption of the alpha-glucosidase A gene ( agdA), the alpha-glucosidase B gene ( agdB), or both genes did not abolish maltose-dependent induction, although amylase production induced by maltose decreased about 2-fold in the agdA/ agdB double disruptant, compared with that in the agdB disruptant at all concentrations tested. Upon induction by isomaltose, amylase synthesis was enhanced considerably in the agdB and agdA/ agdB disruptants. Even at 3 nM, isomaltose induced amylase production in the double disruptant, supporting the suggestion that isomaltose is a physiological inducer for amylase. Therefore, maltose must be converted to isomaltose by alpha-glucosidases prior to triggering amylase synthesis, but no specific alpha-glucosidase is required for amylase induction by maltose. Probably any alpha-glucosidases having isomaltose-forming activity, including AgdA and AgdB, may participate in amylase induction by maltose. PMID:12420145

  19. Cloning and expression of Lipomyces starkeyi alpha-amylase in Escherichia coli and determination of some of its properties.

    PubMed

    Kang, Hee Kyoung; Lee, Jin Ha; Kim, Doman; Day, Donal F; Robyt, John F; Park, Kwan-Hwa; Moon, Tae-Wha

    2004-04-01

    The Lipomyces starkeyi alpha-amylase (LSA) gene encoding soluble starch-degrading alpha-amylase was cloned and characterized from a derepressed and partially constitutive mutant for both dextranase and amylase activities. The nucleotide (nt) sequence of the cDNA fragment reveals an open reading frame of 1944 bp encoding a 619 amino acid (aa) mature protein (LSA) with a calculated molecular weight of 68.709 kDa that was estimated to be about 73 kDa, including His tag (4 kDa) based on SDS-PAGE (10% acrylamide gel), activity staining, and the Western blotting, using anti-amylase-Ab. LSA had a sequence similar to other alpha-amylases in four conserved regions of the alpha-amylase family: (I) (287)DIVVNH(292), (II) (372)GLRIDTVKH(380), (III) (399)GEVFD(403), (IV) (462)FLENQD(467). Polymerase chain reaction and sequence analysis showed one intron of 60 nucleotides in the genomic lsa at positions between 966 and 967 of cDNA. The cloned LSA amylase showed a maximum activity at pH 6 and optimum temperature of 40 (o)C, with greater than 90% stability between pH 5 and pH 8 for 16 h. It was inhibited by Cu(2+) and stimulated by Ca(2+) and Mg(2+). Enzyme activity was not affected by 1 mM EGTA but was inhibited by 1 mM EDTA. LSA did not hydrolyze maltodextrins of G2 to G4, yet formed G2+G3 from G5, G2+G4 or G3+G3 from G6, and G3+G4 from G7. LSA did not hydrolyze soluble starch in the present of 2% (w/v) of acarbose. Kinetics of LSA was carried out by using starch as a substrate and the inhibition type of acarbose was the mixed non-competitive type (ki = 3.4 microM). PMID:15043869

  20. Protein engineering in the alpha-amylase family: catalytic mechanism, substrate specificity, and stability.

    PubMed

    Svensson, B

    1994-05-01

    Most starch hydrolases and related enzymes belong to the alpha-amylase family which contains a characteristic catalytic (beta/alpha)8-barrel domain. Currently known primary structures that have sequence similarities represent 18 different specificities, including starch branching enzyme. Crystal structures have been reported in three of these enzyme classes: the alpha-amylases, the cyclodextrin glucanotransferases, and the oligo-1,6-glucosidases. Throughout the alpha-amylase family, only eight amino acid residues are invariant, seven at the active site and a glycine in a short turn. However, comparison of three-dimensional models with a multiple sequence alignment suggests that the diversity in specificity arises by variation in substrate binding at the beta-->alpha loops. Designed mutations thus have enhanced transferase activity and altered the oligosaccharide product patterns of alpha-amylases, changed the distribution of alpha-, beta- and gamma-cyclodextrin production by cyclodextrin glucanotransferases, and shifted the relative alpha-1,4:alpha-1,6 dual-bond specificity of neopullulanase. Barley alpha-amylase isozyme hybrids and Bacillus alpha-amylases demonstrate the impact of a small domain B protruding from the (beta/alpha)8-scaffold on the function and stability. Prospects for rational engineering in this family include important members of plant origin, such as alpha-amylase, starch branching and debranching enzymes, and amylomaltase. PMID:8018865

  1. Crystal and molecular structure of barley alpha-amylase.

    PubMed

    Kadziola, A; Abe, J; Svensson, B; Haser, R

    1994-05-27

    The three-dimensional structure of barley malt alpha-amylase (isoform AMY2-2) was determined by multiple isomorphous replacement using three heavy-atom derivatives and solvent flattening. The model was refined using a combination of simulated annealing and conventional restrained least-squares crystallographic refinement to an R-factor of 0.153 based on 18,303 independent reflections with F(o) > sigma(F(o)) between 10 and 2.8 A resolution, with root-mean-square deviations of 0.016 A and 3.3 degrees from ideal bond lengths and bond angles, respectively. The final model consists of 403 amino acid residues, three calcium ions and 153 water molecules. The polypeptide chain folds into three domains: a central domain forming a (beta alpha)8-barrel of 286 residues, with a protruding irregular structured loop domain of 64 residues (domain B) connecting strand beta 3 and helix alpha 3 of the barrel, and a C-terminal domain of 53 residues forming a five stranded anti-parallel beta-sheet. Unlike the previously known alpha-amylase structures, AMY2-2 contains three Ca2+ binding sites co-ordinated by seven or eight oxygen atoms from carboxylate groups, main-chain carbonyl atoms and water molecules, all calcium ions being bound to domain B and therefore essential for the structural integrity of that domain. Two of the Ca2+ sites are located only 7.0 A apart with one Asp residue serving as ligand for both. One Ca2+ site located at about 20 A from the other two was found to be exchangeable with Eu3+. By homology with other alpha-amylases, some important active site residues are identified as Asp179, Glu204 and Asp289, and are situated at the C-terminal end of the central beta-barrel. A starch granule binding site, previously identified as Trp276 and Trp277, is situated on alpha-helix 6 in the central (beta alpha)8-barrel, at the surface of the enzyme. This binding site region is associated with a considerable disruption of the (beta alpha)8-barrel 8-fold symmetry. PMID:8196040

  2. Oligosaccharide binding to barley alpha-amylase 1.

    PubMed

    Robert, Xavier; Haser, Richard; Mori, Haruhide; Svensson, Birte; Aghajari, Nushin

    2005-09-23

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough insight into the substrate binding by describing residues defining 9 subsites, namely -7 through +2. These structures support that the pseudotetrasaccharide inhibitor acarbose is hydrolyzed by the active enzymes. Moreover, sugar binding was observed to the starch granule-binding site previously determined in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site was proposed at the glycone part of the binding cleft, and the crystal structures of the catalytic nucleophile mutant (AMY1D180A) complexed with acarbose and maltoheptaose, respectively, suggest an additional role for the nucleophile in the stabilization of the Michaelis complex. Furthermore, probable roles are outlined for the surface binding sites. Our data support a model in which the two surface sites in AMY1 can interact with amylose chains in their naturally folded form. Because of the specificities of these two sites, they may locate/orient the enzyme in order to facilitate access to the active site for polysaccharide chains. Moreover, the sugar tongs surface site could also perform the unraveling of amylose chains, with the aid of Tyr-380 acting as "molecular tweezers." PMID:16030022

  3. Biochemical properties of alpha-amylase from peel of Citrus sinensis cv. Abosora.

    PubMed

    Mohamed, Saleh Ahmed; Drees, Ehab A; El-Badry, Mohamed O; Fahmy, Afaf S

    2010-04-01

    alpha-Amylase activity was screened in the peel, as waste fruit, of 13 species and cultivars of Egyptian citrus. The species Citrus sinensis cv. Abosora had the highest activity. alpha-Amylase AI from Abosora peel was purified to homogeneity using anion and cation-exchange, and gel filtration chromatographies. Molecular weight of alpha-amylase AI was found to be 42 kDa. The hydrolysis properties of alpha-amylase AI toward different substrates indicated that corn starch is the best substrate. The alpha-amylase had the highest activity toward glycogen compared with amylopectin and dextrin. Potato starch had low affinity toward alpha-amylase AI but it did not hydrolyze beta-cyclodextrin and dextran. Apparent Km for alpha-amylase AI was 5 mg (0.5%) starch/ml. alpha-Amylase AI showed optimum activity at pH 5.6 and 40 degrees C. The enzyme was thermally stable up to 40 degrees C and inactivated at 70 degrees C. The effect of mono and divalent metal ions were tested for the alpha-amylase AI. Ba2+ was found to have activating effect, where as Li+ had negligible effect on activity. The other metals caused inhibition effect. Activity of the alpha-amylase AI was increased one and half in the presence of 4 mM Ca2+ and was found to be partially inactivated at 10 mM Ca2+. The reduction of starch viscosity indicated that the enzyme is endoamylase. The results suggested that, in addition to citrus peel is a rich source of pectins and flavanoids, alpha-amylase AI from orange peel could be involved in the development and ripening of citrus fruit and may be used for juice processing. PMID:19941088

  4. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  5. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico.

    PubMed

    Jhong, Chien-Hung; Riyaphan, Jirawat; Lin, Shih-Hung; Chia, Yi-Chen; Weng, Ching-Feng

    2015-01-01

    The alpha-glucosidase inhibitor is a common oral anti-diabetic drug used for controlling carbohydrates normally converted into simple sugars and absorbed by the intestines. However, some adverse clinical effects have been observed. The present study seeks an alternative drug that can regulate the hyperglycemia by down-regulating alpha-glucosidase and alpha-amylase activity by molecular docking approach to screen the hyperglycemia antagonist against alpha-glucosidase and alpha-amylase activities from the 47 natural compounds. The docking data showed that Curcumin, 16-hydroxy-cleroda-3,13-dine-16,15-olide (16-H), Docosanol, Tetracosanol, Antroquinonol, Berberine, Catechin, Quercetin, Actinodaphnine, and Rutin from 47 natural compounds had binding ability towards alpha-amylase and alpha-glucosidase as well. Curcumin had a better biding ability of alpha-amylase than the other natural compounds. Analyzed alpha-glucosidase activity reveals natural compound inhibitors (below 0.5 mM) are Curcumin, Actinodaphnine, 16-H, Quercetin, Berberine, and Catechin when compared to the commercial drug Acarbose (3 mM). A natural compound with alpha-amylase inhibitors (below 0.5 mM) includes Curcumin, Berberine, Docosanol, 16-H, Actinodaphnine/Tetracosanol, Catechin, and Quercetin when compared to Acarbose (1 mM). When taken together, the implication is that molecular docking is a fast and effective way to screen alpha-glucosidase and alpha-amylase inhibitors as lead compounds of natural sources isolated from medicinal plants. PMID:26154585

  6. High-activity barley alpha-amylase by directed evolution.

    PubMed

    Wong, Dominic W S; Batt, Sarah B; Lee, Charles C; Robertson, George H

    2004-10-01

    Barley alpha-amylase isozyme 2 was cloned into and constitutively secreted by Saccharomyces cervisiae. The gene coding for the wild-type enzyme was subjected to directed evolution. Libraries of mutants were screened by halo formation on starch agar plates, followed by high-throughput liquid assay using dye-labeled starch as the substrate. The concentration of recombinant enzyme in the culture supernatant was determined by immunodetection, and used for the calculation of specific activity. After three rounds of directed evolution, one mutant (Mu322) showed 1000 times the total activity and 20 times the specific activity of the wild-type enzyme produced by the same yeast expression system. Comparison of the amino acid sequence of this mutant with the wild type revealed five substitutions: Q44H, R303K and F325Y in domain A, and T94A and R128Q in domain B. Two of these mutations. Q44H and R303K, result in amino acids highly conserved in cereal alpha-amylases. R303K and F325Y are located in the raw starch-binding fragment of the enzyme molecule. PMID:15635937

  7. Salivary Alpha-Amylase Reactivity in Breast Cancer Survivors

    PubMed Central

    Wan, Cynthia; Couture-Lalande, Marie-Ève; Narain, Tasha A.; Lebel, Sophie; Bielajew, Catherine

    2016-01-01

    The two main components of the stress system are the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. While cortisol has been commonly used as a biomarker of HPA functioning, much less attention has been paid to the role of the SAM in this context. Studies have shown that long-term breast cancer survivors display abnormal reactive cortisol patterns, suggesting a dysregulation of their HPA axis. To fully understand the integrity of the stress response in this population, this paper explored the diurnal and acute alpha-amylase profiles of 22 breast cancer survivors and 26 women with no history of cancer. Results revealed that breast cancer survivors displayed identical but elevated patterns of alpha-amylase concentrations in both diurnal and acute profiles relative to that of healthy women, F (1, 39) = 17.95, p < 0.001 and F (1, 37) = 7.29, p = 0.010, respectively. The average area under the curve for the diurnal and reactive profiles was 631.54 ± 66.94 SEM and 1238.78 ± 111.84 SEM, respectively. This is in sharp contrast to their cortisol results, which showed normal diurnal and blunted acute patterns. The complexity of the stress system necessitates further investigation to understand the synergistic relationship of the HPA and SAM axes. PMID:27023572

  8. alpha-Amylase production in high cell density submerged cultivation of Aspergillus oryzae and A. nidulans.

    PubMed

    Agger, T; Spohr, A B; Nielsen, J

    2001-01-01

    The effect of biomass concentration on the formation of Aspergillus oryzae alpha-amylase during submerged cultivation with A. oryzae and recombinant A. nidulans strains has been investigated. It was found that the specific rate of alpha-amylase formation in chemostats decreased significantly with increasing biomass concentration in the range of approx. 2-12 g dry weight kg(-1). When using a recombinant A. nidulans strain in which the gene responsible for carbon catabolite repression of the A. oryzae alpha-amylase gene (creA) was deleted, no significant decrease in the specific rate of alpha-amylase formation was observed. On the basis of the experimental results, it is suggested that the low value of the specific alpha-amylase productivity observed at high biomass concentration is caused by slow mixing of the concentrated feed solution in the viscous fermentation medium. PMID:11234963

  9. Cloning and Characterization of an alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Mark L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    The gene encoding an extracellular alpha-amylase, TTA, from the hyperthermophilic archaeon Thermococcus thioreducens was cloned and expressed in Escherichia coli. Primary structural analysis revealed high similarity with other a-amylases from the Thermococcus and Pyrococcus genera, as well as the four highly conserved regions typical for a-amylases. The 1374 bp gene encodes a protein of 457 amino acids, of which 435 constitute the mature protein preceded by a 22 amino acid signal peptide. The molecular weight of the purified recombinant enzyme was estimated to be 43 kDa by denaturing gel electrophoresis. Maximal enzymatic activity of recombinant TTA was observed at 90 C and pH 5.5 in the absence of exogenous Ca(2+), and the enzyme was considerably stable even after incubation at 90 C for 2 hours. The thermostability at 90 and 102 C was enhanced in the presence of 5 mM Ca(2+). The extraordinarily high specific activity (about 7.4 x 10(exp 3) U/mg protein at 90 C, pH 5.5 with soluble starch as substrate) together with its low pH optimum makes this enzyme an interesting candidate for starch processing applications.

  10. Exposure-sensitization relationship for alpha-amylase allergens in the baking industry.

    PubMed

    Houba, R; Heederik, D J; Doekes, G; van Run, P E

    1996-07-01

    Fungal alpha-amylase is an important occupational allergen in the bakery industry. Epidemiologic studies focusing on the relationship between alpha-amylase allergen exposure and work-related respiratory allergy, however, have not been reported yet. In this cross-sectional study, sensitization to occupational allergens and work-related symptoms were studied in 178 bakery workers and related to allergen exposure. Alpha-amylase allergen concentrations were measured in personal dust samples, using a sandwich enzyme immunoassay. All workers were categorized into groups on the basis of their job histories and the alpha-amylase exposure levels of their job titles. Of all workers 25% had one or more work-related symptoms. As much as 9% of the bakery workers showed a positive skin prick test reaction to fungal amylase, and in 8% amylase-specific IgE was demonstrated. Alpha-amylase exposure and atopy appeared to be the most important determinants of skin sensitization, with prevalence ratios for atopy of 20.8 (95% CI, 2.74 to 158) and for medium and high alpha-amylase exposure groups of 8.6 (95% CI, 1.01 to 74) and 15.9 (95% CI, 1.95 to 129), respectively. Furthermore, a positive association was found between positive skin prick tests to alpha-amylase and work-related respiratory symptoms. In conclusion, this study has shown that there is a strong and positive relationship between alpha-amylase allergen exposure levels in bakeries and specific sensitization in bakery workers. PMID:8680668

  11. Optimization of alpha-amylase immobilization in calcium alginate beads.

    PubMed

    Ertan, Figen; Yagar, Hulya; Balkan, Bilal

    2007-01-01

    alpha-Amylase enzyme was produced by Aspergillus sclerotiorum under SSF conditions, and immobilized in calcium alginate beads. Effects of immobilization conditions, such as alginate concentration, CaCl(2) concentration, amount of loading enzyme, bead size, and amount of beads, on enzymatic activity were investigated. Optimum alginate and CaCl(2) concentration were found to be 3% (w/v). Using a loading enzyme concentration of 140 U mL(-1), and bead (diameter 3 mm) amount of 0.5 g, maximum enzyme activity was observed. Beads prepared at optimum immobilization conditions were suitable for up to 7 repeated uses, losing only 35% of their initial activity. Among the various starches tested, the highest enzyme activity (96.2%) was determined in soluble potato starch hydrolysis for 120 min at 40 degrees C. PMID:17516249

  12. Capillary electrophoresis as a screening tool for alpha amylase inhibitors in plant extracts

    PubMed Central

    Hamdan, Imad I.; Afifi, Fatima U.

    2010-01-01

    Capillary electrophoresis (CE) method was developed for screening plant extract for potential alpha amylase (AA) inhibitory activity. The method was validated against a well established UV method. Overall, the proposed method was shown able to detect plants with significant alpha amylase inhibitory activity but not those with rather clinically insignificant activities. Fifty plant species were screened using both the proposed CE method and the UV method and seven plant species were found to possess significant AA inhibitory activities. Two plant species were proved to have alpha amylase inhibitory activity for the first time. PMID:24115900

  13. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation.

    PubMed

    Raul, Dibyangana; Biswas, Tania; Mukhopadhyay, Suchita; Kumar Das, Shrayan; Gupta, Suvroma

    2014-01-01

    Amylase is an enzyme that catalyzes the breakdown of starch into sugars and plays a pivotal role in a variety of areas like use as digestives, for the production of ethanol and high fructose corn syrup, detergents, desiring of textiles, modified starches, hydrolysis of oil-field drilling fluids, and paper recycling. In the present work, solid state fermentation (SSF) for α -amylase production has been used in lieu of submerged fermentation (SmF) due to its simple technique, low capital investment, lower levels of catabolite repression, and better product recovery. Bacillus subtilis has been well known as producer of alpha amylase and was tested using solid state fermentation for 48 hours at 37°C with wheat bran as substrate. Comparison between different fermentation hours demonstrated high yield of alpha amylase after 48 hours. This alpha amylase has optimum pH and temperature at 7.1 and 40°C, respectively. With the goal to purify alpha amylase, 30-70% (NH4)2SO4 cut concentrated the amylase activity threefold with respect to crude fermented extract. This was verified in quantitative DNS assay method as well as in zymogram gel profile. The exact molecular weight of the amylase is yet to be determined with the aid of other protein purification techniques. PMID:24672727

  14. [Microbial alpha-amylases: physicochemical properties, substrate specificity and domain structure].

    PubMed

    Avdiiuk, K V; Varbanets', L D

    2013-01-01

    The current literature data on producers, physico-chemical properties and substrate specificity of a-amylases produced by microbes from different taxonomic groups such as bacteria, fungi and yeasts are discussed in the survey. Synthesis of alpha-amylase majority is an inducible process which is stimulated in the presence of starch or products of its hydrolysis. It is possible to increase enzymes activity level by optimization of cultivation conditions of strains-producers. alpha-Amylases, isolated from different sources are distinguished in their physico-chemical properties, particularly in their molecular weights, pH- and thermooptimums, inhibitors and activators. The enzymes hydrolyse soluble starch, amylose, amylopectin, glycogen, maltodextrins, alpha- and beta3-cyclodextrins and other carbohydrate substrates. It is well known that alpha-amylases belong to GH-13 family of glycosyl-hydrolases, which contain the catalytic domain A as (beta/alpha)8-barrel. In addition to domain A, alpha-amylases contain two other domains: B and C, which are localized approximately on opposite sides of (beta/alpha)8-barrel. Most of the known alpha-amylases contain calcium ion, which is located on the surface between domains A and B and plays an important role in stability and activity of the enzyme. PMID:24319968

  15. Molecular characterization of a bean alpha-amylase inhibitor that inhibits the alpha-amylase of the mexican bean weevil Zabrotes subfasciatus.

    PubMed

    Grossi de Sa, M F; Mirkov, T E; Ishimoto, M; Colucci, G; Bateman, K S; Chrispeels, M J

    1997-01-01

    Cultivated varieties of the common bean (Phaseolus vulgaris L.) contain an alpha-amylase inhibitor (alpha AI-1) that inhibits porcine pancreatic alpha-amylase (PPA; EC 3.2.1.1) and the amylases of certain seed weevils, but not that of the Mexican bean weevil, Zabrotes subfasciatus. A variant of alpha AI-1, called alpha AI-2, is found in certain arcelin-containing wild accessions of the common bean. The variant alpha AI-2 inhibits Z. subfasciatus alpha-amylase (ZSA), but not PPA. We purified alpha AI-2 and studied its interaction with ZSA. The formation of the alpha AI-2-ZSA complex is time-dependent and occurs maximally at pH 5.0 or below. When a previously isolated cDNA assumed to encode alpha AI-2 was expressed in transgenic tobacco seeds, the seeds contained inhibitory activity toward ZSA but not toward PPA, confirming that the cDNA encodes alpha AI-2. The inhibitors alpha AI-1 and alpha AI-2 share 78% sequence identity at the amino acid level and they differ in an important region that is part of the site where the enzyme binds the inhibitor. The swap of a tripeptide in this region was not sufficient to change the specificity of the two inhibitors towards their respective enzymes. The three-dimensional structure of the alpha AI-1/PPA complex has just been solved and we recently obtained the derived amino acid sequence of ZSA. This additional information allows us to discuss the results described here in the framework of the amino acid residues of both proteins involved in the formation of the enzyme-inhibitor complex and to pinpoint the amino acids responsible for the specificity of the interaction. PMID:9431678

  16. Effect of oilseed cakes on alpha-amylase production by Bacillus licheniformis CUMC305.

    PubMed

    Krishnan, T; Chandra, A K

    1982-08-01

    The effects of oilseed cakes on extracellular thermostable alpha-amylase production by Bacillus licheniformis CUMC305 was investigated. Each oilseed cake was made of groundnut, mustard, sesame, linseed, coconut copra, madhuca, or cotton. alpha-Amylase production was considerably improved in all instances and varied with the oilseed cake concentration in basal medium containing peptone and beef extract. Maximum increases were effected by a low concentration (0.5 to 1.0%) of groundnut or coconut, a high concentration (3%) of linseed or mustard, and an Rintermediate concentration (2%) of cotton, madhuca, or sesame. The oilseed cakes made of groundnut or mustard could completely replace the conventional peptone-beef extract medium as the fermentation base for the production of alpha-amylase by B. licheniformis. The addition of corn steep liquor to cotton, linseed, sesame, or madhuca cake in the medium improved alpha-amylase production. PMID:6181738

  17. Synergistic action of. alpha. -amylase and glucoamylase on hydrolysis of starch

    SciTech Connect

    Fujii, M.; Kawamura, Y.

    1985-03-01

    Synergistic action of ..alpha..-amylase and glucoamylase on hydrolysis of starch is modeled by the kinetic equations presented in this paper. At the early stage of the reaction ..alpha..-amylase acts as a contributor of newly formed non-reducing ends of starch molecules to glucoamylase by splitting the original starch molecules. This is expressed by the simultaneous differential equations which consist of each rate equation for ..alpha.. amylase and glucoamylase. After the molecular weight of the substrate decreases to the value of about 5000, which is obtained experimentally in this work, the action of ..alpha.. amylase can be neglected and the rate of formation of glucose obeys only the rate equation for glucoamylase. 5 references.

  18. Effect of oilseed cakes on alpha-amylase production by Bacillus licheniformis CUMC305.

    PubMed Central

    Krishnan, T; Chandra, A K

    1982-01-01

    The effects of oilseed cakes on extracellular thermostable alpha-amylase production by Bacillus licheniformis CUMC305 was investigated. Each oilseed cake was made of groundnut, mustard, sesame, linseed, coconut copra, madhuca, or cotton. alpha-Amylase production was considerably improved in all instances and varied with the oilseed cake concentration in basal medium containing peptone and beef extract. Maximum increases were effected by a low concentration (0.5 to 1.0%) of groundnut or coconut, a high concentration (3%) of linseed or mustard, and an Rintermediate concentration (2%) of cotton, madhuca, or sesame. The oilseed cakes made of groundnut or mustard could completely replace the conventional peptone-beef extract medium as the fermentation base for the production of alpha-amylase by B. licheniformis. The addition of corn steep liquor to cotton, linseed, sesame, or madhuca cake in the medium improved alpha-amylase production. PMID:6181738

  19. A novel type of human alpha-amylase produced in lung carcinoid tumor.

    PubMed

    Tomita, N; Horii, A; Doi, S; Yokouchi, H; Shiosaki, K; Higashiyama, M; Matsuura, N; Ogawa, M; Mori, T; Matsubara, K

    1989-03-15

    A novel type of alpha-amylase was detected in a lung carcinoid tissue after surveying the cDNA library constructed from this tumor mRNA. Nucleotide sequence analysis showed that the amylase expressed in this carcinoid tumor has 13 and 6 amino acid substitutions when compared with salivary amylase (Amy1) and pancreatic amylase (Amy2), respectively. The nucleotide sequence homologies of cDNAs between this carcinoid amylase and amy1, amy2 are 97.5% and 98.2%, respectively. The nucleotide sequence comparison strongly suggests that this new amylase is the product of the amy3 gene that has been detected in human genome [Emi et al., Gene 62 (1988) 229-235] PMID:2701942

  20. [Cloning the alpha-amylase gene of Streptococcus bovis and its expression in Bacillus subtilis cells].

    PubMed

    Iakorski, P; Kuntsova, M M; Loseva, E F; Khasanov, F K

    1991-06-01

    The gene coding for alpha-amylase from the ruminant bacterium Streptococcus bovis was cloned on the plasmid pMX39 in Bacillus subtilis cells. An alpha-amylase positive colony was isolated in the initial screening of 3900 colonies on the medium containing insoluble starch. The size of the insert was approximately 2.8 kb. The recombinant plasmid was stably maintained in Bacillus subtilis cells under the nonselective conditions. PMID:1944323

  1. Cross-inhibitory activity of cereal protein inhibitors against alpha-amylases and xylanases.

    PubMed

    Sancho, Ana I; Faulds, Craig B; Svensson, Birte; Bartolomé, Begoña; Williamson, Gary; Juge, Nathalie

    2003-08-21

    The purification and characterisation of a xylanase inhibitor (XIP-I) from wheat was reported previously. In our current work, XIP-I is also demonstrated to have the capacity to inhibit the two barley alpha-amylase isozymes (AMY1 and AMY2). XIP-I completely inhibited the activity of AMY1 and AMY2 towards insoluble Blue Starch and a soluble hepta-oligosaccharide derivative. A ternary complex was formed between insoluble starch, a catalytically inactive mutant of AMY1 (D180A), and XIP-I, suggesting that the substrate-XIP-I interaction is necessary for inhibition of barley alpha-amylases. K(i) values for alpha-amylase inhibition, however, could not be calculated due to the nonlinear nature of the inhibition pattern. Furthermore, surface plasmon resonance and gel electrophoresis did not indicate interaction between XIP-I and the alpha-amylases. The inhibition was abolished by CaCl(2), indicating that the driving force for the interaction is different from that of complexation between the barley alpha-amylase/subtilisin inhibitor (BASI) and AMY2. This is the first report of a proteinaceous inhibitor of AMY1. BASI, in addition, was demonstrated to partially inhibit the endo-1,4-beta-D-xylanase from Aspergillus niger (XylA) of glycoside hydrolase family 11. Taken together, the data demonstrate for the first time the dual target enzyme specificity of BASI and XIP-I inhibitors for xylanase and alpha-amylase. PMID:12922177

  2. [Baking ingredients, especially alpha-amylase, as occupational inhalation allergens in the baking industry].

    PubMed

    Wüthrich, B; Baur, X

    1990-03-31

    Baker's asthma is the most frequent occupational lung disease in Switzerland and West Germany. Cereal flours, and more rarely flour parasites, are implicated as the responsible allergens. Based on an observation of a case of baker's asthma due to monovalent sensitization to alpha-amylase used as additive to flour, 31 bakers with occupational asthma and/or rhinitis were routinely tested by skin tests and serological RAST examinations for allergic sensitivity to flour, alpha-amylase and other bakery additives. 17/31 subjects (55%) reacted positively in scratch tests to a commercial powdered alpha-amylase and 13/20 (65%) to a lecithin preparation. 23/31 (74%) and 19/31 (61%) were RAST positive to wheat and to rye flour respectively. 32% had RAST specific IgE to alpha-amylase (from Aspergillus oryzae), 19.3% to soya bean flour and 16% to malt. 7/12 and 5/12 respectively reacted to trypsin inhibitor and lipoxidase, the main allergens in soya bean. In two patients monosensitization to alpha-amylase was present. In accordance with other reports we recommend that baking additives, especially alpha-amylase, should be tested in allergological diagnosis of occupational diseases in flour processing workers. Full declaration of all additives used in the bakery industry is needed. PMID:2326614

  3. Psychological stress-induced changes in salivary alpha-amylase and adrenergic activity.

    PubMed

    Kang, Younhee

    2010-12-01

    The aim of the study was to examine the relationships among salivary alpha-amylase, plasma catecholamines, blood pressure, and heart rate during psychological stress. This study used a pretest-post-test experimental design with a control group, using repeated measures. A total of 33 participants was divided into the experimental group (n = 16) that underwent a college academic final test as the psychological stress and the control group (n = 17) that did not undergo the test. The levels of salivary alpha-amylase and plasma catecholamines, blood pressure, and heart rate were measured seven times and stress and anxiety were measured once and twice, respectively, as subjective stress markers. Significant changes in the level of salivary alpha-amylase were found in response to psychological stress. However, the correlations of salivary alpha-amylase with the plasma catecholamines, blood pressure, and heart rate were only partially found to be statistically significant. In conclusion, it was shown that salivary alpha-amylase was sensitive to stress throughout this study. Thus, salivary alpha-amylase may be used to measure stress uninvasively in both clinical settings and nursing research where the effects of stress might be scrutinized. Furthermore, the mechanisms of illnesses that are induced by stress could be explored. PMID:21210927

  4. Purification and characterization of periplasmic alpha-amylase from Xanthomonas campestris K-11151.

    PubMed Central

    Abe, J; Onitsuka, N; Nakano, T; Shibata, Y; Hizukuri, S; Entani, E

    1994-01-01

    Xanthomonas campestris K-11151, isolated from soil, produced a periplasmic alpha-amylase of a new type. The enzyme was purified to homogeneity, as shown by several criteria. The purified enzyme showed almost the same activities on alpha-, beta-, and gamma-cyclodextrins, soluble starch, and amylose. Moreover, it was active on branched cyclodextrins, pullulan, and maltose but not on glycogen. Kinetic analysis showed that alpha-cyclodextrin was the best substrate among the cyclodextrins. The substrate specificity suggested that this enzyme had the combined activities of alpha-amylase, cyclodextrinase, and neopullulanase. Images PMID:8206836

  5. Ontogenesis of alpha-amylase in rat parotid gland during postnatal development.

    PubMed

    Bellavia, S L; Sanz, E G; Vermouth, N T; Rins, L; Aoki, A

    1981-01-01

    Changes in alpha-amylase (alpha-1,4-glucan-4-glucanohydrolase, EC 3.2.1.1) of parotid gland were investigated during postnatal development of the rat. Modifications in amylase activity after birth allow the distinction of three stages which can be correlated with the morphologic development of the parotid gland. Significant sexual differences in the evolution of alpha-amylase activity were found. During the first stage (from birth to the 20th day) there is a higher increase in females, while males have a more pronounced increment in the second stage (from the 20th to the 30th day). By means of gel electrophoresis of parotid extracts, four molecular forms of amylase can be separated. The slowest migrating band (Form 1) is not detected at the initial stage. PMID:6164673

  6. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes.

    PubMed

    Karimi, M; Biria, D

    2016-06-01

    The impact of adding soluble starch on biodegradation of n-alkanes (C10-C14) by Bacillus subtilis TB1 was investigated. Gas chromatography was employed to measure the residual hydrocarbons in the system. It was observed that the efficiency of biodegradation improved with the presence of starch and the obtained residual hydrocarbons in the system were 53% less than the samples without starch. The produced bacterial enzymes were studied through electrophoresis and reverse zymography for explaining the observations. The results indicated that the produced amylase by the bacteria can degrade hydrocarbons and the same was obtained by the application of a commercial alpha amylase sample. In addition, in silico docking of alpha-amylase with n-alkanes with different molecular weights was studied by Molegro virtual docker which showed high negative binding energies and further substantiated the experimental observations. Overall, the findings confirmed the catalytic effect of alpha amylase on n-alkanes degradation. PMID:26971168

  7. Interparental Aggression and Parent-Adolescent Salivary Alpha Amylase Symmetry

    PubMed Central

    Gordis, Elana B.; Margolin, Gayla; Spies, Lauren; Susman, Elizabeth J.; Granger, Douglas A.

    2010-01-01

    The present study examined salivary alpha-amylase (sAA), a putative marker of adrenergic activity, in family members engaging in family conflict discussions. We examined symmetry among family members' sAA levels at baseline and in response to a conflict discussion. The relation between a history of interparental aggression on parent-adolescent sAA symmetry also was examined. Participants were 62 families with a mother, father, and biological child age 13-18 (n = 29 girls). After engaging in a relaxation procedure, families participated in a 15-minute triadic family conflict discussion. Participants provided saliva samples at post-relaxation/pre-discussion, immediately post-discussion, and at 10 and 20 min post-discussion. Participants also reported on interparental physical aggression during the previous year. Across the sample we found evidence of symmetry between mothers' and adolescents' sAA levels at baseline and around the discussion. Interparental aggression was associated with lower sAA levels among fathers. Interparental aggression also affected patterns of parent-child sAA response symmetry such that families reporting interparental aggression exhibited greater father-adolescent sAA symmetry than did those with no reports of interparental aggression. Among families with no interparental aggression history, we found consistent mother-adolescent symmetry. These differences suggest different patterns of parent-adolescent physiological attunement among families with interparental aggression. PMID:20096715

  8. Salivary Cortisol, Salivary Alpha Amylase, and the Dental Anxiety Scale

    PubMed Central

    Sadi, Hana; Finkelman, Matthew; Rosenberg, Morton

    2013-01-01

    The aim of this study was to investigate the correlation between dental anxiety, salivary cortisol, and salivary alpha amylase (sAA) levels. Furthermore, the aim was to look into individual differences such as age, race, gender, any existing pain, or traumatic dental experience and their effect on dental anxiety. This study followed a cross-sectional design and included a convenience sample of 46. Every patient was asked to complete the Dental Anxiety Scale (DAS) and a basic demographic/dental history questionnaire. A saliva sample, utilizing the method of passive drooling, was then collected in 2-mL cryovials. Samples were analyzed for salivary cortisol and sAA levels by Salimetrics. Significant associations were observed between DAS scores and presence of pain and history of traumatic dental experience. However, no significant correlations were observed between DAS, cortisol, and sAA levels. Our study reconfirms that dental anxiety is associated with presence of pain and a history of traumatic dental experience. On the other hand, our study was the first to our knowledge to test the correlation between the DAS and sAA; nevertheless, our results failed to show any significant correlation between dental anxiety, cortisol, and sAA levels. PMID:23763559

  9. Regulation of the synthesis of barley aleurone. cap alpha. -amylase by gibberellic acid and calcium ions

    SciTech Connect

    Jones, R.L.; Carbonell, J.

    1984-09-01

    The effects of gibberellic acid (GA/sub 3/) and calcium ions on the production of ..cap alpha..-amylase and acid phosphatase by isolated aleurone layers of barley (Hordeum vulgare L. cv Himalaya) were studied. Aleurone layers not previously exposed to GA/sub 3/ or CA/sup 2 +/ show qualitative and quantitative changes in hydrolase production following incubation in either GA/sub 3/ or CA/sup 2 +/ or both. In cubation in H/sub 2/O or CA/sup 2 +/ results in the production of low levels of ..cap alpha..-amylase or acid phosphatase. The addition of GA/sub 3/ to the incubation medium causes 10- to 20-fold increase in the amounts of these enzymes released from the tissue, and addition of CA/sup 2 +/ at 10 millimolar causes a further 8- to 9-fold increase in ..cap alpha..-amylase release and a 75% increase in phosphatase release. Production of ..cap alpha..-amylase isoenzymes is also modified by the levels of GA/sub 3/ and CA/sup 2 +/ in the incubation medium. ..cap alpha..-amylase 2 is produced under all conditions of incubation, while ..cap alpha..-amylase 1 appears only when layers are incubated in GA/sub 3/ or GA/sub 3/ plus CA/sup 2 +/. The synthesis of ..cap alpha..-amylases 3 and 4 requires the presence of both GA/sub 3/ and CA/sup 2 +/ in the incubation medium. Laurell rocket immunoelectrophoresis shows that two distinct groups of ..cap alpha..-amylase antigens are present in incubation media of aleurone layers incubated with both GA/sub 3/ and CA/sup 2 +/, while only one group of antigens is found in media of layers incubated in GA/sub 3/ alone. Strontium ions can be substituted for CA/sup 2 +/ in increasing hydrolase production, although higher concentrations of Sr/sup 2 +/ are requried for maximal response. We conclude that GA/sub 3/ is required for the production of ..cap alpha..-amylase 1 and that both GA/sub 3/ and either CA/sup 2 +/ or Sr/sup 2 +/ are required for the production of isoenzymes 3 and 4 of barley aleurone ..cap alpha..-amylase. 22 references, 8

  10. Purification and characterization of the extracellular. alpha. -amylase from Clostridium acetobutylicum ATCC 824

    SciTech Connect

    Paquet, V.; Croux, C.; Goma, G.; Soucaille, P. )

    1991-01-01

    The extracellular {alpha}-amylase (1,4-{alpha}-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (Mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying {alpha}-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the {alpha}-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. {alpha}-Amylase activity on soluble starch was optimal at pH 5.6 and 45{degree}C. The {alpha}-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a K{sub m} of 3.6 g {center dot} liter{sup {minus}1} and a K{sub cat} of 122 mol of reducing sugars {center dot} s{sup {minus}1} {center dot} mol{sup {minus}1}. The {alpha}-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the {alpha}-amylase.

  11. Purification and characterization of the extracellular alpha-amylase from Clostridium acetobutylicum ATCC 824.

    PubMed Central

    Paquet, V; Croux, C; Goma, G; Soucaille, P

    1991-01-01

    The extracellular alpha-amylase (1,4-alpha-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying alpha-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the alpha-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. alpha-Amylase activity on soluble starch was optimal at pH 5.6 and 45 degrees C. The alpha-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a Km of 3.6 g . liter-1 and a Kcat of 122 mol of reducing sugars . s-1 . mol-1. The alpha-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the alpha-amylase. Images PMID:8967771

  12. Heterologous expression and secretion of Lactobacillus amylovorus alpha-amylase in Leuconostoc citreum.

    PubMed

    Eom, Hyun-Ju; Moon, Jin-Seok; Seo, Eun-Young; Han, Nam Soo

    2009-11-01

    To develop a gene expression system for Leuconostoc genus, construction of expression vector and expression of a heterologus protein in Leuconostoc was performed. Alpha-amylase gene from Lactobacillus amylovorus was cloned into a Leuconostoc cloning vector, pLeuCM, with its own signal peptide. pLeuCMamy was introduced into Leuconostoc citreum CB2567 and a successful expression of alpha-amy gene was confirmed by enzyme activity assays. About 90% of alpha-amylase activity was detected in the culture broth, revealing most of expressed alpha-amylase was secreted out cells. The signal sequence of alpha-amy gene is a good candidate for the secretion of heterologous protein by using Leuconostoc host-vector system. PMID:19618275

  13. Alpha-Amylase Activity in Blood Increases after Pharmacological, But Not Psychological, Activation of the Adrenergic System

    PubMed Central

    Nater, Urs M.; La Marca, Roberto; Erni, Katja; Ehlert, Ulrike

    2015-01-01

    Background & Aim Alpha-amylase in both blood and saliva has been used as a diagnostic parameter. While studies examining alpha-amylase activity in saliva have shown that it is sensitive to physiological and psychological challenge of the adrenergic system, no challenge studies have attempted to elucidate the role of the adrenergic system in alpha-amylase activity in blood. We set out to examine the impact of psychological and pharmacological challenge on alpha-amylase in blood in two separate studies. Methods In study 1, healthy subjects were examined in a placebo-controlled, double-blind paradigm using yohimbine, an alpha2-adrenergic antagonist. In study 2, subjects were examined in a standardized rest-controlled psychosocial stress protocol. Alpha-amylase activity in blood was repeatedly measured in both studies. Results Results of study 1 showed that alpha-amylase in blood is subject to stronger increases after injection of yohimbine compared to placebo. In study 2, results showed that there was no significant effect of psychological stress compared to rest. Conclusions Alpha-amylase in blood increases after pharmacological activation of the adrenergic pathways suggesting that sympathetic receptors are responsible for these changes. Psychological stress, however, does not seem to have an impact on alpha-amylase in blood. Our findings provide insight into the mechanisms underlying activity changes in alpha-amylase in blood in healthy individuals. PMID:26110636

  14. Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom Archea, Prokaryotes and Eukaryotes.

    PubMed

    Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra

    2014-01-01

    Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry. PMID:25187685

  15. Stress affects salivary alpha-Amylase activity in bonobos.

    PubMed

    Behringer, Verena; Deschner, Tobias; Möstl, Erich; Selzer, Dieter; Hohmann, Gottfried

    2012-01-18

    Salivary alpha-Amylase (sAA) is a starch digesting enzyme. In addition to its function in the context of nutrition, sAA has also turned out to be useful for monitoring sympathetic nervous system activity. Recent studies on humans have found a relationship between intra-individual changes in sAA activity and physical and psychological stress. In studies on primates and other vertebrates, non-invasive monitoring of short-term stress responses is usually based on measurements of cortisol levels, which are indicative of hypothalamic-pituitary-adrenal activity. The few studies that have used both cortisol levels and sAA activity indicate that these two markers may respond differently and independently to different types of stress such that variation in the degree of the activation of different stress response systems might reflect alternative coping mechanisms or individual traits. Here, we present the first data on intra- and inter-individual variation of sAA activity in captive bonobos and compare the results with information from other ape species and humans. Our results indicate that sAA activity in the bonobo samples was significantly lower than in the human samples but within the range of other great ape species. In addition, sAA activity was significantly higher in samples collected at times when subjects had been exposed to stressors (judged by changes in behavioral patterns and cortisol levels) than in samples collected at other times. Our results indicate that bonobos possess functioning sAA and, as in other species, sAA activity is influenced by autonomic nervous system activity. Monitoring sAA activity could therefore be a useful tool for evaluating stress in bonobos. PMID:21945369

  16. Porcine pancreatic alpha-amylase inhibition by the kidney bean (Phaseolus vulgaris) inhibitor (alpha-AI1) and structural changes in the alpha-amylase inhibitor complex.

    PubMed

    Santimone, Marius; Koukiekolo, Roger; Moreau, Yann; Le Berre, Véronique; Rougé, Pierre; Marchis-Mouren, Guy; Desseaux, Véronique

    2004-02-12

    Porcine pancreatic alpha-amylase (PPA) is inhibited by the red kidney bean (Phaseolus vulgaris) inhibitor alpha-AI1 [Eur. J. Biochem. 265 (1999) 20]. Inhibition kinetics were carried out using DP 4900-amylose and maltopentaose as substrate. As shown by graphical and statistical analysis of the kinetic data, the inhibitory mode is of the mixed noncompetitive type whatever the substrate thus involving the EI, EI2, ESI and ESI2 complexes. This contrast with the E2I complex obtained in the crystal and with biophysical studies. Such difference very likely depends on the [I]/[E] ratio. At low ratio, the E2I complex is favoured; at high ratio the EI, ESI and EI2 complexes are formed. The inhibition model also differs from those previously proposed for acarbose [Eur. J. Biochem. 241 (1996) 787 and Eur. J. Biochem. 252 (1998) 100]. In particular, with alpha-AI1, the inhibition takes place only when PPA and alpha-AI are preincubated together before adding the substrate. This indicates that the abortive PPA-alphaAI1 complex is formed during the preincubation period. One additional carbohydrate binding site is also demonstrated yielding the ESI complex. Also, a second protein binding site is found in EI2 and ESI2 abortive complexes. Conformational changes undergone by PPA upon alpha-AI1 binding are shown by higher sensitivity to subtilisin attack. From X-ray analysis of the alpha-AI1-PPA complex (E2I), the major interaction occurs with two hairpin loops L1 (residues 29-46) and L2 (residues 171-189) of alpha-AI1 protruding into the V-shaped active site of PPA. The hydrolysis of alpha-AI1 that accounts for the inhibitory activity is reported. PMID:14871659

  17. Barley alpha-amylase/subtilisin inhibitor: structure, biophysics and protein engineering.

    PubMed

    Nielsen, Peter K; Bønsager, Birgit C; Fukuda, Kenji; Svensson, Birte

    2004-02-12

    Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz-type trypsin inhibitor family of the beta-trefoil fold proteins. Diverse approaches including site-directed mutagenesis, hybrid constructions, and crystallography have been used to characterise the structures and contact residues in the AMY2/BASI complex. The three-dimensional structure of the AMY2/BASI complex is characterised by a completely hydrated Ca2+ situated at the protein interface that connects the three catalytic carboxyl groups in AMY2 with side chains in BASI via water molecules. Using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC), we have recently demonstrated Ca2+-modulated kinetics of the AMY2/BASI interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors. PMID:14871656

  18. Characterization and functional properties of the alpha-amylase inhibitor (alpha-AI) from kidney bean (Phaseolus vulgaris) seeds.

    PubMed

    Le Berre-Anton, V; Bompard-Gilles, C; Payan, F; Rougé, P

    1997-11-14

    Alpha-amylase inhibitor (alpha-AI) from kidney bean (Phaseolus vulgaris L. cv Tendergreen) seeds has been purified to homogeneity by heat treatment in acidic medium, ammonium sulphate fractionation, chromatofocusing and gel filtration. Two isoforms, alpha-AI1 and alpha-AI1', of 43 kDa have been isolated which differ from each other by their isoelectric points and neutral sugar contents. The major isoform alpha-AI1 inhibited human and porcine pancreatic alpha-amylases (PPA) but was devoid of activity on alpha-amylases of bacterial or fungal origins. As shown on the Lineweaver-Burk plots, the nature of the inhibition is explained by a mixed non-competitive inhibition mechanism. Alpha-AI1 formed a 1:2 stoichiometric complex with PPA which showed an optimum pH of 4.5 at 30 degrees C. Owing to the low optimum pH found for alpha-AI activity, inhibitor-containing diets such as beans or transgenic plants expressing alpha-AI should be devoid of any harmful effect on human health. PMID:9428656

  19. RAmy2A; a novel alpha-amylase-encoding gene in rice.

    PubMed

    Huang, N; Reinl, S J; Rodriguez, R L

    1992-02-15

    The structure and expression of the alpha-amylase-encoding gene, RAmy2A, are described. This only representative of the Amy2 subfamily in rice differs from other cereal alpha-amylase-encoding genes in several respects. It contains the largest introns of all the cereal alpha-amylase-encoding genes examined to date. Moreover, the second of three introns in this gene contains a long inverted repeat sequence that can potentially form a large and stable stem-loop structure in the unspliced RNA transcript. Finally, RAmy2A is constitutively expressed at very low levels in germinated seeds, root, etiolated leaves, immature seeds and callus. This is in marked contrast to the Amy2 genes of wheat and barley which are highly expressed in the aleurone layer of the germinated seeds. PMID:1541400

  20. Differentiation of alpha-amylase from various sources: an approach using selective inhibitors.

    PubMed

    Quarino, L; Hess, J; Shenouda, M; Ristenbatt, R R; Gold, J; Shaler, R C

    1993-01-01

    A radial diffusion assay in an agarose/starch gel utilizing crude kidney bean extract and a commercially prepared alpha-amylase inhibitor isolated from wheat seeds was developed and assessed to determine its ability to differentiate alpha-amylase from various sources. Kidney bean extract was found to have a greater inhibitory effect on AMY2, while the wheat lectin inhibitor was found to have a greater inhibitory effect on AMY1. Neither inhibitor was found to have any effect on commercially prepared bacterial alpha-amylase extract in both liquid preparations and dried stains. Mixtures of varying concentrations of pancreatic and salivary extracts also gave interpretable results. Additionally, dried stains prepared from human body fluids having high levels of AMY2 were differentiated from dried stains prepared from human body fluids containing high levels of AMY1. PMID:8360608

  1. Differential expression of rice alpha-amylase genes during seedling development under anoxia.

    PubMed

    Hwang, Y S; Thomas, B R; Rodriguez, R L

    1999-08-01

    The unique capability of rice (Oryza sativa L.) seedlings to grow under anoxic conditions may result in part from their ability to express alpha-amylase and maintain the supply of sugar needed for energy metabolism. Previous studies have demonstrated that under aerobic conditions the Amy1 and Amy2 subfamily genes are regulated primarily by phytohormones while the Amy3 subfamily genes are induced during sugar starvation. The expression patterns for these alpha-amylase genes were considerably different in anoxic vs. aerobic rice seedlings. The level of total alpha-amylase mRNA under anoxic conditions was decreased in aleurone layers while it increased in the embryo. Anoxic conditions greatly diminished the expression of the Amy1A gene in aleurone. Conversely, expression of many Amy3 subfamily genes was up-regulated and prolonged in embryo tissues under anoxic conditions. PMID:10527416

  2. Thermal stability of alpha-amylase from Aspergillus oryzae entrapped in polyacrylamide gel.

    PubMed

    Raviyan, Patcharin; Tang, Juming; Rasco, Barbara A

    2003-08-27

    To determine the suitability as a time-temperature indicator for dielectric pasteurization processes, the thermal stability (50-75 degrees C) of Aspergillus oryzae alpha-amylase immobilized in polyacrylamide gel in phosphate buffer, mashed potatoes, and minced shrimp was examined. Changing the cross-linking agent concentration from 3.3 to 5.3% and adding 2% salt did not markedly affect the thermal stability of the immobilized alpha-amylase. Thermal inactivation was first order, and immobilization generally improved the thermal stability of alpha-amylase. z values of the immobilized system in test food systems were 10.2 degrees C (phosphate buffer), 8.45 degrees C (minced shrimp), and 7.78 degrees C (mashed potatoes). PMID:12926898

  3. Study on alpha-amylase hydrolysis of potato amylopectin by a quartz crystal microbalance.

    PubMed

    Sasaki, Tomoko; Noel, Timothy R; Ring, Steve G

    2008-02-13

    Potato amylopectin with phosphate groups was immobilized on a quartz crystal microbalance with dissipation monitoring (QCMD) using the attractive interaction between opposite charges, and enzymatic starch hydrolysis was monitored directly. Poly( L-lysine) (PLL) proved to be an appropriate cationic linker between the QCMD silica sensor and potato amylopectin. Increased mass and dissipation were observed when amylopectin was adsorbed onto the PLL layer and reversed when alpha-amylase was added. The effect of chitosan with cationic property on the hydrolysis of amylopectin was studied. Chitosan was observed to be adsorbed onto the amylopectin surface and to suppress hydrolysis by alpha-amylase. The formation of alternating layers of amylopectin and chitosan was monitored by QCMD. Amylopectin-chitosan trilayers increased resistance to digestion by alpha-amylase compared to one layer and to control without chitosan. PMID:18181571

  4. Effect of sexual steroids upon ontogeny of alpha-amylase of rat parotid gland.

    PubMed

    Bellavia, S L; Sanz, E G; Vermouth, N T; Blanco, A

    1982-04-30

    The effect of gonadectomy (at the 10th day of life) and treatment with sexual steroids (during the first month) upon development of alpha-amylase activity in rat parotid gland has been studied. Alpha-amylase specific activity of parotid glands from 20-day-old orchidectomized rats and from 25-day-old ovariectomized animals was significantly higher than that of intact male and female rats of the same age respectively. Spayed males treated with testosterone (10 microgram/day on the 13th, 15th, and 17th day) and ovariectomized rats treated with oestradiol (2.5 microgram/day from the 16th to the 22nd day) showed values of enzymic activity similar to those of normal animals. Results indicate that oestradiol and testosterone have an inhibitory effect upon the increase of alpha-amylase activity in parotid gland during a very defined period of development. PMID:6178953

  5. Optimization of Amylase Application in Raw Sugar Manufacture. Part I: Characterization of Commercial Alpha-Amylases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some U.S. refineries that there may be a penalty for high starch concentrations in raw sugar if starch control is not improved. Most commercial amylases used by the U.S. sugar industry to control starch have intermediate temperature stability (up to 85 de...

  6. A lectin gene encodes the alpha-amylase inhibitor of the common bean.

    PubMed Central

    Moreno, J; Chrispeels, M J

    1989-01-01

    An alpha-amylase inhibitor that inhibits insect and mammalian alpha-amylases but not plant alpha-amylases, is present in seeds of the common bean (Phaseolus vulgaris). We have purified the alpha-amylase inhibitor by using a selective heat treatment in acidic medium and affinity chromatography with porcine pancreas alpha-amylase coupled to agarose. Under sodium dodecyl sulfate gel electrophoresis, the purified inhibitor gave rise to five bands with mobilities corresponding to molecular masses ranging from 14 to 19 kDa. N-terminal sequencing (up to 15 amino acids) of the polypeptides obtained from these bands resulted in only two different sequences matching two stretches of the amino acid sequence deduced from an already described lectin gene [Hoffman, L. M. (1984) J. Mol. Appl. Gen. 2,447-453]. This gene is different from but closely related to the genes that code for phytohemagglutinin, the major lectin of bean. Further evidence based on amino acid composition, identification of a precursor, and recognition of the product of the gene (expressed in Escherichia coli) by an anti-alpha-amylase inhibitor serum confirms that the inhibitor is encoded by this or a closely related lectin gene. This finding assigns a biological function, which has been described at the molecular level, to a plant lectin gene product and supports the defense role postulated for seed lectins. The lack of homology with other families of enzyme inhibitors suggests that this may be the first member of a new family of plant enzyme inhibitors. Images PMID:2682631

  7. Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal alpha-amylase enzymes.

    PubMed

    van der Kaaij, R M; Janecek, S; van der Maarel, M J E C; Dijkhuizen, L

    2007-12-01

    Currently known fungal alpha-amylases are well-characterized extracellular enzymes that are classified into glycoside hydrolase subfamily GH13_1. This study describes the identification, and phylogenetic and biochemical analysis of novel intracellular fungal alpha-amylases. The phylogenetic analysis shows that they cluster in the recently identified subfamily GH13_5 and display very low similarity to fungal alpha-amylases of family GH13_1. Homologues of these intracellular enzymes are present in the genome sequences of all filamentous fungi studied, including ascomycetes and basidiomycetes. One of the enzymes belonging to this new group, Amy1p from Histoplasma capsulatum, has recently been functionally linked to the formation of cell wall alpha-glucan. To study the biochemical characteristics of this novel cluster of alpha-amylases, we overexpressed and purified a homologue from Aspergillus niger, AmyD, and studied its activity product profile with starch and related substrates. AmyD has a relatively low hydrolysing activity on starch (2.2 U mg(-1)), producing mainly maltotriose. A possible function of these enzymes in relation to cell wall alpha-glucan synthesis is discussed. PMID:18048915

  8. Insecticidal activity of an alpha-amylase inhibitor-like protein resembling a putative precursor of alpha-amylase inhibitor in the common bean, Phaseolus vulgaris L.

    PubMed

    Ishimoto, M; Yamada, T; Kaga, A

    1999-06-15

    alpha-Amylase inhibitor (alphaAI) in the common bean, Phaseolus vulgaris L., protects seeds from insect pests such as the cowpea weevil (Callosobruchus maculatus) and the azuki bean weevil (C. chinensis). Cultivars which lack alphaAI still show resistance to both bruchids. These cultivars have a glycoprotein that reacts with anti-alphaAI-1 antibodies. The glycoprotein with a molecular mass of 29 kDa (Gp29) was purified and the encoding gene was isolated. The primary structure of Gp29 is the same as alpha-amylase inhibitor-like protein (AIL) from which the encoding gene has already been isolated. AIL resembles a putative precursor of alphaAI, even though it does not form the active inhibitor. However, AIL has some inhibitory effect on the growth of C. maculatus but not C. chinensis. The presence of AIL alone is insufficient to explain the bruchid resistance of common bean cultivars lacking alpha-AI. Common bean seeds appear to contain several factors responsible for the bruchid resistance. PMID:10366733

  9. General Subject 1. Report to ICUMSA on the determination of commercial alpha-amylase activity by a spectrophotometric method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report is given on a new industrial method for the determination of the activity or strength of commercial alpha-amylase at a sugarcane factory or refinery, as well as a recommendation. At the present time, the activities or strengths of commercial alpha-amylases cannot be directly compared becau...

  10. Effects of alpha-amylase on in vitro growth of Legionella pneumophila.

    PubMed Central

    Bortner, C A; Miller, R D; Arnold, R R

    1983-01-01

    Sterile parotid saliva inhibited growth of Legionella pneumophila on solid media, and the salivary component involved in this inhibition has been shown to be amylase. Disk diffusion and well plate assays were used to study possible mechanisms for this effect. The amylolytic activity of saliva copurified with inhibitory activity, and both activities were sensitive to proteinase K digestion and heat treatment. In addition, purified alpha-amylase from several sources (bacteria, fungi, porcine pancreas, and human saliva) exhibited similar activity. Incorporation of charcoal or bovine serum albumin into media blocked inhibition by amylase. Replacement of Bacto-Agar with Noble agar (both from Difco Laboratories) prevented growth inhibition in the absence of starch. However, when corn starch was present with Noble agar, amylase-induced growth inhibition occurred. Purification of starch by washing with methanol eliminated some toxic component. The toxic component from starch could be recovered from the methanol wash and inhibited growth of L. pneumophila in the absence of amylase activity. The results suggest that toxic substances exist in media components which may be unmasked during salivary amylase digestion of starch. This effect may explain, in part, the difficulty in recovery of the organism from clinical specimens containing amylase. PMID:6190756

  11. Alternative catalytic anions differentially modulate human alpha-amylase activity and specificity.

    PubMed

    Maurus, Robert; Begum, Anjuman; Williams, Leslie K; Fredriksen, Jason R; Zhang, Ran; Withers, Stephen G; Brayer, Gary D

    2008-03-18

    A mechanistic study of the essential allosteric activation of human pancreatic alpha-amylase by chloride ion has been conducted by exploring a wide range of anion substitutions through kinetic and structural experiments. Surprisingly, kinetic studies indicate that the majority of these alternative anions can induce some level of enzymatic activity despite very different atomic geometries, sizes, and polyatomic natures. These data and subsequent structural studies attest to the remarkable plasticity of the chloride binding site, even though earlier structural studies of wild-type human pancreatic alpha-amylase suggested this site would likely be restricted to chloride binding. Notably, no apparent relationship is observed between anion binding affinity and relative activity, emphasizing the complexity of the relationship between chloride binding parameters and the activation mechanism that facilitates catalysis. Of the anions studied, particularly intriguing in terms of observed trends in substrate kinetics and their novel atomic compositions were the nitrite, nitrate, and azide anions, the latter of which was found to enhance the relative activity of human pancreatic alpha-amylase by nearly 5-fold. Structural studies have provided considerable insight into the nature of the interactions formed in the chloride binding site by the nitrite and nitrate anions. To probe the role such interactions play in allosteric activation, further structural analyses were conducted in the presence of acarbose, which served as a sensitive reporter molecule of the catalytic ability of these modified enzymes to carry out its expected rearrangement by human pancreatic alpha-amylase. These studies show that the largest anion of this group, nitrate, can comfortably fit in the chloride binding pocket, making all the necessary hydrogen bonds. Further, this anion has nearly the same ability to activate human pancreatic alpha-amylase and leads to the production of the same acarbose product

  12. Alpha-amylase circadian rhythm of young rat parotid gland: an endogenous rhythm with maternal coordination.

    PubMed

    Bellavía, S L; Sanz, E G; Sereno, R; Vermouth, N T

    1992-01-01

    The circadian rhythm of alpha-amylase, E.C. 3.2.1.1. alpha-1,4-glucan-4-glucanohydrolase) in the parotid glands of 25-day-old rats were studied under different experimental designs (fasting, reversed photoperiod, constant lighting conditions and treatment with reserpine and alpha-methyl-p-tyrosine). The rhythm of fasted rats did not change. There were modifications in the rhythm of rats submitted to a reversed photoperiod or treated with reserpine or alpha-methyl-p-tyrosine. The rhythm was present, with changes in the acrophase, in parotids of rats kept during their gestation and postnatal life in constant light or dark. Results suggest that the circadian rhythm of alpha-amylase in parotid gland of young rats is endogenous, synchronized by the photoperiod, and with maternal coordination. PMID:1610312

  13. Starch-binding domain affects catalysis in two Lactobacillus alpha-amylases.

    PubMed

    Rodríguez-Sanoja, R; Ruiz, B; Guyot, J P; Sanchez, S

    2005-01-01

    A new starch-binding domain (SBD) was recently described in alpha-amylases from three lactobacilli (Lactobacillus amylovorus, Lactobacillus plantarum, and Lactobacillus manihotivorans). Usually, the SBD is formed by 100 amino acids, but the SBD sequences of the mentioned lactobacillus alpha-amylases consist of almost 500 amino acids that are organized in tandem repeats. The three lactobacillus amylase genes share more than 98% sequence identity. In spite of this identity, the SBD structures seem to be quite different. To investigate whether the observed differences in the SBDs have an effect on the hydrolytic capability of the enzymes, a kinetic study of L. amylovorus and L. plantarum amylases was developed, with both enzymes acting on several starch sources in granular and gelatinized forms. Results showed that the amylolytic capacities of these enzymes are quite different; the L. amylovorus alpha-amylase is, on average, 10 times more efficient than the L. plantarum enzyme in hydrolyzing all the tested polymeric starches, with only a minor difference in the adsorption capacities. PMID:15640201

  14. Purification and characterization of the extracellular alpha-amylase from Streptococcus bovis JB1.

    PubMed

    Freer, S N

    1993-05-01

    The extracellular alpha-amylase (1,4-alpha-D-glucanglucanohydrolase; EC 3.2.1.1) from maltose-grown Streptococcus bovis JB1 was purified to apparent homogeneity by ion-exchange chromatography (Mono Q). The enzyme had an isoelectric point of 4.50 and an apparent molecular mass of 77,000 Da, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was rich in acidic and hydrophobic amino acids. The 15-amino-acid NH2-terminal sequence was 40% homologous with the Bacillus subtilis saccharifying alpha-amylase and 27% homologous with the Clostridium acetobutylicum alpha-amylase. alpha-Amylase activity on soluble starch was optimal at pH 5.0 to 6.0. The enzyme was relatively stable between pH 5.5 and 8.5 and at temperatures below 50 degrees C. When soluble potato starch was used as the substrate, the enzyme had a Km of 0.88 mg.ml-1 and a kcat of 2,510 mumol of reducing sugar.min-1.mg of protein-1. The enzyme exhibited neither pullulanase nor dextranase activity and was 40 to 70% as active on amylopectin as on amylose. The major end products of amylose hydrolysis were maltose, maltotriose, and maltotetraose. PMID:8517735

  15. Purification and characterization of the extracellular alpha-amylase from Streptococcus bovis JB1.

    PubMed Central

    Freer, S N

    1993-01-01

    The extracellular alpha-amylase (1,4-alpha-D-glucanglucanohydrolase; EC 3.2.1.1) from maltose-grown Streptococcus bovis JB1 was purified to apparent homogeneity by ion-exchange chromatography (Mono Q). The enzyme had an isoelectric point of 4.50 and an apparent molecular mass of 77,000 Da, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was rich in acidic and hydrophobic amino acids. The 15-amino-acid NH2-terminal sequence was 40% homologous with the Bacillus subtilis saccharifying alpha-amylase and 27% homologous with the Clostridium acetobutylicum alpha-amylase. alpha-Amylase activity on soluble starch was optimal at pH 5.0 to 6.0. The enzyme was relatively stable between pH 5.5 and 8.5 and at temperatures below 50 degrees C. When soluble potato starch was used as the substrate, the enzyme had a Km of 0.88 mg.ml-1 and a kcat of 2,510 mumol of reducing sugar.min-1.mg of protein-1. The enzyme exhibited neither pullulanase nor dextranase activity and was 40 to 70% as active on amylopectin as on amylose. The major end products of amylose hydrolysis were maltose, maltotriose, and maltotetraose. Images PMID:8517735

  16. Characterization, crystallization and preliminary X-ray crystallographic analysis of the complex between barley alpha-amylase and the bifunctional alpha-amylase/subtilisin inhibitor from barley seeds.

    PubMed

    Vallée, F; Kadziola, A; Bourne, Y; Abe, J; Svensson, B; Haser, R

    1994-02-11

    The complex between a member of the barley malt alpha-amylase isozyme 2 family (AMY2-2), and the endogenous bifunctional alpha-amylase/subtilisin inhibitor, BASI, has been crystallized by the hanging drop vapour diffusion technique at a AMY2-2: BASI molar ratio of 1:1. Crystals have been grown within 4 days from solutions containing polyethylene glycol and calcium chloride. Analysis of single crystals by gel electrophoresis showed the presence of both proteins in the crystal lattice. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit cell dimensions a = 74.5 A, b = 96.9 A, c = 171.3 A and they diffract to 2.0 A resolution. The presence of two molecules of the 1:1 complex in the asymmetric unit gives a solvent content of 45% by volume. The 1:1 stoichiometry of the complex was confirmed by the molecular replacement method, using as a search model the recently determined three-dimensional structure of the barley alpha-amylase. PMID:8107117

  17. Thermal stability of alpha-amylase from malted jowar (Sorghum bicolor).

    PubMed

    Kumar, R Siva Sai; Singh, Sridevi Annapurna; Rao, A G Appu

    2005-08-24

    Malted cereals are rich sources of alpha-amylase, which catalyzes the random hydrolysis of internal alpha-(1-4)-glycosidic bonds of starch, leading to liquefaction. Amylases play a role in the predigestion of starch, leading to a reduction in the water absorption capacity of the cereal. Among the three cereal amylases (barley, ragi, and jowar), jowar amylase is found to be the most thermostable. The major amylase from malted jowar, a 47 kDa alpha-amylase, purified to homogeneity, is rich in beta structure ( approximately 60%) like other cereal amylases. T(m), the midpoint of thermal inactivation, is found to be 69.6 +/- 0.3 degrees C. Thermal inactivation is found to follow first-order kinetics at pH 4.8, the pH optimum of the enzyme. Activation energy, E(a), is found to be 45.3 +/- 0.2 kcal mol(-)(1). The activation enthalpy (DeltaH), entropy (DeltaS*), and free energy change (DeltaG) are calculated to be 44.6 +/- 0.2 kcal mol(-)(1), 57.1 +/- 0.3 cal mol(-)(1) K(-)(1), and 25.2 +/- 0.2 kcal mol(-)(1), respectively. The thermal stability of the enzyme in the presence of the commonly used food additives NaCl and sucrose has been studied. T(m) is found to decrease to 66.3 +/- 0.3, 58.1 +/- 0.2, and 48.1 +/- 0.5 degrees C, corresponding to the presence of 0.1, 0.5, and 1 M NaCl, respectively. Sucrose acts as a stabilizer; the T(m) value is found to be 77.3 +/- 0.3 degrees C compared to 69.6 +/- 0.3 degrees C in the control. PMID:16104815

  18. Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin.

    PubMed

    Lin, Ku-Feng; Lee, Tian-Ren; Tsai, Ping-Hsing; Hsu, Ming-Pin; Chen, Ching-San; Lyu, Ping-Chiang

    2007-08-01

    The structure of a novel plant defensin isolated from the seeds of the mung bean, Vigna radiate, has been determined by (1)H nuclear magnetic resonance spectroscopy. The three-dimensional structure of VrD2, the V. radiate plant defensin 2 protein, comprises an alpha-helix and one triple-stranded anti-parallel beta-sheet stabilized by four disulfide bonds. This protein exhibits neither insecticidal activity nor alpha-amylase inhibitory activity in spite of showing a similar global fold to that of VrD1, an insecticidal plant defensin that has been suggested to function by inhibiting insect alpha-amylase. Our previous study proposed that loop L3 of plant defensins is important for this inhibition. Structural analyses and surface charge comparisons of VrD1 and VrD2 revealed that the charged residues of L3 correlate with the observed difference in inhibitory activities of these proteins. A VrD2 chimera that was produced by transferring the proposed functional loop of VrD1 onto the structurally equivalent loop of VrD2 supported this hypothesis. The VrD2 chimera, which differs by only five residues compared with VrD2, showed obvious activity against Tenebrio molitor alpha-amylase. These results clarify the mode of alpha-amylase inhibition of plant defensins and also represent a possible approach for engineering novel alpha-amylase inhibitors. Plant defensins are important constituents of the innate immune system of plants, and thus the application of protein engineering to this protein family may provide an efficient method for protecting against crop losses. PMID:17444520

  19. Two Strategies for Microbial Production of an Industrial Enzyme-Alpha-Amylase

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Garriott, Owen; Pusey, Marc L.; Ng, Joseph D.

    2003-01-01

    Extremophiles are microorganisms that thrive in, from an anthropocentric view, extreme environments including hot springs, soda lakes and arctic water. This ability of survival at extreme conditions has rendered extremophiles to be of interest in astrobiology, evolutionary biology as well as in industrial applications. Of particular interest to the biotechnology industry are the biological catalysts of the extremophiles, the extremozymes, whose unique stabilities at extreme conditions make them potential sources of novel enzymes in industrial applications. There are two major approaches to microbial enzyme production. This entails enzyme isolation directly from the natural host or creating a recombinant expression system whereby the targeted enzyme can be overexpressed in a mesophilic host. We are employing both methods in the effort to produce alpha-amylases from a hyperthermophilic archaeon (Thermococcus) isolated from a hydrothermal vent in the Atlantic Ocean, as well as from alkaliphilic bacteria (Bacillus) isolated from a soda lake in Tanzania. Alpha-amylases catalyze the hydrolysis of internal alpha-1,4-glycosidic linkages in starch to produce smaller sugars. Thermostable alpha-amylases are used in the liquefaction of starch for production of fructose and glucose syrups, whereas alpha-amylases stable at high pH have potential as detergent additives. The alpha-amylase encoding gene from Thermococcus was PCR amplified using carefully designed primers and analyzed using bioinformatics tools such as BLAST and Multiple Sequence Alignment for cloning and expression in E.coli. Four strains of Bacillus were grown in alkaline starch-enriched medium of which the culture supernatant was used as enzyme source. Amylolytic activity was detected using the starch-iodine method.

  20. Protective mechanism of the Mexican bean weevil against high levels of alpha-amylase inhibitor in the common bean.

    PubMed Central

    Ishimoto, M; Chrispeels, M J

    1996-01-01

    Alpha-amylase inhibitor (alpha AI) protects seeds of the common bean (Phaseolus vulgaris) against predation by certain species of bruchids such as the cowpea weevil (Callosobruchus maculatus) and the azuki bean weevil (Callosobruchus chinensis), but not against predation by the bean weevil (Acanthoscelides obtectus) or the Mexican bean weevil (Zabrotes subfasciatus), insects that are common in the Americas. We characterized the interaction of alpha AI-1 present in seeds of the common bean, of a different isoform, alpha AI-2, present in seeds of wild common bean accessions, and of two homologs, alpha AI-Pa present in seeds of the tepary bean (Phaseolus acutifolius) and alpha AI-Pc in seeds of the scarlet runner bean (Phaseolus coccineus), with the midgut extracts of several bruchids. The extract of the Z. subfasciatus larvae rapidly digests and inactivates alpha AI-1 and alpha AI-Pc, but not alpha AI-2 or alpha AI-Pa. The digestion is caused by a serine protease. A single proteolytic cleavage in the beta subunit of alpha AI-1 occurs at the active site of the protein. When degradation is prevented, alpha AI-1 and alpha AI-Pc do not inhibit the alpha-amylase of Z. subfasciatus, although they are effective against the alpha-amylase of C. chinensis. Alpha AI-2 and alpha AI-Pa, on the other hand, do inhibit the alpha-amylase of Z. subfasciatus, suggesting that they are good candidates for genetic engineering to achieve resistance to Z. subfasciatus. PMID:8787024

  1. The bean. alpha. -amylase inhibitor is encoded by a lectin gene

    SciTech Connect

    Moreno, J.; Altabella, T.; Chrispeels, M.J. )

    1989-04-01

    The common bean, Phaseolus vulgaris, contains an inhibitor of insect and mammalian {alpha}-amylases that does not inhibit plant {alpha}-amylase. This inhibitor functions as an anti-feedant or seed-defense protein. We purified this inhibitor by affinity chromatography and found that it consists of a series of glycoforms of two polypeptides (Mr 14,000-19,000). Partial amino acid sequencing was carried out, and the sequences obtained are identical with portions of the derived amino acid sequence of a lectin-like gene. This lectin gene encodes a polypeptide of MW 28,000, and the primary in vitro translation product identified by antibodies to the {alpha}-amylase inhibitor has the same size. Co- and posttranslational processing of this polypeptide results in glycosylated polypeptides of 14-19 kDa. Our interpretation of these results is that the bean lectins constitute a gene family that encodes diverse plant defense proteins, including phytohemagglutinin, arcelin and {alpha}-amylase inhibitor.

  2. Crystal structures of human pancreatic alpha-amylase in complex with carbohydrate and proteinaceous inhibitors.

    PubMed Central

    Nahoum, V; Roux, G; Anton, V; Rougé, P; Puigserver, A; Bischoff, H; Henrissat, B; Payan, F

    2000-01-01

    Crystal structures of human pancreatic alpha-amylase (HPA) in complex with naturally occurring inhibitors have been solved. The tetrasaccharide acarbose and a pseudo-pentasaccharide of the trestatin family produced identical continuous electron densities corresponding to a pentasaccharide species, spanning the -3 to +2 subsites of the enzyme, presumably resulting from transglycosylation. Binding of the acarviosine core linked to a glucose residue at subsites -1 to +2 appears to be a critical part of the interaction process between alpha-amylases and trestatin-derived inhibitors. Two crystal forms, obtained at different values of pH, for the complex of HPA with the protein inhibitor from Phaseolus vulgaris (alpha-amylase inhibitor) have been solved. The flexible loop typical of the mammalian alpha-amylases was shown to exist in two different conformations, suggesting that loop closure is pH-sensitive. Structural information is provided for the important inhibitor residue, Arg-74, which has not been observed previously in structural analyses. PMID:10657258

  3. Validation of an assay for quantification of alpha-amylase in saliva of sheep.

    PubMed

    Fuentes-Rubio, Maria; Fuentes, Francisco; Otal, Julio; Quiles, Alberto; Hevia, María Luisa

    2016-07-01

    The objective of this study was to develop a time-resolved immunofluorometric assay (TR-IFMA) for quantification of salivary alpha-amylase in sheep. For that purpose, after the design of the assay, an analytical and a clinical validation were carried out. The analytical validation of the assay showed intra- and inter-assay coefficients of variation (CVs) of 6.1% and 10.57%, respectively and an analytical limit of detection of 0.09 ng/mL. The assay also demonstrated a high level of accuracy, as determined by linearity under dilution. For clinical validation, a model of acute stress testing was conducted to determine whether expected significant changes in alpha-amylase were picked up in the newly developed assay. In that model, 11 sheep were immobilized and confronted with a sheepdog to induce stress. Saliva samples were obtained before stress induction and 15, 30, and 60 min afterwards. Salivary cortisol was measured as a reference of stress level. The results of TR-IFMA showed a significant increase (P < 0.01) in the concentration of alpha-amylase in saliva after stress induction. The assay developed in this study could be used to measure salivary alpha-amylase in the saliva of sheep and this enzyme could be a possible noninvasive biomarker of stress in sheep. PMID:27408332

  4. ALPHA-AMYLASE ACTIVITY IN VARIOUS CONCENTRATIONS OF THE IONIC LIQUID, 1-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch is an extremely abundant, economical and versatile industrial commodity. Many industrial uses of starch depend on hydrolyzing the polymer for the conversion of glucose and maltodextrins. Starch hydrolysis is frequently achieved by utilizing alpha-amylase, which is an endo-acting enzyme that...

  5. Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step.

    PubMed

    Porfirif, María C; Milatich, Esteban J; Farruggia, Beatriz M; Romanini, Diana

    2016-06-01

    A one-step method as a strategy of alpha-amylase concentration and purification was developed in this work. This methodology requires the use of a very low concentration of biodegradable polyelectrolyte (Eudragit(®) E-PO) and represents a low cost, fast, easy to scale up and non-polluting technology. Besides, this methodology allows recycling the polymer after precipitation. The formation of reversible soluble/insoluble complexes between alpha-amylase and the polymer Eudragit(®) E-PO was studied, and their precipitation in selected conditions was applied with bioseparation purposes. Turbidimetric assays allowed to determine the pH range where the complexes are insoluble (4.50-7.00); pH 5.50 yielded the highest turbidity of the system. The presence of NaCl (0.05M) in the medium totally dissociates the protein-polymer complexes. When the adequate concentration of polymer was added under these conditions to a liquid culture of Aspergillus oryzae, purification factors of alpha-amylase up to 7.43 and recoveries of 88% were obtained in a simple step without previous clarification. These results demonstrate that this methodology is suitable for the concentration and production of alpha-amylase from this source and could be applied at the beginning of downstream processing. PMID:27085017

  6. Increased production of alpha-amylase by Bacillus amyloliquefaciens in the presence of glycine

    SciTech Connect

    Zhang, Q.; Tsukagoshi, N.; Miyashiro, S.; Udaka, S.

    1983-07-01

    The production of alpha-amylase by Bacillus amyloliquefaciens increased by a factor of 300 when glycine was added to a chemically defined simple medium at the early-logarithmic phase of growth. Glycine was not metabolized to a significant extent under the conditions used, but it considerably prevented the lowering of the pH of the culture. (Refs. 10).

  7. Optimization of Alpha-Amylase Application in U.S. Factories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some U.S. refineries that there may be a penalty for high starch concentrations in raw sugar if starch control is not improved. Most commercial alpha-amylases used by the U.S. sugar industry to control starch have intermediate temperature stability (up to...

  8. Peer Victimization and Aggression: Moderation by Individual Differences in Salivary Cortisol and Alpha-Amylase

    ERIC Educational Resources Information Center

    Rudolph, Karen D.; Troop-Gordon, Wendy; Granger, Douglas A.

    2010-01-01

    This research examined whether variations in salivary measures of the hypothalamic-pituitary-adrenal axis (cortisol) and autonomic nervous system (alpha amylase [sAA]) contribute to individual differences in the association between peer victimization and aggression. Children (N = 132; M age = 9.46 years, SD = 0.33) completed a measure of peer…

  9. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase.

    PubMed Central

    Violet, M; Meunier, J C

    1989-01-01

    The irreversible thermal inactivation of Bacillus licheniformis alpha-amylase was studied. A two-step behaviour in the irreversible denaturation process was found. Our experimental results are consistent only with the two-step model and rule out the two-isoenzyme one. They suggest that the deactivation mechanism involves the existence of a temperature-dependent intermediate form. Therefore the enzyme could exist in a great number of active conformational states. We have shown that Ca2+ is necessary for the structural integrity of alpha-amylase. Indeed, dialysis against chelating agents leads to a reversible enzyme inactivation, though molecular sieving has no effect. Further, the key role of Ca2+ in the alpha-amylase thermostability is reported. The stabilizing effect of Ca2+ is reflected by the decrease of the denaturation constants of both the native and the intermediate forms. Below 75 degrees C, in the presence of 5 mM-CaCl2, alpha-amylase is completely thermostable. Neither other metal ions nor substrate have a positive effect on enzyme thermostability. The effect of temperature on the native enzyme and on one intermediate form was studied. Both forms exhibit the same optimum temperature. Identical activation parameters for the hydrolytic reaction catalysed by these two forms were found. PMID:2597125

  10. Ontogeny of alpha-amylase circadian rhythms in rat parotid gland.

    PubMed

    Sanz, E G; Vermouth, N T; Bellavia, S L

    1986-01-01

    The content of alpha-amylase (alpha-1,4-glucan-4-glucanohydrolase, EC 3.2.1.1.) and total soluble proteins of parotid glands (from rats exposed to a photoperiod of 14 hr light: 10 hr dark), have been determined every 2 or 3 hr over 24 hr periods in 15, 25 and 90-day-old rats. In 35-, 45- and 72-day-old rats, determinations were performed only at 0100 and 1400 hr. The alpha-amylase and total soluble protein contents from 90-day-old rats show a circadian variation, with a maximum value at 2200 hr and a minimum at 1400 hr. Parotids from 15- and 25-day-old rats also show a circadian rhythm. The minimum value is recorded at 0100 hr and the maximum at 1400 hr. At day 35 and after, there is an inversion of the amylase rhythm. In immature rats, it appears that alpha-amylase and soluble protein are under the influence of another synchronizer, whose timing is independent of that imposed by mastication of solid food. PMID:2878787

  11. Physiological characterisation of recombinant Aspergillus nidulans strains with different creA genotypes expressing A. oryzae alpha-amylase.

    PubMed

    Agger, Teit; Petersen, Jesper B; O'Connor, Susan M; Murphy, Rachael L; Kelly, Joan M; Nielsen, Jens

    2002-01-18

    The physiology of three strains of Aspergillus nidulans was examined--a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations and the biomass formation and alpha-amylase production was characterised. Overexpression of the creA gene resulted in a lower maximum specific growth rate and a slightly higher repression of the alpha-amylase production during conditions with high glucose concentration. No expression of creA also resulted in a decreased maximum specific growth rate, but also in drastic changes in morphology. Furthermore, the expression of alpha-amylase was completely derepressed and creA thus seems to be the only regulatory protein responsible for glucose repression of alpha-amylase expression. The effect of different carbon sources on the alpha-amylase production in the creA deletion strain was investigated and it was found that starch was the best inducer. The degree of induction by starch increased almost linearly with the concentration of starch in starch/glucose mixtures. High-density batch cultivation was performed with the creA deletion strain and a final titre of 6.0 g l(-1) of alpha-amylase was reached after 162 h of cultivation. PMID:11689252

  12. The relationship between the level of salivary alpha amylase activity and pain severity in patients with symptomatic irreversible pulpitis

    PubMed Central

    Shahriari, Shahriar; Goodarzi, Mohammad Taghi; Moghimbeigi, Abbas; Jazaeri, Mina; Babaei, Parisa

    2013-01-01

    Objectives Assessment of dental pain severity is very challenging in dentistry. Previous studies have suggested that elevated salivary alpha amylase may contribute to increased physical stresses. There is a close association between salivary alpha amylase and plasma norepinephrine under stressful physical conditions. The aim of this study was to evaluate the relationship between pain severity and salivary alpha amylase levels in patients with symptomatic irreversible pulpitis. Materials and Methods Thirty-six patients (20 females and 16 males) with severe tooth pain due to symptomatic irreversible pulpitis were selected. The visual analogue scale (VAS) score was used to assess the pain severity in each patient. Unstimulated whole saliva was collected, and the level of alpha amylase activity was assessed by the spectrophotometric method. Statistical analysis was performed using SPSS 13. Results The level of alpha amylase was significantly increased in the saliva in association with pain severity assessed by VAS. The salivary alpha amylase was also elevated with increased age and in males. Conclusions There was a significant correlation between the VAS pain scale and salivary alpha amylase level, which indicates this biomarker may be a good index for the objective assessment of pain intensity. PMID:24010080

  13. Molecular cloning and expression of two alpha-amylase genes from Streptococcus bovis 148 in Escherichia coli.

    PubMed Central

    Satoh, E; Niimura, Y; Uchimura, T; Kozaki, M; Komagata, K

    1993-01-01

    The alpha-amylase genes of Streptococcus bovis 148 were cloned in Escherichia coli MC1061, using pBR322. The recombinant plasmids were classified into two groups on the basis of their restriction maps. Southern blot analysis did not show homology between the two types of alpha-amylase genes, and the two alpha-amylase genes existed on the chromosomal DNA of S. bovis 148. The enzymatic properties and N-terminal amino acid sequences of the two purified enzymes produced by the cloned E. coli strains were quite different from each other. Particularly, one alpha-amylase (Amy I) was adsorbed on raw corn starch and hydrolyzed raw corn starch, and another (Amy II) was not adsorbed on raw corn starch and did not hydrolyze raw corn starch. Amy I was considered to be the same as the extracellular alpha-amylase of S. bovis 148 in raw starch absorbability, ability to hydrolyze raw corn starch, enzymatic characteristics, N-terminal amino acid sequence, and mode of action on soluble starch. Amy II showed a unique pattern of oligosaccharide production from soluble starch compared with the extracellular alpha-amylase of S. bovis 148. Amy II was suggested to be an intracellular alpha-amylase of S. bovis 148. Images PMID:8285674

  14. Molecular cloning and expression of two alpha-amylase genes from Streptococcus bovis 148 in Escherichia coli.

    PubMed

    Satoh, E; Niimura, Y; Uchimura, T; Kozaki, M; Komagata, K

    1993-11-01

    The alpha-amylase genes of Streptococcus bovis 148 were cloned in Escherichia coli MC1061, using pBR322. The recombinant plasmids were classified into two groups on the basis of their restriction maps. Southern blot analysis did not show homology between the two types of alpha-amylase genes, and the two alpha-amylase genes existed on the chromosomal DNA of S. bovis 148. The enzymatic properties and N-terminal amino acid sequences of the two purified enzymes produced by the cloned E. coli strains were quite different from each other. Particularly, one alpha-amylase (Amy I) was adsorbed on raw corn starch and hydrolyzed raw corn starch, and another (Amy II) was not adsorbed on raw corn starch and did not hydrolyze raw corn starch. Amy I was considered to be the same as the extracellular alpha-amylase of S. bovis 148 in raw starch absorbability, ability to hydrolyze raw corn starch, enzymatic characteristics, N-terminal amino acid sequence, and mode of action on soluble starch. Amy II showed a unique pattern of oligosaccharide production from soluble starch compared with the extracellular alpha-amylase of S. bovis 148. Amy II was suggested to be an intracellular alpha-amylase of S. bovis 148. PMID:8285674

  15. Complete sequence, subunit structure, and complexes with pancreatic alpha-amylase of an alpha-amylase inhibitor from Phaseolus vulgaris white kidney beans.

    PubMed

    Kasahara, K; Hayashi, K; Arakawa, T; Philo, J S; Wen, J; Hara, S; Yamaguchi, H

    1996-07-01

    The complete amino acid sequence of a white kidney bean (Phaseolus vulgaris) alpha-amylase inhibitor (PHA-I), which is composed of two kinds of glycopolypeptide subunits, alpha and beta, was established by conventional methods. The polypeptide molecular weight of PHA-I determined by the light-scattering technique, considered together with the sequence molecular weights revealed for the subunits, indicated that PHA-I has the subunit stoichiometry of (alpha beta)2 complex. Inhibition test of PHA-I with increasing amounts of porcine pancreatic alpha-amylase (PPA) suggested that an inactive 2:1 complex is formed between PPA and PHA-I. In fact, two complexes differing from each other in the molar ratio of PPA to PHA-I were separated by gel filtration, and molecular weight estimation by the light-scattering technique confirmed that they are complexes of PHA-I with one or two PPA molecules. The binding of PPA to PHA-I appeared to follow simple binomial statistics, suggesting that two binding sites on PHA-I are independent and of high affinity for PPA. PMID:8864861

  16. Expression and secretion of alpha-amylase and glucoamylase in Saccharomyces cerevisiae.

    PubMed

    Luo, J; He, M; Li, W; Zhang, T

    1994-01-01

    alpha-Amylase genes of Bacillus licheniformis and glucoamylase cDNA of Aspergillus niger were ligated to a E. coli-yeast shuttle vector. The resultant plasmid was used to transform Saccharomyces cerevisiae to construct starch-degrading yeast strain. The results of enzyme activity assay and enzyme property analysis show that alpha-amylase and glucoamylase genes have been expressed simultaneously in yeast under the control of promoters and terminators of yeast MF-alpha 1 factor and PGK genes and over 99% of enzyme activities were secreted to the medium. The engineered yeast strain hydrolyses 97% of the starch (10%) in the medium after 6 days. The recombinant plasmid exists stably in yeast. PMID:7780020

  17. [Alpha-amylase as an occupational allergen in baking industry employees].

    PubMed

    De Zotti, R; Larese, F; Molinari, S

    1994-01-01

    In a group of 226 bakers and pastry makers and in 88 students of a training school for bakers, we evaluated skin sensitization to the common allergens, wheat and alpha amylase. Skin prick tests were positive to the enzyme in 17 exposed subjects (7.5%) and in one student with previous occupational exposure as a baker; 27 exposed subjects (11.9%) and 2 students were sensitized to wheat. Among the 42 exposed workers who complained of work-related symptoms, 12 (28.6%) cases were skin positive to amylase and 17 (42.9%) to wheat. Among the 17 workers who were positive to amylase, 16 were also sensitized to wheat and/or common allergens, 12 complained of symptoms at work but since in many cases there was a positive response to wheat, too, it is impossible to speculate on the role of each allergen in inducing symptoms. One case, with work-related rhinoconjunctivitis, had skin sensitization only to alpha amylase but no specific IgE in the serum. These findings confirm that bakers are at risk of sensitization not only to wheat allergen but also to amylase from Aspergillus oryzae. The enzyme should be included in the list of substances to be tested among bakers in whom an occupational allergy is suspected, but particular care should be taken in evaluating the cutaneous response, especially if compared to wheat wheals. Further investigations are also needed to identify the source of risk and to better define the characteristics of the enzyme and the relationship between skin reaction to amylase, sensitization to wheat and atopy.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8072442

  18. Dual feeding strategy for the production of alpha-amylase by Bacillus caldolyticus using complex media.

    PubMed

    Schwab, Karima; Bader, Johannes; Brokamp, Christian; Popović, Milan K; Bajpai, Rakesh; Berovic, Marin

    2009-10-01

    In this study, the objective was to investigate an exponential feeding strategy for fed-batch production of thermostable alpha-amylase (E.C. 3.2.1.1.) from the Bacillus caldolyticus (DSM405). The parameters for establishing compositions of feed media and feeding rate were obtained by statistical analysis of batch and continuous shake flask experiments. These parameters were casitone to starch ratio of 2.67g(casitone)g(starch)(-1), maintenance coefficient 0.174g(casitone)g(DW)(-1)h(-1), cell yield 0.62g(DW)g(casitone)(-1) and mu(opt)=0.2h(-1). The exponentially fed fermentation resulted in yield of 120Uml(-1) alpha-amylase that was thermostable up to 105 degrees C. Results of the exponentially fed fermentation have been discussed in the light of a feed-back controlled fed-batch fermentation reported earlier by the authors. A comparison of the temperature and pH effects on amylase produced by B. caldolyticus and on several other commercially available amylases has also been presented. PMID:19439206

  19. Tobacco plants transformed with the bean. alpha. ai gene express an inhibitor of insect. alpha. -amylase in their seeds. [Nicotiana tabacum; Tenebrio molitor

    SciTech Connect

    Altabella, T.; Chrispeels, M.J. )

    1990-06-01

    Bean (Phaseolus vulgaris L.) seeds contain a putative plant defense protein that inhibits insect and mammalian but not plant {alpha}-amylases. We recently presented strong circumstantial evidence that this {alpha}-amylase inhibitor ({alpha}Al) is encoded by an already-identified lectin gene whose product is referred to as lectin-like-protein (LLP). We have now made a chimeric gene consisting of the coding sequence of the lectin gene that encodes LLP and the 5{prime} and 3{prime} flanking sequences of the lectin gene that encodes phytohemagglutinin-L. When this chimeric gene was expressed in transgenic tobacco (Nicotiana tabacum), we observed in the seeds a series of polypeptides (M{sub r} 10,000-18,000) that cross-react with antibodies to the bean {alpha}-amylase inhibitor. Most of these polypeptides bind to a pig pancreas {alpha}-amylase affinity column. An extract of the seeds of the transformed tobacco plants inhibits pig pancreas {alpha}-amylase activity as well as the {alpha}-amylase present in the midgut of Tenebrio molitor. We suggest that introduction of this lectin gene (to be called {alpha}ai) into other leguminous plants may be a strategy to protect the seeds from the seed-eating larvae of Coleoptera.

  20. A putative precursor protein in the evolution of the bean alpha-amylase inhibitor.

    PubMed

    Finardi-Filho, F; Mirkov, T E; Chrispeels, M J

    1996-09-01

    Seeds of the common bean Phaseolus vulgaris and the tepary bean (P. acutifolius) contain a family of plant defence proteins that includes phytohaemagglutinin (PHA), arcelin and alpha-amylase inhibitor (alpha AI). These homologous proteins differ by the absence of short loops at the surface of the protein and by the presence of a proteolytic processing site (Asn77) that allows alpha AI to be post-translationally cleaved and activated. We now report the derived amino acid sequence of two amylase inhibitor-like (AIL) proteins that are not proteolytically processed, although they have the typical processing site. One protein is from the common bean, and the other from the tepary bean. On a dendrogram, these proteins are grouped with alpha AIs rather than with the arcelins or lectins. alpha AI differs from AIL primarily by the deletion of a 15-amino-acid segment from the middle of the AIL sequence. When alpha AI is expressed in tobacco, it is proteolytically processed to form an active molecule. However, AIL sequences are not processed. We suggest that the AIL proteins may be an intermediate in the evolution of an active alpha AI. PMID:8987505

  1. Potential of the bean alpha-amylase inhibitor alpha-AI-1 to inhibit alpha-amylase activity in true bugs(Hemiptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    True bugs (Hemiptera) are an important pest complex not controlled by Bt crops. An alternative source of resistance includes inhibitors of digestive enzymes. aAI-1, an a-amylase inhibitor from the common bean, has been shown to inhibit a-amylases of bruchid pests of grain legumes. Here we quantify t...

  2. Effects of alpha-amylase and its inhibitors on acid production from cooked starch by oral streptococci.

    PubMed

    Aizawa, S; Miyasawa-Hori, H; Nakajo, K; Washio, J; Mayanagi, H; Fukumoto, S; Takahashi, N

    2009-01-01

    This study evaluated acid production from cooked starch by Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguinis and Streptococcus mitis, and the effects of alpha-amylase inhibitors (maltotriitol and acarbose) and xylitol on acid production. Streptococcal cell suspensions were anaerobically incubated with various carbohydrates that included cooked potato starch in the presence or absence of alpha-amylase. Subsequently, the fall in pH and the acid production rate at pH 7.0 were measured. In addition, the effects of adding alpha-amylase inhibitors and xylitol to the reaction mixture were evaluated. In the absence of alpha-amylase, both the fall in pH and the acid production rate from cooked starch were small. On the other hand, in the presence of alpha-amylase, the pH fell to 3.9-4.4 and the acid production rate was 0.61-0.92 micromol per optical density unit per min. These values were comparable to those for maltose. When using cooked starch, the fall in pH by S. sanguinis and S. mitis was similar to that by S. mutans and S. sobrinus. For all streptococci, alpha-amylase inhibitors caused a decrease in acid production from cooked starch, although xylitol only decreased acid production by S. mutans and S. sobrinus. These results suggest that cooked starch is potentially acidogenic in the presence of alpha-amylase, which occurs in the oral cavity. In terms of the acidogenic potential of cooked starch, S. sanguinis and S. mitis were comparable to S. mutans and S. sobrinus. Alpha-amylase inhibitors and xylitol might moderate this activity. PMID:19136828

  3. Studies on alpha-amylase induced degradation of binary polymeric blends of crosslinked starch and pectin.

    PubMed

    Bajpai, A K; Shrivastava, Jyoti

    2007-05-01

    A blend matrix of crosslinked starch and pectin was prepared and characterized by infra-red (IR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The prepared blends were investigated kinetically for water sorption studies and alpha-amylase induced degradation adopting a gravimetric procedure. Based on the experimental findings, a plausible mechanism including both diffusion and surface enhanced degradation was suggested and degradation profiles were interpreted. The influence of various factors such as chemical architecture of the blend, pH and temperature of alpha-amylase solution were examined for the swelling and degradation kinetics of crosslinked starch-pectin blends. The effect of concentration of enzyme solution was also studied on the degradation profile of the blends. A correlation was established between the extent of degradation and water imbibing capacity of the degrading blends. PMID:17143735

  4. Convenience of immobilized Bacillus licheniformis alpha-amylase as time-temperature-integrator (TTI).

    PubMed

    De Cordt, S F; Hendrickx, M E; Maesmans, G J; Tobback, P P

    1994-02-01

    For the immobilization of Bacillus licheniformis alpha-amylase to porous glass beads, the performances of three possible linking agents, glutaric dialdehyde, benzoquinone and s-trichlorotriazine were assessed in respect of the protein yield, the enzymic activity and the thermostability of the immobilized enzyme. These three properties are to be evaluated in view of the possible use of the enzyme preparations as time-temperature-integrators (TTIs) for assessing the severity of heat pasteurization or sterilization processes of food or pharmaceuticals. All three linkers improved the enzyme's resistance to irreversible heat inactivation to a similar extent and in each case biphasic inactivation kinetics were observed, whereas the dissolved B. licheniformis alpha-amylase showed a simple first order decay. The immobilization yield, measured as protein per carrier weight, did not differ markedly for the three linkers, although the enzymic activity of the glutaric dialdehyde-linked enzyme was lower than that of the benzoquinone- and s-trichlorotriazine-linked preparations. PMID:7764538

  5. Expression of a bacterial alpha-amylase gene in transgenic rice seeds.

    PubMed

    Xu, Xiaoli; Fang, Jun; Wang, Wei; Guo, Jianli; Chen, Pinnan; Cheng, Jiaan; Shen, Zhicheng

    2008-08-01

    An alpha-amylase gene from Bacillus stearothermophilus under the control of the promoter of a major rice-seed storage protein was introduced into rice. The transgenic line with the highest alpha-amylase activity reached about 15,000 U/g of seeds (one unit is defined as the amount of enzyme that produces 1 mumol of reducing sugar in 1 min at 70 degrees C). The enzyme produced in the seeds had an optimum pH of 5.0-5.5 and optimum temperature of 60-70 degrees C. Without extraction or purification, the power of transgenic rice seeds was able to liquify 100 times its weight of corn powder in 2 h. Thus, the transgenic rice could be used for industrial starch liquefaction. PMID:17926139

  6. Production and characterization of a thermostable alpha-amylase from Nocardiopsis sp. endophyte of yam bean.

    PubMed

    Stamford, T L; Stamford, N P; Coelho, L C; Araújo, J M

    2001-01-01

    Thermostable amylolytic enzymes have been currently investigated to improve industrial processes of starch degradation. Studies on production of alpha-amylase by Nocardiopsis sp., an endophytic actinomycete isolated from yam bean (Pachyrhizus erosus L. Urban), showed that higher enzyme levels were obtained at the end of the logarithmic growth phase after incubation for 72 h at pH 8.6. Maximum activity of alpha-amylase was obtained at pH 5.0 and 70 degrees C. The isolated enzyme exhibited thermostable properties as indicated by retention of 100% of residual activity at 70 degrees C, and 50% of residual activity at 90 degrees C for 10 min. Extracellular enzyme from Nocardiopsis sp. was purified by fractional precipitation with ammonium sulphate. After 60% saturation produced 1130 U mg-1 protein and yield was 28% with purification 2.7-fold. The enzyme produced by Nocardiopsis sp. has potential for industrial applications. PMID:11131797

  7. alpha-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus.

    PubMed

    Ali, Hasenah; Houghton, P J; Soumyanath, Amala

    2006-10-11

    Extracts of six selected Malaysian plants with a reputation of usefulness in treating diabetes were examined for alpha-amylase inhibition using an in vitro model. Inhibitory activity studied by two different protocols (with and without pre-incubation) showed that Phyllanthus amarus hexane extract had alpha-amylase inhibitory properties. Hexane and dichloromethane extracts of Anacardium occidentale, Lagerstroemia speciosa, Averrhoa bilimbiPithecellobium jiringa and Parkia speciosa were not active when tested without pre-incubation. Extraction and fractionation of Phyllanthus amarus hexane extract led to the isolation of dotriacontanyl docosanoate, triacontanol and a mixture of oleanolic acid and ursolic acid. Dotriacontanyl docosanoate and the mixture of oleanolic acid and ursolic acid are reported from this plant species for the first time. All compounds were tested in the alpha-amylase inhibition assay and the results revealed that the oleanolic acid and ursolic acid (2:1) mixture was a potent alpha-amylase inhibitor with IC(50)=2.01 microg/ml (4.41 microM) and that it contributes significantly to the alpha-amylase inhibition activity of the extract. Three pure pentacyclic triterpenoids, oleanolic acid, ursolic acid and lupeol were shown to inhibit alpha-amylase. PMID:16678367

  8. Inhibition of growth of Aspergillus flavus and fungal alpha-amylases by a lectin-like protein from Lablab purpureus.

    PubMed

    Fakhoury, A M; Woloshuk, C P

    2001-08-01

    Aspergillus flavus is a fungal pathogen of maize causing an important ear rot disease when plants are exposed to drought and heat stress. Associated with the disease is the production of aflatoxins, which are a series of structurally related mycotoxins known to be carcinogenic. Previous research has suggested that the alpha-amylase of A. flavus promotes aflatoxin production in the endosperm of infected maize kernels. We report here the isolation and characterization of a 36-kDa alpha-amylase inhibitor from Lablab purpureus (AILP). AILP inhibited the alpha-amylases from several fungi but had little effect on those from animal and plant sources. The protein inhibited conidial germination and hyphal growth of A. flavus. The amino acid sequence indicated that AILP is similar to lectin members of a lectin-arcelin-alpha-amylase inhibitor family described in common bean and shown to be a component of plant resistance to insect pests. AILP also agglutinated papain-treated red blood cells from human and rabbit. These data indicate that AILP represents a novel variant in the lectin-arcelin-alpha-amylase inhibitor family of proteins having lectin-like and alpha-amylase inhibitory activity. PMID:11497467

  9. Specific inhibition of barley alpha-amylase 2 by barley alpha-amylase/subtilisin inhibitor depends on charge interactions and can be conferred to isozyme 1 by mutation.

    PubMed

    Rodenburg, K W; Vallée, F; Juge, N; Aghajari, N; Guo, X; Haser, R; Svensson, B

    2000-02-01

    alpha-Amylase 2 (AMY2) and alpha-amylase/subtilisin inhibitor (BASI) from barley bind with Ki = 0.22 nM. AMY2 is a (beta/alpha)8-barrel enzyme and the segment Leu116-Phe143 in domain B (Val89-Ile152), protruding at beta-strand 3 of the (beta/alpha)8-barrel, was shown using isozyme hybrids to be crucial for the specificity of the inhibitor for AMY2. In the AMY2-BASI crystal structure [F. Vallée, A. Kadziola, Y. Bourne, M. Juy, K. W. Rodenburg, B. Svensson & R. Haser (1998) Structure 6, 649-659] Arg128AMY2 forms a hydrogen bond with Ser77BASI, while Asp142AMY2 makes a salt-bridge with Lys140BASI. These two enzyme residues are substituted by glutamine and asparagine, respectively, to assess their contribution in binding of the inhibitor. These mutations were performed in the well-expressed, inhibitor-sensitive hybrid barley alpha-amylase 1 (AMY1)-(1-90)/AMY2-(90-403) with Ki = 0.33 nM, because of poor production of AMY2 in yeast. In addition Arg128, only found in AMY2, was introduced into an AMY1 context by the mutation T129R/K130P in the inhibitor-insensitive hybrid AMY1-(1-161)/AMY2-(161-403). The binding energy was reduced by 2.7-3.0 kcal.mol-1 as determined from Ki after the mutations R128Q and D142N. This corresponds to loss of a charged interaction between the protein molecules. In contrast, sensitivity to the inhibitor was gained (Ki = 7 microM) by the mutation T129R/K130P in the insensitive isozyme hybrid. Charge screening raised Ki 14-20-fold for this latter mutant, AMY2, and the sensitive isozyme hybrid, but only twofold for the R128Q and D142N mutants. Thus electrostatic stabilization was effectively introduced and lost in the different mutant enzyme-inhibitor complexes and rational engineering using an inhibitor recognition motif to confer binding to the inhibitor mimicking the natural AMY2-BASI complex. PMID:10672010

  10. Stopped-flow kinetic studies of the reaction of barley alpha-amylase/subtilisin inhibitor and the high pI barley alpha-amylase.

    PubMed

    Sidenius, U; Olsen, K; Svensson, B; Christensen, U

    1995-03-20

    The interaction of alpha-amylase/subtilisin inhibitor (BASI) from barley seeds and the high pI barley alpha-amylase (AMY2) de novo synthesized during seed germination, has been studied at pH 8.0, 25 degrees C, using stopped-flow fluorescence spectroscopy, equilibrium fluorescence titration and kinetic analysis of the displacement of BASI from the BASI-AMY2 complex by the substrate blue starch. The results are in accordance with a two-step reaction model: [formula: see text] The resulting values of the kinetic parameters were: k2/K1 = (1.0 +/- 0.2) x 10(6) M-1.s-1, K1 = 0.4 +/- 0.21 mM, k2 = 320 +/- 150 s-1, k-2 = (7.2 +/- 0.6) x 10(-5)s-1, and the overall dissociation constant Kd = (0.7 +/- 0.1) x 10(-10) M. BASI thus is best characterized as a fast reacting, tight-binding inhibitor of AMY2. PMID:7698332

  11. Polymorphism of salivary esterase and alpha-amylase in the Greek population.

    PubMed

    Petalopoulos, A; Fousteri, M; Kouvatsi, A; Triantaphyllidis, C

    1993-01-01

    The genetic polymorphism of two salivary enzymes (esterase and alpha-amylase) was studied in individuals from eight districts of Greece. The pooled gene frequencies were: SetS = 0.63, SetF = 0.37, AMY1 = 0.87, AMY2 = 0.10, AMY3 = 0.02, and AMY4 = 0.01. There was no intrapopulation heterogeneity, while there was a significant difference between the Greeks and the few other European populations studied. PMID:7507080

  12. The genetic control of the alpha-amylase isozymes of the durum wheat (Triticum durum Desf.).

    PubMed

    Prokopyk, D O; Antonyuk, M Z; Ternovskaya, T K

    2009-01-01

    The hybridological analysis was provided on several durum wheat genotypes with utilizing three F2 populations developed from the crossing between parental forms that differed in the invariable malt-zone triplet on electrophoretic spectrum of alpha-amylase. Three components of this zone are controlled by three genes with an independent way of inheritance: one of them is located on the 6B or 5B chromosome, and two genes are located on the chromosomes of A subgenome. PMID:19938630

  13. Statistical media optimization and production of ITS alpha-amylase from Aspergillus oryzae in a bioreactor.

    PubMed

    Gigras, Paresh; Sahai, Vikram; Gupta, Rani

    2002-09-01

    The production of an intermediate temperature-stable (ITS) alpha-amylase from Aspergillus oryzae was studied by using a central composite design with three independent variables, viz., starch, yeast extract, and K(2)HPO(4). The model equation provided a suitable model for the response surface for alpha-amylase production, and, from the optimal concentrations of the medium components, a model was predicted, which was then used for enzyme production in a 150-L bioreactor. In the bioreactor studies, the enzyme yields (161 U/ml) were similar to that of the shake flask (133 U/ml); however, the time required for maximum alpha-amylase production in the bioreactor was reduced to 48 h compared with 120 h in shake flask cultures. An increased level of phosphate in the medium and low inoculum size were necessary to control the excessive foaming in the bioreactor; however, control of the pO(2) level and agitation was not mandatory for enzyme production. The peak enzyme production coincided with the increase in pH of the fermentation broth and was maximal when the pH of the system was above 7.5. Thus, in the present study, pH acted as an indicator of the initiation or end of the enzyme synthesis or of the fermentation cycle. PMID:12177743

  14. Coconut oil cake--a potential raw material for the production of alpha-amylase.

    PubMed

    Ramachandran, Sumitra; Patel, Anil K; Nampoothiri, K Madhavan; Francis, Febe; Nagy, Viviana; Szakacs, George; Pandey, Ashok

    2004-06-01

    Solid-state fermentation (SSF) was carried out using coconut oil cake (COC) as substrate for the production of alpha-amylase using a fungal culture of Aspergillus oryzae. Raw COC supported the growth of the culture, resulting in the production of 1372 U/gds alpha-amylase in 24 h. Process optimization using a single parameter mode showed enhanced enzyme titre, which was maximum (1827 U/gds) when SSF was carried out at 30 degrees C for 72 h using a substrate with 68% initial moisture. Supplementation with glucose and starch further enhanced enzyme titre, which was maximum (1911 U/gds) with 0.5% starch. However, maltose inhibited the enzyme production. Studies on the effect of addition of external organic and inorganic nitrogenous compounds further showed a positive impact on enzyme synthesis by the culture. Increase of 1.7-fold in the enzyme activity (3388 U/gds) was obtained when peptone at 1% concentration was added to the fermentation medium. The enzyme production was growth-related, the activity being the maximum when the fungal biomass was at its peak at 72 h. Use of COC as raw material for enzyme synthesis could be of great commercial significance. To the best of our knowledge this is the first report on alpha-amylase production using COC in SSF. PMID:15051078

  15. Production and properties of alpha-amylase from Penicillium chrysogenum and its application in starch hydrolysis.

    PubMed

    Balkan, Bilal; Ertan, Figen

    2005-01-01

    Fungi were screened for their ability to produce alpha-amylase by a plate culture method. Penicillium chrysogenum showed high enzymatic activity. Alpha-amylase production by P. chrysogenum cultivated in liquid media containing maltose (2%) reached its maximum at 6-8 days, at 30 degrees C, with a level of 155 U ml(-1). Some general properties of the enzyme were investigated. The optimum reaction pH and temperature were 5.0 and 30-40 degrees C, respectively. The enzyme was stable at a pH range from 5.0-6.0 and at 30 degrees C for 20 min and the enzyme's 92.1% activity's was retained at 40 degrees C for 20 min without substrate. Hydrolysis products of the enzyme were maltose, unidefined oligosaccharides, and a trace amount of glucose. Alpha-amylase of P. chrysogenum hydrolysed starches from different sources. The best hydrolysis was determined (98.69%) in soluble starch for 15 minute at 30 degrees C. PMID:15881598

  16. [Influence of amaranth on the production of alpha-amylase using Aspergillus niger NRRL 3112].

    PubMed

    Mariani, D D; Lorda, G; Balatti, A P

    2000-01-01

    In this paper the influence of the amaranth seed meal and the aeration conditions on the alpha-amylase production by Aspergillus niger NRRL 3112 were studied. The assays of selection of culture medium were carried out in a rotary shaker at 250 rpm and 2.5 cm stroke. The aeration conditions were studied in a mechanically stirred fermentor New Brunswick type. A concentration of alpha-amylase of 2750 U.Dun/ml was achieved at 120 h with a dry weight of 8.0 g/l, using a base medium with 5.0 g/l Amaranthus cruentus seed meal. In the experiment performed in a New Brunswick fermentor, the highest value was 2806 U.Dun/ml. This result was obtained after 120 h, operating at 300 rpm and an airflow of 1 l/l. min. in a limited dissolved oxygen concentration. It was determined that the increase in the agitation rate was not favorable to the enzyme production, despite that an increase was verified in the dissolved oxygen. The morphology of the microorganism, in long and ramified hyphae, was the critical factor to obtain higher levels of alpha-amylase. PMID:11149149

  17. Structural studies of wheat monomeric and dimeric protein inhibitors of alpha-amylase.

    PubMed Central

    Petrucci, T; Sannia, G; Parlamenti, R; Silano, V

    1978-01-01

    Two wheat monomeric protein inhibitors of alpha-amylase with mol.wt. 12000, designated inhibitors 0.28 and 0.39 according to their gel-electrophoretic mobilities, showed almost identical circular-dichroism spectra in both the far and near u.v. at different pH values as well as in the presence or absence of dissociating and reducing agents. Both inhibitors (0.28 and 0.39) were readily inactivated by reduction of the five disulphide bridges present in each inhibitor molecule. These properties are very similar to those exhibited by the wheat dimeric protein inhibitor of alpha-amylase with mol.wt. 24000, designated inhibitor 0.19 according to its gel-electrophoretic mobility. The N-terminal sequence of the 0.19 inhibitor was determined without separating its subunits and compared with that of the 0.28 inhibitor reported by Redman [(1976) Biochem. J. 155, 193--195]. Petide 'maps' from tryptic digests of reduced and carboxymethylated inhibitors 0.19 and 0.28 were compared. One molecule of reducing sugar is covalently bound per inhibitor-0.19 protomer and inhibitor-0.28 molecule. The results obtained strongly support previous findings indicating the structural equivalence of inhibitor 0.28 with each inhibitor-0.19 protomer and the common phylogenetic origin of these protein alpha-amylase inhibitors from wheat kernel. PMID:308369

  18. Differential expression of two ß-amylase genes (Bmy1 and Bmy2) in developing and mature barley grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) endosperm-specific (Bmy1) and ubiquitous (Bmy2) ß-amylase were studied during the late maturation phase of seed development in four genotypes. Sequencing of Bmy2 from genomic DNA revealed six polymorphisms in the introns and two synonymous SNPs in the coding region. Acc...

  19. Purification by expanded bed adsorption and characterization of an alpha-amylases FORILASE NTL from A. niger.

    PubMed

    Toledo, A L; Severo, J B; Souza, R R; Campos, E S; Santana, J C C; Tambourgi, E B

    2007-02-01

    In this work the purification and biochemistry characterization of alpha-amylases from Aspergillus niger (FORILASE NTL) were studied. The effects of expansion degree of resin bed on enzyme purification by expanded bed adsorption (EBA) have also been studied. Residence time distributions (RTD) studies were done to achieve the optimal conditions of the amylases recovery on ion-exchange resin, and glucose solution was used as a new tracer. Results showed that height equivalent of the theoretical plates (HETP), axial dispersion and the Prandt number increased with bed height, bed voidage and linear velocity. The adsorption capacity of alpha-amylases, on the resin, increased with bed height and the best condition was at four-expansion degree. alpha-Amylase characterization showed that this enzyme has high affinity with soluble starch, good hydrolysis potential and molecular weight of 116 kDa. PMID:16959553

  20. Interaction of europium and curium with alpha-amylase.

    PubMed

    Barkleit, Astrid; Heller, Anne; Ikeda-Ohno, Atsushi; Bernhard, Gert

    2016-06-01

    The complexation of Eu(iii) and Cm(iii) with the protein α-amylase (Amy), a major enzyme in saliva and pancreatic juice, was investigated over wide ranges of pH and concentration at both ambient and physiological temperatures. Macroscopic sorption experiments demonstrated a strong and fast binding of Eu(iii) to Amy between pH 5 and 8. The protein provides three independent, non-cooperative binding sites for Eu(iii). The overall association constant of these three binding sites on the protein was calculated to be log K = 6.4 ± 0.1 at ambient temperature. With potentiometric titration, the averaged deprotonation constant of the carboxyl groups (the aspartic and glutamic acid residues) of Amy was determined to be pKa = 5.23 ± 0.14 at 25 °C and 5.11 ± 0.24 at 37 °C. Time-resolved laser-induced fluorescence spectroscopy (TRLFS) revealed two different species for both Eu(iii) and Cm(iii) with Amy. In the case of the Eu(iii) species, the stability constants were determined to be log β11 = 4.7 ± 0.2 and log β13 = 12.0 ± 0.4 for Eu : Amy = 1 : 1 and 1 : 3 complexes, respectively, whereas the values for the respective Cm(iii) species were log β11 = 4.8 ± 0.1 and log β13 = 12.1 ± 0.1. Furthermore, the obtained stability constants were extrapolated to infinite dilution to make our data compatible with the existing thermodynamic database. PMID:26866402

  1. Interaction of wheat monomeric and dimeric protein inhibitors with alpha-amylase from yellow mealworm (Tenebrio molitor L. larva).

    PubMed Central

    Buonocore, V; Gramenzi, F; Pace, W; Petrucci, T; Poerio, E; Silano, V

    1980-01-01

    The highly purified alpha-amylase from Tenebrio molitor L. larva (yellow mealworm) reversibly combines with two closely related homogeneous glycoprotein inhibitors, one dimeric (termed 'inhibitor 0.19') and one monomeric (termed 'inhibitor 0.28'), from wheat flour. As established by means of difference spectroscopy and kinetic studies, molar combining ratios for the amylase--inhibitor-0.19 and amylase-inhibitor-0.28 complexes were 1:1 and 1:2 respectively. Two amylase--inhibitor-0.19 complexes with slightly different retention volumes on Bio-Gel P-300 and only one amylase--inhibitor-0.28 complex were observed. Dissociation constants of the amylase--inhibitor-0.19 and amylase--inhibitor-0.28 complexes were 0.85 nM and 0.13 nM respectively. A strong tendency of both complexes to precipitate under an ultracentrifugal field was observed; the minimum molecular weight calculated for the two complexes under such conditions was approx. 95 000. The two complexes showed difference spectra indicating involvement of structurally related or identical tryptophyl side chains in the binding of inhibitors 0.28 and 0.19 to the amylase. A model summarizing the main features of the inhibition of the insect amylase by the two wheat protein inhibitors is proposed. PMID:6985361

  2. Comparison of alpha-amylase activity in larval stages of flour beetles, Tribolium confusum (Coleoptera: Tenebionidae).

    PubMed

    Bandani, A R; Balvasi, A

    2006-01-01

    Flour beetles attack stored grain products such as flour, cereals, meal, dried pet food, dried flowers and even dried museum specimens and other foods in the house. Stored-product insects cause tremendous losses by lowering weight, germination rate, nutritional value and grain grade. These beetles are of the most important pests of stored products in the home and grocery stores. The adult female may live for as long as two years, depositing 300 to 400 eggs. The life cycle requires one to four months when temperatures are favorable. Several methods could be used to control this insect including synthetic insecticides, biological control, physical control and transgenic plant carrying gene of interest. Chemical controls are discouraged due to pesticide residue in the commodities and resistance in insects. The study of insect digestive enzymes seems to make sense in the realization that the gut is the major interface between the insect and its environment. Hence, an understanding of digestive enzyme function is essential when developing methods of insect control such as the use of enzyme inhibitors and transgenic plants to control insect pests. Therefore, the aim of the current study was to get a good understanding from enzyme composition of different larval stages of the insect and finally characterize amylase which is the key enzyme in digestive system of this insect. For alpha-amylase study whole larvae were homogenized in 0.02 M phosphate buffer at pH 7.2. The homogenates were separately transferred to a 1.5 ml of centrifuge tubes and centrifuged at 15000xg for 20 min at 4degrees C. The supernatants were used as enzyme source in assays. alpha-Amylase activity was assayed by the dinitrosalicylic acid (DNS) procedure using 1% soluble starch (Merck) as substrate. The results show that enzyme activity (OD) in the first, second, third and fourth larval stages were 0.5, 1.15, 1.35 and 1.362, respectively. There are significant differences in amylase activity in

  3. Structures of multi-branched dextrins produced by saccharifyiing alpha-amylase from starch.

    PubMed

    Umeki, K; Yamamoto, T

    1975-11-01

    From the digest of beta-limit dextrin (prepared from glutinous rice starch) with saccharifying alpha-amylase of Bacillus subtilis [EC 3.2.1.1] (BSA), two extensibely branched dextrins consisting of nine (No. 6, Fig. 1) and ten (No 7, Fig.1) glucose units were isolated by paper chromatography. Structural analysis using various enzymes revealed that No. 6 and No. 7 were both mixtures of four triply branched dextrins. They had structures which were built up with 63-alpha-glucosylmaltotriose and/or 62-alpha-glucosylmaltose as a linking unit. However, the branching configuration and the minimum alpha-1, 4-glucosidic linkages existing between two branches followed one of the three structures shown below: (see article). PMID:814118

  4. Alpha amylase enzyme inhibitory and anti-inflammatory effect of Lawsonia inermis.

    PubMed

    Imam, Hasan; Mahbub, Nasir Uddin; Khan, Md Forhad; Hana, Humayera Kabir; Sarker, Md Moklesur Rahman

    2013-12-01

    Previously it was reported elsewhere that Lawsonia inermis have anti-inflammatory and analgesic effect in experimental animals. The in vitro porcine alpha amylase inhibitory effect was investigated of this plant methanolic extracts and consequently hypoglycemic effect by quantitatively determining the maltose from the maltose standard curve while the anti-inflammatory effect by acetic acid induced writhing test in mice. Acarbose (10 microg mL(-1)) and Diclofenac sodium (20 mg kg(-1)) were used as reference hypoglycemic and anti-inflammatory drugs, respectively, for this study. The methanolic leaves extract of the plant significantly inhibited (60.97% compared to untreated) enzymatic activity of the amylase at 10 microg mL(-1) dose (p < 0.05) also reduced the chemically induced nociceptive pain stimuli significantly at all doses (p < 0.01). Carbohydrates, glycosides, flavonoids, saponins and tannins were found to have in phytochemical screening of the extract which are thought to bring these effects. For the conclusive purpose, it is suggesting from the result that the pharmacological properties of this Lawsonia inermis can elicit hypoglycemic effect by inhibiting alpha-amylase enzyme and can reduce neurogenic pain stimulus. It gives the notion that how this group of patient would be therapeutically benefitted by decreasing both these effects by the same agent which is easy available. PMID:24506051

  5. Cloning, characterization, and expression of two alpha-amylase genes from Aspergillus niger var. awamori.

    PubMed

    Korman, D R; Bayliss, F T; Barnett, C C; Carmona, C L; Kodama, K H; Royer, T J; Thompson, S A; Ward, M; Wilson, L J; Berka, R M

    1990-03-01

    Using synthetic oligonucleotide probes, we cloned genomic DNA sequences encoding an alpha-amylase gene from Aspergillus niger var. awamori (A. awamori) on a 5.8 kb EcoRI fragment. Hybridization experiments, using a portion of this cloned fragment to probe DNA from A. awamori, suggested the presence of two alpha-amylase gene copies which were subsequently cloned as 7 kb (designated as amyA) and 4 kb (amyB) HindIII fragments. DNA sequence analysis of the amyA and amyB genes revealed the following: (1) Both genes are arranged as nine exons and eight introns; (2) The nucleotide sequences of amyA and amyB are identical throughout all but the last few nucleotides of their respective coding regions; (3) The amyA and amyB genes from A. awamori share extensive homology (greater than or equal to 98% identity) with the genes encoding Taka-amylase from A. oryzae. In order to test whether both amyA and amyB were functional in the genome, we constructed vectors containing gene fusions of either amyA and amyB to bovine prochymosin cDNA and used these vectors to transform A. awamori. Transformants which contained either the amyA- or amyB-prochymosin gene fusions produced extracellular chymosin, suggesting that both genes are functional. PMID:2340591

  6. Miconia sp. Increases mRNA Levels of PPAR Gamma and Inhibits Alpha Amylase and Alpha Glucosidase

    PubMed Central

    Ortíz-Martinez, David Mizael; Rivas-Morales, Catalina; de la Garza-Ramos, Myriam Angelica; Verde-Star, Maria Julia; Nuñez-Gonzalez, Maria Adriana

    2016-01-01

    Diabetes mellitus is a public health problem worldwide. For this reason, ethanolic extract of Miconia sp. from Oaxaca, Mexico, was selected in search of an alternative against this disease. The effect of Miconia sp. on mRNA expression of PPARγ on cell line 3T3-L1, its effect on alpha amylase and alpha glucosidase, lipid accumulation during adipogenesis, and cell viability on VERO cells were evaluated. The mRNA levels of PPARγ increased on 1.393 ± 0.008 folds, lipid accumulation was increased by 29.55% with Miconia sp. extract and 34.57% with rosiglitazone, and α-amylase and α-glycosidase were inhibited with IC50 values from 28.23 ± 2.15 μg/mL and 1.95 ± 0.15 μg/mL, respectively; the IC50 on antiproliferative activity on VERO cells was 314.54 ± 45.40 μg/mL. In case of α-amylase and α-glycosidase assays, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of enzymatic activity. On the other hand, on antiproliferative activity, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of cell proliferation. It was concluded that the compounds present in Miconia sp. ethanolic extract increase mRNA expression of PPARγ, inhibit α-amylase and α-glucosidase, and increase lipid accumulation. It constitutes an alternative as adjuvant in diabetes mellitus treatment; therefore, we recommend continuing identifying the compounds responsible for its promising in vivo antidiabetic activity. PMID:27478477

  7. Miconia sp. Increases mRNA Levels of PPAR Gamma and Inhibits Alpha Amylase and Alpha Glucosidase.

    PubMed

    Ortíz-Martinez, David Mizael; Rivas-Morales, Catalina; de la Garza-Ramos, Myriam Angelica; Verde-Star, Maria Julia; Nuñez-Gonzalez, Maria Adriana; Leos-Rivas, Catalina

    2016-01-01

    Diabetes mellitus is a public health problem worldwide. For this reason, ethanolic extract of Miconia sp. from Oaxaca, Mexico, was selected in search of an alternative against this disease. The effect of Miconia sp. on mRNA expression of PPARγ on cell line 3T3-L1, its effect on alpha amylase and alpha glucosidase, lipid accumulation during adipogenesis, and cell viability on VERO cells were evaluated. The mRNA levels of PPARγ increased on 1.393 ± 0.008 folds, lipid accumulation was increased by 29.55% with Miconia sp. extract and 34.57% with rosiglitazone, and α-amylase and α-glycosidase were inhibited with IC50 values from 28.23 ± 2.15 μg/mL and 1.95 ± 0.15 μg/mL, respectively; the IC50 on antiproliferative activity on VERO cells was 314.54 ± 45.40 μg/mL. In case of α-amylase and α-glycosidase assays, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of enzymatic activity. On the other hand, on antiproliferative activity, IC50 (inhibitory concentration 50) refers to necessary extract amounts to inhibit 50% of cell proliferation. It was concluded that the compounds present in Miconia sp. ethanolic extract increase mRNA expression of PPARγ, inhibit α-amylase and α-glucosidase, and increase lipid accumulation. It constitutes an alternative as adjuvant in diabetes mellitus treatment; therefore, we recommend continuing identifying the compounds responsible for its promising in vivo antidiabetic activity. PMID:27478477

  8. Effects of metals on {alpha}-amylase activity in the digestive gland of the green mussel, Perna viridis L.

    SciTech Connect

    Yan, T.; Teo, L.H.; Sin, Y.M.

    1996-04-01

    A number of digestive enzymes in the green mussel, Perna viridis L., have been reported, and {alpha}-amylase is believed to have a higher activity than the others. Small plankton, on which the green mussel feeds, may supply plenty of starch and glycogen. They may be an important source of nutrients for the green mussel and the ability of the latter to make good use of them depends mainly on the activities of amylase. The effect of heavy metals on amylase activity is also important as the ability of the mussel`s digestive gland to accumulate these metals is well known. High concentrations of heavy metals, especially lead, have been observed in the water around Singapore. The in vitro inhibition of some metals on the activities of digestive enzymes from the green mussel has been observed, but kinetic properties of the inhibition and the in vivo inhibition of the heavy metals on digestive enzymes are little understood. In the present study, in vitro inhibition of four metals (Pb, Cd, Zn and Hg) on the activity of {alpha}-amylase from the digestive gland of the green mussel will be compared. Their effects on the K{sub M} and V{sub max} values of {alpha}-amylase will also be compared. Finally, lead is either added to the food or water, to see how it affects the activity of {alpha}-amylase and how this effect acts in combination with starvation. 12 refs., 3 figs., 3 tabs.

  9. Production, purification, and characterization of alpha-amylase from Thermomonospora curvata.

    PubMed Central

    Glymph, J L; Stutzenberger, F J

    1977-01-01

    Thermomonospora curvata produces an extracellular alpha-amylase. Maximal amylase production by cultures in a starch-mineral salts medium occurred at pH 7.5 and 53 degrees C. The crude enzyme was unstable to heating (65 degrees C) at pH 4 to 6, and was activated when heated at pH 8. The enzyme was purified 66-fold with a 9% yield and appeared homogeneous on discontinuous gel electrophoresis. The pH and temperature optima for activity of the purified enzyme were 5.5 to 6.0 and 65 degrees C. The molecular weight was calculated to be 62,000. The Km for starch was 0.39 mg/ml. The amylolytic pattern consisted of a mixture of maltotetraose and maltopentaose. Images PMID:21612

  10. Stable yeast transformants that secrete functional. cap alpha. -amylase encoded by cloned mouse pancreatic cDNA

    SciTech Connect

    Filho, S.A.; Galembeck, E.V.; Faria, J.B.; Frascino, A.C.S.

    1986-04-01

    Mouse pancreatic ..cap alpha..-amylase complementary DNA was inserted into a yeast shuttle vector after the Saccharomyces cerevisiae MF..cap alpha..1 promoter and secretion signals coding sequences. When transformed with the recombinant plasmid, S. cerevisiae cells were able to synthesize and secrete functional ..cap alpha..-amylase, efficiently hydrolyzing starch present in the culture medium. Stable amylolytic cells were obtained from different yeast strains. This work represents a significant step towards producing yeast that can convert starchy materials directly to ethanol.

  11. A Proposed Mechanism for the Thermal Denaturation of a Recombinant Bacillus Halmapalus Alpha-amylase - the Effect of Calcium Ions

    NASA Technical Reports Server (NTRS)

    Nielsen, Anders D.; Pusey, Marc L.; Fuglsang, Claus C.; Westh, Peter

    2003-01-01

    The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where previous crystallographic studies have identified the existence of 3 calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 C, and DSC thermograms can be described using a one-step irreversible model. A 5 C increase in T(sub m) in the presence of 10 fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40 fold excess calcium chelator (EDTA or EGTA) results in a large destabilization of BHA corresponding to about 40 C lower T(sub m), as determined by both CD and DSC. Ten fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which possibly originate from different populations of BHA:calcium complexes. The observations in the present study have, in combination with structural information of homologous alpha-amylases, provided the basis for the proposal of a simple denaturation mechanism of BHA. The proposed mechanism describes the irreversible thermal denaturation of different BHA:calcium complexes and the calcium binding equilibrium involved. Furthermore, the model accounts for a temperature induced reversible structural change associated with calcium binding.

  12. Secretion, purification, and characterisation of barley alpha-amylase produced by heterologous gene expression in Aspergillus niger.

    PubMed

    Juge, N; Svensson, B; Williamson, G

    1998-04-01

    Efficient production of recombinant barley alpha-amylase has been achieved in Aspergillus niger. The cDNA encoding alpha-amylase isozyme 1 (AMY1) and its signal peptide was placed under the control of the Aspergillus nidulans glyceraldehyde-3-phosphate dehydrogenase (gpd) promoter and the A. nidulans trpC gene terminator. Secretion yields up to 60 mg/l were obtained in media optimised for alpha-amylase activity and low protease activity. The recombinant AMY1 (reAMY1) was purified to homogeneity and found to be identical to native barley AMY1 with respect to size, pI, and immunoreactivity. N-terminal sequence analysis of the recombinant protein indicated that the endogenous plant signal peptide is correctly processed in A. niger. Electrospray ionisation/mass spectrometry gave a molecular mass for the dominant form of 44,960 Da, in accordance with the loss of the LQRS C-terminal residues; glycosylation apparently did not occur. The activities of recombinant and native barley alpha-amylases are very similar towards insoluble and soluble starch as well as 2-chloro-4-nitrophenol beta-D-maltoheptaoside and amylose (degree of polymerisation = 17). Barley alpha-amylase is the first plant protein efficiently secreted and correctly processed by A. niger using its own signal sequence. PMID:9615479

  13. Domain B protruding at the third beta strand of the alpha/beta barrel in barley alpha-amylase confers distinct isozyme-specific properties.

    PubMed

    Rodenburg, K W; Juge, N; Guo, X J; Søgaard, M; Chaix, J C; Svensson, B

    1994-04-01

    alpha-Amylases belong to the alpha/beta-barrel protein family in which the active site is created by residues located at the C-terminus of the beta strands and in the helix-connecting loops extending from these ends. In the alpha-amylase family, a small separate domain B protrudes at the C-terminus of the third beta strand of the (beta/alpha)8-barrel framework. The 80% identical barley alpha-amylase isozymes 1 and 2 (AMY1 and AMY2, respectively) differ in substrate affinity and turnover rate, CaCl2 stimulation of activity, sensitivity to the endogenous 21-kDa alpha-amylase/subtilisin inhibitor, and stability at low pH. To identify regions that confer these isozyme-specific variations, AMY1-AMY2 hybrid cDNAs were generated by in vivo homologous recombination in yeast. The hybrids AMY1-(1-90)-AMY2-(90-403) and AMY1-(1-161)-AMY2-(161-403) characterized in this study contain the 90-residue and 161-residue N-terminal sequences, respectively, of AMY1 and complementary C-terminal regions of AMY2. AMY1-(1-90)-AMY2-(90-403) comprises the 60-amino-acid domain B of AMY2 and resembles this isozyme in sensitivity to alpha-amylase/subtilisin inhibitor and its low affinity for the substrates p-nitrophenyl alpha-D-maltoheptaoside, amylose and the inhibitor acarbose. Only AMY1-(1-161)-AMY2-(161-403) and AMY1, which both share domain B, are stable at low pH. However, AMY2 and both hybrid AMY species, but not AMY1, show maximum enzyme activity on insoluble blue starch at approximately 10 mM CaCl2. Domain B thus determines several functional and stability properties that distinguish the barley alpha-amylase isozymes. PMID:8168517

  14. Cloning and Characterization of an Alpha-amylase Gene from the Hyperthermophilic Archaeon Thermococcus Thioreducens

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    The gene encoding an extracellular a-amylase, TTA, from the hyperthermophilic archaeon Thermococcus thioreducens was cloned and expressed in Escherichia coli. Primary structural analysis revealed high similarity with other a-amylases from the Thermococcus and Pyrococcus genera, as well as the four highly conserved regions typical for a-amylases. The 1374 bp gene encodes a protein of 457 amino acids, of which 435 constitute the mature protein preceded by a 22 amino acid signal peptide. The molecular weight of the purified recombinant enzyme was estimated to be 43 kDa by denaturing gel electrophoresis. Maximal enzymatic activity of recombinant TTA was observed at 90 C and pH 5.5 in the absence of exogenous Ca(2+), and the enzyme was considerably stable even after incubation at 90 C for 2 hours. The thermostability at 90 and 102 C was enhanced in the presence of 5 mM Ca(2+). The extraordinarily high specific activity (about 7.4 x 10(exp 3) U/mg protein at 90 C, pH 5.5 with soluble starch as substrate) together with its low pH optimum makes this enzyme an interesting candidate for starch processing applications.

  15. Isolation and Partial Characterization of a Factor from Barley Aleurone that Modifies alpha-Amylase in Vitro.

    PubMed

    Sticher, L; Jones, R L

    1991-11-01

    Posttranslational modifications that give rise to multiple forms of alpha-amylase (EC 3.2.1.1) in barley (Hordeum vulgare L. cv Himalaya) were studied. When analyzed by denaturing polyacrylamide gel electrophoresis, barley alpha-amylase has a molecular mass of 43 to 44 kilodaltons, but isoelectric focusing resolves the enzyme into a large number of isoforms. To precisely identify these isoforms, we propose a system of classification based on their isoelectric points (pl). alpha-Amylases with pls of approximately 5, previously referred to as low pl or Amy1 isoforms, have been designated HAMY1, and alpha-amylases with pls of approximately 6, referred to as high pl or Amy2, are designated HAMY2. Individual isoforms of HAMY1 and HAMY2 are identified by their pls. For example, the most acidic alpha-amylase synthesized and secreted by barley aleurone layers is designated HAMY1(4.56). Some of the diversity in the pls of barley alpha-amylases arises from posttranslational modifications of the enzyme. We report the isolation of a factor from barley aleurone layers and incubation media that can modify HAMY1 isoforms in vitro. This factor has a molecular mass between 30 and 50 kilodaltons, and it can catalyze the conversion of HAMY1(4.90) and HAMY1(4.64) to isoforms 4.72 and 4.56, respectively. The in vitro conversion of HAMY1 isoforms by the factor is favored by pH values of approximately 5 and is inhibited at approximately pH 7. The level of this factor in aleurone layers and incubation media is not affected by treatment of the tissue with gibberellic acid. The amylase-modifying activity from barley will also modify alpha-amylases isolated from human saliva and porcine pancreas. An activity that can modify HAMY1 isoforms in vitro has also been isolated from Onozuka R10 cellulase. Because the activity isolated from barley lowers the pl of alpha-amylase from barley, human saliva, and porcine pancreas, we speculate that it is a deamidase. PMID:16668534

  16. Alpha-amylase Inhibition and Antioxidant Activity of Marine Green Algae and its Possible Role in Diabetes Management

    PubMed Central

    Unnikrishnan, P. S.; Suthindhiran, K.; Jayasri, M. A.

    2015-01-01

    Aim: In the continuing search for safe and efficient antidiabetic drug, marine algae become important source which provide several compounds of immense therapeutic potential. Alpha-amylase, alpha-glucosidase inhibitors, and antioxidant compounds are known to manage diabetes and have received much attention recently. In the present study, four green algae (Chaetomorpha aerea, Enteromorpha intestinalis, Chlorodesmis, and Cladophora rupestris) were chosen to evaluate alpha-amylase, alpha-glucosidase inhibitory, and antioxidant activity in vitro. Materials and Methods: The phytochemical constituents of all the extracts were qualitatively determined. Antidiabetic activity was evaluated by inhibitory potential of extracts against alpha-amylase and alpha-glucosidase by spectrophotometric assays. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxide (H2O2), and nitric oxide scavenging assay. Gas chromatography-mass spectrometry (GC-MS) analysis was carried out to determine the major compound responsible for its antidiabetic action. Results: Among the various extracts screened, chloroform extract of C. aerea (IC50 − 408.9 μg/ml) and methanol extract of Chlorodesmis (IC50 − 147.6 μg/ml) showed effective inhibition against alpha-amylase. The extracts were also evaluated for alpha-glucosidase inhibition, and no observed activity was found. Methanol extract of C. rupestris showed notable free radical scavenging activity (IC50 – 666.3 μg/ml), followed by H2O2 (34%) and nitric oxide (49%). Further, chemical profiling by GC-MS revealed the presence of major bioactive compounds. Phenol, 2,4-bis (1,1-dimethylethyl) and z, z-6,28-heptatriactontadien-2-one were predominantly found in the methanol extract of C. rupestris and chloroform extract of C. aerea. Conclusion: Our results demonstrate that the selected algae exhibit notable alpha-amylase inhibition and antioxidant activity. Therefore, characterization of active compounds and its in vivo

  17. Alpha-amylase inhibitory activity and phytochemical study of Zhumeria majdae Rech. f. and Wendelbo

    PubMed Central

    Mirshafie, Behnaz; Mokhber-Dezfouli, Najmeh; Manayi, Azadeh; Saeidnia, Soodabeh; Ajani, Yousef; Gohari, Ahmad Reza

    2015-01-01

    Background: Zhumeria majdae (Lamiaceae) is an endemic species growing in the South parts of Iran especially Hormozgan province. The plant is so-called Mohrekhosh locally and widely used for medicinal purposes including stomachache and dysmenorrhea. Objective: In order to separation and identification of the main flavonoid glycosides of the plant (aerial parts including leaves, stems, flowers, and fruits were used) and evaluation of its alpha-amylase inhibitory (AAI) activity, methanolic extract was prepared and fractionated to botanolic portion. Materials and Methods: Isolation of the main compounds of the butanol extract of the plant have been performed using different column chromatography methods such as high-performance liquid chromatography (C18 column) and Sephadex LH-20 as well. The isolated compounds were identified by Hydrogen-1 nuclear magnetic resonance and Carbon-13 nuclear magnetic resonance spectra and comparison with those reported in previous literature. Moreover, inhibitory activity of the butanolic extract of the plant against alpha-amylase enzyme was examined in different concentrations (15–30 mg/mL), where acarbose used as a positive control. Results: Three flavonoid glycosides: Linarin (1), hispidulin-7-O-(4-O-acetyl-rutinoside) (2), hispidulin-7-O-rutinoside (3) were successfully identified in the extract. The activity of alpha amylase enzyme was dose-dependently suppressed by the butanol extract. The extract exhibited the highest inhibition at 30 mg/mL toward enzyme (77.9 ± 2.1%), while acarbose inhibited the enzyme at 20 mg/mL by 73.9 ± 1.9%. The inhibitory concentrations of 50% for the extract and acarbose were calculated at 24.5 ± 2.1 and 6.6 ± 3.1 mg/mL, respectively. Conclusion: Z. majdae contains glycosylated flavones and could be a good candidate for anti-diabetic evaluations in animal and clinical trials due to possessing AAI activity. PMID:26692743

  18. [Inhibitors of alpha-amylase from plants--a possibility to treat diabetes mellitus type II by phytotherapy?].

    PubMed

    Melzig, Matthias F; Funke, Ines

    2007-01-01

    Antidiabetics of plant origin are in common use. A proof of their effectiveness or their mode of action is often missing. The aim of this work was to review the knowledge about inhibitors of alpha-amylase from plants and to comment on the use in anti-diabetic treatment. Herbal alpha-amylase inhibitors are rarely described in the literature, nevertheless they have the ability to lower postprandial blood glucose level and should be used in the supplementary treatment of diabetes. Important constituents for the inhibitory activity against alpha-amylase are mainly polyphenolic compounds. There is a need for further clinical studies to establish a rational therapy with traditional herbal preparations, especially for the leaves from the blueberry, tamarind, lemon balm and rosemary, the hulls from white kidney beans or green tea extract. PMID:17704980

  19. Soyacystatin N inhibits proteolysis of wheat alpha-amylase inhibitor and potentiates toxicity against cowpea weevil.

    PubMed

    Amirhusin, Bahagiawati; Shade, Richard E; Koiwa, Hisashi; Hasegawa, Paul M; Bressan, Ray A; Murdock, Larry L; Zhu-Salzman, Keyan

    2004-12-01

    Genetic engineering may be used to introduce multiple insect resistance genes with different modes of action into crop plants. We explored the possible interactions of two differing gene products fed in the diet of cowpea weevil, Callosobruchus maculates (F.), a stored grain pest. The soybean cysteine protease inhibitor soyacystatin N (scN) and alpha-amylase inhibitor (alphaAI) from wheat have defensive function against this coleopteran. When artificial seeds containing both scN and alpha(AI) were infested with eggs of C. maculatus, the delays in larval development were longer than was predicted by summing the developmental delays seen when larvae were fed a diet containing the individual proteins, indicating that the effects of scN and alpha(AI) are synergistic. Alpha(AI) was readily hydrolyzed when incubated with insect gut extract. This proteolytic degradation was inhibited by scN, but not by Kunitz inhibitor (a serine protease inhibitor). Thus, degradation of alpha(AI) was due to proteolysis by insect digestive cysteine proteases. These data suggest that C. maculatus uses digestive enzymes not only to function in food protein digestion but also to defend the insects themselves by helping reduce the concentration of a toxic dietary protein. PMID:15666770

  20. Characteristics of alpha-Amylase during Germination of Two High-Sugar Sweet Corn Cultivars of Zea mays L.

    PubMed

    Sanwo, M M; Demason, D A

    1992-07-01

    The role of the scutellum and the aleurone in alpha-amylase production in the high-sugar sweet corn cultivars Illini X-tra Sweet (shrunken-2, sh2) and Illinois 677a (sugary, sugary enhancer; su se) was compared to that in the starchy (Su) hybrid Funks G4646 with the use of alpha-amylase enzyme assays, isoelectric focusing, electron microscopy, and laser scanning confocal microscopy. The scutellum of Illinois 677a had low levels of alpha-amylase activity compared to that of Funks G4646 through 10 days after imbibition, and the aleurone of Illini X-tra Sweet had negligible activity. On the isoelectric focusing gels, the Illinois 677a scutellum had fewer alpha-amylase isozymes at 7 days compared to the Funks G4646 scutellum. The Illini X-tra Sweet aleurone had no alpha-amylase isozymes. Funks G4646 scutellar epithelial and aleurone cells contained abundant rough endoplasmic reticulum, polysomes, and dictyosomes at 5 and 7 days, respectively. The scutellar epithelial cells of Illinois 677a contained fewer of these structures by 5 days, and the Illini X-tra Sweet aleurone contained mostly lipid bodies through 7 days. Few cytoplasmic membranes and little RNA were detected with laser scanning confocal microscopy in the Illini X-tra Sweet aleurone compared to Funks G4646 at 7 days. These data suggest that the scutellum of Illinois 677a and the aleurone of Illini X-tra Sweet have impaired abilities to produce alpha-amylase. PMID:16668987

  1. Purification, properties and structural aspects of a thermoacidophilic alpha-amylase from Alicyclobacillus acidocaldarius atcc 27009. Insight into acidostability of proteins.

    PubMed

    Schwermann, B; Pfau, K; Liliensiek, B; Schleyer, M; Fischer, T; Bakker, E P

    1994-12-15

    The alpha-amylase from the thermoacidophilic eubacterium Alicyclobacillus (Bacillus) acidocaldarius strain ATCC 27009 was studied as an example of an acidophilic protein. The enzyme was purified from the culture fluid. On an SDS/polyacrylamide gel, the protein an apparent molecular mass of 160 kDa, which is approximately 15% higher than that predicted from the nucleotide sequence. The difference is due to the enzyme being a glycoprotein. Deglycosylation or synthesis of the enzyme in Escherichia coli gave a product with the mass expected for the mature protein. The amylase hydrolyzed starch at random and from the inside, and its main hydrolysis products were maltotriose and maltose. It also formed glucose from starch (by hydrolysing the intermediate product maltotetraose to glucose and maltotriose) and exhibited some pullulanase activity. the pH and temperature optima were pH3 and 75 degrees C, respectively, characterizing the enzyme as being thermoacidophilic. Alignment of the sequence of the enzyme with that of its closest neutrophilic relatives and with that of alpha-1,4 or alpha-1,6 glycosidic-bond hydrolyzing enzymes of known three-dimensional structure showed that the acidophilic alpha-amylase contains approximately 30% less charged residues than do its closest relatives, that these residues are replaced by neutral polar residues, and that hot spots for these exchanges are likely to be located at the surface of the protein. Literature data show that similar effects are observed in three other acidophilic proteins. It is proposed that these proteins have adapted to the acidic environment by reducing the density of both positive and negative charges at their surface, that this effect circumvents electrostatic repulsion of charged groups at low pH, and thereby contributes to the acidostability of these proteins. PMID:7813489

  2. Multiple time courses of salivary alpha-amylase and dimensions of affect in adolescence.

    PubMed

    Doane, Leah D; Van Lenten, Scott A

    2014-11-01

    Previous research has illustrated associations among daily experiences, emotions and stress-responding physiological systems. Recently, investigators have examined salivary alpha-amylase (sAA), a surrogate marker of the autonomic nervous system, and its associations with affect. The current study examined associations among affective valence, arousal and sAA across three different time courses at the momentary, daily and inter-individual level to understand varying influences of adolescents' daily emotional experiences on sAA reactivity and diurnal sAA activity. Adolescents (N=82) provided salivary samples and diary reports of affect and experiences five times a day for three consecutive days. They also completed self-report questionnaires on trait affect. Findings from multilevel growth curves demonstrated that adolescents in our sample displayed typical sAA diurnal rhythms with levels dropping 30 min after waking and then increasing across the day to a peak in the late afternoon. Within person momentary experiences of high arousal positive affect were associated with momentary sAA reactivity. Prior day experiences of high arousal negative affect were associated with a greater amylase awakening response (i.e., greater decrease) and flatter slopes the next day. Trait positive affect was also associated with flatter sAA slopes. Our findings suggest that both affective arousal and valence should be accounted for when examining differences in sAA reactivity and diurnal patterns. Further, our results indicated that emotion-physiology transactions among adolescents occur over varying time scales for salivary alpha-amylase as well as cortisol. PMID:25076484

  3. A comparison of ghrelin, glucose, alpha-amylase and protein levels in saliva from diabetics.

    PubMed

    Aydin, Suleyman

    2007-01-31

    During the past decade, many salivary parameters have been used to characterize disease states. Ghrelin (GAH) is recently-discovered peptide hormone secreted mainly from the stomach but also produced in a number of other tissues including salivary glands. The aim of this work was to examine the relationship between active (aGAH) and inactive (dGAH) ghrelin in the saliva and other salivary parameters in type II diabetic patients and healthy controls. Salivary parameters were assessed in a single measurement of unstimulated whole saliva from 20 obese and 20 non-obese type II diabetes patients, and in 22 healthy controls. Total protein and alpha-amylase were determined by colorimetric methods, and glucose by the glucose-oxidase method. Saliva aGAH and dGAH levels were measured using a commercial radioimmunoassay (RIA) kit. Salivary concentrations of aGAH and dGAH ghrelin were more markedly decreased in obese diabetic subjects than in the two other groups. Glucose and alpha-amylase levels were higher in diabetic subjects than in controls. Furthermore, there were correlations between GAH levels and BMI, and between GAH and blood pressure. However, there was no marked variability in saliva flow rates among the groups. These results indicate that measurement of salivary GAH and its relationship to other salivary parameters might help to provide insight into the role of ghrelin in diabetes. PMID:17244479

  4. Cloning and characterization of a third type of human alpha-amylase gene, AMY2B.

    PubMed

    Yokouchi, H; Horii, A; Emi, M; Tomita, N; Doi, S; Ogawa, M; Mori, T; Matsubara, K

    1990-06-15

    We have previously reported concerning the existence of a third type of human alpha-amylase gene, AMY3 [Emi et al., Gene 62 (1988) 229-235; Tomita et al., Gene 76 (1989) 11-18], which is expressed in a lung carcinoid tissue, and differs in nucleotide sequence from the two previously characterized human alpha-amylase genes coding for salivary and pancreatic isozymes, termed AMY1 and AMY2, respectively. Here, we rename this gene AMY2B to coincide with the designation by Gumucio et al. [Mol. Cell Biol. 8 (1988) 1197-1205] and describe its genetic properties as revealed by sequencing studies. It consists of ten major exons whose sequences are highly homologous to those of AMY1 and AMY2. Not only the exons, but also most of the introns seem to be highly conserved, as judged from physical mapping data. The AMY2B gene identified from mRNA in a lung carcinoid tissue has at least two additional untranslated exons in its 5' region; hence the promoter lies far upstream relative to the other two AMY genes. PMID:2401405

  5. Cortisol, salivary alpha-amylase and children's perceptions of their social networks.

    PubMed

    Ponzi, Davide; Muehlenbein, Michael P; Geary, David C; Flinn, Mark V

    2016-04-01

    In recent years there has been a growing interest in the use of social network analysis in biobehavioral research. Despite the well-established importance of social relationships in influencing human behavior and health, little is known about how children's perception of their immediate social relationships correlates with biological parameters of stress. In this study we explore the association between two measures of children's personal social networks, perceived network size and perceived network density, with two biomarkers of stress, cortisol and salivary alpha-amylase. Forty children (mean age = 8.30, min age = 5, and max age = 12) were interviewed to collect information about their friendships and three samples of saliva were collected. Our results show that children characterized by a lower pre-interview cortisol concentration and a lower salivary alpha-amylase reactivity to the interview reported the highest density of friendships. We discuss this result in light of the multisystem approach to the study of children's behavioral outcomes, emphasizing that future work of this kind is needed in order to understand the cognitive and biological mechanisms underlying children's and adolescents' social perceptual biases. PMID:25919481

  6. Effect of neohesperidin dihydrochalcone on the activity and stability of alpha-amylase: a comparative study on bacterial, fungal, and mammalian enzymes.

    PubMed

    Kashani-Amin, Elaheh; Ebrahim-Habibi, Azadeh; Larijani, Bagher; Moosavi-Movahedi, Ali Akbar

    2015-10-01

    Neohesperidin dihydrochalcone (NHDC) was recently introduced as an activator of mammalian alpha-amylase. In the current study, the effect of NHDC has been investigated on bacterial and fungal alpha-amylases. Enzyme assays and kinetic analysis demonstrated the capability of NHDC to significantly activate both tested alpha-amylases. The ligand activation pattern was found to be more similar between the fungal and mammalian enzyme in comparison with the bacterial one. Further, thermostability experiments indicated a stability increase in the presence of NHDC for the bacterial enzyme. In silico (docking) test locates a putative binding site for NHDC on alpha-amylase surface in domain B. This domain shows differences in various alpha-amylase types, and the different behavior of the ligand toward the studied enzymes may be attributed to this fact. PMID:25808616

  7. Kinetics and energetics of the binding between barley alpha-amylase/subtilisin inhibitor and barley alpha-amylase 2 analyzed by surface plasmon resonance and isothermal titration calorimetry.

    PubMed

    Nielsen, Peter K; Bønsager, Birgit C; Berland, Carolyn R; Sigurskjold, Bent W; Svensson, Birte

    2003-02-18

    The kinetics and energetics of the binding between barley alpha-amylase/subtilisin inhibitor (BASI) or BASI mutants and barley alpha-amylase 2 (AMY2) were determined using surface plasmon resonance and isothermal titration calorimetry (ITC). Binding kinetics were in accordance with a 1:1 binding model. At pH 5.5, [Ca(2+)] = 5 mM, and 25 degrees C, the k(on) and k(off) values were 8.3 x 10(+4) M(-1) s(-1) and 26.0 x 10(-4) s(-1), respectively, corresponding to a K(D) of 31 nM. K(D) was dependent on pH, and while k(off) decreased 16-fold upon increasing pH from 5.5 to 8.0, k(on) was barely affected. The crystal structure of AMY2-BASI shows a fully hydrated Ca(2+) at the protein interface, and at pH 6.5 increase of [Ca(2+)] in the 2 microM to 5 mM range raised the affinity 30-fold mainly due to reduced k(off). The K(D) was weakly temperature-dependent in the interval from 5 to 35 degrees C as k(on) and k(off) were only increasing 4- and 12-fold, respectively. A small salt dependence of k(on) and k(off) suggested a minor role for global electrostatic forces in the binding and dissociation steps. Substitution of a positively charged side chain in the mutant K140L within the AMY2 inhibitory site of BASI accordingly did not change k(on), whereas k(off) increased 13-fold. ITC showed that the formation of the AMY2-BASI complex is characterized by a large exothermic heat (Delta H = -69 +/- 7 kJ mol(-1)), a K(D) of 25 nM (27 degrees C, pH 5.5), and an unfavorable change in entropy (-T Delta S = 26 +/- 7 kJ mol(-1)). Calculations based on the thermodynamic data indicated minimal structural changes during complex formation. PMID:12578360

  8. Isolation and activity of an alpha-amylase inhibitor from white kidney beans.

    PubMed

    Zhang, Xiao-qi; Yang, Ming-yan; Ma, Yu; Tian, Jia; Song, Ji-Rong

    2007-12-01

    An alpha-amylase inhibitor (alpha-AI) was isolated from white kidney beans (Phaseolus vulgaris L) by ethanol fractional precipitation, ion exchange chromatography and gel filtration column chromatography. It was a homogeneity glycoprotein demonstrated by SDS-PAGE and gel filtration on CL-6B. The glycoprotein contained 88.2% protein and was rich in aspartic acid, glutamic acid, leucine, threonine and serine. The carbohydrate moiety was consisted of Man, Glc, Gal and Xyl in a mole ratio of 2.42: 1.50: 1.52: 1.00. The glycan and the core protein backbone was connected by O-linkage as determined by beta-elimination reaction. The continuous oral administration of the alpha-AI (150 mg x kg(-1) x d(-1)) for 7 days can lower fasting blood glucose and 300 mg x kg(-1) x d(-1) alpha-AI for 7 days can improve the sugar tolerance on alloxan-dependent diabetic model rats. The result showed the alpha-AI obtained from white kidney beans had good hypoglycemic effect on alloxan induced diabetic rats and may have high potential pharmaceutical value as a regulative digestive-starch degradation in patients suffering from diabetes. PMID:18338641

  9. Bean [alpha]-Amylase Inhibitor Confers Resistance to the Pea Weevil (Bruchus pisorum) in Transgenic Peas (Pisum sativum L.).

    PubMed Central

    Schroeder, H. E.; Gollasch, S.; Moore, A.; Tabe, L. M.; Craig, S.; Hardie, D. C.; Chrispeels, M. J.; Spencer, D.; Higgins, TJV.

    1995-01-01

    Bruchid larvae cause major losses of grain legume crops through-out the world. Some bruchid species, such as the cowpea weevil and the azuki bean weevil, are pests that damage stored seeds. Others, such as the pea weevil (Bruchus pisorum), attack the crop growing in the field. We transferred the cDNA encoding the [alpha]-amylase inhibitor ([alpha]-AI) found in the seeds of the common bean (Phaseolus vulgaris) into pea (Pisum sativum) using Agrobacterium-mediated transformation. Expression was driven by the promoter of phytohemagglutinin, another bean seed protein. The [alpha]-amylase inhibitor gene was stably expressed in the transgenic pea seeds at least to the T5 seed generation, and [alpha]-AI accumulated in the seeds up to 3% of soluble protein. This level is somewhat higher than that normally found in beans, which contain 1 to 2% [alpha]-AI. In the T5 seed generation the development of pea weevil larvae was blocked at an early stage. Seed damage was minimal and seed yield was not significantly reduced in the transgenic plants. These results confirm the feasibility of protecting other grain legumes such as lentils, mungbean, groundnuts, and chickpeas against a variety of bruchids using the same approach. Although [alpha]-AI also inhibits human [alpha]-amylase, cooked peas should not have a negative impact on human energy metabolism. PMID:12228429

  10. Post-translational processing of two alpha-amylase inhibitors and an arcelin from the common bean, Phaseolus vulgaris.

    PubMed

    Young, N M; Thibault, P; Watson, D C; Chrispeels, M J

    1999-03-01

    Mass spectrometric methods were used to investigate the proteolytic processing and glycopeptide structures of three seed defensive proteins from Phaseolus vulgaris. The proteins were the alpha-amylase inhibitors alphaAI-1 and alphaAI-2 and arcelin-5, all of which are related to the seed lectins, PHA-E and PHA-L. The mass data showed that the proteolytic cleavage required for activation of the amylase inhibitors is followed by loss of the terminal Asn residue in alphaAI-1, and in all three proteins, seven or more residues were clipped from the C-termini, in the manner of the seed lectins. In most instances, individual glycoforms could be assigned at each Asn site, due to the unique masses of the plant glycopeptides. It was found that alphaAI-1 and alphaAI-2 differed significantly in their glycosylation patterns, despite their high sequence homology. These data complement the previous X-ray studies of the alpha1-amylase inhibitor and arcelin, where many of the C-terminal residues and glycopeptide residues could not be observed. PMID:10100643

  11. Maltose effects on barley malt diastatic power enzyme activity and thermostability at high isothermal mashing temperature: II. Alpha-amylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maltose, the primary product of starch degradation during mashing, has the potential as a compatible solute to affect the activity of and increase the thermostability of barley malt alpha-amylase activity at high temperatures used in mashing and temperatures above those normally used in mashing. To ...

  12. Identification of essential amino acid residues of an alpha-amylase inhibitor from Phaseolus vulgaris white kidney beans.

    PubMed

    Takahashi, T; Hiramoto, S; Wato, S; Nishimoto, T; Wada, Y; Nagai, K; Yamaguchi, H

    1999-11-01

    Kidney bean (Phaseolus vulgaris) alpha-amylase inhibitors, which are bivalent inhibitors with the subunit stoichiometry of (alphabeta)(2) complex, have been inferred to contain unique arginine, tryptophan, and tyrosine residues essential for the inhibitory activity. To test the validity of this inference, an attempt was made to identify the essential amino acid residues of a white kidney bean (P. vulgaris) alpha-amylase inhibitor (PHA-I) by using the chemical modification technique combined with amino acid sequencing and mass spectrometry. Exhaustive modification of the arginine residues by phenylglyoxal did not lead to a marked loss of activity, suggesting that no arginine residue is directly associated with the inhibitory activity. N-Bromosuccinimide treatment of PHA-I in the presence or absence of a substrate alpha-amylase revealed the involvement of two tryptophan residues in alpha-amylase inhibition, and they were identified as Trp188 of the beta-subunit by amino acid sequencing and mass spectrometry of lysylendopeptidase peptides. Further, two tyrosine residues were preferentially modified either by N-acetylimidazole or by tetranitromethane, resulting in a concomitant loss of most of the PHA-I activity. Amino acid sequencing of the lysylendopeptidase peptides from a tetranitromethane-modified PHA-I identified Tyr186 of the beta-subunit as an essential residue. PMID:10544275

  13. Permissive role of the acidification caused by wheat aleurone layers upon. alpha. -amylase induction by GA sub 3

    SciTech Connect

    Rodriguez-Campos, E.; Bernal-Lugo, I.; Hamabata, A. )

    1989-04-01

    Wheat aleurone has the capacity of acidifying the incubation medium in 1 to 2 pH units. The {alpha}-amylase induction by GA{sub 3} in isolated wheat aleurone layers is strongly dependent on acidic pH of the medium (pH < 5). To examine possible mechanisms {sup 35}-Met incorporation into proteins and {alpha}-amylase, in the presence of GA{sub 3} and Ca{sup 2+} at pH, 4, 5 and 6 was studied. Although {sup 35}-Met uptake decreased markedly ({approx} 90%) at pH 4 in thepresence of GA{sub 3}, incorporation into total protein did not change significantly from other conditions. Auto-radiography of SDS-PAGE showed that most of the amino acid was in the {alpha}-amylase band, meaning that the effect of acidic pH is specific for GA{sub 3} actions on aleurone tissue. On the other hand, an increase of protonated GA{sub 3} diffusion could be ruled out. Also, there was not {alpha}-amylase inactivation at pH 6. These findings point out to the important physiological role of the acidification caused by the aleurone.

  14. Daytime Secretion of Salivary Cortisol and Alpha-Amylase in Preschool-Aged Children with Autism and Typically Developing Children

    ERIC Educational Resources Information Center

    Kidd, Sharon A.; Corbett, Blythe A.; Granger, Douglas A.; Boyce, W. Thomas; Anders, Thomas F.; Tager, Ira B.

    2012-01-01

    We examined daytime salivary cortisol and salivary alpha-amylase (sAA) secretion levels and variability in preschool-aged children with autism (AUT) and typically developing children (TYP). Fifty-two subjects (26 AUT and 26 TYP) were enrolled. Salivary samples were obtained at waking, midday, and bedtime on two consecutive days at three phases…

  15. The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat Butte 86

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complement of genes encoding alpha-amylase/protease inhibitors expressed in Triticum aestivum cv. Butte 86 was characterized by transcript and proteomic analysis. Coding sequences for 18 distinct proteins were identified among a collection of expressed sequence tags (ESTs) from Butte 86 developi...

  16. Isolation, characterization and inhibition by acarbose of the alpha-amylase from Lactobacillus fermentum: comparison with Lb. manihotivorans and Lb. plantarum amylases.

    PubMed

    Talamond, P; Desseaux, V; Moreau, Y; Santimone, M; Marchis-Mouren, G

    2002-11-01

    Extracellular alpha-amylase from Lactobacillus fermentum (FERMENTA) was purified by glycogen precipitation and ion exchange chromatography. The purification was approximately 28-fold with a 27% yield. The FERMENTA molecular mass (106,000 Da) is in the same range as the ones determined for L. amylovorus (AMYLOA), L. plantarum (PLANTAA) and L. manihotivorans (MANIHOA) alpha-amylases. The amino acid composition of FERMENTA differs from the other lactobacilli considered here, but however, indicates that the peptidic sequence contains two equal parts: the N-terminal catalytic part; and the C-terminal repeats. The isoelectric point of FERMENTA, PLANTAA, MANIHOA are approximately the same (3.6). The FERMENTA optimum pH (5.0) is slightly more acidic and the optimum temperature is lower (40 degrees C). Raw starch hydrolysis catalyzed by all three amylases liberates maltotriose and maltotretaose. Maltose is also produced by FERMENTA and MANIHOA. Maltohexaose FERMENTA catalyzed hydrolysis produces maltose and maltotriose. Finally, kinetics of FERMENTA, PLANTAA and MANIHOA using amylose as a substrate and acarbose as an inhibitor, were carried out. Statistical analysis of kinetic data, expressed using a general velocity equation and assuming rapid equilibrium, showed that: (1) in the absence of inhibitor k(cat)/Km are, respectively, 1x10(9), 12.6x10(9) and 3.2x10(9) s(-1) M(-1); and (2) the inhibition of FERMENTA is of the mixed non-competitive type (K(1i)=5.27 microM; L(1i)=1.73 microM) while the inhibition of PLANTAA and MANIHOA is of the uncompetitive type (L(1i)=1.93 microM and 1.52 microM, respectively). Whatever the inhibition type, acarbose is a strong inhibitor of these Lactobacillus amylases. These results indicate that, as found in porcine and barley amylases, Lactobacillus amylases contain in addition to the active site, a soluble carbohydrate (substrate or product) binding site. PMID:12431403

  17. Production and characterization of alpha-amylase from Aspergillus niger JGI 24 isolated in Bangalore.

    PubMed

    Varalakshmi, K N; Kumudini, B S; Nandini, B N; Solomon, J; Suhas, R; Mahesh, B; Kavitha, A P

    2009-01-01

    Five fungal isolates were screened for the production of alpha-amylase using both solid-state and submerged fermentations. The best amylase producer among them, Aspergillus niger JGI 24, was selected for enzyme production by solid-state fermentation (SSF) on wheat bran. Different carbon and nitrogen supplements were used to enhance enzyme production and maximum amount of enzyme was obtained when SSF was carried out with soluble starch and beef extract (1% each) as supplements. Further attempts to enhance enzyme production by UV induced mutagenesis were carried out. Survival rate decreased with increase in duration of UV exposure. Partial purification of the enzyme using ammonium sulphate fractionation resulted in 1.49 fold increase in the enzyme activity. The enzyme showed a molecular weight of 43 kDa by SDS-PAGE. Metal ions Ca2+ and Co2+ increased the enzyme activity. The enzyme was optimally active at 30 degrees C and pH 9.5. PMID:19469283

  18. Assessment of the importance of alpha-amylase inhibitor-2 in bruchid resistance of wild common bean.

    PubMed

    Nishizawa, Keito; Teraishi, Masayoshi; Utsumi, Shigeru; Ishimoto, Masao

    2007-02-01

    Both alpha-amylase inhibitor-2 (alphaAI-2) and arcelin have been implicated in resistance of wild common bean (Phaseolus vulgaris L.) to the Mexican bean weevil (Zabrotes subfasciatus Boheman). Near isogenic lines (NILs) for arcelin 1-5 were generated by backcrossing wild common bean accessions with a cultivated variety. Whereas seeds of a wild accession (G12953) containing both alphaAI-2 and arcelin 4 were completely resistant to Z. subfasciatus, those of the corresponding NIL were susceptible to infestation, suggesting that the principal determinant of resistance was lost during backcrossing. Three independent lines of transgenic azuki bean [Vigna angularis (Willd.) Ohwi and Ohashi] expressing alphaAI-2 accumulated high levels of this protein in seeds. The expression of alphaAI-2 in these lines conferred protection against the azuki bean weevil (Callosobruchus chinensis L.), likely through inhibition of larval digestive alpha-amylase. However, although the seed content of alphaAI-2 in these transgenic lines was similar to that in a wild accession of common bean (G12953), it did not confer a level of resistance to Z. subfasciatus similar to that of the wild accession. These results suggest that alphaAI-2 alone does not provide a high level of resistance to Z. subfasciatus. However, alphaAI-2 is an effective insecticidal protein with a spectrum of activity distinct from that of alphaAI-1, and it may prove beneficial in genetic engineering of insect resistance in legumes. PMID:17186215

  19. Characterization of. alpha. -amylase-inhibitor, a lectin-like protein in the seeds of Phaseolus vulgaris

    SciTech Connect

    Moreno, J.; Altabella, T.; Chrispeels, M.J. )

    1990-03-01

    The common bean, Phaseolus vulgaris, contains a glycoprotein that inhibits the activity of mammalian and insect {alpha}-amylases but not of plant {alpha}-amylases. It is therefore classified as an antifeedant or seed defense protein. In P. vulgaris cv Greensleeves, {alpha}-amylase inhibitor ({alpha}Al) is present in embryonic axes and cotyledons, but not in other organs of the plant. The protein is synthesized during the same time period that phaseolin and phytohemagglutinin are made and also accumulates in the protein storage vacuoles (protein bodies). All the glycoforms have complex glycans that are resistant to removal by endoglycosidase H, indicating transport of the protein through the Golgi apparatus. The two different polypeptides correspond to the N-terminal and C-terminal halves of a lectin-like protein encoded by an already identified gene or a gene closely related to it. The primary translation product of {alpha}Al is a polypeptide of M{sub r} 28,000. Immunologically cross-reacting glycopolypeptides of M{sub r} 30,000 to 35,000 are present in the endoplasmic reticulum, while the smaller polypeptides (M{sub r} 15,000-19,000) accumulate in protein storage vacuoles (protein bodies). Together these data indicate that {alpha}Al is a typical bean lectin-type protein that is synthesized on the rough endoplasmic reticulum, modified in the Golgi, and transported to the protein storage vacuoles.

  20. Alpha-amylase inhibitor, CS-1036 binds to serum amylase in a concentration-dependent and saturable manner.

    PubMed

    Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi

    2014-03-01

    (2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats. PMID:24319124

  1. Expression, purification and preliminary crystallographic studies of alpha-amylase isozyme 1 from barley seeds.

    PubMed

    Robert, Xavier; Gottschalk, Tine E; Haser, Richard; Svensson, Birte; Aghajari, Nushin

    2002-04-01

    The germinating barley seed contains two major alpha-amylase isozyme families, AMY1 and AMY2, involved in starch degradation to provide energy used by the plant embryo for growth. Many years of difficulty in growing three-dimensional crystals of natural AMY1 have now been overcome by a nonapeptide truncation of the enzyme C-terminus. The truncated enzyme was overexpressed in Pichia pastoris, purified and crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 8000 as precipitant and 2-propanol as an additive. Crystals belong to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 88.36, b = 72.82, c = 61.74 A and one molecule per asymmetric unit. PMID:11914496

  2. Effects of calcium ion concentration on starch hydrolysis of barley alpha-amylase isozymes.

    PubMed

    Yuk, Jeong-Bin; Choi, Seung-Ho; Lee, Tae-Hee; Jang, Myoung-Uoon; Park, Jung-Mi; Yi, Ah-Rum; Svensson, Birte; Kim, Tae-Jip

    2008-04-01

    Barley alpha-amylase genes, amy1 and amy2, were separately cloned into the expression vector of pPICZalphaA and recombinant Pichia strains were established by homologous recombination. Both AMYs from Pichia shared almost identical hydrolysis patterns on short maltooligosaccharides to result in glucose, maltose, or maltotriose. Against insoluble blue starch, AMY1 showed the highest activity at 0.1-5 mM calcium concentration, whereas 15-20 mM was optimal for AMY2. On the hydrolysis of soluble starch, unexpectedly, there was no significant difference between AMYs with increase of calcium. However, the relative activity on various starch substrates was significantly different between AMYs, which supports that the isozymes are clearly distinguished from each other on the basis of their unique preferences for substrates. PMID:18467868

  3. Three alpha-amylase genes of Aspergillus oryzae exhibit identical intron-exon organization.

    PubMed

    Wirsel, S; Lachmund, A; Wildhardt, G; Ruttkowski, E

    1989-01-01

    We have cloned three genes (amy1, amy2 and amy3) encoding alpha-amylase in the filamentous fungus Aspergillus oryzae. The established overall sequences have a very high degree of homology, showing divergences mainly in the 3'-untranslated regions. The positions and the sequences of the eight introns were found to be absolutely identical in the three genes. The sequence analysis of the 5'-regions revealed presumptive TATA, CAAT and GC boxes. Primer extension analysis was performed to determine the transcription start. We were able to detect mRNAs from amy1 and amy3 but not from amy2 with gene-specific oligonucleotide probes complementary to the 3'-noncoding regions. PMID:2785629

  4. Integration and expression of alpha-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome.

    PubMed Central

    Scheirlinck, T; Mahillon, J; Joos, H; Dhaese, P; Michiels, F

    1989-01-01

    A commercial grass silage starter strain of Lactobacillus plantarum was transformed by high-frequency electroporation with plasmids containing an alpha-amylase gene from Bacillus stearothermophilus and an endoglucanase gene from Clostridium thermocellum. Both genes were expressed from their native regulatory signals, and active enzymes were found in the supernatant. However, the segregational stability of the transforming plasmids was rather low. Therefore, the transforming genes were inserted in the L. plantarum chromosome by means of single homologous recombination. In the majority of the transformants, this led to extremely stable segregation and expression of the transforming genes, without generating secondary mutations in the host. Increased selective pressure led to tandem amplification of the transforming DNA. The transformed strains demonstrated the ability of L. plantarum to express heterologous gene products; they can be used to detect the inoculum in silage ecology studies; and they demonstrate the feasibility of engineering truly cellulolytic silage starter bacteria. Images PMID:2679379

  5. Production and characterization of thermostable alpha-amylase by thermophilic Geobacillus stearothermophilus.

    PubMed

    Al-Qodah, Zakaria

    2006-01-01

    Studies on the alpha-amylase-producing thermophilic bacterium isolated and identified from a hot spring in Jordan and designated as Geobacillus stearothermophilus JT2 were carried out. The optimum conditions for growth and enzyme production were pH 7 and 55 degrees C. The study of the kinetics of cellular growth indicated a mu(max) of 0.22/h, a K(s) of 1.2 g/L, a tau(d) of 3.15 h and a Y(x/s) of 0.43 g cell/g starch. In addition, the activation energy for growth and death were estimated and found to be 30.5 and 210 J/mol, respectively. The effect of different carbon and nitrogen sources on the cellular growth was tested. PMID:16927263

  6. Measurement of microbial alpha-amylases with p-nitrophenyl glycosides as the substrate complex.

    PubMed

    Trepeta, R W; Edberg, S C

    1984-01-01

    The detection of alpha-amylase is commonly used in clinical microbiology laboratories to aid in differentiating Streptococcus bovis from other streptococci. It is also useful in identifying Eikenella corrodens and the gravis subspecies of Corynebacterium diphtheriae and in separating species of the genera Bacteroides, Clostridium, Actinomyces, and Bacillus. Currently, the most frequently used procedure utilizes starch as the substrate and iodine as the indicator. Starch is incorporated into a agar medium, the isolate is inoculated on the surface, and the medium is incubated for 24 to 48 h. A 15-min test containing p-nitrophenyl polyglycosides as the substrate complex was developed to yield results comparable with the agar-based starch test. The reagent was made in liquid form, 0.20 ml per tube, and could be incubated either in ambient air or at 35 degrees C. When dried, the p-nitrophenyl polyglycoside reagent could be stored at 0 degrees C for 4 weeks. PMID:6418764

  7. Isozyme hybrids within the protruding third loop domain of the barley alpha-amylase (beta/alpha)8-barrel. Implication for BASI sensitivity and substrate affinity.

    PubMed

    Juge, N; Rodenburg, K W; Guo, X J; Chaix, J C; Svensson, B

    1995-04-24

    Barley alpha-amylase isozymes AMY1 and AMY2 contain three structural domains: a catalytic (beta/alpha)8-barrel (domain A) with a protruding loop (domain B; residues 89-152) that binds Ca2+, and a small C-terminal domain. Different parts of domain B secure isozyme specific properties as identified for three AMY1-AMY2 hybrids, obtained by homeologous recombination in yeast, with crossing-over at residues 112, 116, and 144. The AMY1 regions Val90-Thr112 and Ala145-Leu161 thus confer high affinities for the substrates alpha-D-maltoheptaoside and amylose, respectively. Leu117-Phe144, and to a lesser degree Ala145-Leu161, are critical for the stability at low pH characteristic of AMY1 and for the sensitivity to barley alpha-amylase/subtilisin inhibitor specific to AMY2. PMID:7737421

  8. Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon.

    PubMed

    Ramsay, Alan G; Scott, Karen P; Martin, Jenny C; Rincon, Marco T; Flint, Harry J

    2006-11-01

    Selected butyrate-producing bacteria from the human colon that are related to Roseburia spp. and Butyrivibrio fibrisolvens showed a good ability to utilize a variety of starches for growth when compared with the Gram-negative amylolytic anaerobe Bacteroides thetaiotaomicron. A major cell-associated amylase of high molecular mass (140-210 kDa) was detected in each strain by SDS-PAGE zymogram analysis, and genes corresponding to these enzymes were analysed for two representative strains. Amy13B from But. fibrisolvens 16/4 is a multi-domain enzyme of 144.6 kDa that includes a family 13 glycoside hydrolase domain, and duplicated family 26 carbohydrate-binding modules. Amy13A (182.4 kDa), from Roseburia inulinivorans A2-194, also includes a family 13 domain, which is preceded by two repeat units of approximately 116 aa rich in aromatic residues, an isoamylase N-terminal domain, a pullulanase-associated domain, and an additional unidentified domain. Both Amy13A and Amy13B have N-terminal signal peptides and C-terminal cell-wall sorting signals, including a modified LPXTG motif similar to that involved in interactions with the cell surface in other Gram-positive bacteria, a hydrophobic transmembrane segment, and a basic C terminus. The overexpressed family 13 domains showed an absolute requirement for Mg2+ or Ca2+ for activity, and functioned as 1,4-alpha-glucanohydrolases (alpha-amylases; EC 3.2.1.1). These major starch-degrading enzymes thus appear to be anchored to the cell wall in this important group of human gut bacteria. PMID:17074899

  9. Aleurone nuclear proteins bind to similar elements in the promoter regions of two gibberellin-regulated alpha-amylase genes.

    PubMed

    Rushton, P J; Hooley, R; Lazarus, C M

    1992-09-01

    Binding of nuclear proteins from wild oat aleurone protoplasts to the promoter regions of two gibberellin-regulated wheat alpha-amylase genes (alpha-Amy1/18 and alpha-Amy2/54) has been studied by gel retardation and DNase 1 footprinting. Gel retardation studies using 300-430 bp fragments of the promoters showed similar binding characteristics with nuclear extracts from both gibberellin A1-treated and untreated protoplasts. DNase 1 footprints localised binding of nuclear proteins from gibberellin A1-treated aleurone protoplasts to regions in both promoters. Similar sequence elements in the promoter regions of both genes were protected from digestion although the location and number of footprints in each promoter region were different. Each footprint contained either a sequence similar to the cAMP and/or phorbol ester response elements, or a hyphenated palindrome sequence. The presence of cAMP and/or phorbol ester response element-like sequences in the footprints suggests that transcription factors of the bZIP type may be involved in the expression of alpha-amylase genes in aleurone cells. Footprints containing hyphenated palindrome sequences, found in the promoter regions of both genes, suggest the possible involvement of other classes of transcription factor. The conserved alpha-amylase promoter sequence TAA-CAGA was also shown to bind nuclear protein in the alpha-Amy2/54 promoter. These observations are discussed in relation to alpha-amylase gene expression in aleurone and to functional data concerning these genes. PMID:1511135

  10. A single residue mutation abolishes attachment of the CBM26 starch-binding domain from Lactobacillus amylovorus alpha-amylase.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, N; Escalante, L; Ruiz, B; Sánchez, S

    2009-03-01

    Starch is degraded by amylases that frequently have a modular structure composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. The C-terminal domain from the Lactobacillus amylovorus alpha-amylase has an unusual architecture composed of five tandem starch-binding domains (SBDs). These domains belong to family 26 in the carbohydrate-binding modules (CBM) classification. It has been reported that members of this family have only one site for starch binding, where aromatic amino acids perform the binding function. In SBDs, fold similarities are better conserved than sequences; nevertheless, it is possible to identify in CBM26 members at least two aromatic residues highly conserved. We attempt to explain polysaccharide recognition for the L. amylovorus alpha-amylase SBD through site-directed mutagenesis of aromatic amino acids. Three amino acids were identified as essential for binding, two tyrosines and one tryptophan. Y18L and Y20L mutations were found to decrease the SBD binding capacity, but unexpectedly, the mutation at W32L led to a total loss of affinity, either with linear or ramified substrates. The critical role of Trp 32 in substrate binding confirms the presence of just one binding site in each alpha-amylase SBD. PMID:19052787

  11. Genetic, Hormonal, and Physiological Analysis of Late Maturity α-Amylase in Wheat1[W][OA

    PubMed Central

    Barrero, Jose M.; Mrva, Kolumbina; Talbot, Mark J.; White, Rosemary G.; Taylor, Jennifer; Gubler, Frank; Mares, Daryl J.

    2013-01-01

    Late maturity α-amylase (LMA) is a genetic defect that is commonly found in bread wheat (Triticum aestivum) cultivars and can result in commercially unacceptably high levels of α-amylase in harvest-ripe grain in the absence of rain or preharvest sprouting. This defect represents a serious problem for wheat farmers, and apart from the circumstantial evidence that gibberellins are somehow involved in the expression of LMA, the mechanisms or genes underlying LMA are unknown. In this work, we use a doubled haploid population segregating for constitutive LMA to physiologically analyze the appearance of LMA during grain development and to profile the transcriptomic and hormonal changes associated with this phenomenon. Our results show that LMA is a consequence of a very narrow and transitory peak of expression of genes encoding high-isoelectric point α-amylase during grain development and that the LMA phenotype seems to be a partial or incomplete gibberellin response emerging from a strongly altered hormonal environment. PMID:23321420

  12. Putative implication of alpha-amylase loop 7 in the mechanism of substrate binding and reaction products release.

    PubMed

    André, G; Tran, V

    2004-10-01

    Alpha-amylases are widespread endo-enzymes involved in the hydrolysis of internal alpha-(1,4) glycosidic linkages of starch polymers. Molecular modeling of amylose-amylase interactions is a step toward enzymatic mechanism understanding and rational design of new enzymes. From the crystallographic complex of barley alpha-amylase AMY2-acarbose, the static aspects of amylose-amylase docking have been characterized with a model of maltododecaose (DP12) (G. André, A. Buléon, R. Haser, and V. Tran, Biopolymers 1999, Vol. 50, pp. 751-762; G. André and V. Tran, Special Publication no. 246 1999, The Royal Society of Chemistry, H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson, Eds., Cambridge, pp. 165-174). These studies, consistent with the experimental subsite mapping (K. Bak-Jensen, G. André, V. Tran, and B. Svensson, Journal of Biological Chemistry, to be published), propose a propagation scheme for an amylose chain in the active cleft of AMY2. The topographical overview of alpha-amylases identified loop 7 as a conserved segment flanking the active site. Since some crystallographic experiments suspected its high flexibility, its putative motion was explored through a robotic scheme, an alternate route to dynamics simulations that consume CPU time. The present article describes the characteristics of the flexibility of loop 7: location and motion in AMY2. A back-and-forth motion with a large amplitude of more than 0.6 nm was evaluated. This movement could be triggered by two hinge residues. It results in the loop flipping over the active site to enhance the docking of the native helical substrate through specific interactions, it positions the catalytic residues, it distorts the substrate towards its transition state geometry, and finally monitors the release of the products after hydrolysis. The residues involved in the process are now rational mutation points in the hands of molecular biologists. PMID:15356864

  13. Identification of a novel alpha-amylase by expression of a newly cloned human amy3 cDNA in yeast.

    PubMed

    Shiosaki, K; Takata, K; Omichi, K; Tomita, N; Horii, A; Ogawa, M; Matsubara, K

    1990-05-14

    A novel amylase gene (amy3) that differs in nucleotide sequence from salivary amylase gene (amy1) and pancreatic amylase gene (amy2) has been described [Tomita et al., Gene 76 (1989) 11-18], but whether this gene can ever code for an active enzyme has not been shown. We prepared cDNA of this gene from an mRNA obtained from lung carcinoid tissue, and expressed it in Saccharomyces cerevisiae under the control of an acid phosphatase promoter. The product was secreted into culture media, and showed enzymatic activity, demonstrating that this novel alpha-amylase gene (amy3) can code for a functional isozyme. We purified this enzyme, and compared its biological properties with those of salivary and pancreatic human amylases similarly expressed in yeast. We observed that the novel amylase isozyme is more heat-sensitive than others, and that its substrate specificity is different from the other two isozymes. PMID:2197187

  14. cDNA cloning, biochemical characterization and inhibition by plant inhibitors of the alpha-amylases of the Western corn rootworm, Diabrotica virgifera virgifera.

    PubMed

    Titarenko, E; Chrispeels, M J

    2000-10-01

    We report the characterization and cDNA cloning of two alpha-amylase isozymes from larvae of the Western corn rootworm (Diabrotica virgifera virgifera LeConte). Larvae raised on artificial media have very low levels of amylase activity, and much higher levels are found in larvae raised on maize seedlings. At pH 5.7, the optimum pH for enzyme activity, the alpha-amylases are substantially but not completely inhibited by amylase inhibitors from the common bean (Phaseolus vulgaris) and from wheat (Triticum aestivum). Using the reverse transcriptase polymerase chain reaction (RT-PCR), we cloned two cDNAs with 83% amino acid identity that encode alpha-amylase-like polypeptides. Expression of one of the two cDNAs in insect cells with a baculovirus vector shows that this cDNA encodes an active amylase with a mobility that corresponds to that of one of the two isozymes present in larval extracts. The expressed enzyme is substantially inhibited by the same two inhibitors. We also show that expression in Arabidopsis of the cDNA that encodes the amylase inhibitor AI-1 of the common bean results in the accumulation of active inhibitor in the roots, and the results are discussed with reference to the possibility of using amylase inhibitors as a strategy to genetically engineer maize plants that are resistant to Western corn rootworm larvae. PMID:10899464

  15. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins.

    PubMed

    de Moraes, L M; Astolfi-Filho, S; Oliver, S G

    1995-11-01

    Eight constructions involving the Bacillus subtilis alpha-amylase gene (amyE), a mouse pancreatic alpha-amylase cDNA (AMY2) and an Aspergillus awamori glucoamylase cDNA (glaA) were prepared: three fusion genes, involving one alpha-amylase and the glucoamylase, two double-cassette plasmids (expressing one or other alpha-amylase and the glucoamylase) and three single-cassette plasmids, expressing the individual coding sequences. Following transformation of each plasmid into Saccharomyces cerevisiae, a plate test revealed that the largest starch hydrolysis halo was produced by the strain bearing the B. subtilis alpha-amylase/glucoamylase fusion (BsAAase/GAase), and the smallest halo by the one expressing the mouse pancreatic alpha-amylase/glucoamylase fusion (MAAase/GAase). When assayed for enzymatic activity in liquid medium, the strains bearing the fusion and the double-cassette plasmids involving B. subtilis alpha-amylase and the glucoamylase exhibited both enzymic activities. Moreover, the BsAAase/GAase hybrid was able to adsorb and digest raw starch. The MAAse/GAase fusion protein was found to exhibit only alpha-amylase activity. Finally, the capacity to grow on soluble and corn starch was tested in liquid medium for the strains bearing plasmids coding for the fusion proteins and the separate enzymes. The strain carrying the double-cassette BsAAase + GAase, which produced one of the smallest hydrolysis haloes in the place test, showed the best performance, not only in digesting soluble and corn starch but also in using all of the hydrolysis products for growth. The transformant bearing the BsAAase/GAase fusion was able to grow on soluble starch, but not on corn starch. PMID:8590658

  16. N-terminal sequence of amino acids and some properties of an acid-stable alpha-amylase from citric acid-koji (Aspergillus usamii var.).

    PubMed

    Suganuma, T; Tahara, N; Kitahara, K; Nagahama, T; Inuzuka, K

    1996-01-01

    An acid-stable alpha-amylase (AA) was purified from an acidic extract of citric acid-koji (A. usamii var.). The N-terminal sequence of the first 20 amino acids of the enzyme was identical with that of AA from A. niger, but the two enzymes differed in molecular weight. HPLC analysis for identifying the anomers of products indicated that the AA hydrolyzed maltopentaose (G5) at the third glycoside bond predominantly, which differed from Taka-amylase A and the neutral alpha-amylase (NA) from the citric acid-koji. PMID:8824843

  17. Monoclinic crystal form of Aspergillus niger alpha-amylase in complex with maltose at 1.8 angstroms resolution.

    PubMed

    Vujicić-Zagar, A; Dijkstra, B W

    2006-08-01

    Aspergillus niger alpha-amylase catalyses the hydrolysis of alpha-1,4-glucosidic bonds in starch. It shows 100% sequence identity to the A. oryzae homologue (also called TAKA-amylase), three crystal structures of which have been published to date. Two of them belong to the orthorhombic space group P2(1)2(1)2(1) with one molecule per asymmetric unit and one belongs to the monoclinic space group P2(1) with three molecules per asymmetric unit. Here, the purification, crystallization and structure determination of A. niger alpha-amylase crystallized in the monoclinic space group P2(1) with two molecules per asymmetric unit in complex with maltose at 1.8 angstroms resolution is reported. Furthermore, a novel 1.6 angstroms resolution orthorhombic crystal form (space group P2(1)2(1)2) of the native enzyme is presented. Four maltose molecules are observed in the maltose-alpha-amylase complex. Three of these occupy active-site subsites -2 and -1, +1 and +2 and the hitherto unobserved subsites +4 (Asp233, Gly234) and +5 (Asp235). The fourth maltose molecule binds at the distant binding sites d1 (Tyr382) and d2 (Trp385), also previously unobserved. Furthermore, it is shown that the active-site groove permits different binding modes of sugar units at subsites +1 and +2. This flexibility of the active-site cleft close to the catalytic centre might be needed for a productive binding of substrate chains and/or release of products. PMID:16880540

  18. A heterotetrameric alpha-amylase inhibitor from emmer (Triticum dicoccon Schrank) seeds.

    PubMed

    Capocchi, A; Muccilli, V; Cunsolo, V; Saletti, R; Foti, S; Fontanini, D

    2013-04-01

    Plants have developed a constitutive defense system against pest attacks, which involves the expression of a set of inhibitors acting on heterologous amylases of different origins. Investigating the soluble protein complement of the hulled wheat emmer we have isolated and characterized a heterotetrameric α-amylase inhibitor (ETI). Based on mass spectrometry data, it is an assembly of proteins highly similar to the CM2/CM3/CM16 found in durum wheat. Our data indicate that these proteins can also inhibit exogenous α-amylases in binary assemblies. The calculated dissociation constants (K(i)) for the pancreatic porcine amylase- and human salivary amylase-ETI complexes are similar to those found in durum and soft wheat. Homology modeling of the CM subunits indicate structural similarities with other proteins belonging to the cereal family of trypsin/α-amylase inhibitors; a possible homology modeled structure for a tetrameric assembly of the subunits is proposed. PMID:23320956

  19. Diurnal patterns of salivary alpha-amylase and cortisol secretion in female adolescent tennis players after 16 weeks of training.

    PubMed

    Filaire, Edith; Ferreira, Jose Pedro; Oliveira, Miguel; Massart, Alain

    2013-07-01

    We examined the effects of 16 weeks of training on diurnal pattern of salivary alpha-amylase (sAA), cortisol, and the ratio of sAA over cortisol (AOC) in 12 national adolescent female tennis players. Stress and recovery were also evaluated using the Recovery-Stress-Questionnaire for Athletes-RESTQ-Sport. Data were collected after a 2-week rest (January, W0), and 4 months after W0 (W16). Subjects collected five saliva samples throughout a day. While all participants displayed the previously shown decrease after awakening in adolescents at W0, they showed a rise in the alpha-amylase awakening response and a higher alpha-amylase activity output (p<0.01) at W16 compared to W0. For the daily rhythm of cortisol we found subjects having a low overall output of salivary cortisol (p<0.01) and a blunted response to awakening at W16. Furthermore, an increase in the ratio AOC at W16, and a negative correlation between this ratio and Sport-specific recovery score. Our findings offer support for the hypothesis that increase of training load during the study period induced asymmetry activation between the two stress systems, in relation to psychological alterations and performance decrease. These results provide encouragement to continue exploring the impact of training program using a psychobiological approach among young athletes in order to prevent fatigue and preserve the health of these athletes. PMID:23200107

  20. A novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization.

    PubMed

    Liu, Xu Dong; Xu, Yan

    2008-07-01

    This study reports the purification and characterization of a novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1. Maximum alpha-amylase activity (53 U mL(-1)) was obtained at 45 degrees C after 44 h of incubation. The enzyme was purified using ammonium sulfate precipitation, ion exchange and gel filtration chromatography, and showed a molecular weight of 56 kDa by SDS-PAGE. This enzyme exhibited maximum activity at pH 5.0, performed stability over a broad range of pH 4.5-11.0, and was optimally active at 40-50 degrees C. The enzyme preparation had a strong digesting ability towards various raw starches and efficiently hydrolyzed raw corn starch at a concentration of 20% and pH 5.0, which were normally used in the starch industries, in a period of 12h. By analyzing its partial amino acid sequences, the enzyme was proposed to be a novel alpha-amylase. PMID:17920264

  1. Solution of the structure of Aspergillus niger acid alpha-amylase by combined molecular replacement and multiple isomorphous replacement methods.

    PubMed

    Brady, R L; Brzozowski, A M; Derewenda, Z S; Dodson, E J; Dodson, G G

    1991-08-01

    The crystal structure of Aspergillus niger acid alpha-amylase was solved by a combination of multiple isomorphous replacement and molecular replacement methods. The atomic coordinates of Aspergillus oryzae (TAKA) alpha-amylase (entry 2TAA in the Protein Data Bank) and experimental diffraction data from a new monoclinic crystal form of TAKA alpha-amylase, were used during the procedure. Sequence identity between the two proteins is approximately 80%. The atomic parameters derived from the molecular replacement solution were too inaccurate to initiate least-squares crystallographic refinement. The molecular model was extensively revised against the experimental electron density map calculated at 3 A resolution. Subsequent crystallographic refinement of this model using synchrotron data to 2.1 A resolution led to a conventional R factor of 16.8%. The structure conforms well to expected stereochemistry with bond lengths deviating from target values by 0.031 A, and planar groups showing a root-mean-square deviation from ideal planes of 0.025 A. PMID:1930834

  2. LaaA, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031(T).

    PubMed

    Song, Qinghao; Wang, Yan; Yin, Chong; Zhang, Xiao-Hua

    2016-08-01

    Alpha-amylase is a kind of broadly used industrial enzymes, most of which have been exploited from terrestrial organism. Comparatively, alpha-amylase from marine environment was largely undeveloped. In this study, a novel alkalophilic alpha-amylase with high activity, Luteimonas abyssi alpha-amylase (LaaA), was cloned from deep-sea bacterium L. abyssi XH031(T) and expressed in Escherichia coli BL21. The gene has a length of 1428bp and encodes 475 amino acids with a 35-residue signal peptide. The specific activity of LaaA reached 8881U/mg at the optimum pH 9.0, which is obvious higher than other reported alpha-amylase. This enzyme can remain active at pH levels ranging from 6.0 to 11.0 and temperatures below 45°C, retaining high activity even at low temperatures (almost 38% residual activity at 10°C). In addition, 1mM Na(+), K(+), and Mn(2+) enhanced the activity of LaaA. To investigate the function of potential active sites, R227G, D229K, E256Q/H, H327V and D328V mutants were generated, and the results suggested that Arg227, Asp229, Glu256 and Asp328 were total conserved and essential for the activity of alpha-amylase LaaA. This study shows that the alpha-amylase LaaA is an alkali-tolerant and high-active amylase with strong potential for use in detergent industry. PMID:27241296

  3. Job categories and their effect on exposure to fungal alpha-amylase and inhalable dust in the U.K. baking industry.

    PubMed

    Elms, Joanne; Beckett, Paul; Griffin, Peter; Evans, Paul; Sams, Craig; Roff, Martin; Curran, Andrew D

    2003-01-01

    Enzymes in flour improver, in particular fungal alpha-amylase, are known to be a significant cause of respiratory allergy in the baking industry. This study measured total inhalable dust and fungal alpha-amylase exposures in U.K. bakeries, mills, and a flour improver production and packing facility and determined whether assignment of job description could identify individuals with the highest exposures to fungal alpha-amylase and inhalable dust. A total of 117 personal samples were taken for workers in 19 bakeries, 2 mills, and a flour improver production and packing facility and were analyzed using a monoclonal based immunoassay. Occupational hygiene surveys were undertaken for each site to assign job description and identify individuals who worked directly with flour improvers. Analysis of exposure data identified that mixers and weighers from large bakeries had the highest exposures to both inhalable dust and fungal alpha-amylase among the different categories of bakery workers (p<.01). Currently, the maximum exposure limit for flour dust in the United Kingdom is 10 mg/m(3) (8-hour time-weighted average reference period). In this study 25% of the total dust results for bakers exceeded 10 mg/m(3), and interestingly, 63% of the individuals with exposure levels exceeding 10 mg/m(3) were weighers and mixers. Individuals who worked directly with flour improvers were exposed to higher levels of both inhalable dust and fungal alpha-amylase (p<.01) than those who were not directly handling these products. Before sensitive immunoassays were utilized for the detection of specific inhalable allergens, gravimetric analysis was often used as a surrogate. There was a weak relationship between inhalable dust and fungal alpha-amylase exposures; however, inhalable dust levels could not be used to predict amylase exposures, which highlights the importance of measuring both inhalable dust and fungal alpha-amylase exposures. PMID:12908861

  4. High-efficiency, one-step starch utilization by transformed Saccharomyces cells which secrete both yeast glucoamylase and mouse alpha-amylase.

    PubMed Central

    Kim, K; Park, C S; Mattoon, J R

    1988-01-01

    Transformed, hybrid Saccharomyces strains capable of simultaneous secretion of glucoamylase and alpha-amylase have been produced. These strains could carry out direct, one-step assimilation of starch, with conversion efficiency greater than 93% during a 5-day growth period. One of the transformants converted 92.8% of available starch into reducing sugars in only 2 days. Glucoamylase secretion by these strains resulted from expression of one or more chromosomal STA genes derived from Saccharomyces diastaticus. The strains were transformed by a plasmid (pMS12) containing mouse salivary alpha-amylase cDNA in an expression vector containing yeast alcohol dehydrogenase promoter and a segment of yeast 2 micron plasmid. The major starch hydrolysis product produced by crude amylases found in culture broths was glucose, indicating that alpha-amylase and glucoamylase acted cooperatively. PMID:3132104

  5. Variation in salivary and pancreatic alpha-amylase genes in Italian horse breeds.

    PubMed

    Coizet, Beatrice; Nicoloso, Letizia; Marletta, Donata; Tamiozzo-Calligarich, Alessandra; Pagnacco, Giulio; Crepaldi, Paola

    2014-01-01

    The dietary demand of the modern horse relies on high-cereal feeding and limited forage compared with natural grazing conditions, predisposing the horse to several important diseases. Salivary and pancreatic alpha-amylases (coded by AMY1 and AMY2 genes, respectively) play a crucial role in carbohydrate digestion in nonruminants, but little is known about these 2 genes in the horse. Aim of this work has been to distinguish genomic sequences of horse AMY1 and AMY2 genes and to analyze any polymorphisms in breeds historically characterized by marked differences in nutritional management. A single nucleotide polymorphism detection was performed and 7 novel single nucleotide polymorphisms were found. Three single nucleotide polymorphisms are in exons and were genotyped in 112 horses belonging to 6 breeds. One single nucleotide polymorphism in AMY1 gene distinguished Haflinger and the Italian native Murgese from the other breeds, whereas both the single nucleotide polymorphisms in AMY2 gene showed different allelic frequencies in Friesian compared with the other breeds. These differences are confirmed by quite high fixation index (Fst) values for these 2 nonsynonymous single nucleotide polymorphisms. These preliminary results highlight marked divergences in allele frequencies of AMY1 and AMY2 genes, involved in starch digestion, between horse breeds characterized by different histories of selection, thus providing first indications of possible relations between genetics and nutritional management. PMID:24558100

  6. Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: optimization of culture conditions.

    PubMed

    Sahnoun, Mouna; Kriaa, Mouna; Elgharbi, Fatma; Ayadi, Dorra-Zouari; Bejar, Samir; Kammoun, Radhouane

    2015-04-01

    Aspergillus oryzae S2 was assayed for alpha-amylase production under solid state fermentation (SSF). In addition to AmyA and AmyB already produced in monitored submerged culture, the strain was noted to produce new AmyB oligomeric forms, in particular a dominant tetrameric form named AmyC. The latter was purified to homogeneity through fractional acetone precipitation and size exclusion chromatography. SDS-PAGE and native PAGE analyses revealed that, purified AmyC was an approximately 172 kDa tetramer of four 42 kDa subunits. AmyC was also noted to display the same NH2-terminal amino acid sequence residues and approximately the same physico-chemical properties of AmyA and AmyB, to exhibit maximum activity at pH 5.6 and 60 °C, and to produce maltose and maltotriose as major starch hydrolysis end-products. Soyabean meal was the best substitute to yeast extract compared to fish powder waste and wheat gluten waste. AmyC production was optimized under SSF using statistical design methodology. Moisture content of 76.25%, C/N substrate ratio of 0.62, and inoculum size of 10(6.87) spores allowed maximum activity of 22118.34 U/g of dried substrate, which was 33 times higher than the one obtained before the application of the central composite design (CCD). PMID:25617840

  7. Effects of simulated firefighting on the responses of salivary cortisol, alpha-amylase and psychological variables.

    PubMed

    Perroni, F; Tessitore, A; Cibelli, G; Lupo, C; D'Artibale, E; Cortis, C; Cignitti, L; De Rosas, M; Capranica, L

    2009-04-01

    The aim of this study was to evaluate the effects of a simulated firefighting intervention on salivary alpha-amylase (sA-A), free cortisol (sC), anxiety (STAI), and profile of mood states (POMS) in 20 male firefighters (age 32 +/- 1 years, VO(2peak): 43 +/- 5 ml/kg per min). During the 12-min firefighting intervention (ambient temperature: 13 +/- 1 degrees C; relative humidity: 63 +/- 1%), individuals spent 63 +/- 28% of the time working at heart rate (HR) >85% of individual HR(max), [La] (peak) 9.2 +/- 2.9 mM and ratings of perceived exertion 16 +/- 2. At 30 min post-intervention significant (p < 0.001) increases in sA-A (174%) and sC (109%) were found with regard to values recorded before and after 90 min of the firefighting intervention. Since no differences emerged between pre-intervention and post intervention for STAI and POMS values, the hormonal changes were attributable to the intense physical stress of the simulated intervention. Further research is needed during real firefighting activities, where high emotional stress may also be present. PMID:19401900

  8. Salivary nitric oxide and alpha-amylase as indexes of training intensity and load.

    PubMed

    Diaz, M M; Bocanegra, O L; Teixeira, R R; Soares, S S; Espindola, F S

    2013-01-01

    This study examined the variation in salivary nitric oxide (NO), alpha-amylase (sAA) and serum markers of muscle injury during 21 weeks of training in elite swimmers. Samples of saliva and blood were collected once a month during 5 months from 11 male professional athletes during their regular training season. The variation in each marker throughout the 21 weeks was compared with the dynamics of training volume, intensity and load. Unstimulated whole saliva was assessed for NO and sAA whereas venous blood was assessed for lactate dehydrogenase, creatine kinase, and γ-glutamyltransferase. Nitric oxide and sAA showed a proportional response to the intensity of training. However, whereas the concentration of NO increased across the 21 weeks, the activity of sAA decreased. Similar variations in the concentration of NO and the markers of muscle injury were also observed. The higher concentration of NO might be attributed to changes in haemodynamics and muscle regenerative processes. On the other hand, autonomic regulation towards parasympathetic predominance might have been responsible for the decrease in sAA activity. These findings provide appealing evidence for the utilization of salivary constituents in sports medicine to monitor training programmes. PMID:22960992

  9. Alpha-amylase inhibitory activity and sterol composition of the marine algae, Sargassum glaucescens

    PubMed Central

    Payghami, Nasrin; Jamili, Shahla; Rustaiyan, Abdolhossein; Saeidnia, Soodabeh; Nikan, Marjan; Gohari, Ahmad Reza

    2015-01-01

    Background: Sargassum species (phaeophyceae) are economically important brown algae in southern parts of Iran. Sargassum is mainly harvested as a row material in alginate production industries and is a source of plant foods or plant bio-stimulants even a component of animal foods. Objective: In this study, Sargassum glaucescens, collected from the seashore of Chabahar, was employed for phytochemical and biological evaluations. Materials and Methods: For that purpose, the dried algae was extracted by methanol and subjected to different chromatographic separation methods. Results: Six sterols, fucosterol (1), 24(S)-hydroxy-24-vinylcholesterol (2), 24(R)-hydroxy-24-vinylcholesterol (3), stigmasterol (4), β-sitosterol (5) and cholesterol (6) were identified by spectroscopic methods including 1H-NMR, 13C-NMR and mass spectroscopy. In vitro alpha-amylase inhibitory test was performed on the methanolic extract and the results revealed a potent inhibition (IC50 = 8.9 ± 2.4 mg/mL) of the enzyme compared to acarbose as a positive control. Conclusion: Various biological activities and distribution of sterols in Sargassum genus have been critically reviewed here. The results concluded that these algae are a good candidate for further anti-diabetic investigations in animals and human. PMID:26692744

  10. Cortisol and alpha amylase reactivity and timing of puberty: Vulnerabilities for antisocial behaviour in young adolescents

    PubMed Central

    Susman, Elizabeth J.; Granger, Douglas A; Blades, Keeva T.; Randazzo, William; Heaton, Jodi A.; Dorn, Lorah D.

    2009-01-01

    The theoretical framework proposed that cortisol and saliva alpha amylase (sAA) reactivitiy are vulnerabilities for antisocial behaviour. These indices of hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medulary (SAM) components of the stress system, respectively, were considered vulnerabilities that also interact with the putative stressful transition of timing of puberty to predispose adolescents toward antisocial behaviour. The sample consisted of 8- to-13-year-old boys and girls (N=135) and a parent. For boys, timing of puberty moderated the association between cortisol and sAA reactivity and antisocial behaviour. Higher cortisol reactivity in later timing boys was related to a composite index of antisocial behaviour and rule-breaking behaviour problems. In contrast, lower sAA reactivity and earlier timing of puberty in boys was related to rule breaking and conduct disorder symptoms. The interaction between timing of puberty and HPA or SAM regulation and timing of puberty in boys suggests that reproductive, neuroendocrine mechanisms may be involved in the extensively documented adverse consequences of off-time pubertal development. PMID:19819639

  11. Harsh discipline and behavior problems: the moderating effects of cortisol and alpha-amylase.

    PubMed

    Chen, Frances R; Raine, Adrian; Rudo-Hutt, Anna S; Glenn, Andrea L; Soyfer, Liana; Granger, Douglas A

    2015-01-01

    Numerous studies link harsh discipline to adjustment problems in youth, yet not all individuals exposed to harsh discipline develop behavior problems. Contemporary theory suggests that this relationship could be moderated by individual differences in environmentally sensitive biological systems. This study investigated whether the interaction between hypothalamic-pituitary-adrenal (HPA) activity and autonomic nervous system (ANS) arousal moderated the link between harsh discipline and behavior problems. Three saliva samples were collected on a single day from 425 inner city youth (50% male, age 11-12 years, 80% African American) and were later assayed for cortisol (HPA) and alpha-amylase (ANS). Problem behavior was assessed by self- and parent-report using the Child Behavior Checklist. Youth also reported the level of harsh discipline that they experienced. Harsh discipline was positively associated with externalizing and internalizing problems only when there were asymmetrical profiles of HPA activity and ANS arousal. This pattern was evident for boys but not girls. Findings are discussed in relation to prevailing theories suggesting that biological susceptibility translates adversity into risk for behavior problems. PMID:25451383

  12. Biochemical and Structural Characterization of Amy1: An Alpha-Amylase from Cryptococcus flavus Expressed in Saccharomyces cerevisiae

    PubMed Central

    Galdino, Alexsandro Sobreira; Silva, Roberto Nascimento; Lottermann, Muriele Taborda; Álvares, Alice Cunha Morales; de Moraes, Lídia Maria Pepe; Torres, Fernando Araripe Gonçalves; de Freitas, Sonia Maria; Ulhoa, Cirano José

    2011-01-01

    An extracellular alpha-amylase (Amy1) whose gene from Cryptococcus flavus was previously expressed in Saccharomyces cerevisiae was purified to homogeneity (67 kDa) by ion-exchange and molecular exclusion chromatography. The enzyme was activated by NH4+ and inhibited by Cu+2 and Hg+2. Significant biochemical and structural discrepancies between wild-type and recombinant α-amylase with respect to Km values, enzyme specificity, and secondary structure content were found. Far-UV CD spectra analysis at pH 7.0 revealed the high thermal stability of both proteins and the difference in folding pattern of Amy1 compared with wild-type amylase from C. flavus, which reflected in decrease (10-fold) of enzymatic activity of recombinant protein. Despite the differences, the highest activity of Amy1 towards soluble starch, amylopectin, and amylase, in contrast with the lowest activity of Amy1w, points to this protein as being of paramount biotechnological importance with many applications ranging from food industry to the production of biofuels. PMID:21490699

  13. Alpha-amylase from germinating soybean (Glycine max) seeds--purification, characterization and sequential similarity of conserved and catalytic amino acid residues.

    PubMed

    Kumari, Arpana; Singh, Vinay Kumar; Fitter, Jörg; Polen, Tino; Kayastha, Arvind M

    2010-10-01

    Starch hydrolyzing amylase from germinated soybeans seeds (Glycine max) has been purified 400-fold to electrophoretic homogeneity with a final specific activity of 384 units/mg. SDS-PAGE of the final preparation revealed a single protein band of 100 kDa, whereas molecular mass was determined to be 84 kDa by MALDI-TOF and gel filtration on Superdex-200 (FPLC). The enzyme exhibited maximum activity at pH 5.5 and a pI value of 4.85. The energy of activation was determined to be 6.09 kcal/mol in the temperature range 25-85 degrees C. Apparent Michaelis constant (K(m)((app))) for starch was 0.71 mg/mL and turnover number (k(cat)) was 280 s(-1) in 50 mM sodium acetate buffer, pH 5.5. Thermal inactivation studies at 85 degrees C showed first-order kinetics with rate constant (k) equal to 0.0063 min(-1). Soybean alpha-amylase showed high specificity for its primary substrate starch. High similarity of soybean alpha-amylase with known amylases suggests that this alpha-amylase belongs to glycosyl hydrolase family 13. Cereal alpha-amylases have gained importance due to their compatibility for biotechnological applications. Wide availability and easy purification protocol make soybean as an attractive alternative for plant alpha-amylase. Soybean can be used as commercially viable source of alpha-amylase for various industrial applications. PMID:20655076

  14. Structure of waxy maize starch hydrolyzed by maltogenic alpha-amylase in relation to its retrogradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maltogenic a-amylase is widely used as an antistaling agent in bakery foods. The objective of this study was to determine the degree of hydrolysis (DH) and starch structure after maltogenic amylase treatments in relation to its retrogradation. Waxy maize starch was cooked and hydrolyzed to different...

  15. Production and characterization of alpha-amylase from mango kernel by Fusarium solani NAIMCC-F-02956 using submerged fermentation.

    PubMed

    Kumar, Devendra; Yadav, Kaushlesh K; Muthukumar, M; Garg, Neelima

    2013-11-01

    Microbial production of enzymes using low valued agro industrial wastes is gaining importance globally. Mango is one of the major fruit processed into a variety of products. During processing 40-50% of solid waste is generated in form of peel and stones. After decortications of mango stone, kernel is obtained which is a rich source of starch (upto 60%). It was utilized as a substrate for alpha-amylase production using Fusarium soloni. Maximum alpha-amylase production (0.889 U g(-1)) was recorded using a substrate concentration of 5% (w/v), pH-4 and temperature 30 degrees C on 9th day of incubation. Supplementation of production medium with micronutrients viz., Ca2+, Fe2+ or Mg2+ improved the enzyme production while, Zn2+, B3+ or Mn2+ ions exhibited inhibitory effect. The extracellular protein was precipitated by ammonium sulphate up to 70% saturation, dialyzed and purified (27.84 fold) by gel-exclusion (Sephadex G-75) chromatography. Protein profiling on 12% SDS-PAGE revealed three bands corresponding to 26, 27 and 30 kDa molecular sizes. The optimum amylase activity was achieved at pH 5.0 at 40 degrees C. The Michaelis constant (KM), Vmax and activation energy (-Ea) were found to be 3.7 mg ml(-1), 0.24 U mg(-1) and 42.39 kJ mole(-1), respectively. PMID:24555336

  16. Elevated Salivary Alpha Amylase in Adolescent Sexual Abuse Survivors with Posttraumatic Stress Disorder Symptoms

    PubMed Central

    Strawn, Jeffrey R.; Out, Dorothee; Granger, Douglas A.; Putnam, Frank W.

    2015-01-01

    Abstract Objective: Little is known regarding neuroendocrine responses in adolescent girls with posttraumatic stress disorder (PTSD) who have experienced sexual abuse. Therefore, we collected saliva samples three times daily for 3 days to assess concentrations of salivary alpha amylase (sAA) – a surrogate marker for autonomic nervous system (ANS) activity and, in particular, sympathetic activity – in sexually abused adolescent girls. Methods: Twenty-four girls (mean age: 15±1.4 years) who had experienced recent sexual abuse (i.e., sexual abuse occurred 1–6 months prior to study enrollment) and 12 healthy comparison subjects (mean age: 14.8±1.3 years) completed a structured interview and assessments to ascertain symptoms of posttraumatic stress, then collected saliva at home upon awakening, 30 minutes after waking, and at 5 p.m. on three consecutive school days. Results: For sexually abused girls, total PTSD symptoms were associated with higher overall morning levels of sAA (r[20]=0.51, p=0.02), a finding driven by intrusive symptoms (r[20]=0.43, p<0.05) and hyperarousal symptoms (r[20]=0.58, p=0.01). There were no significant differences in diurnal sAA secretion between the sexually abused girls and healthy comparison adolescents. Conclusions: Overall morning concentrations of sAA in sexually abused girls are associated with overall PTSD severity as well as symptoms of hyperarousal and intrusive symptoms, possibly reflecting symptom-linked increases in ANS tone. These data raise the possibility that alterations in ANS activity are related to the pathophysiology of sexual abuse-related PTSD in adolescent girls, and may inform therapeutic interventions (e.g., antiadrenergic medications). PMID:25803321

  17. Diacylglycerol pyrophosphate inhibits the alpha-amylase secretion stimulated by gibberellic acid in barley aleurone.

    PubMed

    Racagni, Graciela; Villasuso, Ana L; Pasquaré, Susana J; Giusto, Norma M; Machado, Estela

    2008-11-01

    ABA plays an important regulatory role in seed germination because it inhibits the response to GA in aleurone, a secretory tissue surrounding the endosperm. Phosphatidic acid (PA) is a well-known intermediary in ABA signaling, but the role of diacylglycerol pyrophosphate (DGPP) in germination processes is not clearly established. In this study, we show that PA produced by phospholipase D (E.C. 3.1.4.4) during the antagonist effect of ABA in GA signaling is rapidly phosphorylated by phosphatidate kinase (PAK) to DGPP. This is a crucial fact for aleurone function because exogenously added dioleoyl-DGPP inhibits secretion of alpha-amylase (E.C. 3.2.1.1). Aleurone treatment with ABA and 1-butanol results in normal secretory activity, and this effect is reversed by addition of dioleoyl-DGPP. We also found that ABA decreased the activity of an Mg2+-independent, N-ethylmaleimide-insensitive form of phosphatidate phosphohydrolase (PAP2) (E.C. 3.1.3.4), leading to reduction of PA dephosphorylation and increased PAK activity. Sequence analysis using Arabidopsis thaliana lipid phosphate phosphatase (LPP) sequences as queries identified two putative molecular homologues, termed HvLPP1 and HvLPP2, encoding putative Lpps with the presence of well-conserved structural Lpp domains. Our results are consistent with a role of DGPP as a regulator of ABA antagonist effect in GA signaling and provide evidence about regulation of PA level by a PAP2 during ABA response in aleurone. PMID:18573189

  18. Psychosocial determinants of diurnal alpha-amylase among healthy Quebec workers.

    PubMed

    Marchand, Alain; Juster, Robert-Paul; Lupien, Sonia J; Durand, Pierre

    2016-04-01

    Salivary alpha-amylase (sAA) is a stress-sensitive biomarker the shows promise as an indirect proxy of sympathetic-adrenal-medullary axis activities that are otherwise difficult to discern non-invasively. This comprehensive study investigated diurnal sAA in association with numerous psychosocial characteristics related to mental health, work stress, and non-work stress. Participants included 395 workers (56.1% women, age: M=41.3, SD=10.81) from across 34 distinct workplaces. Diurnal sAA was sampled over two non-consecutive work days at awakening, 30min after awakening, 14h00, 16h00, and bedtime. Well-validated psychometrics and survey items were used to measure mental health (psychological distress, depression, burnout, work characteristics) (task design, demands, social relations, gratifications), and non-work characteristics (marital/parental status, economic statuses, marital and parental stress, work-family conflicts). Preliminary results revealed that men showed occasionally higher sAA concentrations than women. Multilevel regressions were used to analyze sAA concentrations nested according to levels (i) for each time-point, (ii) between workers, and (iii) across workplaces while covarying for time of awakening, sex, age, cigarette smoking, alcohol consumption, regular physical activity, psychotropic drug use, and body mass index. Main results revealed that psychological demands, support from colleagues, interpersonal conflicts, job recognition and job insecurity appear to be associated with diurnal sAA, while non-work factors did not. Our findings showing a distinct diurnal profile for sAA replicate and expand those of Nater et al. (2007, Psychoneuroendocrinology 32, 392-401), providing further evidence that sAA is associated to subjective psychosocial factors. PMID:26799849

  19. Salivary alpha amylase and salivary cortisol response to fluid consumption in exercising athletes.

    PubMed

    Backes, T P; Horvath, P J; Kazial, K A

    2015-11-01

    The objective of the study was to examine salivary biomarker response to fluid consumption in exercising athletes. Exercise induces stress on the body and salivary alpha amylase (sAA) and salivary cortisol are useful biomarkers for activity in the sympathoadrenal medullary system and the hypothalamic pituitary adrenal axis which are involved in the stress response. Fifteen college students were given 150 ml and 500 ml of water on different days and blinded to fluid condition. The exercise protocol was identical for both fluid conditions using absolute exercise intensities ranging from moderate to high. Saliva was collected prior to exercise, post moderate and post high intensities and analyzed by Salimetrics assays. Exercise was significant for sAA with values different between pre-exercise (85 ± 10 U · ml(-1)) and high intensity (284 ± 30 U · ml(-1)) as well as between moderate intensity (204 ± 32 U · ml(-1)) and high intensity. There was no difference in sAA values between fluid conditions at either intensity. Exercise intensity and fluid condition were each significant for cortisol. Cortisol values were different between pre-exercise (0.30 ± 0.03 ug · dL(-1)) and high intensity (0.45 ± 0.05 ug · dL(-1)) as well as between moderate intensity (0.33 ± 0.04 ug · dL(-1)) and high intensity. Moderate exercise intensity cortisol was lower in the 500 ml condition (0.33 ± 0.03 ug · dL(-1)) compared with the 150 ml condition (0.38 ± 0.03 ug · dL(-1)). This altered physiological response due to fluid consumption could influence sport performance and should be considered. In addition, future sport and exercise studies should control for fluid consumption. PMID:26681828

  20. Alpha-Amylase Reactivity in Relation to Psychopathic Traits in Adults

    PubMed Central

    Glenn, Andrea L.; Remmel, Rheanna J.; Raine, Adrian; Schug, Robert A.; Gao, Yu; Granger, Douglas A.

    2015-01-01

    Recent investigations of the psychobiology of stress in antisocial youth have benefited from a multi-system measurement model. The inclusion of salivary alpha-amylase (sAA), a surrogate marker of autonomic/sympathetic nervous system (ANS) activity, in addition to salivary cortisol, a biomarker of the hypothalamic-pituitary-adrenal (HPA) axis functioning, has helped define a more complete picture of individual differences and potential dysfunction in the stress response system of these individuals. To the authors' knowledge, no studies have examined sAA in relation to antisocial behavior in adults or in relation to psychopathic traits specifically. In the present study, we examined sAA, in addition to salivary cortisol, in a relatively large sample (n = 158) of adult males (M age = 36.81, range = 22-67 years; 44% African-American, 34% Caucasian, 16% Hispanic) recruited from temporary employment agencies with varying levels of psychopathic traits. Males scoring highest in psychopathy were found to have attenuated sAA reactivity to social stress compared to those scoring lower in psychopathy. No differential relationships with the different factors of psychopathy were observed. In contrast to studies of antisocial youth, there were no interactions between sAA and cortisol levels in relation to psychopathy, but there was a significant interaction between pre-stressor levels of sAA and cortisol. Findings reveal potential regulatory deficits in the fast-acting, ‘fight or flight’, component of the stress response in adult males with psychopathic traits, as well as abnormalities in how this system may interact with the HPA axis. PMID:25662339

  1. Salivary alpha amylase and salivary cortisol response to fluid consumption in exercising athletes

    PubMed Central

    Horvath, PJ; Kazial, KA

    2015-01-01

    The objective of the study was to examine salivary biomarker response to fluid consumption in exercising athletes. Exercise induces stress on the body and salivary alpha amylase (sAA) and salivary cortisol are useful biomarkers for activity in the sympathoadrenal medullary system and the hypothalamic pituitary adrenal axis which are involved in the stress response. Fifteen college students were given 150 ml and 500 ml of water on different days and blinded to fluid condition. The exercise protocol was identical for both fluid conditions using absolute exercise intensities ranging from moderate to high. Saliva was collected prior to exercise, post moderate and post high intensities and analyzed by Salimetrics assays. Exercise was significant for sAA with values different between pre-exercise (85 ± 10 U · ml−1) and high intensity (284 ± 30 U · ml−1) as well as between moderate intensity (204 ± 32 U · ml−1) and high intensity. There was no difference in sAA values between fluid conditions at either intensity. Exercise intensity and fluid condition were each significant for cortisol. Cortisol values were different between pre-exercise (0.30 ± 0.03 ug · dL−1) and high intensity (0.45 ± 0.05 ug · dL−1) as well as between moderate intensity (0.33 ± 0.04 ug · dL−1) and high intensity. Moderate exercise intensity cortisol was lower in the 500 ml condition (0.33 ± 0.03 ug · dL−1) compared with the 150 ml condition (0.38 ± 0.03 ug · dL−1). This altered physiological response due to fluid consumption could influence sport performance and should be considered. In addition, future sport and exercise studies should control for fluid consumption. PMID:26681828

  2. Alpha-amylase reactivity in relation to psychopathic traits in adults.

    PubMed

    Glenn, Andrea L; Remmel, Rheanna J; Raine, Adrian; Schug, Robert A; Gao, Yu; Granger, Douglas A

    2015-04-01

    Recent investigations of the psychobiology of stress in antisocial youth have benefited from a multi-system measurement model. The inclusion of salivary alpha-amylase (sAA), a surrogate marker of autonomic/sympathetic nervous system (ANS) activity, in addition to salivary cortisol, a biomarker of the hypothalamic-pituitary-adrenal (HPA) axis functioning, has helped define a more complete picture of individual differences and potential dysfunction in the stress response system of these individuals. To the authors' knowledge, no studies have examined sAA in relation to antisocial behavior in adults or in relation to psychopathic traits specifically. In the present study, we examined sAA, in addition to salivary cortisol, in a relatively large sample (n=158) of adult males (M age=36.81, range=22-67 years; 44% African-American, 34% Caucasian, 16% Hispanic) recruited from temporary employment agencies with varying levels of psychopathic traits. Males scoring highest in psychopathy were found to have attenuated sAA reactivity to social stress compared to those scoring lower in psychopathy. No differential relationships with the different factors of psychopathy were observed. In contrast to studies of antisocial youth, there were no interactions between sAA and cortisol levels in relation to psychopathy, but there was a significant interaction between pre-stressor levels of sAA and cortisol. Findings reveal potential regulatory deficits in the fast-acting, 'fight or flight', component of the stress response in adult males with psychopathic traits, as well as abnormalities in how this system may interact with the HPA axis. PMID:25662339

  3. Cloning and characterization of a second alpha-amylase gene (LKA2) from Lipomyces kononenkoae IGC4052B and its expression in Saccharomyces cerevisiae.

    PubMed

    Eksteen, Jeremy M; Steyn, Andries J C; van Rensburg, Pierre; Cordero Otero, Ricardo R; Pretorius, Isak S

    2003-01-15

    Lipomyces kononenkoae secretes a battery of highly effective amylases (i.e. alpha-amylase, glucoamylase, isoamylase and cyclomaltodextrin glucanotransferase activities) and is therefore considered as one of the most efficient raw starch-degrading yeasts known. Previously, we have cloned and characterized genomic and cDNA copies of the LKA1 alpha-amylase gene from L. kononenkoae IGC4052B (CBS5608T) and expressed them in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Here we report on the cloning and characterization of the genomic and cDNA copies of a second alpha-amylase gene (LKA2) from the same strain of L. kononenkoae. LKA2 was cloned initially as a 1663 bp cDNA harbouring an open reading frame (ORF) of 1496 nucleotides. Sequence analysis of LKA2 revealed that this ORF encodes a protein (Lka2p) of 499 amino acids, with a predicted molecular weight of 55,307 Da. The LKA2-encoded alpha-amylase showed significant homology to several bacterial cyclomaltodextrin glucanotransferases and also to the alpha-amylases of Aspergillus nidulans, Debaryomyces occidentalis, Saccharomycopsis fibuligera and Sz. pombe. When LKA2 was expressed under the control of the phosphoglycerate kinase gene promoter (PGK1(p)) in S. cerevisiae, it was found that the genomic copy contained a 55 bp intron that impaired the production of biologically active Lka2p in the heterologous host. In contrast to the genomic copy, the expression of the cDNA construct of PGK1p-LKA2 in S. cerevisiae resulted in the production of biologically active alpha-amylase. The LKA2-encoded alpha-amylase produced by S. cerevisiae exhibited a high specificity towards substrates containing alpha-1,4 glucosidic linkages. The optimum pH of Lka2p was found to be 3.5 and the optimum temperature was 60 degrees C. Besides LKA1, LKA2 is only the second L. kononenkoae gene ever cloned and expressed in S. cerevisiae. The cloning, characterization and co-expression of these two genes encoding these highly efficient alpha-amylases

  4. The Use of Commercially Available Alpha-Amylase Compounds to Inhibit and Remove Staphylococcus aureus Biofilms

    PubMed Central

    Craigen, Bradford; Dashiff, Aliza; Kadouri, Daniel E

    2011-01-01

    Staphylococcus aureus, a versatile human pathogen, is commonly associated with medical device infections. Its capacity to establish and maintain these infections is thought to be related to its ability to form adherent biofilms. In this study, commercially available α-amylase compounds from various biological sources were evaluated for their ability to reduce and prevent biofilm formation of several S. aureus isolates. Our data demonstrates that α-amylase compounds can rapidly detach biofilms of S. aureus, as well as inhibit biofilm formation. Our data also demonstrates that α-amylase compounds have an ability to reduce and disassociate S. aureus cell-aggregates grown in liquid suspension. These findings suggest that commercially available α-amylase compounds could be used in the future to control S. aureus biofilm-related infections. PMID:21760865

  5. The Multiple Forms of alpha-Amylase Enzyme of the Araucaria Species of South America: A. araucana (Mol.) Koch and A. angustifolia (Bert.) O. Kutz : A Comparative Study.

    PubMed

    Salas, E; Cardemil, L

    1986-08-01

    alpha-Amylase is one of the major enzymes present in the seeds of both Araucaria species of South America and it initiates starch hydrolysis during germination and early seedling growth. The pattern of the multiple forms of alpha-amylase of the two Araucaria species was investigated by electrophoresis and isoelectrofocusing of the native enzyme in polyacrylamide gels. The enzyme forms were compared in the embryo and megagametophyte of quiescent seeds and of seeds imbibed for 18, 48, and 90 hours. Specific alpha-amylase enzyme forms appear and disappear during these imbibition periods showing both similarities and differences between tissues and species. Before imbibition, there are five alpha-amylase forms identical in both tissues, but different between species. After 18 hours of imbibition, there are two enzyme forms in both tissues of Araucaria araucana seeds, only one form in the embryo of Araucaria angustifolia but two forms in the megagametophyte of this specie. After 48 hours of seed imbibition, most of the enzyme forms present in quiescent seeds reappear. At 90 hours of imbibition different enzyme forms are detected in the embryo with respect to the gametophyte. The changes in form patterns of alpha-amylase are discussed according to a possible regulation of gene expression by endogenous gibberellins. PMID:16664944

  6. Mutational analysis of target enzyme recognition of the beta-trefoil fold barley alpha-amylase/subtilisin inhibitor.

    PubMed

    Bønsager, Birgit C; Nielsen, Peter K; Abou Hachem, Maher; Fukuda, Kenji; Praetorius-Ibba, Mette; Svensson, Birte

    2005-04-15

    The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits alpha-amylase 2 (AMY2) with subnanomolar affinity. The contribution of selected side chains of BASI to this high affinity is discerned in this study, and binding to other targets is investigated. Seven BASI residues along the AMY2-BASI interface and four residues in the putative protease-binding loop on the opposite side of the inhibitor were mutated. A total of 15 variants were compared with the wild type by monitoring the alpha-amylase and protease inhibitory activities using Blue Starch and azoalbumin, respectively, and the kinetics of binding to target enzymes by surface plasmon resonance. Generally, the mutations had little effect on k(on), whereas the k(off) values were increased up to 67-fold. The effects on the inhibitory activity, however, were far more pronounced, and the K(i) values of some mutants on the AMY2-binding side increased 2-3 orders of magnitude, whereas mutations on the other side of the inhibitor had virtually no effect. The mutants K140L, D150N, and E168T lost inhibitory activity, revealing the pivotal role of charge interactions for BASI activity on AMY2. A fully hydrated Ca(2+) at the AMY2-BASI interface mediates contacts to the catalytic residues of AMY2. Mutations involving residues contacting the solvent ligands of this Ca(2+) had weaker affinity for AMY2 and reduced sensitivity to the Ca(2+) modulation of the affinity. These results suggest that the Ca(2+) and its solvation sphere are integral components of the AMY2-BASI complex, thus illuminating a novel mode of inhibition and a novel role for calcium in relation to glycoside hydrolases. PMID:15657043

  7. Production of L-Lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface.

    PubMed

    Tateno, Toshihiro; Fukuda, Hideki; Kondo, Akihiko

    2007-04-01

    We engineered a Corynebacterium glutamicum strain displaying alpha-amylase from Streptococcus bovis 148 (AmyA) on its cell surface to produce amino acids directly from starch. We used PgsA from Bacillus subtilis as an anchor protein, and the N-terminus of alpha-amylase was fused to the PgsA. The genes of the fusion protein were integrated into the homoserine dehydrogenase gene locus on the chromosome by homologous recombination. L-Lysine fermentation was carried out using C. glutamicum displaying AmyA in the growth medium containing 50 g/l soluble starch as the sole carbon source. We performed L-lysine fermentation at various temperatures (30-40 degrees C) and pHs (6.0-7.0), as the optimal temperatures and pHs of AmyA and C. glutamicum differ significantly. The highest L-lysine yield was recorded at 30 degrees C and pH 7.0. The amount of soluble starch was reduced to 18.29 g/l, and 6.04 g/l L-lysine was produced in 24 h. The L-lysine yield obtained using soluble starch as the sole carbon source was higher than that using glucose as the sole carbon source after 24 h when the same amount of substrates was added. The results shown in the current study demonstrate that C. glutamicum displaying alpha-amylase has a potential to directly convert soluble starch to amino acids. PMID:17216452

  8. Heat shock inhibits. alpha. -amylase synthesis in barley aleurone without inhibiting the activity of endoplasmic reticulum marker enzymes

    SciTech Connect

    Sticher, L.; Biswas, A.K.; Bush, D.S.; Jones, R.L. )

    1990-02-01

    The effects of heat shock on the synthesis of {alpha}-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25{degree}C to 40{degree}C for 3 hours, inhibits the accumulation of {alpha}-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca{sup 2+}. When ER is isolated from heat-shocked aleurone layers, less newly synthesized {alpha}-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca{sup 2+} transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.

  9. Electrospray mass spectrometry characterization of post-translational modifications of barley alpha-amylase 1 produced in yeast.

    PubMed

    Søgaard, M; Andersen, J S; Roepstorff, P; Svensson, B

    1993-10-01

    We have used electrospray mass spectrometry (ESMS) in combination with protein chemistry and genetics to delineate post-translational modifications in yeast of barley alpha-amylase 1 (AMY1), a 45 kD enzyme crucial for production of malt, an important starting material in the manufacture of beer and whisky. In addition to signal peptide processing these modifications are: (1) removal of C-terminal Arg-Ser by Kex1p, (2) glutathionylation of Cys95, (3) O-glycosylation, and (4) additional degradation of the C-terminus. PMID:7764097

  10. cDNA sequence and deduced primary structure of an alpha-amylase inhibitor from a bruchid-resistant wild common bean.

    PubMed

    Suzuki, K; Ishimoto, M; Kitamura, K

    1994-06-12

    alpha-Amylase inhibitor-2 (alpha AI-2), a seed storage protein present in a bruchid-resistant wild common bean (Phaseolus vulgaris), inhibits the growth of bruchid pests. The authors isolated and determined the sequence of an 852 nucleotide cDNA, designated as alpha ai2, and found it to contain a 720 base open reading frame (ORF). This ORF encodes a 240 amino-acid alpha AI-2 polypeptide 75.8% identical with alpha-amylase inhibitor-1 (alpha AI-1) and 50.6-55.6% with arcelin-1, phytohemagglutinin (PHA)-L and PHA-E of common bean. The high degree of sequence homology suggests that there is an evolutionary relationship among these genes. PMID:8003534

  11. Evidence that the glucoamylases and alpha-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme.

    PubMed

    Dubey, A K; Suresh, C; Kavitha, R; Karanth, N G; Umesh-Kumar, S

    2000-04-14

    A 125-kDa starch hydrolysing enzyme of Aspergillus niger characterised by its ability to dextrinise and saccharify starch [Suresh et al. (1999) Appl. Microbiol. Biotechnol. 51, 673-675] was also found to possess activity towards raw starch. Segregation of these activities in the 71-kDa glucoamylase and a 53-kDa alpha-amylase-like enzyme supported by antibody cross-reactivity studies and the isolation of mutants based on assay screens for the secretion of particular enzyme forms revealed the 125-kDa starch hydrolysing enzyme as their precursor. N-terminal sequence analysis further revealed that the 71-kDa glucoamylase was the N-terminal product of the precursor enzyme. Immunological cross reactivity of the 53-kDa amylase with antibodies raised against the precursor enzyme but not with the 71- and 61-kDa glucoamylase antibodies suggested that this enzyme activity is represented by the C-terminal fragment of the precursor. The N-terminal sequence of the 53-kDa protein showed similarity to the reported Taka amylase of Aspergillus oryzae. Antibody cross-reactivity to a 10-kDa non-enzymic peptide and a 61-kDa glucoamylase described these proteins as products of the 71-kDa glucoamylase. Identification of only the precursor starch hydrolysing enzyme in the protein extracts of fungal protoplasts suggested proteolytic processing in the cellular periplasmic space as the cause for the secretion of multiple forms of amylases by A. niger. PMID:10767433

  12. The structure of barley alpha-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs.

    PubMed

    Robert, Xavier; Haser, Richard; Gottschalk, Tine E; Ratajczak, Fabien; Driguez, Hugues; Svensson, Birte; Aghajari, Nushin

    2003-08-01

    Though the three-dimensional structures of barley alpha-amylase isozymes AMY1 and AMY2 are very similar, they differ remarkably from each other in their affinity for Ca(2+) and when interacting with substrate analogs. A surface site recognizing maltooligosaccharides, not earlier reported for other alpha-amylases and probably associated with the different activity of AMY1 and AMY2 toward starch granules, has been identified. It is located in the C-terminal part of the enzyme and, thus, highlights a potential role of domain C. In order to scrutinize the possible biological significance of this domain in alpha-amylases, a thorough comparison of their three-dimensional structures was conducted. An additional role for an earlier-identified starch granule binding surface site is proposed, and a new calcium ion is reported. PMID:12906828

  13. Enhancement of the alcoholytic activity of alpha-amylase AmyA from Thermotoga maritima MSB8 (DSM 3109) by site-directed mutagenesis.

    PubMed

    Damián-Almazo, Juanita Yazmin; Moreno, Alina; López-Munguía, Agustin; Soberón, Xavier; González-Muñoz, Fernando; Saab-Rincón, Gloria

    2008-08-01

    AmyA, an alpha-amylase from the hyperthermophilic bacterium Thermotoga maritima, is able to hydrolyze internal alpha-1,4-glycosidic bonds in various alpha-glucans at 85 degrees C as the optimal temperature. Like other glycoside hydrolases, AmyA also catalyzes transglycosylation reactions, particularly when oligosaccharides are used as substrates. It was found that when methanol or butanol was used as the nucleophile instead of water, AmyA was able to catalyze alcoholysis reactions. This capability has been evaluated in the past for some alpha-amylases, with the finding that only the saccharifying fungal amylases from Aspergillus niger and from Aspergillus oryzae present measurable alcoholysis activity (R. I. Santamaria, G. Del Rio, G. Saab, M. E. Rodriguez, X. Soberon, and A. Lopez, FEBS Lett. 452:346-350, 1999). In the present work, we found that AmyA generates larger quantities of alkyl glycosides than any amylase reported so far. In order to increase the alcoholytic activity observed in AmyA, several residues were identified and mutated based on previous analogous positions in amylases, defining the polarity and geometry of the active site. Replacement of residue His222 by glutamine generated an increase in the alkyl glucoside yield as a consequence of a higher alcoholysis/hydrolysis ratio. The same change in specificity was observed for the mutants H222E and H222D, but instability of these mutants toward alcohols decreased the yield of alkyl glucoside. PMID:18552192

  14. Biased mutagenesis in the N-terminal region by degenerate oligonucleotide gene shuffling enhances secretory expression of barley alpha-amylase 2 in yeast.

    PubMed

    Fukuda, Kenji; Jensen, Malene H; Haser, Richard; Aghajari, Nushin; Svensson, Birte

    2005-11-01

    Recombinant barley alpha-amylase 1 (rAMY1) and 2 (rAMY2), despite 80% sequence identity, are produced in very different amounts of 1.1 and <0.05 mg/l, respectively, by Saccharomyces cerevisiae strain S150-2B. The low yield of AMY2 practically excludes mutational analysis of structure-function relationships and protein engineering. Since different secretion levels of AMY1/AMY2 chimeras were previously ascribed to the N-terminal sequence, AMY1 residues were combinatorially introduced at the 10 non-conserved positions in His14-Gln49 of AMY2 using degenerate oligonucleotide gene shuffling (DOGS) coupled with homologous recombination in S.cerevisiae strain INVSc1. Activity screening of a partial library of 843 clones selected six having a large halo size on starch plates. Three mutants, F21M/Q44H, A42P/A47S and A42P rAMY2, also gave higher activity than wild-type in liquid culture. Only A42P showed wild-type stability and enzymatic properties. The replacement is located to a beta-->alpha loop 2 that interacts with domain B (beta-->alpha loop 3) protruding from the catalytic (beta/alpha)(8)-barrel. Most remarkably Pichia pastoris strain GS115 secreted 60 mg/l A42P compared with 3 mg/l of wild-type rAMY2. The crystal structure of A42P rAMY2 was solved and found to differ marginally from the AMY2 structure, suggesting that the high A42P yield stems from stabilization of the mature and/or intermediate form owing to the introduced proline residue. Moreover, the G to C substitution for the A42P mutation might have a positive impact on protein translation. PMID:16155115

  15. Coordinate increase in major transcripts from the high pI alpha-amylase multigene family in barley aleurone cells stimulated with gibberellic acid.

    PubMed

    Rogers, J C; Milliman, C

    1984-10-10

    The purpose of this study was to identify specifically genes and transcripts for the high pI isozyme of barley alpha-amylase. From hybridization of coding sequence probes to blots of genomic DNA digested with restriction enzymes that do not cut within our cloned high pI alpha-amylase cDNA, it is estimated that about 7 alpha-amylase genes or pseudogenes exist. No difference could be detected between barley aleurone cell and sprout DNAs. Experiments using probes from the 5' and 3' untranslated sequences of the high pI alpha-amylase cDNA clone identified three HindIII fragments that probably carry high pI sequences. Primer extension experiments used as a primer the terminal 5' coding sequence from our cDNA clone; this primer would not cross-hybridize to low pI alpha-amylase transcripts. Two major transcripts were identified. These shared a conserved 23-base sequence immediately 5' to the ATG start codon, although a C----G transversion and a 3-base deletion were present within this sequence. An unusual 8-base pair GC palindrome was present in the conserved region immediately preceding the ATG start codon. Distal to the conserved sequence there was no apparent homology. One transcript carrying a 97-base untranslated region was identical to our high pI cDNA clone E. The gene for the other was recovered from a lambda phage genomic library. The 5' coding sequence was very similar, but not identical to clone E, demonstrating that these transcripts arise from separate genes. The two transcripts increased coordinately in aleurone cells stimulated with gibberellic acid. These data indicate that there is a high pI alpha-amylase multigene family with at least two active members, both of which are regulated in some manner by the plant hormone gibberellic acid. PMID:6090459

  16. Cloning and functional expression of the gene encoding an inhibitor against Aspergillus flavus alpha-amylase, a novel seed lectin from Lablab purpureus (Dolichos lablab).

    PubMed

    Kim, Young-Hwa; Woloshuk, Charles P; Cho, Eun Hee; Bae, Jung Myung; Song, Young-Sun; Huh, Gyung Hye

    2007-04-01

    Maize is one of the more important agricultural crops in the world and, under certain conditions, prone to attack from pathogenic fungi. One of these, Aspergillus flavus, produces toxic and carcinogenic metabolites, called aflatoxins, as byproducts of its infection of maize kernels. The alpha-amylase of A. flavus is known to promote aflatoxin production in the endosperm of these infected kernels, and a 36-kDa protein from the Lablab purpureus, denoted AILP, has been shown to inhibit alpha-amylase production and the growth of A. flavus. Here, we report the isolation of six full-length labAI genes encoding AILP and a detailed analysis of the activities of the encoded proteins. Each of the six labAI genes encoded sequences of 274 amino acids, with the deduced amino acid sequences showing approximately 95-99% identity. The sequences are similar to those of lectin members of a legume lectin-arcelin-alpha-amylase inhibitor family reported to function in plant resistance to insect pests. The labAI genes did not show any of the structures characteristic of conserved structures identified in alpha-amylase inhibitors to date. The recombinant proteins of labAI-1 and labAI-2 agglutinated human red blood cells and inhibited A. flavus alpha-amylase in a manner similar to that shown by AILP. These data indicate that labAI genes are a new class of lectin members in legume seeds and that their proteins have both lectin and alpha-amylase inhibitor activity. These results are a valuable contribution to our knowledge of plant-pathogen interactions and will be applicable for developing protocols aimed at controlling A. flavus infection. PMID:17149640

  17. Salivary cortisol and alpha-amylase reactivity to taekwondo competition in children.

    PubMed

    Capranica, Laura; Lupo, Corrado; Cortis, Cristina; Chiodo, Salvatore; Cibelli, Giuseppe; Tessitore, Antonio

    2012-02-01

    The aim of this study was to evaluate the effects of an official taekwondo competition (three 1-min rounds with a 1-min recovery in-between) on heart rate (HR), salivary alpha-amylase (sAA), and salivary-free cortisol (sC) in children. Parental consent was obtained for 12 young (10.4 ± 0.2 years) male taekwondo athletes. Saliva sample were collected 15 min before and 1 min after an official taekwondo competition, and at 30, 60, and 90 min of the recovery period. To evaluate the exercise intensity during the competition, HR was measured and expressed as a percentage of individuals HR(peak). Athletes spent 78% of the time working at HR > 90% HR(max), with significant increases from round 1 to round 2 and 3. Peak sAA observed at the end of the match (169.6 ± 47.0 U/mL) was different (P = 0.0001) from the other samplings (pre-competition 55.0 ± 14.0 U/mL, 30-min recovery 80.4 ± 17.7 U/mL, 60-min recovery 50.5 ± 7.6 U/ml; 90-min recovery 53.2 ± 9.6 U/mL). Peak sC values observed at 30-min recovery (17.9 ± 3.5 nmol/L) were different (P < 0.0001) from pre-competition (5.6 ± 0.9 nmol/L), post-competition (9.0 ± 2.0 nmol/L), 60-min recovery (10.3 ± 2.6 nmol/L) and 90-min recovery (4.2 ± 0.8 nmol/L) values. These findings confirm that taekwondo competitions pose a high stress on young athletes. The different sAA and sC reactions in response to the physical stressor mirror the faster reactivity of the sympathetic-adrenomedullary system relatively to the hypothalamic-pituitary-adrenocortical system, respectively. This experimental paradigm might represent a useful model for further research on the effects of various stressors (i.e., training and competition) in taekwondo athletes. PMID:21643917

  18. Application of the extracellular alpha-amylase gene from Streptococcus bovis 148 to construction of a secretion vector for yogurt starter strains.

    PubMed

    Satoh, E; Ito, Y; Sasaki, Y; Sasaki, T

    1997-11-01

    Streptococcus thermophilus ATCC 19258, Lactobacillus delbrueckii subsp. bulgaricus T-11, and Lactococcus lactis subsp. lactis IL1403 were transformed with the alpha-amylase gene (amyA) from Streptococcus bovis 148 by using a wide host-range vector, and all the transformants secreted the alpha-amylase successfully. Since the promoter and the secretion signal of the amyA gene were functional in these strains, we constructed a secretion vector using the expression elements of amyA. Trials to secrete foreign enzymes in yogurt starter strains were performed using this novel secretion vector. PMID:9361445

  19. Application of the extracellular alpha-amylase gene from Streptococcus bovis 148 to construction of a secretion vector for yogurt starter strains.

    PubMed Central

    Satoh, E; Ito, Y; Sasaki, Y; Sasaki, T

    1997-01-01

    Streptococcus thermophilus ATCC 19258, Lactobacillus delbrueckii subsp. bulgaricus T-11, and Lactococcus lactis subsp. lactis IL1403 were transformed with the alpha-amylase gene (amyA) from Streptococcus bovis 148 by using a wide host-range vector, and all the transformants secreted the alpha-amylase successfully. Since the promoter and the secretion signal of the amyA gene were functional in these strains, we constructed a secretion vector using the expression elements of amyA. Trials to secrete foreign enzymes in yogurt starter strains were performed using this novel secretion vector. PMID:9361445

  20. Evolutionary relationships among proteins in the phytohemagglutinin-arcelin-alpha-amylase inhibitor family of the common bean and its relatives.

    PubMed

    Mirkov, T E; Wahlstrom, J M; Hagiwara, K; Finardi-Filho, F; Kjemtrup, S; Chrispeels, M J

    1994-11-01

    The common bean, Phaseolus vulgaris, contains a family of defense proteins that comprises phytohemagglutinin (PHA), arcelin, and alpha-amylase inhibitor (alpha AI). Here we report eight new derived amino acid sequences of genes in this family obtained with either the polymerase chain reaction using genomic DNA, or by screening cDNA libraries made with RNA from developing beans. These new sequences are: two alpha AI sequences and arcelin-4 obtained from a wild accession of P. vulgaris that is resistant to the Mexican bean weevil (Zabrotes subfasciatus) and the bean weevil (Acanthoscelides obtectus); an alpha AI sequence from the related species P. acutifolius (tepary bean); a PHA and an arcelin-like sequence from P. acutifolius; an alpha AI-like sequence from P. maculatus; and a PHA sequence from an arcelin-5 type P. vulgaris. A dendrogram of 16 sequences shows that they fall into the three identified groups: phytohemagglutinins, arcelins and alpha AIs. A comparison of these derived amino acid sequences indicates that one of the four amino acid residues that is conserved in all legume lectins and is required for carbohydrate binding is absent from all the arcelins; two of the four conserved residues needed for carbohydrate binding are missing from all the alpha AIs. Proteolytic processing at an Asn-Ser site is required for the activation of alpha AI, and this site is present in all alpha AI-like sequences; this processing site is also found at the same position in certain arcelins, which are not proteolytically processed. The presence of this site is therefore not sufficient for processing to occur. PMID:7811969

  1. SusG: A Unique Cell-Membrane-Associated [alpha]-Amylase from a Prominent Human Gut Symbiont Targets Complex Starch Molecules

    SciTech Connect

    Koropatkin, Nicole M.; Smith, Thomas J.

    2010-09-21

    SusG is an {alpha}-amylase and part of a large protein complex on the outer surface of the bacterial cell and plays a major role in carbohydrate acquisition by the animal gut microbiota. Presented here, the atomic structure of SusG has an unusual extended, bilobed structure composed of amylase at one end and an unprecedented internal carbohydrate-binding motif at the other. Structural studies further demonstrate that the carbohydrate-binding motif binds maltooligosaccharide distal to, and on the opposite side of, the amylase catalytic site. SusG has an additional starch-binding site on the amylase domain immediately adjacent to the active cleft. Mutagenesis analysis demonstrates that these two additional starch-binding sites appear to play a role in catabolism of insoluble starch. However, elimination of these sites has only a limited effect, suggesting that they may have a more important role in product exchange with other Sus components.

  2. Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch.

    PubMed

    Okano, Kenji; Kimura, Sakurako; Narita, Junya; Fukuda, Hideki; Kondo, Akihiko

    2007-07-01

    To achieve direct and efficient lactic acid production from starch, a genetically modified Lactococcus lactis IL 1403 secreting alpha-amylase, which was obtained from Streptococcus bovis 148, was constructed. Using this strain, the fermentation of soluble starch was achieved, although its rate was far from efficient (0.09 g l(-1) h(-1) lactate). High-performance liquid chromatography revealed that maltose accumulated during fermentation, and this was thought to lead to inefficient fermentation. To accelerate maltose consumption, starch fermentation was examined using L. lactis cells adapted to maltose instead of glucose. This led to a decrease in the amount of maltose accumulation in the culture, and, as a result, a more rapid fermentation was accomplished (1.31 g l(-1) h(-1) lactate). Maximum volumetric lactate productivity was further increased (1.57 g l(-1) h(-1) lactate) using cells adapted to starch, and a high yield of lactate (0.89 g of lactate per gram of consumed sugar) of high optical purity (99.2% of L: -lactate) was achieved. In this study, we propose a new approach to lactate production by alpha-amylase-secreting L. lactis that allows efficient fermentation from starch using cells adapted to maltose or starch before fermentation. PMID:17384945

  3. Structure and molecular model refinement of Aspergillus oryzae (TAKA) alpha-amylase: an application of the simulated-annealing method.

    PubMed

    Swift, H J; Brady, L; Derewenda, Z S; Dodson, E J; Dodson, G G; Turkenburg, J P; Wilkinson, A J

    1991-08-01

    Monoclinic crystals of a neutral alpha-amylase from Aspergillus oryzae, containing three molecules in the asymmetric unit, have been reported previously and studied at 3 A resolution [Matsuura, Kunusoki, Harada & Kakudo (1984). J. Biochem. 95, 697-702]. Here we report the solution of the structure of this enzyme in a different crystal form (space group P2(1)2(1)2(1), a = 50.9, b = 67.2, c = 132.7 A), with only one molecule in the asymmetric unit. The structure was solved by the molecular replacement method, using a model of acid alpha-amylase from a related fungus A. niger [Brady, Brzozowski, Derewenda, Dodson & Dodson (1991). Acta Cryst. B47, 527-535]. Conventional least-squares crystallographic refinement failed to converge in a satisfactory manner, and the technique of molecular dynamics in the form of the XPLOR package [Brunger (1988). XPLOR Manual. Yale Univ., USA] was used to overcome the problem. A large rigid-body type movement of the C-terminal domain was identified and accounted for. The final round of restrained least-squares refinement (at 2.1 A resolution) including 3675 protein atoms and 247 water molecules resulted in a conventional crystallographic R factor of 0.183 and an atomic model which conforms well to standard stereochemical parameters (standard deviation of bond lengths from their expected values is 0.028 A, while that for planar groups is 0.029 A). PMID:1930835

  4. Chromosomal integration of recombinant alpha-amylase and glucoamylase genes in saccharomyces cerevisiae for starch conversion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant constructs of barley '-amylase and Lentinula edodes glucoamylase genes were integrated into the chromosomes of Saccharomyces cerevisiae. The insertion was confirmed by PCR amplification of the gene sequence in the chromosomes. The expression was analyzed by SDS-PAGE of the enzymes puri...

  5. Arg-27, Arg-127 and Arg-155 in the beta-trefoil protein barley alpha-amylase/subtilisin inhibitor are interface residues in the complex with barley alpha-amylase 2.

    PubMed

    Rodenburg, K W; Várallyay, E; Svendsen, I; Svensson, B

    1995-08-01

    Arginine residues in barley alpha-amylase/subtilisin inhibitor (BASI) involved in binding to barely alpha-amylase 2 (AMY2) were differentially labelled using AMY2 as protectant and phenylglyoxal (PGO) and [14C]PGO as modifying agents. Chymotryptic fragments of labelled BASI were purified by reverse-phase HPLC, and we concluded that the radiolabelled Arg-27, Arg-155 and most likely Arg-127, identified by amino acid, sequence and 14C analyses, are protected by AMY2. While Arg-106 and Arg-107 showed intermediate reactivity and apparently were only partly accessible, Arg-15, Arg-41 and Arg-61 reacted with PGO and were thus exposed in the BASI-AMY2 complex. Patterns of arginine modification by [14C]PGO in free or in AMY2-complexed BASI were consistent with the results of differential labelling. The AMY2-protected arginines in BASI are at a distance from each other, as deduced from crystal structures of different beta-trefoil proteins (Erythrina caffra and soybean trypsin inhibitors, interleukin-1 alpha and -1 beta and WASI, the wheat homologue), suggesting that the BASI-AMY2 complex has multiple contacts at a larger interface. Accordingly, 11-16-residue-long BASI oligopeptides synthesized to include Arg-27, Arg-106/Arg-107 or Arg-127 were unable to suppress the formation of BASI-AMY2 or the effect of an inhibitory monoclonal antibody to BASI. Since Arg-27 is not conserved in rice and wheat ASIs, we further propose that Arg-155 in BASI is the kinetically identified PGO-sensitive group that is essential for inhibition [Abe, Sidenius and Svensson (1993) Biochem. J. 293, 151-155]. PMID:7639717

  6. Effect of sympathetic denervation of the pineal gland on maternal co-ordination of the circadian rhythm of alpha-amylase in parotid gland from young rats.

    PubMed

    Bellavía, S L; Sanz, E G; Gallará, R V; Carpentieri, A; Vermouth, N T

    1993-12-01

    Twenty-five-day-old rats maintained in constant darkness since birth and born from mothers kept in the dark since the 14th day of pregnancy showed a circadian rhythm of alpha-amylase content in parotid glands, which may be explained by a mechanism of maternal co-ordination. Rats in the same conditions, except that their mothers had been submitted to bilateral excision of the superior cervical ganglia 30 days before mating, did not show diurnal variations of alpha-amylase activity in the parotid glands. When ganglionectomized mothers were treated with a daily dose of melatonin (1 mg/kg) from the 14th day of gestation up to the 10th day of lactation, their litters showed significant diurnal variations of amylase in the parotid glands, suggesting a role of the maternal pineal gland in the maternal-fetal and/or maternal-neonatal transfer of photoperiodic information. PMID:8141675

  7. Hypoglycemic activity of Pyrus biossieriana Buhse leaf extract and arbutin: Inhibitory effects on alpha amylase and alpha glucosidase

    PubMed Central

    Yousefi, Fatemeh; Mahjoub, Soleiman; Pouramir, Mahdi; Khadir, Fatemeh

    2013-01-01

    Background: The mechanism of hypoglycemic and hypolipidemic activities of Pyrus biossieriana Buhse leaf extract (PbBLE) and its phytochemical component arbutin, have not been well determined. The present study was performed to understand the hypoglycemic activity mechanisms of pbBLE and arbutin more clearly. Methods: In vitro enzymatic carbohydrate digestion with PbBLE and arbutin was assessed using α-amylase and α-glucosidase powders. The enzyme solutions were premixed with PbBLE and arbutin at different concentrations (0.1, 1, 10 and 100 mg/ml). Substrate solutions and colorimetric reagents were added to the reaction. The release of glucose was determined by spectrophotometric method. Acarbose was used as the positive control. Results: The extract (10, 100 mg/ ml) completely inhibit α- amylase and α- glucosidase activities. The extract produced higher reduction of α-amylase and α-glucosidase activity than arbutin. Inhibition at various concentrations (0.1, 1, 10, 100 mg/ml) were significantly different (p<0.05). Conclusion: Our results exhibited that both the extract and arbutin were able to suppress the enzymes strongly. PMID:24294470

  8. Effects of sorghum (Sorghum bicolor (L.) Moench) tannins on alpha-amylase activity and in vitro digestibility of starch in raw and processed flours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of condensed tannins (CT) on in vitro starch digestibility in cooked, wholegrain sorghum flours and on corn starch was investigated. CT extracts were also tested for their inhibitory effect on alpha-amylases. Rapidly digestible starch, slowly digestible starch, and resistant starch were n...

  9. MALTOTRIOSE, PRODUCT OF ALPHA-AMYLASE STARCH HYDROLYSIS, SUPPRESSES MALTASE-GLUCOAMYLASE ACTIVITY AND SLOWS TERMINAL STARCH DIGESTION 44.5 FOLD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starches constitute the main caloric source in the average human diet. The digestion of starches is far more complex than sugars and requires six different enzyme activities to produce free glucose before absorption. Salivary and pancreatic alpha-amylase activities initially hydrolyze internal 1-4 g...

  10. Discovering an Accessible Enzyme: Salivary [alpha]-Amylase--"Prima Digestio Fit in Ore"--A Didactic Approach for High School Students

    ERIC Educational Resources Information Center

    Marini, Isabella

    2005-01-01

    Human salivary [alpha]-amylase is used in this experimental approach to introduce biology high school students to the concept of enzyme activity in a dynamic way. Through a series of five easy, rapid, and inexpensive laboratory experiments students learn what the activity of an enzyme consists of: first in a qualitative then in a semi-quantitative…

  11. Concomitant production of two proteases and alpha-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor

    PubMed Central

    Mukhtar, Hamid; Ikram-ul-Haq

    2012-01-01

    We describe the simultaneous production of Bacillus subtilis based proteases and alpha amylase using a computer controlled laboratory scale 7.5 L batch bioreactor. The present strain is the first to be reported that concomitantly produces these two industrially important enzymes. The growth and sporulation of Bacillus subtilis was monitored and maximum production of alkaline protease and alpha amylase was found to coincide with maximum sporulation. Two types of proteases were detected in the fermentation broth; a neutral and an alkaline protease most active in a pH range of 7.0–8.0 and 8.0–10, respectively. Maximum production of proteases was observed at an incubation temperature of 37°C while that of alpha amylase was observed at 40°C. The optimum aeration and agitation levels for protease production were 0.6 L/L/min and 200rpm, respectively, and for alpha amylase were 0.6 L/L/min and 150 rpm. The kinetic parameters Yp/x and qp were also found to be significant at the given fermentation conditions. PMID:24031930

  12. Salivary Alpha Amylase and Cortisol Levels in Children with Global Developmental Delay and Their Relation with the Expectation of Dental Care and Behavior during the Intervention

    ERIC Educational Resources Information Center

    dos Santos, Marcio Jose Possari; Bernabe, Daniel Galera; Nakamune, Ana Claudia de Melo Stevanato; Perri, Silvia Helena Venturoli; de Aguiar, Sandra Maria Herondina Coelho Avila; de Oliveira, Sandra Helena Penha

    2012-01-01

    The purpose of this study was to analyze the alpha-amylase (sAA) and cortisol levels in children with Global developmental delay (GDD) before and after dental treatment and its association with the children's behavior during treatment. The morning salivary cortisol levels and activity of sAA of 33 children with GDD were evaluated before and after…

  13. General Subject 2. Report to ICUMSA on the determination of carry-over alpha-amylase activity in white and refined sugars by a spectrophotometric method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report is given on a new industrial method for the determination of carry-over alpha-amylase activity in raw and refined sugars, as well as a recommendation. In recent years, there has been increased concern over carry-over activity of mostly high temperature (HT) and very high temperature (VHT) s...

  14. Raw-starch-digesting and thermostable alpha-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing.

    PubMed

    Iefuji, H; Chino, M; Kato, M; Iimura, Y

    1996-09-15

    A starch-degrading enzyme produced by the yeast Cryptococcus sp. S-2 was purified in only one step by using an alpha-cyclodextrin-Sepharose 6B column, and was characterized as an alpha-amylase (EC 3.2.1.1). The molecular mass and isoelectric point of purified alpha-amylase (AMY-CS2) were estimated to be 66 kDa and 4.2 respectively. AMY-CS2 has raw-starch-digesting and raw-starch-absorbing activities. Furthermore it was shown to be thermostable. An open reading frame of the cDNA specified 611 amino acids, including a putative signal peptide of 20 amino acids. The N-terminal region of AMY-CS2 (from the N-terminus to position 496) had 49.7% similarity with the whole region of alpha-amylase from Aspergillus oryzae (Taka-amylase), whereas the C-terminal region had a sequence that was similar to the C-terminal region of glucoamylase G1 from A. niger. In addition, putative raw-starch-binding motifs exist in some amylolytic enzymes. A mutant AMY-CS2 that lacks the C-terminal domain lost not only its ability to bind or digest raw starch, but also its thermostability. Consequently it is possible that the putative raw-starch-binding domain of AMY-CS2 plays a role not only in the molecule's raw-starch-digesting ability but also in its thermostability. PMID:8836148

  15. Bioactive compounds from Carissa opaca roots and xanthine oxidase and alpha-amylase inhibitory activities of their methanolic extract and its fractions in different solvents

    PubMed Central

    Saeed, Ramsha; Ahmed, Dildar

    2015-01-01

    Background: Carissa opaca is known for its many ethnomedicinal uses. There was a need to study its bioactivities and identify its phytochemicals. Objective: The objective was to isolate and identify phytochemicals from roots of C. opaca and to evaluate xanthine oxidase (XO) and alpha-amylase inhibitory activities of their methanolic extract and its fractions. Materials and Methods: Methanolic extract of finely divided powder of roots of C. opaca was obtained by cold maceration, followed by its fractionation to obtain hexane, chloroform, ethyl acetate, n-butanolic, and aqueous fractions. Phytochemicals screening was done by standard protocols. XO and alpha-amylase inhibitory activities of the methanolic extract and its fractions were studied. The most active ethyl acetate fraction was subjected to the column and thin layer chromatography to isolate its compounds, which were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography comparison. Results: Methanolic extract displayed significant activity against both the enzymes with IC50 of 156.0 mg/mL and 5.6 mg/mL for XO and alpha-amylase, respectively. Ethyl acetate fraction showed highest activity against both the enzymes with IC50 of 129 mg/mL and 4.9 mg/mL for XO and alpha-amylase, respectively. Chloroform fraction had IC50 of 154.2 mg/mL and 5.5 mg/mL for XO and alpha-amylase, respectively. Aqueous fraction exhibited significant efficacy against alpha-amylase (IC50 5.0 mg/mL). Hexane fraction showed good activity against alpha-amylase in a dose-dependent manner but exhibited opposite trend against XO. The compounds isolated from ethyl acetate fraction included limonene, vanillin, lupeol, rutin, quercetin, b-sitosterol, Vitamin E, 2-hydroxyacetophenone, naphthalenone, 2,3,3-trimethyl-2-(3-methylbuta-1,3-dienyl)-6-methylenecyclohexanone, and 2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester. Conclusions: Moderately polar phytochemicals of C. opaca roots possess exploitable

  16. In vitro and in vivo inhibition of alpha-amylases of stored-product mite Acarus siro.

    PubMed

    Hubert, Jan; Dolecková-Maresová, Lucie; Hýblová, Jana; Kudlíková, Iva; Stejskal, Václav; Mares, Michael

    2005-01-01

    The stored-product mites are the most abundant and frequent group of pests living on the stored food products in Europe. They endanger public health since they produce allergens and transmit mycotoxin-producing fungi. Novel acaricidal compounds with inhibitory effects on the digestive enzymes of arthropods are a safe alternative to the traditional neurotoxic pesticides used for control of the stored-product pests. In this work, we explored the properties of acarbose, the low molecular weight inhibitor of alpha-amylases (AI), as a novel acaricide candidate for protection of the stored products from infestation by Acarus siro (Acari: Acaridae). In vitro analysis revealed that AI blocked efficiently the enzymatic activity of digestive amylases of A. siro, and decreased the physiological capacity of mite's gut in utilizing a starch component of grain flour. In vivo experiments showed that AI suppressed the population growth of A. siro. The mites were kept for three weeks on experimental diet enriched by AI in concentration range of 0.005 to 0.25%. Population growth of A. siro was negatively correlated with the content of AI in the treated diet with a half-population dose of 0.125%. The suppressive effect of AIs on stored-product mites is discussed in the context of their potential application in GMO crops. PMID:15969461

  17. Daytime Secretion of Salivary Cortisol and Alpha-Amylase in Preschool-Aged Children with Autism and Typically Developing Children

    PubMed Central

    Corbett, Blythe A.; Granger, Douglas A.; Boyce, W. Thomas; Anders, Thomas F.; Tager, Ira B.

    2013-01-01

    We examined daytime salivary cortisol and salivary alpha-amylase (sAA) secretion levels and variability in preschool-aged children with autism (AUT) and typically developing children (TYP). Fifty-two subjects (26 AUT and 26 TYP) were enrolled. Salivary samples were obtained at waking, midday, and bedtime on two consecutive days at three phases (baseline, 3 months later, 6 months later). There were modest increases in waking cortisol and sAA levels in AUT relative to TYP, but the increases were not statistically significant. Important differences were observed in cortisol and sAA variability between AUT and TYP. There was also a graded response among AUT by functional status—cortisol and sAA secretion levels were higher when IQ was lower. PMID:22477468

  18. Expression, crystallization and preliminary X-ray crystallographic studies of Klebsiella pneumoniae maltohexaose-producing alpha-amylase.

    PubMed

    Momma, Mitsuru; Fujimoto, Zui

    2004-12-01

    A recombinant form of Klebsiella pneumoniae maltohexaose-producing alpha-amylase has been overexpressed in Escherichia coli and purified to homogeneity. Crystals were obtained at 293 K by the microbatch technique using 80 mM sodium/potassium phosphate buffer pH 6.2 containing 8% polyethylene glycol 3000, 4% polyethylene glycol 3350 and 40 mM sodium thiocyanate. Crystals of the overexpressed recombinant enzyme diffracted to better than 2.5 A resolution at 95 K using a synchrotron-radiation source. The crystals belong to the primitive monoclinic space group P2(1), with unit-cell parameters a = 74.8, b = 107.6, c = 82.2 A, beta = 96.2 degrees. Assuming the presence of two molecules per asymmetric unit, the V(M) value for the crystal was 2.3 A(3) Da(-1), indicating a solvent content of 47%. PMID:15583388

  19. Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains.

    PubMed

    Guillén, D; Santiago, M; Linares, L; Pérez, R; Morlon, J; Ruiz, B; Sánchez, S; Rodríguez-Sanoja, R

    2007-06-01

    The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch. PMID:17468268

  20. Self-compassion training modulates alpha-amylase, heart rate variability, and subjective responses to social evaluative threat in women

    PubMed Central

    Arch, Joanna J.; Brown, Kirk Warren; Dean, Derek J.; Landy, Lauren N.; Brown, Kimberley; Laudenslager, Mark L.

    2014-01-01

    A growing body of research has revealed that social evaluative stressors trigger biological and psychological responses that in chronic forms have been linked to aging and disease. Recent research suggests that self-compassion may protect the self from typical defensive responses to evaluation. We investigated whether brief training in self-compassion moderated biopsychological responses to the Trier Social Stress Test (TSST) in women. Compared to attention (placebo) and no-training control conditions, brief self-compassion training diminished sympathetic (salivary alpha-amylase), cardiac parasympathetic, and subjective anxiety responses, though not HPA-axis (salivary cortisol) responses to the TSST. Self-compassion training also led to greater self-compassion under threat relative to the control groups. In that social stress pervades modern life, self-compassion represents a promising approach to diminishing its potentially negative psychological and biological effects. PMID:24636501

  1. Improved alpha-amylase and Helicobacter pylori inhibition by fenugreek extracts derived via solid-state bioconversion using Rhizopus oligosporus.

    PubMed

    Randhir, Reena; Shetty, Kalidas

    2007-01-01

    The present research investigated the enrichment of fenugreek (Trigonella foenum graceum) seed substrate with phenolic antioxidants and L-DOPA via fungal-based solid-state bioconversion (SSB) system. This approach using food grade fungus Rhizopus oligosporus, was chosen because it has been demonstrated to be effective in other seed and food substrates for improving health-relevant functionality and has long history of use for food processing in Asia. The protein content and beta-glucosidase activity of the substrate which reflects fungal growth, increased with incubation time in conjunction with enhanced phenolic content and also suggested its possible involvement in phenolic mobilization. The antioxidant activity assayed by beta-carotene bleaching and DPPH free radical scavenging methods both indicated high activity during early growth stage (days 4-6) followed by reduced activity during later growth stage (days 8-20). A direct association between higher phenolic contents during early growth stage (days 4-6) and antioxidant activity suggested a link to mobilization of polymeric and hydrophobic phenolic forms. The L-DOPA content of the fenugreek extract fluctuated during the course of bioconversion with higher levels during days 6-10 (1.5-1.7 mg/g DW). The SSB process substantially improved the in vitro porcine alpha-amylase inhibition activity by 75 % on day 4 which correlated to higher levels of total phenolics and related antioxidant activity of the extracts. The high alpha-amylase inhibitory activity also coincided with high L-DOPA content on day 6. These results have implications for diet-based diabetes management. The same bioconversion stage had Helicobacter pylori inhibitory activity, which has implications for ulcer management. PMID:17704018

  2. Decreased shoot stature and grain alpha-amylase activity following ectopic expression of a gibberellin 2-oxidase gene in transgenic wheat.

    PubMed

    Appleford, Nigel E J; Wilkinson, Mark D; Ma, Qian; Evans, Daniel J; Stone, Marlon C; Pearce, Stephen P; Powers, Stephen J; Thomas, Stephen G; Jones, Huw D; Phillips, Andrew L; Hedden, Peter; Lenton, John R

    2007-01-01

    Ectopic expression of a gibberellin 2-oxidase gene (PcGA2ox1) decreased the content of bioactive gibberellins (GAs) in transgenic wheat, producing a range of dwarf plants with different degrees of severity. In at least one case, a single transformation event gave rise to T(1) plants with different degrees of dwarfism, the phenotypes being stably inherited over at least four generations. The dwarf phenotype, which included dark-green leaves, increased tillering and, in severe cases, a prostrate growth habit, was replicated by the application of a GA biosynthesis inhibitor to the wild type. Ear rachis length, grain set, and grain size were also decreased in the wheat transformants, compared with an azygous (null) line. The extent of post-germination alpha-amylase production in grains reflected the severity of the shoot phenotype of the transformants and both developmental processes were restored to normal by the application of gibberellic acid (GA(3)). Expression of two GA biosynthesis genes (TaGA20ox1 and TaGA3ox2) was up-regulated, and that of two alpha-amylase gene families (alpha-Amy1 and alpha-Amy2) down regulated, in scutella of semi-dwarf lines, compared with controls. The marked decline in transcript abundance of both alpha-amylase gene families in aleurone was associated with a decreased content of bioactive GAs in grains of the semi-dwarf lines. PMID:17916639

  3. Improved activity and modulated action pattern obtained by random mutagenesis at the fourth beta-alpha loop involved in substrate binding to the catalytic (beta/alpha)8-barrel domain of barley alpha-amylase 1.

    PubMed

    Matsui, I; Svensson, B

    1997-09-01

    The functionality of the sequence Arg183-Gly184-Tyr185 of the substrate binding fourth beta-alpha loop in the (beta/alpha)8-barrel of barley alpha-amylase isozyme 1 (AMY1) was studied by random mutagenesis. A motif of polar Gly184 hydrophobic residues was present in active mutants, selected by starch plate screening of yeast transformants. Gly184 was important, probably due to the carbonyl group binding to Ca2+ and the spatial proximity of Phe181. Mutation of both flanking residues as in Ser183-Gly184-Met185 (SGM-) and TGL-AMY1 decreased the Ca2+ affinity. SGM-AMY1 has 2-fold increased activity for amylose but reduced activity on maltooligosaccharides, whereas KGY-AMY1 has up to 3-fold elevated activity toward the oligosaccharides. TGL-AMY1 has modest activity on all substrates. Shifted action pattern on maltooligosaccharides for NGY-, SGM-, and TGL-AMY1 support that Arg183 in wild type is located at subsites +1 and +2, accommodating two sugar rings toward the reducing end from the site of cleavage. In the crystal structure of barley alpha-amylase 2 (AMY2), Lys182 (equivalent to AMY1 Arg183) is hydrogen-bonded with sugar OH-3 in subsite +2. Higher Ki app for acarbose inhibition of KGY-AMY1 and parent AMY1 compared with the other mutants suggests favorable substrate interactions for Arg/Lys183. KGY-AMY1 was not inhibited by the AMY2-specific proteinaceous barley alpha-amylase/subtilisin inhibitor, although Lys182 of AMY2 is salt-linked to the inhibitor. PMID:9278396

  4. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.

    PubMed

    Moore, Samuel A; Ai, Yongfeng; Chang, Fengdan; Jane, Jay-lin

    2015-01-22

    This study aimed to understand differences in the resistant starch (RS) contents of native and modified starches obtained using two standard methods of RS content analysis: AOAC Method 991.43 and 2002.02. The largest differences were observed in native potato starch, cross-linked wheat distarch phosphate, and high-amylose corn starch stearic-acid complex (RS5) between using AOAC Method 991.43 with Bacillus licheniformis α-amylase (BL) and AOAC Method 2002.02 with porcine pancreatic α-amylase (PPA). To determine possible reasons for these differences, we hydrolyzed raw-starch granules with BL and PPA with equal activity at pH 6.9 and 37°C for up to 84 h and observed the starch granules displayed distinct morphological differences after the hydrolysis. Starches hydrolyzed by BL showed erosion on the surface of the granules; those hydrolyzed by PPA showed pitting on granule surfaces. These results suggested that enzyme reaction mechanisms, including the sizes of the binding sites and the reaction patterns of the two enzymes, contributed to the differences in the RS contents obtained using different methods of RS analysis. PMID:25439920

  5. Structure of starch binding domains of halophilic alpha-amylase at low pH.

    PubMed

    Yamaguchi, Rui; Ishibashi, Matsujiro; Tokunaga, Hiroko; Arakawa, Tsutomu; Tokunaga, Masao

    2013-07-01

    The solubility and structural properties of halophilic proteins are ascribed to their abundant acidic residues, resulting in large net negative charges at neutral pH. This study examined the effects of low pH, i.e., reduction of net negative charges on the structural properties of starch binding domain (SBD) of halophilic Kocuria varians α-amylase. Titration to pH 2.1 caused loss of 233 nm peak characteristic of aromatic interactions present in the native SBD at neutral pH and resulted in the spectrum with a 216 nm valley characteristic of β-sheet. The low pH β-sheet structure was stable against heat treatment. The addition of NaCl and trifluoroethanol resulted in decrease and increase of the 216 nm signal, without altering the spectral shape. These structural properties were significantly different from those of the native protein. PMID:23033857

  6. Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity.

    PubMed

    Ramasubbu, N; Paloth, V; Luo, Y; Brayer, G D; Levine, M J

    1996-05-01

    Salivary alpha-amylase, a major component of human saliva, plays a role in the initial digestion of starch and may be involved in the colonization of bacteria involved in early dental plaque formation. The three-dimensional atomic structure of salivary amylase has been determined to understand the structure-function relationships of this enzyme. This structure was refined to an R value of 18.4% with 496 amino-acid residues, one calcium ion, one chloride ion and 170 water molecules. Salivary amylase folds into a multidomain structure consisting of three domains, A, B and C. Domain A has a (beta/alpha)(8-) barrel structure, domain B has no definite topology and domain C has a Greek-key barrel structure. The Ca(2+) ion is bound to Asnl00, Arg158, Asp167, His201 and three water molecules. The Cl(-) ion is bound to Arg195, Asn298 and Arg337 and one water molecule. The highly mobile glycine-rich loop 304-310 may act as a gateway for substrate binding and be involved in a 'trap-release' mechanism in the hydrolysis of substrates. Strategic placement of calcium and chloride ions, as well as histidine and tryptophan residues may play a role in differentiating between the glycone and aglycone ends of the polysaccharide substrates. Salivary amylase also possesses a suitable site for binding to enamel surfaces and provides potential sites for the binding of bacterial adhesins. PMID:15299664

  7. The impact of single nucleotide polymorphism in monomeric alpha-amylase inhibitor genes from wild emmer wheat, primarily from Israel and Golan

    PubMed Central

    2010-01-01

    Background Various enzyme inhibitors act on key insect gut digestive hydrolases, including alpha-amylases and proteinases. Alpha-amylase inhibitors have been widely investigated for their possible use in strengthening a plant's defense against insects that are highly dependent on starch as an energy source. We attempted to unravel the diversity of monomeric alpha-amylase inhibitor genes of Israeli and Golan Heights' wild emmer wheat with different ecological factors (e.g., geography, water, and temperature). Population methods that analyze the nature and frequency of allele diversity within a species and the codon analysis method (comparing patterns of synonymous and non-synonymous changes in protein coding sequences) were used to detect natural selection. Results Three hundred and forty-eight sequences encoding monomeric alpha-amylase inhibitors (WMAI) were obtained from 14 populations of wild emmer wheat. The frequency of SNPs in WMAI genes was 1 out of 16.3 bases, where 28 SNPs were detected in the coding sequence. The results of purifying and the positive selection hypothesis (p < 0.05) showed that the sequences of WMAI were contributed by both natural selection and co-evolution, which ensured conservation of protein function and inhibition against diverse insect amylases. The majority of amino acid substitutions occurred at the C-terminal (positive selection domain), which ensured the stability of WMAI. SNPs in this gene could be classified into several categories associated with water, temperature, and geographic factors, respectively. Conclusions Great diversity at the WMAI locus, both between and within populations, was detected in the populations of wild emmer wheat. It was revealed that WMAI were naturally selected for across populations by a ratio of dN/dS as expected. Ecological factors, singly or in combination, explained a significant proportion of the variations in the SNPs. A sharp genetic divergence over very short geographic distances compared to

  8. Conversion of starch to ethanol in a recombinant saccharomyces cerevisiae strain expressing rice [alpha]-amylase from a novel Pichia pastoris alcohol oxidase promoter

    SciTech Connect

    Kumagai, M.H.; Sverlow, G.G.; della-Cioppa, G.; Grill, L.K. )

    1993-05-01

    A recombinant Saccharomyces cerevisiae, expressing and secreting rice [alpha]-amylase, converts starch to ethanol. The rice [alpha]-amylase gene (OS103) was placed under the transcriptional control of the promoter from a newly described Pichia pastoris alcohol oxidase genomic clone. The nucleotide sequences of ZZA1 and other methanol-regulated promoters were analyzed. A highly conserved sequence (TTG-N[sub 3]-GCTTCCAA-N[sub 5]-TGGT) was found in the 5' flanking regions of alcohol oxidase, methanol oxidase, and dihydroxyacetone synthase genes in Pichia pastoris, Hansenula polymorpha, and Candida biodinii S2. The yeast strain containing the ZZA1-OS103 fusion secreted biologically active enzyme into the culture media while fermenting soluble starch. 45 refs., 8 figs.

  9. Calcium binding in. alpha. -amylases: An X-ray diffraction study at 2. 1- angstrom resolution of two enzymes from Aspergillus

    SciTech Connect

    Boel, E.; Jensen, V.J.; Petersen, S.B.; Thim, L. Woldike, H.F. ); Brady, L.; Brzozowski, AM.; Derewenda, Z.; Dodson, G.G.; Swift, H. )

    1990-07-03

    X-ray diffraction analysis (at 2.1-{angstrom} resolution) of an acid alpha-amylase from Aspergillus niger allowed a detailed description of the stereochemistry of the calcium-binding sites. The primary site (which is essential in maintaining proper folding around the active site) contains a tightly bound Ca{sup 2+} with an unusually high number of eight ligands. A secondary binding site was identified at the bottom of the substrate binding cleft; it involves the residues presumed to play a catalytic role (Asp206 and Glu230). This explains the inhibitory effect of calcium observed at higher concentrations. Neutral Aspergillus oryzae (TAKA) {alpha}-amylase was also refined in a new crystal at 2.1-{angstrom} resolution. The structure of this homologous (over 80%) enzyme and addition kinetic studies support all the structural conclusions regarding both calcium-binding sites.

  10. Interaction between wheat alpha-amylase/trypsin bi-functional inhibitor and mammalian digestive enzymes: Kinetic, equilibrium and structural characterization of binding.

    PubMed

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Ali, Ishtiaq; Bonfili, Laura; Cecarini, Valentina; Eleuteri, Anna Maria; Angeletti, Mauro

    2016-12-15

    Alpha-amylase/trypsin bi-functional inhibitors (ATIs) are non-gluten protein components of wheat and other cereals that can hypersensitise the human gastrointestinal tract, eventually causing enteropathies in predisposed individuals. These inhibitory proteins can act both directly by targeting specific pro-inflammatory receptors, and indirectly by impairing the activity of digestive enzymes, the latter event causing the accumulation of undigested peptides with potential immunogenic properties. Herein, according to a concerted approach based on in vitro and in silico methods we characterized kinetics, equilibrium parameters and modes of binding of the complexes formed between wheat ATI and two representative mammalian digestive enzymes, namely trypsin and alpha-amylase. Interestingly, we demonstrated ATI to target both enzymes with independent binding sites and with moderately high affinity. PMID:27451220

  11. Purification and characterization of the beta-trefoil fold protein barley alpha-amylase/subtilisin inhibitor overexpressed in Escherichia coli.

    PubMed

    Bønsager, Birgit C; Praetorius-Ibba, Mette; Nielsen, Peter K; Svensson, Birte

    2003-08-01

    Barley alpha-amylase/subtilisin inhibitor (BASI) is a beta-trefoil fold protein related to soybean trypsin inhibitor (Kunitz) and inhibits barley alpha-amylase isozyme 2 (AMY2), which is de novo synthesized in the seed during germination. Recombinant BASI was produced in Escherichia coli in an untagged form (untagged rBASI), in two His(6)-tag forms (His(6)-rBASI and His(6)-Xa-rBASI), and in an intein-CBD-tagged form (rBASI (intein)). The yields per liter culture after purification were (i) 25 mgl(-1) His(6)-rBASI; (ii) 6 mgl(-1) rBASI purified after cleavage of His(6)-Xa-rBASI by Factor Xa; (iii) 3 mgl(-1) untagged rBASI; and (iv) 0.2 mgl(-1) rBASI after a chitin-column and autohydrolysis of the rBASI-intein-CBD. In Pichia pastoris, rBASI was secreted at 0.1 mgl(-1). The recombinant BASI forms and natural seed BASI (sBASI) all had an identical isoelectric point of 7.2 and a mass of 19,879 Da, as determined by mass spectrometry. The fold of rBASI from the different preparations was confirmed by circular dichroism spectroscopy and rBASI (intein), His(6)-rBASI, and sBASI inhibited AMY2 catalyzed starch hydrolysis with K(i) of 0.10, 0.06, and 0.09 nM, respectively. Surface plasmon resonance analysis of the formation of AMY2/rBASI (intein) gave k(on)=1.3x10(5)M(-1)s(-1), k(off)=1.4x10(-4)s(-1), and K(D)=1.1 nM, and of the savinase-His(6)-rBASI complex k(on)=21.0x10(4)M(-1)s(-1), k(off)=53.0x10(-4)s(-1), and K(D)=25.0 nM, in agreement with sBASI values. K(i) was 77 and 65 nM for inhibition of savinase activity by His(6)-rBASI and sBASI, respectively. PMID:12880767

  12. Hypoglycaemic and anorexigenic activities of an alpha-amylase inhibitor from white kidney beans (Phaseolus vulgaris) in Wistar rats.

    PubMed

    Tormo, M A; Gil-Exojo, I; Romero de Tejada, A; Campillo, J E

    2004-11-01

    An inhibitor of alpha-amylase was isolated and purified from an extract of white kidney beans (Phaseolus vulgaris). The acute oral administration of the inhibitor (50 mg/kg body weight) to adult Wistar rats together with a starch load (2 g/kg body weight suspended in NaCl (9 g/l)) reduced the increase in glycaemia over the basal value (NaCl, 222 (SEM 49); inhibitor, 145 (SEM 16) mmol/l x 180 min; P<0.05) without modifying the insulin response. On administering the inhibitor orally (50 mg/kg body weight dissolved in NaCl (9 g/l)) for 21 d to rats fed on a standard diet, a decline was observed in the glycaemia values on day 0 (NaCl, 5.53 (SEM 0.12); inhibitor, 5.25 (SEM 0.16) mmol/l) relative to those obtained on days 10 (NaCl, 5.00 (SEM 0.14); inhibitor, 4.60 (SEM 0.08) mmol/l; P<0.05) and 21 (NaCl, 5.22 (SEM 0.22); inhibitor, 4.50 (SEM 0.12) mmol/l; P<0.01) of treatment, without modifying the plasma concentration of insulin. There was found to be a significant anorexigenic action of the inhibitor; there was reduced food intake (NaCl, 23.07 (SEM 0.31); inhibitor, 19.50 (SEM 0.49) g/d; P<0.01), a reduced weight gain (NaCl, 52 (SEM 3); inhibitor, -1.33 (SEM 8.9) g/21 d; P<0.01), as well as changes in the activity of some intestinal enzymes such as maltase (NaCl, 87 (SEM 7); inhibitor, 127 (SEM 11) U/g proteins; P<0.05). The present study has shown, for the first time, that the prolonged administration of an alpha-amylase inhibitor reduces blood glucose levels and body-weight gain in Wistar rats. PMID:15533267

  13. Some distinguishable properties between acid-stable and neutral types of alpha-amylases from acid-producing koji.

    PubMed

    Suganuma, Toshihiko; Fujita, Kiyotaka; Kitahara, Kanefumi

    2007-11-01

    The highly humid climate of Japan facilitates the growth of various molds. Among these molds, Aspergillus oryzae is the most important and popular in Japan, and has been used as yellow-koji in producing many traditional fermented beverages and foods, such as Japanese sake, and soy sauce. Taka-amylase A (TAA), a major enzyme produced by the mold, is well known worldwide to be a leading enzyme for industrial utilization and academic study, since many extensive studies have been carried out with TAA. In southern Kyushu, the other koji's of citric acid-producing molds have often been used, such as in the production of a traditional distilled liquor of shochu. The koji molds black-koji and white-koji produce two types of alpha-amylase, namely, acid-stable (AA) and common neutral (NA). The latter enzyme is enzymatically and genetically similar to TAA. In this review, we investigate AA from three molds, Aspergillus niger, A. kawachii and A. awamori, and the yeast Cryptococcus sp. regarding the distinguishable properties between AA and NA. (i) The N-terminus amino acid sequences of AA determined by molecular cloning started with the sequence of L-S-A-, whereas those of NA started with A-T-P-. (ii) Most of the full sequences of AA were composed of, besides a core catalytic domain, an extra domain of a hinge region and a carbohydrate binding domain, which could be responsible for raw-starch-digestibility. The AA from A. niger has no exceptionally extra domain, similarly to NA. (iii) Simple methods for distinguishing AA from NA using CNP-alpha-G3 and G5 as substrates were developed by our group. (iv) The number of subsite in AA on the basis of its cleavage pattern of maltooligosaccharides was estimated to be five, which differs from that of TAA, 7-9. AA has many advantages in industrial applications, such as its acid-stability, thermostability, and raw-starch digesting properties. PMID:18086434

  14. Improvement of cloned [alpha]-amylase gene expression in fed-batch culture of recombinant Saccharomyces cerevisiae by regulating both glucose and ethanol concentrations using a fuzzy controller

    SciTech Connect

    Shiba, Sumihisa; Nishida, Yoshio; Park, Y.S.; Iijima, Shinji; Kobayashi, Takeshi . Dept. of Biotechnology)

    1994-11-05

    The effect of ethanol concentration on cloned gene expression in recombinant Saccharomyces cerevisiae strain 20B-12 containing one of two plasmids, pNA3 and pNA7, was investigated in batch cultures. Plasmids pNA3 and pNA7 contain the [alpha]-amylase gene under the control of the SUC2 or PGK promoter, respectively. When the ethanol concentration was controlled at 2 to 5 g/L, the gene expressions were two times higher than those at 20 g/L ethanol. To increase the gene expression by maintaining both the ethanol and glucose concentrations at low levels, a fuzzy controller was developed. The concentrations of glucose and ethanol were controlled simultaneously at 0.15 and 2 g/L, respectively, in the production phase using the fuzzy controller in fed-batch culture. The synthesis of [alpha]-amylase was induced by the low glucose concentration and maintained at a high level of activity by regulating the ethanol concentration at 2 g/L. The secretory [alpha]-amylase activities of cells harboring plasmids pNA3 and pNA7 in fed-batch culture were 175 and 392 U/mL, and their maximal specific activities 7.7 and 12.4 U/mg dry cells, respectively. These values are two to three times higher in activity and three to four times higher in specific activity than those obtained when glucose only was controlled.

  15. An enzymatic method for the alpha-amylase assay which comprises a new procedure for eliminating glucose and maltose in biological fluids.

    PubMed

    Kondo, H; Shiraishi, T; Nagata, K; Tomita, K

    1988-03-15

    An alpha-amylase assay in biological fluids, characterized by a new procedure for eliminating glucose and/or maltose, was developed. The reagent includes thermostable glucokinase, glucosephosphate isomerase and phosphofructokinase obtained from a thermophile Bacillus stearothermophilus. Up to 4,000 mg/dl glucose or 600 mg/dl maltose had no effect on the measured value of alpha-amylase activity when measured at 37 degrees C, even at a serum volume fraction in the reagent of 1/50. Alpha-Amylase activity was monitored by the absorbance increase at 340 nm due to NADPH production. The assay has a high degree of precision, with the within-run and day-to-day coefficients of variation being 2.17% at 75.0 U/l and 2.49% at 112 U/l, respectively, and is linear up to about 2,500 U/l. Regarding interferences, bilirubin, urate, ascorbate, pyruvate, EDTA, sodium fluoride and others were found to have no effect on the assay, and the reagent in solution is stable for about 2 wk at low temperatures (6-8 degrees C). PMID:2967134

  16. Carbohydrate content of acid alpha-glucosidase (gamma-amylase) from human liver.

    PubMed

    Belen'ky, D M; Mikhajlov, V I; Rosenfeld, E L

    1979-05-01

    The presence of carbohydrates in homogeneous preparations of human liver acid alpha-glucosidase has been established and the carbohydrate content of the enzyme determined. The enzyme was purified with the specific purpose of removing all low-molecular-weight carbohydrates. It was specifically adsorbed on Concanavalin A-Sepharose, eluted with methyl-alpha-D-mannopyranoside and gave a positive reaction with the phenol-sulphuric acid reagent. These facts taken together provide evidence that the enzyme studied is a glycoprotein. The analysis of the carbohydrate content of human liver acid alpha-glucosidase showed that there were 8.3 glucosamine, 13.2 mannose and possibly 3--4 glucose residues per molecule of the enzyme with a molecular weight of 98,000. PMID:376187

  17. New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 alpha-amylase contributes to starch binding and raw starch degrading.

    PubMed

    Sumitani, J; Tottori, T; Kawaguchi, T; Arai, M

    2000-09-01

    The alpha-amylase from Bacillus sp. no. 195 (BAA) consists of two domains: one is the catalytic domain similar to alpha-amylases from animals and Streptomyces in the N-terminal region; the other is the functionally unknown domain composed of an approx. 90-residue direct repeat in the C-terminal region. The gene coding for BAA was expressed in Streptomyces lividans TK24. Three active forms of the gene products were found. The pH and thermal profiles of BAAs, and their catalytic activities for p-nitrophenyl maltopentaoside and soluble starch, showed almost the same behaviours. The largest, 69 kDa, form (BAA-alpha) was of the same molecular mass as that of the mature protein estimated from the nucleotide sequence, and had raw-starch-binding and -degrading abilities. The second largest, 60 kDa, form (BAA-beta), whose molecular mass was the same as that of the natural enzyme from Bacillus sp. no. 195, was generated by proteolytic processing between the two repeat sequences in the C-terminal region, and had lower activities for raw starch binding and degrading than those of BAA-alpha. The smallest, 50 kDa, form (BAA-gamma) contained only the N-terminal catalytic domain as a result of removal of the C-terminal repeat sequence, which led to loss of binding and degradation of insoluble starches. Thus the starch adsorption capacity and raw-starch-degrading activity of BAAs depends on the existence of the repeat sequence in the C-terminal region. BAA-alpha was specifically adsorbed on starch or dextran (alpha-1,4 or alpha-1,6 glucan), and specifically desorbed with maltose or beta-cyclodextrin. These observations indicated that the repeat sequence of the enzyme was functional in the starch-binding domain (SBD). We propose the designation of the homologues to the SBD of glucoamylase from Aspergillus niger as family I SBDs, the homologues to that of glucoamylase from Rhizopus oryzae as family II, and the homologues of this repeat sequence of BAA as family III. PMID:10947962

  18. Seasonal variations in optimized applications of intermediate stable alpha-amylase in raw sugar manufacture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, starch being delivered to and processed in U.S. factories has risen markedly because of the increased production of green (unburnt) and combine-harvested (billeted) sugarcane and the introduction of new sugarcane varieties with higher starch content. To prevent carry-over alpha-amy...

  19. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and alpha-amylase.

    PubMed

    Shigechi, Hisayori; Koh, Jun; Fujita, Yasuya; Matsumoto, Takeshi; Bito, Yohei; Ueda, Mitsuyoshi; Satoh, Eiichi; Fukuda, Hideki; Kondo, Akihiko

    2004-08-01

    Direct and efficient production of ethanol by fermentation from raw corn starch was achieved by using the yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis alpha-amylase by using the C-terminal-half region of alpha-agglutinin and the flocculation functional domain of Flo1p as the respective anchor proteins. In 72-h fermentation, this strain produced 61.8 g of ethanol/liter, with 86.5% of theoretical yield from raw corn starch. PMID:15294847

  20. Fermentation of starch by Klebsiella oxytoca P2, containing plasmids with {alpha}-amylase and pullulanase genes

    SciTech Connect

    Santos, V.L. dos; Araujo, E.F.; Barros, E.G. de; Guimaraes, W.V.

    1999-12-20

    Klebsiella oxytoca P2(pC46), an ethanol-producing recombinant, has been evaluated in fermentation of maltose and starch. The maximum ethanol produced by P2(pC46) was 0.34 g ethanol/g maltose and 0.38, 0.40, or 0.36 g ethanol/g starch in fermentation of 1, 2, or 4% starch, representing 68, 71, and 64% the theoretical yield. The pC46 plasmid transformed to cells of K. oxytoca P2 reduced the ethanol production from maltose and starch. In fermentation of starch after its digestion at 60 C for 24 h, in two-step fermentation, the time for maximum ethanol production was reduced to 12--24 h and the theoretical yield was around 90%. The increase in starch concentration resulted in lower {alpha}-amylase activity but in higher pullulanase activity. The high activity and thermostability of the amylolytic enzymes from this transformant suggest that it has a potential for amylolytic enzymes source.

  1. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase.

    PubMed

    Tateno, Toshihiro; Okada, Yusuke; Tsuchidate, Takeyuki; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-02-01

    Here, we demonstrated the one-step production of cadaverine from starch using a Corynebacterium glutamicum strain coexpressing Streptococcus bovis 148 alpha-amylase (AmyA) and Escherichia coli K-12 lysine decarboxylase (CadA). We constructed the E. coli-C. glutamicum shuttle vector, which produces CadA under the control of the high constitutive expression (HCE) promoter, and transformed this vector into C. glutamicum CSS secreting AmyA. The engineered C. glutamicum expressed both CadA and AmyA, which retained their activity. We performed cadaverine fermentation using 50 g/l soluble starch as the sole carbon source without pyridoxal-5'-phosphate, which is the coenzyme for CadA. C. glutamicum coexpressing AmyA and CadA successfully produced cadaverine from soluble starch and the yield of cadaverine was 23.4 mM after 21 h. CadA expression levels under the control of the HCE promoter were assumed to be sufficient to convert L-lysine to cadaverine, as there was no accumulation of L-lysine in the culture medium during fermentation. Thus, we demonstrated that C. glutamicum has great potential to produce cadaverine from biomass resources. PMID:18989633

  2. Gender determines cortisol and alpha-amylase responses to acute physical and psychosocial stress in patients with borderline personality disorder.

    PubMed

    Inoue, Ayako; Oshita, Harumi; Maruyama, Yoshihiro; Tanaka, Yoshihiro; Ishitobi, Yoshinobu; Kawano, Aimi; Ikeda, Rie; Ando, Tomoko; Aizawa, Saeko; Masuda, Koji; Higuma, Haruka; Kanehisa, Masayuki; Ninomiya, Taiga; Akiyoshi, Jotaro

    2015-07-30

    Borderline personality disorder (BPD) is characterized by affective instability, unstable relationships, and identity disturbance. We measured salivary alpha-amylase (sAA) and salivary cortisol levels in all participants during exposure to the Trier Social Stress Test (TSST) and an electric stimulation stress. Seventy-two BPD patients were compared with 377 age- and gender- matched controls. The State and Trait versions of the Spielberger Anxiety Inventory test (STAI-S and STAI-T, respectively), the Profile of Mood State (POMS) tests, and the Beck Depression Inventory (BDI), the Depression and Anxiety Cognition Scale (DACS) were administered to participants before electrical stimulation. Following TSST exposure, salivary cortisol levels significantly decreased in female patients and significantly increased in male patients compared with controls. POMS tension-anxiety, depression-dejection, anger-hostility, fatigue, and confusion scores were significantly increased in BPD patients compared with controls. In contrast, vigor scores were significantly decreased in BPD patients relative to controls. Furthermore, STAI-T and STAI-S anxiety scores and BDI scores were significantly increased in BPD patient compared with controls. DACS scores were significantly increased in BPD patient compared with controls. Different stressors (e.g., psychological or physical) induced different responses in the HPA and SAM systems in female or male BPD patients. PMID:25979467

  3. A fluid response: Alpha-amylase reactions to acute laboratory stress are related to sample timing and saliva flow rate.

    PubMed

    Nagy, Tamás; van Lien, René; Willemsen, Gonneke; Proctor, Gordon; Efting, Marieke; Fülöp, Márta; Bárdos, György; Veerman, Enno C I; Bosch, Jos A

    2015-07-01

    Salivary alpha-amylase (sAA) is used as a sympathetic (SNS) stress marker, though its release is likely co-determined by SNS and parasympathetic (PNS) activation. The SNS and PNS show asynchronous changes during acute stressors, and sAA responses may thus vary with sample timing. Thirty-four participants underwent an eight-minute memory task (MT) and cold pressor task (CPT). Cardiovascular SNS (pre-ejection period, blood pressure) and PNS (heart rate variability) activity were monitored continuously. Unstimulated saliva was collected repeatedly during and after each laboratory stressor, and sAA concentration (U/ml) and secretion (U/minute) determined. Both stressors increased anxiety. The MT caused an immediate and continued cardiac SNS activation, but sAA concentration increased at task cessation only (+54%); i.e., when there was SNS-PNS co-activation. During the MT sAA secretion even decreased (-35%) in conjunction with flow rate and vagal tone. The CPT robustly increased blood pressure but not sAA. In summary, sAA fluctuations did not parallel changes in cardiac SNS activity or anxiety. sAA responses seem contingent on sample timing and flow rate, likely involving both SNS and PNS influences. Verification using other stressors and contexts seems warranted. PMID:25976524

  4. Condition stabilization for Aspergillus niger FCBP-198 and its hyperactive mutants to yield high titres of alpha-amylase.

    PubMed

    Shafique, Sobiya; Bajwa, Rukhsana; Shafique, Shazia

    2010-01-01

    A number of substrates were tested for the cultivation of microorganisms to produce a host of enzymes. The effect of different substrates (wheat and rice straw, sugar cane waste, wood waste), incubation temperatures (20-40 degrees C), initial pH levels (3.5-9.0), incubation periods (0-72 hours) and nitrogen sources (ammonium sulfate, urea, peptone, yeast extract, sodium nitrate) on growth and alpha-amylase activity was studied for the native and mutant strains. Maximum enzyme activity was observed at 1.5% wheat straw for Aspergillus niger FCBP-198 and An-Ch-4.7 and at 2% wheat straw for An-UV-5.6, with sodium nitrate as a principle nitrogen source. The optimum temperature for maximum enzyme activity was 30 degrees C for the parental strain, while An-UV-5.6 and An-Ch-4.7 thrived well at 32.5 degrees C. The best conditions of pH and incubation duration were 4.5 and 48 hours, respectively, for all the strains. Mass production under preoptimized growth conditions demonstrated the suitability of wheat straw for swift mycelial colonization and viability. PMID:20734811

  5. Combined impact of Bacillus stearothermophilus maltogenic alpha-amylase and surfactants on starch pasting and gelation properties.

    PubMed

    Van Steertegem, Bénédicte; Pareyt, Bram; Brijs, Kristof; Delcour, Jan A

    2013-08-15

    In baking applications involving starch gelatinisation, surfactants such as sodium stearoyl lactylate (SSL) and monoacylglycerols (MAG) and Bacillus stearothermophilus maltogenic alpha-amylase (BStA) can be used jointly. We here showed that SSL but not MAG delays wheat starch hydrolysis by BStA. The effects were explained in terms of different degrees of adsorption of the surfactants on the starch granule surface, retarded and/or decreased water uptake and delayed availability of gelatinised starch for hydrolysis by BStA. Additional experiments with waxy maize starch led to the conclusion that SSL impacts swelling power and carbohydrate leaching more by covering the starch granule surface than by forming amylose-lipid complexes. SSL postponed starch hydrolysis by BStA, but this did not influence subsequent starch gelation. Finally, when adding SSL or MAG on top of BStA to starch suspensions, the effect of the surfactants on gel strength predominated over that of BStA. PMID:23561216

  6. Effects of Cardiorespiratory Fitness and Obesity on Salivary Secretory IgA and Alpha-Amylase in South African Children.

    PubMed

    Starzak, Dorota E; Konkol, Kristen F; McKune, Andrew J

    2016-01-01

    This study examined whether cardiorespiratory fitness (CRF) and body composition are associated with salivary secretory immunoglobulin A (SIgA), a mucosal immunity marker, and salivary alpha-amylase (sAA), a marker of stress-related sympathetic nervous system (SNS) activity, in South African children. Morning (7:30-8:00 a.m.) saliva samples were collected from 132 children (10.05 ± 1.68 years old, 74 females, 58 males). Body composition, resting blood pressure, and predicted maximal aerobic capacity (VO2max) were determined, and SIgA and sAA were quantified. Obese children had significantly higher sAA compared with overweight and normal weight children (p < 0.01). SIgA secretion rate was significantly lower in obese and overweight vs. normal weight children (p < 0.01). Multiple-linear regression analysis revealed that body mass index (BMI) (p < 0.05) and diastolic blood pressure (DBP) (p < 0.05) were independent predictors of sAA with CRF acting as a mitigator. Age and BMI predicted SIgA secretion rate (p < 0.05) with BMI (p < 0.001) found to be an independent predictor of SIgA secretion rate. Obesity, based on BMI, was associated with elevated SNS activity and lowered mucosal immunity. CRF-mitigated sympathetic activation was not associated with mucosal immunity. PMID:27483329

  7. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in major depressive disorder patients.

    PubMed

    Tanaka, Yoshihiro; Ishitobi, Yoshinobu; Maruyama, Yoshihiro; Kawano, Aimi; Ando, Tomoko; Okamoto, Shizuko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Hanada, Hiroaki; Kodama, Kensuke; Isogawa, Koichi; Akiyoshi, Jotaro

    2012-03-30

    Major depressive disorder (MDD) is often associated with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis by chronic stress. In comparison, psychosocial stress-induced activation of salivary α-amylase (sAA) functions as a marker of sympathoadrenal medullary system (SAM) activity. However, in contrast to salivary cortisol, sAA has been less extensively studied in MDD patients. The present study measured sAA and salivary cortisol levels in patients with MDD. The authors determined Profile of Mood State (POMS) and State-Trait anxiety Inventory (STAI) scores, Heart Rate Variability (HRV), and sAA and salivary cortisol levels in 88 patients with MDD and 41 healthy volunteers following the application of electrical stimulation stress. Patients with major depressive disorder were 8 points or more on Hamilton Depression Scale (HAM-D) scores. Tension-Anxiety, Depression-Dejection, Anger-Hostility, Fatigue, and Confusion scores in patients with major depressive disorder were significantly increased compared to healthy controls. In contrast, Vigor scores in patients with MDD were significantly decreased compared with healthy controls. There was no difference in heart rate variability measures between MDD patients and healthy controls. The threshold of electrical stimulation applied in MDD patients was lower than that in healthy controls. SAA levels in female MDD patients were significantly elevated relative to controls both before and after electrical stimulation. Finally, there were no differences in salivary cortisol levels between major depressive patients and controls. In the present study only three time points were explored. Furthermore, the increased secretion of sAA before and after stimulation could allude to an increased responsiveness of novel and uncontrollable situations in patients with MDD. These preliminary results suggest that sAA might be a useful biological marker of MDD. PMID:22063648

  8. Cloning of the aapT gene and characterization of its product, alpha-amylase-pullulanase (AapT), from thermophilic and alkaliphilic Bacillus sp. strain XAL601.

    PubMed Central

    Lee, S P; Morikawa, M; Takagi, M; Imanaka, T

    1994-01-01

    A thermophilic and alkaliphilic Bacillus sp. strain, XAL601, was isolated from soil. It produces a thermostable and alkaline-stable enzyme with both alpha-amylase and pullulanase activities. The alpha-amylase-pullulanase gene (aapT) from this Bacillus strain was cloned, and its nucleotide sequence was determined (GenBank accession number D28467). A very large open reading frame composed of 6,096 bases, which encodes 2,032 amino acid residues with an M(r) of 224,992, was found. The deduced amino acid sequence revealed that the four highly conserved regions that are common among amylolytic enzymes were well conserved. These include an active center and common substrate-binding sites of various amylases. In the C-terminal region, a six-amino-acid sequence (Gly-Ser-Gly-Thr-Thr-Pro) is repeated 12 times. The aapT gene was then subcloned in Escherichia coli and overexpressed under the control of the lac promoter. Purification of AapT from this recombinant E. coli was performed, and it was shown that the aapT gene product exhibits both alpha-amylase and pullulanase activities with one active site. The optimum temperature and pH for enzyme activity were found to be 70 degrees C and pH 9, respectively. Furthermore, AapT was found to strongly adsorb to crystalline cellulose (Avicel) and raw corn starch. Final hydrolyzed products from soluble starch range from maltose (G2) to maltotetraose (G4). Only maltotriose (G3) was produced from pullulan. The enzyme also hydrolyzes raw starch under a broad range of conditions (60 to 70 degrees C and pH 8 to 9). Images PMID:7986049

  9. The importance of an extra loop in the B-domain of an alpha-amylase from B. stearothermophilus US100.

    PubMed

    Khemakhem, Bassem; Ben Ali, Mamdouh; Aghajari, Nushin; Juy, Michel; Haser, Richard; Bejar, Samir

    2009-07-17

    To provide insight into the potential role of a loop in domain B of several bacterial alpha-amylases, molecular and structural investigation of Bacillus stearothermophilus alpha-amylase (Amy US100) was used as a model. Combination deletion mutants of G(213), I(214) and G(215), described as a loop-forming on the surface bacterial amylases, were subjected to biochemical and structural investigation. Thermoactivity, thermostability as well calcium requirement were studied for each mutant. Thus, deletion of one residue differently affects only the thermostability. Shortening the loop by deletion of G(213)-I(214) or I(214)-G(215) improved the thermostability and reduces calcium requirement. However, the deletion of three residues has a negative effect on thermostability and reduces the optimal temperature by 17 degrees C. The structural investigation showed that stabilizing deletions contribute to reinforce the architecture of domain B and the active site conformation. The deletion of three residues reduces the flexibility of this region and abolishes a denser hydrogen bond network. PMID:19422796

  10. Use of homologous expression-secretion signals and vector-free stable chromosomal integration in engineering of Lactobacillus plantarum for alpha-amylase and levanase expression.

    PubMed Central

    Hols, P; Ferain, T; Garmyn, D; Bernard, N; Delcour, J

    1994-01-01

    The genuine alpha-amylase gene from Bacillus licheniformis (amyL) is not expressed in Lactobacillus plantarum, but replacement of the amyL promoter by a strong L. plantarum promoter leads to efficient expression of the gene and secretion of more than 90% of the alpha-amylase into the culture supernatant. A series of L. plantarum genetic cassettes (transcription and translation with or without secretion) were cloned by translation fusion of random DNA fragments to the silent amyL coding frame in the pGIP212 probe vector (P. Hols, A. Baulard, D. Garmyn, B. Delplace, S. Hogan, and J. Delcour, Gene 118:21-30, 1992). Five different cassettes were sequenced and found to harbor genetic signals similar to those of other gram-positive bacteria. The functions of the cloned cassettes and the cassettes isolated previously from Enterococcus faecalis were compared in E. faecalis and L. plantarum, respectively. All signals were well recognized in L. plantarum, but cassettes isolated from L. plantarum led to a low level of amylase production in E. faecalis, suggesting that the L. plantarum signals are more species specific. Six transcriptional or translational fusions were constructed to express the Bacillus subtilis levanase gene (sacC) in L. plantarum. All of these constructions were capable of inducing levanase production and secretion in the culture supernatant, and, furthermore, L. plantarum strains harboring the most efficient fusions could grow in MRS medium containing inulin as the major carbon source. Finally, a two-step chromosomal integration procedure was used to achieve efficient stabilization of an amylase construction without any residual resistance marker or vector sequence. Images PMID:8017927

  11. Immediate Effects of Traditional Thai Massage on Psychological Stress as Indicated by Salivary Alpha-Amylase Levels in Healthy Persons.

    PubMed

    Sripongngam, Thanarat; Eungpinichpong, Wichai; Sirivongs, Dhavee; Kanpittaya, Jaturat; Tangvoraphonkchai, Kamonwan; Chanaboon, Sutin

    2015-01-01

    BACKGROUND Stress can cause psychological and physiological changes. Many studies revealed that massage can decrease stress. However, traditional Thai massage has not been well researched in this regard. The purpose of this study was to investigate the immediate effects of traditional Thai massage (TTM) on salivary alpha-amylase levels (sAA), heart rate variability (HRV), autonomic nervous system (ANS) function, and plasma renin activity (PRA). MATERIAL AND METHODS Twenty-nine healthy participants were randomly allocated into either a traditional Thai massage (TTM) group or Control (C) group, after which they were switched to the other group with a 2-week wash-out period. Each of them was given a 10-minute mental arithmetic test to induce psychological stress before a 1-hour session of TTM or rest. RESULTS Within-groups comparison revealed that sAA was significantly decreased (p<0.05) in the TTM group but not in the C group. HRV and ANS function were significantly increased (p<0.05) and PRA was significantly decreased (p<0.05) in both groups. However, low frequency per high frequency ratio (LF/HF ratio) and ANS balance status were not changed. Only sAA was found to be significantly different between groups (p<0.05). CONCLUSIONS We conclude that both TTM and rest can reduce psychological stress, as indicated by decreased sAA levels, increased parasympathetic activity, decreased sympathetic activity, and decreased PRA. However, TTM may have a modest effect on stress reduction as indicated by a reduced sAA. PMID:26436433

  12. Immediate Effects of Traditional Thai Massage on Psychological Stress as Indicated by Salivary Alpha-Amylase Levels in Healthy Persons

    PubMed Central

    Sripongngam, Thanarat; Eungpinichpong, Wichai; Sirivongs, Dhavee; Kanpittaya, Jaturat; Tangvoraphonkchai, Kamonwan; Chanaboon, Sutin

    2015-01-01

    Background Stress can cause psychological and physiological changes. Many studies revealed that massage can decrease stress. However, traditional Thai massage has not been well researched in this regard. The purpose of this study was to investigate the immediate effects of traditional Thai massage (TTM) on salivary alpha-amylase levels (sAA), heart rate variability (HRV), autonomic nervous system (ANS) function, and plasma renin activity (PRA). Material/Methods Twenty-nine healthy participants were randomly allocated into either a traditional Thai massage (TTM) group or Control (C) group, after which they were switched to the other group with a 2-week wash-out period. Each of them was given a 10-minute mental arithmetic test to induce psychological stress before a 1-hour session of TTM or rest. Results Within-groups comparison revealed that sAA was significantly decreased (p<0.05) in the TTM group but not in the C group. HRV and ANS function were significantly increased (p<0.05) and PRA was significantly decreased (p<0.05) in both groups. However, low frequency per high frequency ratio (LF/HF ratio) and ANS balance status were not changed. Only sAA was found to be significantly different between groups (p<0.05). Conclusions We conclude that both TTM and rest can reduce psychological stress, as indicated by decreased sAA levels, increased parasympathetic activity, decreased sympathetic activity, and decreased PRA. However, TTM may have a modest effect on stress reduction as indicated by a reduced sAA. PMID:26436433

  13. Inhibition of amylases from different origins by albumins from the wheat kernel.

    PubMed

    Silano, V; Furia, M; Gianfreda, L; Macri, A; Palescandolo, R; Rab, A; Scardi, V; Stella, E; Valfre, F

    1975-05-23

    The amylase activity of water extracts from 18 insect species, from 23 marine species and from 17 different species of birds and mammals was determined quantitatively. The inhibition of amylase in these extracts by three albumin fractions from the mature wheat kernel, which had been separated according to their molecular weights (60 000, 24 000 and 12 500 D), was determined as well. The inhibition activity of the three albumin fractions toward amylases extracted from a number of cereal species or from immature and germinating wheat kernel was also tested. The extracts from insects that are destructive of wheat grain and stored wheat products showed much higher amylase activities as compared to the other insect species that do not attack wheat and wheat products. On the basis of the effectiveness with which the three albumin fractions inhibit their activities, the amylase preparations tested were divided into susceptible, partially susceptible and resistent. Susceptible amylases, inhibited by any of the three albumin fractions, were found mainly in insects that attack wheat and in marine species. Partially susceptible amylases, inhibited by only one or two of the three albumin fractions, were present in a few avain and mammalian species including man. Resistent amylases were largely distributed in cereal, avian and mammalian species as well as in insect species that do not usually attack wheat grain or wheat flour products. At no stage of development, wheat alpha-amylase was inhibited by the albumin fractions from the mature kernel. The 12 500 dalton albumin fraction was the most effective in inhibiting insect amylases, but it was inactive toward avian and mammalian amylases. The 24 000 dalton albumin fraction was the most effective in inhibiting amylases from marine avian and mammalian species and inhibited as much as 33 amylases over 66 different amylases tested. It is suggested that protein inhibitors of amylase contributed to natural selection of polyploid

  14. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control.

    PubMed

    Barrett, Marilyn L; Udani, Jay K

    2011-01-01

    Obesity, and resultant health hazards which include diabetes, cardiovascular disease and metabolic syndrome, are worldwide medical problems. Control of diet and exercise are cornerstones of the management of excess weight. Foods with a low glycemic index may reduce the risk of diabetes and heart disease as well as their complications. As an alternative to a low glycemic index diet, there is a growing body of research into products that slow the absorption of carbohydrates through the inhibition of enzymes responsible for their digestion. These products include alpha-amylase and glucosidase inhibitors. The common white bean (Phaseolus vulgaris) produces an alpha-amylase inhibitor, which has been characterized and tested in numerous clinical studies. A specific and proprietary product named Phase 2® Carb Controller (Pharmachem Laboratories, Kearny, NJ) has demonstrated the ability to cause weight loss with doses of 500 to 3000 mg per day, in either a single dose or in divided doses. Clinical studies also show that Phase 2 has the ability to reduce the post-prandial spike in blood glucose levels. Experiments conducted incorporating Phase 2 into food and beverage products have found that it can be integrated into various products without losing activity or altering the appearance, texture or taste of the food. There have been no serious side effects reported following consumption of Phase 2. Gastro-intestinal side effects are rare and diminish upon extended use of the product. In summary, Phase 2 has the potential to induce weight loss and reduce spikes in blood sugar caused by carbohydrates through its alpha-amylase inhibiting activity. PMID:21414227

  15. The role of two isoenzymes of alpha-amylase of Araucaria araucana (Araucariaceae) on the digestion of starch granules during germination.

    PubMed

    Waghorn, Juana J; del Pozo, Talía; Acevedo, Elba A; Cardemil, Liliana A

    2003-03-01

    Starch is the principal reserve of Araucaria araucana seeds, and it is hydrolysed during germination mainly by alpha-amylase. There are several alpha-amylase isoenzymes whose patterns change in the embryo and in the megagametophyte from the one observed in quiescent seeds (T(0)) to a different one observed 90 h after imbibition (T(90)). The objective of this research was to study the roles of two purified alpha-amylase isoenzymes by in vitro digestion of starch granules extracted from the tissues at two times of imbibition: one is abundant in quiescent seeds and the other is abundant after 90 h of imbibition. The isoenzymes digested the starch granules of their own stage of germination better, since the isoenzyme T(0) digested starch granules mainly from quiescent seeds, while the isoenzyme T(90) digested starch mainly at 90 h of imbibition. The sizes of the starch granule and the tissue from which these granules originated make a difference to digestion by the isoenzymes. Embryonic isoenzyme T(0) digested large embryonic starch granules better than small and medium-sized granules, and better than those isolated from megagametophytes. Similarly isoenzyme T(90) digested small embryonic starch granules better than medium-sized and large granules, and better than those isolated from megagametophytes. However, a mixture of partially purified megagametophytic isoenzymes T(0) and T(90) digested the megagametophytic granules better than those isolated from embryos. Studies of in vitro sequential digestion of starch granules with these isoenzymes corroborated their specificity. The isoenzyme T(90) digested starch granules previously digested by the isoenzyme T(0). This suggests that in vivo these two isoenzymes may act sequentially in starch granule digestion. PMID:12598561

  16. A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control

    PubMed Central

    2011-01-01

    Obesity, and resultant health hazards which include diabetes, cardiovascular disease and metabolic syndrome, are worldwide medical problems. Control of diet and exercise are cornerstones of the management of excess weight. Foods with a low glycemic index may reduce the risk of diabetes and heart disease as well as their complications. As an alternative to a low glycemic index diet, there is a growing body of research into products that slow the absorption of carbohydrates through the inhibition of enzymes responsible for their digestion. These products include alpha-amylase and glucosidase inhibitors. The common white bean (Phaseolus vulgaris) produces an alpha-amylase inhibitor, which has been characterized and tested in numerous clinical studies. A specific and proprietary product named Phase 2® Carb Controller (Pharmachem Laboratories, Kearny, NJ) has demonstrated the ability to cause weight loss with doses of 500 to 3000 mg per day, in either a single dose or in divided doses. Clinical studies also show that Phase 2 has the ability to reduce the post-prandial spike in blood glucose levels. Experiments conducted incorporating Phase 2 into food and beverage products have found that it can be integrated into various products without losing activity or altering the appearance, texture or taste of the food. There have been no serious side effects reported following consumption of Phase 2. Gastro-intestinal side effects are rare and diminish upon extended use of the product. In summary, Phase 2 has the potential to induce weight loss and reduce spikes in blood sugar caused by carbohydrates through its alpha-amylase inhibiting activity. PMID:21414227

  17. New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization.

    PubMed

    Gashtasbi, Fatemeh; Ahmadian, Gholamreza; Noghabi, Kambiz Akbari

    2014-10-01

    Most of the studies in the field of enzyme immobilization have sought to develop a simple, efficient and cost-effective immobilization system. In this study, probiotic Bacillus spores were used as a matrix for enzyme immobilization, because of their inherent resistance to extreme temperatures, UV irradiation, solvents and drying. Above all, their preparation is cost-effective. The alpha-amylase enzyme was immobilized on the spore surface by the covalent and adsorption methods. For the covalent method, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N hydroxysulfosuccinimide (NHS) were used. The maximum concentration of the alpha-amylase immobilized by the two methods onto the spore surface was 360 μg/1.2×10(11) spore. However, maximum activity was achieved at an enzyme concentration of approximately 60 μg/.4×10(10), corresponding to an estimated activity of 8×10(3) IU mg(-1)/1.2×10(11) spore for covalent immobilization and 8.53×10(3) for the adsorption method. After washing the enzyme with 1M NaCl and 0.5% Triton X-100, the enzyme immobilization yield was estimated to be 77% and 20.07% for the covalent and adsorption methods, respectively. The alpha-amylase immobilized by both methods, displayed improved activity in the basic pH range. The optimum pH for the free enzyme was 5 while it shifted to 8 for the immobilized enzyme. The optimum temperatures for the free and immobilized enzymes were 60 °C and 80 °C, respectively. The covalently-immobilized alpha-amylase retained 65% of its initial activity, even after 10 times of recycling. The Km and Vmax values were determined by the GraphPad Prism software, which showed that the Vmax value decreased moderately after immobilization. This is the first study which reports the covalent immobilization of an enzyme on the spore surface. PMID:25152412

  18. Amylase - blood

    MedlinePlus

    ... amylase levels may occur due to: Acute pancreatitis Cancer of the pancreas , ovaries, or lungs Cholecystitis Gallbladder attack caused by ... open) Decreased amylase levels may occur due to: Cancer of the pancreas Damage to the pancreas Kidney disease Toxemia of ...

  19. Examining multiple sleep behaviors and diurnal salivary cortisol and alpha-amylase: Within- and between-person associations.

    PubMed

    Van Lenten, Scott A; Doane, Leah D

    2016-06-01

    Sleep has been linked to the daily patterns of stress-responsive physiological systems, specifically the hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS). However, extant research examining sleep and diurnal patterns of cortisol, the primary end product of the HPA axis, has primarily focused on sleep duration with limited attention on other facets of sleep. For example, it is not clear how specific aspects of sleep (e.g., sleep quality, sleep duration variability) are related to specific components of diurnal cortisol rhythms. Salivary alpha-amylase (sAA) has been recognized as a surrogate marker of ANS activity, but limited research has explored relations between sleep and sAA diurnal rhythms. The current study utilized an ecological momentary assessment protocol to examine within- and between-person relations between several facets of sleep behavior using multiple methods (e.g., subjective report, actigraphy) and salivary cortisol and sAA. Older adolescents (N=76) provided saliva samples and diary entries five times per day over the course of three days. Sleep was assessed via questionnaire, through daily diaries, and monitored objectively using actigraphy over a four day period. Between-person results revealed that shorter average objective sleep duration and greater sleep duration variability were related to lower levels of waking cortisol and flatter diurnal slopes across the day. Within-person results revealed that on nights when individuals slept for shorter durations than usual they also had lower levels of waking cortisol the next day. Sleep was not related to the cortisol awakening response (CAR) or diurnal patterns of sAA, in either between-person or within-person analyses. However, typical sleep behaviors measured via questionnaire were related to waking levels of sAA. Overall, this study provides a greater understanding of how multiple components of sleep, measured in naturalistic environments, are related to cortisol and s

  20. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase.

    PubMed

    Kramhøft, Birte; Bak-Jensen, Kristian Sass; Mori, Haruhide; Juge, Nathalie; Nøhr, Jane; Svensson, Birte

    2005-02-15

    Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had decreased DMA of 1.0-1.4. C95A (subsite -5) had a DMA similar to that of wild type. Maltoheptaose (G7) was always the major initial oligosaccharide product. Wild-type and the subsite mutants released G6 at 27-40%, G8 at 60-70%, G9 at 39-48%, and G10 at 33-44% of the G7 rate, whereas AMY1-SBD more efficiently produced G8, G9, and G10 at rates similar to, 66%, and 60% of G7, respectively. In contrast, the shorter products appeared with large individual differences: G1, 0-15%; G2, 8-43%; G3, 0-22%; and G4, 0-11% of the G7 rate. G5 was always a minor product. Multiple attack thus involves both longer translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites. PMID:15697208

  1. Safety evaluation of an alpha-amylase enzyme preparation derived from the archaeal order Thermococcales as expressed in Pseudomonas fluorescens biovar I.

    PubMed

    Landry, Timothy D; Chew, Lawrence; Davis, John W; Frawley, Nile; Foley, Holly H; Stelman, Steven J; Thomas, Johnson; Wolt, Jeffrey; Hanselman, David S

    2003-02-01

    BD5088 alpha-amylase derived from archaeal sources has characteristics of pH and temperature tolerance that are well suited to hydrolysis of starch in food processing applications. The production microorganism recipient strain, Pseudomonas fluorescens biovar I, strain MB101, was avirulent after oral administration to mice and does not represent an infectious threat to humans. Repeated dose gavage studies with BD5088 enzyme preparation, up to 13 weeks in duration, showed no systemic toxicity due to the oral route with an NOAEL of 890 mg/kg/day as Total Organic Solids. Some irritation occurred in the respiratory tract, which was considered to be a consequence of reflux and aspiration of test material that contained lipopolysaccharide from the Pseudomonas production strain. A 2-week dietary study (0 and 310 mg/kg/day) confirmed that there were no respiratory tract effects related to oral ingestion. There was no genotoxic activity based on Ames, mouse lymphoma, mouse micronucleus, and rat lymphocyte chromosomal aberration tests. There was no evidence of allergenic potential based on a comparison of the primary sequence of BD5088 with sequences in an allergen database. The enzyme was labile to pepsin digestion. Based on these data, BD5088 alpha-amylase preparation may be considered safe for use in food production such as corn wet milling. PMID:12662916

  2. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence.

    PubMed

    Tateno, Toshihiro; Fukuda, Hideki; Kondo, Akihiko

    2007-12-01

    Corynebacterium glutamicum is an important microorganism in the industrial production of amino acids. We engineered a strain of C. glutamicum that secretes alpha-amylase from Streptococcus bovis 148 (AmyA) for the efficient utilization of raw starch. Among the promoters and signal sequences tested, those of cspB from C. glutamicum possessed the highest expression level. The fusion gene was introduced into the homoserine dehydrogenase gene locus on the chromosome by homologous recombination. L-Lysine fermentation was conducted using C. glutamicum secreting AmyA in the growth medium containing 50 g/l of raw corn starch as the sole carbon source at various temperatures in the range 30 to 40 degrees C. Efficient L-lysine production and raw starch degradation were achieved at 34 and 37 degrees C, respectively. The alpha-amylase activity using raw corn starch was more than 2.5 times higher than that using glucose as the sole carbon source during L-lysine fermentation. AmyA expression under the control of cspB promoter was assumed to be induced when raw starch was used as the sole carbon source. These results indicate that efficient simultaneous saccharification and fermentation of raw corn starch to L-lysine were achieved by C. glutamicum secreting AmyA using the cspB promoter and signal sequence. PMID:17891388

  3. Improving production of hyperthermostable and high maltose-forming alpha-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications.

    PubMed

    Uma Maheswar Rao, J L; Satyanarayana, T

    2007-01-01

    By cultivating Geobacillus thermoleovorans in shake flasks containing cane molasses medium at 70 degrees C, the fermentation variables were optimized by 'one variable at a time' approach followed by response surface methodology (RSM). The statistical model was obtained by central composite design (CCD) using three variables (cane-molasses, urea and inoculum density). An overall 1.6- and 2.1-fold increase in enzyme production was achieved in the optimized medium in shake flasks and fermenter, respectively. The alpha-amylase titre increased significantly in cane-molasses medium (60 U ml(-1)) as compared to that in the synthetic medium (26 U ml(-1)). Thus the cost of enzyme produced in cane molasses medium (0.823 euros per million U) was much lower than that produced in the synthetic starch-yeast extract-tryptone medium (18.52 euros per million U). The shelf life of bread was improved by supplementing dough with alpha-amylase, and thus, the enzyme was found to be useful in preventing the staling of bread. Reducing sugars liberated from 20% and 30% raw pearl millet starch were fermented to ethanol; ethanol production levels attained were 35.40 and 28.0 g l(-1), respectively. PMID:16473003

  4. Effect of low oxygen concentrations on growth and alpha-amylase production of Aspergillus oryzae in model solid-state fermentation systems.

    PubMed

    Rahardjo, Yovita S P; Sie, Susana; Weber, Frans J; Tramper, Johannes; Rinzema, Arjen

    2005-02-01

    Oxygen transfer in the fungal mat is a major concern in solid-state fermentation (SSF). Oxygen supply into the mycelial layers is hampered by diffusion limitation. For aerobic fungi, like Aspergillus oryzae, this oxygen depletion can be a severely limiting factor for growth and metabolite production. This paper describes the effects of a low oxygen concentration on growth at the levels of individual hyphae, colonies and overcultures, and on alpha-amylase production in overcultures. PDA medium was used to study the effect of a low oxygen concentration on hyphal elongation rate and branching frequency of hyphae, and radial extension rate of colonies of A. oryzae. We found similar saturation constants (K(O2)) of 0.1% (v/v in the gas phase) for oxygen concentration described with Monod kinetics, for branching frequency of hyphae and colony extension rate. When A. oryzae was grown as an over-culture on wheat-flour model substrate at 0.25% (v/v) oxygen concentration, the reduction in growth was more pronounced than as individual hyphae and a colony on PDA medium. Experimental results also showed that the specific alpha-amylase production rate under the condition of 0.25% (v/v) oxygen was reduced. Because the value of K(O2) is relatively low, it is reasonable to simplify the kinetics of growth of A. oryzae to zero-order kinetics in coupled diffusion/reaction models. PMID:15748690

  5. Asymmetry in children’s salivary cortisol and alpha-amylase in the context of marital conflict: Links to children’s emotional security and adjustment

    PubMed Central

    Koss, Kalsea J.; George, Melissa R.W.; Cummings, E. Mark; Davies, Patrick T.; El-Sheikh, Mona; Cicchetti, Dante

    2013-01-01

    Recent research supports the promise of examining interactive models of physiological processes on children’s adjustment. The present study investigates interactions between children’s autonomic nervous system activity and adrenocortical functioning in the context of marital discord; specifically, testing models of concurrent responses proposed by Bauer, Quas, & Boyce (2002) in the prediction of children’s behavioral responses to conflict and adjustment. Asymmetry and symmetry in children’s salivary alpha-amylase and cortisol were examined in 195 children (M age = 8 years) in response to viewing conflict vignettes. Results were partially consistent with an interactive model in the context of high marital discord; asymmetry among higher alpha-amylase and lower cortisol related to higher emotional insecurity and concurrent and subsequent maladjustment. In contrast, patterns of symmetrical responses were related to greater maladjustment for children exposed to lower levels of marital discord, supporting an additive model. Findings support the importance of a multisystem approach to investigating the adaptiveness of children’s physiological stress responses, while also highlighting the value of considering physiological responses in the context of family risk. PMID:24037991

  6. Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus.

    PubMed

    Boel, E; Brady, L; Brzozowski, A M; Derewenda, Z; Dodson, G G; Jensen, V J; Petersen, S B; Swift, H; Thim, L; Woldike, H F

    1990-07-01

    X-ray diffraction analysis (at 2.1-A resolution) of an acid alpha-amylase from Aspergillus niger allowed a detailed description of the stereochemistry of the calcium-binding sites. The primary site (which is essential in maintaining proper folding around the active site) contains a tightly bound Ca2+ with an unusually high number of eight ligands (O delta 1 and O delta 2 of Asp175, O delta of Asn121, main-chain carbonyl oxygens of Glu162 and Glu210, and three water molecules). A secondary binding site was identified at the bottom of the substrate binding cleft; it involves the residues presumed to play a catalytic role (Asp206 and Glu230). This explains the inhibitory effect of calcium observed at higher concentrations. Neutral Aspergillus oryzae (TAKA) alpha-amylase was also refined in a new crystal at 2.1-A resolution. The structure of this homologous (over 80%) enzyme and additional kinetic studies support all the structural conclusions regarding both calcium-binding sites. PMID:2207069

  7. Alpha-Amylase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Both (Porcine and bacterial) starch degrading enzymes highly valued by the biotechnology industry. (Porcine) A major target for protein engineering and the study of diabetes, obesity and dental care. (Bacterial) Major industrial and biotechnology interest used in brewing, baking, and food processing. World's number one industrial protein.

  8. Cloning, expression, and purification of insect (Sitophilus oryzae) alpha-amylase, able to digest granular starch, in Yarrowia lipolytica host.

    PubMed

    Celińska, Ewelina; Białas, Wojciech; Borkowska, Monika; Grajek, Włodzimierz

    2015-03-01

    Raw-starch-digesting enzymes (RSDE) are of major importance for industrial applications, as their usage greatly simplifies the starch processing pipeline. To date, only microbial RSDE have gained considerable attention, since only microbial production of enzymes meets industrial demands. In this study, α-amylase from rice weevil (Sitophilus oryzae), the major rice pest, was cloned and expressed in Yarrowia lipolytica Po1g strain. The enzyme was secreted into the culture medium, and the peak activity (81 AU/L) was reached after only 29 h of culturing in 5-L bioreactors. Through simple purification procedure of ammonium sulfate precipitation and affinity chromatography, it was possible to purify the enzyme to apparent homogeneity (25-fold purification factor, at 5 % yield). The optimal conditions for the α-amylase activity were pH 5.0 and a temperature of 40 °C. The α-amylase studied here did not show any obligate requirement for Ca(2+) ions. The recombinant α-amylase appeared to efficiently digest granular starch from pea, amaranth, waxy corn, and waxy rice. PMID:25547839

  9. Gedunin and Azadiradione: Human Pancreatic Alpha-Amylase Inhibiting Limonoids from Neem (Azadirachta indica) as Anti-Diabetic Agents.

    PubMed

    Ponnusamy, Sudha; Haldar, Saikat; Mulani, Fayaj; Zinjarde, Smita; Thulasiram, Hirekodathakallu; RaviKumar, Ameeta

    2015-01-01

    Human pancreatic α-amylase (HPA) inhibitors offer an effective strategy to lower postprandial hyperglycemia via control of starch breakdown. Limonoids from Azadirachta indica known for their therapeutic potential were screened for pancreatic α-amylase inhibition, a known anti-diabetic target. Studies were carried out to reveal their mode of action so as to justify their hypoglycemic potential. Of the nine limonoids isolated/semi-synthesized from A.indica and screened for α-amylase inhibition, azadiradione and exhibited potential inhibition with an IC50 value of 74.17 and 68.38 μM, respectively against HPA under in vitro conditions. Further screening on AR42J α-amylase secretory cell line for cytotoxicity and bioactivity revealed that azadiradione and gedunin exhibited cytotoxicity with IC50 of 11.1 and 13.4μM. Maximal secreted α-amylase inhibition of 41.8% and 53.4% was seen at 3.5 and 3.3μM, respectively. Michaelis-Menten kinetics suggested a mixed mode of inhibition with maltopentaose (Ki 42.2, 18.6 μM) and starch (Ki' 75.8, 37.4 μM) as substrate with a stiochiometry of 1:1 for both azadiradione and gedunin, respectively. The molecular docking simulation indicated plausible π-alkyl and alkyl-alkyl interactions between the aromatic amino acids and inhibitors. Fluorescence and CD confirmed the involvement of tryptophan and tyrosine in ligand binding to HPA. Thermodynamic parameters suggested that binding is enthalpically and entropically driven with ΔG° of -21.25 kJ mol-1 and -21.16 kJ mol-1 for azadiradione and gedunin, respectively. Thus, the limonoids azadiradione and gedunin could bind and inactivate HPA (anti-diabetic target) and may prove to be lead drug candidates to reduce/control post-prandial hyperglycemia. PMID:26469405

  10. Gedunin and Azadiradione: Human Pancreatic Alpha-Amylase Inhibiting Limonoids from Neem (Azadirachta indica) as Anti-Diabetic Agents

    PubMed Central

    Zinjarde, Smita; Thulasiram, Hirekodathakallu; RaviKumar, Ameeta

    2015-01-01

    Human pancreatic α-amylase (HPA) inhibitors offer an effective strategy to lower postprandial hyperglycemia via control of starch breakdown. Limonoids from Azadirachta indica known for their therapeutic potential were screened for pancreatic α-amylase inhibition, a known anti-diabetic target. Studies were carried out to reveal their mode of action so as to justify their hypoglycemic potential. Of the nine limonoids isolated/semi-synthesized from A.indica and screened for α-amylase inhibition, azadiradione and exhibited potential inhibition with an IC50 value of 74.17 and 68.38 μM, respectively against HPA under in vitro conditions. Further screening on AR42J α-amylase secretory cell line for cytotoxicity and bioactivity revealed that azadiradione and gedunin exhibited cytotoxicity with IC50 of 11.1 and 13.4μM. Maximal secreted α-amylase inhibition of 41.8% and 53.4% was seen at 3.5 and 3.3μM, respectively. Michaelis-Menten kinetics suggested a mixed mode of inhibition with maltopentaose (Ki 42.2, 18.6 μM) and starch (Ki′ 75.8, 37.4 μM) as substrate with a stiochiometry of 1:1 for both azadiradione and gedunin, respectively. The molecular docking simulation indicated plausible π-alkyl and alkyl-alkyl interactions between the aromatic amino acids and inhibitors. Fluorescence and CD confirmed the involvement of tryptophan and tyrosine in ligand binding to HPA. Thermodynamic parameters suggested that binding is enthalpically and entropically driven with ΔG° of -21.25 kJ mol-1 and -21.16 kJ mol-1 for azadiradione and gedunin, respectively. Thus, the limonoids azadiradione and gedunin could bind and inactivate HPA (anti-diabetic target) and may prove to be lead drug candidates to reduce/control post-prandial hyperglycemia. PMID:26469405

  11. Evolutionary relationships and sequence variation of alpha-amylase variants encoded by duplicated genes in the Amy locus of Drosophila melanogaster.

    PubMed

    Inomata, N; Shibata, H; Okuyama, E; Yamazaki, T

    1995-09-01

    To infer the genealogical relationships of alpha-amylase electromorphs of Drosophila melanogaster, we determined the nucleotide sequences of a collection of electromorphs sampled throughout the world. On average there were 1.0 amino acid substitutions between identical electromorphs and 3.9 between different electromorphs, respectively. We found that the evolution of AMY1 through AMY6 electromorphs occurred by sequential accumulation of single amino acid substitutions each causing one charge difference. The nucleotide diversities at synonymous sites within Amy1,Amy2,Amy3,Amy4 and Amy6 were 0.0321, 0.0000, 0.0355, 0.0059 and 0.0030, respectively. We also obtained evidence of genetic exchanges, such as intrachromosomal recombination, interchromosomal recombination or gene conversion, between the two duplicated Amy genes as well as among the alleles. PMID:8536971

  12. The amino acid sequence of a 20 kDa bifunctional subtilisin/alpha-amylase inhibitor from bran [correction of brain] of rice (Oryza sativa L.) seeds.

    PubMed

    Ohtsubo, K; Richardson, M

    1992-08-31

    A 20 kDa bifunctional inhibitor of the microbial proteinase, subtilisin, and the alpha-amylase from the larvae of the red flour beetle (Tribolium castaneum) was purified from bran of rice seeds by saline extraction, precipitation with ammonium sulphate, ion-exchange chromatography on DEAE-Cellulose and Toyopearl CM-650, and preparative HPLC on Vydac C18. The complete primary structure was determined by automatic degradation of the intact, reduced and S-alkylated protein, and by manual DABITC/PITC micro-sequencing of peptides obtained from the protein following separate enzymic digestions with trypsin, pepsin, chymotrypsin, elastase and the protease from S. aureus V8. The protein sequence, which contained 176 residues, showed strong homology with similar bifunctional inhibitors previously isolated from wheat and barley which are related to the Kunitz family of proteinase inhibitors from legume seeds. PMID:1511747

  13. Barley malt-alpha-amylase. Purification, action pattern, and subsite mapping of isozyme 1 and two members of the isozyme 2 subfamily using p-nitrophenylated maltooligosaccharide substrates.

    PubMed

    Ajandouz, E H; Abe, J; Svensson, B; Marchis-Mouren, G

    1992-09-23

    Isoforms AMY1, AMY2-1 and AMY2-2 of barley alpha-amylase were purified from malt. AMY2-1 and AMY2-2 are both susceptible to barley alpha-amylase/subtilisin inhibitor. The action of these isoforms is compared using substrates ranging from p-nitrophenylmaltoside through p-nitrophenylmaltoheptaoside. The kcat/Km values are calculated from the substrate consumption. The relative cleavage frequency of different substrate bonds is given by the product distribution. AMY2-1 is 3-8-fold more active than AMY1 toward p-nitrophenylmaltotrioside through p-nitrophenylmaltopentaoside. AMY2-2 is 10-50% more active than AMY2-1. The individual subsite affinities are obtained from these data. The resulting subsite maps of the isoforms are quite similar. They comprise four and six glucosyl-binding subsites towards the reducing and the non-reducing end, respectively. Towards the non-reducing end, the sixth and second subsites have a high affinity, the third has very low or even lack of affinity and the first (catalytic subsite) has a large negative affinity. The affinity declines from moderate to low for subsites 1 through 4 toward the reducing end. AMY1 has clearly a more negative affinity at the catalytic subsite, but larger affinities at both the fourth subsites, compared to AMY2. AMY2-1 has lower affinity than AMY2-2 at subsites adjacent to the catalytic site, and otherwise mostly higher affinities than AMY2-2. Theoretical kcat/Km values show excellent agreement with experimental values. PMID:1390923

  14. Salivary cortisol and alpha-amylase levels during an assessment procedure correlate differently with risk-taking measures in male and female police recruits

    PubMed Central

    van den Bos, Ruud; Taris, Ruben; Scheppink, Bianca; de Haan, Lydia; Verster, Joris C.

    2013-01-01

    Recent laboratory studies have shown that men display more risk-taking behavior in decision-making tasks following stress, whilst women are more risk-aversive or become more task-focused. In addition, these studies have shown that sex differences are related to levels of the stress hormone cortisol (indicative of activation of the hypothalamus-pituitary-adrenocortical-axis): the higher the levels of cortisol the more risk-taking behavior is shown by men, whereas women generally display more risk-aversive or task-focused behavior following higher levels of cortisol. Here, we assessed whether such relationships hold outside the laboratory, correlating levels of cortisol obtained during a job-related assessment procedure with decision-making parameters in the Cambridge Gambling Task (CGT) in male and female police recruits. The CGT allows for discriminating different aspects of reward-based decision-making. In addition, we correlated levels of alpha-amylase [indicative of activation of the sympatho-adrenomedullary-axis (SAM)] and decision-making parameters. In line with earlier studies men and women only differed in risk-adjustment in the CGT. Salivary cortisol levels correlated positively and strongly with risk-taking measures in men, which was significantly different from the weak negative correlation in women. In contrast, and less strongly so, salivary alpha-amylase levels correlated positively with risk-taking in women, which was significantly different from the weak negative correlation with risk-taking in men. Collectively, these data support and extend data of earlier studies indicating that risky decision-making in men and women is differently affected by stress hormones. The data are briefly discussed in relation to the effects of stress on gambling. PMID:24474909

  15. Antisense SNF1-related (SnRK1) protein kinase gene represses transient activity of an alpha-amylase (alpha-Amy2) gene promoter in cultured wheat embryos.

    PubMed

    Laurie, Sophie; McKibbin, Rowan S; Halford, Nigel G

    2003-02-01

    A DNA fragment corresponding to part of an SNF1 (sucrose non-fermenting-1)-related protein kinase (SnRK1) transcript was amplified by a polymerase chain reaction (PCR) from a wheat (Triticum aestivum) endosperm cDNA library. It was used to construct a chimaeric gene, pUasSnRKN, comprising a ubiquitin promoter, the SnRK1 PCR product in the antisense orientation and the nopaline synthase (Nos) gene terminator. This construct was used in transient gene expression experiments in cultured wheat embryos together with a series of reporter gene constructs. These included the wheat alpha amylase gene alpha-Amy2 promoter with UidA (Gus) coding region (palpha2GT), rice actin promoter with Gus (pActIDGus), ubiquitin promoter with Gus (pAHC25) and actin promoter with green fluorescent protein (GFP) gene (pAct1Is-GFP1). All of the reporter genes were found to be active when bombarded into scutellae isolated from immature grains at 25 d post-anthesis and incubated on MS medium for 24 h prior to bombardment. However, co-bombardment of palpha2GT with equimolar amounts of pUasSnRKN resulted in no detectable Gus activity, indicating that the antisense SnRK1 construct repressed the alpha-Amy2 promoter. Co-bombardment with pUasSnRKN had no effect on the activity of the other promoters used in the study. A triple bombardment with palpha2GT, pAct1Is-GFP-1 and pUasSnRKN resulted in clear green fluorescence, indicating that the bombarded cells were still viable, but no Gus activity. RT-PCR analysis showed clearly that the antisense SnRK1 gene was expressing. Northern and RT-PCR analyses confirmed that SnRK1 and both alpha-amylase genes, alpha-Amy1 and alpha-Amy2, are expressed in cultured wheat embryos harvested from grain 25 d post-anthesis. Expression of alpha-Amy1 and alpha-Amy2 was up-regulated by sugar starvation. PMID:12554717

  16. Enzymatic Properties of an Alkaline and Chelator Resistant alpha-amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L 711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 37 C, strain L711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5 - 10.0 and 7.0 - 7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55 C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co(2+) and EDTA (10 mM) enhanced enzymatic activity. The K(sub m), and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose.

  17. Measurements of Salivary Alpha Amylase and Salivary Cortisol in Hominoid Primates Reveal Within-Species Consistency and Between-Species Differences

    PubMed Central

    Behringer, Verena; Borchers, Claudia; Deschner, Tobias; Möstl, Erich; Selzer, Dieter; Hohmann, Gottfried

    2013-01-01

    Salivary alpha amylase (sAA) is the most abundant enzyme in saliva. Studies in humans found variation in enzymatic activity of sAA across populations that could be linked to the copy number of loci for salivary amylase (AMY1), which was seen as an adaptive response to the intake of dietary starch. In addition to diet dependent variation, differences in sAA activity have been related to social stress. In a previous study, we found evidence for stress-induced variation in sAA activity in the bonobos, a hominoid primate that is closely related to humans. In this study, we explored patterns of variation in sAA activity in bonobos and three other hominoid primates, chimpanzee, gorilla, and orangutan to (a) examine if within-species differences in sAA activity found in bonobos are characteristic for hominoids and (b) assess the extent of variation in sAA activity between different species. The results revealed species-differences in sAA activity with gorillas and orangutans having higher basal sAA activity when compared to Pan. To assess the impact of stress, sAA values were related to cortisol levels measured in the same saliva samples. Gorillas and orangutans had low salivary cortisol concentrations and the highest cortisol concentration was found in samples from male bonobos, the group that also showed the highest sAA activity. Considering published information, the differences in sAA activity correspond with differences in AMY1 copy numbers and match with general features of natural diet. Studies on sAA activity have the potential to complement molecular studies and may contribute to research on feeding ecology and nutrition. PMID:23613746

  18. Measurements of salivary alpha amylase and salivary cortisol in hominoid primates reveal within-species consistency and between-species differences.

    PubMed

    Behringer, Verena; Borchers, Claudia; Deschner, Tobias; Möstl, Erich; Selzer, Dieter; Hohmann, Gottfried

    2013-01-01

    Salivary alpha amylase (sAA) is the most abundant enzyme in saliva. Studies in humans found variation in enzymatic activity of sAA across populations that could be linked to the copy number of loci for salivary amylase (AMY1), which was seen as an adaptive response to the intake of dietary starch. In addition to diet dependent variation, differences in sAA activity have been related to social stress. In a previous study, we found evidence for stress-induced variation in sAA activity in the bonobos, a hominoid primate that is closely related to humans. In this study, we explored patterns of variation in sAA activity in bonobos and three other hominoid primates, chimpanzee, gorilla, and orangutan to (a) examine if within-species differences in sAA activity found in bonobos are characteristic for hominoids and (b) assess the extent of variation in sAA activity between different species. The results revealed species-differences in sAA activity with gorillas and orangutans having higher basal sAA activity when compared to Pan. To assess the impact of stress, sAA values were related to cortisol levels measured in the same saliva samples. Gorillas and orangutans had low salivary cortisol concentrations and the highest cortisol concentration was found in samples from male bonobos, the group that also showed the highest sAA activity. Considering published information, the differences in sAA activity correspond with differences in AMY1 copy numbers and match with general features of natural diet. Studies on sAA activity have the potential to complement molecular studies and may contribute to research on feeding ecology and nutrition. PMID:23613746

  19. Direct fermentation of raw starch using a Kluyveromyces marxianus strain that expresses glucoamylase and alpha-amylase to produce ethanol.

    PubMed

    Wang, Rongliang; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2014-01-01

    Raw starch and raw cassava tuber powder were directly and efficiently fermented at elevated temperatures to produce ethanol using the thermotolerant yeast Kluyveromyces marxianus that expresses α-amylase from Aspergillus oryzae as well as α-amylase and glucoamylase from Debaryomyces occidentalis. Among the constructed K. marxianus strains, YRL 009 had the highest efficiency in direct starch fermentation. Raw starch from corn, potato, cassava, or wheat can be fermented at temperatures higher than 40°C. At the optimal fermentation temperature 42°C, YRL 009 produced 66.52 g/L ethanol from 200 g/L cassava starch, which was the highest production among the selected raw starches. This production increased to 79.75 g/L ethanol with a 78.3% theoretical yield (with all cassava starch were consumed) from raw cassava starch at higher initial cell densities. Fermentation was also carried out at 45 and 48°C. By using 200 g/L raw cassava starch, 137.11 and 87.71 g/L sugar were consumed with 55.36 and 32.16 g/L ethanol produced, respectively. Furthermore, this strain could directly ferment 200 g/L nonsterile raw cassava tuber powder (containing 178.52 g/L cassava starch) without additional nutritional supplements to produce 69.73 g/L ethanol by consuming 166.07 g/L sugar at 42°C. YRL 009, which has consolidated bioprocessing ability, is the best strain for fermenting starches at elevated temperatures that has been reported to date. PMID:24478139

  20. Amylase - urine

    MedlinePlus

    This test is done to diagnose pancreatitis and other diseases that affect the pancreas. ... amylase levels may be a sign of: Acute pancreatitis Alcohol consumption Cancer of the pancreas , ovaries, or ...

  1. Salivary alpha-amylase and cortisol responsiveness following electrical stimulation stress in obsessive-compulsive disorder patients.

    PubMed

    Kawano, Aimi; Tanaka, Yoshihiro; Ishitobi, Yoshinobu; Maruyama, Yoshihiro; Ando, Tomoko; Inoue, Ayako; Okamoto, Shizuko; Imanaga, Junko; Kanehisa, Masayuki; Higuma, Haruka; Ninomiya, Taiga; Tsuru, Jusen; Akiyoshi, Jotaro

    2013-08-30

    Salivary α-amylase (sAA) serves as a marker of sympathoadrenal medullary system (SAM) activity. Salivary AA has not been extensively studied in obsessive-compulsive disorder (OCD) patients. In the current study, 45 OCD patients and 75 healthy volunteers were assessed with the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS), the Profile of Mood State (POMS), and the State-Trait Anxiety Inventory (STAI). Measures of heart rate variability (HRV), sAA, and salivary cortisol were also obtained following the application of electrical stimulation stress. The Y-BOCS and POMS Tension-Anxiety, Depression-Dejection, Anger-Hostility, Fatigue, and Confusion scores were significantly increased in patients with OCD compared with healthy controls. In contrast, Vigor scores were significantly decreased in patients with OCD relative to scores in healthy controls. There was no difference in HRV between the patients and the controls. Salivary AA levels in female and male OCD patients were significantly elevated relative to controls both before and after electrical stimulation. In contrast, there were no differences in salivary cortisol levels between OCD patients and controls. The elevated secretion of sAA before and after stimulation may suggest an increased responsiveness to novel and uncontrollable situations in patients with OCD. An increase in sAA might be a characteristic change of OCD. PMID:23266021

  2. Adolescents' Increasing Stress Response to Social Evaluation: Pubertal Effects on Cortisol and Alpha-Amylase during Public Speaking

    ERIC Educational Resources Information Center

    van den Bos, Esther; de Rooij, Mark; Miers, Anne C.; Bokhorst, Caroline L.; Westenberg, P. Michiel

    2014-01-01

    Stress responses to social evaluation are thought to increase during adolescence, which may be due to pubertal maturation. However, empirical evidence is scarce. This study is the first to investigate the relation between pubertal development and biological responses to a social-evaluative stressor longitudinally. Participants performed the Leiden…

  3. Effect of In Vitro Maturation Technique and Alpha Lipoic Acid Supplementation on Oocyte Maturation Rate: Focus on Oxidative Status of Oocytes

    PubMed Central

    Zavareh, Saeed; Karimi, Isaac; Salehnia, Mojdeh; Rahnama, Ali

    2016-01-01

    Background Therapeutic potential of in vitro maturation (IVM) in infertility is growing with great promise. Although significant progress is obtained in recent years, existing IVM protocols are far from favorable results. The first aim of this study was to investigate whether two step IVM manner change reactive oxygen species (ROS) and total anti- oxidant capacity (TAC) levels. The second aim was to find the effect of alpha lipoic acid (ALA) supplementation on oocyte maturation rate and on ROS/TAC levels during IVM. Materials and Methods In this experimental study, mouse germinal vesicle (GV) oocytes divided into cumulus denuded oocytes (DOs) and cumulus oocyte complexes (COCs) groups. GVs were matured in vitro in the presence or absence of ALA only for 18 hours (control) or with pre-culture of forskolin plus cilostamide for an additional 18 hours. Matured oocytes obtained following 18 and 36 hours based on experimental design. In parallel, the ROS and TAC levels were measured at different time (0, 18 and 36 hours) by 2',7'-dichlorodihydrofluorescein (DCFH) probe and ferric reducing/antioxidant power (FRAP) assay, respectively. Results Maturation rate of COCs was significantly higher than DOs in control group (P<0.05), while there was no significant difference between COCs and DOs when were pre-cultured with forskolin plus cilostamide. ROS and TAC levels was increased and decreased respectively in DOs after 18 hours while in COCs did not change at 18 hours and showed a significant increase and decrease respectively at 36 hours (P<0.05). ROS and TAC levels in the presence of ALA were significantly decreased and increased respectively after 36 hours (P<0.05) whereas, maturation rates of COCs and DOs were similar to their corresponding control groups. Conclusion ALA decreased ROS and increased TAC but could not affect maturation rate of both COCs and DOs in one or two step IVM manner. PMID:26985332

  4. A new rice zinc-finger protein binds to the O2S box of the alpha-amylase gene promoter.

    PubMed

    Peng, Rihe; Yao, Quanhong; Xiong, Aisheng; Fan, Huiqin; Li, Xian; Peng, Youliang; Cheng, Zong-Ming; Li, Yi

    2004-07-01

    A putative transcription factor, named RAMY, that binds to the 20-bp O2S sequences of the regulatory region of the Amy2 gene promoter has been identified using the yeast one-hybrid system from a rice library. The full length RAMY cDNA clone encodes a 218-amino acid protein and is homologous to the late embryogenesis-abundant protein (LEA5). In vitro mutagenesis and electrophoretic mobility shift assays confirmed that RAMY can bind with O2S specifically through an unusual zinc finger with a CXCX(4)CX(2)H consensus sequence. Low levels of RAMY mRNAs were detected in rice leaves and roots by Northern blot hybridization. The plant hormone gibberellin (GA) induces expression of both RAMY and Amy2 genes, as performed by Northern blot hybridization, but the increase in RAMY mRNA level occurs prior to that of the Amy2 mRNA level in the GA-treated aleurone tissues. These data suggest that RAMY may act as a trans-acting protein and is probably involved in the GA-induced expression of the rice alpha-amylase gene. PMID:15233790

  5. Amylose chain behavior in an interacting context. III. Complete occupancy of the AMY2 barley alpha-amylase cleft and comparison with biochemical data.

    PubMed

    André, G; Buléon, A; Haser, R; Tran, V

    1999-12-01

    In the first two papers of this series, the tools necessary to evaluate substrate ring deformations were developed, and then the modeling of short amylose fragments (maltotriose and maltopentaose) inside the catalytic site of barley alpha-amylase was performed. In this third paper, this docking has been extended to the whole catalytic cleft. A systematic approach to extend the substrate was used on the reducing side from the previous enzyme/pentasaccharide complex. However, due to the lack of an obvious subsite at the nonreducing side, an alternate protocol has been chosen that incorporates biochemical information on the enzyme and features on the substrate shape as well. As a net result, ten subsites have been located consistent with the distribution of Ajandouz et al. (E. H. Ajandouz, J. Abe, B. Svensson, and G. Marchis-Mouren, Biochimica Biophysica Acta, 1992, Vol. 1159, pp. 193-202) and corresponding binding energies were estimated. Among them, two extreme subsites (-6) and (+4), with stacking residues Y104 and Y211, respectively, have strong affinities with glucose rings added to the substrate. No other deformation has been found for the new glucose rings added to the substrate; therefore, only ring A of the DP 10 fragment has a flexible form when interacting with the inner stacking residues Y51. Global conservation of the helical shape of the substrate can be postulated in spite of its significant distortion at subsite (-1). PMID:10547530

  6. Salivary alpha-amylase, secretory IgA and free cortisol as neurobiological components of the stress response in the acute phase of anorexia nervosa.

    PubMed

    Paszynska, E; Dmitrzak-Weglarz, M; Tyszkiewicz-Nwafor, M; Slopien, A

    2016-06-01

    Objectives One novel hypothesis of the pathogenesis of anorexia nervosa (AN) is the possible role of mental stress in hyperactivity of the autonomic nervous system (ANS) and of the hypothalamic-pituitary-adrenal (HPA) axis. Two components of stress response - salivary alpha-amylase (sAA) and free cortisol - have been proposed. They can be determined in saliva, which closely reflects their concentrations in plasma. The purpose of this study was to measure salivary free cortisol, sAA and their correlation to secretory IgA (sIgA) of patients with AN in comparison to the average population. Methods A controlled clinical trial was designed for a matched group of 47 AN patients and 54 healthy individuals. After clinical examination, unstimulated salivary samples were taken during the acute stage of AN (BMI < 15 kg/m(2)) in the first week of hospitalisation. An enzyme-linked immunosorbent assay (ELISA) suitable for measuring sAA, sIgA and free cortisol were used. Results Anorexic patients exhibited disturbances in sAA secretion, and significantly increased cortisol and sIgA levels with a distinct correlation between these two parameters. Conclusions The behaviour of cortisol, sAA and sIgA levels can be assessed as an effect of stress reaction among AN patients with hyperactivity of the HPA axis and ANS dysregulation. The effect of stress response can be assessed reliably in saliva. PMID:26983011

  7. Mind your thoughts: associations between self-generated thoughts and stress-induced and baseline levels of cortisol and alpha-amylase.

    PubMed

    Engert, Veronika; Smallwood, Jonathan; Singer, Tania

    2014-12-01

    Stress is a major health burden in today's society. Research shows that negative cognitive styles are associated with increased stress reactivity, low mood and accelerated cellular aging. Our study sought to unravel the relationship between the content of self-generated thoughts and psychosocial stress measured in terms of hypothalamic-pituitary-adrenal axis and sympathetic activity. Features of self-generated thoughts were assessed using thought sampling while participants performed cognitive tasks following a stress induction or in a baseline condition. More negatively toned emotional thoughts and more social temporal thoughts with a past focus were associated with increased cortisol and alpha-amylase levels, both after stress and at baseline. More social temporal thoughts with a future focus, on the other hand, had an overall attenuating effect on the levels of both stress markers. Our results indicate a fundamental link between the thoughts and stress levels we experience. Understanding the mechanisms governing this mind-body association may have important implications for understanding and counteracting the high incidence of stress-related disorders in today's society. PMID:25457636

  8. Refining the multisystem view of the stress response: Coordination among cortisol, alpha-amylase, and subjective stress in response to relationship conflict

    PubMed Central

    Powers, Sally I.; Granger, Douglas A.

    2013-01-01

    This study investigated associations among young adults' hypothalamic-pituitary-adrenal axis activity, autonomic nervous system activity, and subjective stress in response to interpersonal conflict to better characterize coordination across stress systems. Seven saliva samples were collected from 199 young adult opposite-sex couples before, during, and after they discussed an unresolved relationship conflict. Samples were later assayed for cortisol and alpha-amylase (sAA). Couples rated anticipatory stress prior to the conflict and perceived stress immediately following the task. Growth curve modeling was used to examine two possible levels of within-person coordination across physiological systems: alignment between cortisol and sAA responses throughout the sampling period (“matched phase coordination”), and association between overall levels of cortisol and sAA in response to conflict (“average level coordination”). Whereas both partners showed the former type of coordination, only women showed the latter type. Positive anticipation of the stressor predicted stronger cortisol-sAA matched phase coordination for women. Pre-task ratings related to women's sAA, and post-task ratings related to both partners' cortisol responses. Implications for a multisystem interpretation of normal and pathological responses to daily stress are discussed. PMID:23684904

  9. A Pilot Study of Psychotherapist Trainees’ Alpha-Amylase and Cortisol Levels During Treatment of Recently Suicidal Clients With Borderline Traits

    PubMed Central

    Miller, Grant D.; Iverson, Katherine M.; Kemmelmeier, Markus; MacLane, Chelsea; Pistorello, Jacqueline; Fruzzetti, Alan E.; Crenshaw, Katrina Y.; Erikson, Karen M.; Katrichak, Barrie M.; Oser, Megan; Pruitt, Larry D.; Watkins, Melanie M.

    2010-01-01

    Psychotherapists often experience stress while providing psychotherapy, in particular when working with difficult presentations such as suicidality. As part of a larger study on the treatment of recently suicidal college students with borderline traits, 6 therapists in training collected their own salivary samples for alpha-amylase (AA) and cortisol (C) analyses immediately before and after sessions with 2 selected clients. On average, samples were collected for the same therapist–patient dyad throughout the year-long study to ensure that data reflected therapist responses across stages of treatment. Therapists also completed a working alliance questionnaire and rated perceived session difficulty immediately after each selected session. Contrary to expectations, therapists demonstrated elevated levels of stress as measured by AA and C at presession relative to postsession levels. Greater session difficulty was related to more pronounced declines in AA, whereas a stronger working alliance was linked to more pronounced reductions in C. Results suggest that physiological stress responses while working with recently suicidal clients with borderline traits occur primarily in terms of session anticipatory anxiety, whereas AA and C changes may be affected differently by factors such as session difficulty and working alliance. This is a pilot study, limited by its sample size, but the design, findings, and inclusion of physiological measures present an initial step in an essential line of research. PMID:21709772

  10. Effects of a high-pressure treatment on the wheat alpha-amylase inhibitor and its relationship to elimination of allergenicity

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Takanohashi, K.; Hara, T.; Odani, S.; Suzuki, A.; Nishiumi, T.

    2010-03-01

    In this study, the effects of high-pressure treatment on structure and allergeincity of alpha amylase inhibitor (a-AI) were investigated. The pressure-induced structural changes of α-AI were estimated by fluorescence spectra and by fourth derivative UV-spectroscopy for probed tyrosine residues and by circular dichroism (CD) spectroscopy. The changes in the tertiary structure detected by fluorescence spectra and by fourth derivative UV-spectroscopy under high pressure were indicated at over 300 MPa. Measurements of CD spectroscopy suggested that the effects of a high-pressure treatment on changes in the secondary structure of α-AI were little. From our results, pressure-induced changes of the α-AI structure were not apparent. On the other hands, the IgE-specific binding activities of pressurized α-AI to sera from allergic patients against wheat, which is estimated by observations of dot-blotting, were decreased by high-pressure treatment. It is known that the pressure-induced elimination of allergenicity is related to the tertiary structural changes of allergen molecules. This study are suspected that the epitopes of α-AI do not contain tyrosine residues, and thus the decrease of IgE-specific binding activities is probably caused by the tertiary structural changes of these parts of α-AI.

  11. Segments of amino acid sequence similarity in beta-amylases.

    PubMed

    Friedberg, F; Rhodes, C

    1988-01-01

    In alpha-amylases from animals, plants and bacteria and in beta-amylases from plants and bacteria a number of segments exhibit amino acid sequence similarity specific to the alpha or to the beta type, respectively. In the case of the beta-amylases the similar sequence regions are extensive and they are disrupted only by short interspersed dissimilar regions. Close to the C terminus, however, no such sequence similarity exist. PMID:2464171

  12. Role of Electromagnetic Field Exposure in Childhood Acute Lymphoblastic Leukemia and No Impact of Urinary Alpha- Amylase--a Case Control Study in Tehran, Iran.

    PubMed

    Tabrizi, Maral Mazloomi; Hosseini, Seyed Ahmad

    2015-01-01

    Childhood acute lymphoblastic leukemia (ALL) is one of the most common hematologic malignancies which accounts for one fourth of all childhood cancer cases. Exposure to environmental factors around the time of conception or pregnancy can increase the risk of ALL in the offspring. This study aimed to evaluate the influence of prenatal and postnatal exposure to high voltage power lines on the incidence of childhood ALL. It also examines the role of various factors such as environmental factors and alpha-amylase as a marker in the development of leukemia. This cross-sectional case control study was carried out on 22 cases and 100 controls who born and lived in low socioeconomic families in Tehran and were hospitalized for therapeutic purposes in different hospitals of rom 2013-2014. With regard to the underlying risk factors; familial history and parental factors were detected as risk factors of ALL but in this age, socioeconomic and zonal matched case control study, prenatal and childhood exposure to high voltage power lines was considered as the most important environmental risk factor (p=0.006, OR=3.651, CI 95% 1.692-7.878). As the population study was from low socioeconomic state, use of mobiles, computers and microwaves was negligible. Moreover prenatal and postnatal exposure to all indoor electrically charged objects were not detected as significant environmental factors in the present study. This work defined the risk of environmental especially continuous pre and postnatal exposure to high voltage power lines and living in pollutant regions through the parents or children as well as the previously described risk factors of ALL for the first time in low socioeconomic status Iranian population. PMID:26625771

  13. Expression of cDNAs encoding barley alpha-amylase 1 and 2 in yeast and characterization of the secreted proteins.

    PubMed

    Søgaard, M; Svensson, B

    1990-10-15

    Amylolytic strains of the yeast, Saccharomyces cerevisiae, were constructed by transformation with expression plasmids containing cDNAs encoding either AMY1 (clone E) or AMY2 (clone pM/C). The alpha-amylases were efficiently secreted into the culture medium directed by their own signal peptides. When clone E without its 5'-noncoding region was expressed from the yeast PGK promoter, AMY1 was produced as 1% of total cell protein and was thus the major protein secreted, whereas a similar construct derived from pM/C produced much less AMY2. This level is the highest reported for a plant protein secreted by yeast as mediated by the endogenous signal peptide. Production of AMY1 increased 25-fold when the 5'-noncoding part of clone E which contains a 12-bp dG.dC homopolymer tail had been removed. Moreover, expression was one to two orders of magnitude higher when genes encoding AMY1 or AMY2 were inserted between promoter and terminator of the yeast PGK gene in comparison to expression directed from the ADC1 or GAL1 promoters. Recombinant AMY1 and AMY2 had the same Mr and N-terminal sequence as the corresponding barley malt enzymes. Furthermore, none of the enzymes were found to be N-glycosylated. Isoelectric focusing indicated that transformed yeast cells secreted one major form of AMY2 and four dominant forms of AMY1. One AMY1 form corresponded to one of the major forms found in malt while the others, having either low activity or unusually high pI, probably reflect inefficient/incorrect processing. Enzyme kinetic properties and pH activity-dependence of recombinant AMY2 were essentially identical to those of malt AMY2.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2258050

  14. Comparison of barley malt alpha-amylase isozymes 1 and 2: construction of cDNA hybrids by in vivo recombination and their expression in yeast.

    PubMed

    Juge, N; Søgaard, M; Chaix, J C; Martin-Eauclaire, M F; Svensson, B; Marchis-Mouren, G; Guo, X J

    1993-08-25

    Germinating barley produces two alpha-amylase isozymes, AMY1 and AMY2, having 80% amino acid (aa) sequence identity and differing with respect to a number of functional properties. Recombinant AMY1 (re-AMY1) and AMY2 (re-AMY2) are produced in yeast, but whereas all re-AMY1 is secreted, re-AMY2 accumulates within the cell and only traces are secreted. Expression of AMY1::AMY2 hybrid cDNAs may provide a means of understanding the difference in secretion efficiency between the two isozymes. Here, the efficient homologous recombination system of the yeast, Saccharomyces cerevisiae, was used to generate hybrids of barley AMY with the N-terminal portion derived from AMY1, including the signal peptide (SP), and the C-terminal portion from AMY2. Hybrid cDNAs were thus generated that encode either the SP alone, or the SP followed by the N-terminal 21, 26, 53, 67 or 90 aa from AMY1 and the complementary C-terminal sequences from AMY2. Larger amounts of re-AMY are secreted by hybrids containing, in addition to the SP, 53 or more aa of AMY1. In contrast, only traces of re-AMY are secreted for hybrids having 26 or fewer aa of AMY1. In this case, re-AMY hybrid accumulates intracellularly. Transformants secreting hybrid enzymes also accumulated some re-AMY within the cell. The AMY1 SP, therefore, does not ensure re-AMY2 secretion and a certain portion of the N-terminal sequence of AMY1 is required for secretion of a re-AMY1::AMY2 hybrid. PMID:8359683

  15. Age Differences of Salivary Alpha-Amylase Levels of Basal and Acute Responses to Citric Acid Stimulation Between Chinese Children and Adults

    PubMed Central

    Yang, Ze-Min; Chen, Long-Hui; Zhang, Min; Lin, Jing; Zhang, Jie; Chen, Wei-Wen; Yang, Xiao-Rong

    2015-01-01

    It remains unclear how salivary alpha-amylase (sAA) levels respond to mechanical stimuli in different age groups. In addition, the role played by the sAA gene (AMY1) copy number and protein expression (glycosylated and non-glycosylated) in sAA activity has also been rarely reported. In this study, we analyzed saliva samples collected before and after citric acid stimulation from 47 child and 47 adult Chinese subjects. We observed that adults had higher sAA activity and sAA glycosylated levels (glycosylated sAA amount/total sAA amount) in basal and stimulated saliva when compared with children, while no differences were found in total or glycosylated sAA amount between them. Interestingly, adults showed attenuated sAA activity levels increase over those of children after stimulation. Correlation analysis showed that total sAA amount, glycosylated sAA amount, and AMY1 copy number × total sAA amount were all positively correlated with sAA activity before and after stimulation in both groups. Interestingly, correlation r between sAA levels (glycosylated sAA amount and total sAA amount) and sAA activity decreased after stimulation in children, while adults showed an increase in correlation r. In addition, the correlation r between AMY1 copy number × total sAA amount and sAA activity was higher than that between AMY1 copy number, total sAA amount, and sAA activity, respectively. Taken together, our results suggest that total sAA amount, glycosylated sAA amount, and the positive interaction between AMY1 copy number and total sAA amount are crucial in influencing sAA activity before and after stimulation in children and adults. PMID:26635626

  16. Distinct characteristics of single starch-binding domain SBD1 derived from tandem domains SBD1-SBD2 of halophilic Kocuria varians alpha-amylase.

    PubMed

    Yamaguchi, Rui; Arakawa, Tsutomu; Tokunaga, Hiroko; Ishibashi, Matsujiro; Tokunaga, Masao

    2012-03-01

    Kocuria varians alpha-amylase contains tandem starch-binding domains SBD1-SBD2 (SBD12) that possess typical halophilic characteristics. Recombinant tandem domains SBD12 and single domain SBD1, both with amino-terminal hexa-His tag, were expressed in and purified to homogeneity from Escherichia coli. The circular dichroism (CD) spectrum of His-SBD12 was characterized by a positive peak at 233 nm ascribed to the aromatic stacking. Although the signal occurred in the far UV region, it is an indication of tertiary structure folding. CD spectrum of single domain His-SBD1 exhibited the same peak position, signal intensity and spectral shape as those of His-SBD12, suggesting that the aromatic stacking must occur within the domain, and that two SBD domains in SBD12 and SBD1 has a similar folded structure. This structural observation was consistent with the biological activity that His-SBD1 showed binding activity against raw starch granules and amylose resin with 70-80% efficiency compared with binding of equimolar His-SBD12. Although the thermal unfolding rate of SBD12 and SBD1 were similar, the refolding rates of SBD12 and SBD1 from thermal melting were greatly different: His-SBD12 refolded slowly (T(1/2) = ~84 min), while refolding of single domain His-SBD1 was found to be 20-fold faster (T(1/2) = 4.2 min). The possible mechanism of this large difference in refolding rate was discussed. Maltose at 20 mM showed 5-6 °C increase in thermal melting of both His-SBD12 and His-SBD1, while its effects on the time course of unfolding and refolding were insignificant. PMID:22388479

  17. Display of alpha-amylase on the surface of Lactobacillus casei cells by use of the PgsA anchor protein, and production of lactic acid from starch.

    PubMed

    Narita, Junya; Okano, Kenji; Kitao, Tomoe; Ishida, Saori; Sewaki, Tomomitsu; Sung, Moon-Hee; Fukuda, Hideki; Kondo, Akihiko

    2006-01-01

    We developed a new cell surface engineering system based on the PgsA anchor protein from Bacillus subtilis. In this system, the N terminus of the target protein was fused to the PgsA protein and the resulting fusion protein was expressed on the cell surface. Using this new system, we constructed a novel starch-degrading strain of Lactobacillus casei by genetically displaying alpha-amylase from the Streptococcus bovis strain 148 with a FLAG peptide tag (AmyAF). Localization of the PgsA-AmyA-FLAG fusion protein on the cell surface was confirmed by immunofluorescence microscopy and flow cytometric analysis. The lactic acid bacteria which displayed AmyAF showed significantly elevated hydrolytic activity toward soluble starch. By fermentation using AmyAF-displaying L. casei cells, 50 g/liter of soluble starch was reduced to 13.7 g/liter, and 21.8 g/liter of lactic acid was produced within about 24 h. The yield in terms of grams of lactic acid produced per gram of carbohydrate utilized was 0.60 g per g of carbohydrate consumed at 24 h. Since AmyA was immobilized on the cells, cells were recovered after fermentation and used repeatedly. During repeated utilization of cells, the lactic acid yield was improved to 0.81 g per g of carbohydrate consumed at 72 h. These results indicate that efficient simultaneous saccharification and fermentation from soluble starch to lactic acid were carried out by recombinant L. casei cells with cell surface display of AmyA. PMID:16391053

  18. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase.

    PubMed

    Juge, Nathalie; Nøhr, Jane; Le Gal-Coëffet, Marie-Françoise; Kramhøft, Birte; Furniss, Caroline S M; Planchot, Véronique; Archer, David B; Williamson, Gary; Svensson, Birte

    2006-02-01

    High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha-amylase 1 (AMY1) fused C-terminally to this SBD via a 37 residue GA-I linker segment. AMY1-SBD was expressed in A. niger, secreted using the AMY1 signal sequence at 25 mg x L(-1) and purified in 50% yield. AMY1-SBD contained 23% carbohydrate and consisted of correctly N-terminally processed multiple forms of isoelectric points in the range 4.1-5.2. Activity and apparent affinity of AMY1-SBD (50 nM) for barley starch granules of 0.034 U x nmol(-1) and K(d) = 0.13 mg x mL(-1), respectively, were both improved with respect to the values 0.015 U x nmol(-1) and 0.67 mg x mL(-1) for rAMY1 (recombinant AMY1 produced in A. niger). AMY1-SBD showed a 2-fold increased activity for soluble starch at low (0.5%) but not at high (1%) concentration. AMY1-SBD hydrolysed amylose DP440 with an increased degree of multiple attack of 3 compared to 1.9 for rAMY1. Remarkably, at low concentration (2 nM), AMY1-SBD hydrolysed barley starch granules 15-fold faster than rAMY1, while higher amounts of AMY-SBD caused molecular overcrowding of the starch granule surface. PMID:16403494

  19. Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor.

    PubMed

    Fan, J Q; Ishii, S; Asano, N; Suzuki, Y

    1999-01-01

    Fabry disease is a disorder of glycosphingolipid metabolism caused by deficiency of lysosomal alpha-galactosidase A (alpha-Gal A), resulting in renal failure along with premature myocardial infarction and strokes. No effective treatment of this disorder is available at present. Studies of residual activities of mutant enzymes in many Fabry patients showed that some of them had kinetic properties similar to those for normal alpha-Gal A, but were significantly less stable, especially in conditions of neutral pH (refs. 3-5). The biosynthetic processing was delayed in cultured fibroblasts of a Fabry patient, and the mutant protein formed an aggregate in endoplasmic reticulum, indicating that the enzyme deficiency in some mutants was mainly caused by abortive exit from the endoplasmic reticulum, leading to excessive degradation of the enzyme. We report here that 1-deoxy-galactonojirimycin (DGJ), a potent competitive inhibitor of alpha-Gal A, effectively enhanced alpha-Gal A activity in Fabry lymphoblasts, when administrated at concentrations lower than that usually required for intracellular inhibition of the enzyme. DGJ seemed to accelerate transport and maturation of the mutant enzyme. Oral administration of DGJ to transgenic mice overexpressing a mutant alpha-Gal A substantially elevated the enzyme activity in some organs. We propose a new molecular therapeutic strategy for genetic metabolic diseases of administering competitive inhibitors as 'chemical chaperons' at sub-inhibitory intracellular concentrations. PMID:9883849

  20. Canarypox Virus-Induced Maturation of Dendritic Cells Is Mediated by Apoptotic Cell Death and Tumor Necrosis Factor Alpha Secretion

    PubMed Central

    Ignatius, Ralf; Marovich, Mary; Mehlhop, Erin; Villamide, Loreley; Mahnke, Karsten; Cox, William I.; Isdell, Frank; Frankel, Sarah S.; Mascola, John R.; Steinman, Ralph M.; Pope, Melissa

    2000-01-01

    Recombinant avipox viruses are being widely evaluated as vaccines. To address how these viruses, which replicate poorly in mammalian cells, might be immunogenic, we studied how canarypox virus (ALVAC) interacts with primate antigen-presenting dendritic cells (DCs). When human and rhesus macaque monocyte-derived DCs were exposed to recombinant ALVAC, immature DCs were most susceptible to infection. However, many of the infected cells underwent apoptotic cell death, and dying infected cells were engulfed by uninfected DCs. Furthermore, a subset of DCs matured in the ALVAC-exposed DC cultures. DC maturation coincided with tumor necrosis factor alpha (TNF-α) secretion and was significantly blocked in the presence of anti-TNF-α antibodies. Interestingly, inhibition of apoptosis with a caspase 3 inhibitor also reduced some of the maturation induced by exposure to ALVAC. This indicates that both TNF-α and the presence of primarily apoptotic cells contributed to DC maturation. Therefore, infection of immature primate DCs with ALVAC results in apoptotic death of infected cells, which can be internalized by noninfected DCs driving DC maturation in the presence of the TNF-α secreted concomitantly by exposed cells. This suggests an important mechanism that may influence the immunogenicity of avipox virus vectors. PMID:11070033

  1. Juvenile stress-induced alteration of maturation of the GABAA receptor alpha subunit in the rat.

    PubMed

    Jacobson-Pick, Shlomit; Elkobi, Alina; Vander, Shelly; Rosenblum, Kobi; Richter-Levin, Gal

    2008-11-01

    Profound evidence indicates that GABAA receptors are important in the control of physiological response to stress and anxiety. The alpha subunit type composition contributes significantly to the functional characterization of the GABAA receptors. The alpha2, alpha3, alpha5 subunits are predominately expressed in the brain during embryonic and early postnatal periods of normal rats, whilst alpha1 are most prominent during later developmental stages. In the present study, we examined the long-term effects of juvenile stress on GABA alpha subunit expression in adulthood in the amygdala and hippocampus. We applied the elevated platform stress paradigm at juvenility and used the open-field and startle response tests to assess anxiety level in adulthood. Juvenile stress effects without behavioural tests in adulthood were also examined since previous studies indicated that the mere exposure to these tests might be stressful for rats, enhancing the effects of the juvenile exposure to stress. In adulthood, we quantitatively determined the level of expression of alpha1, alpha2 and alpha3 in the hippocampus and amygdala. Our results indicate that subjecting juvenile stressed rats to additional challenges in adulthood results in an immature-like expression profile of these subunits. To test for potential functional implications of these alterations we examined the effects of the anxiolytic (diazepam) and the sedative (brotizolam) benzodiazepines on juvenile stressed and control rats following additional challenges in adulthood. Juvenile stressed rats were more sensitive to diazepam and less sensitive to brotizolam, suggesting that the alterations in GABA alpha subunit expression in these animals have functional consequences. PMID:18364065

  2. Salivary alpha amylase diurnal pattern and stress response are associated with body mass index in low-income preschool-aged children.

    PubMed

    Miller, Alison L; Sturza, Julie; Rosenblum, Katherine; Vazquez, Delia M; Kaciroti, Niko; Lumeng, Julie C

    2015-03-01

    Physiological stress responses are proposed as a pathway through which stress can "get under the skin" and lead to health problems, specifically obesity. We tested associations of salivary alpha amylase (sAA) diurnal patterns and stress responses with body mass index (BMI) in young, low-income children (51% male; 54% non-Hispanic white). Diurnal saliva samples were collected three times per day across three days for 269 children (M age 50.8 months, SD 6.3). Individual sAA intercept and slope values were calculated using random effect models to represent morning sAA levels and rate of sAA change across the day. A subset of children (n=195; M age 56.6 months, SD 6.9) participated in a lab-based behavioral stress protocol. Area under the curve increase (AUCI) across four timepoints was calculated to represent increase in sAA output during stress elicitation. Children were weighed and height measured and BMI z-score was calculated. Linear regression was used to evaluate associations of sAA intercept, sAA slope, and sAA AUCI with BMI z-score, controlling for child age, sex, and race/ethnicity; maternal weight status; and family income-to-needs ratio. Diurnal and stress-response sAA patterns were related to child adiposity: for each 1-standard deviation unit (SDU) decrease in morning sAA level, the child's BMI z-score increased by 0.11 (SE 0.05) SDU's (p<.04); for each 1-SDU increase in sAA slope across the day, the child's BMI z-score increased by 0.12 (SE 0.05) SDU's (p<.03); and for each 1-SDU decrease in sAA AUCI during the stress elicitation, the child's BMI z-score increased by 0.14 (SE 0.06) SDU's (p<.03). Blunted stress responses and atypical diurnal patterns of sAA have been found following exposure to chronic life stressors such as poverty. Findings suggest that associations of stress, sAA, and elevated body mass index may develop very early in the lifespan. PMID:25588701

  3. Modulation of activity and substrate binding modes by mutation of single and double subsites +1/+2 and -5/-6 of barley alpha-amylase 1.

    PubMed

    Mori, H; Bak-Jensen, K S; Gottschalk, T E; Motawia, M S; Damager, I; Møller, B L; Svensson, B

    2001-12-01

    Enzymatic properties of barley alpha-amylase 1 (AMY1) are altered as a result of amino acid substitutions at subsites -5/-6 (Cys95-->Ala/Thr) and +1/+2 (Met298-->Ala/Asn/Ser) as well as in the double mutants, Cys95-->Ala/Met298-->Ala/Asn/Ser. Cys95-->Ala shows 176% activity towards insoluble Blue Starch compared to wild-type AMY1, kcat of 142 and 211% towards amylose DP17 and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside (Cl-PNPG7), respectively, but fivefold to 20-fold higher Km. The Cys95-->Thr-AMY1 AMY2 isozyme mimic exhibits the intermediary behaviour of Cys95-->Ala and wild-type. Met298-->Ala/Asn/Ser have slightly higher to slightly lower activity for starch and amylose, whereas kcat and kcat/Km for Cl-PNPG7 are < or = 30% and < or = 10% of wild-type, respectively. The activity of Cys95-->Ala/Met298-->Ala/Asn/Ser is 100-180% towards starch, and the kcat/Km is 15-30%, and 0.4-1.1% towards amylose and Cl-PNPG7, respectively, emphasizing the strong impact of the Cys95-->Ala mutation on activity. The mutants therefore prefer the longer substrates and the specificity ratios of starch/Cl-PNPG7 and amylose/Cl-PNPG7 are 2.8- to 270-fold and 1.2- to 60-fold larger, respectively, than of wild-type. Bond cleavage analyses show that Cys95 and Met298 mutations weaken malto-oligosaccharide binding near subsites -5 and +2, respectively. In the crystal structure Met298 CE and SD (i.e., the side chain methyl group and sulfur atom) are near C(6) and O(6) of the rings of the inhibitor acarbose at subsites +1 and +2, respectively, and Met298 mutants prefer amylose for glycogen, which is hydrolysed with a slightly lower activity than by wild-type. Met298 AMY1 mutants and wild-type release glucose from the nonreducing end of the main-chain of 6"'-maltotriosyl-maltohexaose thus covering subsites -1 to +5, while productive binding of unbranched substrate involves subsites -3 to +3. PMID:11737209

  4. Effect of chronic training on heart rate variability, salivary IgA and salivary alpha-amylase in elite swimmers with a disability.

    PubMed

    Edmonds, Rohan; Burkett, Brendan; Leicht, Anthony; McKean, Mark

    2015-01-01

    The purpose of this study was to a) determine the heart rate variability (HRV) and saliva markers of immunity (salivary immunoglobulin A; sIgA) and stress (salivary alpha-amylase; sAA) responses to chronic training in elite swimmers with a disability; and b) identify the relationships between HRV, sIgA, sAA and training volume. Eight members of a high performance Paralympic swimming program were monitored for their weekly resting HRV, sIgA and sAA levels in the 14 weeks leading up to a major international competition. The 14 week training program included aerobic, anaerobic, power and speed, and taper training phases, while also incorporating two swimming step tests and two swimming competitions. Specific time (root mean square of the successive differences; RMSSD) and frequency (high frequency normalized units [HFnu]) domain measures, along with non-linear indices (standard deviation of instantaneous RR variability; SD1 and short term fractal scaling exponent; α1) of HRV were used for all analyses with effects examined using magnitude-based inferences. Relationships between HRV and saliva markers were identified by Spearman rank rho (ρ) correlation coefficients. Compared with week 1, SD1 was very likely lower (96/4/0, ES = -2.21), while sAA was very likely elevated (100/0/0, ES = 2.32) at the beginning of week 7 for all athletes. The training program did not alter HRV or saliva whereas competition did. There were also no apparent differences observed for HRV, sIgA and sAA between each of the training phases during the 14 week swimming program. Correlations were observed between sAA and SD1 (ρ = -0.212, p<0.05), along with sAA and mean HR (ρ = 0.309, p<0.05). These results show that high level national competition influences depresses HRV (SD1) and increases saliva biomarkers of stress (sAA). It appears that a well-managed and periodised swimming program can maintain these indices within normal baseline levels. The study also highlighted the parasympathetic

  5. Effect of Chronic Training on Heart Rate Variability, Salivary IgA and Salivary Alpha-Amylase in Elite Swimmers with a Disability

    PubMed Central

    Edmonds, Rohan

    2015-01-01

    The purpose of this study was to a) determine the heart rate variability (HRV) and saliva markers of immunity (salivary immunoglobulin A; sIgA) and stress (salivary alpha-amylase; sAA) responses to chronic training in elite swimmers with a disability; and b) identify the relationships between HRV, sIgA, sAA and training volume. Eight members of a high performance Paralympic swimming program were monitored for their weekly resting HRV, sIgA and sAA levels in the 14 weeks leading up to a major international competition. The 14 week training program included aerobic, anaerobic, power and speed, and taper training phases, while also incorporating two swimming step tests and two swimming competitions. Specific time (root mean square of the successive differences; RMSSD) and frequency (high frequency normalized units [HFnu]) domain measures, along with non-linear indices (standard deviation of instantaneous RR variability; SD1 and short term fractal scaling exponent; α1) of HRV were used for all analyses with effects examined using magnitude-based inferences. Relationships between HRV and saliva markers were identified by Spearman rank rho (ρ) correlation coefficients. Compared with week 1, SD1 was very likely lower (96/4/0, ES = -2.21), while sAA was very likely elevated (100/0/0, ES = 2.32) at the beginning of week 7 for all athletes. The training program did not alter HRV or saliva whereas competition did. There were also no apparent differences observed for HRV, sIgA and sAA between each of the training phases during the 14 week swimming program. Correlations were observed between sAA and SD1 (ρ = -0.212, p<0.05), along with sAA and mean HR (ρ = 0.309, p<0.05). These results show that high level national competition influences depresses HRV (SD1) and increases saliva biomarkers of stress (sAA). It appears that a well-managed and periodised swimming program can maintain these indices within normal baseline levels. The study also highlighted the parasympathetic

  6. Novel prediction method of beer foam stability using protein Z, barley dimeric alpha-amylase inhibitor-1 (BDAI-1) and yeast thioredoxin.

    PubMed

    Iimure, Takashi; Takoi, Kiyoshi; Kaneko, Takafumi; Kihara, Makoto; Hayashi, Katsuhiro; Ito, Kazutoshi; Sato, Kazuhiro; Takeda, Kazuyoshi

    2008-09-24

    Foam stability is an important quality trait of beer. Our previous results of two-dimensional gel electrophoresis (2DE) analyses of beer proteins implied a relationship between barley dimeric alpha-amylase inhibitor-1 (BDAI-1) and beer foam stability as judged by the NIBEM-T analyzer. To develop a novel prediction method of beer foam stability under different conditions of barley cultivar and malt modification, multiple linear regression analysis was applied. The spot intensities of major beer proteins on 2DE gel were quantified and used as explanatory variables. The foam stabilities of 25 beer samples each brewed from malt with different malt modification in one of the three cultivars (cultivars A, B, and C) were explained by the spot intensities of BDAI-1 at the 5% significance level ( r = 0.421). Furthermore, two other major protein spots (b0 and b5) were observed on the 2DE gels of Japanese commercial beer samples with different foam stability. Then, multiple regression for foam stability was calculated using these three spot intensities as explanatory variables. As a result, 72.1% of the beer foam stability in 25 beer samples was explained by a novel multiple regression equation calculated using spot b0 and BDAI-1 as positive explanatory variables and spot b5 as a negative variable. To verify the validity of the multiple regression equation and the explanatory variables, the beer foam stability in practical beer samples was analyzed. As a result, 81.5% of the beer foam stability in 10 Japanese commercial beer samples was also explained by using spot b0 and BDAI-1 as positive explanatory variables and spot b5 as a negative variable. Mass spectrometry analyses followed by database searches revealed that protein spots b0 and b5 were identified as protein Z originated from barley and thioredoxin originated from yeast, respectively. These results confirm that BDAI-1 and protein Z are foam-positive factors and identify yeast thioredoxin as a possible novel foam

  7. Role of interleukin-1 beta, interleukin-6, and TNF-alpha in intestinal maturation induced by dietary spermine in rats.

    PubMed

    Kaouass, M; Deloyer, P; Gouders, I; Peulen, O; Dandrifosse, G

    1997-04-01

    In the present investigation, the authors aimed to evaluate the role of cytokines in intestinal postnatal maturation induced by dietary polyamines. Neonatal rats were administered either saline (8 mumol) orally. Spermine increased interleukin-1 beta (IL-1 beta), IL-6, and TNF-alpha plasma concentration. The maximum concentrations of IL-1 beta, IL-6, and TNF-alpha were, respectively, observed at 4, 4, and 8 h posttreatment. Intraperitoneal (i.p.) injection of IL-1 beta increased the specific activity of sucrase in whole small intestine, whereas the specific activities of maltase and lactase were significantly enhanced only in the jejunum. IL-6 elicited sucrase and increased maltase specific activity in the whole small intestine, but lactase specific activity was not affected. TNF-alpha had no effect on sucrase and maltase specific activity, but a slight augmentation of lactase specific activity was detected in the jejunum. Spermine and spermidine content in the intestine was increased by i.p. injection of IL-1 beta and IL-6. Corticosterone secretion was elevated by single i.p. injection of IL-1 beta, IL-6, or TNF-alpha. These findings suggest that spermine could induce postnatal intestinal development and corticosterone secretion through a cytokine-dependent mechanism. PMID:9225134

  8. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients.

    PubMed

    Trepiakas, Redas; Pedersen, Anders Elm; Met, Ozcan; Hansen, Morten H; Berntsen, Annika; Svane, Inge Marie

    2008-06-01

    The current "gold standard" for generation of dendritic cell (DC) used in DC-based cancer vaccine studies is maturation of monocyte-derived DCs with tumor necrosis factor-alpha (TNF-alpha)/IL-1beta/IL-6 and prostaglandin E(2) (PGE(2)). Recently, a protocol for producing so-called alpha-Type-1 polarized dendritic cells (alphaDC1) in serum-free medium was published based on maturation of monocyte-derived DCs with TNF-alpha/IL-1-beta/polyinosinic:polycytidylic acid (poly-I:C)/interferon (IFN)-alpha and IFN-gamma. This DC maturation cocktail was described to fulfill the criteria for optimal DC generation and to be superior to the standard DC (sDC) cocktail as it induced fully mature DCs with potent IL-12p70 secretion together with CCR7 expression which is necessary for priming of a TH1 response and for migration to the draining lymph node, respectively. In this study, we tested the adaptation of alphaDC1 maturation cocktail to a protocol for clinical grade DC generation from cancer patients performed in X-VIVO 15 medium. We showed that alphaDC1 in this protocol induce lower up-regulation of CD83 and several other maturation markers, co-stimulatory molecules and CCR7 together with higher up-regulation of inhibitory molecules such as PD-L1, ILT2, ILT3 as compared to sDC. Although alphaDC1 matured DCs secreted more IL-12p70 and IL-23 these DCs had lower or similar stimulatory capacity compared to sDCs when used as stimulating cells in mixed lymphocyte reaction (MLR) or for induction of autologous influenza antigen specific T lymphocytes. Thus, our observations underline that alphaDC1 maturation cannot be directly adapted to alternative protocols for DC generation. Also, this study indicates the necessity for further investigation of correlation between in vitro DC parameters and their in vivo efficacy in clinical vaccination trials. PMID:18450338

  9. Amylase activity of Aspergillus strains--producers of organic acids.

    PubMed

    Tsekova, K; Dentchev, D; Vicheva, A; Dekovska, M

    1993-01-01

    The ability of fungi from genus Aspergillus (producers of organic acids) to synthesize amylase enzymes (alpha-amylase and glucoamylase) was investigated. The productivity of the strains on Czapek-Dox agar and in liquid Czapec-Dox media with 3% soluble starch as a carbon source was established. PMID:8285132

  10. A single amino-acid substitution toggles chloride dependence of the alpha-amylase paralog amyrel in Drosophila melanogaster and Drosophila virilis species.

    PubMed

    Claisse, Gaëlle; Feller, Georges; Bonneau, Magalie; Da Lage, Jean-Luc

    2016-08-01

    In animals, most α-amylases are chloride-dependent enzymes. A chloride ion is required for allosteric activation and is coordinated by one asparagine and two arginine side chains. Whereas the asparagine and one arginine are strictly conserved, the main chloride binding arginine is replaced by a glutamine in some rare instances, resulting in the loss of chloride binding and activation. Amyrel is a distant paralogue of α-amylase in Diptera, which was not characterized biochemically to date. Amyrel shows both substitutions depending on the species. In Drosophila melanogaster, an arginine is present in the sequence but in Drosophila virilis, a glutamine occurs at this position. We have investigated basic enzymological parameters and the dependence to chloride of Amyrel of both species, produced in yeast, and in mutants substituting arginine to glutamine or glutamine to arginine. We found that the amylolytic activity of Amyrel is about thirty times weaker than the classical Drosophila α-amylase, and that the substitution of the arginine by a glutamine in D. melanogaster suppressed the chloride-dependence but was detrimental to activity. In contrast, changing the glutamine into an arginine rendered D. virilis Amyrel chloride-dependent, and interestingly, significantly increased its catalytic efficiency. These results show that the chloride ion is not mandatory for Amyrel but stimulates the reaction rate. The possible phylogenetic origin of the arginine/glutamine substitution is also discussed. PMID:27312592

  11. Synergistic effect of Aspergillus tubingensis CTM 507 glucose oxidase in presence of ascorbic acid and alpha amylase on dough properties, baking quality and shelf life of bread.

    PubMed

    Kriaa, Mouna; Ouhibi, Rabeb; Graba, Héla; Besbes, Souhail; Jardak, Mohamed; Kammoun, Radhouane

    2016-02-01

    The impact of Aspergillus tubingensis glucose oxidase (GOD) in combination with α-amylase and ascorbic acid on dough properties, qualities and shelf life of bread was investigated. Regression models of alveograph and texture parameters of dough and bread were adjusted. Indeed, the mixture of GOD (44 %) and ascorbic acid (56 %) on flour containing basal improver showed its potential as a corrective action to get better functional and rheological properties of dough and bread texture. Furthermore, wheat flour containing basal additives and enriched with GOD (63.8 %), ascorbic acid (32 %) and α- amylase (4.2 %) led to high technological bread making parameters, to decrease the crumb firmness and chewiness and to improve elasticity, adhesion, cohesion and specific volume of bread. In addition to that, the optimized formulation addition significantly reduced water activity and therefore decreased bread susceptibility to microbial spoilage. These findings demonstrated that GOD could partially substitute not only ascorbic acid but also α-amylase. The generated models allowed to predict the behavior of wheat flour containing additives in the range of values tested and to define the additives formula that led to desired rheological and baking qualities of dough. This fact provides new perspectives to compensate flour quality deficiencies at the moment of selecting raw materials and technological parameters reducing the production costs and facilitating gluten free products development. Graphical abstractᅟ. PMID:27162406

  12. Short-term exposure to 17alpha-ethynylestradiol decreases the fertility of sexually maturing male rainbow trout (Oncorhynchus mykiss)

    SciTech Connect

    Schultz, Irv R.; Skillman, Ann D.; Nicolas, Jean-Marc; Cyr, Daniel G.; Nagler, James J.

    2003-06-01

    The synthetic estrogen 17alpha-ethynylestradiol (EE2) is a commonly used oral contraceptive that has been increasingly detected in sewage effluents. This study determined whether EE2 exposure adversely affected reproduction in sexually maturing male rainbow trout (Oncorhynchus mykiss). We exposed male trout to graded water concentrations of EE2 (10, 100, and 1,000 ng/ L) for 62 d leading up to the time of spawning. Semen and blood plasma samples were removed from each fish. Semen was used to fertilize groups of eggs from one nonexposed female. As a measure of fertility, eggs were incubated for 28 d after fertilization to determine the proportion that attained the eyed stage of embryonic development. Additional endpoints also measured included sperm motility, spermatocrit, gonadosomatic and hepatosomatic indices, testis histology, and circulating plasma levels of the sex steroids 17alpha, 20beta-dihydroxyprogesterone (17,20-DHP) and 11-ketotestosterone (11-KT). Exposure to 1,000 ng/L of EE2 caused complete mortality of the treatment group by day 57. Exposure to lower EE2 water concentrations (10 and 100 ng/L) caused an increase in sperm density, while a significant reduction in testis mass was observed only in the 100-ng/L exposure group. Most significantly, semen harvested from fish exposed to 10 and 100 ng/L EE2 caused an approximately 50% reduction in the number of eggs attaining the eyed stage of embryonic development. Plasma levels of 17,20-DHP in exposed fish were roughly twice the level of the controls, while levels of 11-KT were significantly reduced in fish exposed to 100 ng/L EE2. These results suggest that sexually maturing male rainbow trout are susceptible to detrimental reproductive effects of short-term exposures to environmentally relevant levels of EE2.

  13. Lactase persistence and augmented salivary alpha-amylase gene copy numbers might have been selected by the combined toxic effects of gluten and (food born) pathogens.

    PubMed

    Pruimboom, Leo; Fox, Tom; Muskiet, Frits A J

    2014-03-01

    Various positively selected adaptations to new nutrients have been identified. Lactase persistence is among the best known, conferring the ability for drinking milk at post weaning age. An augmented number of amylase gene (AMY1) copies, giving rise to higher salivary amylase activity, has been implicated in the consumption of starch-rich foods. Higher AMY1 copy numbers have been demonstrated in populations with recent histories of starchy-rich diets. It is however questionable whether the resulting polymorphisms have exerted positive selection only by providing easily available sources of macro and micronutrients. Humans have explored new environments more than any other animal. Novel environments challenge the host, but especially its immune system with new climatic conditions, food and especially pathogens. With the advent of the agricultural revolution and the concurrent domestication of cattle came new pathogens. We contend that specific new food ingredients (e.g., gluten) and novel pathogens drove selection for lactase persistence and higher AMY gene copy numbers. Both adaptations provide ample glucose for activating the sodium glucose-dependent co-transporter 1 (SGLT1), which is the principal glucose, sodium and water transporter in the gastro-intestinal tract. Their rapid uptake confers protection against potentially lethal dehydration, hyponatremia and ultimately multiple organ failure. Oral rehydration therapy aims at SGLT1 activity and is the current treatment of choice for chronic diarrhoea and vomiting. We hypothesize that lifelong lactase activity and rapid starch digestion should be looked at as the evolutionary covalent of oral rehydration therapy. PMID:24472865

  14. Enzymatic Properties of an Alkaline and Chelator Resistant Proportional to alpha-Amylase from the Alkaliphilic Bacillus sp. Isolate L1711

    NASA Technical Reports Server (NTRS)

    Bernhardsdotter, Eva C. M. J.; Pusey, Marc L.; Ng, Joseph D.; Garriott, Owen K.

    2004-01-01

    An alkaliphilic amylase producing bacterium, Bacillus sp. strain L1711, was selected among 13 soda lakes isolates. When grown at pH 10.5 and 370 C, strain L1711 produced multiple forms of amylases in the culture broth. One of these, BAA, was purified from the culture supernatant by QAE column chromatography and preparative native gel electrophoresis. The molecular weight of BAA was determined to be 51 kDa by denaturing gel electrophoresis. The pH optima for activity below and above 40 C were 9.5-10.0 and 7.0-7.5 respectively. BAA was stable in the pH range 6-11 and was completely inactivated at 55?C. The thermostability was not increased in the presence of Ca(2+). The enzyme was strongly inhibited by Ca(2+), Zn(2+), Mg(2+), Mn(2+), Ba(2+) and Cu(2+), whereas the presence of Na(+), Co2+ and EDTA (10 mM) enhanced enzymatic activity. The K(sub m) and specific activity of BAA on soluble starch were 1.9 mg/ml and 18.5 U/mg respectively. The main end products of hydrolysis were maltotetraose, maltose and glucose .

  15. Functional defect of truncated hepatocyte nuclear factor-1{alpha} (G554fsX556) associated with maturity-onset diabetes of the young

    SciTech Connect

    Kooptiwut, Suwattanee; Sujjitjoon, Jatuporn; Plengvidhya, Nattachet; Boonyasrisawat, Watip; Chongjaroen, Nalinee; Jungtrakoon, Prapapron; Semprasert, Namoiy; Furuta, Hiroto; Nanjo, Kishio; Banchuin, Napatawn; Yenchitsomanus, Pa-thai

    2009-05-22

    A novel frameshift mutation attributable to 14-nucleotide insertion in hepatocyte nuclear factor-1{alpha} (HNF-1{alpha}) encoding a truncated HNF-1{alpha} (G554fsX556) with 76-amino acid deletion at its carboxyl terminus was identified in a Thai family with maturity-onset diabetes of the young (MODY). The wild-type and mutant HNF-1{alpha} proteins were expressed by in vitro transcription and translation (TNT) assay and by transfection in HeLa cells. The wild-type and mutant HNF-1{alpha} could similarly bind to human glucose-transporter 2 (GLUT2) promoter examined by electrophoretic mobility shift assay (EMSA). However, the transactivation activities of mutant HNF-1{alpha} on human GLUT2 and rat L-type pyruvate kinase (L-PK) promoters in HeLa cells determined by luciferase reporter assay were reduced to approximately 55-60% of the wild-type protein. These results suggested that the functional defect of novel truncated HNF-1{alpha} (G554fsX556) on the transactivation of its target-gene promoters would account for the {beta}-cell dysfunction associated with the pathogenesis of MODY.

  16. Elevated Salivary Alpha-Amylase Level, Association Between Depression and Disease Activity, and Stress as a Predictor of Disease Flare in Systemic Lupus Erythematosus

    PubMed Central

    Jung, Ju-Yang; Nam, Jin-Young; Kim, Hyoun-Ah; Suh, Chang-Hee

    2015-01-01

    Abstract Psychological stress has been shown to trigger systemic lupus erythematosus (SLE). However, objective evidence of symptom aggravation due to mental stress is difficult to identify. We aimed to investigate the relationship between SLE disease activity and mental stress, and the usefulness of saliva as an assessment index for stress in patients with SLE. We prospectively assessed the salivary stress hormone and disease-related biomarkers, and questionnaire data regarding stress and depression in 100 patients with SLE and 49 sex- and age-matched normal controls (NCs). Patients with SLE had higher mean salivary α-amylase levels (5.7 ± 4.6 U/mL vs 2.7 ± 2.5 U/mL, P < 0.001), anti-chromatin antibody levels (25.3 ± 22.9 U/mL vs 15.9 ± 10.9 U/mL, P < 0.001), and Beck Depression Index (BDI) scores (11.1 ± 9.2 vs 5.3 ± 5.1, P < 0.001) than NCs. However, salivary cortisol levels and Perceived Stress Scale (PSS) scores did not differ between the groups. The BDI scores correlated with the SLE disease activity index (SLEDAI) scores (r = 0.253, P = 0.011) and erythrocyte sedimentation rates (r = 0.234, P = 0.019). SLE patients with the highest-quartile PSS scores had significantly increased SLEDAI scores compared to those with the lowest-quartile PSS scores after 4 to 5 months’ follow-up. Moreover, SLE patients with elevated SLEDAI scores had higher baseline PSS scores. Patients with SLE showed uncoupling of the sympathetic nervous system and hypothalamic–pituitary–adrenal axis; higher salivary α-amylase and no different cortisol levels compared with NCs. Also, patients with SLE were more depressed, which correlated with disease activity. Furthermore, perceived stress was not correlated with disease activity; however, disease activity worsened several months later with elevated perceived stress levels. PMID:26222848

  17. a-Amylase activity during pullulan production and a-Amylase gene analyses of Aureobasidium pullulans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungus Aureobasidium pullulans is the source of commercially produced pullulan, a high molecular weight polysaccharide that is used in the manufacture of edible films. It has been proposed that alpha-amylase negatively affects the molecular weight of pullulan in late cultures. Based on a recen...

  18. The purification of a novel amylase from Bacillus subtilis and its inhibition by wheat proteins.

    PubMed Central

    Orlando, A R; Ade, P; Di Maggio, D; Fanelli, C; Vittozzi, L

    1983-01-01

    A new alpha-amylase (EC 3.2.1.1) from Bacillus subtilis was purified by affinity chromatography. The molecular weight of the purified enzyme, estimated from sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, was 93000, which is very different from the molecular weights of two well-characterized amylases from B. subtilis. Electrofocusing showed an isoelectric point of 5. Amylase shows a broad maximum of activity between pH 6 and 7; maximal inhibition of enzyme by wheat-protein alpha-amylase inhibitors is displayed at pH 7. Images Fig. 1. PMID:6189482

  19. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain.

    PubMed

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch. PMID:19011066

  20. Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity.

    PubMed

    Talekar, Sachin; Pandharbale, Amol; Ladole, Mayur; Nadar, Shamraja; Mulla, Mosin; Japhalekar, Kshitija; Pattankude, Kishori; Arage, Devika

    2013-11-01

    A tri-enzyme biocatalyst "combi-CLEAs" with starch hydrolytic activity was prepared from commercially available alpha amylase, glucoamylase and pullulanase preparations by aggregating enzymes with ammonium sulphate followed by cross-linking formed aggregates for 4.5h with 40 mM glutaraldehyde. The effects of precipitant type and cross-linking were studied and the biocatalyst was characterized. Scanning electron microscopy analysis showed that tri-enzyme biocatalyst was of spherical structure. For one pot starch hydrolytic activity, shift in optimum pH from 6 to 7 and temperature from 65 to 75 °C were observed after co-immobilization of enzymes. After one pot starch hydrolysis reaction in batch mode, 100%, 60% and 40% conversions were obtained with combi-CLEAs, separate CLEAs mixture and free enzyme mixture, respectively. Co-immobilization also enhanced the thermal stability of enzymes. Finally, the catalytic activity of enzymes in combi-CLEAs during one pot starch hydrolysis was well maintained up to five cycles without performance changes. PMID:23999260

  1. Association of Job Strain With Cortisol and Alpha-Amylase Among Shift-Working Health Care Professionals in Laboratory and Field.

    PubMed

    Karhula, Kati; Härmä, Mikko; Sallinen, Mikael; Lindholm, Harri; Hirvonen, Ari; Elovainio, Marko; Kivimäki, Mika; Vahtera, Jussi; Puttonen, Sampsa

    2016-01-01

    Although the prevalence of work-related stress has increased, knowledge on the contributions of that stress to long-term adverse health effects is still lacking. Stress biomarkers can reveal early signs of negative health effects, but no previous studies have measured both acute stress reactions and long-term exposure to job strain using both salivary cortisol and α-amylase (AA). The present study examines the association between job strain and these biomarkers among shift-working female health care professionals in the laboratory and the field. The 95 participants were recruited from hospital wards categorized in either the top (high job strain [HJS] group, n = 42) or the bottom quartile of job strain (low job strain [LJS] group, n = 53), as rated by survey responses. Participants' self-perceived job strain was at least as high or low as the ward's average estimation. Saliva samples were collected during the Trier Social Stress Test (TSST), preselected morning and night shifts, and a day off. There was a larger increase in the cortisol concentration of participants in the HJS than in the LJS group (2.27- vs. 1.48-fold, respectively, nonsignificant) during the TSST. Participants in the HJS group also had higher salivary AA levels 30 min after awakening on the morning-shift day than those in the LJS group (p = .02), whereas the salivary cortisol awakening response on the day off was higher in the LJS group (p = .05, education as a covariate). The remaining stress-biomarker results did not differ significantly between groups. These data suggest that HJS in shift-working health care professionals is weakly associated with changes in stress biomarkers. PMID:25827426

  2. Characterization of the Activity and Stability of Amylase from Saliva and Detergent: Laboratory Practicals for Studying the Activity and Stability of Amylase from Saliva and Various Commercial Detergents

    ERIC Educational Resources Information Center

    Valls, Cristina; Rojas, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2012-01-01

    This article presents two integrated laboratory exercises intended to show students the role of [alpha]-amylases (AAMYs) in saliva and detergents. These laboratory practicals are based on the determination of the enzymatic activity of amylase from saliva and different detergents using the Phadebas test (quantitative) and the Lugol test…

  3. The Effects of cAMP-elevating Agents and Alpha Lipoic Acid on In Vitro Maturation of Mouse Germinal Vesicle Oocytes

    PubMed Central

    Rahnama, Ali; Zavareh, Saeed; Ghorbanian, Mohammad Taghi; Karimi, Isaac

    2013-01-01

    Background In spite of extensive efforts to improve in vitro oocyte maturation, the obtained results are not very efficient. This study was conducted to assess impacts of cAMP elevating agents and alpha lipoic acid (ALA) on in vitro oocyte maturation and fertilization. Methods Mouse germinal vesicle (GV) oocytes were categorized into cumulus denuded oocytes (DOs; n=896) and cumulus oocyte complexes (COCs; n=1077) groups. GV oocytes were matured in vitro with or without ALA; (I) without the meiotic inhibitors; (II) supplemented with cilostamide; (III) supplemented with forskolin and (IV) supplemented with Forskolin plus cilostamide. The obtained metaphase II (MII) oocytes were subjected to in vitro fertilization. Independent-samples t-testand ANOVA were used for data analysis. A p-value less than 0.05 was considered to be statistically significant. Results The COCs maturation, fertilization and two cell embryo rates were higher than those of DOs in the control group, while no significant difference was observed between relevant COCs and DOs when they were cultured with cilostamide meiotic inhibitors in two step manner. Combined treatment of cilostamide and forskolin significantly elevated the developmental rates in both COCs and DOs as compared to other groups. The developmental rates of COCs and DOs in the presence of ALA were similar to their respective groups without ALA. Conclusion cAMP elevating agents were more effective on DOs than COCs with regard to rates of maturation and fertilization. However, ALA did not affect the developmental rates of both COCs and DOs in in vitro maturation in one or two step manner. PMID:24551571

  4. [Are amylases in bakery products and flour potential food allergens?].

    PubMed

    Baur, X; Sander, I; Jansen, A; Czuppon, A B

    1994-05-21

    The enzyme alpha-amylase from the mould Aspergillus oryzae (Asp o II) routinely used for the production of bread, cakes and pastries has in recent years been identified as an inhalative allergen for occupational diseases (bakers' asthma). It is doubtful whether this amylase in the final product, i.e. after the baking procedure, can still be regarded as an allergen. To clarify this question, detailed case histories on 138 subjects were recorded (98 allergics, 20 patients suffering form chronic intestinal diseases, 20 healthy controls). The clinical examinations included prick skin test and IgE antibody determination using one of the customary enzyme preparations. EAST showed a few of these 138 bread consumers to be weakly sensitized to the enzyme. One of the subjects displayed a significant reaction to alpha-amylase heated to 200 degrees C. As expected, eleven bakers sensitized to alpha-amylase by inhaling it in the workplace (positive prick test, positive case history) predominantly exhibited specific IgE antibodies to the native enzyme. Apart from one weakly positive finding, heated alpha-amylase yielded negative results in this collective. Baking conditions vary widely, especially with regard to single components, temperature and duration. Thus, further investigations as to residual allergenicity or the feasible occurrence of new antigenic determinants during the production of bread, cake and pastries are required. 27% of bakers examined and 9% of atopics showed antibodies to a flour inherent enzyme, a beta-amylase. On the whole, the selected conditions hinted at a weakly sensitizing potential inherent in baking flour and in added amylase. PMID:8209207

  5. Fagopyritol B1, O-alpha-D-galactopyranosyl-(1-->2)-D-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance.

    PubMed

    Horbowicz, M; Brenac, P; Obendorf, R L

    1998-05-01

    O-alpha-D-Galactopyranosyl-(1-->2)-D-chiro-inositol, herein named fagopyritol B1, was identified as a major soluble carbohydrate (40% of total) in buckwheat (Fagopyrum esculentum Moench, Polygonaceae) embryos. Analysis of hydrolysis products of purified compounds and of the crude extract led to the conclusion that buckwheat embryos have five alpha-galactosyl D-chiro-inositols: fagopyritol A1 and fagopyritol B1 (mono-galactosyl D-chiro-inositol isomers), fagopyritol A2 and fagopyritol B2 (di-galactosyl D-chiro-inositol isomers), and fagopyritol B3 (tri-galactosyl D-chiro-inositol). Other soluble carbohydrates analyzed by high-resolution gas chromatography included sucrose (42% of total), D-chiro-inositol, myo-inositol, galactinol, raffinose and stachyose (1% of total), but no reducing sugars. All fagopyritols were readily hydrolyzed by alpha-galactosidase (EC 3.2.1.22) from green coffee bean, demonstrating alpha-galactosyl linkage. Retention time of fagopyritol B1 was identical to the retention time of O-alpha-D-galactopyranosyl-(1-->2)-D-chiro-inositol from soybean (Glycine max (L.) Merrill, Leguminosae), suggesting that the alpha-galactosyl linkage is to the 2-position of D-chiro-inositol. Accumulation of fagopyritol B1 was associated with acquisition of desiccation tolerance during seed development and maturation in planta, and loss of fagopyritol B1 correlated with loss of desiccation tolerance during germination. Embryos of seeds grown at 18 degrees C, a condition that favors enhanced seed vigor and storability, had a sucrose-to-fagopyritol B1 ratio of 0.8 compared to a ratio of 2.46 for seeds grown at 25 degrees C. We propose that fagopyritol B1 facilitates desiccation tolerance and storability of buckwheat seeds. PMID:9599801

  6. Further Experiments on Gibberellin-Stimulated Amylase Production in Cereal Grains

    ERIC Educational Resources Information Center

    Coppage, Jo; Hill, T. A.

    1973-01-01

    Experiments conducted on wheat and barley grains to analyze activities of alpha- and beta-amylase enzymes. Gibberellins were used exogenously. Techniques are described in detail. Results on different cultivars revealed that beta-amylase was not an invariable result of imbibition. Techniques employed can be used by school students. (PS)

  7. ALPHA-GLUCOSIDASES FROM THE GLYCOSIDE HYDROLASE FAMILY 31 IN GERMINATING SEEDS AND SEEDLING LEAVES OF BARLEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of the four starch degrading enzymes in plants, only alpha-amylase and alpha-glucosidase have been extensively studied. Both alpha-amylase and alpha-glucosidase are important in germinating seeds in direct initiation of attack on starch grains. Five different alpha-glucosidases have been found in ...

  8. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells.

    PubMed

    Chen, Shaopeng; Qiu, Junkang; Chen, Chuan; Liu, Chunchun; Liu, Yuheng; An, Lili; Jia, Junying; Tang, Jie; Wu, Lijun; Hang, Haiying

    2012-06-01

    Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-α scFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient. PMID:22467272

  9. Evidence that maturation of the N-linked glycans of the respiratory syncytial virus (RSV) glycoproteins is required for virus-mediated cell fusion: The effect of {alpha}-mannosidase inhibitors on RSV infectivity

    SciTech Connect

    McDonald, Terence P.; Jeffree, Chris E.; Li, Ping; Rixon, Helen W. McL.; Brown, Gaie; Aitken, James D.; MacLellan, Kirsty; Sugrue, Richard J. . E-mail: rjsugrue@ntu.edu.sg

    2006-07-05

    Glycan heterogeneity of the respiratory syncytial virus (RSV) fusion (F) protein was demonstrated by proteomics. The effect of maturation of the virus glycoproteins-associated glycans on virus infectivity was therefore examined using the {alpha}-mannosidase inhibitors deoxymannojirimycin (DMJ) and swainsonine (SW). In the presence of SW the N-linked glycans on the F protein appeared in a partially mature form, whereas in the presence of DMJ no maturation of the glycans was observed. Neither inhibitor had a significant effect on G protein processing or on the formation of progeny virus. Although the level of infectious virus and syncytia formation was not significantly affected by SW-treatment, DMJ-treatment correlated with a one hundred-fold reduction in virus infectivity. Our data suggest that glycan maturation of the RSV glycoproteins, in particular those on the F protein, is an important step in virus maturation and is required for virus infectivity.

  10. Detergent-compatible bacterial amylases.

    PubMed

    Niyonzima, Francois N; More, Sunil S

    2014-10-01

    Proteases, lipases, amylases, and cellulases are enzymes used in detergent formulation to improve the detergency. The amylases are specifically supplemented to the detergent to digest starchy stains. Most of the solid and liquid detergents that are currently manufactured contain alkaline enzymes. The advantages of using alkaline enzymes in the detergent formulation are that they aid in removing tough stains and the process is environmentally friendly since they reduce the use of toxic detergent ingredients. Amylases active at low temperature are preferred as the energy consumption gets reduced, and the whole process becomes cost-effective. Most microbial alkaline amylases are used as detergent ingredients. Various reviews report on the production, purification, characterization, and application of amylases in different industry sectors, but there is no specific review on bacterial or fungal alkaline amylases or detergent-compatible amylases. In this mini-review, an overview on the production and property studies of the detergent bacterial amylases is given, and the stability and compatibility of the alkaline bacterial amylases in the presence of the detergents and the detergent components are highlighted. PMID:25129040

  11. Mechanism of removal of undesirable residual amylase, insoluble starch, and select colorants from refinery streams by powdered activated carbons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need in the world-wide sugar industry to find a practical and economical solution to remove or inactivate residual alpha-amylase that are high temperature stable from factory or refinery streams. A survey of refineries that used amylase and had activated carbon systems for decolorization,...

  12. Relationship among physiological quality, heterosis, and amylase gene expression in maize seeds.

    PubMed

    Oliveira, G E; Von Pinho, E V R; Andrade, T; Souza, J C; Caixeta, F; Ferreira, R A D C

    2015-01-01

    In this study, we analyzed heterosis, amylase enzyme gene expression, and the physiological quality of maize seeds with different genotypes and sizes, which were subjected to aging and not subjected to aging. We used seeds from 2 maize lines that differed with regard to physiological quality, the hybrid, and the reciprocal hybrid; they were classified into 2 sizes and were subjected to aging and not subjected to aging. Physiological quality was assessed by performing tests for germination, emergence, emergence speed index, and artificial aging. Expressions of the genes alpha amylase B73, alpha amylase (LOC542522), isoamylase mRNA clone 353244, and the endogenous controls ubiquitin and alcohol dehydrogenase in the seeds were studied using quantitative real-time-polymerase chain reaction. We observed heterosis for seed quality and for expression of amylase genes in the genotypes studied. We found no difference in seed quality between large and small seeds. PMID:26345793

  13. Kinetic studies of amylase and biomass production by Calvatia gigantea

    SciTech Connect

    Kekos, D.; Macris, B.J.

    1987-01-01

    Production of alpha-amylase (alpha-4, glucan 4-glucanohydrolase, EC 3.2.1.1) by microorganisms has been practiced for many years in small and large scale operations and the literature on this enzyme is voluminous. Aspergillus niger and Aspergillus oryzae have been reported as the main fungal species used for commercial production of the enzyme. On the other hand, large volumes of low-cost agricultural products such as acorn (the perisperm-free dry seed contains approximately 60% starch) are wasted in many countries and provide a challenge to biotechnology to efficiently utilize these rich sources of starch for the production of high added value products like enzymes. C. gigantea is an edible puffball excreting high levels of alpha-amylase when cultivated on different sources of starch containing elevated quantities of toxic tannic compounds. This fungus has been employed for the production of microbial protein from wastes and acorns containing high levels of toxic tannic compounds. The same fungus was also reported to grow on both hydrolyzable and condensed tannins as sole carbon sources. The present work was undertaken to investigate certain kinetic characteristics of alpha-amylase and biomass production by C. gigantea grown on soluble and acorn starch in a lab fermenter. (Refs. 18).

  14. [Amylase in the mixed saliva of diabetics and nondiabetics on an empty stomach and during the glucose tolerance test].

    PubMed

    Fekete, Z; Gol'denberg, A; Lukach, I; Korets, R; Shval'b, O; Platilova, G; Bandura, A

    1989-01-01

    The catalytic activity of alpha-amylase is significantly elevated in salivary pool from 146 diabetics (2176 +/- 149.3 mu catal.l-1) vs. the salivary pool from 78 nondiabetics (1159 +/- 97.3 mu catal X l-1), the difference in the concentrations of the saliva condensation index (the chloride concentration) in the diabetics and nondiabetics being negligible. Glucose tolerance test has been carried out in 54 subjects. Glucose intake has increased the alpha-amylase catalytic activity and augmented glycosialia in 14 diabetics, in 13 subjects with abnormal glucose tolerance, and in 16 nondiabetics; a negligible rise of glycosialia and a reduction of alpha-amylase catalytic activity have been observed in 11 subjects with a flat glycemia curve. Basing on these data, the authors claim that oral glucose activates amylase and glucose secretion by the salivary glands. PMID:2481117

  15. A rapid response of beta-amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination.

    PubMed

    Zhang, Hua; Shen, Wen-Biao; Zhang, Wei; Xu, Lang-Lai

    2005-03-01

    The effects of nitric oxide (NO) and gibberellic acid (GA(3)) on the responses of amylases in wheat (Triticum aestivum L.) seeds (caryopses) were investigated during the first 12 h of germination. GA(3) had no effects on the activities of alpha-amylase (EC 3.2.1.1) or beta-amylase (EC 3.2.1.2), either in intact seeds or embryoless halves within 12 h. In contrast, addition of sodium nitroprusside (SNP), an NO donor, was able to induce a rapid increase in beta-amylase activity without affecting alpha-amylase. Furthermore, the rapid response of beta-amylase to SNP in wheat seeds could be attributed to NO and was approximately dose-dependent. Some other aspects of SNP induction of amylase isozymes were also characterized. Further investigations showed that SNP might play an interesting role in the dissociation of free beta-amylase from small homopolymers or heteropolymers. Furthermore, SNP also directly induced the release of bound beta-amylase from glutenin and its crude enzyme preparation. However, the slight increase in protease also induced by SNP might not be responsible for this action. Interestingly, based on the fact that the rapid response of beta-amylase to NO also existed in seeds of other species, such as barley, soybean, rice and watermelon, it might be a universal event in early seed germination. PMID:15517355

  16. The G115S mutation associated with maturity-onset diabetes of the young impairs hepatocyte nuclear factor 4alpha activities and introduces a PKA phosphorylation site in its DNA-binding domain.

    PubMed

    Oxombre, Bénédicte; Kouach, Mostafa; Moerman, Ericka; Formstecher, Pierre; Laine, Bernard

    2004-11-01

    HNF4alpha (hepatocyte nuclear factor 4alpha) belongs to a complex transcription factor network that is crucial for the function of hepatocytes and pancreatic beta-cells. In these cells, it activates the expression of a very large number of genes, including genes involved in the transport and metabolism of glucose and lipids. Mutations in the HNF4alpha gene correlate with MODY1 (maturity-onset diabetes of the young 1), a form of type II diabetes characterized by an impaired glucose-induced insulin secretion. The MODY1 G115S (Gly115-->Ser) HNF4alpha mutation is located in the DNA-binding domain of this nuclear receptor. We show here that the G115S mutation failed to affect HNF4alpha-mediated transcription on apolipoprotein promoters in HepG2 cells. Conversely, in pancreatic beta-cell lines, this mutation resulted in strong impairments of HNF4alpha transcriptional activity on the promoters of LPK (liver pyruvate kinase) and HNF1alpha, with this transcription factor playing a key role in endocrine pancreas. We show as well that the G115S mutation creates a PKA (protein kinase A) phosphorylation site, and that PKA-mediated phosphorylation results in a decreased transcriptional activity of the mutant. Moreover, the G115E (Gly115-->Glu) mutation mimicking phosphorylation reduced HNF4alpha DNA-binding and transcriptional activities. Our results may account for the 100% penetrance of diabetes in human carriers of this mutation. In addition, they suggest that introduction of a phosphorylation site in the DNA-binding domain may represent a new mechanism by which a MODY1 mutation leads to loss of HNF4alpha function. PMID:15233628

  17. Molecular, Biochemical, and Dietary Regulation Features of α-Amylase in a Carnivorous Crustacean, the Spiny Lobster Panulirus argus.

    PubMed

    Rodríguez-Viera, Leandro; Perera, Erick; Martos-Sitcha, Juan Antonio; Perdomo-Morales, Rolando; Casuso, Antonio; Montero-Alejo, Vivian; García-Galano, Tsai; Martínez-Rodríguez, Gonzalo; Mancera, Juan Miguel

    2016-01-01

    Alpha-amylases are ubiquitously distributed throughout microbials, plants and animals. It is widely accepted that omnivorous crustaceans have higher α-amylase activity and number of isoforms than carnivorous, but contradictory results have been obtained in some species, and carnivorous crustaceans have been less studied. In addition, the physiological meaning of α-amylase polymorphism in crustaceans is not well understood. In this work we studied α-amylase in a carnivorous lobster at the gene, transcript, and protein levels. It was showed that α-amylase isoenzyme composition (i.e., phenotype) in lobster determines carbohydrate digestion efficiency. Most frequent α-amylase phenotype has the lowest digestion efficiency, suggesting this is a favoured trait. We revealed that gene and intron loss have occurred in lobster α-amylase, thus lobsters express a single 1830 bp cDNA encoding a highly conserved protein with 513 amino acids. This protein gives rise to two isoenzymes in some individuals by glycosylation but not by limited proteolysis. Only the glycosylated isoenzyme could be purified by chromatography, with biochemical features similar to other animal amylases. High carbohydrate content in diet down-regulates α-amylase gene expression in lobster. However, high α-amylase activity occurs in lobster gastric juice irrespective of diet and was proposed to function as an early sensor of the carbohydrate content of diet to regulate further gene expression. We concluded that gene/isoenzyme simplicity, post-translational modifications and low Km, coupled with a tight regulation of gene expression, have arose during evolution of α-amylase in the carnivorous lobster to control excessive carbohydrate digestion in the presence of an active α-amylase. PMID:27391425

  18. Molecular, Biochemical, and Dietary Regulation Features of α-Amylase in a Carnivorous Crustacean, the Spiny Lobster Panulirus argus

    PubMed Central

    Martos-Sitcha, Juan Antonio; Perdomo-Morales, Rolando; Casuso, Antonio; Montero-Alejo, Vivian; García-Galano, Tsai; Martínez-Rodríguez, Gonzalo; Mancera, Juan Miguel

    2016-01-01

    Alpha-amylases are ubiquitously distributed throughout microbials, plants and animals. It is widely accepted that omnivorous crustaceans have higher α-amylase activity and number of isoforms than carnivorous, but contradictory results have been obtained in some species, and carnivorous crustaceans have been less studied. In addition, the physiological meaning of α-amylase polymorphism in crustaceans is not well understood. In this work we studied α-amylase in a carnivorous lobster at the gene, transcript, and protein levels. It was showed that α-amylase isoenzyme composition (i.e., phenotype) in lobster determines carbohydrate digestion efficiency. Most frequent α-amylase phenotype has the lowest digestion efficiency, suggesting this is a favoured trait. We revealed that gene and intron loss have occurred in lobster α-amylase, thus lobsters express a single 1830 bp cDNA encoding a highly conserved protein with 513 amino acids. This protein gives rise to two isoenzymes in some individuals by glycosylation but not by limited proteolysis. Only the glycosylated isoenzyme could be purified by chromatography, with biochemical features similar to other animal amylases. High carbohydrate content in diet down-regulates α-amylase gene expression in lobster. However, high α-amylase activity occurs in lobster gastric juice irrespective of diet and was proposed to function as an early sensor of the carbohydrate content of diet to regulate further gene expression. We concluded that gene/isoenzyme simplicity, post-translational modifications and low Km, coupled with a tight regulation of gene expression, have arose during evolution of α-amylase in the carnivorous lobster to control excessive carbohydrate digestion in the presence of an active α-amylase. PMID:27391425

  19. Gene knockout of the intracellular amylase gene by homologous recombination in Streptococcus bovis.

    PubMed

    Brooker, J D; McCarthy, J M

    1997-09-01

    Streptococcus bovis expresses two different amylases, one intracellular and the other secreted. A suicide vector containing part of the intracellular alpha-amylase gene from Streptococcus bovis WI-1 was recombined into the S. bovis WI-1 chromosome to disrupt the endogenous gene. Recombination was demonstrated by Southern blot, and zymogram analysis confirmed the loss of the intracellular amylase. Amylase activity in cell-free extracts of the recombinant grown in the presence of 1% starch was only 7% of wild type. The rate of logarithmic growth of the recombinant was 15-20% of the wild type in medium containing either 1% glucose, starch, or cellobiose. Revertants and non-amylase control recombinants had logarithmic growth rates that were the same as wild type. Plasmid transformants containing multiple copies of the cloned gene expressed up to threefold higher levels of intracellular amylase activity than wild type but did not demonstrate elevated growth rates. These results suggest that a critical level of expression of the intracellular amylase gene may be important for rapid growth of the bacterium. PMID:9236293

  20. Evolution of the amylase isozymes in the Drosophila melanogaster species subgroup.

    PubMed

    Matsuo, Y; Inomata, N; Yamazaki, T

    1999-10-01

    The relationship between the net charge of molecules and their mobility on electrophoresis was analyzed for Drosophila alpha-amylases. Most of the differences in electrophoretic mobility, 98.2%, can be explained by the charge state. Therefore five reference amino acid sites, which are informative residues for charge differences among amylase isozymes, were considered for the evolution of the isozymes in Drosophila melanogaster. The amylase isozymes in D. melanogaster can be classified into three groups, I (AMY1, AMY2, and AMY3-A), II (AMY3-B and AMY4), and III (AMY5, AMY6-A, and AMY6-B), based on the differences in the reference sites. The most primitive amylase in D. melanogaster was found to belong to Group I, most likely the AMY2 isozyme. Groups II and III could have been derived from Group I. These results were confirmed by the analysis of 38 amino acid sites with charge differences in Drosophila. PMID:10626037

  1. Biochemistry, Structure and Function of Non-Wheat Proteins: Case Study of Barley ß-Amylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of a protein is not always evident and may be due to its multifunctional nature. ß-Amylase in seeds of barley (Hordeum vulgare L.) constitutes approximately 2% of the total protein in mature seeds and is assumed to be important when storage proteins are mobilized to support protein s...

  2. The 53-kDa proteolytic product of precursor starch-hydrolyzing enzyme of Aspergillus niger has Taka-amylase-like activity.

    PubMed

    Ravi-Kumar, K; Venkatesh, K S; Umesh-Kumar, S

    2007-04-01

    The 53-kDa amylase secreted by Aspergillus niger due to proteolytic processing of the precursor starch-hydrolyzing enzyme was resistant to acarbose, a potent alpha-glucosidase inhibitor. The enzyme production was induced when A. niger was grown in starch medium containing the inhibitor. Antibodies against the precursor enzyme cross-reacted with the 54-kDa Taka-amylase protein of A. oryzae. It resembled Taka-amylase in most of its properties and also hydrolyzed starch to maltose of alpha-anomeric configuration. However, it did not degrade maltotriose formed during the reaction and was not inhibited by zinc ions. PMID:17123073

  3. Optimization of Amylase Applications in Raw Sugar Manufacture that Directly Concern Refiners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some US refineries that there may be a penalty for high starch concentrations in raw sugar if starch control is not improved. Most commercial alpha-amylases used by the US sugar industry to control starch have intermediate temperature stability (up to 85 ...

  4. Optimization of Amylase Applications in Raw Sugar Manufacture that Directly Concern Refiners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there have been warnings by some U.S. refineries that there may be a penalty for high starch concentrations in raw sugar if starch control is not improved. Most commercial alpha-amylases used by the U.S. sugar industry to control starch have intermediate temperature stability (up to...

  5. The thyroid hormone receptor gene (c-erbA alpha) is expressed in advance of thyroid gland maturation during the early embryonic development of Xenopus laevis.

    PubMed Central

    Banker, D E; Bigler, J; Eisenman, R N

    1991-01-01

    The c-erbA proto-oncogene encodes the thyroid hormone receptor, a ligand-dependent transcription factor which plays an important role in vertebrate growth and development. To define the role of the thyroid hormone receptor in developmental processes, we have begun studying c-erbA gene expression during the ontogeny of Xenopus laevis, an organism in which thyroid hormone has well-documented effects on morphogenesis. Using polymerase chain reactions (PCR) as a sensitive assay of specific gene expression, we found that polyadenylated erbA alpha RNA is present in Xenopus cells at early developmental stages, including the fertilized egg, blastula, gastrula, and neurula. By performing erbA alpha-specific PCR on reverse-transcribed RNAs from high-density sucrose gradient fractions prepared from early-stage embryos, we have demonstrated that these erbA transcripts are recruited to polysomes. Therefore, erbA is expressed in Xenopus development prior to the appearance of the thyroid gland anlage in tailbud-stage embryos. This implies that erbA alpha/thyroid hormone receptors may play ligand-independent roles during the early development of X. laevis. Quantitative PCR revealed a greater than 25-fold range in the steady-state levels of polyadenylated erbA alpha RNA across early stages of development, as expressed relative to equimolar amounts of total embryonic RNA. Substantial increases in the levels of erbA alpha RNA were noted at stages well after the onset of zygotic transcription at the mid-blastula transition, with accumulation of erbA alpha transcripts reaching a relative maximum in advance of metamorphosis. We also show that erbA alpha RNAs are expressed unequally across Xenopus neural tube embryos. This differential expression continues through later stages of development, including metamorphosis. This finding suggests that erbA alpha/thyroid hormone receptors may play roles in tissue-specific processes across all of Xenopus development. Images PMID:1656222

  6. Existence of hydroxylated MWCNTs demotes the catalysis effect of amylases against starch degradation.

    PubMed

    Sekar, Gajalakshmi; Sivakumar, Amaravathy; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2016-05-01

    Possible interaction between amylase and Multi Walled Carbon Nanotubes (MWCNTs) has been elucidated with spectroscopic methods. Hyperchromism of the UV-visible spectra of amylase-CNT conjugates suggested ground state complex formation between them. On contrary, the decreasing fluorescence emission spectra revealed the fate of quenching mechanism to be static. Stoke shift observed from the synchronous and 3D spectra suggested the possibilities of disturbances to the aromatic micro-environment of amylases by OH-MWCNTS. FTIR and FT-Raman spectra showed alteration in the amide I band, that corresponds to their effect on alpha-helical structures. Loss of alpha-helical structures and alteration in the dichroic band again revealed possible conformational change and effect towards the stability of polypeptide backbone structures. In addition, the shift observed in the SPR band and FTIR peaks of CNTs-amylase conjugates suggested possible alteration in their optical and structural properties. On the functional aspect, amylase activity on starch degradation and hydrolysis were found to be decreased in the presence of CNTs. PMID:26812109

  7. [POLYMORPHISM OF ALFA-AMYLASE AND CONJUGATION IN COMMON WHEAT ENZYME TYPES WITH QUANTITATIVE TRAITS OF PLANTS].

    PubMed

    Netsvetaev, V P; Bondarenko, L S; Motorina, I P

    2015-01-01

    Using polymorphism of alpha-amylase in the winter common wheat studied inheritance isoenzymes and its conjugation enzyme types with germinating grain on the "vine", grain productivity, plant height and time of ear formation. It is shown that the polymorphism isoenzyme of alpha-amylase wheat is limited by the presence of different loci whose products are similar in electrophoretic parameters. In this regard, one component of the enzyme can be controlling at one or two or three genes. Identification of a locus controlling alpha-amylase isoenzyme in the fast moving part of the electrophoretogram, designated as α-Amy-B7. Determine the distance of the locus to factor α-Amy-B6. PMID:26841490

  8. Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development

    PubMed Central

    Whan, Alex; Dielen, Anne-Sophie; Mieog, Jos; Bowerman, Andrew F.; Robinson, Hannah M.; Byrne, Keren; Colgrave, Michelle; Larkin, Philip J.; Howitt, Crispin A.; Morell, Matthew K.; Ral, Jean-Philippe

    2014-01-01

    Wheat starch degradation requires the synergistic action of different amylolytic enzymes. Our spatio-temporal study of wheat α-amylases throughout grain development shows that AMY3 is the most abundant isoform compared with the other known α-amylases. Endosperm-specific over-expression of AMY3 resulted in an increase of total α-amylase activity in harvested grains. Unexpectedly, increased activity did not have a significant impact on starch content or composition but led to an increase of soluble carbohydrate (mainly sucrose) in dry grain. In AMY3 overexpression lines (A3OE), germination was slightly delayed and triacylglycerol (TAG) content was increased in the endosperm of mature grain. Despite increased AMY3 transcript and protein content throughout grain development, alterations of α-amylase activity and starch granule degradation were not detected until grain maturation, suggesting a post-translational inhibition of α-amylase activity in the endosperm during the starch filling period. These findings show unexpected effects of a high level of α-amylase on grain development and composition, notably in carbon partitioning and TAG accumulation, and suggest the presence of a hitherto unknown regulatory pathway during grain filling. PMID:25053646

  9. Halophilic Amylase from a Moderately Halophilic Micrococcus

    PubMed Central

    Onishi, Hiroshi

    1972-01-01

    A moderately halophilic Micrococcus sp., isolated from unrefined solar salt, produced a considerable amount of extracellular dextrinogenic amylase when cultivated aerobically in media containing 1 to 3 m NaCl. The Micrococcus amylase had maximal activity at pH 6 to 7 in 1.4 to 2 m NaCl or KCl at 50 C. Calcium ion and a high concentration of NaCl or KCl were essential for activity and stability of the amylase. The salt response of the amylase depended greatly on the pH and temperature of the enzyme assay. PMID:5058445

  10. Sugar-inducible expression of a gene for beta-amylase in Arabidopsis thaliana.

    PubMed Central

    Mita, S; Suzuki-Fujii, K; Nakamura, K

    1995-01-01

    The levels of beta-amylase activity and of the mRNA for beta-amylase in rosette leaves of Arabidopsis thaliana (L.) Heynh. increased significantly, with the concomitant accumulation of starch, when whole plants or excised mature leaves were supplied with sucrose. A supply of glucose or fructose, but not of mannitol or sorbitol, to plants also induced the expression of the gene for beta-amylase, and the induction occurred not only in rosette leaves but also in roots, stems, and bracts. These results suggest that the gene for beta-amylase of Arabidopsis is subject to regulation by a carbohydrate metabolic signal, and expression of the gene in various tissues may be regulated by the carbon partitioning and sink-source interactions in the whole plant. The sugar-inducible expression of the gene in Arabidopsis was severely repressed in the absence of light. The sugar-inducible expression in the light was not inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea or by chloramphenicol, but it was inhibited by cycloheximide. These results suggest that a light-induced signal and de novo synthesis of proteins in the cytoplasm are involved in the regulation. A fusion gene composed of the 5' upstream region of the gene for beta-amylase from Arabidopsis and the coding sequence of beta-glucuronidase showed the sugar-inducible expression in a light-dependent manner in rosette leaves of transgenic Arabidopsis. PMID:7716246

  11. Heterotrimeric G proteins are implicated in gibberellin induction of a-amylase gene expression in wild oat aleurone

    PubMed

    Jones; Smith; Desikan; Plakidou-Dymock; Lovegrove; Hooley

    1998-02-01

    The role of heterotrimeric G proteins in gibberellin (GA) induction of a-amylase gene expression was examined in wild oat aleurone protoplasts. Mas7, a cationic amphiphilic tetradecapeptide that stimulates GDP/GTP exchange by heterotrimeric G proteins, specifically induced alpha-amylase gene expression and enzyme secretion in a very similar manner to GA1. In addition, Mas7 stimulated expression of an alpha-Amy2/54:GUS promoter and reporter construct in transformed protoplasts. Both Mas7 and GA1 induction of alpha-amylase mRNA were insensitive to pertussis toxin. Hydrolysis-resistant nucleotides were introduced into aleurone protoplasts during transfection with reporter gene constructs. GDP-beta-S, which inhibits GDP/GTP exchange by heterotrimeric G proteins, completely prevented GA1 induction of alpha-Amy2/54:GUS expression, whereas GTP-gamma-S, which activates heterotrimeric G proteins, stimulated expression very slightly. Novel cDNA sequences from Galpha and Gbeta subunits were cloned from wild oat aleurone cells. By using RNA gel blot analysis, we found that the transcripts were expressed at a low level. Heterotrimeric G proteins have been implicated in several events during plant growth and development, and these data suggest that they may be involved in GA regulation of alpha-amylase gene expression in aleurone. PMID:9490747

  12. Exercise upregulates salivary amylase in humans (Review).

    PubMed

    Koibuchi, Eri; Suzuki, Yoshio

    2014-04-01

    The secretion of salivary α-amylase is influenced by adrenergic regulation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis; thus, exercise affects the levels of salivary α-amylase. Granger et al published a review in 2007 that focused attention on salivary α-amylase. In addition, a portable system for monitoring salivary α-amylase activity was launched in Japan at the end of 2005. The correlation between exercise and salivary α-amylase has since been extensively investigated. The present review summarizes relevant studies published in the English and Japanese literature after 2006. A search of the PubMed and CiNii databases identified 54 articles, from which 15 original articles were selected. The findings described in these publications indicate that exercise consistently increases mean salivary α-amylase activities and concentrations, particularly at an intensity of >70% VO2max in healthy young individuals. Thus, these studies have confirmed that salivary α-amylase levels markedly increase in response to physical stress. Salivary α-amylase levels may therefore serve as an effective indicator in the non-invasive assessment of physical stress. PMID:24669232

  13. Intracellular α-Amylase of Streptococcus mutans

    PubMed Central

    Simpson, Christine L.; Russell, Roy R. B.

    1998-01-01

    Sequencing upstream of the Streptococcus mutans gene for a CcpA gene homolog, regM, revealed an open reading frame, named amy, with homology to genes encoding α-amylases. The deduced amino acid sequence showed a strong similarity (60% amino acid identity) to the intracellular α-amylase of Streptococcus bovis and, in common with this enzyme, lacked a signal sequence. Amylase activity was found only in S. mutans cell extracts, with no activity detected in culture supernatants. Inactivation of amy by insertion of an antibiotic resistance marker confirmed that S. mutans has a single α-amylase activity. The amylase activity was induced by maltose but not by starch, and no acid was produced from starch. S. mutans can, however, transport limit dextrins and maltooligosaccharides generated by salivary amylase, but inactivation of amy did not affect growth on these substrates or acid production. The amylase digested the glycogen-like intracellular polysaccharide (IPS) purified from S. mutans, but the amy mutant was able to digest and produce acid from IPS; thus, amylase does not appear to be essential for IPS breakdown. However, when grown on excess maltose, the amy mutant produced nearly threefold the amount of IPS produced by the parent strain. The role of Amy has not been established, but Amy appears to be important in the accumulation of IPS in S. mutans grown on maltose. PMID:9721315

  14. Thermally Stable Amylases from Antarctic Psychrophilic Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrolysis of starch in cold environments by psychrophilic species of bacteria is believed to be accomplished through the production of special cold-adapted amylases. These amylases are reportedly thermally labile with low (<40 deg C) temperature optima and high specific activities at 0 to 25 deg C....

  15. Cooperativity and substrate specificity of an alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1.

    PubMed

    Rajdevi, K P; Yogeeswaran, G

    2001-03-01

    The saccharifying alkaline amylase and neopullulanase complex of Micrococcus halobius OR-1 hydrolyzes both alpha-(1,4)- and alpha-(1,6)-glycosidic linkages of different linear and branched polysaccharides. The following observations were made concerning the analysis of the coexpressed amylase and neopullulanase enzymes. Even though the enzymes were subjected to a rigorous purification protocol, the activities could not be separated, because both the enzymes were found to migrate in a single peak. By contrast, two independent bands of amylolytic activity at 70 kDa and pullulanolytic activity at 53 kDa were evident by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), reducing and nonreducing PAGE, and zymographic analysis on different polysaccharides. Preferential chemical modification of the enzyme and concomitant high-performance thin-layer chromatographic analyses of the saccharides liberated showed that amylase is sensitive to 1-(dimethylamino-propyl)-3-ethyl carbodiimide-HCl and cleaved alpha-(1,4) linkages of starch, amylose, and amylopectin producing predominantly maltotriose. On the other hand, formalin-sensitive neopullulanase acts on both alpha-(1,4) and alpha-(1,6) linkages of pullulan and starch with maltotriose and panose as major products. It is understood that neopullulanase exhibits dual activity and acts in synergy with amylase toward the hydrolysis of alpha-(1,4) linkages, thereby increasing the overall reaction rate; however, such a synergism is not seen in zymograms, in which the enzymes are physically separated during electrophoresis. It is presumed that SDS-protein intercalation dissociated the enzyme complex, without altering the individual active site architecture, with only the synergism lost. The optimum temperature and pH of amylase and neopullulanase were 60 degreesC and 8.0, respectively. The enzymes were found stable in high alkaline pH for 24 h. Therefore, the saccharifying alkaline amylase and neopullulanase of M

  16. Reduced embryonic survival in rainbow trout resulting from paternal exposure to the environmental estrogen 17 alpha- ethynylestradiol during late sexual maturation

    SciTech Connect

    Brown, Kim H.; Schultz, Irvin R.; Nagler, James J.

    2007-11-01

    Exposure of fishes to environmental estrogens is known to affect sexual development and spawning, but little information exists regarding effects on gametes. This study evaluated embryonic survival of offspring from male rainbow trout (Oncorhynchus mykiss) exposed to 17a-ethynylestradiol (EE2)using an in vitro fertilization protocol. Males were exposed at either 1800 or 6700 degree days (8d) (i.e. 161 or 587 days post-fertilization (dpf)) to test for effects on testes linked to reproductive ontogeny. At 18008d, fish were beginning testicular differentiation and were exposed to 109 ng EE2/l for 21 days. At 67008d, fish have testes containing spermatocytes and spermatids and were exposed for 56 days to either 0.8, 8.3, or 65 ng EE2/l. Semen was collected at full sexual maturity in each group and used to fertilize eggs pooled from several non-exposed females. Significant decreases in embryonic survival were observed only with the 67008d exposure. In 0.8 and 8.3 ng EE2/l treatments, embryo survival was significantly reduced at 19 dpf when compared with the control. In contrast, an immediate decrease in embryonic survival at 0.5 dpf was observed in the 65 ng EE2/l treatment. Blood samples collected at spawning from 67008d exposed males revealed a significant decrease in 11-ketotestosterone and a significant increase in luteinizing hormone levels for the 65 ng EE2/l treatment when compared with the other treatment groups. Results indicate that sexually maturing male rainbow trout are susceptible to EE2 exposure with these fish exhibiting two possible mechanisms of reduced embryonic survival through sperm varying dependant

  17. Comparative study on production of a-Amylase from Bacillus licheniformis strains

    PubMed Central

    Divakaran, Dibu; Chandran, Aswathi; Pratap Chandran, R

    2011-01-01

    Alpha amylase (α-1, 4-glucan-glucanhydrolase, EC 3.2.1.1), an extracellular enzyme, degrades α, 1–4 glucosidic linkages of starch and related substrates in an endo-fashion producing oligosaccharides including maltose, glucose and alpha limit dextrin (7). The present study deals with the production and comparative study of production of α-amylase from two strains of Bacillus licheniformis, MTCC 2617 and 2618, by using four different substrates, starch, rice, wheat and ragi powder as carbon source by submerged fermentation. The effect of varying pH and incubation temperature, activator, inhibitor, and substrate concentration was investigated on the activity of α-amylase produced by MTCC strain 2618. The results shows that the production of the α-amylase by the B.licheniformis strain MTCC 2618, using four different substrates were found to be maximum (Starch 3.64 IU/ml/minutes, Rice powder 2.93 IU/ml/minutes, Wheat powder 2.67 IU/ml/minutes, Ragi powder 2.36 IU/ml/minutes) on comparing the enzyme production of two strains. It was also observed that the maximum production was found on the 3rd day (i.e. 72 hr) and characterization of crude enzyme revealed that optimum activity was at pH 7 and 37°C. PMID:24031769

  18. [The decomposition of Maillard reaction products by amylolytic enzymes. 1. Reversible inhibition of alpha- and glucoamylase and alpha-glucosidase by oligosaccharide Amidori compounds].

    PubMed

    Schumacher, D; Kroh, L W

    1994-10-01

    The influence of Amadori-compounds (fructosyl-, maltulosyl- and maltotriulosylglycin) on the activity of the enzymes alpha-glucosidase (from Saccharomyces cerevisiae), glucoamylase (from Aspergillus niger) and alpha-amylase (from porcine pancreas) was studied. Fructosylglycin was not hydrolyzed by all three enzymes. alpha-Glucosidase hydrolyzes maltulosylglycin 10 times slower than maltotriulosylglycin. Glucoamylase and alpha-amylase catalyze only the cleavage of maltotriulosylglycin to form glucose and maltulosylglycin. The activities of alpha-glucosidase and glucoamylase are inhibited through the Amadori-compounds fructosyl- and maltulosylglycin. These Amadori-compounds don't influence the activity of alpha-amylase. Electronic effects or interactions between the secondary amino function of Amadori-compounds and the carboxyl- or carboxylate groups of active centres could be responsible for such an inhibition. PMID:7839734

  19. A amylase activity of nymphal stages of sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae).

    PubMed

    Kazzazi, M; Bandani, A R; Ashuri, A; Hosseinkhani, S

    2005-01-01

    Wheat production in Iran has changed substantially over the past one or two decades with development of higher-yielding cultivars and improved methods of planting. Sunn pest, Eurygaster integriceps (Heteroptera: Pentatomidae), is the most important cereal pest in Iran. Sunn pest like other insect pests of wheat lives on a polysaccharide-rich diet and depends to a large extent on effectiveness of their alpha-amylases for survival. alpha-amylase (1-4-alpha-D-glucan glucanohydrolase) hydrolyses starch, and related polysaccharides by randomly cleaving internal alpha-1,4-glucosidic linkages and has a major role in the utilization of polysaccharides. The recent increase in study of insect digestive enzymes seems to make sense in the realization that the gut is the major interface between the insect and its environment. Hence, an understanding of digestive enzyme function is essential when developing methods of insect control such as the use of enzyme inhibitor's and transgenic plants to control phytophagous insects. The aim of the current study is to identify and characterize alpha-amylase activity in order to gain a better understanding of its digestive physiology, which hopefully will lead to new strategies of the insect control. In order to analyze a-amylase activity adult and different nymphal stages were collected from wheat field from Karaj area and midgut complex from these individuals were dissected under a light microscope in ice-cold saline buffer (0.006M NaCl). After homogenization in buffer, homogenate was centrifuged at 15000 g for 20 min at 4 degrees C. The supernatant was pooled and stored at -20 degrees C for subsequent analysis. alpha-amylase activity was assayed by the dinitrosalicylic acid (DNS) procedure using soluble starch as substrate (starch 1%). Our result showed that enzyme activities in different nymphal stages (first, second, third, fourth and fifth stadium) were 0.19, 0.78, 1.21, 1.23, 1.25 units/mg protein, respectively. PMID:16628929

  20. Allotides: Proline-Rich Cystine Knot α-Amylase Inhibitors from Allamanda cathartica.

    PubMed

    Nguyen, Phuong Q T; Luu, Thuy T; Bai, Yang; Nguyen, Giang K T; Pervushin, Konstantin; Tam, James P

    2015-04-24

    Cystine knot α-amylase inhibitors belong to a knottin family of peptidyl inhibitors of 30-32 residues and contain two to four prolines. Thus far, only four members of the group of cystine knot α-amylase inhibitors have been characterized. Herein, the discovery and characterization of five cystine knot α-amylase inhibitors, allotides C1-C5 (Ac1-Ac5) (1-5), from the medicinal plant Allamanda cathartica are reported using both proteomic and genomic methods. Proteomic analysis showed that 1-5 are 30 amino acids in length with three or four proline residues. NMR determination of 4 revealed that it has two cis- and one trans-proline residues and adopts two equally populated conformations in solution. Determination of disulfide connectivity of 2 by differential S-reduction and S-alkylation provided clues of its unfolding process. Genomic analysis showed that allotide precursors contain a three-domain arrangement commonly found in plant cystine knot peptides with conserved residues flanking the processing sites of the mature allotide domain. This work expands the number of known cystine knot α-amylase inhibitors and furthers the understanding of both the structural and biological diversity of this type of knottin family. PMID:25832441

  1. Identification of amylase inhibitor deficient mutants in pigeonpea (Cajanus cajan (L.) Millisp.).

    PubMed

    Chougule, N P; Giri, A P; Hivrale, V K; Chhabda, P J; Kachole, M S

    2004-06-01

    We have developed and analyzed several mutant lines (M6 generation) of pigeonpea (Cajanus cajan (L.) Millsp.) for the content of defensive proteins and antinutritional factors. Inhibitors of proteinase and of amylase, lectins, and raffinose family oligosaccharides were analyzed in mature seeds of different pigeonpea accessions (untreated) and compared with mutant lines. Proteinase inhibitor profiles were similar in terms of number and intensities of activity bands but they differ marginally in the activity units in pigeonpea accessions and mutants. Pigeonpea mutants showed significant differences in amylase inhibitor profiles as well as activity units from those of pigeonpea accessions. Interestingly, two mutants (A6-5-1 and A7-3-2) were identified to have absence of amylase inhibitor isoforms. Hemagglutinating activity and raffinose family oligosaccharides content were found to be significantly higher in mutants than in accessions. It is evident from the results that proteinase inhibitors of pigeonpea are stable while amylase inhibitors, lectins, and raffinose family oligosaccharides show altered expression upon mutagen treatments. These mutants will be ideal candidates for further evaluation. PMID:15260142

  2. Transglycosylation of neohesperidin dihydrochalcone by Bacillus stearothermophilus maltogenic amylase.

    PubMed

    Cho, J S; Yoo, S S; Cheong, T K; Kim, M J; Kim, Y; Park, K H

    2000-02-01

    Neohesperidin dihydrochalcone (NHDC), a sweet compound derived from citrus fruits, was modified to a series of its oligosaccharides by transglycosylation activity of Bacillus stearothermophilus maltogenic amylase (BSMA). Maltotriose as a donor was reacted with NHDC as an acceptor to glycosylate for the purpose of increasing the solubility of NHDC. Maltosyl-NHDC was a major transglycosylation product among the several transfer products by TLC analysis. The structure of the major transglycosylation product was determined to be maltosyl-alpha-(1,6)-neohesperidin dihydrochalcone by MALDI-TOF/MS and (1)H and (13)C NMR. Maltosyl-NHDC was 700 times more soluble in water and 7 times less sweet than NHDC. PMID:10691608

  3. DNA sequence evolution of the amylase multigene family in Drosophila pseudoobscura.

    PubMed

    Brown, C J; Aquadro, C F; Anderson, W W

    1990-09-01

    The alpha-Amylase locus in Drosophila pseudoobscura is a multigene family of one, two or three copies on the third chromosome. The nucleotide sequences of the three Amylase genes from a single chromosome of D. pseudoobscura are presented. The three Amylase genes differ at about 0.5% of their nucleotides. Each gene has a putative intron of 71 (Amy1) or 81 (Amy2 and Amy3) bp. In contrast, Drosophila melanogaster Amylase genes do not have an intron. The functional Amy1 gene of D. pseudoobscura differs from the Amy-p1 gene of D. melanogaster at an estimated 13.3% of the 1482 nucleotides in the coding region. The estimated rate of synonymous substitutions is 0.398 +/- 0.043, and the estimated rate of nonsynonymous substitutions is 0.068 +/- 0.008. From the sequence data we infer that Amy2 and Amy3 are more closely related to each other than either is to Amy1. From the pattern of nucleotide substitutions we reason that there is selection against synonymous substitutions within the Amy1 sequence; that there is selection against nonsynonymous substitutions within the Amy2 sequence, or that Amy2 has recently undergone a gene conversion with Amy1; and that Amy3 is nonfunctional and subject to random genetic drift. PMID:1699840

  4. Partial characterization of cold active amylases and proteases of Streptomyces sp. from Antarctica

    PubMed Central

    Cotârleţ, Mihaela; Negoiţă, Teodor Gh.; Bahrim, Gabriela E.; Stougaard, Peter

    2011-01-01

    The aim of this study was to isolate novel enzyme-producing bacteria from vegetation samples from East Antarctica and also to characterize them genetically and biochemically in order to establish their phylogeny. The ability to grow at low temperature and to produce amylases and proteases cold-active was also tested. The results of the 16S rRNA gene sequence analysis showed that the 4 Alga rRNA was 100% identical to the sequences of Streptomyces sp. rRNA from Norway and from the Solomon Islands. The Streptomyces grew well in submerged system at 20°C, cells multiplication up to stationary phase being drastically increased after 120 h of submerged cultivation. The beta-amylase production reached a maximum peak after seven days, while alpha-amylase and proteases were performing biosynthesis after nine days of submerged cultivation at 20°C. Newly Streptomyces were able to produce amylase and proteases in a cold environment. The ability to adapt to low temperature of these enzymes could make them valuable ingredients for detergents, the food industry and bioremediation processes which require low temperatures. PMID:24031702

  5. Utilization of industrial and agricultural by-products for fungal amylase production.

    PubMed

    Mahmoud, S A; Abdel-Hafez, A M; Mashhoor, W A; Refaat, A A

    1978-01-01

    Attempts were made for using industrial and agricultural by-products and wastes as carbon and nitrogen sources in fermentation medium for alpha-amylase production by Aspergillus niger NRRL-337. The original carbon source of the basal medium was replaced by one of the following materials: rice bran, wheat bran, corn bran, corn starch, cane molasses, and glucose syrup. Rice bran proved to be the best carbon source that secured the highest amylase activity. The nitrogen source of the basal medium was then replaced by different cheap materials, viz: dried yeast, corn steep liquor, gluten-30, gluten-50, and corn steep precipitate. Corn steep precipitate proved to be superior in amylase production. In consideration of these results an economical medium that secured high activity, containing the following ingredients, was suggested: 2.5% corn steep precipitate, 7.2% rice bran, 0.1% MgSO4, 0.1% KH2PO4, and 0.1% CaCO3. From this medium fungal amylase was precipitated and purified. The pure enzyme gave the highest activity at 40 degrees C and pH 4.3. PMID:28620

  6. Structure of a Bacillus halmapalus family 13 ά-amylase, BHA, in complex with an acarbose-derived nonasaccharide at 2.1 A resolution

    SciTech Connect

    Davies,G.; Brzozowski, A.; Dauter, Z.; Rasmussen, M.; Borchert, T.; Wilson, K.

    2005-01-01

    The enzymatic digestion of starch by {alpha}-amylases is one of the key biotechnological reactions of recent times. In the search for industrial biocatalysts, the family GH13 {alpha}-amylase BHA from Bacillus halmapalus has been cloned and expressed. The three-dimensional structure at 2.1 Angstrom resolution has been determined in complex with the (pseudo)tetrasaccharide inhibitor acarbose. Acarbose is found bound as a nonasaccharide transglycosylation product spanning the -6 to +3 subsites. Careful inspection of electron density suggests that the bound ligand could not have been formed through successive transglycosylations of acarbose and must also have featured maltose or maltooligosaccharides as an acceptor.

  7. The sensitivity and specificity of the RSID-saliva kit for the detection of human salivary amylase in the Forensic Science Laboratory, Dublin, Ireland.

    PubMed

    Casey, David G; Price, Judy

    2010-01-30

    We demonstrate here that the RSID-saliva test can be used as a test for human salivary alpha-amylase on samples routinely examined in forensic casework. We show that the RSID-saliva test detects salivary alpha-amylase at lower concentrations than the Phadebas Quantitative test, that the RSID-saliva test does not cross-react with forensically important human fluids and that the RSID-saliva test can be successfully integrated into the whole swab semen extraction method. PMID:19931992

  8. An enzymatically produced novel cyclic tetrasaccharide, cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->} (cyclic maltosyl-(1-->6)-maltose), from starch.

    PubMed

    Mukai, Kazuhisa; Watanabe, Hikaru; Oku, Kazuyuki; Nishimoto, Tomoyuki; Kubota, Michio; Chaen, Hiroto; Fukuda, Shigeharu; Kurimoto, Masashi

    2005-06-13

    A bacterial strain M6, isolated from soil and identified as Arthrobacter globiformis, produced a novel nonreducing oligosaccharide. The nonreducing oligosaccharide was produced from starch using a culture supernatant of the strain as enzyme preparation. The oligosaccharide was purified as a crystal preparation after alkaline treatment and deionization of the reaction mixture. The structure of the oligosaccharide was determined by methylation analysis, mass spectrometry, and (1)H and (13)C NMR spectroscopy, and it was demonstrated that the oligosaccharide had a cyclic structure consisting of four glucose residues joined by alternate alpha-(1-->4)- and alpha-(1-->6)-linkages. The cyclic tetrasaccharide, cyclo-{-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->}, was found to be a novel oligosaccharide, and was tentatively called cyclic maltosyl-maltose (CMM). CMM was not hydrolyzed by various amylases, such as alpha-amylase, beta-amylase, glucoamylase, isoamylase, pullulanase, maltogenic alpha-amylase, and alpha-glucosidase, but hydrolyzed by isomalto-dextranase to give rise to isomaltose. This is the first report of the cyclic tetrasaccharide, which has alternate alpha-(1-->4)- and alpha-(1-->6)-glucosidic linkages. PMID:15882856

  9. Engineering high α-amylase levels in wheat grain lowers Falling Number but improves baking properties.

    PubMed

    Ral, Jean-Philippe; Whan, Alex; Larroque, Oscar; Leyne, Emmett; Pritchard, Jeni; Dielen, Anne-Sophie; Howitt, Crispin A; Morell, Matthew K; Newberry, Marcus

    2016-01-01

    Late maturity α-amylase (LMA) and preharvest sprouting (PHS) are genetic defects in wheat. They are both characterized by the expression of specific isoforms of α-amylase in particular genotypes in the grain prior to harvest. The enhanced expression of α-amylase in both LMA and PHS results in a reduction in Falling Number (FN), a test of gel viscosity, and subsequent downgrading of the grain, along with a reduced price for growers. The FN test is unable to distinguish between LMA and PHS; thus, both defects are treated similarly when grain is traded. However, in PHS-affected grains, proteases and other degradative process are activated, and this has been shown to have a negative impact on end product quality. No studies have been conducted to determine whether LMA is detrimental to end product quality. This work demonstrated that wheat in which an isoform α-amylase (TaAmy3) was overexpressed in the endosperm of developing grain to levels of up to 100-fold higher than the wild-type resulted in low FN similar to those seen in LMA- or PHS-affected grains. This increase had no detrimental effect on starch structure, flour composition and enhanced baking quality, in small-scale 10-g baking tests. In these small-scale tests, overexpression of TaAmy3 led to increased loaf volume and Maillard-related browning to levels higher than those in control flours when baking improver was added. These findings raise questions as to the validity of the assumption that (i) LMA is detrimental to end product quality and (ii) a low FN is always indicative of a reduction in quality. This work suggests the need for a better understanding of the impact of elevated expression of specific α-amylase on end product quality. PMID:26010869

  10. Susceptibility to corrosion of laser welding composite arch wire in artificial saliva of salivary amylase and pancreatic amylase.

    PubMed

    Zhang, Chao; Liu, Jiming; Yu, Wenwen; Sun, Daqian; Sun, Xinhua

    2015-10-01

    In this study, laser-welded composite arch wire (CAW) with a copper interlayer was exposed to artificial saliva containing salivary amylase or pancreatic amylase, and the resultant corrosion behavior was studied. The purpose was to determine the mechanisms by which salivary amylase and pancreatic amylase contribute to corrosion. The effects of amylase on the electrochemical resistance of CAW were tested by potentiodynamic polarization measurements. The dissolved corrosion products were determined by ICP-OES, and the surfaces were analyzed by SEM, AFM and EDS. The results showed that both exposure to salivary amylase and pancreatic amylase significantly improved the corrosion resistance of CAW. Even isozyme could have different influences on the alloy surface. When performing in vitro research of materials to be used in oral cavity, the effect of α-amylase should be taken into account since a simple saline solution does not entirely simulate the physiological situation. PMID:26117761

  11. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal alpha-glucosidase level and are slowly digestible "in vivo"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For digestion of starch in humans, alpha-amylase first hydrolyzes starch molecules to produce alpha-limit dextrins, followed by complete hydrolysis to glucose by the mucosal alpha-glucosidases in the small intestine. It is known that alpha-1,6 linkages in starch are hydrolyzed at a lower rate than a...

  12. Phytochemical screening and in vitro amylase inhibitory effect of the leaves of Breynia retusa.

    PubMed

    Kripa, K G; Sangeetha, R; Madhavi, P; Deepthi, P

    2011-10-01

    This study was proposed based on the folklore claim and on the scarcity of scientific evidence from the literature for the medicinal uses of Breynia retusa. The aim of the present study was to analyse the phytochemical constituents of the leaves of B. retusa. The fractions obtained by successive fractionation using solvents of varying polarity were studied for the presence of primary and secondary metabolites and the total phenolic content of the different fractions were determined by HPLC. The results of the study support the traditional acclaim of the therapeutic uses of B. retusa. The potential of B. retusa to inhibit alpha-amylase, a prime enzyme involved in carbohydrate metabolism was analysed and it was observed that the ethyl acetate and methanolic extract of the leaves of B. retusa possessed in vitro amylase inhibitory activity. PMID:22518933

  13. Possible mechanisms of normal amylase activity in hyperlipemic pancreatitis.

    PubMed Central

    Mishkin, S.; Bates, J.; O'Hashi, J.; Schneider, P.; Sniderman, A. D.; Wolf, R. O.

    1976-01-01

    Lipemic serum from three patients with acute pancreatitis and type IV hyperlipemia was fractionated into very-low-density lipoproteins and clear serum. Amylase activity (determined by the Phadebas method) in the component fractions did not exceed that in the original lipemic serum. Addition of these fractions or VLDL and chylomicrons from asymptomatic patients with hyperlipemia to nonlipemic serum from patients with "routine acute pancreatitis" did not inhibit amylase activity or alter the electrophoretic mobility of amylase isoenzymes. Therefore the normal amylase activity often observed in hyperlipemic pancreatitis does not result from an inhibition of amylase activity by serum lipoproteins. Images FIG. 4 FIG. 5 PMID:206333

  14. Unexpected high digestion rate of cooked starch by the Ct-Maltase-Glucoamylase small intestine mucosal alpha-glucosidase subunit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For starch digestion to glucose, two luminal alpha-amylases and four gut mucosal alpha-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal alpha-glucosidases on cooked (gelatinized) starch. Gelatinized ...

  15. Expression of β-Amylase from Alfalfa Taproots1

    PubMed Central

    Gana, Joyce A.; Kalengamaliro, Newton E.; Cunningham, Suzanne M.; Volenec, Jeffrey J.

    1998-01-01

    Alfalfa (Medicago sativa L.) roots contain large quantities of β-amylase, but little is known about its role in vivo. We studied this by isolating a β-amylase cDNA and by examining signals that affect its expression. The β-amylase cDNA encoded a 55.95-kD polypeptide with a deduced amino acid sequence showing high similarity to other plant β-amylases. Starch concentrations, β-amylase activities, and β-amylase mRNA levels were measured in roots of alfalfa after defoliation, in suspension-cultured cells incubated in sucrose-rich or -deprived media, and in roots of cold-acclimated germ plasms. Starch levels, β-amylase activities, and β-amylase transcripts were reduced significantly in roots of defoliated plants and in sucrose-deprived cell cultures. β-Amylase transcript was high in roots of intact plants but could not be detected 2 to 8 d after defoliation. β-Amylase transcript levels increased in roots between September and October and then declined 10-fold in November and December after shoots were killed by frost. Alfalfa roots contain greater β-amylase transcript levels compared with roots of sweetclover (Melilotus officinalis L.), red clover (Trifolium pratense L.), and birdsfoot trefoil (Lotus corniculatus L.). Southern analysis indicated that β-amylase is present as a multigene family in alfalfa. Our results show no clear association between β-amylase activity or transcript abundance and starch hydrolysis in alfalfa roots. The great abundance of β-amylase and its unexpected patterns of gene expression and protein accumulation support our current belief that this protein serves a storage function in roots of this perennial species. PMID:9847126

  16. Market maturity

    SciTech Connect

    Meade, B.; Bowden, S.; Ellis, M

    1995-02-01

    The power sector in the Philipines provides one of the most mature independent power markets in Asia. Over the past five years, National Power Corp. (NPC), the government owned utility, has actively invited the power sector into power generation. Distribution has remained in the hands of private and rural cooperative utilities. Private utilities have been operating as full requirements customers of NPC while the growth in capacity additions by independent power producers (IPPs) has outpaced NPC`s for the second year in a row. With a recovering economy and regulatory reform proceeding, the outlook for independent power remains strong through the end of the decade. The Philipine Congress is now reviewing draft legislation that will decentralize NPC and begin the process of privatization and market-based reforms throughout the country`s power sector.

  17. alpha-Glycosidase inhibitory activity of hexagalloylglucose from the galls of Quercus infectoria.

    PubMed

    Hwang, J K; Kong, T W; Baek, N I; Pyun, Y R

    2000-04-01

    Hexagalloylglucose (3-O-digalloyl-1,2,4,6-tetra-O-galloyl-beta-D- glucose), which was isolated from the methanol extract of the galls of Quercus infectoria, significantly inhibited alpha-glycosidases such as sucrase, maltase and isomaltase. Its inhibitory activity was comparable to acarbose being used as a hypoglycemic agent, while the inhibitory activity on alpha-amylase was approximately 10 times lower than that of acarbose. The results indicate that, when compared to acarbose, hexagalloylglucose might reduce the side effects by reducing inhibition of alpha-amylase. PMID:10821056

  18. Studies on amylase inhibitors in some Egyptian legume seeds.

    PubMed

    Shekib, L A; el-Iraqui, S M; Abo-Bakr, T M

    1988-01-01

    Amylase inhibitor activity was determined in four legume seeds which are widely consumed in Egypt. The effect of dehulling, heat treatment, soaking and germination were also assessed. The results showed that faba bean contained the highest activity of amylase inhibitor followed by cowpea, lentils, then chickpea. Dehulling resulted in raising the amylase inhibitor activities in all samples investigated, while heat treatment and cooking lowered it. Soaking for 10 h and germination eliminated completely the inhibitor from all samples. PMID:2467277

  19. Simultaneous study of the metabolic turnover and renal excretion of salivary amylase-125I and pancreatic amylase-131I in the baboon

    PubMed Central

    Duane, William C.; Frerichs, Roger; Levitt, Michael D.

    1972-01-01

    The metabolic turnover of salivary and pancreatic amylase was studied in the baboon, an animal with a serum amylase level and renal clearance of amylase similar to man. Purified amylase was electrolytically iodinated. Although iodinated and uniodinated amylase had similar gel filtration, electrophoretic, enzymatic, glycogen precipitation characteristics, the labeled enzyme was cleared less rapidly by the kidney than was the unlabeled material. However, urinary iodinated amylase which had been biologically screened by the kidney had a renal clearance and serum disappearance rate indistinguishable from unlabeled amylase and thus can serve as a tracer in metabolic turnover studies. Administration of a mixture of salivary amylase-125I and pancreatic amylase-131I made it possible to simultaneously measure the serum disappearance and renal clearance of these two isoenzymes. The metabolic clearance of both isoenzymes was extremely rapid with half-times of about 130 min. This rapid turnover of serum amylase probably accounts for the transient nature of serum amylase elevation which frequently occurs in pancreatitis. Pancreatic amylase-131I was consistently cleared more rapidly (mean clearance ratio: 1.8) by the kidney than was salivary amylase-125I. This more rapid renal clearance of pancreatic amylase may help to explain the disproportionate elevation of urinary amylase relative to serum amylase observed in pancreatitis. PMID:5024043

  20. Effect of starch and amylase on the expression of amylase-binding protein A in Streptococcus gordonii.

    PubMed

    Nikitkova, A E; Haase, E M; Scannapieco, F A

    2012-08-01

    Streptococcus gordonii is a common oral commensal bacterial species in tooth biofilm (dental plaque) and specifically binds to salivary amylase through the surface exposed amylase-binding protein A (AbpA). When S. gordonii cells are pretreated with amylase, amylase bound to AbpA facilitates growth with starch as a primary nutrition source. The goal of this study was to explore possible regulatory effects of starch, starch metabolites and amylase on the expression of S. gordonii AbpA. An amylase ligand-binding assay was used to assess the expression of AbpA in culture supernatants and on bacterial cells from S. gordonii grown in defined medium supplemented with 1% starch, 0.5 mg ml(-1) amylase, with starch and amylase together, or with various linear malto-oligosaccharides. Transcription of abpA was determined by reverse transcription quantitative polymerase chain reaction. AbpA was not detectable in culture supernatants containing either starch alone or amylase alone. In contrast, the amount of AbpA was notably increased when starch and amylase were both present in the medium. The expression of abpA was significantly increased (P < 0.05) following 40 min of incubation in defined medium supplemented with starch and amylase. Similar results were obtained in the presence of maltose and other short-chain malto-oligosacchrides. These results suggest that the products of starch hydrolysis produced from the action of salivary α-amylase, particularly maltose and maltotriose, up-regulate AbpA expression in S. gordonii. PMID:22759313

  1. Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes alpha-1,4 and alpha-1,6 linkages in polysaccharides at different active sites.

    PubMed

    Hatada, Y; Igarashi, K; Ozaki, K; Ara, K; Hitomi, J; Kobayashi, T; Kawai, S; Watabe, T; Ito, S

    1996-09-27

    An amylopullulanase from alkalophilic Bacillus sp. KSM-1378 hydrolyzes both alpha-1,6 linkages in pullulan and alpha-1,4 linkages in other polysaccharides, with maximum activity in each case at an alkaline pH, to generate oligosaccharides (Ara, K., Saeki, K., Igarashi, K., Takaiwa, M., Uemura, T., Hagihara, H., Kawai, S., and Ito, S. (1995) Biochim. Biophys. Acta 1243, 315-324). Here, we report the molecular cloning and sequencing of the gene for and the structure of this enzyme and show that its dual hydrolytic activities are associated with two independent active sites. The structural gene contained a single, long open reading frame of 5,814 base pairs, corresponding to 1,938 amino acids that included a signal peptide of 32 amino acids. The molecular mass of the extracellular mature enzyme (Glu33 through Leu1938) was calculated to be 211,450 Da, a value close to the 210 kDa determined for the amylopullulanase produced by Bacillus sp. KSM-1378. The amylase and the pullulanase domains were located in the amino-terminal half and in the carboxyl-terminal half of the enzyme, respectively, being separated by a tandem repeat of a sequence of 35 amino acids. Four regions, designated I, II, III, and IV, were highly conserved in each catalytic domain, and they included a putative catalytic triad Asp550-Glu579-Asp645 for the amylase activity and Asp1464-Glu1493-Asp1581 for the pullulanase activity. The purified enzyme was rotary shadowed at a low angle and observed by transmission electron microscopy; it appeared to be a "castanet-like" or "bent dumbbell-like" molecule with a diameter of approximately 25 nm. PMID:8798645

  2. Induction of a Mitosis Delay and Cell Lysis by High-Level Secretion of Mouse α-Amylase from Saccharomyces cerevisiae

    PubMed Central

    Wang, Bi-Dar; Kuo, Tsong-Teh

    2001-01-01

    Some foreign proteins are produced in yeast in a cell cycle-dependent manner, but the cause of the cell cycle dependency is unknown. In this study, we found that Saccharomyces cerevisiae cells secreting high levels of mouse α-amylase have elongated buds and are delayed in cell cycle completion in mitosis. The delayed cell mitosis suggests that critical events during exit from mitosis might be disturbed. We found that the activities of PP2A (protein phosphatase 2A) and MPF (maturation-promoting factor) were reduced in α-amylase-oversecreting cells and that these cells showed a reduced level of assembly checkpoint protein Cdc55, compared to the accumulation in wild-type cells. MPF inactivation is due to inhibitory phosphorylation on Cdc28, as a cdc28 mutant which lacks an inhibitory phosphorylation site on Cdc28 prevents MPF inactivation and prevents the defective bud morphology induced by overproduction of α-amylase. Our data also suggest that high levels of α-amylase may downregulate PPH22, leading to cell lysis. In conclusion, overproduction of heterologous α-amylase in S. cerevisiae results in a negative regulation of PP2A, which causes mitotic delay and leads to cell lysis. PMID:11472949

  3. The Amylase Project: Creating a Classroom of Biotechnologists.

    ERIC Educational Resources Information Center

    Sweeney, Diane

    1998-01-01

    A biotechnologist-turned-teacher introduces a series of laboratory modules incorporating concepts from microbiology, cellular biology, molecular biology, biochemistry, and evolution. The Amylase Project aims to distill the biotechnology process into a few short steps using amylase, the easiest enzyme to detect of those commonly produced by…

  4. Purification and Characterization of a Highly Efficient Calcium-Independent α-Amylase from Talaromyces pinophilus 1-95

    PubMed Central

    Xian, Liang; Wang, Fei; Luo, Xiang; Feng, Yu-Liang; Feng, Jia-Xun

    2015-01-01

    Alpha-amylase is a very important enzyme in the starch conversion process. Most of the α-amylases are calcium-dependent and exhibit poor performance in the simultaneous saccharification and fermentation process of industrial bioethanol production that uses starch as feedstock. In this study, an extracellular amylolytic enzyme was purified from the culture broth of newly isolated Talaromyces pinophilus strain 1-95. The purified amylolytic enzyme, with an apparent molecular weight of 58 kDa on SDS-PAGE, hydrolyzed maltopentaose, maltohexaose, and maltoheptaose into mainly maltose and maltotriose and minor amount of glucose, confirming the endo-acting mode of the enzyme, and hence, was named Talaromyces pinophilus α-amylase (TpAA). TpAA was most active at pH 4.0–5.0 (with the temperature held at 37°C) and 55°C (at pH 5.0), and stable within the pH range of 5.0–9.5 (at 4°C) and below 45°C (at pH 5.0). Interestingly, the Ca2+ did not improve its enzymatic activity, optimal temperature, or thermostability of the enzyme, indicating that the TpAA was Ca2+-independent. TpAA displayed higher enzyme activity toward malto-oligosaccharides and dextrin than other previously reported α-amylases. This highly active Ca2+-independent α-amylase may have potential applications in starch-to-ethanol conversion process. PMID:25811759

  5. Mapping the intestinal alpha-glucogenic enzyme specificities of starch digesting maltase-glucoamylase and sucrase-isomaltase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhibition of intestinal alpha-glucosidases and pancreatic alpha-amylases is an approach to controlling blood glucose and serum insulin levels in individuals with Type II diabetes. The two human intestinal glucosidases are maltase-glucoamylase and sucrase-isomaltase. Each incorporates two family 31 ...

  6. Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal "alpha"-glucosidases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch digestion involves the breakdown by alpha-amylase to small linear and branched malto-oligosaccharides, which are in turn hydrolyzed to glucose by the mucosal alpha-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). MGAM and SI are anchored to the small intestinal brush-bor...

  7. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apis mellifera L.).

    PubMed

    Ohashi, K; Natori, S; Kubo, T

    1999-10-01

    Worker honeybees change their behaviour from the role of nurse to that of forager with age. We have isolated cDNA clones for two honeybee (Apis mellifera L.) genes, encoding alpha-amylase and glucose oxidase homologues, that are expressed in the hypopharyngeal gland of forager bees. The predicted amino acid sequence of the putative Apis amylase showed 60.5% identity with Drosophila melanogaster alpha-amylase, whereas that of Apis glucose oxidase showed 23.8% identity with Aspergillus niger glucose oxidase. To determine whether the isolated cDNAs actually encode these enzymes, we purified amylase and glucose oxidase from homogenized forager-bee hypopharyngeal glands. We sequenced the N-terminal regions of the purified enzymes and found that they matched the corresponding cDNAs. mRNAs for both enzymes were detected by Northern blotting in the hypopharyngeal gland of the forager bee but not in the nurse-bee gland. These results clearly indicate that expression of the genes for these carbohydrate-metabolizing enzymes, which are needed to process nectar into honey, in the hypopharyngeal gland is associated with the age-dependent role change of the worker. PMID:10491166

  8. Activity and storage of commercial amylases in the 2013 Louisiana grinding season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current problem in the application of amylases at sugarcane factories is the existence of a wide variation in the activities and activity per unit cost of commercial amylases. The efficiency of amylase action to break down starch in the factory is related to the activity of the amylase used. Until...

  9. α-Amylase structural genes in rye.

    PubMed

    Masojć, P; Gale, M D

    1991-10-01

    Rye α-Amy1, α-Amy2, and α-Amy3 genes were studied in the cross between inbred lines using wheat α-amylase cDNA probes. The α-Amy1 and α-Amy2 probes uncovered considerable restriction fragment length polymorphism, whereas the α-Amy3 region was much more conserved. The numbers of restriction fragments found and the F2 segregation data suggest that there are three α-Amy1 genes, two or three α-Amy2 genes, and three α-Amy3 genes in rye. These conclusions were supported by a simultaneous study of α-amylase isozyme polymorphism. The F2 data showed the three individual α-Amy1 genes to span a distance of 3cM at the locus on chromosome 6RL. The genes were mapped relative to other RFLP markers on 6RL. On chromosome 7RL two α-Amy2 genes were shown to be separated by 5 cM. Linkage data within α-Amy3 on 5RL were not obtained since RFLP could be detected at only one of the genes. PMID:24213454

  10. Drain amylase aids detection of anastomotic leak after esophagectomy

    PubMed Central

    Baker, Erin H.; Hill, Joshua S.; Reames, Mark K.; Symanowski, James; Hurley, Susie C.

    2016-01-01

    Background Anastomotic leak following esophagectomy is associated with significant morbidity and mortality. As hospital length of stay decreases, the timely diagnosis of leak becomes more important. We evaluated CT esophagram, white blood count (WBC), and drain amylase levels in the early detection of anastomotic leak. Methods The diagnostic performance of CT esophagram, drain amylase >800 IU/L, and WBC >12,000/µL within the first 10 days after surgery in predicting leak at any time after esophagectomy was calculated. Results Anastomotic leak occurred in 13 patients (13%). CT esophagram performed within 10 days of surgery diagnosed six of these leaks with a sensitivity of 0.54. Elevation in drain amylase level within 10 days of surgery diagnosed anastomotic leak with a sensitivity of 0.38. When the CT esophagram and drain amylase were combined, the sensitivity rose to 0.69 with a specificity of 0.98. WBC elevation had a sensitivity of 0.92, with a specificity of 0.34. Among 30 patients with normal drain amylase and a normal WBC, one developed an anastomotic leak. Conclusions Drain amylase adds to the sensitivity of CT esophagram in the early detection of anastomotic leak. Selected patients with normal drain amylase levels and normal WBC may be able to safely forgo CT esophagram. PMID:27034784

  11. Estimation of restraint stress in rats using salivary amylase activity.

    PubMed

    Matsuura, Tetsuya; Takimura, Ryo; Yamaguchi, Masaki; Ichinose, Mitsuyuki

    2012-09-01

    The rat is an ideal model animal for studying physical and psychological stresses. Recent human studies have shown that salivary amylase activity is a useful biomarker of stress in our social life. To estimate the usefulness of amylase activity as a biomarker of stress in rats, we analyzed changes in physiological parameters including amylase activity and anatomical variables, which were induced by a mild restraint of paws (10 min, 3 times/week, 9 weeks). The quantities of food and water intake and excretion amount of the stress rats were smaller than those of the control rats during the experimental period (5-13 weeks). The body weight of the stress rats decreased compared with that of the control rats. Moreover, the enlargement of the adrenal gland was confirmed in the stress rats, indicating that the mild restraint caused a chronic stress response. The amylase activities of the stress rats were significantly greater than those of the control rats at 5 weeks of age. However, the amylase activity of the stress rats decreased compared with that of the control rats after 6 weeks of age. These results indicate that amylase activity is increased by acute stress and reduced by chronic stress, which is caused by repeated restraint stress. In conclusion, amylase activity is a useful biomarker of acute and chronic stresses in rats. PMID:22753135

  12. [Determination of exogenous gamma-amylase residue in honey].

    PubMed

    Fei, Xiaoqing; Wu, Bin; Shen, Chongyu; Zhang, Rui; Ding, Tao; Li, Lihua

    2012-08-01

    A novel method for the determination of exogenous gamma-amylase residue in honey using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) was established. After pre-separation by gel column chromatography, the gamma-amylase in honey samples was separated from the sugars. The gamma-amylase was then used to catalyze maltose into glucose. This enzymatic reaction was under the conditions of 55 degrees C and 0.03 mol/L phosphate buffer solution (pH 4.5) for 48 h. The maltose and glucose in the above enzymatic reaction solution were separated using liquid chromatography. By measuring the content of glucose with isotope ratio mass spectrometry, the gamma-amylase in honey can be determined. The linear range of gamma-amylase was 5 - 200 U/kg with the quantification limit of 5 U/kg. The recoveries were between 89.6% and 108.2% with the relative standard deviations from 3.3% to 4.9%. This method was used to analyze 38 honey and rice syrup samples, and the detection rate of gamma-amylase was 76.3%. To further verify the detection capability of this method, an authentic honey was adulterated with 15% (mass fraction) rice syrup. The gamma-amylase content in this sample was 10.2 U/kg. This method can effectively identify honey adulteration with rice syrups from the perspective of enzymology. PMID:23256379

  13. AmyM, a Novel Maltohexaose-Forming α-Amylase from Corallococcus sp. Strain EGB

    PubMed Central

    Li, Zhoukun; Wu, Jiale; Zhang, Biying; Wang, Fei; Ye, Xianfeng; Huang, Yan; Huang, Qiang

    2015-01-01

    A novel α-amylase, AmyM, was purified from the culture supernatant of Corallococcus sp. strain EGB. AmyM is a maltohexaose-forming exoamylase with an apparent molecular mass of 43 kDa. Based on the results of matrix-assisted laser desorption ionization–time of flight mass spectrometry and peptide mass fingerprinting of AmyM and by comparison to the genome sequence of Corallococcus coralloides DSM 2259, the AmyM gene was identified and cloned into Escherichia coli. amyM encodes a secretory amylase with a predicted signal peptide of 23 amino acid residues, which showed no significant identity with known and functionally verified amylases. amyM was expressed in E. coli BL21(DE3) cells with a hexahistidine tag. The signal peptide efficiently induced the secretion of mature AmyM in E. coli. Recombinant AmyM (rAmyM) was purified by Ni-nitrilotriacetic acid (NTA) affinity chromatography, with a specific activity of up to 14,000 U/mg. rAmyM was optimally active at 50°C in Tris-HCl buffer (50 mM; pH 7.0) and stable at temperatures of <50°C. rAmyM was stable over a wide range of pH values (from pH 5.0 to 10.0) and highly tolerant to high concentrations of salts, detergents, and various organic solvents. Its activity toward starch was independent of calcium ions. The Km and Vmax of recombinant AmyM for soluble starch were 6.61 mg ml−1 and 44,301.5 μmol min−1 mg−1, respectively. End product analysis showed that maltohexaose accounted for 59.4% of the maltooligosaccharides produced. These characteristics indicate that AmyM has great potential in industrial applications. PMID:25576603

  14. Alpha Particle

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Term that is sometimes used to describe a helium nucleus, a positively charged particle that consists of two protons and two neutrons, bound together. Alpha particles, which were discovered by Ernest Rutherford (1871-1937) in 1898, are emitted by atomic nuclei that are undergoing alpha radioactivity. During this process, an unstable heavy nucleus spontaneously emits an alpha particle and transmut...

  15. Expression of the Schwanniomyces occidentalis SWA2 amylase in Saccharomyces cerevisiae: role of N-glycosylation on activity, stability and secretion.

    PubMed Central

    Yáñez, E; Carmona, T A; Tiemblo, M; Jiménez, A; Fernández-Lobato, M

    1998-01-01

    The role of N-linked glycosylation on the biological activity of Schwanniomyces occidentalis SWA2 alpha-amylase, as expressed in Saccharomyces cerevisiae, was analysed by site-directed mutagenesis of the two potential N-glycosylation sites, Asn-134 and Asn-229. These residues were replaced by Ala or Gly individually or in various combinations and the effects on the activity, secretion and thermal stability of the enzyme were studied. Any Asn-229 substitution caused a drastic decrease in activity levels of the extracellular enzyme. In contrast, substitutions of Asn-134 had little or no effect. The use of antibodies showed that alpha-amylase was secreted in all the mutants tested, although those containing substitutions at Asn-229 seemed to have a lower rate of synthesis and/or higher degradation than the wild-type strain. alpha-Amylases with substitution at Asn-229 had a 2 kDa lower molecular mass than the wild-type protein, as did the wild-type protein itself after treatment with endoglycosidase F. These findings indicate that Asn-229 is the single glycosylated residue in SWA2. Thermostability analysis of both purified wild-type (T50=50 degrees C, where T50 is the temperature resulting in 50% loss of activity) and mutant enzymes indicated that removal of carbohydrate from the 229 position results in a decrease of approx. 3 degrees C in the T50 of the enzyme. The Gly-229 mutation does not change the apparent affinity of the enzyme for starch (Km) but decreases to 1/22 its apparent catalytic efficiency (kcat/Km). These results therefore indicate that glycosylation at the 229 position has an important role in the extracellular activity levels, kinetics and stability of the Sw. occidentalis SWA2 alpha-amylase in both its wild-type and mutant forms. PMID:9405276

  16. Nanoactivator mediated modifications in thermostable amylase from Bacillus licheniformis.

    PubMed

    Khairnar, Rajendra S; Mahabole, Megha P; Pathak, Anupama P

    2012-12-01

    Gram-positive rod-shaped thermophilic bacteria were isolated using samples collected from terrestrial natural thermal spring located at Unkeshwar (Longitude 78.22 degree East to 78.34 degree East, Latitude 19 degree 34' North to 19 degree 40' North), District Nanded, Maharashtra State, India. The isolates were then cultivated using selective media and identified using culture-dependent techniques. One prominent isolate (UN1) exhibited high temperature stability and remarkable amylase production and was identified as Bacillus licheniformis. Amylase production was carried out in starch media and the enzyme was partially purified and characterized for optimization of pH and temperature. Amylolytic activity of the enzyme was determined. Nanoactivator-mediated modifications were carried out to enhance amylolytic activity of the partially purified amylase. Three-fold increase in catalytic efficiency of amylase was obtained after modification. PMID:23350283

  17. Molecular characterization and evolution of the amylase multigene family of Drosophila ananassae.

    PubMed

    Da Lage, J L; Maczkowiak, F; Cariou, M L

    2000-10-01

    Drosophila ananassae is known to produce numerous alpha-amylase variants. We have cloned seven different Amy genes in an African strain homozygous for the AMY1,2,3,4 electrophoretic pattern. These genes are organized as two main clusters: the first one contains three intronless copies on the 2L chromosome arm, two of which are tandemly arranged. The other cluster, on the 3L arm, contains two intron-bearing copies. The amylase variants AMY1 and AMY2 have been assigned to the intronless cluster, and AMY3 and AMY4 to the second one. The divergence of coding sequences between clusters is moderate (6.1% in amino acids), but the flanking regions are very different, which could explain their differential regulation. Within each cluster, coding and noncoding regions are conserved. Two very divergent genes were also cloned, both on chromosome 3L, but very distant from each other and from the other genes. One is the Amyrel homologous (41% divergent), the second one, Amyc1 (21.6% divergent) is unknown outside the D. ananassae subgroup. These two genes have unknown functions. PMID:11040291

  18. Amyrel, a paralogous gene of the amylase gene family in Drosophila melanogaster and the Sophophora subgenus

    PubMed Central

    Da Lage, Jean-Luc; Renard, Emmanuelle; Chartois, Frédérique; Lemeunier, Françoise; Cariou, Marie-Louise

    1998-01-01

    We describe a gene from Drosophila melanogaster related to the alpha-amylase gene Amy. This gene, which exists as a single copy, was named Amyrel. It is strikingly divergent from Amy because the amino acid divergence is 40%. The coding sequence is interrupted by a short intron at position 655, which is unusual in amylase genes. Amyrel has also been cloned in Drosophila ananassae, Drosophila pseudoobscura, and Drosophila subobscura and is likely to be present throughout the Sophophora subgenus, but, to our knowledge, it has not been detected outside. Unexpectedly, there is a strong conservation of 5′ and 3′ flanking regions between Amyrel genes from different species, which is not the case for Amy and which suggests that selection acts on these regions. In contrast to the Amy genes, Amyrel is transcribed in larvae of D. melanogaster but not in adults. However, the protein has not been detected yet. Amyrel evolves about twice as fast as Amy in the several species studied. We suggest that this gene could result from a duplication of Amy followed by accelerated and selected divergence toward a new adaptation. PMID:9618501

  19. Inhibition of Porcine Pancreatic Amylase Activity by Sulfamethoxazole: Structural and Functional Aspect.

    PubMed

    Maity, Sujan; Mukherjee, Koel; Banerjee, Amrita; Mukherjee, Suman; Dasgupta, Dipak; Gupta, Suvroma

    2016-06-01

    Combating Type-2 diabetes mellitus is a pivotal challenge in front of the present world. Several lines of therapy are in practice for resisting this deadly disease which often culminates with cardiovascular complexities, neuropathy and retinopathy. Among various therapies, administration of alpha glucosidase inhibitors is common and widely practiced. Sulfonylurea category of anti diabetic drug often suffers from cross reactivity with sulfamethoxazole (SMX), a common drug in use to treat a handful of microbial infections. However the specific cellular target generating postprandial hypoglycemia on SMX administration is till date unraveled. The present work has been initiated to elucidate the effects of a group of sulfonamide drugs inclusive of SMX for their amylase inhibitory role. SMX inhibits porcine pancreatic amylase (PPA) in a noncompetitive mode with an average IC50 value 0.94 mM respectively. Interaction of SMX with PPA is manifested with gradual quenching of tryptophan fluorescence with concomitant shift in lambda max value (λmax). Binding is governed by entropy driven factor (24.8 cal mol(-1) K(-1)) with unfavorable contribution from enthalpy change. SMX interferes with the activity of acarbose in a synergistic mode to reduce the effective dose of acarbose as evident from the in vitro PPA inhibition study. In summary, loss of PPA activity in presence of SMX is indicative of structural changes of PPA which is further augmented in the presence of acarbose as explained in the schematic model and docking study. PMID:27272220

  20. Mature Teachers Matter

    ERIC Educational Resources Information Center

    Berl, Patricia Scallan

    2005-01-01

    In this article, the author discusses the consequences of losing mature teachers due to voluntary separation or retirement and the mindset of a mature teacher that is different from younger teachers in a number of ways. Mature teachers are colleagues over 45 years of age possessing significant experience in the field. Future trends in teacher…

  1. Amylase mRNA transcripts in normal tissues and neoplasms: the implication of different expressions of amylase isogenes.

    PubMed

    Seyama, K; Nukiwa, T; Takahashi, K; Takahashi, H; Kira, S

    1994-01-01

    To understand the cellular origin and mechanism of gene expression in amylase-producing cancers, the phenotyping of amylase isogenes by the polymerase chain reaction and restriction-fragment-length polymorphism using restriction endonucleases TaqI, DdeI, HinfI, and AfaI were performed for 3 amylase-producing lung adenocarcinomas, 16 lung cancers without hyperamylasemia, other human malignant neoplasms, cultured cell lines, and normal tissues. In addition, amylase mRNA transcripts were semi-quantified by the limited polymerase chain reaction. Amylase mRNA transcripts were detected in all of the tissues examined. The AMY1 gene (salivary type) was exclusively and highly expressed in the salivary glands and the amylase-producing lung adenocarcinomas. Coexpression of the AMY1 gene and AMY2 gene (pancreatic type) was observed in most of the lung cancers without hyperamylasemia, lung tissue, and cells scraped from the tracheal epithelium, thyroid, and female genital tract (ovary, fallopian tube, and uterus cervix), while minimal levels of mRNA transcripts of the AMY2 gene were detected in other malignant neoplasms, various normal tissues, and the cultured cell lines. All mRNA transcripts identified as being those of the AMY2 gene were further identified as being from the AMY2B gene except for the transcripts from the pancreas, in which the AMY2A gene and AMY2B gene were coexpressed. On the basis of these results, the clinical occurrence of amylase-producing cancer likely relates to the tissues expressing the AMY1 gene, while the AMY2B gene, which evolutionarily is the oldest gene among human amylase isogenes, is constitutively expressed in various tissues. PMID:7507116

  2. Changes of serum amylase, its isozyme fractions and amylase-creatinine clearance ratio in dogs with experimentally induced acute pancreatitis.

    PubMed

    Akuzawa, M; Morizono, M; Nagata, K; Hayano, S; Sakamoto, H; Yasuda, N; Okamoto, K; Kawasaki, Y; Deguchi, E

    1994-04-01

    To investigate the diagnostic application of amylase to canine pancreatic diseases, serum amylase activities, its isozyme fractions and amylase-creatinine clearance ratio (ACCR) were analyzed in normal intact dogs and dogs experimentally induced acute pancreatitis. There was no statistic difference between normal male and female dogs. Amylase specific activities in pancreatic tissue extracts were more than 2,300 times higher than that in serum, and were also higher than those in other tissues; parotid and mandibular salivary glands, lung, heart, liver, spleen, duodenum, jejunum, ileum and kidney. Following the chloroform injection into the pancreatic tissue, WBC increased from 6 to 240 hr and serum glucose significantly increased at 72 and 96 hr, and no urine glucose was detected. BUN as well as serum and urine creatinine showed normal levels. ACCR increased until 96 hr without statistic significance. Serum amylase activities increased significantly after 3 hr and its isozyme was separated into 4 fractions (Amy1-Amy4) in contrast to 3 fractions (Amy2-Amy4) in intact dogs. Since this extra Amy1 seen from 1 hr increasing after 6 hr similarly to other 3 fractions, the evaluation of serum amylase and its isozyme fractions was indicated to be useful for the diagnosis of acute pancreatitis in dogs. PMID:7521216

  3. Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digestion of starch requires activities provided by 6 interactive small intestinal enzymes. Two of these are luminal endo-glucosidases named alpha-amylases. Four are exo-glucosidases bound to the luminal surface of enterocytes. These mucosal activities were identified as 4 different maltases. Two ma...

  4. Specific starch digestion of maize alpha-limit dextrins by recombinant mucosal glucosidase enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch digestion requires two luminal enzymes, salivary and pancreatic alpha-amylase (AMY), and four small intestinal mucosal enzyme activities from the N- and C-terminals of maltase-glucoamylase (MGAM) and sucrose-isomaltase (SI) complexes. AMY is not a requirement for starch digestion to glucose b...

  5. Mechanism of maltal hydration catalyzed by. beta. -amylase: Role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase

    SciTech Connect

    Kitahata, Sumio ); Chiba, S. ); Brewer, C.F.; Hehre, E.J. )

    1991-07-09

    Crystalline (monomeric) soybean and (tetrameric) sweet potato {beta}-amylase were shown to catalyze the cis hydration of maltal ({alpha}-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form {beta}-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D{sub 2}O by soybean {beta}-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (V{sub H}/V{sub D}=6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-(2(a)-{sup 2}H)maltose as product. These results indicate (for each {beta}-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that {beta}-amylase protonates maltal from a direction opposite that assumed for protonating strach, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures is dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.

  6. Fermentative Production and Thermostability Characterization of α Amylase from Aspergillus Species and Its Application Potential Evaluation in Desizing of Cotton Cloth

    PubMed Central

    Chimata, Murali Krishna; Chetty, Chellu S.; Suresh, Challa

    2011-01-01

    The production of extracellular amylase was investigated employing our laboratory isolate, Aspergillus niger sp. MK 07 and effect of process variables on enzyme production, was studied in a fermentor. It was found that amylase production was maximum when the fermentor volume was maintained at 70%, rate of agitation at 250 rpm, air supply at 2.5 vvm, inoculum concentration of 10%, and a pH of 5.0. Highest enzyme production obtained under all optimized conditions was 1734 U/mL with sucrose as carbon substrate and corn steep liquor as nitrogen source. Enzyme purification studies by ammonium sulphate precipitation and Sephadex G-100 chromatography was evaluated for obtaining purified enzyme. Thermostability of amylase were evaluated with varying concentrations from 0.2 to 0.5 M concentrations of calcium chloride and the highest activity obtained was 3115 U/mL with 0.3 M calcium chloride at 55°C. Effect of temperature and pH on the activity of purified enzyme was evaluated and the purified enzyme showed an activity till 75°C and a pH of 6.5. Application potential of partially purified alpha amylase on desizing of cotton cloth was evaluated with varying enzyme concentrations from 50 to 500 U/mL and the highest desizing activity was found to be at 300 U/mL. PMID:21977326

  7. Fermentative Production and Thermostability Characterization of α Amylase from Aspergillus Species and Its Application Potential Evaluation in Desizing of Cotton Cloth.

    PubMed

    Chimata, Murali Krishna; Chetty, Chellu S; Suresh, Challa

    2011-01-01

    The production of extracellular amylase was investigated employing our laboratory isolate, Aspergillus niger sp. MK 07 and effect of process variables on enzyme production, was studied in a fermentor. It was found that amylase production was maximum when the fermentor volume was maintained at 70%, rate of agitation at 250 rpm, air supply at 2.5 vvm, inoculum concentration of 10%, and a pH of 5.0. Highest enzyme production obtained under all optimized conditions was 1734 U/mL with sucrose as carbon substrate and corn steep liquor as nitrogen source. Enzyme purification studies by ammonium sulphate precipitation and Sephadex G-100 chromatography was evaluated for obtaining purified enzyme. Thermostability of amylase were evaluated with varying concentrations from 0.2 to 0.5 M concentrations of calcium chloride and the highest activity obtained was 3115 U/mL with 0.3 M calcium chloride at 55°C. Effect of temperature and pH on the activity of purified enzyme was evaluated and the purified enzyme showed an activity till 75°C and a pH of 6.5. Application potential of partially purified alpha amylase on desizing of cotton cloth was evaluated with varying enzyme concentrations from 50 to 500 U/mL and the highest desizing activity was found to be at 300 U/mL. PMID:21977326

  8. Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota.

    PubMed

    Yan, Shaomin; Wu, Guang

    2016-02-01

    Amylase is one of the earliest characterized enzymes and has many applications in clinical and industrial settings. In biotechnological industries, the amylase activity is enhanced through modifying amylase structure and through cloning and expressing targeted amylases in different species. It is important to understand how engineered amylases can survive from generation to generation. This study used phylogenetic and statistical approaches to explore general patterns of amylases evolution, including 3118 α-amylases and 280 β-amylases from archaea, eukaryota and bacteria with fully documented taxonomic lineage. First, the phylogenetic tree was created to analyze the evolution of amylases with focus on individual amylases used in biofuel industry. Second, the average pairwise p-distance was computed for each kingdom, phylum, class, order, family and genus, and its diversity implies multi-time and multi-clan evolution. Finally, the variance was further partitioned into inter-clan variance and intra-clan variance for each taxonomic group, and they represent horizontal and vertical gene transfer. Theoretically, the results show a full picture on the evolution of amylases in manners of vertical and horizontal gene transfer, and multi-time and multi-clan evolution as well. Practically, this study provides the information on the surviving chance of desired amylase in a given taxonomic group, which may potentially enhance the successful rate of cloning and expression of amylase gene in different species. PMID:26745984

  9. Elevated Gene Copy Number Does Not Always Explain Elevated Amylase Activities in Fishes.

    PubMed

    German, Donovan P; Foti, Dolly M; Heras, Joseph; Amerkhanian, Hooree; Lockwood, Brent L

    2016-01-01

    Amylase activity variation in the guts of several model organisms appears to be explained by amylase gene copy number variation. We tested the hypothesis that amylase gene copy number is always elevated in animals with high amylolytic activity. We therefore sequenced the amylase genes and examined amylase gene copy number in prickleback fishes (family Stichaeidae) with different diets including two species of convergently evolved herbivores with the elevated amylase activity phenotype. We found elevated amylase gene copy number (six haploid copies) with sequence variation among copies in one herbivore (Cebidichthys violaceus) and modest gene copy number (two to three haploid copies) with little sequence variation in the remaining taxa, which included herbivores, omnivores, and a carnivore. Few functional differences in amylase biochemistry were observed, and previous investigations showed similar digestibility among the convergently evolved herbivores with differing amylase genetics. Hence, the phenotype of elevated amylase activity can be achieved by different mechanisms (i.e., elevated expression of fewer genes, increased gene copy number, or expression of more efficient amylase proteins) with similar results. Phylogenetic and comparative genomic analyses of available fish amylase genes show mostly lineage-specific duplication events leading to gene copy number variation, although a whole-genome duplication event or chromosomal translocation may have produced multiple amylase copies in the Ostariophysi, again showing multiple routes to the same result. PMID:27327179

  10. Anthocyanin composition, antioxidant efficiency, and α-amylase inhibitor activity of different Hungarian sour cherry varieties (Prunus cerasus L.).

    PubMed

    Homoki, Judit R; Nemes, Andrea; Fazekas, Erika; Gyémánt, Gyöngyi; Balogh, Péter; Gál, Ferenc; Al-Asri, Jamil; Mortier, Jérémie; Wolber, Gerhard; Babinszky, László; Remenyik, Judit

    2016-03-01

    Five Hungarian sour cherry cultivars were studied to determine their anthocyanin contents and their possible inhibitory properties. The water and methanol soluble antioxidant capacities were separately assessed by photoluminescence showing values ranged from 3.4μgmg(-1) to 15.4μgmg(-1), respectively. The "VN1" variety (selected from "Csengődi csokros") showed the highest antioxidant capacity. The anthocyanin content, measured by pH differential method or isolated by solid phase extraction, was the highest also in "VN1". Correlation was found between the anthocyanin content and the high antioxidant capacity. The main anthocyanin components were cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside. The presence of malvidin-3,5-O-diglycoside was verified by MALDI-TOF MS. Sour cherry extracts and selected anthocyanins inhibited the human salivary alpha-amylase catalyzed hydrolysis competitively. The lowest IC50 value, 55μgmL(-1) or 80μM, was measured for malvidin-3,5-O-diglycoside, for which possible binding modes within the alpha-amylase active site could be investigated in silico using molecular docking and molecular dynamics. PMID:26471548

  11. Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions

    PubMed Central

    Morton, Roger L.; Schroeder, Hart E.; Bateman, Kaye S.; Chrispeels, Maarten J.; Armstrong, Eric; Higgins, Thomas J. V.

    2000-01-01

    Two α-amylase inhibitors, called αAI-1 and αAI-2, that share 78% amino acid sequence identity and have a differential specificity toward mammalian and insect α-amylases are present in different accessions of the common bean (Phaseolus vulgaris). Using greenhouse-grown transgenic peas (Pisum sativum), we have shown previously that expression of αAI-1 in pea seeds can provide complete protection against the pea weevil (Bruchus pisorum). Here, we report that αAI-1 also protects peas from the weevil under field conditions. The high degree of protection is explained by our finding that αAI-1 inhibits pea bruchid α-amylase by 80% over a broad pH range (pH 4.5–6.5). αAI-2, on the other hand, is a much less effective inhibitor of pea bruchid α-amylase, inhibiting the enzyme by only 40%, and only in the pH 4.0–4.5 range. Nevertheless, this inhibitor was still partially effective in protecting field-grown transgenic peas against pea weevils. The primary effect of αAI-2 appeared to be a delay in the maturation of the larvae. This contrasts with the effect of αAI-1, which results in larval mortality at the first or second instar. These results are discussed in relationship to the use of amylase inhibitors with different specificities to bring about protection of crops from their insect pests or to decrease insect pest populations below the economic injury level. PMID:10759552

  12. Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding-protein.

    PubMed

    Li, Jing; Francisco, Perigio; Zhou, Wenxu; Edner, Christoph; Steup, Martin; Ritte, Gerhard; Bond, Charles S; Smith, Steven M

    2009-09-01

    Of the four chloroplast beta-amylase (BAM) proteins identified in Arabidopsis, BAM3 and BAM4 were previously shown to play the major roles in leaf starch breakdown, although BAM4 apparently lacks key active site residues and beta-amylase activity. Here we tested multiple BAM4 proteins with different N-terminal sequences with a range of glucan substrates and assay methods, but detected no alpha-1,4-glucan hydrolase activity. BAM4 did not affect BAM1, BAM2 or BAM3 activity even when added in 10-fold excess, nor the BAM3-catalysed release of maltose from isolated starch granules in the presence of glucan water dikinase. However, BAM4 binds to amylopectin and to amylose-Sepharose whereas BAM2 has very low beta-amylase activity and poor glucan binding. The low activity of BAM2 may be explained by poor glucan binding but absence of BAM4 activity is not. These results suggest that BAM4 facilitates starch breakdown by a mechanism involving direct interaction with starch or other alpha-1,4-glucan. PMID:19664588

  13. Big tumor regression induced by GM-CSF gene-modified 3LL tumor cells via facilitating DC maturation and deviation toward CD11c+CD8alpha+ subset.

    PubMed

    Lin, Yi; Xiong, Sidong; Zhang, Lei; Zhang, Yi; Cai, Yuchan; Xu, Lin; Chu, Yiwei

    2007-12-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a powerful immune-stimulating factor that helps to generate a systemic, strong, and long-lasting immune response. However, whether the transduction of GM-CSF to tumor cell results in tumor regression and optimizes local immune microenvironment remains to be investigated. In this study, using an experimental murine tumor model, we demonstrated that the in vivo growth of 3LL tumor cells modified with the GM-CSF gene (3LL-GM) was inhibited even when the tumor diameter was over 7 mm (big tumor), and mice inoculated with GM-CSF gene-modified 3LL cells survived over 90 days, whereas mice inoculated with control parental 3LL cells and 3LL cells transduced with control vector all succumbed to the tumor by day 17 after tumor inoculation. Further analysis showed that targeted expression of GM-CSF in 3LL tumor cells markedly enhanced the systemic antitumor effect, including specific lymphocytes proliferation, cytotoxicity against 3LL tumor, and increased production of IFN-gamma. GM-CSF gene-modified 3LL cells significantly protected the mice from the parental 3LL tumor challenge. More importantly, the percentage of dendritic cells (DCs) in tumor site was greatly increased and the DCs differentiated into CD11c(+)CD8alpha(+) cells, which were reported to be able to benefit the induction of CD8(+) cytotoxic T lymphocytes (CTLs) that contribute to tumor regression. Our research indicated that GM-CSF could optimize the immune microenvironment in the tumor site, which provides a potent approach for immunotherapy of tumors. PMID:17760559

  14. [The β-amylase polymorphism of winter common wheat grains].

    PubMed

    Netsvetaev, V P; Akinshina, O V; Bondarenko, L S; Motorina, I P

    2012-02-01

    The polymorphism of winter common wheat with respect to β-amylase isoenzymes has been analyzed using electrophoresis in polyacrylamide gel (PAAG) buffered with a Tris-glycine system (pH 8.3). Seven β-amylase isoenzymes have been found in wheat cultivars and the breeding stock. Isoenzymes A, B, and C are the most frequent in Russian and Ukrainian cultivars (51.7 4.7, 30.7 3.8, and 11.9 2.5%, respectively). Two alleles of the β-Amy-D1 locus of the long arm of chromosome 4D have been identified. The substrate-enzyme affine effect can be used to locate the zones of activity of this enzyme by means of staining for proteins. It has been determined that β-amylase zymotypes may play a role in the aggregating capacity of the grain protein complex via the formation of S-S bonds. PMID:22567995

  15. Molecular characterization of α-amylase from Staphylococcus aureus.

    PubMed

    Lakshmi, Hanumanthu Prasanna; Prasad, Uppu Venkateswara; Yeswanth, Sthanikam; Swarupa, Vimjam; Prasad, Osuru Hari; Narasu, Mangamoori Lakshmi; Sarma, Potukuchi Venkata Gurunadha Krishna

    2013-01-01

    Staphylococcus aureus is one of the prominent Gram positive human pathogen secretes many surface and secretary proteins including various enzymes and pathogenic factors that favour the successful colonization and infection of host tissue. α-amylase is one of the enzymes secreted by S. aureus which catalyses the breakdown of complex sugars to monosaccharides, which are required for colonization and survival of this pathogen in any anatomical locales. In the present study we have cloned, sequenced, expressed and characterized α-amylase gene from S. aureus ATCC12600. The recombinant enzyme has a molecular weight of 58kDa and the kinetics showed Vmax 0.0208±0.033 (mg/ml)/mg/min and Km 10.633±0.737mg/ml. The multiple sequence analysis showed α- amylase of S. aureus exhibited large differences with Bacillus subtilis and Streptococcus bovis. As the crystal structure of S. aureus α- amylase was unavailable, we used homology modelling method to build the structure. The built structure was validated by Ramachandran plot which showed 90% of the residues in the allowed region while no residue was found in the disallowed region and the built structure was close to the crystal structure with Z-Score: -6.85. The structural superimposition studies with α- amylases of Bacillus subtilis and Streptococcus bovis showed distinct differences with RMSD values of 18.158Åand 7.091Å respectively which correlated with enzyme kinetics, indicating α-amylase is different among these bacteria. PMID:23559746

  16. Molecular characterization of α-amylase from Staphylococcus aureus

    PubMed Central

    Lakshmi, Hanumanthu Prasanna; Prasad, Uppu Venkateswara; Yeswanth, Sthanikam; Swarupa, Vimjam; Prasad, Osuru Hari; Narasu, Mangamoori Lakshmi; Sarma, Potukuchi Venkata Gurunadha Krishna

    2013-01-01

    Staphylococcus aureus is one of the prominent Gram positive human pathogen secretes many surface and secretary proteins including various enzymes and pathogenic factors that favour the successful colonization and infection of host tissue. α-amylase is one of the enzymes secreted by S. aureus which catalyses the breakdown of complex sugars to monosaccharides, which are required for colonization and survival of this pathogen in any anatomical locales. In the present study we have cloned, sequenced, expressed and characterized α-amylase gene from S. aureus ATCC12600. The recombinant enzyme has a molecular weight of 58kDa and the kinetics showed Vmax 0.0208±0.033 (mg/ml)/mg/min and Km 10.633±0.737mg/ml. The multiple sequence analysis showed α- amylase of S. aureus exhibited large differences with Bacillus subtilis and Streptococcus bovis. As the crystal structure of S. aureus α- amylase was unavailable, we used homology modelling method to build the structure. The built structure was validated by Ramachandran plot which showed 90% of the residues in the allowed region while no residue was found in the disallowed region and the built structure was close to the crystal structure with Z-Score: -6.85. The structural superimposition studies with α- amylases of Bacillus subtilis and Streptococcus bovis showed distinct differences with RMSD values of 18.158Åand 7.091Å respectively which correlated with enzyme kinetics, indicating α-amylase is different among these bacteria. PMID:23559746

  17. Cone Early Maturity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hop cone early maturity is thought to be caused by diffuse infections of cone, just prior to harvest, by Podosphaera macularis. The disease is best managed by limiting the amount of leaf infection by P. macularis prior to bloom. The yield and quality reductions associated with Hop cone early matur...

  18. Neurospora Mutant Exhibiting Hyperproduction of Amylase and Invertase

    PubMed Central

    Gratzner, Howard; Sheehan, D. N.

    1969-01-01

    A mutant strain of Neurospora crassa has been isolated which is derepressed for amylase and β-fructofuranosidase (invertase). Large amounts of the two enzymes were secreted into the culture medium upon depletion of exogenous carbon source. The resulting increases of the two extracellular enzymes were prevented by actinomycin D, cycloheximide, and glycerol. The starving cells of the mutant strain produced amylase and invertase de novo, as evidenced by incorporation of radioactive amino acids into the enzymes. Preliminary genetic studies indicate that these elevated enzyme levels described are due to a single gene mutation. PMID:5773010

  19. Alpha Thalassemia

    MedlinePlus

    ... an apparently normal individual has a child with hemoglobin H disease or alpha thalassemia minor. It can ... gene on one chromosome 25% 25% 25% 25% hemoglobin H disease there is a 25% chance with ...

  20. Close relationship of a novel Flavobacteriaceae α-amylase with archaeal α-amylases and good potentials for industrial applications

    PubMed Central

    2014-01-01

    Background Bioethanol production from various starchy materials has received much attention in recent years. α-Amylases are key enzymes in the bioconversion process of starchy biomass to biofuels, food or other products. The properties of thermostability, pH stability, and Ca-independency are important in the development of such fermentation process. Results A novel Flavobacteriaceae Sinomicrobium α-amylase (FSA) was identified and characterized from genomic analysis of a novel Flavobacteriaceae species. It is closely related with archaeal α-amylases in the GH13_7 subfamily, but is evolutionary distant with other bacterial α-amylases. Based on the conserved sequence alignment and homology modeling, with minor variation, the Zn2+- and Ca2+-binding sites of FSA were predicated to be the same as those of the archaeal thermophilic α-amylases. The recombinant α-amylase was highly expressed and biochemically characterized. It showed optimum activity at pH 6.0, high enzyme stability at pH 6.0 to 11.0, but weak thermostability. A disulfide bond was introduced by site-directed mutagenesis in domain C and resulted in the apparent improvement of the enzyme activity at high temperature and broad pH range. Moreover, about 50% of the enzyme activity was detected under 100°C condition, whereas no activity was observed for the wild type enzyme. Its thermostability was also enhanced to some extent, with the half-life time increasing from 25 to 55 minutes at 50°C. In addition, after the introduction of the disulfide bond, the protein became a Ca-independent enzyme. Conclusions The improved stability of FSA suggested that the domain C contributes to the overall stability of the enzyme under extreme conditions. In addition, successfully directed modification and special evolutionary status of FSA imply its directional reconstruction potentials for bioethanol production, as well as for other industrial applications. PMID:24485248

  1. Drosophila melanogaster larvae control amylase secretion according to the hardness of food.

    PubMed

    Sakaguchi, Honami; Suzuki, Masataka G

    2013-01-01

    Drosophila melanogaster larvae excrete amylase and perform external digestion of their food. In this study, to investigate whether their external digestion ability varies in response to changes in the external environment, we measured the relative amount of amylase excreted by larvae using a new method: the iodine starch agar method (ISAM). Analysis using this method revealed that the amount of amylase excreted by larvae increased in accordance with the increase in the agar concentration. In addition, we investigated the effect on the larval growth rate of adding amylase to the diet. Pupation occurred 24 h later in food containing 1% amylase than in food containing no amylase. These results suggest that the larvae adjust their amylase excretion in response to changes in the external environment, and that its level has a marked influence on the larval growth rate. PMID:23964241

  2. Characterization of the native form and the carboxy-terminally truncated halotolerant form of α-amylases from Bacillus subtilis strain FP-133.

    PubMed

    Takenaka, Shinji; Miyatake, Ayaka; Tanaka, Kosei; Kuntiya, Ampin; Techapun, Charin; Leksawasdi, Noppol; Seesuriyachan, Phisit; Chaiyaso, Thanongsak; Watanabe, Masanori; Yoshida, Ken-ichi

    2015-06-01

    Two amylases, amylase I and amylase II from Bacillus subtilis strain FP-133, were purified to homogeneity and characterized. Their stabilities toward temperature, pH, and organic solvents, and their substrate specificities toward polysaccharides and oligosaccharides were similar. Under moderately high salt conditions, both amylases were more stable than commercial B. licheniformis amylase, and amylase I retained higher amylase activity than amylase II. The N-terminal amino acid sequence, genomic southern blot analysis, and MALDI-TOFF-MS analysis indicated that the halotolerant amylase I was produced by limited carboxy-terminal truncation of the amylase II peptide. The deduced amino acid sequence of amylase II was >95% identical to that of previously reported B. subtilis α-amylases, but their carboxy-terminal truncation points differed. Three recombinant amylases--full-length amylase corresponding to amylase II, an artificially truncated amylase corresponding to amylase I, and an amylase with a larger artificial C-terminal truncation--were expressed in B. subtilis. The artificially truncated recombinant amylases had the same high amylase activity as amylase I under moderately high salt conditions. Sequence comparisons indicated that an increased ratio of Asp/Glu residues in the enzyme may be one factor responsible for increasing halotolerance. PMID:25689045

  3. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Amylase test system. 862.1070 Section 862.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  4. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Amylase test system. 862.1070 Section 862.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  5. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Amylase test system. 862.1070 Section 862.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  6. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Amylase test system. 862.1070 Section 862.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  7. 21 CFR 862.1070 - Amylase test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Amylase test system. 862.1070 Section 862.1070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems §...

  8. Purification and characterization of camel (Camelus dromedarius) milk amylase.

    PubMed

    El-Fakharany, Esmail M; Serour, Ehab A; Abdelrahman, Aref M; Haroun, Bakry M; Redwan, El-Rashdy M

    2009-01-01

    Skimmed camel milk contains 59,900 U/L amylase, which is 39,363 times less than serum and plasma amylase. Camel milk beta-amylase was purified as a 61 KDa band using DEAE-Sepharose and Sephadex G-100 and yielded 561 U/mg. The optimum working pH, Km and temperature were 7.0, 13.6 mg/Lstarch, 30-40 degrees C, respectively. The enzyme has been shown higher affinity toward amylose and soluble starch than glycogen, amylopectin, dextrin, or pullulan. Magnesium chloride, CaCl(2) and NaCl activated the amylase, while EDTA and EGTA decreased its activity. While its activity was increased in the presence of Triton X-100 and Triton X-114. Phenylmethanesulfonyl fluoride did not show any effect on enzyme activity. However, the enzyme activity was inhibited by urea, SDS, DTNB, iodoacetamide, N-ethylmalimide, aprotinin, and trypsin inhibitor. It worked on starch to yield a maltose. Scanning electron microscope images demonstrated a nano-degrading ability on starch granules from various sources (potato, corn, cassava, and rice). PMID:19291574

  9. Recommendations for Amylase Application in the 2008 Louisiana Grinding Season

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unfortunately, the application of amylase (an enzyme) to break down long chains of unwanted starch in U.S. sugarcane factories is still not optimized because of misinformation about which enzyme to use, and how to add the enzyme. Two large factory trials were conducted at a Louisiana factory to opti...

  10. Data Product Maturity

    Atmospheric Science Data Center

    2013-03-25

    ... document, maturity levels are provided separately for each scientific data set (SDS) included with the data files. The data product ... indiscriminate use of these data products as the basis for research findings, journal publications, and/or presentations.   ...

  11. Characterization of a Hydrophobic Amylase Inhibitor from Corn (Zea mays) Seeds with Activity Against Amylase from Fusarium verticillioides.

    PubMed

    Figueira, Edson L Z; Hirooka, Elisa Y; Mendiola-Olaya, Elizabeth; Blanco-Labra, Alejandro

    2003-08-01

    ABSTRACT A hydrophobic 19.7-kDa amylase inhibitor (AI) was purified from corn kernels by 95% ethanol extraction and anionic exchange chromatography. The AI has an isoelectric point of 3.6 and was very stable at different pH values and high temperatures, maintaining 47.6% activity after heating to 94 degrees C for 60 min. Amino acid analysis indicated high valine, leucine, glycine, alanine, and glutamic acid/glutamine content, and especially high valine content (41.2 mol%). This inhibitor is not a glycoprotein. It required 30-min preincubation to maximize complex enzyme-inhibitor formation when the amylase from Fusarium verticillioides was tested. The optimal pH of interaction was 6.5. It showed broad-spectrum activity including the following amylases: human saliva, porcine pancreas, F. verticillioides, as well as those from some insects of agricultural importance (Acanthoscelides obtectus, Zabrotes subfasciatus, Sitophilus zeamais, and Prostephanus truncatus). This novel hydrophobic protein not only inhibited the amylase from F. verticillioides but also decreased the conidia germination. Thus, this protein represents an approach to decrease the production of fumonisin in corn, either by using it as a molecular marker to detect fungal resistance or through genetic engineering. PMID:18943857

  12. Expression of the human amylase genes: Recent origin of a salivary amylase promoter from an actin pseudogene

    SciTech Connect

    Samuelson, L.C.; Gumucio, D.L.; Meisler, M.H. ); Wiebauer, K. )

    1988-09-12

    The human genes encoding salivary amylase (AMY1) and pancreatic amylase (AMY2) are nearly identical in structure and sequence. The authors have used ribonuclease protection studies to identify the functional gene copies in this multigene family. Riboprobes derived from each gene were hybridized to RNA from human pancreas, parotid and liver. The sizes of the protected fragments demonstrated that both pancreatic genes are expressed in pancreas. One of the pancreatic genes, AMY2B, is also transcribed at a low level in liver, but not from the promoter used in pancreas. AMY1 transcripts were detected in parotid, but not in pancreas or liver. Unexpected fragments protected by liver RNA led to the discovery that the 5{prime} regions of the five human amylase genes contain a processed {gamma}-actin pseudogene. The promoter and start site for transcription of AMY1 are recently derived from the 3{prime} untranslated region of {gamma}-actin. In addition, insertion of an endogenous retrovirus has interrupted the {gamma}-actin pseudogene in four of the five amylase genes.

  13. Expression of the human amylase genes: recent origin of a salivary amylase promoter from an actin pseudogene.

    PubMed

    Samuelson, L C; Wiebauer, K; Gumucio, D L; Meisler, M H

    1988-09-12

    The human genes encoding salivary amylase (AMY1) and pancreatic amylase (AMY2) are nearly identical in structure and sequence. We have used ribonuclease protection studies to identify the functional gene copies in this multigene family. Riboprobes derived from each gene were hybridized to RNA from human pancreas, parotid and liver. The sizes of the protected fragments demonstrated that both pancreatic genes are expressed in pancreas. One of the pancreatic genes, AMY2B, is also transcribed at a low level in liver, but not from the promoter used in pancreas. AMY1 transcripts were detected in parotid, but not in pancreas or liver. Unexpected fragments protected by liver RNA led to the discovery that the 5' regions of the five human amylase genes contain a processed gamma-actin pseudogene. The promoter and start site for transcription of AMY1 are recently derived from the 3' untranslated region of gamma-actin. In addition, insertion of an endogenous retrovirus has interrupted the gamma-actin pseudogene in four of the five amylase genes. PMID:2458567

  14. Amylase α-1A (AMY1A)

    PubMed Central

    Jain, Sarika; Roy, Somak; Amin, Milon; Acquafondata, Marie; Yin, Ming; LaFramboise, William; Bastacky, Sheldon; Pantanowitz, Liron; Dhir, Rajiv; Parwani, Anil

    2014-01-01

    Chromophobe renal cell carcinoma (ChRCC) and oncocytoma present with a perplexing overlap of morphologic and immunohistochemical features. ChRCC have deletions in the 1p21.1 region including the amylase α-1A gene (AMY1A). No such deletions are found in oncocytoma. Instead, oncocytomas shared other deletions on chromosome 1: 1p31.3, 1q25.2, and 1q44. We performed AMY1A immunostaining on 75 oncocytomas (57 tissue microarray [TMA] cores, 18 whole slides) and 54 ChRCCs (20 TMA cores, 34 whole slides). Staining was assessed using the H-score method. The intensity was graded as follows: no staining=0, weak=1, moderate=2, and strong=3. The AMY1A immunostain preferentially stained the distal tubules and collecting ducts of normal kidney. All oncocytomas (100%) expressed AMY1A with an H-score that varied from 100 to 300 (mean 205). Mild to moderate heterogeneity in staining intensity was noted within a given oncocytoma. For oncocytomas, 87% (65/75) cases had H-scores of at least 120 with a mean score of 221. Notably, the 13% (10/75) of oncocytoma cases that had an H-score of 100 were derived from the TMA. A total of 87% (47/54) of the ChRCC cases were negative for the AMY1A immunostain. Of the ChRCC cases, 4% (2/54) showed very weak cytoplasmic staining (H-score of 70 each), which was less than the lowest H-score of oncocytoma cases. All 5 cases of ChRCC, which showed an H-score of 100 or more, were referred to as eosinophilic variants of ChRCC. Three of these 5 cases showed a very nondescript, diffuse staining of the cytoplasm. Two of these 5 cases showed an H-score of 130. We think that as the staining pattern of these 2 cases is similar to that of oncocytoma, they should be put in a category of renal oncocytic neoplasms favoring oncocytoma. This result shows that AMY1A staining could be very helpful in further classifying even a subset of the eosinophilic variants of ChRCC. The difference between ChRCC and oncocytoma was statistically significant (χ2 test, P<0

  15. Production of amylases from rice by solid-state fermentation in a gas-solid spouted-Bed bioreactor

    PubMed

    Silva; Yang

    1998-07-01

    A gas-solid spouted-bed bioreactor was developed to produce amylases from rice in solid-state fermentation by Aspergillus oryzae. The spouted-bed bioreactor was developed to overcome many of the problems inherent to large-scale solid-state fermentation, including mass- and heat-transfer limitations in the conventional tray reactors and solids-handling difficulties seen in packed-bed bioreactors. The solid-state fermentation results from the tray-type reactor with surface aeration were poor because of mass- and heat-transfer problems. A packed-bed bioreactor with continuous aeration through the rice bed produced high protein and enzymes, but the fermented rice was difficult to remove and process due to the formation of large chunks of rice aggregates knitted together with fungal mycelia. Also, the fermentation was not uniform in the packed bed. The spouted-bed bioreactor with intermittent spouting with air achieved high production levels in both total protein and enzymes (alpha-amylase, beta-amylase, and glucoamylase) that were comparable to those found in the packed-bed bioreactor, but without the nonuniformity and solids-handling problems. However, continual spouting was found to be detrimental to this solid-state fermentation, possibly because of shear or impact damage to fungal mycelia during spouting. Increasing spouting frequency from 4-h intervals to 1-h intervals decreased protein and enzyme production. Other operating conditions critical to the fermentation include proper humidification to prevent drying of the substrate and control of reactor wall temperature to prevent excessive condensation, which would interfere with proper spouting. PMID:9694679

  16. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... Liver Disease Information > Alpha-1 Antitrypsin Deficiency Alpha-1 Antitrypsin Deficiency Explore this section to learn more about alpha-1 antitrypsin deficiency, including a description of the disorder ...

  17. Studies on the Utility of B-Amylase1 IntronIII Sequences as Markers for B-Amylase Activity and Thermostability, Diastatic Power and Malt Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The third intron of barley (Hordeum vulgare L.) ß-amylase 1 (Bmy1) is extremely polymorphic. The use of specific insertion/deletions (indels) in the third intron as markers for cultivar development has been recommended based on associations with ß-amylase activity and thermostability. The third in...

  18. Studies on the Utility of ß-amylase1 IntronIII Sequences as Markers for ß-amylase Activity and Thermostability, Diastatic Power and Malt Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The third intron of barley (Hordeum vulgare L.) ß-amylase 1 (Bmy1) is extremely polymorphic. The use of specific insertion/deletions (indels) in the third intron as markers for cultivar development has been recommended based on associations with ß-amylase activity and thermostability. The third intr...

  19. Is There Consistency between the Binding Affinity and Inhibitory Potential of Natural Polyphenols as α-amylase Inhibitors?

    PubMed

    Xu, Wei; Shao, Rong; Xiao, Jianbo

    2016-07-26

    The inhibitory potential of natural polyphenols for α-amylases has attracted great interests among researchers. The structure-affinity properties of natural polyphenols binding to α-amylase and the structure-activity relationship of dietary polyphenols inhibiting α-amylase were deeply investigated. There is a lack of consistency between the structure-affinity relationship and the structure-activity relationship of natural polyphenols as α-amylase inhibitors. Is it consistent between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors? It was found that the consistency between the binding affinity and inhibitory potential of natural polyphenols as with α-amylase inhibitors is not equivocal. For example, there is no consistency between the binding affinity and the inhibitory potential of quercetin and its glycosides as α-amylase inhibitors. However, catechins with higher α-amylase inhibitory potential exhibited higher affinity with α-amylase. PMID:25748632

  20. Gamma irradiation of sorghum flour: Effects on microbial inactivation, amylase activity, fermentability, viscosity and starch granule structure

    NASA Astrophysics Data System (ADS)

    Mukisa, Ivan M.; Muyanja, Charles M. B. K.; Byaruhanga, Yusuf B.; Schüller, Reidar B.; Langsrud, Thor; Narvhus, Judith A.

    2012-03-01

    Malted and un-malted sorghum ( Sorghum bicolor (L.) Moench) flour was gamma irradiated with a dose of 10 kGy and then re-irradiated with 25 kGy. The effects of irradiation on microbial decontamination, amylase activity, fermentability (using an amylolytic L. plantarum MNC 21 strain), starch granule structure and viscosity were determined. Standard methods were used during determinations. The 10 kGy dose had no effect on microbial load of un-malted flour but reduced that of malted flour by 3 log cycles. Re-irradiation resulted in complete decontamination. Irradiation of malt caused a significant ( p<0.05) reduction in alpha and beta amylase activity (22% and 32%, respectively). Irradiation of un-malted flour increased the rates of utilization of glucose and maltose by 53% and 100%, respectively, during fermentation. However, microbial growth, rate of lactic acid production, final lactic acid concentration and pH were not affected. Starch granules appeared normal externally even after re-irradiation, however, granules ruptured and dissolved easily after hydration and gelatinization. Production of high dry matter density porridge (200 g dry matter/L) with a viscosity of 3500 cP was achieved by irradiation of un-malted flout at 10 kGy. Gamma irradiation can be used to decontaminate flours and could be utilized to produce weaning porridge from sorghum.

  1. Anatomy of a conformational transition of beta-strand 6 in soybean beta-amylase caused by substrate (or inhibitor) binding to the catalytical site.

    PubMed Central

    Pujadas, G.; Palau, J.

    1997-01-01

    A computational study of the five soybean beta-amylase X-ray structure reported so far revealed a peculiar conformational transition after substrate (or inhibitor) binding, which affects a segment of the beta-strand 6 (residues 341-343) in the (beta/alpha)8 molecular scaffold. Backbone distortions that involve considerable changes in the phi and psi angles were observed, as well as two sharp rotamer transitions for the Thr342 and Cys343 side chains. These changes caused the outermost CA-layer (at the C-terminal side of the barrel), which is involved in the catalysis, to shrink. Our observations strongly suggest that the 341FTC343 residue conformations in the free enzyme are not optimal for protein stability. Furthermore, as a result of conformational transitions in the ligand-binding process, there is a negative enthalpy change for these residues (-27 and -34 kcal/mol, after substrate or inhibitor binding, respectively). These findings support the proposed "stability-function" hypothesis for proteins that recognize a ligand (Shoichet BK, Baase WA, Kuroki R, Matthews BW. 1995. A relationship between protein stability and protein function. Proc Natl Acad Sci USA 92:452-456). They are also in good agreement with other experimental results in the literature that describe the role of the 341-343 segment in beta-amylase activity. Site-directed mutagenesis focused on these residues could be useful for undertaking functional studies of beta-amylase. PMID:9385643

  2. Stabilization of α-amylase by using anionic surfactant during the immobilization process

    NASA Astrophysics Data System (ADS)

    El-Batal, A. I.; Atia, K. S.; Eid, M.

    2005-10-01

    This work describes the entrapment of α-amylase into butylacrylate-acrylic acid copolymer (BuA/AAc) using γ irradiation. The effect of an anionic surfactant (AOT), the reuse efficiency, and kinetic behavior of immobilized α-amylase were studied. Covering of α-amylase with bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) made the enzyme more stable than the uncovered form. The hydrolytic activity of the pre-coated immobilized α-amylase was increased below the critical micelle concentration (cmc) (10 mmol/L). The results showed an increase in the relative activity with increase in the degree of hydration. The pre-coated immobilized α-amylase showed a higher k/K and lower activation energy compared to the free and uncoated-immobilized preparation, respectively. The results suggest that the immobilization of α-amylase is a potentially useful approach for commercial starch hydrolysis in two-phase systems.

  3. Study of fluorescence quenching of Barley α-amylase

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Shanthi, B.; Bhuvanapriya, T.

    2012-05-01

    The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (Kg &Ke) have been calculated. From the calculated binding constants (Kg &Ke) the free energy changes for the ground (ΔGg) and excited (ΔGe) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.

  4. Production of fungal amylases using cheap, readily available agriresidues, for potential application in textile industry.

    PubMed

    Singh, Shalini; Singh, Sanamdeep; Bali, Vrinda; Sharma, Lovleen; Mangla, Jyoti

    2014-01-01

    The study aimed at isolation and screening of fungal amylase producer, optimization of solid state fermentation conditions for maximum amylase production by the best amylase producer, and characterization of the crude amylases, so produced. Aspergillus fumigatus NTCC1222 showed the highest amylase activity (164.1 U/mL) in secondary screening under SSF conditions and was selected for further studies. The test strain showed maximum amylase production (341.7 U/mL) and supernatant protein concentration (9.7 mg/mL) for incubation period (6 days), temperature (35 °C), initial pH (6.0), nutrient salt solution as moistening agent, and beef extract as nitrogen source. Pomegranate peel produced maximum amylase activity, but wheat bran (only slightly lesser amylase activity as compared to that of pomegranate peel) was chosen for further studies, keeping in mind the seasonal availability of pomegranate peel. TLC confirmed the amylase produced to be α -type and 60 kDa was the molecular weight of the partially purified amylase. The enzyme showed maximum enzyme activity at pH 6.0, temperature of 55 °C, and incubation time of 60 minutes. UV (616.0 U/mL) and chemical (814.2 U/mL) mutation enhanced amylase activity as compared to wild test strain. The study indicates that Aspergillus fumigatus NTCC1222 can be an important source of amylase and the crude enzyme, hence obtained, can be cost effectively applied in multiple sections of textile wet processing. PMID:24527439

  5. Production of Fungal Amylases Using Cheap, Readily Available Agriresidues, for Potential Application in Textile Industry

    PubMed Central

    Singh, Sanamdeep; Bali, Vrinda; Mangla, Jyoti

    2014-01-01

    The study aimed at isolation and screening of fungal amylase producer, optimization of solid state fermentation conditions for maximum amylase production by the best amylase producer, and characterization of the crude amylases, so produced. Aspergillus fumigatus NTCC1222 showed the highest amylase activity (164.1 U/mL) in secondary screening under SSF conditions and was selected for further studies. The test strain showed maximum amylase production (341.7 U/mL) and supernatant protein concentration (9.7 mg/mL) for incubation period (6 days), temperature (35°C), initial pH (6.0), nutrient salt solution as moistening agent, and beef extract as nitrogen source. Pomegranate peel produced maximum amylase activity, but wheat bran (only slightly lesser amylase activity as compared to that of pomegranate peel) was chosen for further studies, keeping in mind the seasonal availability of pomegranate peel. TLC confirmed the amylase produced to be α-type and 60 kDa was the molecular weight of the partially purified amylase. The enzyme showed maximum enzyme activity at pH 6.0, temperature of 55°C, and incubation time of 60 minutes. UV (616.0 U/mL) and chemical (814.2 U/mL) mutation enhanced amylase activity as compared to wild test strain. The study indicates that Aspergillus fumigatus NTCC1222 can be an important source of amylase and the crude enzyme, hence obtained, can be cost effectively applied in multiple sections of textile wet processing. PMID:24527439

  6. Jealousy and Moral Maturity.

    ERIC Educational Resources Information Center

    Mathes, Eugene W.; Deuger, Donna J.

    Jealousy may be perceived as either good or bad depending upon the moral maturity of the individual. To investigate this conclusion, a study was conducted testing two hypothesis: a positive relationship exists between conventional moral reasoning (reference to norms and laws) and the endorsement and level of jealousy; and a negative relationship…

  7. Anaerobic Threshold and Salivary α-amylase during Incremental Exercise

    PubMed Central

    Akizuki, Kazunori; Yazaki, Syouichirou; Echizenya, Yuki; Ohashi, Yukari

    2014-01-01

    [Purpose] The purpose of this study was to clarify the validity of salivary α-amylase as a method of quickly estimating anaerobic threshold and to establish the relationship between salivary α-amylase and double-product breakpoint in order to create a way to adjust exercise intensity to a safe and effective range. [Subjects and Methods] Eleven healthy young adults performed an incremental exercise test using a cycle ergometer. During the incremental exercise test, oxygen consumption, carbon dioxide production, and ventilatory equivalent were measured using a breath-by-breath gas analyzer. Systolic blood pressure and heart rate were measured to calculate the double product, from which double-product breakpoint was determined. Salivary α-amylase was measured to calculate the salivary threshold. [Results] One-way ANOVA revealed no significant differences among workloads at the anaerobic threshold, double-product breakpoint, and salivary threshold. Significant correlations were found between anaerobic threshold and salivary threshold and between anaerobic threshold and double-product breakpoint. [Conclusion] As a method for estimating anaerobic threshold, salivary threshold was as good as or better than determination of double-product breakpoint because the correlation between anaerobic threshold and salivary threshold was higher than the correlation between anaerobic threshold and double-product breakpoint. Therefore, salivary threshold is a useful index of anaerobic threshold during an incremental workload. PMID:25140097

  8. Paper-based α-amylase detector for point-of-care diagnostics.

    PubMed

    Dutta, Satarupa; Mandal, Nilanjan; Bandyopadhyay, Dipankar

    2016-04-15

    We report the fabrication of a paper-sensor for quantitative detection of α-amylase activity in human blood serum. Pieces of filter papers were coated with starch-iodine solution leading to an intense blue coloration on the surface. Dispensing α-amylase solution on the starch-iodine coated paper reduced the intensity of the color because of starch-hydrolysis catalyzed by amylase. The variation in the intensity of the color with the concentration of amylase was estimated in three stages: (i) initially, the paper-surface was illuminated with a light emitting diode, (ii) then, the transmitted (reflected) rays emitted through (from) the paper were collected on a photoresistor, and (iii) the variations in the electrical resistance of the photoresistor were correlated with the amylase concentration in analyte. The resistance of photoresistor decreased monotonically with an increase in amylase concentration because the intensity of the reflected (transmitted) rays collected from (through) the paper increased with reduction in the color intensity on the paper surface. Since a specific bio-reaction was employed to detect the activity of amylase, the sensor was found to be equally efficient in detecting unknown quantities of amylase in human blood serum. The reported sensor has shown the potential to graduate into a point-of-care detection tool for α-amylase. PMID:26655186

  9. Structure of amylase-binding protein A of Streptococcus gordonii: A potential receptor for human salivary α-amylase enzyme

    PubMed Central

    Sethi, Ashish; Mohanty, Biswaranjan; Ramasubbu, Narayanan; Gooley, Paul R

    2015-01-01

    Amylase-binding protein A (AbpA) of a number of oral streptococci is essential for the colonization of the dental pellicle. We have determined the solution structure of residues 24–195 of AbpA of Streptococcus gordonii and show a well-defined core of five helices in the region of 45–115 and 135–145. 13Cα/β chemical shift and heteronuclear 15N-{1H} NOE data are consistent with this fold and that the remainder of the protein is unstructured. The structure will inform future molecular experiments in defining the mechanism of human salivary α-amylase binding and biofilm formation by streptococci. PMID:25739638

  10. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4

    PubMed Central

    Junker, Yvonne; Zeissig, Sebastian; Kim, Seong-Jun; Barisani, Donatella; Wieser, Herbert; Leffler, Daniel A.; Zevallos, Victor; Libermann, Towia A.; Dillon, Simon; Freitag, Tobias L.; Kelly, Ciaran P.

    2012-01-01

    Ingestion of wheat, barley, or rye triggers small intestinal inflammation in patients with celiac disease. Specifically, the storage proteins of these cereals (gluten) elicit an adaptive Th1-mediated immune response in individuals carrying HLA-DQ2 or HLA-DQ8 as major genetic predisposition. This well-defined role of adaptive immunity contrasts with an ill-defined component of innate immunity in celiac disease. We identify the α-amylase/trypsin inhibitors (ATIs) CM3 and 0.19, pest resistance molecules in wheat, as strong activators of innate immune responses in monocytes, macrophages, and dendritic cells. ATIs engage the TLR4–MD2–CD14 complex and lead to up-regulation of maturation markers and elicit release of proinflammatory cytokines in cells from celiac and nonceliac patients and in celiac patients’ biopsies. Mice deficient in TLR4 or TLR4 signaling are protected from intestinal and systemic immune responses upon oral challenge with ATIs. These findings define cereal ATIs as novel contributors to celiac disease. Moreover, ATIs may fuel inflammation and immune reactions in other intestinal and nonintestinal immune disorders. PMID:23209313

  11. Properties of an amylase from thermophilic Bacillus SP

    PubMed Central

    de Carvalho, Raquel Vieira; Côrrea, Thamy Lívia Ribeiro; da Silva, Júlia Caroline Matos; de Oliveira Mansur, Luciana Ribeiro Coutinho; Martins, Meire Lelis Leal

    2008-01-01

    α-Amylase production by thermophilic Bacillus sp strain SMIA-2 cultivated in liquid cultures containing soluble starch as a carbon source and supplemented with 0.05% whey protein and 0.2% peptone reached a maximum activity at 32 h, with levels of 37 U/mL. Studies on the amylase characterization revealed that the optimum temperature of this enzyme was 90°C. The enzyme was stable for 1 h at temperatures ranging from 40-50°C while at 90°C, 66% of its maximum activity was lost. However, in the presence of 5 mM CaCl2, the enzyme was stable at 90°C for 30 min and retained about 58% residual activity after 1 h. The optimum pH of the enzyme was found to be 8.5. After incubation of enzyme for 2 h at pH 9.5 and 11.0 was observed a decrease of about 6.3% and 16.5% of its original activity. At pH 6.0 the enzyme lost about 36% of its original activity. The enzyme was strongly inhibited by Co2+, Cu2+ and Ba2+, but less affected by Mg2+, Na+ and K+. In the presence of 2.0 M NaCl, 63% of amylase activity was retained after 2 h incubation at 45°C. The amylase exhibited more than 70% activity when incubated for 1 h at 50°C with sodium dodecyl sulphate. However, very little residual activity was obtained with sodium hypochlorite and with hydrogen peroxide the enzyme was completely inhibited. The compatibility of Bacillus sp SMIA-2 amylase with certain commercial detergents was shown to be good as the enzyme retained 86%, 85% and 75% of its activity after 20 min incubation at 50°C in the presence of the detergent brands Omo®, Campeiro® and Tide®, respectively. PMID:24031188

  12. Sex Differences in Salivary Cortisol, Alpha-Amylase, and Psychological Functioning Following Hurricane Katrina

    ERIC Educational Resources Information Center

    Vigil, Jacob M.; Geary, David C.; Granger, Douglas A.; Flinn, Mark V.

    2010-01-01

    The study examines group and individual differences in psychological functioning and hypothalamic-pituitary-adrenal and sympathetic nervous system (SNS) activity among adolescents displaced by Hurricane Katrina and living in a U.S. government relocation camp (n = 62, ages 12-19 years) 2 months postdisaster. Levels of salivary cortisol, salivary…

  13. Classroom Emotional Support Predicts Differences in Preschool Children's Cortisol and Alpha-Amylase Levels

    ERIC Educational Resources Information Center

    Hatfield, Bridget E.; Hestenes, Linda L.; Kintner-Duffy, Victoria L.; O'Brien, Marion

    2013-01-01

    Accumulating evidence suggests children enrolled in full-time child care often display afternoon elevations of the hormone cortisol, which is an indicator of stress. Recent advances in immunoassays allow for measurement of activity in the hypothalamic-pituitary-adrenal axis and the autonomic sympathetic nervous system from saliva, and measurement…

  14. Isolation of a novel amylase and lipase-producing Pseudomonas luteola strain: study of amylase production conditions

    PubMed Central

    2014-01-01

    An amylase and lipase producing bacterium (strain C2) was enriched and isolated from soil regularly contaminated with olive washing wastewater in Sfax, Tunisia. Cell was aerobic, mesophilic, Gram-negative, motile, non-sporulating bacterium, capable of growing optimally at pH 7 and 30°C and tolerated maximally 10% (W/V) NaCl. The predominant fatty acids were found to be C18:1ω7c (32.8%), C16:1ω7c (27.3%) and C16:0 (23.1%). Phylogenetic analysis of the 16S rRNA gene revealed that this strain belonging to the genus Pseudomonas. Strain C2 was found to be closely related to Pseudomonas luteola with more than 99% of similarity. Amylase optimization extraction was carried out using Box Behnken Design (BBD). Its maximal activity was found when the pH and temperature ranged from 5.5 to 6.5 and from 33 to 37°C, respectively. Under these conditions, amylase activity was found to be about 9.48 U/ml. PMID:24405763

  15. Isolation of a novel amylase and lipase-producing Pseudomonas luteola strain: study of amylase production conditions.

    PubMed

    Khannous, Lamia; Jrad, Mouna; Dammak, Mouna; Miladi, Ramzi; Chaaben, Nour; Khemakhem, Bassem; Gharsallah, Néji; Fendri, Imen

    2014-01-01

    An amylase and lipase producing bacterium (strain C2) was enriched and isolated from soil regularly contaminated with olive washing wastewater in Sfax, Tunisia. Cell was aerobic, mesophilic, Gram-negative, motile, non-sporulating bacterium, capable of growing optimally at pH 7 and 30°C and tolerated maximally 10% (W/V) NaCl. The predominant fatty acids were found to be C(18:1)ω7c (32.8%), C(16:1)ω7c (27.3%) and C16:0 (23.1%). Phylogenetic analysis of the 16S rRNA gene revealed that this strain belonging to the genus Pseudomonas. Strain C2 was found to be closely related to Pseudomonas luteola with more than 99% of similarity. Amylase optimization extraction was carried out using Box Behnken Design (BBD). Its maximal activity was found when the pH and temperature ranged from 5.5 to 6.5 and from 33 to 37°C, respectively. Under these conditions, amylase activity was found to be about 9.48 U/ml. PMID:24405763

  16. Evidence for gene conversion in the amylase multigene family of Drosophila pseudoobscura.

    PubMed

    Popadić, A; Anderson, W W

    1995-07-01

    The alpha-amylase (Amy) multigene family in Drosophila pseudoobscura is located on the third chromosome, which is polymorphic for more than 40 inverted gene arrangements. The number of copies in this family ranges from one to three, depending on the arrangement in question. A previous study of the three Amy genes from the Standard (ST) arrangement suggested either that duplicated copies (Amy2 and Amy3) are functionally constrained or that they are undergoing gene conversion with Amy1. In order to elucidate further the pattern of molecular evolution in this family, we cloned and sequenced four additional Amy genes, two from the Santa Cruz (SC) and two from the Chiricahua (CH) gene arrangement. Of the two alternatives, only the hypothesis of gene conversion is supported by the sequence analysis. The homogenization effect of gene conversion has been strongest in SC, whose copies differ by only two nucleotides, less noticeable in ST, and negligible in the CH. Furthermore, the action of gene conversion is apparently localized, occurring only in the coding region. Interestingly, these results concur with the findings of other workers for the duplicated Amy genes in the Drosophila melanogaster group. Thus, the occurrence of gene conversion in the Amy multigene family seems to be a common feature in the Drosophila species studied so far. PMID:7659012

  17. Genetically Modified α-Amylase Inhibitor Peas Are Not Specifically Allergenic in Mice

    PubMed Central

    Dekan, Gerhard; Moore, Andrew E.; Higgins, T. J. V.; Epstein, Michelle M.

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice. PMID:23326368

  18. Salivary amylase induction by tannin-enriched diets as a possible countermeasure against tannins.

    PubMed

    da Costa, G; Lamy, E; Capela e Silva, F; Andersen, J; Sales Baptista, E; Coelho, A V

    2008-03-01

    Tannins are characterized by protein-binding affinity. They have astringent/bitter properties that act as deterrents, affecting diet selection. Two groups of salivary proteins, proline-rich proteins and histatins, are effective precipitators of tannin, decreasing levels of available tannins. The possibility of other salivary proteins having a co-adjuvant role on host defense mechanisms against tannins is unknown. In this work, we characterized and compared the protein profile of mice whole saliva from animals fed on three experimental diets: tannin-free diet, diet with the incorporation of 5% hydrolyzable tannins (tannic acid), or diet with 5% condensed tannins (quebracho). Protein analysis was performed by one-dimensional gel electrophoresis combined with Matrix-Assisted Laser Desorption Ionization-Time of Flight mass spectrometry to allow the dynamic study of interactions between diet and saliva. Since abundant salivary proteins obscure the purification and identification of medium and low expressed salivary proteins, we used centrifugation to obtain saliva samples free from proteins that precipitate after tannin binding. Data from Peptide Mass Fingerprinting allowed us to identify ten different proteins, some of them showing more than one isoform. Tannin-enriched diets were observed to change the salivary protein profile. One isoform of alpha-amylase was overexpressed with both types of tannins. Aldehyde reductase was only identified in saliva of the quebracho group. Additionally, a hypertrophy of parotid salivary gland acini was observed by histology, along with a decrease in body mass in the first 4 days of the experimental period. PMID:18253799

  19. Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice.

    PubMed

    Lee, Rui-Yun; Reiner, Daniela; Dekan, Gerhard; Moore, Andrew E; Higgins, T J V; Epstein, Michelle M

    2013-01-01

    Weevils can devastate food legumes in developing countries, but genetically modified peas (Pisum sativum), chickpeas and cowpeas expressing the gene for alpha-amylase inhibitor-1 (αAI) from the common bean (Phaseolus vulgaris) are completely protected from weevil destruction. αAI is seed-specific, accumulated at high levels and undergoes post-translational modification as it traverses the seed endomembrane system. This modification was thought to be responsible for the reported allergenicity in mice of the transgenic pea but not the bean. Here, we observed that transgenic αAI peas, chickpeas and cowpeas as well as non-transgenic beans were all allergenic in BALB/c mice. Even consuming non-transgenic peas lacking αAI led to an anti-αAI response due to a cross-reactive response to pea lectin. Our data demonstrate that αAI transgenic peas are not more allergenic than beans or non-transgenic peas in mice. This study illustrates the importance of repeat experiments in independent laboratories and the potential for unexpected cross-reactive allergic responses upon consumption of plant products in mice. PMID:23326368

  20. Purification and characterization of α-Amylase from Miswak Salvadora persica

    PubMed Central

    2014-01-01

    Background The miswak (Salvadora persica) is a natural toothbrush. It is well known that very little information has been reported on enzymes in miswak as medicinal plant. Recently, we study peroxidase in miswak. In the present study, the main goal of this work is to purify and characterize α-amylase from miswak. The second goal is to study the storage stability of α-amylase in toothpaste. Method The purification method included chromatographaphy of miswak α-amylase on DEAE-Sepharose column and Sephacryl S-200 column. Molecular weight was determined by gel filtration and SDS-PAGE. Results Five α-amylases A1, A4a, A4b, A5a and A5b from miswak were purified and they had molecular weights of 14, 74, 16, 30 and 20 kDa, respectively. α-Amylases had optimum pH from 6 to 8. Affinity of the substrates toward all enzymes was studied. Miswak α-amylases A1, A4a, A4b, A5a and A5b had Km values for starch and glycogen of 3.7, 3.7, 7.1, 0.52, 4.3 mg/ml and 5.95, 5.9 4.16, 6.3, 6.49 mg/ml, respectively. The optimum temperature for five enzymes ranged 40°C- 60°C. Miswak α-amylases were stable up to 40°C- 60°C after incubation for 30 min. Ca+2 activated all the miswak α-amylases, while Ni2+, Co+2 and Zn+2 activated or inhibited some of these enzymes. The metal chelators, EDTA, sodium citrate and sodium oxalate had inhibitory effects on miswak α-amylases. PMSF, p-HMB, DTNB and 1,10 phenanthroline caused inhibitory effect on α-amylases. The analysis of hydrolytic products after starch hydrolysis by miswak α-amylases on paper chromatography revealed that glucose, maltose, maltotriose and oligosaccharide were the major products. Crude miswak α-amylase in the toothpaste retained 55% of its original activity after 10 months of storage at room temperature. Conclusions From these findings, α-amylases from miswak can be considered as beneficial enzymes for pharmaceuticals. Therefore, we study the storage stability of the crude α-amylase of miswak, which contained the five