Kim, Leonard; Narra, Venkat; Yue, Ning
2013-07-01
Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) ⁎ 0.930 (R{sup 2} = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) ⁎ 0.955 (R{sup 2} = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor.
Maximum Power Point Regulator System
NASA Astrophysics Data System (ADS)
Simola, J.; Savela, K.; Stenberg, J.; Tonicello, F.
2011-10-01
The target of the study done under the ESA contract No.17830/04/NL/EC (GSTP4) for Maximum Power Point Regulator System (MPPRS) was to investigate, design and test a modular power system (a core PCU) fulfilling requirement for maximum power transfer even after a single failure in the Power System by utilising a power concept without any potential and credible single point failure. The studied MPPRS concept is of a modular construction, able to track the MPP individually on each SA sections, maintaining its functionality and full power capability after a loss of a complete MPPR module (by utilizingN+1module).Various add-on DCDC converter topology candidates were investigated and redundancy, failure mechanisms and protection aspects were studied
Pulmonary carcinogenicity of inhaled particles and the maximum tolerated dose.
Oberdörster, G
1997-01-01
Chronic inhalation bioassays in rodents are used to assess pulmonary carcinogenicity for purposes of hazard identification and potentially for risk characterization. The influence of high experimental doses on tumor development has been recognized for some time and has led to the concept of maximum tolerated dose (MTD) for dose selection, with the highest dose being at the MTD. Exposure at the MTD should ensure that the animals are sufficiently challenged while at the same time the animal's normal longevity is not altered from effects other than carcinogenicity. A characteristic of exposure-dose-response relationships for chronically inhaled particles is that lung tumors are significantly increased only at high exposure levels, and that lung tumors are seen in rats only but not in mice or hamsters. This lung tumor response in rats is thought to be secondary to persistent alveolar inflammation, indicating that the MTD may have been exceeded. Thus, mechanisms of toxicity and carcinogenicity may be dose dependent and may not operate at lower doses that humans normally experience. Despite awareness of this problem, carcinogenicity bioassays that evaluate particulate compounds in rodents have not always been designed with the MTD concept in mind. This is due to several problems associated with determining an appropriate MTD for particle inhalation studies. One requirement for the MTD is that some toxicity should be observed. However, it is difficult to define what degree of toxic response is indicative of the MTD. For particle inhalation studies, various noncancer end points in addition to mortality and body weight gain have been considered as indicators of the MTD, i.e., pulmonary inflammation, increased epithelial cell proliferation, increased lung weight, impairment of particle clearance function, and significant histopathological findings at the end of a subchronic study. However, there is no general agreement about quantification of these end points to define the
Photovoltaic maximum power point search method using a light sensor
NASA Astrophysics Data System (ADS)
Ostrowski, Mariusz
2015-05-01
The main disadvantage of PV panels is their low efficiency and non-linear current-voltage characteristic. Both of the above depend on the insolation and the temperature. That is why, it is necessary to use the maximum power point search systems. Commonly used solutions vary not only in complexity and accuracy but also in the speed of searching the maximum power point. Usually, the measurement of current and voltage is used to determine the maximum power point. The most common in literature are the perturb and observe and incremental conductance methods. The disadvantage of these solutions is the need to search across the whole current-voltage curve, which results in a significant power loss. In order to prevent it, the techniques mentioned above are combined with other methods. This procedure determines the starting point of one of the above methods and results in shortening the search time. Modern solutions use the temperature measurement to determine the open circuit voltage. The simulations show that the voltage in the maximum power point depends mainly on the temperature of the photovoltaic panel, and the current depends mainly on the lighting conditions. The proposed method uses the measurement of illuminance and calculates the current at the maximum power point, which is used as a reference signal in power conversion system. Due to the non-linearity of the light sensor and of the photovoltaic panel, the relation between them cannot be determined directly. Therefore, the proposed method use the modified correlation function to calculate current corresponding to the light.
Maximum likelihood estimation for cytogenetic dose-response curves
Frome, E.L; DuFrain, R.J.
1983-10-01
In vitro dose-response curves are used to describe the relation between the yield of dicentric chromosome aberrations and radiation dose for human lymphocytes. The dicentric yields follow the Poisson distribution, and the expected yield depends on both the magnitude and the temporal distribution of the dose for low LET radiation. A general dose-response model that describes this relation has been obtained by Kellerer and Rossi using the theory of dual radiation action. The yield of elementary lesions is kappa(..gamma..d + g(t, tau)d/sup 2/), where t is the time and d is dose. The coefficient of the d/sup 2/ term is determined by the recovery function and the temporal mode of irradiation. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting models are intrinsically nonlinear in the parameters. A general purpose maximum likelihood estimation procedure is described and illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.
Maximum likelihood estimation for cytogenetic dose-response curves
Frome, E.L.; DuFrain, R.J.
1986-03-01
In vitro dose-response curves are used to describe the relation between chromosome aberrations and radiation dose for human lymphocytes. The lymphocytes are exposed to low-LET radiation, and the resulting dicentric chromosome aberrations follow the Poisson distribution. The expected yield depends on both the magnitude and the temporal distribution of the dose. A general dose-response model that describes this relation has been presented by Kellerer and Rossi (1972, Current Topics on Radiation Research Quarterly 8, 85-158; 1978, Radiation Research 75, 471-488) using the theory of dual radiation action. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting dose-time-response models are intrinsically nonlinear in the parameters. A general-purpose maximum likelihood estimation procedure is described, and estimation for the nonlinear models is illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.
Savannah River Site radioiodine atmospheric releases and offsite maximum doses
Marter, W.L.
1990-11-01
Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models.
A maximum power point tracking algorithm for photovoltaic applications
NASA Astrophysics Data System (ADS)
Nelatury, Sudarshan R.; Gray, Robert
2013-05-01
The voltage and current characteristic of a photovoltaic (PV) cell is highly nonlinear and operating a PV cell for maximum power transfer has been a challenge for a long time. Several techniques have been proposed to estimate and track the maximum power point (MPP) in order to improve the overall efficiency of a PV panel. A strategic use of the mean value theorem permits obtaining an analytical expression for a point that lies in a close neighborhood of the true MPP. But hitherto, an exact solution in closed form for the MPP is not published. This problem can be formulated analytically as a constrained optimization, which can be solved using the Lagrange method. This method results in a system of simultaneous nonlinear equations. Solving them directly is quite difficult. However, we can employ a recursive algorithm to yield a reasonably good solution. In graphical terms, suppose the voltage current characteristic and the constant power contours are plotted on the same voltage current plane, the point of tangency between the device characteristic and the constant power contours is the sought for MPP. It is subject to change with the incident irradiation and temperature and hence the algorithm that attempts to maintain the MPP should be adaptive in nature and is supposed to have fast convergence and the least misadjustment. There are two parts in its implementation. First, one needs to estimate the MPP. The second task is to have a DC-DC converter to match the given load to the MPP thus obtained. Availability of power electronics circuits made it possible to design efficient converters. In this paper although we do not show the results from a real circuit, we use MATLAB to obtain the MPP and a buck-boost converter to match the load. Under varying conditions of load resistance and irradiance we demonstrate MPP tracking in case of a commercially available solar panel MSX-60. The power electronics circuit is simulated by PSIM software.
Hardware Implementation of Maximum Power Point Tracking for Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Maganga, Othman; Phillip, Navneesh; Burnham, Keith J.; Montecucco, Andrea; Siviter, Jonathan; Knox, Andrew; Simpson, Kevin
2014-06-01
This work describes the practical implementation of two maximum power point tracking (MPPT) algorithms, namely those of perturb and observe, and extremum seeking control. The proprietary dSPACE system is used to perform hardware in the loop (HIL) simulation whereby the two control algorithms are implemented using the MATLAB/Simulink (Mathworks, Natick, MA) software environment in order to control a synchronous buck-boost converter connected to two commercial thermoelectric modules. The process of performing HIL simulation using dSPACE is discussed, and a comparison between experimental and simulated results is highlighted. The experimental results demonstrate the validity of the two MPPT algorithms, and in conclusion the benefits and limitations of real-time implementation of MPPT controllers using dSPACE are discussed.
Sequential Switching Shunt Maximum Power Point Regulator (S3MPPR)
NASA Astrophysics Data System (ADS)
Blanes, J. M.; Garrigos, A.; Carrasco, J. A.; Weinberg, A. H.; Ejea, J. B.; Sanchis, E.; Farreres, A.; Maset, E.; Soto, A.; de la Cruz, F.
2011-10-01
This paper presents the implementation of a Sequential Switching Shunt Maximum Power Point Regulator (S3MPPR). The S3MPPR is the evolution of the traditional S3R where the fixed reference, used by the main error amplifier, is replaced by an MPPT voltage reference. With this variation, the system corresponds to a non-regulated bus topology but with the dynamic characteristics of a regulated one and with the ability to track the MPP of the solar array. This work focuses on this topic, studying the best way to implement the S3MPPR in a geostationary telecommunication satellite. In order to validate the proposal, a 1.6 kW prototype has been implemented and many tests have been carried out with the prototype, all of them showing the good behaviour of the converter.
Investigation of Maximum Power Point Tracking for Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Phillip, Navneesh; Maganga, Othman; Burnham, Keith J.; Ellis, Mark A.; Robinson, Simon; Dunn, Julian; Rouaud, Cedric
2013-07-01
In this paper, a thermoelectric generator (TEG) model is developed as a tool for investigating optimized maximum power point tracking (MPPT) algorithms for TEG systems within automotive exhaust heat energy recovery applications. The model comprises three main subsystems that make up the TEG system: the heat exchanger, thermoelectric material, and power conditioning unit (PCU). In this study, two MPPT algorithms known as the perturb and observe (P&O) algorithm and extremum seeking control (ESC) are investigated. A synchronous buck-boost converter is implemented as the preferred DC-DC converter topology, and together with the MPPT algorithm completes the PCU architecture. The process of developing the subsystems is discussed, and the advantage of using the MPPT controller is demonstrated. The simulation results demonstrate that the ESC algorithm implemented in combination with a synchronous buck-boost converter achieves favorable power outputs for TEG systems. The appropriateness is by virtue of greater responsiveness to changes in the system's thermal conditions and hence the electrical potential difference generated in comparison with the P&O algorithm. The MATLAB/Simulink environment is used for simulation of the TEG system and comparison of the investigated control strategies.
SU-E-T-578: On Definition of Minimum and Maximum Dose for Target Volume
Gong, Y; Yu, J; Xiao, Y
2015-06-15
Purpose: This study aims to investigate the impact of different minimum and maximum dose definitions in radiotherapy treatment plan quality evaluation criteria by using tumor control probability (TCP) models. Methods: Dosimetric criteria used in RTOG 1308 protocol are used in the investigation. RTOG 1308 is a phase III randomized trial comparing overall survival after photon versus proton chemoradiotherapy for inoperable stage II-IIIB NSCLC. The prescription dose for planning target volume (PTV) is 70Gy. Maximum dose (Dmax) should not exceed 84Gy and minimum dose (Dmin) should not go below 59.5Gy in order for the plan to be “per protocol” (satisfactory).A mathematical model that simulates the characteristics of PTV dose volume histogram (DVH) curve with normalized volume is built. The Dmax and Dmin are noted as percentage volumes Dη% and D(100-δ)%, with η and d ranging from 0 to 3.5. The model includes three straight line sections and goes through four points: D95%= 70Gy, Dη%= 84Gy, D(100-δ)%= 59.5 Gy, and D100%= 0Gy. For each set of η and δ, the TCP value is calculated using the inhomogeneously irradiated tumor logistic model with D50= 74.5Gy and γ50=3.52. Results: TCP varies within 0.9% with η; and δ values between 0 and 1. With η and η varies between 0 and 2, TCP change was up to 2.4%. With η and δ variations from 0 to 3.5, maximum of 8.3% TCP difference is seen. Conclusion: When defined maximum and minimum volume varied more than 2%, significant TCP variations were seen. It is recommended less than 2% volume used in definition of Dmax or Dmin for target dosimetric evaluation criteria. This project was supported by NIH grants U10CA180868, U10CA180822, U24CA180803, U24CA12014 and PA CURE Grant.
NASA Astrophysics Data System (ADS)
Ariffin, Syaiba Balqish; Midi, Habshah; Arasan, Jayanthi; Rana, Md Sohel
2015-02-01
This article is concerned with the performance of the maximum estimated likelihood estimator in the presence of separation in the space of the independent variables and high leverage points. The maximum likelihood estimator suffers from the problem of non overlap cases in the covariates where the regression coefficients are not identifiable and the maximum likelihood estimator does not exist. Consequently, iteration scheme fails to converge and gives faulty results. To remedy this problem, the maximum estimated likelihood estimator is put forward. It is evident that the maximum estimated likelihood estimator is resistant against separation and the estimates always exist. The effect of high leverage points are then investigated on the performance of maximum estimated likelihood estimator through real data sets and Monte Carlo simulation study. The findings signify that the maximum estimated likelihood estimator fails to provide better parameter estimates in the presence of both separation, and high leverage points.
Sapienza, Lucas Gomes; Flosi, Adriana; Aiza, Antonio; de Assis Pellizzon, Antonio Cassio; Chojniak, Rubens; Baiocchi, Glauco
2016-01-01
There is no consensus on the use of computed tomography in vaginal cuff brachytherapy (VCB) planning. The purpose of this study was to prospectively determine the reproducibility of point bladder dose parameters (DICRU and maximum dose), compared with volumetric-based parameters. Twenty-two patients who were treated with high-dose-rate (HDR) VCB underwent simulation by computed tomography (CT-scan) with a Foley catheter at standard tension (position A) and extra tension (position B). CT-scan determined the bladder ICRU dose point in both positions and compared the displacement and recorded dose. Volumetric parameters (D0.1cc, D1.0cc, D2.0cc, D4.0cc and D50%) and point dose parameters were compared. The average spatial shift in ICRU dose point in the vertical, longitudinal and lateral directions was 2.91 mm (range: 0.10–9.00), 12.04 mm (range: 4.50–24.50) and 2.65 mm (range: 0.60–8.80), respectively. The DICRU ratio for positions A and B was 1.64 (p < 0.001). Moreover, a decrease in Dmax was observed (p = 0.016). Tension level of the urinary catheter did not affect the volumetric parameters. Our data suggest that point parameters (DICRU and Dmax) are not reproducible and are not the ideal choice for dose reporting. PMID:27296459
Torsade de pointes and low-dose oral haloperidol.
Jackson, T; Ditmanson, L; Phibbs, B
1997-09-22
Haloperidol, used to treat patients with psychoses, is considered minimally cardiotoxic. Several cases of torsade de pointes have been reported in association with the use of oral haloperidol. In each of those cases, a prolonged QTc preceded the torsade de pointes episode and thus may be considered a predictor for ventricular arrhythmias in elderly women treated with haloperidol. However, the following case may demonstrate the inability to predict an episode of torsade de pointes with low-dose oral haloperidol use. PMID:9308514
Hamby, D.M.
1994-02-01
An EXCEL{reg_sign} spreadsheet has been developed that, when combined with the PC version of XOQDOQ, will generate estimates of maximum individual dose from routine atmospheric releases of radionuclides. The spreadsheet, MAXINE, utilizes a variety of atmospheric dispersion factors to calculate radiation dose as recommended by the US Nuclear Regulatory Commission in Regulatory Guide 1.109 [USNRC 1977a]. The methodology suggested herein includes use of both the MAXINE spreadsheet and the PC version of XOQDOQ.
A Digital Coreless Maximum Power Point Tracking Circuit for Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Kim, Shiho; Cho, Sungkyu; Kim, Namjae; Baatar, Nyambayar; Kwon, Jangwoo
2011-05-01
This paper describes a maximum power point tracking (MPPT) circuit for thermoelectric generators (TEG) without a digital controller unit. The proposed method uses an analog tracking circuit that samples the half point of the open-circuit voltage without a digital signal processor (DSP) or microcontroller unit for calculating the peak power point using iterative methods. The simulation results revealed that the MPPT circuit, which employs a boost-cascaded-with-buck converter, handled rapid variation of temperature and abrupt changes of load current; this method enables stable operation with high power transfer efficiency. The proposed MPPT technique is a useful analog MPPT solution for thermoelectric generators.
Marchetti, S.
1980-11-01
The consequence of repository breaching followed by hydrogeologic transport of radioactivity to the biosphere has been assessed in terms of dose to age specific maximum individuals. The dose assessment calculations include environmental transport via drinking water, irrigation pathways, stock watering, and water related recreation pathways where applicable. A principal assumption in this analysis is that the radioactice material and its containers undergo dissolution at the same rate as the repository media. The analysis concludes that postulated releases to the Pecos River at Malaga Bend and subsequent use of the contaminated water for 1 yr would not result in exceeding the recommended dose limit of 500 mrem/yr for the total body of the maximum individual of a population group. Additionally, 4.5 x 10/sup 4/ years of release at the worst release rate assuming no decay or other environmental removal would be required before the total body dose limit would be exceeded. For the bone, 7.1 x 10/sup 4/ yrs of continuous release at the worst level would be required before the 1500 mrem/yr limit would be exceeded. Thus, it is apparent that when environmental removal by decay and other mechanisms is considered , long-term impact of accumulation of nuclides in the environment as a result of these scenarios is insignificant with respect to maximum individual exposure. In conclusion, neither the hypothetical and conservative repsitory failure events leading to discharges of contaminated water at Malaga bend nor discharges to a postulated well in the Rustler aquifer with subsequent use by humans results in any dose limit being exceeded.
NASA Astrophysics Data System (ADS)
Fang, W.; Quan, S. H.; Xie, C. J.; Tang, X. F.; Wang, L. L.; Huang, L.
2016-03-01
In this study, a direct-current/direct-current (DC/DC) converter with maximum power point tracking (MPPT) is developed to down-convert the high voltage DC output from a thermoelectric generator to the lower voltage required to charge batteries. To improve the tracking accuracy and speed of the converter, a novel MPPT control scheme characterized by an aggregated dichotomy and gradient (ADG) method is proposed. In the first stage, the dichotomy algorithm is used as a fast search method to find the approximate region of the maximum power point. The gradient method is then applied for rapid and accurate tracking of the maximum power point. To validate the proposed MPPT method, a test bench composed of an automobile exhaust thermoelectric generator was constructed for harvesting the automotive exhaust heat energy. Steady-state and transient tracking experiments under five different load conditions were carried out using a DC/DC converter with the proposed ADG and with three traditional methods. The experimental results show that the ADG method can track the maximum power within 140 ms with a 1.1% error rate when the engine operates at 3300 rpm@71 NM, which is superior to the performance of the single dichotomy method, the single gradient method and the perturbation and observation method from the viewpoint of improved tracking accuracy and speed.
2014-01-01
Background Despite rendering serum free thyroxine (FT4) and thyrotropin (TSH) within the normal population ranges broadly defined as euthyroidism, many patients being treated for hyperthyroidism and hypothyroidism persistently experience subnormal well-being discordant from their pre-disease healthy euthyroid state. This suggests that intra-individual physiological optimal ranges are narrower than laboratory-quoted normal ranges and implies the existence of a homeostatic set point encoded in the hypothalamic-pituitary-thyroid (HPT) axis that is unique to every individual. Methods We have previously shown that the dose–response characteristic of the hypothalamic-pituitary (HP) unit to circulating thyroid hormone levels follows a negative exponential curve. This led to the discovery that the normal reference intervals of TSH and FT4 fall within the ‘knee’ region of this curve where the maximum curvature of the exponential HP characteristic occurs. Based on this observation, we develop the theoretical framework localizing the position of euthyroid homeostasis over the point of maximum curvature of the HP characteristic. Results The euthyroid set points of patients with primary hypothyroidism and hyperthyroidism can be readily derived from their calculated HP curve parameters using the parsimonious mathematical model above. It can be shown that every individual has a euthyroid set point that is unique and often different from other individuals. Conclusions In this treatise, we provide evidence supporting a set point-based approach in tailoring euthyroid targets. Rendering FT4 and TSH within the laboratory normal ranges can be clinically suboptimal if these hormone levels are distant from the individualized euthyroid homeostatic set point. This mathematical technique permits the euthyroid set point to be realistically computed using an algorithm readily implementable for computer-aided calculations to facilitate precise targeted dosing of patients in this modern
In-flight calibration of the fine pointing Sun sensor on the solar maximum mission
NASA Technical Reports Server (NTRS)
Gambardella, P. J.; Thompson, R. H.
1980-01-01
The attitude control objectives of solar maximum mission are to point the boresight of the payload fine pointing sun sensor (FPSS) to any point within 30 arc-minutes of the Sun's center with an accuracy of 5 arc-seconds (3 sigma, pitch and yaw) and a jitter of less than 3 arc-seconds (3 sigma). To meet these stringent accuracy requirements, a procedure was developed for in-flight calibration of the FPSS. The spacecraft was maneuvered using FPSS offset commands to position the Sun at different points within the FPSS field of view. The coefficients of the FPSS digital to analog nonlinear transfer function were determined by minimizing the residuals between the pitch and yaw angles computed from the FPSS measurements and the corresponding reference angles obtained from inertial reference unit measurements. The actual in-flight calibration and the calibration algorithm are discussed.
Abrupt change point detection of annual maximum precipitation using fused lasso
NASA Astrophysics Data System (ADS)
Jeon, Jong-June; Sung, Jang Hyun; Chung, Eun-Sung
2016-07-01
Because the widely used Bayesian change point analysis (BCPA) is generally applied to the normal distribution, it cannot be freely used to the annual maximum precipitations (AMP) in South Korea. Therefore, this study proposed the fused lasso penalty function to detect the change point of AMP which can be generally fitted by using the Generalized Extreme Value (GEV) distribution in South Korea. First, four numerical experiments are conducted to compare the detection performances between BCPA and fused lasso method. As a result, fused lasso shows the superiority of the data generated by GEV distribution having skewness. The fused lasso method is applied to 63 weather stations in South Korea and then 17 stations having any change points from BCPA and the GEV fused lasso are analyzed. Similar to the numerical analyses, the GEV fused lasso method can delicately detect the change point of AMPs. After the change point, the means of AMPs did not go back to the previous. Alternately, BCPA can be stated to find variation points not change points because the means returned to their original values as time progressed. Therefore, it can be concluded that the GEV fused lasso method detects the change points of non-stationary AMPs of South Korea. This study can be extended to more extreme distributions for various meteorological variables.
An improved maximum power point tracking method for a photovoltaic system
NASA Astrophysics Data System (ADS)
Ouoba, David; Fakkar, Abderrahim; El Kouari, Youssef; Dkhichi, Fayrouz; Oukarfi, Benyounes
2016-06-01
In this paper, an improved auto-scaling variable step-size Maximum Power Point Tracking (MPPT) method for photovoltaic (PV) system was proposed. To achieve simultaneously a fast dynamic response and stable steady-state power, a first improvement was made on the step-size scaling function of the duty cycle that controls the converter. An algorithm was secondly proposed to address wrong decision that may be made at an abrupt change of the irradiation. The proposed auto-scaling variable step-size approach was compared to some various other approaches from the literature such as: classical fixed step-size, variable step-size and a recent auto-scaling variable step-size maximum power point tracking approaches. The simulation results obtained by MATLAB/SIMULINK were given and discussed for validation.
Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control
NASA Astrophysics Data System (ADS)
Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed
2012-12-01
In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.
NASA Astrophysics Data System (ADS)
Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain
2016-03-01
Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.
Use of iodine for water disinfection: iodine toxicity and maximum recommended dose.
Backer, H; Hollowell, J
2000-01-01
Iodine is an effective, simple, and cost-efficient means of water disinfection for people who vacation, travel, or work in areas where municipal water treatment is not reliable. However, there is considerable controversy about the maximum safe iodine dose and duration of use when iodine is ingested in excess of the recommended daily dietary amount. The major health effect of concern with excess iodine ingestion is thyroid disorders, primarily hypothyroidism with or without iodine-induced goiter. A review of the human trials on the safety of iodine ingestion indicates that neither the maximum recommended dietary dose (2 mg/day) nor the maximum recommended duration of use (3 weeks) has a firm basis. Rather than a clear threshold response level or a linear and temporal dose-response relationship between iodine intake and thyroid function, there appears to be marked individual sensitivity, often resulting from unmasking of underlying thyroid disease. The use of iodine for water disinfection requires a risk-benefit decision based on iodine's benefit as a disinfectant and the changes it induces in thyroid physiology. By using appropriate disinfection techniques and monitoring thyroid function, most people can use iodine for water treatment over a prolonged period of time. PMID:10964787
Tracking the global maximum power point of PV arrays under partial shading conditions
NASA Astrophysics Data System (ADS)
Fennich, Meryem
This thesis presents the theoretical and simulation studies of the global maximum power point tracking (MPPT) for photovoltaic systems under partial shading. The main goal is to track the maximum power point of the photovoltaic module so that the maximum possible power can be extracted from the photovoltaic panels. When several panels are connected in series with some of them shaded partially either due to clouds or shadows from neighboring buildings, several local maxima appear in the power vs. voltage curve. A power increment based MPPT algorithm is effective in identifying the global maximum from the several local maxima. Several existing MPPT algorithms are explored and the state-of-the-art power increment method is simulated and tested for various partial shading conditions. The current-voltage and power-voltage characteristics of the PV model are studied under different partial shading conditions, along with five different cases demonstrating how the MPPT algorithm performs when shading switches from one state to another. Each case is supplemented with simulation results. The method of tracking the Global MPP is based on controlling the DC-DC converter connected to the output of the PV array. A complete system simulation including the PV array, the direct current to direct current (DC-DC) converter and the MPPT is presented and tested using MATLAB software. The simulation results show that the MPPT algorithm works very well with the buck converter, while the boost converter needs further changes and implementation.
Maximum supercoolign in liquid /sup 3/He-/sup 4/He mixtures near the tricritical point
Sinha, D.N.; Hoffer, J.K.
1984-01-01
Measurements of supercooling in liquid /sup 3/He-/sup 4/He mixtures near the tricritical point are presented. The reduced temperature range 0.001 < epsilon identical to (1 - T/T/sub t/) < 0.01 was investigated for three different rates of cooling using a pressure-quench technique. For epsilon < 0.012, the maximum supercooling was found to be a function of the cooling rate. Comparisons with data in organic binary mixtures are given.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.; Twambly, B. J.
1990-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.
1989-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance.
NASA Astrophysics Data System (ADS)
Park, Hyunbin; Sim, Minseob; Kim, Shiho
2015-06-01
We propose a way of achieving maximum power and power-transfer efficiency from thermoelectric generators by optimized selection of maximum-power-point-tracking (MPPT) circuits composed of a boost-cascaded-with-buck converter. We investigated the effect of switch resistance on the MPPT performance of thermoelectric generators. The on-resistances of the switches affect the decrease in the conversion gain and reduce the maximum output power obtainable. Although the incremental values of the switch resistances are small, the resulting difference in the maximum duty ratio between the input and output powers is significant. For an MPPT controller composed of a boost converter with a practical nonideal switch, we need to monitor the output power instead of the input power to track the maximum power point of the thermoelectric generator. We provide a design strategy for MPPT controllers by considering the compromise in which a decrease in switch resistance causes an increase in the parasitic capacitance of the switch.
Unbounded Binary Search for a Fast and Accurate Maximum Power Point Tracking
NASA Astrophysics Data System (ADS)
Kim, Yong Sin; Winston, Roland
2011-12-01
This paper presents a technique for maximum power point tracking (MPPT) of a concentrating photovoltaic system using cell level power optimization. Perturb and observe (P&O) has been a standard for an MPPT, but it introduces a tradeoff between the tacking speed and the accuracy of the maximum power delivered. The P&O algorithm is not suitable for a rapid environmental condition change by partial shading and self-shading due to its tracking time being linear to the length of the voltage range. Some of researches have been worked on fast tracking but they come with internal ad hoc parameters. In this paper, by using the proposed unbounded binary search algorithm for the MPPT, tracking time becomes a logarithmic function of the voltage search range without ad hoc parameters.
Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum
2014-12-01
Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level. PMID:25365216
Wang, Heming; Park, Jae-Do; Ren, Zhiyong
2012-05-01
Microbial fuel cell (MFC) technology offers a sustainable approach to harvest electricity from biodegradable materials. Energy production from MFCs has been demonstrated using external resistors or charge pumps, but such methods can only dissipate energy through heat or receive electrons passively from the MFC without any controllability. This study developed a new approach and system that can actively extract energy from MFC reactors at any operating point without using any resistors, especially at the peak power point to maximize energy production. Results show that power harvesting from a recirculating-flow MFC can be well maintained by the maximum power point circuit (MPPC) at its peak power point, while a charge pump was not able to change operating point due to current limitation. Within 18-h test, the energy gained from the MPPC was 76.8 J, 76 times higher than the charge pump (1.0 J) that was commonly used in MFC studies. Both conditions resulted in similar organic removal, but the Coulombic efficiency obtained from the MPPC was 21 times higher than that of the charge pump. Different numbers of capacitors could be used in the MPPC for various energy storage requirements and power supply, and the energy conversion efficiency of the MPPC was further characterized to identify key factors for system improvement. This active energy harvesting approach provides a new perspective for energy harvesting that can maximize MFC energy generation and system controllability. PMID:22486712
NASA Technical Reports Server (NTRS)
Appelbaum, J.; Singer, S.
1989-01-01
A calculation of the starting torque ratio of permanent magnet, series, and shunt-excited dc motors powered by solar cell arrays is presented for two cases, i.e., with and without a maximum-power-point tracker (MPPT). Defining motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 for the permanent magnet motor and a magnification of 7 for both the series and shunt motors are obtained. The study also shows that all motor types are less sensitive to solar insolation variation in systems including MPPTs as compared to systems without MPPTs.
A reliable, fast and low cost maximum power point tracker for photovoltaic applications
Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A.
2010-01-15
This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)
NASA Astrophysics Data System (ADS)
Guiraldello, Rafael T.; Martins, Marcelo L.; Mancera, Paulo F. A.
2016-08-01
We present a mathematical model based on partial differential equations that is applied to understand tumor development and its response to chemotherapy. Our primary aim is to evaluate comparatively the efficacies of two chemotherapeutic protocols, Maximum Tolerated Dose (MTD) and metronomic, as well as two methods of drug delivery. Concerning therapeutic outcomes, the metronomic protocol proves more effective in prolonging the patient's life than MTD. Moreover, a uniform drug delivery method combined with the metronomic protocol is the most efficient strategy to reduce tumor density.
Determination of Maximum Tolerated Dose and Toxicity of Inauhzin in Mice
Zhang, Qi; Zeng, Shelya X.; Lu, Hua
2015-01-01
Reactivating the tumor suppressor p53 offers an attractive strategy for developing cancer therapy. We recently identified Inauhzin (INZ) as a novel non-genotoxic p53-activating compound. To develop INZ into a clinically applicable anticancer drug, we have initiated preclinical toxicity studies. Here, we report our study on determining the maximum tolerated dose (MTD) of INZ analog, Inauhzin-C (INZ (C)), following intraperitoneal (i.p) administration (Phase A) and its toxicity following i.p administration over a period of 5-day dosing plus 2-day recovery (Phase B) in CD-1 mice. The phase A study showed that the MTD of INZ (C) is 200 mg/kg for female and 250 mg/kg for male, respectively. The phase B study showed that the administration of INZ (C) via 5-day consecutive i.p injection is tolerated by female CD-1 mice at all dose levels tested from 50mg/kg to 120 mg/kg without significant changes in biochemical and pathological parameters in the animals. Together, these results indicate that our previously determined effective dose of INZ at 30–60 mg/kg via i.p is quite safe to mice, and imply that this compound have the features worthy for further development into a clinically applicable drug. PMID:26167454
NASA Astrophysics Data System (ADS)
Chew, Z. J.; Zhu, M.
2015-12-01
A maximum power point tracking (MPPT) scheme by tracking the open-circuit voltage from a piezoelectric energy harvester using a differentiator is presented in this paper. The MPPT controller is implemented by using a low-power analogue differentiator and comparators without the need of a sensing circuitry and a power hungry controller. This proposed MPPT circuit is used to control a buck converter which serves as a power management module in conjunction with a full-wave bridge diode rectifier. Performance of this MPPT control scheme is verified by using the prototyped circuit to track the maximum power point of a macro-fiber composite (MFC) as the piezoelectric energy harvester. The MFC was bonded on a composite material and the whole specimen was subjected to various strain levels at frequency from 10 to 100 Hz. Experimental results showed that the implemented full analogue MPPT controller has a tracking efficiency between 81% and 98.66% independent of the load, and consumes an average power of 3.187 μW at 3 V during operation.
Dose reduction in digital breast tomosynthesis using a penalized maximum likelihood reconstruction
NASA Astrophysics Data System (ADS)
Das, Mini; Gifford, Howard; O'Connor, Michael; Glick, Stephen J.
2009-02-01
Digital breast tomosynthesis (DBT) is a 3D imaging modality with limited angle projection data. The ability of tomosynthesis systems to accurately detect smaller microcalcifications is debatable. This is because of the higher noise in the projection data (lower average dose per projection), which is then propagated through the reconstructed image . Reconstruction methods that minimize the propagation of quantum noise have potential to improve microcalcification detectability using DBT. In this paper we show that penalized maximum likelihood (PML) reconstruction in DBT yields images with an improved resolution/noise tradeoff as compared to conventional filtered backprojection (FBP). Signal to noise ratio (SNR) using PML was observed to be higher than that obtained using the standard FBP algorithm. Our results indicate that for microcalcifications, using the PML algorithm, reconstructions obtained with a mean glandular dose (MGD) of 1.5 mGy yielded better SNR than that those obtained with FBP using a 4mGy total dose. Thus perhaps total dose could be reduced to one-third or lower with same microcalcification detectability, if PML reconstruction is used instead of FBP. Visibility of low contrast masses with various contrast levels were studied using a contrast-detail phantom in a breast shape structure with an average breast density. Images generated using various dose levels indicate that visibility of low contrast masses generated using PML reconstructions are significantly better than those generated using FBP. SNR measurements in the low-contrast study did not appear to correlate with the visual subjective analysis of the reconstruction indicating that SNR is not a good figure of merit to be used.
Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies
Zanca, F.; Jacobs, A.; Crijns, W.; De Wever, W.
2014-07-15
Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure.
Dithering Digital Ripple Correlation Control for Photovoltaic Maximum Power Point Tracking
Barth, C; Pilawa-Podgurski, RCN
2015-08-01
This study demonstrates a new method for rapid and precise maximum power point tracking in photovoltaic (PV) applications using dithered PWM control. Constraints imposed by efficiency, cost, and component size limit the available PWM resolution of a power converter, and may in turn limit the MPP tracking efficiency of the PV system. In these scenarios, PWM dithering can be used to improve average PWM resolution. In this study, we present a control technique that uses ripple correlation control (RCC) on the dithering ripple, thereby achieving simultaneous fast tracking speed and high tracking accuracy. Moreover, the proposed method solves some of the practical challenges that have to date limited the effectiveness of RCC in solar PV applications. We present a theoretical derivation of the principles behind dithering digital ripple correlation control, as well as experimental results that show excellent tracking speed and accuracy with basic hardware requirements.
Qin, SB; Cady, ST; Dominguez-Garcia, AD; Pilawa-Podgurski, RCN
2015-04-01
This paper presents the theory and implementation of a distributed algorithm for controlling differential power processing converters in photovoltaic (PV) applications. This distributed algorithm achieves true maximum power point tracking of series-connected PV submodules by relying only on local voltage measurements and neighbor-to-neighbor communication between the differential power converters. Compared to previous solutions, the proposed algorithm achieves reduced number of perturbations at each step and potentially faster tracking without adding extra hardware; all these features make this algorithm well-suited for long submodule strings. The formulation of the algorithm, discussion of its properties, as well as three case studies are presented. The performance of the distributed tracking algorithm has been verified via experiments, which yielded quantifiable improvements over other techniques that have been implemented in practice. Both simulations and hardware experiments have confirmed the effectiveness of the proposed distributed algorithm.
Maximum Power Point tracking charge controllers for telecom applications -- Analysis and economics
Wills, R.H.
1997-12-31
Simple charge controllers connect photovoltaic modules directly to the battery bank resulting in a significant power loss if the battery bank voltage differs greatly from the PV Maximum Power Point (MPP) voltage. Recent modeling work at AES has shown that dc-dc converter type MPP tracking charge controllers can deliver more than 30% more energy from PV modules to the battery when the PV modules are cool and the battery state of charge is low--this is typically both the worst case condition (i.e., winter) and also the design condition that determines the PV array size. Economic modeling, based on typical telecom system installed costs shows benefits of more than $3/Wp for MPPT over conventional charge controllers in this application--a value that greatly exceeds the additional cost of the dc-dc converter.
Different types of maximum power point tracking techniques for renewable energy systems: A survey
NASA Astrophysics Data System (ADS)
Khan, Mohammad Junaid; Shukla, Praveen; Mustafa, Rashid; Chatterji, S.; Mathew, Lini
2016-03-01
Global demand for electricity is increasing while production of energy from fossil fuels is declining and therefore the obvious choice of the clean energy source that is abundant and could provide security for development future is energy from the sun. In this paper, the characteristic of the supply voltage of the photovoltaic generator is nonlinear and exhibits multiple peaks, including many local peaks and a global peak in non-uniform irradiance. To keep global peak, MPPT is the important component of photovoltaic systems. Although many review articles discussed conventional techniques such as P & O, incremental conductance, the correlation ripple control and very few attempts have been made with intelligent MPPT techniques. This document also discusses different algorithms based on fuzzy logic, Ant Colony Optimization, Genetic Algorithm, artificial neural networks, Particle Swarm Optimization Algorithm Firefly, Extremum seeking control method and hybrid methods applied to the monitoring of maximum value of power at point in systems of photovoltaic under changing conditions of irradiance.
NASA Astrophysics Data System (ADS)
Manikandan, S.; Kaushik, S. C.
2015-04-01
Thermoelectric generator (TEG) operated thermoelectric cooler (TEC) is a highly compatible combination for low-cooling power application. The conventional TEG-TEC combined systems have low operating efficiency and low cooling power because maximum power output from the TEG is not fully utilized. This paper proposes and analyses the combined system with maximum power point tracking technique (MPPT) to maximize the cooling power and overall efficiency. This paper also presents the effect of TEG, TEC source temperature and the effect of heat transfer area in the performance of the combined system. The thermodynamic models of the combined system are developed in MATLAB simulink environment with temperature dependent material properties and analysed for variable operating temperatures. It has been found that, in the irreversible thermodynamic model of the combined system with MPPT, when the hot and cold side of TEG and TEC are kept at a temperature difference of 150 K and 10 K respectively, the power output of TEG increases from 20.49 W to 43.92 W, cooling power of TEC increases from 32.66 W to 46.51 W and the overall combined system efficiency increases from 2.606% to 4.375% respectively when compared with the irreversible combined system without MPPT. The characteristics improvements obtained by this practice in the combined system for the above mentioned operating conditions is also true for other range of operating temperatures. It is also been observed that the external irreversibilities decreases the cooling power and the overall system efficiency of the combined system by 36.49% and by 16.9% respectively.
NASA Astrophysics Data System (ADS)
Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.
2016-03-01
Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG
Long Duration Balloon Maximum Power Point Tracking (MPPT) solar power system development
NASA Astrophysics Data System (ADS)
Perez, Juan
High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to 40 days. Longer missions, with durations of up to 100 days (Ultra Long), are in the planning stages. Due to the flight durations, solar power systems have been utilized throughout the Long Duration Balloon (LDB) flight program to power the necessary electronic systems. Recently, Maximum Power Point Tracking (MPPT) charge controllers have become available off-the-shelf. These controllers along with high efficiency mono-crystalline solar cells have become reliable, low cost solutions even in the harsh environments they operate in. The LDB program at the Columbia Scientific Balloon Facility (CSBF) began supporting solar power systems with custom units fabricated by the Physical Science Laboratory (PSL) of New Mexico State University (NMSU). These charge controllers proved to be very reliable systems; however, they required intensive labor to build and were relatively expensive. As off-the-shelf MPPT charge controllers have become available, they have been integrated into the LDB flight support systems. Coupled with PSL developed interface electronics for monitoring and power switching, they have proven to be as reliable, less expensive, and more efficient. The addition of MPPT allows for the controller to operate the solar panel at it highest power production point. Newer, off-the-shelf controllers with smarter MPPT, are currently being tested. This paper describes the long and ultra-long balloon missions and the role that solar power plays in mission success. More importantly, it discusses the recent developments in off-the-shelf MPPT charge controllers configured for use in the harsh high altitude balloon environment.
A maximum-likelihood search for neutrino point sources with the AMANDA-II detector
NASA Astrophysics Data System (ADS)
Braun, James R.
Neutrino astronomy offers a new window to study the high energy universe. The AMANDA-II detector records neutrino-induced muon events in the ice sheet beneath the geographic South Pole, and has accumulated 3.8 years of livetime from 2000 - 2006. After reconstructing muon tracks and applying selection criteria, we arrive at a sample of 6595 events originating from the Northern Sky, predominantly atmospheric neutrinos with primary energy 100 GeV to 8 TeV. We search these events for evidence of astrophysical neutrino point sources using a maximum-likelihood method. No excess above the atmospheric neutrino background is found, and we set upper limits on neutrino fluxes. Finally, a well-known potential dark matter signature is emission of high energy neutrinos from annihilation of WIMPs gravitationally bound to the Sun. We search for high energy neutrinos from the Sun and find no excess. Our limits on WIMP-nucleon cross section set new constraints on MSSM parameter space.
[MAXIMUM SINGLE DOSE OF COLLOIDAL SILVER NEGATIVELY AFFECTS ERYTHROPOIESIS IN VITRO].
Tishevskayal, N V; Zakharovl, Y M; Bolotovl, A A; Arkhipenko, Yu V; Sazontova, T G
2015-01-01
Erythroblastic islets (EI) of rat bone marrow were cultured for 24 h in the presence of silver nanoparticles (1.07 · 10(-4) mg/ml; 1.07 · 10(-3) mg/ml; and 1.07 · 10(-2) mg/mL). The colloidal silver at 1.07 · 10(-3) mg/ml concentration inhibited the formation of new Elby disrupting contacts of bone marrow macrophages with CFU-E (erythropoiesis de novo) by 65.3% (p < 0.05). Colloidal silver nanoparticles suppressed the reconstruction of erythropoiesis and inhibited the formation of new EI by disrupting contacts of CFU-E and central macrophages with matured erythroidal "crown" (erythropoiesis de repeto). The colloidal silver concentration of 1.07 · 10(-3) mg/ml in the culture medium also reduced the number of self-reconstructing EI by 67.5% (p <0.05), whereas 1.07 · 10(-2) mg/ml colloidal silver reduced this value by 93.7% (p < 0.05). Silver nanoparticles retarded maturation of erythroid cells at the stage of oxiphylic normoblast denucleation: 1.07 · 10(-3) mg/ml colloidal silver increased the number of mature El by 53% (p < 0.05). The retardation of erythropoiesis by colloidal silver in concentration equivalent to the maximum single dose is related to the effect of silver nanoparticles rather than glycerol present in the colloidal suspension. PMID:26591205
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Singer, S.
1989-01-01
Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio
A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.
Lee, Larissa J.; Sadow, Cheryl A.; Russell, Anthony; Viswanathan, Akila N.
2009-11-01
Purpose: To compare high dose rate (HDR) point B to pelvic lymph node dose using three-dimensional-planned brachytherapy for cervical cancer. Methods and Materials: Patients with FIGO Stage IB-IIIB cervical cancer received 70 tandem HDR applications using CT-based treatment planning. The obturator, external, and internal iliac lymph nodes (LN) were contoured. Per fraction (PF) and combined fraction (CF) right (R), left (L), and bilateral (Bil) nodal doses were analyzed. Point B dose was compared with LN dose-volume histogram (DVH) parameters by paired t test and Pearson correlation coefficients. Results: Mean PF and CF doses to point B were R 1.40 Gy +- 0.14 (CF: 7 Gy), L 1.43 +- 0.15 (CF: 7.15 Gy), and Bil 1.41 +- 0.15 (CF: 7.05 Gy). The correlation coefficients between point B and the D100, D90, D50, D2cc, D1cc, and D0.1cc LN were all less than 0.7. Only the D2cc to the obturator and the D0.1cc to the external iliac nodes were not significantly different from the point B dose. Significant differences between R and L nodal DVHs were seen, likely related to tandem deviation from irregular tumor anatomy. Conclusions: With HDR brachytherapy for cervical cancer, per fraction nodal dose approximates a dose equivalent to teletherapy. Point B is a poor surrogate for dose to specific nodal groups. Three-dimensional defined nodal contours during brachytherapy provide a more accurate reflection of delivered dose and should be part of comprehensive planning of the total dose to the pelvic nodes, particularly when there is evidence of pathologic involvement.
Farah, J; Trianni, A; Carinou, E; Ciraj-Bjelac, O; Clairand, I; Dabin, J; De Angelis, C; Domienik, J; Jarvinen, H; Kopec, R; Majer, M; Malchair, F; Negri, A; Novák, L; Siiskonen, T; Vanhavere, F; Knežević, Ž
2015-04-01
To help operators acknowledge patient dose during interventional procedures, EURADOS WG-12 focused on measuring patient skin dose using XR-RV3 gafchromic films, thermoluminescent detector (TLD) pellets or 2D TL foils and on investigating possible correlation to the on-line dose indicators such as fluoroscopy time, Kerma-area product (KAP) and cumulative air Kerma at reference point (CK). The study aims at defining non-centre-specific European alert thresholds for skin dose in three interventional procedures: chemoembolization of the liver (CE), neuroembolization (NE) and percutaneous coronary interventions (PCI). Skin dose values of >3 Gy (ICRP threshold for skin injuries) were indeed measured in these procedures confirming the need for dose indicators that correlate with maximum skin dose (MSD). However, although MSD showed fairly good correlation with KAP and CK, several limitations were identified challenging the set-up of non-centre-specific European alert thresholds. This paper presents preliminary results of this wide European measurement campaign and focuses on the main challenges in the definition of European alert thresholds. PMID:25316909
Matsubara, Kana; Kohno, Ryosuke; Nishioka, Shie; Shibuya, Toshiyuki; Ariji, Takaki; Akimoto, Tetsuo; Saitoh, Hidetoshi
2013-07-01
Radiation therapy in patients is planned by using computed tomography (CT) images acquired before start of the treatment course. Here, tumor shrinkage or weight loss or both, which are common during the treatment course for patients with head-and-neck (H and N) cancer, causes unexpected differences from the plan, as well as dose uncertainty with the daily positional error of patients. For accurate clinical evaluation, it is essential to identify these anatomical changes and daily positional errors, as well as consequent dosimetric changes. To evaluate the actual delivered dose, the authors proposed direct dose measurement and dose calculation with mega-voltage cone-beam CT (MVCBCT). The purpose of the present study was to experimentally evaluate dose calculation by MVCBCT. Furthermore, actual delivered dose was evaluated directly with accurate phantom setup. Because MVCBCT has CT-number variation, even when the analyzed object has a uniform density, a specific and simple CT-number correction method was developed and applied for the H and N site of a RANDO phantom. Dose distributions were calculated with the corrected MVCBCT images of a cylindrical polymethyl methacrylate phantom. Treatment processes from planning to beam delivery were performed for the H and N site of the RANDO phantom. The image-guided radiation therapy procedure was utilized for the phantom setup to improve measurement reliability. The calculated dose in the RANDO phantom was compared to the measured dose obtained by metal-oxide-semiconductor field-effect transistor detectors. In the polymethyl methacrylate phantom, the calculated and measured doses agreed within about +3%. In the RANDO phantom, the dose difference was less than +5%. The calculated dose based on simulation-CT agreed with the measured dose within±3%, even in the region with a high dose gradient. The actual delivered dose was successfully determined by dose calculation with MVCBCT, and the point dose measurement with the image
NASA Astrophysics Data System (ADS)
Deb, S.; Maitra, K.; Roychoudhuri, A.
1985-06-01
In the wake of the energy crisis, attempts are being made to develop a variety of energy conversion devices, such as solar cells. The single most important operational characteristic for a conversion element generating electricity is the V against I curve. Three points on this characteristic curve are of paramount importance, including the short-circuit, the open-circuit, and the maximum power point. The present paper has the objective to propose a new simple and accurate method of determining the maximum power point (Vm, Im) of the V against I characteristics, based on a geometrical interpretation. The method is general enough to be applicable to any energy conversion device having a nonlinear V against I characteristic. The paper provides also a method for determining the fill factor (FF), the series resistance (Rs), and the diode ideality factor (A) from a single set of connected observations.
NASA Technical Reports Server (NTRS)
Harvey, K. L.; Tang, F. Y. C.; Gaizauskas, V.; Poland, A. I.
1986-01-01
A dominate association of coronal bright points (as seen in He wavelength 10830) was confirmed with the approach and subsequent disappearance of opposite polarity magnetic network. While coronal bright points do occur with ephemeral regions, this association is a factor of 2 to 4 less than with sites of disappearing magnetic flux. The intensity variations seen in He I wavelength 10830 are intermittent and often rapid, varying over the 3 minute time resolution of the data; their bright point counterparts in the C IV wavelength 1548 and 20 cm wavelength show similar, though not always coincident time variations. Ejecta are associated with about 1/3 of the dark points and are evident in the C IV and H alpha data. These results support the idea that the anti-correlation of X-ray bright points with the solar cycle can be explained by the correlation of these coronal emission structures with sites of cancelling flux, indicating that, in some cases, the process of magnetic flux removal results in the release of energy. That the intensity variations are rapid and variable suggests that this process works intermittently.
Escude, Lluis . E-mail: lluis.escude@gmx.net; Linero, Dolors; Molla, Meritxell; Miralbell, Raymond
2006-11-15
Purpose: We aimed to evaluate an optimization algorithm designed to find the most favorable points to position an ionization chamber (IC) for quality assurance dose measurements of patients treated for prostate cancer with intensity-modulated radiotherapy (IMRT) and fields up to 10 cm x 10 cm. Methods and Materials: Three cylindrical ICs (PTW, Freiburg, Germany) were used with volumes of 0.6 cc, 0.125 cc, and 0.015 cc. Dose measurements were made in a plastic phantom (PMMA) at 287 optimized points. An algorithm was designed to search for points with the lowest dose gradient. Measurements were made also at 39 nonoptimized points. Results were normalized to a reference homogeneous field introducing a dose ratio factor, which allowed us to compare measured vs. calculated values as percentile dose ratio factor deviations {delta}F (%). A tolerance range of {delta}F (%) of {+-}3% was considered. Results: Half of the {delta}F (%) values obtained at nonoptimized points were outside the acceptable range. Values at optimized points were widely spread for the largest IC (i.e., 60% of the results outside the tolerance range), whereas for the two small-volume ICs, only 14.6% of the results were outside the tolerance interval. No differences were observed when comparing the two small ICs. Conclusions: The presented optimization algorithm is a useful tool to determine the best IC in-field position for optimal dose measurement conditions. A good agreement between calculated and measured doses can be obtained by positioning small volume chambers at carefully selected points in the field. Large chambers may be unreliable even in optimized points for IMRT fields {<=}10 cm x 10 cm.
LST data management and mission operations concept. [pointing control optimization for maximum data
NASA Technical Reports Server (NTRS)
Walker, R.; Hudson, F.; Murphy, L.
1977-01-01
A candidate design concept for an LST ground facility is described. The design objectives were to use NASA institutional hardware, software and facilities wherever practical, and to maximize efficiency of telescope use. The pointing control performance requirements of LST are summarized, and the major data interfaces of the candidate ground system are diagrammed.
Tachim Medjo, Theodore
2010-08-15
We study in this article the Pontryagin's maximum principle for a class of control problems associated with the primitive equations (PEs) of the ocean with two point boundary state constraint. These optimal problems involve a two point boundary state constraint similar to that considered in Wang, Nonlinear Anal. 51, 509-536, 2002 for the three-dimensional Navier-Stokes (NS) equations. The main difference between this work and Wang, Nonlinear Anal. 51, 509-536, 2002 is that the nonlinearity in the PEs is stronger than in the three-dimensional NS systems.
Maximum likelihood approach for the adaptive optics point spread function reconstruction
NASA Astrophysics Data System (ADS)
Exposito, J.; Gratadour, Damien; Rousset, Gérard; Clénet, Yann; Mugnier, Laurent; Gendron, Éric
2014-08-01
This paper is dedicated to a new PSF reconstruction method based on a maximum likelihood approach (ML) which uses as well the telemetry data of the AO system (see Exposito et al. (2013)1). This approach allows a joint-estimation of the covariance matrix of the mirror modes of the residual phase, the noise variance and the Fried parameter r0. In this method, an estimate of the covariance between the parallel residual phase and the orthogonal phase is required. We developed a recursive approach taking into account the temporal effect of the AO-loop, so that this covariance only depends on the r0, the wind speed and some of the parameters of the system (the gain of the loop, the interaction matrix and the command matrix). With this estimation, the high bandwidth hypothesis is no longer required to reconstruct the PSF with a good accuracy. We present the validation of the method and the results on numerical simulations (on a SCAO system) and show that our ML method allows an accurate estimation of the PSF in the case of a Shack-Hartmann (SH) wavefront sensor (WFS).
Beyond Maximum Independent Set: AN Extended Model for Point-Feature Label Placement
NASA Astrophysics Data System (ADS)
Haunert, Jan-Henrik; Wolff, Alexander
2016-06-01
Map labeling is a classical problem of cartography that has frequently been approached by combinatorial optimization. Given a set of features in the map and for each feature a set of label candidates, a common problem is to select an independent set of labels (that is, a labeling without label-label overlaps) that contains as many labels as possible and at most one label for each feature. To obtain solutions of high cartographic quality, the labels can be weighted and one can maximize the total weight (rather than the number) of the selected labels. We argue, however, that when maximizing the weight of the labeling, interdependences between labels are insufficiently addressed. Furthermore, in a maximum-weight labeling, the labels tend to be densely packed and thus the map background can be occluded too much. We propose extensions of an existing model to overcome these limitations. Since even without our extensions the problem is NP-hard, we cannot hope for an efficient exact algorithm for the problem. Therefore, we present a formalization of our model as an integer linear program (ILP). This allows us to compute optimal solutions in reasonable time, which we demonstrate for randomly generated instances.
NASA Astrophysics Data System (ADS)
Franklund, R. T.; Lepper, K.
2004-12-01
A fundamental need in the Mars exploration portfolio is in-situ absolute dating. Optical dating has been proposed for determining the age of Mars surface features and landforms as well as the rates of martian surface processes. On Earth, the method is employed for Quaternary studies because the technique currently has a terrestrial maximum age limit of approximately 350 ka. This maximum age limit is a function of the saturation dose of the dosimeter material (silicate sediments) and the local ionizing radiation dose rate. The sources of ionizing radiation germane to optical dating are K, Rb, U, Th in the sediment/soil environment and cosmic rays. On Mars the near surface dose rate will be dominated by cosmic rays, however, at depth the decay of radioisotopes will be the principle contributor of ionizing radiation. In this work we present an evaluation of the maximum age limits for OSL dating on Mars as a function of depth. At this time we have considered only static burial. Our calculations are based on published models of and data for: (i) Mars surface cosmic dose rate and its attenuation by martian regolith, (ii) elemental analyses of Mars meteorites, (iii) an experimental evaluation of the saturation dose for the martian soil simulant JSC Mars-1. Our analysis confirms earlier inferences that optical dating should have a greater effective age range on Mars than on Earth. At depths easily accessible by penetrators or moles (1-3 m), maximum optical ages greater than 600 ka are possible. Geochronology on this scale would include at least two stadial/interstadial cycles within Mars' last "Glacial Epoch" (synchronized insolation variations between the poles). A wide range of landforms and surface processes associated with climate variability -- e.g. outwash and lacustrine deposition, large-scale eolian activation -- could potentially be optically dated. At greater depths, that could be reached by mobile drilling rigs or cryobots (10-30m), optical age maximums of 4
NASA Astrophysics Data System (ADS)
Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi
This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.
Energy Science and Technology Software Center (ESTSC)
1990-10-26
Version 00 The program ZYLIND is an interactive point kernel program for photon dose rate prediction of a homogeneous cylindrical source shielded by cylindrical (radial) or plane (axial) layered shields.
NASA Astrophysics Data System (ADS)
Ahmadian, Radin
2010-09-01
This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 Ω potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.
Takeda, Atsuya; Sanuki, Naoko; Tsurugai, Yuichiro; Oku, Yohei; Aoki, Yousuke
2016-01-01
We previously reported that the local control of pulmonary metastases from colorectal cancer (CRC) following stereotactic body radiotherapy (SBRT) with moderate prescription dose was relatively worse. We investigated the treatment outcomes and toxicities of patients with oligometastases from CRC treated by SBRT using risk-adapted, very high- and convergent-dose regimens. Among patients referred for SBRT from August 2011 to January 2015, those patients were extracted who had liver or pulmonary metastases from CRC, and they were treated with a total dose of 50–60 Gy in five fractions prescribed to the 60% isodose line of the maximum dose covering the surface of the planning target volume. Concurrent administration of chemotherapy was not admitted during SBRT, while neoadjuvant or adjuvant chemotherapy was allowed. A total of 21 patients (12 liver, 9 lung) with 28 oligometastases were evaluated. The median follow-up duration was 27.5 months (range: 6.5–43.3 months). Four patients were treated with SBRT as a series of initial treatments, and 17 patients were treated after recurrent oligometastases. The local control rates at 1 and 2 years from the start of SBRT were 100%. The disease-free and actuarial overall survival rates were 62% and 55%, and 79% and 79%, respectively. No severe toxicities (≥grade 3) occurred during follow-up. The outcomes following high-dose SBRT were excellent. This treatment can provide an alternative to the surgical resection of oligometastases from CRC. Prospective studies are needed to validate the effectiveness of SBRT. PMID:26983981
NASA Astrophysics Data System (ADS)
He, Yi; Liwo, Adam; Scheraga, Harold A.
2015-12-01
Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field.
He, Yi; Scheraga, Harold A.; Liwo, Adam
2015-12-28
Coarse-grained models are useful tools to investigate the structural and thermodynamic properties of biomolecules. They are obtained by merging several atoms into one interaction site. Such simplified models try to capture as much as possible information of the original biomolecular system in all-atom representation but the resulting parameters of these coarse-grained force fields still need further optimization. In this paper, a force field optimization method, which is based on maximum-likelihood fitting of the simulated to the experimental conformational ensembles and least-squares fitting of the simulated to the experimental heat-capacity curves, is applied to optimize the Nucleic Acid united-RESidue 2-point (NARES-2P) model for coarse-grained simulations of nucleic acids recently developed in our laboratory. The optimized NARES-2P force field reproduces the structural and thermodynamic data of small DNA molecules much better than the original force field.
NASA Astrophysics Data System (ADS)
Funakoshi, Satoshi; Sato, Tomoyoshi; Miyazaki, Takeshi
2012-06-01
We investigate the statistical mechanics of quasi-geostrophic point vortices of mixed sign (bi-disperse system) numerically and theoretically. Direct numerical simulations under periodic boundary conditions are performed using a fast special-purpose computer for molecular dynamics (GRAPE-DR). Clustering of point vortices of like sign is observed and two-dimensional (2D) equilibrium states are formed. It is shown that they are the solutions of the 2D mean-field equation, i.e. the sinh-Poisson equation. The sinh-Poisson equation is generalized to study the 3D nature of the equilibrium states, and a new mean-field equation with the 3D Laplace operator is derived based on the maximum entropy theory. 3D solutions are obtained at very low energy level. These solution branches, however, cannot be traced up to the higher energy level at which the direct numerical simulations are performed, and transitions to 2D solution branches take place when the energy is increased.
Effect of tissue inhomogeneity on dose distribution of point sources of low-energy electrons.
Kwok, C S; Bialobzyski, P J; Yu, S K; Prestwich, W V
1990-01-01
Perturbation in dose distributions of point sources of low-energy electrons at planar interfaces of cortical bone (CB) and red marrow (RM) was investigated experimentally and by Monte Carlo codes EGS and the TIGER series. Ultrathin LiF thermoluminescent dosimeters were used to measure the dose distributions of point sources of 204Tl and 147Pm in RM. When the point sources were at 12 mg/cm2 from a planar interface of CB and RM equivalent plastics, dose enhancement ratios in RM averaged over the region 0-12 mg/cm2 from the interface were measured to be 1.08 +/- 0.03 (SE) and 1.03 +/- 0.03 (SE) for 204Tl and 147Pm, respectively. The Monte Carlo codes predicted 1.05 +/- 0.02 and 1.01 +/- 0.02 for the two nuclides, respectively. However, EGS gave consistently 3% higher dose in the dose scoring region than the TIGER series when point sources of monoenergetic electrons up to 0.75 MeV energy were considered in the homogeneous RM situation or in the CB and RM heterogeneous situation. By means of the TIGER series, it was demonstrated that aluminum, which is normally assumed to be equivalent to CB in radiation dosimetry, leads to an overestimation of backscattering of low-energy electrons in soft tissue at a CB-soft-tissue interface by as much as a factor of 2. PMID:2233564
Yang, Zhen; Sotthivirat, Sutthilug; Wu, Yunhui; Lalloo, Anita; Nissley, Becky; Manser, Kimberly; Li, Hankun
2016-04-30
Intraoral (IO) administration is a unique route that takes advantage of transmucosal absorption in the oral cavity to deliver a drug substance locally or systemically. IO delivery can also enhance or enable oral administration, providing a better therapeutic benefit/safety risk profile for patient compliance. However, there are relatively few systematic biopharmaceutics assessments for IO delivery to date. Therefore, the goals of this study were to i) identify the most relevant in vitro permeability models as alternatives to porcine oral tissues (gold standard) for predicting human IO absorption and ii) establish guidelines for biopharmaceutics assessment during early drug development for IO delivery. Porcine kidney LLC-PK1 cells provided the strongest correlation of transmucosal permeability with porcine oral tissues followed by human Caco-2 cells. Furthermore, cultured human buccal tissues predicted high/low permeability classification and correlated well with porcine oral tissues, which are used for predicting clinical IO absorption. In the meantime, we introduced maximum absorbable dose and dose number in the oral cavity for IO delivery assessment as well as a decision tree to provide guidance for biopharmaceutics assessment during early drug development for IO delivery. PMID:26906458
NASA Astrophysics Data System (ADS)
Favarel, C.; Champier, D.; Bédécarrats, J. P.; Kousksou, T.; Strub, F.
2012-06-01
According to the International Energy Agency, 1.4 billion people are without electricity in the poorest countries and 2.5 billion people rely on biomass to meet their energy needs for cooking in developing countries. The use of cooking stoves equipped with small thermoelectric generator to provide electricity for basic needs (LED, cell phone and radio charging device) is probably a solution for houses far from the power grid. The cost of connecting every house with a landline is a lot higher than dropping thermoelectric generator in each house. Thermoelectric generators have very low efficiency but for isolated houses, they might become really competitive. Our laboratory works in collaboration with plane`te-bois (a non governmental organization) which has developed energy-efficient multifunction (cooking and hot water) stoves based on traditional stoves designs. A prototype of a thermoelectric generator (Bismuth Telluride) has been designed to convert a small part of the energy heating the sanitary water into electricity. This generator can produce up to 10 watts on an adapted load. Storing this energy in a battery is necessary as the cooking stove only works a few hours each day. As the working point of the stove varies a lot during the use it is also necessary to regulate the electrical power. An electric DC DC converter has been developed with a maximum power point tracker (MPPT) in order to have a good efficiency of the electronic part of the thermoelectric generator. The theoretical efficiency of the MMPT converter is discussed. First results obtained with a hot gas generator simulating the exhaust of the combustion chamber of a cooking stove are presented in the paper.
Gellee, S; Page, J; Sanghera, B; Payoux, P; Wagner, Thomas
2014-05-01
Maximum standardized uptake value (SUVmax) from fluorodeoxyglucose (FDG) positron emission tomography (PET) scans is a semi quantitative measure that is increasingly used in the clinical practice for diagnostic and therapeutic response assessment purposes. Technological advances such as the implementation of the point spread function (PSF) in the reconstruction algorithm have led to higher signal to noise ratio and increased spatial resolution. The impact on SUVmax measurements has not been studied in clinical setting. We studied the impact of PSF on SUVmax in 30 consecutive lung cancer patients. SUVmax values were measured on PET-computed tomography (CT) scans reconstructed iteratively with and without PSF (respectively high-definition [HD] and non-HD). HD SUVmax values were significantly higher than non-HD SUVmax. There was excellent correlation between HD and non-HD values. Details of reconstruction and PSF implementation in particular have important consequences on SUV values. Nuclear Medicine physicians and radiologists should be aware of the reconstruction parameters of PET-CT scans when they report or rely on SUV measurements. PMID:25191128
NASA Astrophysics Data System (ADS)
Molognoni, Daniele; Puig, Sebastià; Balaguer, M. Dolors; Liberale, Alessandro; Capodaglio, Andrea G.; Callegari, Arianna; Colprim, Jesús
2014-12-01
Microbial Fuel Cells (MFCs) are considered to be an environmental friendly energy conversion technology. The main limitations that delay their industrialization include low current and power densities achievable and long start-up times. Maximum Power Point Tracking (MPPT) has been proposed as a method to enhance MFCs electrical performances. However, the specialized literature is still lacking of experimental works on scaled-up reactors and/or real wastewater utilization. This study evaluates the impact of a MPPT system applied to MFCs treating swine wastewater in terms of start-up time and long-term performance. For this purpose, two replicate cells were compared, one with applied MPPT control and one working with fixed resistance. Both MFCs were continuously fed with swine wastewater to validate the control system under real and dynamic conditions. The study demonstrated that the automatic resistance control was able to reduce the start-up time of about one month. Moreover, MPPT system increased of 40% the Coulombic efficiency at steady-state conditions, reduced energy losses associated with anode and cathode reactions and limited methanogenic activity in the anode chamber. A power density of 5.0 ± 0.2 W m-3 NAC was achieved feeding the system at an organic loading rate of 10 kg COD m-3 d-1.
NASA Astrophysics Data System (ADS)
Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan
2016-02-01
Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.
NASA Astrophysics Data System (ADS)
Huang, Yu
Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.
Little, C.A.; Cotter, S.J.
1980-01-01
Concentrations of tritium, /sup 90/Sr, /sup 106/Ru, and /sup 137/Cs in the Clinch River for 1978 were estimated by using the known 1978 releases of these nuclides from the White Oak Dam and diluting them by the integrated annual flow rate of the Clinch River. Estimates of 50-year dose commitment to a maximumly exposed individual were calculated for both aquatic and terestrial pathways of exposure. The maximumly exposed individual was assumed to reside at the mouth of White Oak Creek where it enters the Clinch River and obtain all foodstuffs and drinking water at that location. The estimated total-body dose from all pathways to the maximumly exposed individual as a result of 1978 releases was less than 1% of the dose expected from natural background. Using appropriate concentrations of to subject radionuclides diluted downstream, the doses to populations residing at Harriman, Kingston, Rockwood, Spring City, Soddy-Daisy, and Chattanooga were calculated for aquatic exposure pathways. The total-body dose estimated for aquatic pathways for the six cities was about 0.0002 times the expected dose from natural background. For the pathways considered in this report, the nuclide which contributed the largest fraction of dose was /sup 90/Sr. The largest dose delivered by /sup 90/Sr was to the bone of the subject individual or community.
Raghib, Michael; Hill, Nicholas A; Dieckmann, Ulf
2011-05-01
The prevalence of structure in biological populations challenges fundamental assumptions at the heart of continuum models of population dynamics based only on mean densities (local or global). Individual-based models (IBMs) were introduced during the last decade in an attempt to overcome this limitation by following explicitly each individual in the population. Although the IBM approach has been quite useful, the capability to follow each individual usually comes at the expense of analytical tract ability, which limits the generality of the statements that can be made. For the specific case of spatial structure in populations of sessile (and identical) organisms, space-time point processes with local regulation seem to cover the middle ground between analytical tract ability and a higher degree of biological realism. This approach has shown that simplified representations of fecundity, local dispersal and density-dependent mortality weighted by the local competitive environment are sufficient to generate spatial patterns that mimic field observations. Continuum approximations of these stochastic processes try to distill their fundamental properties, and they keep track of not only mean densities, but also higher order spatial correlations. However, due to the non-linearities involved they result in infinite hierarchies of moment equations. This leads to the problem of finding a 'moment closure'; that is, an appropriate order of (lower order) truncation, together with a method of expressing the highest order density not explicitly modelled in the truncated hierarchy in terms of the lower order densities. We use the principle of constrained maximum entropy to derive a closure relationship for truncation at second order using normalisation and the product densities of first and second orders as constraints, and apply it to one such hierarchy. The resulting 'maxent' closure is similar to the Kirkwood superposition approximation, or 'power-3' closure, but it is
Target point correction optimized based on the dose distribution of each fraction in daily IGRT
NASA Astrophysics Data System (ADS)
Stoll, Markus; Giske, Kristina; Stoiber, Eva M.; Schwarz, Michael; Bendl, Rolf
2014-03-01
Purpose: To use daily re-calculated dose distributions for optimization of target point corrections (TPCs) in image guided radiation therapy (IGRT). This aims to adapt fractioned intensity modulated radiation therapy (IMRT) to changes in the dose distribution induced by anatomical changes. Methods: Daily control images from an in-room on-rail spiral CT-Scanner of three head-and-neck cancer patients were analyzed. The dose distribution was re-calculated on each control CT after an initial TPC, found by a rigid image registration method. The clinical target volumes (CTVs) were transformed from the planning CT to the rigidly aligned control CTs using a deformable image registration method. If at least 95% of each transformed CTV was covered by the initially planned D95 value, the TPC was considered acceptable. Otherwise the TPC was iteratively altered to maximize the dose coverage of the CTVs. Results: In 14 (out of 59) fractions the criterion was already fulfilled after the initial TPC. In 10 fractions the TPC can be optimized to fulfill the coverage criterion. In 31 fractions the coverage can be increased but the criterion is not fulfilled. In another 4 fractions the coverage cannot be increased by the TPC optimization. Conclusions: The dose coverage criterion allows selection of patients who would benefit from replanning. Using the criterion to include daily re-calculated dose distributions in the TPC reduces the replanning rate in the analysed three patients from 76% to 59% compared to the rigid image registration TPC.
Choi, Jang-Hwan; Constantin, Dragos; Ganguly, Arundhuti; Girard, Erin; Morin, Richard L.; Dixon, Robert L.; Fahrig, Rebecca
2015-01-01
Purpose: To propose new dose point measurement-based metrics to characterize the dose distributions and the mean dose from a single partial rotation of an automatic exposure control-enabled, C-arm-based, wide cone angle computed tomography system over a stationary, large, body-shaped phantom. Methods: A small 0.6 cm3 ion chamber (IC) was used to measure the radiation dose in an elliptical body-shaped phantom made of tissue-equivalent material. The IC was placed at 23 well-distributed holes in the central and peripheral regions of the phantom and dose was recorded for six acquisition protocols with different combinations of minimum kVp (109 and 125 kVp) and z-collimator aperture (full: 22.2 cm; medium: 14.0 cm; small: 8.4 cm). Monte Carlo (MC) simulations were carried out to generate complete 2D dose distributions in the central plane (z = 0). The MC model was validated at the 23 dose points against IC experimental data. The planar dose distributions were then estimated using subsets of the point dose measurements using two proposed methods: (1) the proximity-based weighting method (method 1) and (2) the dose point surface fitting method (method 2). Twenty-eight different dose point distributions with six different point number cases (4, 5, 6, 7, 14, and 23 dose points) were evaluated to determine the optimal number of dose points and their placement in the phantom. The performances of the methods were determined by comparing their results with those of the validated MC simulations. The performances of the methods in the presence of measurement uncertainties were evaluated. Results: The 5-, 6-, and 7-point cases had differences below 2%, ranging from 1.0% to 1.7% for both methods, which is a performance comparable to that of the methods with a relatively large number of points, i.e., the 14- and 23-point cases. However, with the 4-point case, the performances of the two methods decreased sharply. Among the 4-, 5-, 6-, and 7-point cases, the 7-point case (1.0% [±0
NASA Astrophysics Data System (ADS)
Mroczka, Janusz; Ostrowski, Mariusz
2015-06-01
Disadvantages of photovoltaic panels are their low efficiency and non-linear current-voltage characteristic. Therefore it is necessary to apply the maximum power tracking systems which are dependent on the sun exposure and temperature. Trackers, that are used in photovoltaic systems, differ from each other in the speed and accuracy of tracking. Typically, in order to determine the maximum power point, trackers use measure of current and voltage. The perturb and observe algorithm or the incremental conductance method are frequent in the literature. The drawback of these solutions is the need to search the entire current-voltage curve, resulting in a significant loss of power in the fast-changing lighting conditions. Modern solutions use an additional measurement of temperature, short-circuit current or open circuit voltage in order to determine the starting point of one of the above methods, what decreases the tracking time. For this paper, a sequence of simulations and tests in real shading and temperature conditions for the investigated method, which uses additional light sensor to increase the speed of the perturb and observe algorithm in fast-changing illumination conditions was performed. Due to the non-linearity of the light sensor and the photovoltaic panel and the influence of temperature on the used sensor and panel characteristics, we cannot directly determine the relationship between them. For this reason, the tested method is divided into two steps. In the first step algorithm uses the correlation curve of the light sensor and current at the maximum power point and determines the current starting point with respect of which the perturb and observe algorithm is run. When the maximum power point is reached, in a second step, the difference between the starting point and the actual maximum power point is calculated and on this basis the coefficients of correlation curve are modified.
Badkul, R; McClinton, C; Kumar, P; Mitchell, M
2014-06-01
Purpose: Brachytherapy plays a crucial role in management of cervix cancer. MRI compatible applicators have made it possible to accurately delineate gross-target-volume(GTV) and organs-at-risk(OAR) volumes, as well as directly plan, optimize and adapt dose-distribution for each insertion. We sought to compare DVH of tumor-coverage and OARs to traditional Point-A, ICRU-38 bladder and rectum point-doses for four different planning-techniques. Methods: MRI based 3D-planning was performed on Nucletron-Oncentra-TPS for 3 selected patients with varying tumor-sizes and anatomy. GTV,high-risk-clinical-target-volume(HR-CTV), intermediate-risk-clinical-target-volume(IR-CTV) and OARs: rectum, bladder, sigmoid-colon, vaginal-mucosa were delineated. Three conventionally used techniques: mg-Radium-equivalent(RaEq),equal-dwell-weights(EDW), Medical-College-of-Wisconsin proposed points-optimization (MCWO) and a manual-graphical-optimization(MGO) volume-coverage based technique were applied for each patient. Prescription was 6Gy delivered to point-A in Conventional techniques (RaEq, EDW, MCWO). For MGO, goal was to achieve 90%-coverage (D90) to HR-CTV with prescription-dose. ICRU point doses for rectum and bladder, point-A doses, DVH-doses for HR-CTV-D90,0.1cc-volume(D0.1),1ccvolume( D1),2cc-volume(D2) were collected for all plans and analyzed . Results: Mean D90 for HR-CTV normalized to MGO were 0.89,0.84,0.9,1.0 for EDW, RaEq, MCWO, MGO respectively. Mean point-A doses were 21.7% higher for MGO. Conventional techniques with Point-A prescriptions under covered HR-CTV-D90 by average of 12% as compared to MGO. Rectum, bladder and sigmoid doses were highest in MGO-plans for ICRU points as well as D0.1,D1 and D2 doses. Among conventional-techniques, rectum and bladder ICRU and DVH doses(0.1,1,2cc) were not significantly different (within 7%).Rectum D0.1 provided good estimation of ICRU-rectum-point doses (within 3.9%),rectum D0.1 were higher from 0.8 to 3.9% while bladder D0
Soldat, J.K.; Price, K.R.; Rickard, W.H.
1990-10-01
The purpose of this report is to summarize the assumptions, dose factors, consumption rates, and methodology used to evaluate potential radiation doses to persons who may eat contaminated wildlife or contaminated plants collected from the Hanford Site. This report includes a description of the number and variety of wildlife and edible plants on the Hanford Site, methods for estimation of the quantities of these items consumed and conversion of intake of radionuclides to radiation doses, and example calculations of radiation doses from consumption of plants and wildlife. Edible plants on the publicly accessible margins of the shoreline of the Hanford Site and Wildlife that move offsite are potential sources of contaminated food for the general public. Calculations of potential radiation doses from consumption of agricultural plants and farm animal products are made routinely and reported annually for those produced offsite, using information about concentrations of radionuclides, consumption rates, and factors for converting radionuclide intake into dose. Dose calculations for onsite plants and wildlife are made intermittently when appropriate samples become available for analysis or when special studies are conducted. Consumption rates are inferred from the normal intake rates of similar food types raised offsite and from the edible weight of the onsite product that is actually available for harvest. 19 refs., 4 tabs.
Effective dose equivalent for point gamma sources located 10 cm near the body.
Xu, X George; Bushart, Sean; Anderson, Ralph
2006-08-01
The key component in the so-called EPRI effective dose equivalent (EDE) methodology is an algorithm that utilizes two dosimeters (instead of multiple dosimeters) to predict the EDE for external photon exposures. The exposure scenarios that were previously studied in deriving the algorithm include parallel photon beams and point sources 33 cm from the body surface. The motivation for this study was the need to investigate source locations within 33 cm from the body so the method is more widely applicable. The ORNL stylized mathematical human phantoms and the MCNP code were used to calculate organ doses in this study. This paper presents the EDE data for point gamma sources at 0.3, 1.0, and 1.5 MeV, respectively, which are located at 10 cm from the surface of the body. The results and analyses show that the locations ranging from the overhead to the foot have resulted in conservative ratios except for two general regions near the front upper thigh and directly overhead. If all locations considered in this study were averaged for each photon energy, the overall ratio is on the conservative side. These data suggest that the EPRI EDE methodology is still valid for sources located 10 cm from the body, although the chance for resulting in a non-conservative estimate of the EDE has increased in comparison with the sources located at 30 cm from the body. Finally, this paper provides recommendations on how to apply the EPRI EDE methodology. PMID:16832191
2013-01-01
Background The receptor kinase inhibitor toceranib phosphate (Palladia) was approved for use in dogs in 2009 using a dose of 3.25 mg/kg administered every other day. Preliminary data suggests that lower doses of toeceranib may be associated with a reduced adverse event profile while maintaining sufficient drug exposure to provide biologic activity. The purpose of this study was to determine the Cmax of toceranib in dogs with solid tumors receiving 2.5-2.75 mg/kg every other day and to document the adverse events associated with this dose rate. Secondary objectives included determination of plasma VEGF concentrations in treated dogs and response to therapy. Results Dogs with solid tumors were administered toceranib at an intended target dose ranging from 2.5-2.75 mg/kg every other day and plasma samples were obtained for analysis of toceranib and VEGF plasma concentrations on days 0, 7, 14 and 30 of the study at 6 and 8 hours post drug administration. Additionally, plasma samples were obtained at 0, 1, 2, 6, 8, and 12 hours from dogs on day 30 for confirmation of Cmax. Response to therapy was assessed using standard RECIST criteria and adverse events were characterized using the VCOG-CTCAE. Toceranib administered at doses between 2.4-2.9 mg/kg every other day resulted in an average 6–8 hr plasma concentration ranging from 100–120 ng/ml, well above the 40 ng/ml concentration associated with target inhibition. Plasma VEGF concentrations increased significantly over the 30 day treatment period indicating that VEGFR2 inhibition was likely achieved in the majority of dogs. The lower doses of toceranib used in this study were associated with a substantially reduced adverse event profile compared to the established label dose of 3.25 mg/kg EOD. Conclusions Doses of toceranib ranging from 2.4-2.9 mg/kg every other day provide drug exposure considered sufficient for target inhibition while resulting in an adverse event profile substantially reduced from that
Murphy, B.L.
1981-09-01
The National Council on Radiation Protection and Measurements (NCRP) has issued a statement advising that it is considering lowering the maximum permissible dose for neutrons. This action would present substantive problems to radiation protection programs at DOE facilities where a potential for neutron exposure exists. In addition to altering administrative controls, a lowering of the maximum permissible dose for neutrons will require advances in personnel neutron dosimetry systems, and neutron detection and measurement instrumentation. Improvement in the characterization of neutron fields and spectra at work locations will also be needed. DOE has initiated research and development programs in these areas. However, problems related to the control of personnel neutron exposure have yet to be resolved and investigators are encouraged to continue collaboration with both United States and international authorities.
Martin G. De Kauwe; Serbin, Shawn P.; Lin, Yan -Shih; Wright, Ian J.; Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.; Maire, Vincent; Prentice, I. Colin; Atkin, Owen K.; et al
2015-12-31
Here, simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax). Estimating this parameter using A–Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat) measurements, from which Vcmax can be extracted using a ‘one-point method’.
Calculation of electron Dose Point Kernel in water with GEANT4 for medical application
NASA Astrophysics Data System (ADS)
Guimarães, C. C.; Moralles, M.; Sene, F. F.; Martinelli, J. R.; Okuno, E.
2009-06-01
The rapid insertion of new technologies in medical physics in the last years, especially in nuclear medicine, has been followed by a great development of faster Monte Carlo algorithms. GEANT4 is a Monte Carlo toolkit that contains the tools to simulate the problems of particle transport through matter. In this work, GEANT4 was used to calculate the dose-point-kernel (DPK) for monoenergetic electrons in water, which is an important reference medium for nuclear medicine. The three different physical models of electromagnetic interactions provided by GEANT4—Low Energy, Penelope and Standard—were employed. To verify the adequacy of these models, the results were compared with references from the literature. For all energies and physical models, the agreement between calculated DPKs and reported values is satisfactory.
NASA Astrophysics Data System (ADS)
Maleki, Mohammad Reza; Amiri, Amirhossein; Mousavi, Seyed Meysam
2015-07-01
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, first we use an artificial neural network (ANN)-based method in the literature for detecting the variance shifts as well as diagnosing the sources of variation in the multivariate-attribute processes. Then, based on the quality characteristics responsible for the out-of-control state, we propose a modular model based on the ANN for estimating the time of step change in the multivariate-attribute process variability. We also compare the performance of the ANN-based estimator with the estimator based on maximum likelihood method (MLE). A numerical example based on simulation study is used to evaluate the performance of the estimators in terms of the accuracy and precision criteria. The results of the simulation study show that the proposed ANN-based estimator outperforms the MLE estimator under different out-of-control scenarios where different shift magnitudes in the covariance matrix of multivariate-attribute quality characteristics are manifested.
Li, Jie; Li, Chao; Sun, Hong-Jie; Juhasz, Albert L; Luo, Jun; Li, Hong-Bo; Ma, Lena Q
2016-01-01
Different animals and biomarkers have been used to measure the relative bioavailability of arsenic (As-RBA) in contaminated soils. However, there is a lack of As-RBA comparison based on different animals (i.e., swine and mouse) and biomarkers [area under blood As concentration curve (AUC) after a single gavaged dose vs steady-state As urinary excretion (SSUE) and As accumulation in liver or kidney after multiple doses via diet]. In this study, As-RBA in 12 As-contaminated soils with known As-RBA via swine blood AUC model were measured by mouse blood AUC, SSUE, and liver and kidney analyses. As-RBA ranges for the four mouse assays were 2.8-61%, 3.6-64%, 3.9-74%, and 3.4-61%. Compared to swine blood AUC assay (7.0-81%), though well correlated (R(2) = 0.83), the mouse blood AUC assay yielded lower values (2.8-61%). Similarly, strong correlations of As-RBA were observed between mouse blood AUC and mouse SSUE (R(2) = 0.86) and between urine, liver, and kidney (R(2) = 0.75-0.89), suggesting As-RBA was congruent among different animals and end points. Different animals and biomarkers had little impact on the outcome of in vivo assays to validate in vitro assays. On the basis of its simplicity, mouse liver or kidney assay following repeated doses of soil-amended diet is recommended for future As-RBA studies. PMID:26595746
Spiegler, P.
1981-09-01
As part of the assessment of the potential radiological consequences of the proposed Waste Isolation Pilot Plant (WIPP), this report evaluates the post-closure radiation dose commitments associated with a possible breach event which involves dissolution of the repository by groundwaters and subsequent transport of the nuclear waste through an aquifer to a well assumed to exist at a point 3 miles downstream from the repository. The concentrations of uranium and plutonium isotopes at the well are based on the nuclear waste inventory presently proposed for WIPP and basic assumptions concerning the transport of waste as well as treatment to reduce the salinity of the water. The concentrations of U-233, Pu-239, and Pu-240, all radionuclides originally emplaced as waste in the repository, would exceed current EPA drinking water limits. The concentrations of U-234, U-235, and U-236, all decay products of plutonium isotopes originally emplaced as waste, would be well below current EPA drinking water limits. The 50-year dose commitments from one year of drinking treated water contaminated with U-233 or Pu-239 and Pu-240 were found to be comparable to a one-year dose from natural background. The 50-year dose commitments from one year of drinking milk would be no more than about 1/5 the dose obtained from ingestion of treated water. These doses are considered upper bounds because of several very conservative assumptions which are discussed in the report.
Basu, Partha; Bhatla, Neerja; Ngoma, Twalib; Sankaranarayanan, Rengaswamy
2016-06-01
World Health Organization (WHO) recommended 2 doses of the Human Papillomavirus (HPV) vaccine for girls below 15 y on the basis of the immune-bridging studies demonstrating non-inferior immune response of 2 doses in the adolescent girls compared to 3 doses in the young adult women in whom the efficacy against disease is established. The biological nature of the antigens (virus-like particles) constituting the HPV vaccine is responsible for the vigorous antibody response that may make the third dose redundant. The protection offered by 2 doses has been demonstrated in non-randomized clinical trials to be comparable to that offered by 3 doses against incident and persistent infections of vaccine targeted HPV types. However, results emerging from the ecological and nested case-control studies embedded in the population based screening programs of different countries indicate reduced efficacy of 2 doses against virological and disease end points. Some recent studies observed the protective effect of single dose of the vaccine against incident and persistent infections of the vaccine targeted HPV types to be similar to 3 doses in spite of immunological inferiority. The sample size, duration of follow-ups and number of events were limited in these studies. Longer follow ups of the less than 3 doses cohorts in the ongoing studies as well as appropriately designed and ethically justifiable randomized studies are needed to establish the protection offered by the alternative schedules at least beyond 10 y of vaccination. PMID:26933961
Martin G. De Kauwe; Serbin, Shawn P.; Lin, Yan -Shih; Wright, Ian J.; Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.; Maire, Vincent; Prentice, I. Colin; Atkin, Owen K.; Rogers, Alistair; Niinemets, Ulo; Meir, Patrick; Uddling, Johan; Togashi, Henrique F.; Tarvainen, Lasse; Weerasinghe, Lasantha K.; Evans, Bradley J.; Ishida, F. Yoko; Domingues, Tomas F.
2015-12-31
Here, simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (V_{cmax}). Estimating this parameter using A–C_{i} curves (net photosynthesis, A, vs intercellular CO_{2} concentration, C_{i}) is laborious, which limits availability of V_{cmax }data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO_{2} concentration (A_{sat}) measurements, from which V_{cmax} can be extracted using a ‘one-point method’.
NASA Astrophysics Data System (ADS)
Datsenko, I.; Lozovenko, O.; Minaiev, Yu
2016-09-01
In their recent paper, Wang and Su (2015 Eur. J. Phys. 36 055010) acquainted readers with a solution to a problem about the optimal shape of an object for generating a maximum gravity field at a given point in space. After applying the variational principal and the Euler–Lagrange equation they obtained the shape for two-, three- and arbitrary n-dimensional cases. We are convinced that the problem is interesting enough to consider it with students. In this Comment we will try to present an easier way to solve it for the three-dimensional space.
Aiza, Antonio; Gomes, Maria José Leite; Chen, Michael Jenwei; Pellizzon, Antonio Cassio de Assis; Mansur, David B.; Baiocchi, Glauco
2015-01-01
Purpose High-dose-rate brachytherapy (HDR-BT) alone is an adjuvant treatment option for stage I intermediaterisk endometrial cancer after complete surgical resection. The aim of this study was to determine the value of the dose reported to ICRU bladder point in predicting acute urinary toxicity. Oncologic results are also presented. Material and methods One hundred twenty-six patients were treated with postoperative HDR-BT 24 Gy (4 × 6 Gy) per ICRU guidelines for dose reporting. Cox analysis was used to identify variables that affected local control. The mean bladder point dose was examined for its ability to predict acute urinary toxicity. Results Two patients (1.6%) developed grade 1 gastrointestinal toxicity and 12 patients (9.5%) developed grades 1-2 urinary toxicity. No grade 3 or greater toxicity was observed. The mean bladder point dose was 46.9% (11.256 Gy) and 49.8% (11.952 Gy) for the asymptomatic and symptomatic groups, respectively (p = 0.69). After a median follow-up of 36.8 months, the 3-year local failure and 5-year cancer-specific and overall survival rates were 2.1%, 100%, and 94.6%, respectively. No pelvic failure was seen in this cohort. Age over 60 years (p = 0.48), lymphatic invasion (p = 0.77), FIGO histological grade (p = 0.76), isthmus invasion (p = 0.68), and applicator type (cylinder × ovoid) (p = 0.82) did not significantly affect local control. Conclusions In this retrospective study, ICRU bladder point did not correlate with urinary toxicity. Four fractions of 6 Gy HDR-BT effected satisfactory local control, with acceptable urinary and gastrointestinal toxicity. PMID:26622241
NASA Astrophysics Data System (ADS)
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-01
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-01
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses. PMID:25790059
Botta, F.; Mairani, A.; Battistoni, G.; Cremonesi, M.; Di Dia, A.; Fasso, A.; Ferrari, A.; Ferrari, M.; Paganelli, G.; Pedroli, G.; Valente, M.
2011-07-15
Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10{sup -3} MeV) and for beta emitting isotopes commonly used for therapy ({sup 89}Sr, {sup 90}Y, {sup 131}I, {sup 153}Sm, {sup 177}Lu, {sup 186}Re, and {sup 188}Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8{center_dot}R{sub CSDA} and 0.9{center_dot}R{sub CSDA} for monoenergetic electrons (R{sub CSDA} being the continuous slowing down approximation range) and within 0.8{center_dot}X{sub 90} and 0.9{center_dot}X{sub 90} for isotopes (X{sub 90} being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9{center_dot}R{sub CSDA} and 0.9{center_dot}X{sub 90} for electrons and isotopes, respectively. Results: Concerning monoenergetic electrons
Botta, F; Di Dia, A; Pedroli, G; Mairani, A; Battistoni, G; Fasso, A; Ferrari, A; Ferrari, M; Paganelli, G; Valente, M
2011-06-01
The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one.Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10–3 MeV) and for beta emitting isotopes commonly used for therapy (89Sr, 90Y, 131I, 153Sm, 177Lu, 186Re, and 188Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8·RCSDA and 0.9·RCSDA for monoenergetic electrons (RCSDA being the continuous slowing down approximation range) and within 0.8·X90 and 0.9·X90 for isotopes (X90 being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9·RCSDA and 0.9·X90 for electrons and isotopes, respectively.Results: Concerning monoenergetic electrons, within 0.8·RCSDA (where 90%–97% of the particle energy is deposed), fluka and penelope agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8
Forette, F; Anand, R; Gharabawi, G
1999-07-01
Rivastigmine is a carbamate acetylcholinesterase (AChE) inhibitor with central selectivity. Early studies showed that daily doses up to 6 mg/day have some efficacy in patients with dementia of the Alzheimer type (DAT). The present study was designed to assess the safety, tolerability and efficacy of rivastigmine at doses up to 12 mg/day. A total of 114 patients with mild-moderate DAT were randomly assigned to either rivastigmine (b.i.d. (twice daily) or t.i.d. (three times daily)) or placebo in a double-blind fashion titrated to their maximum tolerated dose over 10 weeks followed by an eight-week maintenance phase. The mean maximum tolerated dose was approximately 10 mg/day (b.i.d. or t.i.d.). Gastrointestinal complaints, the majority of which were mild to moderate, were the most frequently reported adverse events. No clinically relevant changes in vital signs, haematology or organ function were detected. Significantly more patients taking rivastigmine b.i.d. were considered improved according to the Clinicians' Interview-Based Impression of Change-Plus (CIBIC-Plus) vs. placebo (57% vs. 16%, respectively; P = 0.027). The Nurses' Observation Scale for Geriatric Patients (NOSGER) (memory component) and the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog) also improved in the rivastigmine b.i.d. group vs. placebo (mean change from baseline on NOSGER = -0.7 vs. +1.3, respectively; P = 0.037: mean change from baseline on ADAS-cog = -2.7 vs. +0.2, respectively; P = 0.054). Despite the relatively small size and limited duration of the study, the finding that rivastigmine induced changes in the same (positive) direction in all three dimensions measured suggests that rivastigmine at doses of up to 12 mg/day has useful efficacy in patients with mild-moderate DAT. Reports from larger phase III studies confirm this finding. The results of this study also suggest that b.i.d. is the more efficacious regimen and has comparable tolerability to the t.i.d. regimen
A two-dimensional point-kernel model for dose calculations in a glove-box array
Kornreich, D.E.; Dooley, D.E.
1999-07-01
An associated paper details a model of a room containing glove boxes using the industry standard dose equivalent (dose) estimation tool MCNP. Such tools provide an excellent means for obtaining relatively reliable estimates of radiation transport in a complicated geometric structure. However, creating the input deck that models the complicated geometry is equally complicated. Therefore, an alternative tool is desirable that provides reasonably accurate dose estimates in complicated geometries for use in engineering-scale dose analyses. In the past, several tools that use the point-kernel model for estimating doses equivalent have been constructed (those referenced are only a small sample of similar tools). This new tool, the Photon And Neutron Dose Equivalent Model Of Nuclear materials Integrated with an Uncomplicated geometry Model (PANDEMONIUM), combines point-kernel and diffusion theory calculation routines with a geometry construction tool. PANDEMONIUM uses Visio to draw a glove-box array in the room, including hydrogenous shields, sources, and detectors. This simplification in geometric rendering limits the tool to two-dimensional geometries (and one-dimensional particle transport calculations).
De Kauwe, Martin G; Lin, Yan-Shih; Wright, Ian J; Medlyn, Belinda E; Crous, Kristine Y; Ellsworth, David S; Maire, Vincent; Prentice, I Colin; Atkin, Owen K; Rogers, Alistair; Niinemets, Ülo; Serbin, Shawn P; Meir, Patrick; Uddling, Johan; Togashi, Henrique F; Tarvainen, Lasse; Weerasinghe, Lasantha K; Evans, Bradley J; Ishida, F Yoko; Domingues, Tomas F
2016-05-01
Simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax ). Estimating this parameter using A-Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci ) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat ) measurements, from which Vcmax can be extracted using a 'one-point method'. We used a global dataset of A-Ci curves (564 species from 46 field sites, covering a range of plant functional types) to test the validity of an alternative approach to estimate Vcmax from Asat via this 'one-point method'. If leaf respiration during the day (Rday ) is known exactly, Vcmax can be estimated with an r(2) value of 0.98 and a root-mean-squared error (RMSE) of 8.19 μmol m(-2) s(-1) . However, Rday typically must be estimated. Estimating Rday as 1.5% of Vcmax, we found that Vcmax could be estimated with an r(2) of 0.95 and an RMSE of 17.1 μmol m(-2) s(-1) . The one-point method provides a robust means to expand current databases of field-measured Vcmax , giving new potential to improve vegetation models and quantify the environmental drivers of Vcmax variation. PMID:26719951
Detector density and small field dosimetry: Integral versus point dose measurement schemes
Underwood, T. S. A. Hill, M. A.; Fenwick, J. D.
2013-08-01
Purpose: TheAlfonso et al. [Med. Phys.35, 5179–5186 (2008)] formalism for small field dosimetry proposes a set of correction factors (k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}) which account for differences between the detector response in nonstandard (clinical) and machine-specific-reference fields. In this study, the Monte Carlo method was used to investigate the viability of such small field correction factors for four different detectors irradiated under a variety of conditions. Because k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values for single detector position measurements are influenced by several factors, a new theoretical formalism for integrated-detector-position [dose area product (DAP)] measurements is also presented and was tested using Monte Carlo simulations. Methods: A BEAMnrc linac model was built and validated for a Varian Clinac iX accelerator. Using the egs++ geometry package, detailed virtual models were built for four different detectors: a PTW 60012 unshielded diode, a PTW 60003 Diamond detector, a PTW 31006 PinPoint (ionization chamber), and a PTW 31018 MicroLion (liquid-filled ionization chamber). The egs-chamber code was used to investigate the variation ofk{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} with detector type, detector construction, field size, off-axis position, and the azimuthal angle between the detector and beam axis. Simulations were also used to consider the DAP obtained by each detector: virtual detectors and water voxels were scanned through high resolution grids of positions extending far beyond the boundaries of the fields under consideration. Results: For each detector, the correction factor (k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s
NASA Astrophysics Data System (ADS)
Therriault-Proulx, François; Archambault, Louis; Beaulieu, Luc; Beddar, Sam
2012-11-01
The goal of this study was to develop a novel multi-point plastic scintillation detector (mPSD) capable of measuring the dose accurately at multiple positions simultaneously using a single optical transmission line. A 2-point mPSD used a band-pass approach that included splitters, color filters and an EMCCD camera. The 3-point mPSD was based on a new full-spectrum approach, in which a spectrograph was coupled to a CCD camera. Irradiations of the mPSDs and of an ion chamber were performed with a 6 MV photon beam at various depths and lateral positions in a water tank. For the 2-point mPSD, the average relative differences between mPSD and ion chamber measurements for the depth-dose were 2.4±1.6% and 1.3±0.8% for BCF-60 and BCF-12, respectively. For the 3-point mPSD, the average relative differences over all conditions were 2.3±1.1%, 1.6±0.4% and 0.32±0.19% for BCF-60, BCF-12 and BCF-10, respectively. This study demonstrates the practical feasibility of mPSDs. This type of detector could be very useful for pre-treatment quality assurance applications as well as an accurate tool for real-time in vivo dosimetry. US Patent pending.
Bhandare, N.
2014-06-01
Purpose: To estimate and compare the doses received by the obturator, external and internal iliac lymph nodes and point Methods: CT-MR fused image sets of 15 patients obtained for each of 5 fractions of HDR brachytherapy using tandem and ring applicator, were used to generate treatment plans optimized to deliver a prescription dose to HRCTV-D90 and to minimize the doses to organs at risk (OARs). For each set of image, target volume (GTV, HRCTV) OARs (Bladder, Rectum, Sigmoid), and both left and right pelvic lymph nodes (obturator, external and internal iliac lymph nodes) were delineated. Dose-volume histograms (DVH) were generated for pelvic nodal groups (left and right obturator group, internal and external iliac chains) Per fraction DVH parameters used for dose comparison included dose to 100% volume (D100), and dose received by 2cc (D2cc), 1cc (D1cc) and 0.1 cc (D0.1cc) of nodal volume. Dose to point B was compared with each DVH parameter using 2 sided t-test. Pearson correlation were determined to examine relationship of point B dose with nodal DVH parameters. Results: FIGO clinical stage varied from 1B1 to IIIB. The median pretreatment tumor diameter measured on MRI was 4.5 cm (2.7– 6.4cm).The median dose to bilateral point B was 1.20 Gy ± 0.12 or 20% of the prescription dose. The correlation coefficients were all <0.60 for all nodal DVH parameters indicating low degree of correlation. Only 2 cc of obturator nodes was not significantly different from point B dose on t-test. Conclusion: Dose to point B does not adequately represent the dose to any specific pelvic nodal group. When using image guided 3D dose-volume optimized treatment nodal groups should be individually identified and delineated to obtain the doses received by pelvic nodes.
Calculation and measurement of the dose to points outside the primary beam for CO-60 gamma radiation
Van Der Giessen, P.H.; Hurkmans, C.W.
1993-10-20
In radiation therapy one sometimes needs to estimate the dose to points in the body outside the primary beam. Therefore a generalized model is developed to calculate this dose with reasonable accuracy. Measurements were made for a cobalt beam to determine separately the contribution of leakage radiation, radiation scattered from the collimator, scattered from the floor and radiation scattered inside the patient. The radiation scattered in the patient shows a strong dependence on field size and distance to the beam axis and is predominant only at short distances. The radiation scattered from the collimator also depends strongly on distance and field size and is more important than the leakage radiation. With appropriate factors, correcting for patient dimensions and field shape, the total dose outside the primary beam can be calculated with an accuracy better than {+-}30%. The results are in accordance with published data. Using the measured data it is possible to calculate the dose at any point of the body outside the primary beam for Co-60 gamma radiation. The accuracy is considered to be adequate for risk assessment. 13 refs., 7 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Chen, Haibin; Zhong, Zichun; Liao, Yuliang; Pompoš, Arnold; Hrycushko, Brian; Albuquerque, Kevin; Zhen, Xin; Zhou, Linghong; Gu, Xuejun
2016-02-01
GEC-ESTRO guidelines for high dose rate cervical brachytherapy advocate the reporting of the D2cc (the minimum dose received by the maximally exposed 2cc volume) to organs at risk. Due to large interfractional organ motion, reporting of accurate cumulative D2cc over a multifractional course is a non-trivial task requiring deformable image registration and deformable dose summation. To efficiently and accurately describe the point-to-point correspondence of the bladder wall over all treatment fractions while preserving local topologies, we propose a novel graphic processing unit (GPU)-based non-rigid point matching algorithm. This is achieved by introducing local anatomic information into the iterative update of correspondence matrix computation in the ‘thin plate splines-robust point matching’ (TPS-RPM) scheme. The performance of the GPU-based TPS-RPM with local topology preservation algorithm (TPS-RPM-LTP) was evaluated using four numerically simulated synthetic bladders having known deformations, a custom-made porcine bladder phantom embedded with twenty one fiducial markers, and 29 fractional computed tomography (CT) images from seven cervical cancer patients. Results show that TPS-RPM-LTP achieved excellent geometric accuracy with landmark residual distance error (RDE) of 0.7 ± 0.3 mm for the numerical synthetic data with different scales of bladder deformation and structure complexity, and 3.7 ± 1.8 mm and 1.6 ± 0.8 mm for the porcine bladder phantom with large and small deformation, respectively. The RDE accuracy of the urethral orifice landmarks in patient bladders was 3.7 ± 2.1 mm. When compared to the original TPS-RPM, the TPS-RPM-LTP improved landmark matching by reducing landmark RDE by 50 ± 19%, 37 ± 11% and 28 ± 11% for the synthetic, porcine phantom and the patient bladders, respectively. This was achieved with a computational time of less than 15 s in all cases
Chen, Haibin; Zhong, Zichun; Liao, Yuliang; Pompoš, Arnold; Hrycushko, Brian; Albuquerque, Kevin; Zhen, Xin; Zhou, Linghong; Gu, Xuejun
2016-02-01
GEC-ESTRO guidelines for high dose rate cervical brachytherapy advocate the reporting of the D2cc (the minimum dose received by the maximally exposed 2cc volume) to organs at risk. Due to large interfractional organ motion, reporting of accurate cumulative D2cc over a multifractional course is a non-trivial task requiring deformable image registration and deformable dose summation. To efficiently and accurately describe the point-to-point correspondence of the bladder wall over all treatment fractions while preserving local topologies, we propose a novel graphic processing unit (GPU)-based non-rigid point matching algorithm. This is achieved by introducing local anatomic information into the iterative update of correspondence matrix computation in the 'thin plate splines-robust point matching' (TPS-RPM) scheme. The performance of the GPU-based TPS-RPM with local topology preservation algorithm (TPS-RPM-LTP) was evaluated using four numerically simulated synthetic bladders having known deformations, a custom-made porcine bladder phantom embedded with twenty one fiducial markers, and 29 fractional computed tomography (CT) images from seven cervical cancer patients. Results show that TPS-RPM-LTP achieved excellent geometric accuracy with landmark residual distance error (RDE) of 0.7 ± 0.3 mm for the numerical synthetic data with different scales of bladder deformation and structure complexity, and 3.7 ± 1.8 mm and 1.6 ± 0.8 mm for the porcine bladder phantom with large and small deformation, respectively. The RDE accuracy of the urethral orifice landmarks in patient bladders was 3.7 ± 2.1 mm. When compared to the original TPS-RPM, the TPS-RPM-LTP improved landmark matching by reducing landmark RDE by 50 ± 19%, 37 ± 11% and 28 ± 11% for the synthetic, porcine phantom and the patient bladders, respectively. This was achieved with a computational time of less than 15 s in all cases
NASA Astrophysics Data System (ADS)
Kumazawa, Shinsuke; Kato, Takeyoshi; Honda, Nobuyuki; Koaizawa, Masakazu; Nishino, Shinichi; Suzuoki, Yasuo
Based on the past studies regarding the insolation fluctuation, the smoothing effect of insolation among different locations would not be enough for the longer cycle than a few ten minutes. This study evaluated the maximum fluctuation width (MFW) within at most 120 min of ensemble average insolation of 40 points, its clearness index, and ensemble average insolation excluding sun-position dependent component. As the results, when the weather condition became worse after the noon in almost all area, the ensemble average insolation significantly reduced, resulting in MFW of 540W/m2 within 120 min. As other example, when the weather recovered during the morning in many areas, MFW was also large. By using the data observed for 6 months, this study calculated the cumulative frequency distribution of MFW of ensemble average insolation, its clearness index, and ensemble average insolation excluding sun-position dependent component. As the results, the absolute value of MFW of ensemble average insolation calculated with 120 min width window ranges mainly between 200-300W/m2. The absolute value of MWF of insolation excluding sun-position dependent component evaluated with 120 min width window is smaller than 200W/m2 in most days, and is not so different from MWF evaluated with 60 min width window. Finally, this study discussed the practical usability of insolation forecast.
Nakagawa, Akiko; Ohno, Tatsuya; Noda, Shin-ei; Kubo, Nobuteru; Kuwako, Keiko; Saitoh, Jun-ichi; Nakano, Takashi
2014-01-01
We investigated the rectal dose-sparing effect and tumor control of a point A dose-reduced plan in patients with Stage I–II cervical cancer (≤4 cm) arising from a small-sized uterus. Between October 2008 and August 2011, 19 patients with Stage I–II cervical cancer (≤4 cm) were treated with external beam radiotherapy (EBRT) for the pelvis and CT-guided brachytherapy. Seven patients were treated with brachytherapy with standard loading of source-dwell positions and a fraction dose of 6 Gy at point A (conventional brachy-plan). The other 12 patients with a small uterus close to the rectum or small intestine were treated with brachytherapy with a point A dose-reduction to match D2cc of the rectum and <6 Gy as the dose constraint (‘point A dose-reduced plan’) instead of the 6-Gy plan at point A (‘tentative 6-Gy plan’). The total doses from EBRT and brachytherapy were added up and normalized to a biological equivalent dose of 2 Gy per fraction (EQD2). The median doses to the high-risk clinical target volume (HR-CTV) D90 in the conventional brachy-plan, tentative 6-Gy plan and point A dose-reduced plan were 62 GyEQD2, 80 GyEQD2 and 64 GyEQD2, respectively. The median doses of rectal D2cc in the corresponding three plans were 42 GyEQD2, 62 GyEQD2 and 51 GyEQD2, respectively. With a median follow-up period of 35 months, three patients developed Grade-1 late rectal complications and no patients developed local recurrence. Our preliminary results suggested that CT-guided brachytherapy using an individualized point A dose-reduced plan might be useful for reducing late rectal complications while maintaining primary tumor control. PMID:24566721
NASA Astrophysics Data System (ADS)
Cho, Sang Hyun; Reece, Warren D.; Kim, Chan-Hyeong
2004-03-01
Dose calculations around electron-emitting metallic spherical sources were performed up to the X90 distance of each electron energy ranging from 0.5 to 3.0 MeV using the MCNP 4C Monte Carlo code and the dose point kernel (DPK) method with the DPKs rescaled using the linear range ratio and physical density ratio, respectively. The results show that the discrepancy between the MCNP and DPK results increases with the atomic number of the source (i.e., heterogeneity in source-target geometry), regardless of the rescaling method used. The observed discrepancies between the MCNP and DPK results were up to 100% for extreme cases such as a platinum source immersed in water.
Zakariaee, R; Brown, C J; Hamarneh, G; Parsons, C A; Spadinger, I
2014-08-15
Dosimetric parameters based on dose-volume histograms (DVH) of contoured structures are routinely used to evaluate dose delivered to target structures and organs at risk. However, the DVH provides no information on the spatial distribution of the dose in situations of repeated fractions with changes in organ shape or size. The aim of this research was to develop methods to more accurately determine geometrically localized, cumulative dose to the bladder wall in intracavitary brachytherapy for cervical cancer. The CT scans and treatment plans of 20 cervical cancer patients were used. Each patient was treated with five high-dose-rate (HDR) brachytherapy fractions of 600cGy prescribed dose. The bladder inner and outer surfaces were delineated using MIM Maestro software (MIM Software Inc.) and were imported into MATLAB (MathWorks) as 3-dimensional point clouds constituting the “bladder wall”. A point-set registration toolbox for MATLAB, Coherent Point Drift (CPD), was used to non-rigidly transform the bladder-wall points from four of the fractions to the coordinate system of the remaining (reference) fraction, which was chosen to be the emptiest bladder for each patient. The doses were accumulated on the reference fraction and new cumulative dosimetric parameters were calculated. The LENT-SOMA toxicity scores of these patients were studied against the cumulative dose parameters. Based on this study, there was no significant correlation between the toxicity scores and the determined cumulative dose parameters.
ERIC Educational Resources Information Center
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2003-01-01
Demonstrated, through simulation, that stationary autoregressive moving average (ARMA) models may be fitted readily when T>N, using normal theory raw maximum likelihood structural equation modeling. Also provides some illustrations based on real data. (SLD)
Výborný, P; Sičáková, S; Veselá Flórová, Z
2014-06-01
The author calculated the daily dose of Benzalkonium Chloride (BAC) in eye drops used in glaucoma treatment from the patients point of view, which means the real amount of BAC applied in the conjunctival sac. The information about BAC concentration in 1 milliliter (mL) do not offer sufficient picture about real circumstances, because the size of the drop, especially after the introducing of the use of generic products in clinical practice in specific anti-glaucomatic drugs, differs significantly. The daily dose of BAC may have substantial significance in the patients treatment tolerance. The overview of BAC daily dose in single therapeutic groups and drugs follows: betablockers: Timo-COMOD 0, Arutimol 2.6, Vistagan 2.8, Timolol-POS 3.0, Arteoptic 3.7, Betoptic S 4.8, Timoptol MSD 6.3, Betoptic 10.0; alpha-mimetics: Alphagan 3.5, Luxfen 3.5, Aruclonin 7.1; derivates of prostaglandine, prostamides: Taflotan 0, Monopost 0, Lumigan 1.4, Unilat 3.1, Travatan 3.9, Latanoprost Apotex 4.3, Rescula 5.8, Latanoprost POS 5.9, Xalatan 6.0, Latanoprost Ratiopharm 6.0, Latanoprost Actavis 6.0, Latanoprost Arrow 6.0, Arulatan 5.4, Latalux 6.0, Glaucotens 6.0, Xaloptic 6.0, Solusin 6.1; carboanhydrase inhibitors: Batidor 3.8, Azopt 4.8, Trusopt 5.4, Oftidor 8.1; fixed combinations: Ganfort 1.4, Dorzolamid/timolol TEVA 2.8, Combigan 3.2, Duotrav 4.3, Cosopt 5.6, Xalacom 6.0, Glaucotima 6.0, Latanoprost/timolol Apotex 6.3, Azarga 6.4, Dorzogen Combi 6.5, and Dozotima 8.8 µl. PMID:25032794
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 2 2010-04-01 2010-04-01 false What criteria will the Director use to rank the... UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO THE INDIAN SELF-DETERMINATION AND EDUCATION ACT Other... Process § 1000.70 What criteria will the Director use to rank the applications and how many maximum...
O'Sullivan, G.
1983-03-01
By definition, a maximum power tracking device causes the photovoltaic array to operate on the locus of maximum power points within a specified accuracy. There are limitations to the application of maximum power tracking. A prerequisite is that the load be capable of absorbing all of the power availble at all times. Battery chargers, electrical heaters, water pumps, and most significantly, returning power to the utility grid, are prime examples of applications that are adaptable to maximum power tracking. Maximum power tracking is available to either dc or ac loads. An inverter equipped with a means of changing input voltage by controlling its input impedance can deliver maximum power to ac loads. The inverter can be fixed or variable frequency and fixed or variable voltage, but must be compatible with the ac load. The discussion includes applications, techniques, and cost factors.
Dewji, Shaheen Azim; Bellamy, Michael B.; Hertel, Nolan E.; Leggett, Richard Wayne; Sherbini, Sami; Saba, Mohammad S.; Eckerman, Keith F.
2015-09-01
The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 (^{131}I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations that considered the time-dependent distribution of ^{131}I in the patient and attenuation of emitted photons by the patient’s tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of the Phantom with Movable Arms and Legs, previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 to 300 cm between the phantoms and compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from ^{131}I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an ^{131}I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration.
Dewji, Shaheen Azim; Bellamy, Michael B.; Hertel, Nolan E.; Leggett, Richard Wayne; Sherbini, Sami; Saba, Mohammad S.; Eckerman, Keith F.
2015-09-01
The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 (131I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations that considered the time-dependent distribution of 131I in the patient and attenuation of emitted photons by the patient’s tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of the Phantommore » with Movable Arms and Legs, previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 to 300 cm between the phantoms and compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from 131I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an 131I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration.« less
Dose point kernel for boron-11 decay and the cellular S values in boron neutron capture therapy
Ma Yunzhi; Geng Jinpeng; Gao Song; Bao Shanglian
2006-12-15
The study of the radiobiology of boron neutron capture therapy is based on the cellular level dosimetry of boron-10's thermal neutron capture reaction {sup 10}B(n,{alpha}){sup 7}Li, in which one 1.47 MeV helium-4 ion and one 0.84 MeV lithium-7 ion are spawned. Because of the chemical preference of boron-10 carrier molecules, the dose is heterogeneously distributed in cells. In the present work, the (scaled) dose point kernel of boron-11 decay, called {sup 11}B-DPK, was calculated by GEANT4 Monte Carlo simulation code. The DPK curve drops suddenly at the radius of 4.26 {mu}m, the continuous slowing down approximation (CSDA) range of a lithium-7 ion. Then, after a slight ascending, the curve decreases to near zero when the radius goes beyond 8.20 {mu}m, which is the CSDA range of a 1.47 MeV helium-4 ion. With the DPK data, S values for nuclei and cells with the boron-10 on the cell surface are calculated for different combinations of cell and nucleus sizes. The S value for a cell radius of 10 {mu}m and a nucleus radius of 5 {mu}m is slightly larger than the value published by Tung et al. [Appl. Radiat. Isot. 61, 739-743 (2004)]. This result is potentially more accurate than the published value since it includes the contribution of a lithium-7 ion as well as the alpha particle.
Choi, Brian S.; Alberti, Dona B.; Schelman, William R.; Kolesar, Jill M.; Thomas, James P.; Marnocha, Rebecca; Eickhoff, Jens C.; Ivy, S. Percy; Wilding, George; Holen, Kyle D.
2010-01-01
Purpose 3-AP is a ribonucleotide reductase inhibitor and has been postulated to act synergistically with other chemotherapeutic agents. This study was conducted to determine the toxicity and antitumor activity of 3-AP with irinotecan. Correlative studies included pharmacokinetics and the effects of ABCB1 and UGT1A1 polymorphisms. Methods The treatment plan consisted of irinotecan on day 1 with 3-AP on days 1-3 of a 21-day cycle. Starting dose was irinotecan 150 mg/m2 and 3-AP 85 mg/m2/d. Polymorphisms of ABCB1 were evaluated by pyrosequencing. Drug concentrations were determined by HPLC. Results Twenty-three patients were enrolled, 10 men and 13 women. Tumor types included 7 patients with pancreatic cancer, 4 with lung cancer, 2 with cholangiocarcinoma, 2 with mesothelioma, 2 with ovarian cancer, and 6 with other malignancies. Two patients experienced dose-limiting toxicity (DLT) at dose level 1, requiring amendment of the dose escalation scheme. Maximal tolerated dose (MTD) was determined to be 3-AP 60 mg/m2/d and irinotecan 200 mg/m2. DLTs consisted of hypoxia, leukopenia, fatigue, infection, thrombocytopenia, dehydration and ALT elevation. One partial response in a patient with refractory non-small cell lung cancer was seen. Genotyping suggests that patients with wild-type ABCB1 have a higher rate of grade 3 or 4 toxicity than those with ABCB1 mutations. Conclusions The MTD for this combination was 3-AP 60 mg/m2/d on days 1-3 and irinotecan 200 mg/m2 on day 1 every 21 days. Antitumor activity in a patient with refractory non-small cell lung cancer was noted at level 1. PMID:20127092
Pelloski, Christopher E.; Palmer, Matthew B.S.; Chronowski, Gregory M.; Jhingran, Anuja; Horton, John; Eifel, Patricia J. . E-mail: peifel@mdanderson.org
2005-05-01
Purpose: To compare CT-based volumetric calculations and International Commission on Radiation Units and Measurements (ICRU) reference-point estimates of radiation doses to the bladder and rectum in patients with carcinoma of the uterine cervix treated with definitive low-dose-rate intracavitary radiotherapy (ICRT). Methods and Materials: Between November 2001 and March 2003, 60 patients were prospectively enrolled in a pilot study of ICRT with CT-based dosimetry. Most patients underwent two ICRT insertions. After insertion of an afterloading ICRT applicator, intraoperative orthogonal films were obtained to ensure proper positioning of the system and to facilitate subsequent planning. Treatments were prescribed using standard two-dimensional dosimetry and planning. Patients also underwent helical CT of the pelvis for three-dimensional reconstruction of the radiation dose distributions. The systems were loaded with {sup 137}Cs sources using the Selectron remote afterloading system according to institutional practice for low-dose-rate brachytherapy. Three-dimensional dose distributions were generated using the Varian BrachyVision treatment planning system. The rectum was contoured from the bottom of the ischial tuberosities to the sigmoid flexure. The entire bladder was contoured. The minimal doses delivered to the 2 cm{sup 3} of bladder and rectum receiving the highest dose (D{sub BV2} and D{sub RV2}, respectively) were determined from dose-volume histograms, and these estimates were compared with two-dimensionally derived estimates of the doses to the corresponding ICRU reference points. Results: A total of 118 unique intracavitary insertions were performed, and 93 were evaluated and the subject of this analysis. For the rectum, the estimated doses to the ICRU reference point did not differ significantly from the D{sub RV2} (p = 0.561); the mean ({+-} standard deviation) difference was 21 cGy ({+-} 344 cGy). The median volume of the rectum that received at least
Nikolic, Boris; Khosa, Faisal; Lin, Pei-Jan Paul; Khan, Atif N.; Sarwar, Sheryar; Yam, Chun-Shan; Court, Laurence E.; Raptopoulos, Vassilios; Clouse, Melvin E.
2012-01-01
OBJECTIVE The purpose of this article is to estimate the absorbed radiation dose in radiosensitive organs during coronary MDCT angiography using 320-MDCT and to determine the effects of tube voltage variation and heart rate (HR) control on absorbed radiation dose. MATERIALS AND METHODS Semiconductor field effect transistor detectors were used to measure absorbed radiation doses for the thyroid, midbreast, breast, and midlung in an anthropomorphic phantom at 100, 120, and 135 kVp at two different HRs of 60 and 75 beats per minute (bpm) with a scan field of view of 320 mm, 400 mA, 320 × 0.5 mm detectors, and 160 mm collimator width (160 mm range). The paired Student’s t test was used for data evaluation. RESULTS At 60 bpm, absorbed radiation doses for 100, 120, and 135 kVp were 13.41 ± 3.59, 21.7 ± 4.12, and 29.28 ± 5.17 mGy, respectively, for midbreast; 11.76 ± 0.58, 18.86 ± 1.06, and 24.82 ± 1.45 mGy, respectively, for breast; 12.19 ± 2.59, 19.09 ± 3.12, and 26.48 ± 5.0 mGy, respectively, for lung; and 0.37 ± 0.14, 0.69 ± 0.14, and 0.92 ± 0.2 mGy, respectively, for thyroid. Corresponding absorbed radiation doses for 75 bpm were 38.34 ± 2.02, 59.72 ± 3.13, and 77.8 ± 3.67 mGy for midbreast; 26.2 ± 1.74, 44 ± 1.11, and 52.84 ± 4.07 mGy for breast; 38.02 ± 1.58, 58.89 ± 1.68, and 78 ± 2.93 mGy for lung; and 0.79 ± 0.233, 1.04 ± 0.18, and 2.24 ± 0.52 mGy for thyroid. Absorbed radiation dose changes were significant for all organs for both tube voltage reductions as well as for HR control from 75 to 60 bpm at all tube voltage settings (p < 0.05). The absorbed radiation doses for the calcium score protocol were 11.2 ± 1.4 mGy for midbreast, 9.12 ± 0.48 mGy for breast, 10.36 ± 1.3 mGy for lung, and 0.4 ± 0.05 mGy for thyroid. CONCLUSION CT angiography with 320-MDCT scanners results in absorbed radiation doses in radiosensitive organs that compare favorably to those previously reported. Significant dose reductions can be achieved by tube
Cheung, J; Held, M; Morin, O; Weethee, B; Chuang, C; Perez-Andujar, A; Sudhyadhom, A
2015-06-15
Purpose: To investigate the sensitivity of traditional gamma-index-based fluence measurements for patient-specific measurements in VMAT delivered spine SBRT. Methods: The ten most recent cases for spine SBRT were selected. All cases were planned with Eclipse RapidArc for a TrueBeam STx. The delivery was verified using a point dose measurement with a Pinpoint 3D micro-ion chamber in a Standard Imaging Stereotactic Dose Verification Phantom. Two points were selected for each case, one within the target in a low dose-gradient region and one in the spinal cord. Measurements were localized using on-board CBCT. Cumulative and separate arc measurements were acquired with the ArcCheck and assessed using the SNC patient software with a 3%/3mm and 2%/2mm gamma analysis with global normalization and a 10% dose threshold. Correlations between data were determined using the Pearson Product-Moment Correlation. Results: For our cohort of patients, the measured doses were higher than calculated ranging from 2.2%–9.7% for the target and 1.0%–8.2% for the spinal cord. There was strong correlation between 3%/3mm and 2%/2mm passing rates (r=0.91). Moderate correlation was found between target and cord dose with a weak fit (r=0.67, R-Square=0.45). The cumulative ArcCheck measurements showed poor correlation with the measured point doses for both the target and cord (r=0.20, r=0.35). If the arcs are assessed separately with an acceptance criteria applied to the minimum passing rate between all arcs, a moderate negative correlation was found for the target and cord (r=−0.48, r= −0.71). The case with the highest dose difference (9.7%) received a passing rate of 97.2% for the cumulative arcs and 87.8% for the minimum with separate arcs. Conclusion: Our data suggest that traditional passing criteria using ArcCheck with cumulative measurements do not correlate well with dose errors. Separate arc analysis shows better correlation but may still miss large dose errors. Point dose
Zhen, X; Chen, H; Zhou, L; Yan, H; Jiang, S; Jia, X; Gu, X; Mell, L; Yashar, C; Cervino, L
2014-06-15
Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the random walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no
NASA Astrophysics Data System (ADS)
Singleton, B.
First formulated one hundred and fifty years ago by the heretical scholar Nikolai Federov, the doctrine of cosmism begins with an absolute refusal to treat the most basic factors conditioning life on Earth gravity and death as necessary constraints on action. As manifest through the intoxicated cheers of its early advocates that humans should storm the heavens and conquer death, cosmism's foundational gesture was to conceive of the earth as a trap. Its duty was therefore to understand the duty of philosophy, economics and design to be the creation of means to escape it. This could be regarded as a jailbreak at the maximum possible scale, a heist in which the human species could steal itself from the vault of the Earth. After several decades of relative disinterest new space ventures are inspiring scientific, technological and popular imaginations, this essay explores what kind of cosmism might be constructed today. In this paper cosmism's position as a means of escape is both reviewed and evaluated by reflecting on the potential of technology that actually can help us achieve its aims and also through the lens and state-ofthe-art philosophy of accelerationism, which seeks to outrun modern tropes by intensifying them.
Ekins, Sean; Freundlich, Joel S.; Reynolds, Robert C.
2016-01-01
Tuberculosis is a major neglected disease for which the quest to find new treatments continues. There is an abundance of data from large phenotypic screens in the public domain against Mycobacterium tuberculosis (Mtb). Since machine learning methods can learn from past data, we were interested in addressing whether more data builds better models. We now describe using Bayesian machine learning to assess whether we can improve our models by combining the large quantities of single-point data with the much smaller (higher quality) dual-event datasets, which use both dose-response data for both whole-cell antitubercular activity and Vero cell cytotoxicity. We have evaluated 12 models ranging from different single-point, dual-event dose response, single-point and dual-event dose response as well as combined datasets for three distinct datasets from the same laboratory. We used a fourth dataset of active and inactive compounds from the same group as well as a smaller set of 177 active compounds from GlaxoSmithKline as test sets. Our data suggest combining single-point with dual-event dose response data does not diminish the internal or external predictive ability of the models based on the receiver operator curve (ROC) for these models (internal ROC range 0.83-0.91, external ROC range 0.62-0.83) compared to the orders of magnitude smaller dual event models (internal ROC range 0.6-0.83 and external ROC 0.54-0.83). In conclusion, models developed with 1200-5000 compounds appear to be as predictive as those generated with 25,000 to 350,000 molecules. Our results have implications for justifying further HTS versus focused testing based on model predictions. PMID:24968215
Papadimitroulas, Panagiotis; Loudos, George; Nikiforidis, George C.; Kagadis, George C.
2012-08-15
Purpose: GATE is a Monte Carlo simulation toolkit based on the Geant4 package, widely used for many medical physics applications, including SPECT and PET image simulation and more recently CT image simulation and patient dosimetry. The purpose of the current study was to calculate dose point kernels (DPKs) using GATE, compare them against reference data, and finally produce a complete dataset of the total DPKs for the most commonly used radionuclides in nuclear medicine. Methods: Patient-specific absorbed dose calculations can be carried out using Monte Carlo simulations. The latest version of GATE extends its applications to Radiotherapy and Dosimetry. Comparison of the proposed method for the generation of DPKs was performed for (a) monoenergetic electron sources, with energies ranging from 10 keV to 10 MeV, (b) beta emitting isotopes, e.g., {sup 177}Lu, {sup 90}Y, and {sup 32}P, and (c) gamma emitting isotopes, e.g., {sup 111}In, {sup 131}I, {sup 125}I, and {sup 99m}Tc. Point isotropic sources were simulated at the center of a sphere phantom, and the absorbed dose was stored in concentric spherical shells around the source. Evaluation was performed with already published studies for different Monte Carlo codes namely MCNP, EGS, FLUKA, ETRAN, GEPTS, and PENELOPE. A complete dataset of total DPKs was generated for water (equivalent to soft tissue), bone, and lung. This dataset takes into account all the major components of radiation interactions for the selected isotopes, including the absorbed dose from emitted electrons, photons, and all secondary particles generated from the electromagnetic interactions. Results: GATE comparison provided reliable results in all cases (monoenergetic electrons, beta emitting isotopes, and photon emitting isotopes). The observed differences between GATE and other codes are less than 10% and comparable to the discrepancies observed among other packages. The produced DPKs are in very good agreement with the already published data
Davis, B; Faessler, P
1993-07-01
A dosimetry intercomparison based on mailed TL-dosimeters and the well proven IAEA/EORTC phantom is described. Its aim is to identify discrepancies in dosimetry larger than +/- 3%. Dosimeters were mailed to all radiotherapy centres in Switzerland for irradiation with 2 Gy at a reference point in a water container, using photons and electrons. Thirty-six beams were monitored. The results show an agreement of within 2% for the majority of the beams monitored. Two electron beams were at 6% of the reference value. PMID:8234874
Alvarez-Romero, J T
2006-01-01
We present a discussion to show that the absorbed dose D is a time-dependent function. This time dependence is demonstrated based on the concepts of charged particle equilibrium and on radiation equilibrium within the context of thermodynamic non-equilibrium. In the latter, the time dependence is due to changes of the rest mass energy of the nuclei and elementary particles involved in the terms summation operator Q and Q that appear in the definitions of energy imparted epsilon and energy deposit epsilon(i), respectively. In fact, nothing is said about the averaging operation of the non-stochastic quantity mean energy imparted epsilon, which is used in the definition of D according to ICRU 60. It is shown in this research that the averaging operation necessary to define the epsilon employed to get D cannot be performed with an equilibrium statistical operator rho(r) as could be expected. Rather, the operation has to be defined with a time-dependent non-equilibrium statistical operator rho(r, t); therefore, D is a time-dependent function D(r,t). PMID:16731692
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhang, Haixia; Xue, Zhixiao; Yin, Huijuan; Niu, Qing; Chen, Hongli
2015-12-01
The dielectric barrier discharge (DBD) plasma was applied to induce apoptosis of LT-12 leukemia cells. Plasma effects on cell death was evaluated by MTT assay and FCM apoptosis assay with Annexin V/PI double staining, suggesting that plasma killing cells rate and inducing cell apoptosis rate both positively were related to the plasma doses or the post-plasma time points. The cell death rates increased from 15.2% to 33.1% and the apoptosis rate raise from 23.8% to 28% when the dose raise from 60s to 120 s at 8 h post-plasma, while they increased from 15.4% to 34.9% and from 48% to 55.3% respectively at the same doses at 12 h post-plasma. Furthermore, the production of reactive oxygen species (ROS), gene and protein expression for Caspases and Bcl-2 family members were measured for exploring the related apoptotic mechanisms phenomenon. We found ROS immediately increased to 1.24 times of the original amount, then increasing to 5.39-fold at 20 h after treatment. The gene and protein expression for Caspases and Bcl-2 family members are very active at 8-12 h post-plasma. Our results demonstrate that DBD plasma can effectively induce tumor cell death through primarily related apoptotic mechanisms.
Liang, X; Morrill, S; Hardee, M; Han, E; Penagaricano, J; Zhang, X; Vaneerat, R
2014-06-01
Purpose: To evaluate the point dose variations between Ir-192 HDR treatments on two consecutive days using a single tandem-ovoid insertion without replanning in cervical cancer patients. Methods: This study includes eleven cervical cancer patients undergoing HDR brachytherapy with a prescribed dose of 28 Gy in 4 fractions. Each patient had two tandemovoid insertions one week apart. Each insertion was treated on consecutive days with rescanning and replanning prior to each treatment. To study the effect of no replanning for day 2 treatments, the day 1 plan dwell position and dwell time with decay were applied to the day 2 CT dataset. The point dose variations on the prescription point H (defined according to American Brachytherapy Society), and normal tissue doses at point B, bladder, rectum and vaginal mucosa (based on ICRU Report 38) were obtained. Results: Without replanning, the mean point H dose variation was 4.6 ± 10.7% on the left; 2.3 ± 2.9% on the right. The mean B point variation was 3.8 ± 4.9% on the left; 3.6 ± 4.7% on the right. The variation in the left vaginal mucosal point was 12.2 ± 10.7%; 9.5 ± 12.5% on the right; the bladder point 5.5 ± 7.4%; and the rectal point 7.9 ± 9.1%. Conclusion: Without replanning, there are variations both in the prescription point and the normal tissue point doses. The latter can vary as much as 10% or more. This is likely due to the steep dose gradient from brachytherapy compounded by shifts in the positions of the applicator in relationship to the patients anatomy. Imaging prior to each treatment and replanning ensure effective and safe brachytherapy are recommended.
Jin, Feng; Zhu, Hui; Fu, Zheng; Kong, Li; Yu, Jinming
2016-01-01
Purpose The purpose of this study was to investigate the prognostic value of the standardized uptake value maximum (SUVmax) change calculated by dual-time-point 18F-fluorodeoxyglucose positron emission tomography (PET) imaging in patients with advanced non-small-cell lung cancer (NSCLC). Patients and methods We conducted a retrospective review of 115 patients with advanced NSCLC who underwent pretreatment dual-time-point 18F-fluorodeoxyglucose PET acquired at 1 and 2 hours after injection. The SUVmax from early images (SUVmax1) and SUVmax from delayed images (SUVmax2) were recorded and used to calculate the SUVmax changes, including the SUVmax increment (ΔSUVmax) and percent change of the SUVmax (%ΔSUVmax). Progression-free survival (PFS) and overall survival (OS) were determined by the Kaplan–Meier method and were compared with the studied PET parameters, and the clinicopathological prognostic factors in univariate analyses and multivariate analyses were constructed using Cox proportional hazards regression. Results One hundred and fifteen consecutive patients were reviewed, and the median follow-up time was 12.5 months. The estimated median PFS and OS were 3.8 and 9.6 months, respectively. In univariate analysis, SUVmax1, SUVmax2, ΔSUVmax, %ΔSUVmax, clinical stage, and Eastern Cooperative Oncology Group (ECOG) scores were significant prognostic factors for PFS. Similar results were significantly correlated with OS, except %ΔSUVmax. In multivariate analysis, ΔSUVmax and %ΔSUVmax were significant factors for PFS. On the other hand, ECOG scores were only identified as independent predictors of OS. Conclusion Our results demonstrated the prognostic value of the SUVmax change in predicting the PFS of patients with advanced NSCLC. However, SUVmax change could not predict OS. PMID:27284249
Webster, A. Francina; Chepelev, Nikolai; Gagné, Rémi; Kuo, Byron; Recio, Leslie; Williams, Andrew; Yauk, Carole L.
2015-01-01
Many regulatory agencies are exploring ways to integrate toxicogenomic data into their chemical risk assessments. The major challenge lies in determining how to distill the complex data produced by high-content, multi-dose gene expression studies into quantitative information. It has been proposed that benchmark dose (BMD) values derived from toxicogenomics data be used as point of departure (PoD) values in chemical risk assessments. However, there is limited information regarding which genomics platforms are most suitable and how to select appropriate PoD values. In this study, we compared BMD values modeled from RNA sequencing-, microarray-, and qPCR-derived gene expression data from a single study, and explored multiple approaches for selecting a single PoD from these data. The strategies evaluated include several that do not require prior mechanistic knowledge of the compound for selection of the PoD, thus providing approaches for assessing data-poor chemicals. We used RNA extracted from the livers of female mice exposed to non-carcinogenic (0, 2 mg/kg/day, mkd) and carcinogenic (4, 8 mkd) doses of furan for 21 days. We show that transcriptional BMD values were consistent across technologies and highly predictive of the two-year cancer bioassay-based PoD. We also demonstrate that filtering data based on statistically significant changes in gene expression prior to BMD modeling creates more conservative BMD values. Taken together, this case study on mice exposed to furan demonstrates that high-content toxicogenomics studies produce robust data for BMD modelling that are minimally affected by inter-technology variability and highly predictive of cancer-based PoD doses. PMID:26313361
Chen, H; Zhen, X; Zhou, L; Zhong, Z; Pompos, A; Yan, H; Jiang, S; Gu, X
2014-06-15
Purpose: To propose and validate a deformable point matching scheme for surface deformation to facilitate accurate bladder dose summation for fractionated HDR cervical cancer treatment. Method: A deformable point matching scheme based on the thin plate spline robust point matching (TPSRPM) algorithm is proposed for bladder surface registration. The surface of bladders segmented from fractional CT images is extracted and discretized with triangular surface mesh. Deformation between the two bladder surfaces are obtained by matching the two meshes' vertices via the TPS-RPM algorithm, and the deformation vector fields (DVFs) characteristic of this deformation is estimated by B-spline approximation. Numerically, the algorithm is quantitatively compared with the Demons algorithm using five clinical cervical cancer cases by several metrics: vertex-to-vertex distance (VVD), Hausdorff distance (HD), percent error (PE), and conformity index (CI). Experimentally, the algorithm is validated on a balloon phantom with 12 surface fiducial markers. The balloon is inflated with different amount of water, and the displacement of fiducial markers is benchmarked as ground truth to study TPS-RPM calculated DVFs' accuracy. Results: In numerical evaluation, the mean VVD is 3.7(±2.0) mm after Demons, and 1.3(±0.9) mm after TPS-RPM. The mean HD is 14.4 mm after Demons, and 5.3mm after TPS-RPM. The mean PE is 101.7% after Demons and decreases to 18.7% after TPS-RPM. The mean CI is 0.63 after Demons, and increases to 0.90 after TPS-RPM. In the phantom study, the mean Euclidean distance of the fiducials is 7.4±3.0mm and 4.2±1.8mm after Demons and TPS-RPM, respectively. Conclusions: The bladder wall deformation is more accurate using the feature-based TPS-RPM algorithm than the intensity-based Demons algorithm, indicating that TPS-RPM has the potential for accurate bladder dose deformation and dose summation for multi-fractional cervical HDR brachytherapy. This work is supported in part by
Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma
Sha, Rajib Lochan; Reddy, Palreddy Yadagiri; Rao, Ramakrishna; Muralidhar, Kanaparthy R.; Kudchadker, Rajat J.
2011-01-01
High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.
Kim, Hayeon; Beriwal, Sushil; Houser, Chris; Huq, M. Saiful
2011-07-01
The purpose of this study was to analyze the dosimetric outcome of 3D image-guided high-dose-rate (HDR) brachytherapy planning for cervical cancer treatment and compare dose coverage of high-risk clinical target volume (HRCTV) to traditional Point A dose. Thirty-two patients with stage IA2-IIIB cervical cancer were treated using computed tomography/magnetic resonance imaging-based image-guided HDR brachytherapy (IGBT). Brachytherapy dose prescription was 5.0-6.0 Gy per fraction for a total 5 fractions. The HRCTV and organs at risk (OARs) were delineated following the GYN GEC/ESTRO guidelines. Total doses for HRCTV, OARs, Point A, and Point T from external beam radiotherapy and brachytherapy were summated and normalized to a biologically equivalent dose of 2 Gy per fraction (EQD2). The total planned D90 for HRCTV was 80-85 Gy, whereas the dose to 2 mL of bladder, rectum, and sigmoid was limited to 85 Gy, 75 Gy, and 75 Gy, respectively. The mean D90 and its standard deviation for HRCTV was 83.2 {+-} 4.3 Gy. This is significantly higher (p < 0.0001) than the mean value of the dose to Point A (78.6 {+-} 4.4 Gy). The dose levels of the OARs were within acceptable limits for most patients. The mean dose to 2 mL of bladder was 78.0 {+-} 6.2 Gy, whereas the mean dose to rectum and sigmoid were 57.2 {+-} 4.4 Gy and 66.9 {+-} 6.1 Gy, respectively. Image-based 3D brachytherapy provides adequate dose coverage to HRCTV, with acceptable dose to OARs in most patients. Dose to Point A was found to be significantly lower than the D90 for HRCTV calculated using the image-based technique. Paradigm shift from 2D point dose dosimetry to IGBT in HDR cervical cancer treatment needs advanced concept of evaluation in dosimetry with clinical outcome data about whether this approach improves local control and/or decreases toxicities.
Kim, Hayeon; Beriwal, Sushil; Houser, Chris; Huq, M Saiful
2011-01-01
The purpose of this study was to analyze the dosimetric outcome of 3D image-guided high-dose-rate (HDR) brachytherapy planning for cervical cancer treatment and compare dose coverage of high-risk clinical target volume (HRCTV) to traditional Point A dose. Thirty-two patients with stage IA2-IIIB cervical cancer were treated using computed tomography/magnetic resonance imaging-based image-guided HDR brachytherapy (IGBT). Brachytherapy dose prescription was 5.0-6.0 Gy per fraction for a total 5 fractions. The HRCTV and organs at risk (OARs) were delineated following the GYN GEC/ESTRO guidelines. Total doses for HRCTV, OARs, Point A, and Point T from external beam radiotherapy and brachytherapy were summated and normalized to a biologically equivalent dose of 2 Gy per fraction (EQD2). The total planned D90 for HRCTV was 80-85 Gy, whereas the dose to 2 mL of bladder, rectum, and sigmoid was limited to 85 Gy, 75 Gy, and 75 Gy, respectively. The mean D90 and its standard deviation for HRCTV was 83.2 ± 4.3 Gy. This is significantly higher (p < 0.0001) than the mean value of the dose to Point A (78.6 ± 4.4 Gy). The dose levels of the OARs were within acceptable limits for most patients. The mean dose to 2 mL of bladder was 78.0 ± 6.2 Gy, whereas the mean dose to rectum and sigmoid were 57.2 ± 4.4 Gy and 66.9 ± 6.1 Gy, respectively. Image-based 3D brachytherapy provides adequate dose coverage to HRCTV, with acceptable dose to OARs in most patients. Dose to Point A was found to be significantly lower than the D90 for HRCTV calculated using the image-based technique. Paradigm shift from 2D point dose dosimetry to IGBT in HDR cervical cancer treatment needs advanced concept of evaluation in dosimetry with clinical outcome data about whether this approach improves local control and/or decreases toxicities. PMID:20488690
NASA Astrophysics Data System (ADS)
Almansa, Julio F.; Guerrero, Rafael; Al-Dweri, Feras M. O.; Anguiano, Marta; Lallena, Antonio M.
2007-05-01
Monte Carlo calculations using the codes PENELOPE and GEANT4 have been performed to characterize the dosimetric properties of monoenergetic photon point sources in water. The dose rate in water has been calculated for energies of interest in brachytherapy, ranging between 10 keV and 2 MeV. A comparison of the results obtained using the two codes with the available data calculated with other Monte Carlo codes is carried out. A χ2-like statistical test is proposed for these comparisons. PENELOPE and GEANT4 show a reasonable agreement for all energies analyzed and distances to the source larger than 1 cm. Significant differences are found at distances from the source up to 1 cm. A similar situation occurs between PENELOPE and EGS4.
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Stutz, John
2005-01-01
A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].
Bull, Richard J; Crook, James; Whittaker, Margaret; Cotruvo, Joseph A
2011-06-01
The detection of drugs in drinking water sources has raised questions related to safety. In the absence of regulatory or other official guidance, water utilities are faced with a problem of which drugs should be monitored and the detection limits that should be required. The US FDA summarizes data required for drug approval and post marketing adverse reaction reporting. The use of these data as a means of arriving at concentrations in water where adverse health effects are minimal or non-existent was explored. The minimum therapeutic dose was assumed an appropriate point of departure. Appropriate uncertainty factors could be applied depending upon the qualitative and quantitative nature of the data that are available. Assumptions inherent in US FDA's approval of drugs for use in subsets of the population relative to the broader concerns that arise for exposures of the entire population had to be considered. Additional questions are; whether the drug under consideration is carcinogenic, carries pregnancy and lactation warnings, approval for limited vs. chronic use, exposures to multiple compounds that could act in additive or synergistic ways, and the seriousness of toxicities that are observed. Aside from these considerations, a combined uncertainty factor of 1000 appeared adequate. PMID:20056125
Pukhkaya, V.; Ollier, N.; Trompier, F.
2014-09-28
P-related paramagnetic point defects were studied in irradiated Yb-doped phosphate glasses by electron paramagnetic resonance spectroscopy (X and Q-bands). A strong impact of the glass network type on the defect nature is shown. In all glasses, r-POHC defects formation is in strong correlation with Q{sup 2} tetrahedra amount supporting the structure of r-POHC. Ultra-phosphate glasses contain the larger defect type: Peroxy radicals, P{sub 1}, P{sub 2}, and P{sub 4} defects whose formation is linked to Q{sup 3} tetrahedra presence. In meta-phosphate and poly-phosphate glasses, peroxy radicals appear with r-POHC thermal recovery. In meta-phosphate glasses, a combination of P{sub 1} and P{sub 3} defects was evidenced for the first time, whereas in poly-phosphate glasses, only P{sub 3} defects were identified. Dose effect as well as defect recovery were analyzed.
Maximum thrust mode evaluation
NASA Technical Reports Server (NTRS)
Orme, John S.; Nobbs, Steven G.
1995-01-01
Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.
In order to characterize the potential developmental effects of atrazine (ATR) metabolites at low doses, an environmentally-based mixture (EBM) of ATR and its metabolites hydroxyatrazine, diaminochlorotriazine, deethylatrazine, and deisopropylatrazine was formulated based on surv...
Nose, Takayuki Koizumi, Masahiko; Yoshida, Ken; Nishiyama, Kinji; Sasaki, Junichi; Ohnishi, Takeshi; Kozuka, Takuyo; Gomi, Kotaro; Oguchi, Masahiko; Sumida, Iori; Takahashi, Yutaka; Ito, Akira; Yamashita, Takashi
2008-02-01
Purpose: To perform the largest in vivo dosimetry study for interstitial brachytherapy yet to be undertaken using a new radiophotoluminescence glass dosimeter (RPLGD) in patients with pelvic malignancy and to study the limits of contemporary planning software based on the results. Patients and Methods: Sixty-six patients with pelvic malignancy were treated with high-dose-rate interstitial brachytherapy, including prostate (n = 26), gynecological (n = 35), and miscellaneous (n = 5). Doses for a total of 1004 points were measured by RPLGDs and calculated with planning software in the following locations: rectum (n = 549), urethra (n = 415), vagina (n = 25), and perineum (n = 15). Compatibility (measured dose/calculated dose) was analyzed according to dosimeter location. Results: The compatibility for all dosimeters was 0.98 {+-} 0.23, stratified by location: rectum, 0.99 {+-} 0.20; urethra, 0.96 {+-} 0.26; vagina, 0.91 {+-} 0.08; and perineum, 1.25 {+-} 0.32. Conclusions: Deviations between measured and calculated doses for the rectum and urethra were greater than 20%, which is attributable to the independent movements of these organs and the applicators. Missing corrections for inhomogeneity are responsible for the 9% negative shift near the vaginal cylinder (specific gravity = 1.24), whereas neglect of transit dose contributes to the 25% positive shift in the perineal dose. Dose deviation of >20% for nontarget organs should be taken into account in the planning process. Further development of planning software and a real-time dosimetry system are necessary to use the current findings and to achieve adaptive dose delivery.
Finite doses are employed in experimental toxicology studies. Under the traditional methodology, the point of departure (POD) value for low dose extrapolation is identified as one of these doses. Dose spacing necessarily precludes a more accurate description of the POD value. ...
Duality in a maximum generalized entropy model
NASA Astrophysics Data System (ADS)
Eguchi, Shinto; Komori, Osamu; Ohara, Atsumi
2015-01-01
This paper discusses a possible generalization for the maximum entropy principle. A class of generalized entropy is introduced by that of generator functions, in which the maximum generalized distribution model is explicitly derived including q-Gaussian distributions, Wigner semicircle distributions and Pareto distributions. We define a totally geodesic subspace in the total space of all probability density functions in a framework of information geometry. The model of maximum generalized entropy distributions is shown to be totally geodesic. The duality of the model and the estimation in the maximum generalized principle is elucidated to give intrinsic understandings from the point of information geometry.
NASA Astrophysics Data System (ADS)
Mo, Xiao-Hu; Zhang, Jian-Yong; Zhang, Tian-Bao; Zhang, Qing-Jiang; Achasov, Mikhail; Fu, Cheng-Dong; Muchnoi, Nikolay; Qin, Qing; Qu, Hua-Min; Wang, Yi-Fang; Wu, Jing-Min; Xu, Jin-Qiang; Yu, Bo-Xiang
2009-10-01
The technique details for measuring radiation dose are expounded. The results of gamma and neutron radiation levels are presented and the corresponding radiation shielding is discussed based on the simplified estimation. In addition, the photon radiation level move as background for future experiments is measured by a NaI(Tl) detector.
Maximum entropy and drug absorption.
Charter, M K; Gull, S F
1991-10-01
The application of maximum entropy to the calculation of drug absorption rates was introduced in an earlier paper. Here it is developed further, and the whole procedure is presented as a problem in scientific inference to be solved using Bayes' theorem. Blood samples do not need to be taken at equally spaced intervals, and no smoothing, interpolation, extrapolation, or other preprocessing of the data is necessary. The resulting input rate estimates are smooth and physiologically realistic, even with noisy data, and their accuracy is quantified. Derived quantities such as the proportion of the dose absorbed, and the mean and median absorption times, are also obtained, together with their error estimates. There are no arbitrarily valued parameters in the analysis, and no specific functional form, such as an exponential or polynomial, is assumed for the input rate functions. PMID:1783989
Variability of Marker-Based Rectal Dose Evaluation in HDR Cervical Brachytherapy
Wang Zhou; Jaggernauth, Wainwright; Malhotra, Harish K.; Podgorsak, Matthew B.
2010-01-01
In film-based intracavitary brachytherapy for cervical cancer, position of the rectal markers may not accurately represent the anterior rectal wall. This study was aimed at analyzing the variability of rectal dose estimation as a result of interfractional variation of marker placement. A cohort of five patients treated with multiple-fraction tandem and ovoid high-dose-rate (HDR) brachytherapy was studied. The cervical os point and the orientation of the applicators were matched among all fractional plans for each patient. Rectal points obtained from all fractions were then input into each clinical treated plan. New fractional rectal doses were obtained and a new cumulative rectal dose for each patient was calculated. The maximum interfractional variation of distances between rectal dose points and the closest source positions was 1.1 cm. The corresponding maximum variability of fractional rectal dose was 65.5%. The percentage difference in cumulative rectal dose estimation for each patient was 5.4%, 19.6%, 34.6%, 23.4%, and 13.9%, respectively. In conclusion, care should be taken when using rectal markers as reference points for estimating rectal dose in HDR cervical brachytherapy. The best estimate of true rectal dose for each fraction should be determined by the most anterior point among all fractions.
Cord Dose Specification and Validation for Stereotactic Body Radiosurgery of Spine
Li Shidong Liu Yan; Chen Qing; Jin Jianyue
2009-01-01
Effective dose to a portion of the spinal cord in treatment segment, rather than the maximum point dose in the cord surface, was set as the dose limit in stereotactic-body radiosurgery (SBRS) of spine. Such a cord dose specification is sensitive to the volume size and position errors. Thus, we used stereotactic image guidance to minimize phantom positioning errors and compared the results of a 0.6-cm{sup 3} Farmer ionization chamber and a 0.01-cm{sup 3} compact ionization chamber to determine the detector size effect on 9 SBRS cases. The experimental errors ranging from 2% to 7% were estimated by the deviation of the mean dose in plans to the chamber with spatial displacements of 0.5 mm. The mean and measured doses for the large chamber to individual cases were significantly ({approx}17%) higher than the doses with the compact chamber placed at the same point. Our experimental results shown that the mean doses to the volume of interest could represent the measured cord doses. For the 9 patients, the mean doses to 10% of the cord were about 10 Gy, while the maximum cord doses varied from 11.6 to 17.6 Gy. The mean dose, possibly correlated with the cord complication, provided us an alternative and reliable cord dose specification in SBRS of spine.
NASA Astrophysics Data System (ADS)
Hjorth, Jens
The unique feature of MEM is that C(-1)(z) = exp(z) amplifies all scales equally. Narayan & Nityananda (1986) have shown that this leads to Gaussian deconvolved peaks. In MMM different scales are treated differently, depending on the choice of C. This gives different peak shapes, but also allows one to experiment with the degree of peak sharpening as a function of peak height. In fact, despite its strong information-theoretic background, MEM is known to redistribute flux incorrectly during deconvolution, thus making the method problematic if the goal is to get correct intensities out. MMM could remedy this problem by using an alternative to the entropy. In conclusion, some ideas connecting the physics of blurring with a proposed reconstruction scheme, dubbed Maximum Mixing Method, have been presented. It has been shown that this physically motivated, non-information theoretic, non-probabilistic, non-Bayesian approach can be turned into a powerful deconvolution technique, competitive with, and having as a special case, the Maximum Entropy Method. Further work within the proposed framework is required to fully explore the consequences of the theory. A paper including proofs and examples is in preparation.
Maximum Power Point Tracking for GEO Telecommunication Satellites
NASA Astrophysics Data System (ADS)
Garrigos, A.; Blanes, J. M.; Carrasco, J. A.; Weinberg, A. H.; Caballero, G.; Soto, A.
2008-09-01
Typically solar arrays are sized for EOL requirements and as a consequence some power is wasted at BOL. In addition, the number of payload channels (TWTA's) is also oversized for redundancy purposes. In a regulated bus, the surplus of power generated by the higher solar current at BOL can be used to supply more channels giving a benefit for extra sales. However, the extra power generated by the variation of the MPP voltage has not been investigated yet for GEO satellites. This work, performed under ESA contract, focuses on this topic, studying different possible approaches to maximise benefits.
Austerlitz, C.; Mota, H. C.; Sempau, J.; Benhabib, S. M.; Campos, D.; Allison, R.; Almeida, C. E. de; Zhu, D.; Sibata, C. H.
2008-12-15
A ring-shaped Fricke device was developed to measure the absolute dose on the transverse bisector of a {sup 192}Ir high dose rate (HDR) source at 1 cm from its center in water, D(r{sub 0},{theta}{sub 0}). It consists of a polymethylmethacrylate (PMMA) rod (axial axis) with a cylindrical cavity at its center to insert the {sup 192}Ir radioactive source. A ring cavity around the source with 1.5 mm thickness and 5 mm height is centered at 1 cm from the central axis of the source. This ring cavity is etched in a disk shaped base with 2.65 cm diameter and 0.90 cm thickness. The cavity has a wall around it 0.25 cm thick. This ring is filled with Fricke solution, sealed, and the whole assembly is immersed in water during irradiations. The device takes advantage of the cylindrical geometry to measure D(r{sub 0},{theta}{sub 0}). Irradiations were performed with a Nucletron microselectron HDR unit loaded with an {sup 192}Ir Alpha Omega radioactive source. A Spectronic 1001 spectrophotometer was used to measure the optical absorbance using a 1 mL quartz cuvette with 1.00 cm light pathlength. The PENELOPE Monte Carlo code (MC) was utilized to simulate the Fricke device and the {sup 192}Ir Alpha Omega source in detail to calculate the perturbation introduced by the PMMA material. A NIST traceable calibrated well type ionization chamber was used to determine the air-kerma strength, and a published dose-rate constant was used to determine the dose rate at the reference point. The time to deliver 30.00 Gy to the reference point was calculated. This absorbed dose was then compared to the absorbed dose measured by the Fricke solution. Based on MC simulation, the PMMA of the Fricke device increases the D(r{sub 0},{theta}{sub 0}) by 2.0%. Applying the corresponding correction factor, the D(r{sub 0},{theta}{sub 0}) value assessed with the Fricke device agrees within 2.0% with the expected value with a total combined uncertainty of 3.43%(k=1). The Fricke device provides a promising
Rorie, David A; Rogers, Amy; Mackenzie, Isla S; Ford, Ian; Webb, David J; Willams, Bryan; Brown, Morris; Poulter, Neil; Findlay, Evelyn; Saywood, Wendy; MacDonald, Thomas M
2016-01-01
Introduction Nocturnal blood pressure (BP) appears to be a better predictor of cardiovascular outcome than daytime BP. The BP lowering effects of most antihypertensive therapies are often greater in the first 12 h compared to the next 12 h. The Treatment In Morning versus Evening (TIME) study aims to establish whether evening dosing is more cardioprotective than morning dosing. Methods and analysis The TIME study uses the prospective, randomised, open-label, blinded end-point (PROBE) design. TIME recruits participants by advertising in the community, from primary and secondary care, and from databases of consented patients in the UK. Participants must be aged over 18 years, prescribed at least one antihypertensive drug taken once a day, and have a valid email address. After the participants have self-enrolled and consented on the secure TIME website (http://www.timestudy.co.uk) they are randomised to take their antihypertensive medication in the morning or the evening. Participant follow-ups are conducted after 1 month and then every 3 months by automated email. The trial is expected to run for 5 years, randomising 10 269 participants, with average participant follow-up being 4 years. The primary end point is hospitalisation for the composite end point of non-fatal myocardial infarction (MI), non-fatal stroke (cerebrovascular accident; CVA) or any vascular death determined by record-linkage. Secondary end points are: each component of the primary end point, hospitalisation for non-fatal stroke, hospitalisation for non-fatal MI, cardiovascular death, all-cause mortality, hospitalisation or death from congestive heart failure. The primary outcome will be a comparison of time to first event comparing morning versus evening dosing using an intention-to-treat analysis. The sample size is calculated for a two-sided test to detect 20% superiority at 80% power. Ethics and dissemination TIME has ethical approval in the UK, and results will be published in a
Mores, Robert
2016-08-01
Schelleng [J. Acoust. Soc. Am. 53, 26-41 (1973)], Askenfelt [J. Acoust. Soc. Am. 86, 503-516 (1989)], Schumacher [J. Acoust. Soc. Am. 96, 1985-1998 (1994)], and Schoonderwaldt, Guettler, and Askenfelt [Acta Acust. Acust. 94, 604-622 (2008)] formulated-in different ways-how the maximum bow force relates to bow velocity, bow-bridge distance, string impedance, and friction coefficients. Issues of uncertainty are how to account for friction or for the rotational admittance of the strings. Related measurements at the respective transitions between regimes of Helmholtz motion and non-Helmholtz motion employ a variety of bowing machines and stringed instruments. The related findings include all necessary parameters except the friction coefficients, leaving the underlying models unconfirmed. Here, a bowing pendulum has been constructed which allows precise measurement of relevant bowing parameters, including the friction coefficients. Two cellos are measured across all strings for three different bow-bridge distances. The empirical data suggest that-taking the diverse elements of existing models as options-Schelleng's model combined with Schumacher's velocity term yields the best fit. Furthermore, the pendulum employs a bow driving mechanism with adaptive impedance which discloses that mentioned regimes are stable and transitions between them sometimes require a hysteresis on related parameters. PMID:27586745
78 FR 13999 - Maximum Interest Rates on Guaranteed Farm Loans
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... September 30, 2008 (73 FR 56754-56756). The proposed rule included provisions tying maximum rates to widely... points (6.5 percentage points) above 3-month LIBOR for variable rate loans and those fixed for less than... percentage points), to 750 basis points above the 3-month LIBOR for variable rate loans and 650 basis...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified in 40 CFR 1065.510. These data points form the lug curve. It is not necessary to generate the... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Determination of maximum test speed... Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified in 40 CFR 1065.510. These data points form the lug curve. It is not necessary to generate the... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Determination of maximum test speed... Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test...
Computation and Optimization of Dose Distributions for Rotational Stereotactic Radiosurgery
NASA Astrophysics Data System (ADS)
Fox, Timothy Harold
1994-01-01
The stereotactic radiosurgery technique presented in this work is the patient rotator method which rotates the patient in a sitting position with a stereotactic head frame attached to the skull while collimated non-coplanar radiation beams from a 6 MV medical linear accelerator are delivered to the target point. The hypothesis of this dissertation is that accurate, three-dimensional dose distributions can be computed and optimized for the patient rotator method used in stereotactic radiosurgery. This dissertation presents research results in three areas related to computing and optimizing dose distributions for the patient rotator method. A three-dimensional dose model was developed to calculate the dose at any point in the cerebral cortex using a circular and adjustable collimator system and the geometry of the radiation beam with respect to the target point. The computed dose distributions compared to experimental measurements had an average maximum deviation of <0.7 mm for the relative isodose distributions greater than 50%. A system was developed to qualitatively and quantitatively visualize the computed dose distributions with patient anatomy. A registration method was presented for transforming each dataset to a common reference system. A method for computing the intersections of anatomical contour's boundaries was developed to calculate dose-volume information. The system efficiently and accurately reduced the large computed, volumetric sets of dose data, medical images, and anatomical contours to manageable images and graphs. A computer-aided optimization method was developed for rigorously selecting beam angles and weights for minimizing the dose to normal tissue. Linear programming was applied as the optimization method. The computed optimal beam angles and weights for a defined objective function and dose constraints exhibited a superior dose distribution compared to a standard plan. The developed dose model, qualitative and quantitative visualization
Neural network modelling of dose distribution and dose uniformity in the Tunisian Gamma Irradiator.
Manai, K; Trabelsi, A
2013-11-01
In this paper an approach to model dose distributions, isodose curves and dose uniformity in the Tunisian Gamma Irradiation Facility using artificial neural networks (ANNs) are described. For this purpose, measurements were carried out at different points in the irradiation cell using polymethyl methacrylate dosemeters. The calculated and experimental results are compared and good agreement is observed showing that ANNs can be used as an efficient tool for modelling dose distribution in the gamma irradiation facility. Monte Carlo (MC) photon-transport simulation techniques have been used to evaluate the spatial dose distribution for extensive benchmarking. ANN approach appears to be a significant advance over the time-consuming MC or the less accurate regression methods for dose mapping. As a second application, a detailed dose mapping using two different product densities was carried out. The minimum and maximum dose locations and dose uniformity as a function of the irradiated volume for each product density were determined. Good agreement between ANN modelling and experimental results was achieved. PMID:23633649
NASA Astrophysics Data System (ADS)
Portnykh, I. A.; Kozlov, A. V.; Panchenko, V. L.
2014-06-01
The microstructure of samples of cladding tubes made of steel 0.07C-16Cr-19Ni-2Mo-2Mn-Ti-Si-V-P-B (EK164) irradiated to different damaging doses (up to 77 dpa) in the BN-600 reactor at temperatures from 440 to 600°C has been investigated. Characteristics of radiation porosity formed during irradiation in different temperature intervals have been determined. The dependences of the porosity characteristics on the rate of generation of atomic displacements and temperature of neutron irradiation have been established.
Maximum likelihood clustering with dependent feature trees
NASA Technical Reports Server (NTRS)
Chittineni, C. B. (Principal Investigator)
1981-01-01
The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.
Eye dose monitoring of PET/CT workers
O'Connor, U; O'Reilly, G
2014-01-01
Objective: The objective of the study was to measure eye dose [Hp(3)] to workers in a busy positron emission tomography (PET)/CT centre. Doses were compared with the proposed new annual dose limit of 20 mSv. Methods: We used a newly designed dosemeter to measure eye dose [Hp(3)]. Eye dosemeters were worn with an adjustable headband, with the dosemeter positioned adjacent to the left eye. The whole-body dose was also recorded using electronic personal dosemeter (EPD® Mk2; Thermo Electron Corporation, Waltham, MA). Exposed staff included radiographers, nurses and healthcare assistants. Results: The radiographers received the highest exposure of the staff groups studied, with one radiographer receiving an exposure of 0.5 mSv over the 3-month survey period. The estimated maximum eye dose for 1 year is approximately 2 mSv. The numeric value for eye dose was compared with the numeric value for personal dose equivalent to see if one could be used as an indicator for the other. From our data, a conservative estimate of eye dose Hp(3) (mSv) can be made as being up to approximately twice the numeric value for whole-body dose [Hp(10)] (mSv). Conclusion: Eye dose was found to be well within the new proposed annual limit at our PET/CT centre. Routine whole-body dose measurements may be a useful starting point for assessing whether eye dose monitoring should be prioritized in a PET facility. Advances in knowledge: Following the proposal of a reduced eye dose limit, this article provides new measurement data on staff eye doses for PET/CT workers. PMID:25109711
An Improved Forecasting Method of Sunspot Maximum
NASA Astrophysics Data System (ADS)
Yin, Z.; Tian, L.; Han, Y.; Wang, B.; Han, Y.
2015-12-01
It has been paid more and more attention for forecasting sunspot maximum of future solar cycle in recent decades, and a variety of forecasting methods have been studied. However, to make an accurate prediction is still very difficult due to the complexities of the characteristics of solar activity. Some authors summerized a variety of methods for the maximum predictions of 22nd, 23rd, 24th solar cycles, the incomplete statistics are 63, 54 and 75 cases respectively, results of the methods, which the difference between forecasting and observed values within the range of ±15%, are 27.0%, 25.9% and 24.3% respectively. Using the 13 points smoothed value of monthly sunspot numbers, we studied correlation between sunspot number rising rate of the first 24 months of the solar cycle and the coming cycle maximum, published forecasting result that the maximum value was 139.2 ± 18.8 for 23rd solar cycle (Han et al., 2000), and the observed value is 120.8, the error is about 15.2%. The present paper describes our improved forecasting methods. First, Vondrak smoothing method is used to deal with the monthly sunspot numbers. It is studied that the relationship between the rise rate of earlier months of sunspot numbers of this smoothed sequence and the coming maximum value in each solar cycles. The results show that the first 22, 23, 24 months rise rate of sunspot numbers are highly related with the coming maximum values, and simulated prediction of maximum for 22~24 cycles show that using the 22-month rise rate of three solar cycles, the maximum forecasting error is about 13.2%, using 23-month rise rate, the maximum error is about 11.2%, while using 24-month rise rate, the maximum error is only about 9.3%. The new method not only improves the forecasting accuracy but also can make the forecasting time in advance at least half a year than the common method using 13 points monthly smoothed value.
Francescon, Paolo Satariano, Ninfa; Beddar, Sam; Das, Indra J.
2014-10-15
Purpose: Evaluate the ability of different dosimeters to correctly measure the dosimetric parameters percentage depth dose (PDD), tissue-maximum ratio (TMR), and off-axis ratio (OAR) in water for small fields. Methods: Monte Carlo (MC) simulations were used to estimate the variation of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} for several types of microdetectors as a function of depth and distance from the central axis for PDD, TMR, and OAR measurements. The variation of k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} enables one to evaluate the ability of a detector to reproduce the PDD, TMR, and OAR in water and consequently determine whether it is necessary to apply correction factors. The correctness of the simulations was verified by assessing the ratios between the PDDs and OARs of 5- and 25-mm circular collimators used with a linear accelerator measured with two different types of dosimeters (the PTW 60012 diode and PTW PinPoint 31014 microchamber) and the PDDs and the OARs measured with the Exradin W1 plastic scintillator detector (PSD) and comparing those ratios with the corresponding ratios predicted by the MC simulations. Results: MC simulations reproduced results with acceptable accuracy compared to the experimental results; therefore, MC simulations can be used to successfully predict the behavior of different dosimeters in small fields. The Exradin W1 PSD was the only dosimeter that reproduced the PDDs, TMRs, and OARs in water with high accuracy. With the exception of the EDGE diode, the stereotactic diodes reproduced the PDDs and the TMRs in water with a systematic error of less than 2% at depths of up to 25 cm; however, they produced OAR values that were significantly different from those in water, especially in the tail region (lower than 20% in some cases). The microchambers could be used for PDD
Giżyńska, Marta K.; Kukołowicz, Paweł F.; Kordowski, Paweł
2014-01-01
Aim The aim of this work is to present a method of beam weight and wedge angle optimization for patients with prostate cancer. Background 3D-CRT is usually realized with forward planning based on a trial and error method. Several authors have published a few methods of beam weight optimization applicable to the 3D-CRT. Still, none on these methods is in common use. Materials and methods Optimization is based on the assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Our optimization algorithm requires beam quality index, depth of maximum dose, profiles of wedged fields and maximum dose to femoral heads. The method was tested for 10 patients with prostate cancer, treated with the 3-field technique. Optimized plans were compared with plans prepared by 12 experienced planners. Dose standard deviation in target volume, and minimum and maximum doses were analyzed. Results The quality of plans obtained with the proposed optimization algorithms was comparable to that prepared by experienced planners. Mean difference in target dose standard deviation was 0.1% in favor of the plans prepared by planners for optimization of beam weights and wedge angles. Introducing a correction factor for patient body outline for dose gradient at ICRU point improved dose distribution homogeneity. On average, a 0.1% lower standard deviation was achieved with the optimization algorithm. No significant difference in mean dose–volume histogram for the rectum was observed. Conclusions Optimization shortens very much time planning. The average planning time was 5 min and less than a minute for forward and computer optimization, respectively. PMID:25337411
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... minimum 92 segment specific point (wasteload) and non-point (load) allocations for nitrogen, phosphorous... appropriate) aggregate maximum daily allowable point source and nonpoint source loadings, called...
A model to calculate the induced dose rate around an 18 MV ELEKTA linear accelerator.
Perrin, Bruce; Walker, Anne; Mackay, Ranald
2003-03-01
The dose rate due to activity induced by (gamma, n) reactions around an ELEKTA Precise accelerator running at 18 MV is reported. A model to calculate the induced dose rate for a variety of working practices has been derived and compared to the measured values. From this model, the dose received by the staff using the machine can be estimated. From measured dose rates at the face of the linear accelerator for a 10 x 10 cm2 jaw setting at 18 MV an activation coefficient per MU was derived for each of the major activation products. The relative dose rates at points around the linac head, for different energy and jaw settings, were measured. Dose rates adjacent to the patient support system and portal imager were also measured. A model to calculate the dose rate at these points was derived, and compared to those measured over a typical working week. The model was then used to estimate the maximum dose to therapists for the current working schedule on this machine. Calculated dose rates at the linac face agreed to within +/- 12% of those measured over a week, with a typical dose rate of 4.5 microSv h(-1) 2 min after the beam has stopped. The estimated maximum annual whole body dose for a treatment therapist, with the machine treating at only 18 MV, for 60000 MUs per week was 2.5 mSv. This compares well with value of 2.9 mSv published for a Clinac 21EX. A model has been derived to calculate the dose from the four dominant activation products of an ELEKTA Precise 18 MV linear accelerator. This model is a useful tool to calculate the induced dose rate around the treatment head. The model can be used to estimate the dose to the staff for typical working patterns. PMID:12696804
Minimizing the probable maximum flood
Woodbury, M.S.; Pansic, N. ); Eberlein, D.T. )
1994-06-01
This article examines Wisconsin Electric Power Company's efforts to determine an economical way to comply with Federal Energy Regulatory Commission requirements at two hydroelectric developments on the Michigamme River. Their efforts included refinement of the area's probable maximum flood model based, in part, on a newly developed probable maximum precipitation estimate.
Electron spectra derived from depth dose distributions.
Faddegon, B A; Blevis, I
2000-03-01
The technique of extracting electron energy spectra from measured distributions of dose along the central axis of clinical electron beams is explored in detail. Clinical spectra measured with this simple spectroscopy tool are shown to be sufficient in accuracy and resolution for use in Monte Carlo treatment planning. A set of monoenergetic depth dose curves of appropriate energy spacing, precalculated with Monte Carlo for a simple beam model, are unfolded from the measured depth dose curve. The beam model is comprised of a point electron and photon source placed in vacuum with a source-to-surface distance of 100 cm. Systematic error introduced by this model affects the calculated depth dose curve by no more than 2%/2 mm. The component of the dose due to treatment head bremsstrahlung, subtracted prior to unfolding, is estimated from the thin-target Schiff spectrum within 0.3% of the maximum total dose (from electrons and photons) on the beam axis. Optimal unfolding parameters are chosen, based on physical principles. Unfolding is done with the public-domain code FERDO. Comparisons were made to previously published spectra measured with magnetic spectroscopy and to spectra we calculated with Monte Carlo treatment head simulation. The approach gives smooth spectra with an average resolution for the 27 beams studied of 16+/-3% of the mean peak energy. The mean peak energy of the magnetic spectrometer spectra was calculated within 2% for the AECL T20 scanning beam accelerators, 3% for the Philips SL25 scattering foil based machine. The number of low energy electrons in Monte Carlo spectra is estimated by unfolding with an accuracy of 2%, relative to the total number of electrons in the beam. Central axis depth dose curves calculated from unfolded spectra are within 0.5%/0.5 mm of measured and simulated depth dose curves, except near the practical range, where 1%/1 mm errors are evident. PMID:10757603
AMSR-E Arctic Sea Ice: September 2010 to March 2011: Scientists tracking the annual maximum extent of Arctic sea ice said that 2011 was among the lowest ice extents measured since satellites began ...
A silicon strip detector dose magnifying glass for IMRT dosimetry
Wong, J. H. D.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Khanna, S.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B.
2010-02-15
Purpose: Intensity modulated radiation therapy (IMRT) allows the delivery of escalated radiation dose to tumor while sparing adjacent critical organs. In doing so, IMRT plans tend to incorporate steep dose gradients at interfaces between the target and the organs at risk. Current quality assurance (QA) verification tools such as 2D diode arrays, are limited by their spatial resolution and conventional films are nonreal time. In this article, the authors describe a novel silicon strip detector (CMRP DMG) of high spatial resolution (200 {mu}m) suitable for measuring the high dose gradients in an IMRT delivery. Methods: A full characterization of the detector was performed, including dose per pulse effect, percent depth dose comparison with Farmer ion chamber measurements, stem effect, dose linearity, uniformity, energy response, angular response, and penumbra measurements. They also present the application of the CMRP DMG in the dosimetric verification of a clinical IMRT plan. Results: The detector response changed by 23% for a 390-fold change in the dose per pulse. A correction function is derived to correct for this effect. The strip detector depth dose curve agrees with the Farmer ion chamber within 0.8%. The stem effect was negligible (0.2%). The dose linearity was excellent for the dose range of 3-300 cGy. A uniformity correction method is described to correct for variations in the individual detector pixel responses. The detector showed an over-response relative to tissue dose at lower photon energies with the maximum dose response at 75 kVp nominal photon energy. Penumbra studies using a Varian Clinac 21EX at 1.5 and 10.0 cm depths were measured to be 2.77 and 3.94 mm for the secondary collimators, 3.52 and 5.60 mm for the multileaf collimator rounded leaf ends, respectively. Point doses measured with the strip detector were compared to doses measured with EBT film and doses predicted by the Philips Pinnacle treatment planning system. The differences were 1
Musha, Atsushi; Shimada, Hirofumi; Shirai, Katsuyuki; Saitoh, Jun-ichi; Yokoo, Satoshi; Chikamatsu, Kazuaki; Ohno, Tatsuya; Nakano, Takashi
2015-01-01
Purpose To evaluate the dose-response relationship for development of acute radiation mucositis (ARM) using an oral mucosal dose surface model (OMDS-model) in carbon ion radiotherapy (C-ion RT) for head and neck tumors. Methods Thirty-nine patients receiving C-ion RT for head and neck cancer were evaluated for ARM (once per week for 6 weeks) according to the Common Terminology Criteria for Adverse Events (CTCAE), version 4.0, and the Radiation Therapy Oncology Group (RTOG) scoring systems. The irradiation schedule typically used was 64 Gy [relative biological effectiveness (RBE)] in 16 fractions for 4 weeks. Maximum point doses in the palate and tongue were compared with ARM in each patient. Results The location of the ARM coincided with the high-dose area in the OMDS-model. There was a clear dose-response relationship between maximum point dose and ARM grade assessed using the RTOG criteria but not the CTCAE. The threshold doses for grade 2–3 ARM in the palate and tongue were 43.0 Gy(RBE) and 54.3 Gy(RBE), respectively. Conclusions The OMDS-model was useful for predicting the location and severity of ARM. Maximum point doses in the model correlated well with grade 2–3 ARM. PMID:26512725
3D Dose Verification Using Tomotherapy CT Detector Array
Sheng Ke; Jones, Ryan; Yang Wensha; Saraiya, Siddharth; Schneider, Bernard; Chen Quan; Sobering, Geoff; Olivera, Gustavo; Read, Paul
2012-02-01
Purpose: To evaluate a three-dimensional dose verification method based on the exit dose using the onboard detector of tomotherapy. Methods and Materials: The study included 347 treatment fractions from 24 patients, including 10 prostate, 5 head and neck (HN), and 9 spinal stereotactic body radiation therapy (SBRT) cases. Detector sonograms were retrieved and back-projected to calculate entrance fluence, which was then forward-projected on the CT images to calculate the verification dose, which was compared with ion chamber and film measurement in the QA plans and with the planning dose in patient plans. Results: Root mean square (RMS) errors of 2.0%, 2.2%, and 2.0% were observed comparing the dose verification (DV) and the ion chamber measured point dose in the phantom plans for HN, prostate, and spinal SBRT patients, respectively. When cumulative dose in the entire treatment is considered, for HN patients, the error of the mean dose to the planning target volume (PTV) varied from 1.47% to 5.62% with a RMS error of 3.55%. For prostate patients, the error of the mean dose to the prostate target volume varied from -5.11% to 3.29%, with a RMS error of 2.49%. The RMS error of maximum doses to the bladder and the rectum were 2.34% (-4.17% to 2.61%) and 2.64% (-4.54% to 3.94%), respectively. For the nine spinal SBRT patients, the RMS error of the minimum dose to the PTV was 2.43% (-5.39% to 2.48%). The RMS error of maximum dose to the spinal cord was 1.05% (-2.86% to 0.89%). Conclusions: An excellent agreement was observed between the measurement and the verification dose. In the patient treatments, the agreement in doses to the majority of PTVs and organs at risk is within 5% for the cumulative treatment course doses. The dosimetric error strongly depends on the error in multileaf collimator leaf opening time with a sensitivity correlating to the gantry rotation period.
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... testing, generate maximum measured brakepower versus engine speed data points using the applicable method specified in 40 CFR 1065.510. These data points form the lug curve. It is not necessary to generate the... value of the speedfactor is defined as: ER29DE99.005 (2) Calculate speedfactors for the power/speed...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2012 CFR
2012-07-01
... testing, generate maximum measured brakepower versus engine speed data points using the applicable method specified in 40 CFR 1065.510. These data points form the lug curve. It is not necessary to generate the... value of the speedfactor is defined as: ER29DE99.005 (2) Calculate speedfactors for the power/speed...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2014 CFR
2014-07-01
... testing, generate maximum measured brakepower versus engine speed data points using the applicable method specified in 40 CFR 1065.510. These data points form the lug curve. It is not necessary to generate the... value of the speedfactor is defined as: ER29DE99.005 (2) Calculate speedfactors for the power/speed...
Convex accelerated maximum entropy reconstruction
NASA Astrophysics Data System (ADS)
Worley, Bradley
2016-04-01
Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm - called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm - is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra.
The 1988 Solar Maximum Mission event list
NASA Technical Reports Server (NTRS)
Dennis, B. R.; Licata, J. P.; Tolbert, A. K.
1992-01-01
Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1988 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x ray burst spectrometer; (3) flat crystal spectrometers; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronagraph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts, or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observation. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.
The 1980 solar maximum mission event listing
NASA Technical Reports Server (NTRS)
Speich, D. M.; Nelson, J. J.; Licata, J. P.; Tolbert, A. K.
1991-01-01
Information is contained on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1980 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Hard X-Ray Imaging Spectrometer, (4) Flat Crystal Spectrometer, (5) Bent Crystal Spectrometer, (6) Ultraviolet Spectrometer and Polarimeter, and (7) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from Sun center are also included.
The 1989 Solar Maximum Mission event list
NASA Technical Reports Server (NTRS)
Dennis, B. R.; Licata, J. P.; Tolbert, A. K.
1992-01-01
This document contains information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1989 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Flat Crystal Spectrometer, (4) Bent Crystal Spectrometer, (5) Ultraviolet Spectrometer Polarimeter, and (6) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Satellite (GOES) X-ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.
The 2011 Northern Hemisphere Solar Maximum
NASA Astrophysics Data System (ADS)
Altrock, Richard C.
2013-01-01
Altrock (1997, Solar Phys. 170, 411) discusses a process in which Fe XIV 530.3 nm emission features appear at high latitudes and gradually migrate towards the equator, merging with the sunspot "butterfly diagram". In cycles 21 - 23 solar maximum occurred when the number of Fe XIV emission regions per day > 0.19 (averaged over 365 days and both hemispheres) first reached latitudes 18°, 21° and 21°, for an average of 20° ± 1.7°. Another high-latitude process is the "Rush to the Poles" of polar crown prominences and their associated coronal emission, including Fe XIV. The Rush is a harbinger of solar maximum (cf. Altrock, 2003, Solar Phys. 216, 343). Solar maximum in cycles 21 - 23 occurred when the center line of the Rush reached a critical latitude. These latitudes were 76°, 74° and 78°, respectively, for an average of 76° ± 2°. Cycle 24 displays an intermittent Rush that is only well-defined in the northern hemisphere. In 2009 an initial slope of 4.6°/yr was found in the north, compared to an average of 9.4 ± 1.7 °/yr in the previous three cycles. However, in 2010 the slope increased to 7.5°/yr. Extending that rate to 76° ± 2° indicates that the solar maximum smoothed sunspot number in the northern hemisphere already occurred at 2011.6 ± 0.3. In the southern hemisphere the Rush is very poorly defined. A linear fit to several maxima would reach 76° in the south at 2014.2. In 1999, persistent Fe XIV coronal emission connected with the ESC appeared near 70° in the north and began migrating towards the equator at a rate 40% slower than the previous two solar cycles. A fit to the early ESC would not reach 20° until 2019.8. However, in 2009 and 2010 an acceleration occurred. Currently the greatest number of emission regions is at 21° in the north and 24°in the south. This indicates that solar maximum is occurring now in the north but not yet in the south. The latest global smoothed sunspot numbers show an inflection point in late 2011, which
Li, Heng; Park, Peter; Liu, Wei; Matney, Jason; Balter, Peter; Zhang, Xiaodong; Li, Xiaoqiang; Zhu, X. Ronald; Liao, Zhongxing; Li, Yupeng
2013-12-15
Purpose: The objective of this study was to quantify respiratory motion-induced dose uncertainty at the planning stage for step-and-shoot intensity-modulated radiation therapy (IMRT) using an analytical technique.Methods: Ten patients with stage II/III lung cancer who had undergone a planning four-dimensional (4D) computed tomographic scan and step-and-shoot IMRT planning were selected with a mix of motion and tumor size for this retrospective study. A step-and-shoot IMRT plan was generated for each patient. The maximum and minimum doses with respiratory motion were calculated for each plan, and the mean deviation from the 4D dose was calculated, taking delivery time, fractionation, and patient breathing cycle into consideration.Results: For all patients evaluated in this study, the mean deviation from the 4D dose in the planning target volume (PTV) was <2.5%, with a standard deviation <1.2%, and maximum point dose variation from the 4D dose was <6.2% in the PTV assuming delivery dose rate of 200 MU/min and patient breathing cycle of 8 s. The motion-induced dose uncertainty is a function of motion, fractionation, MU (plan modulation), dose rate, and patient breathing cycle.Conclusions: Respiratory motion-induced dose uncertainty varies from patient to patient. Therefore, it is important to evaluate the dose uncertainty on a patient-specific basis, which could be useful for plan evaluation and treatment strategy determination for selected patients.
Li, Heng; Park, Peter; Liu, Wei; Matney, Jason; Liao, Zhongxing; Balter, Peter; Li, Yupeng; Zhang, Xiaodong; Li, Xiaoqiang; Zhu, X. Ronald
2013-01-01
Purpose: The objective of this study was to quantify respiratory motion-induced dose uncertainty at the planning stage for step-and-shoot intensity-modulated radiation therapy (IMRT) using an analytical technique. Methods: Ten patients with stage II/III lung cancer who had undergone a planning four-dimensional (4D) computed tomographic scan and step-and-shoot IMRT planning were selected with a mix of motion and tumor size for this retrospective study. A step-and-shoot IMRT plan was generated for each patient. The maximum and minimum doses with respiratory motion were calculated for each plan, and the mean deviation from the 4D dose was calculated, taking delivery time, fractionation, and patient breathing cycle into consideration. Results: For all patients evaluated in this study, the mean deviation from the 4D dose in the planning target volume (PTV) was <2.5%, with a standard deviation <1.2%, and maximum point dose variation from the 4D dose was <6.2% in the PTV assuming delivery dose rate of 200 MU/min and patient breathing cycle of 8 s. The motion-induced dose uncertainty is a function of motion, fractionation, MU (plan modulation), dose rate, and patient breathing cycle. Conclusions: Respiratory motion-induced dose uncertainty varies from patient to patient. Therefore, it is important to evaluate the dose uncertainty on a patient-specific basis, which could be useful for plan evaluation and treatment strategy determination for selected patients. PMID:24320498
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
1985-01-01
Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Makhdoumi, Yasha; Taheri, Mojtaba; Homaee Shandiz, Fatemeh; Zahed Anaraki, Siavash; Soleimani Meigooni, Ali
2012-01-01
Aim The aim of this work is to evaluate rectal and bladder dose for the patients treated for gynecological cancers. Background The GZP6 high dose rate brachytherapy system has been recently introduced to a number of radiation therapy departments in Iran, for treatment of various tumor sites such as cervix and vagina. Materials and methods Our analysis was based on dose measurements for 40 insertions in 28 patients, treated by a GZP6 unit between June 2009 and November 2010. Treatments consisted of combined teletherapy and intracavitary brachytherapy. In vivo dosimetry was performed with TLD-400 chips and TLD-100 microcubes in the rectum and bladder. Results The average of maximum rectal and bladder dose values were found to be 7.62 Gy (range 1.72–18.55 Gy) and 5.17 Gy (range 0.72–15.85 Gy), respectively. It has been recommended by the ICRU that the maximum dose to the rectum and bladder in intracavitary treatment of vaginal or cervical cancer should be lower than 80% of the prescribed dose to point A in the Manchester system. In this study, of the total number of 40 insertions, maximum rectal dose in 29 insertions (72.5% of treatment sessions) and maximum bladder dose in 18 insertions (45% of treatments sessions) were higher than 80% of the prescribed dose to the point of dose prescription. Conclusion In vivo dosimetry for patients undergoing treatment by GZP6 brachytherapy system can be used for evaluation of the quality of brachytherapy treatments by this system. This information could be used as a base for developing the strategy for treatment of patients treated with GZP6 system. PMID:24377037
Maximum cooling and maximum efficiency of thermoacoustic refrigerators
NASA Astrophysics Data System (ADS)
Tartibu, L. K.
2016-01-01
This work provides valid experimental evidence on the difference between design for maximum cooling and maximum efficiency for thermoacoustic refrigerators. In addition, the influence of the geometry of the honeycomb ceramic stack on the performance of thermoacoustic refrigerators is presented as it affects the cooling power. Sixteen cordierite honeycomb ceramic stacks with square cross sections having four different lengths of 26, 48, 70 and 100 mm are considered. Measurements are taken at six different locations of the stack hot ends from the pressure antinode, namely 100, 200, 300, 400, 500 and 600 mm respectively. Measurement of temperature difference across the stack ends at steady state for different stack geometries are used to compute the cooling load and the coefficient of performance. The results obtained with atmospheric air showed that there is a distinct optimum depending on the design goal.
Lead in soil: Recommended maximum permissible levels
Madhavan, S.; Rosenman, K.D.; Shehata, T.
1989-06-01
Lead in soil has been recognized as a public health problem, particularly among children. In recent years, attention has been directed to cumulative adverse effects of lead at low levels of intake. Lead-contaminated soil and dust have been identified as important contributors to blood lead levels. Based on available data on blood lead and lead in soil, an approach has been developed to suggest a permissible level of lead in soil, below which there will be reasonable certainty that adverse health effects will not occur. An acceptable level of 600 ppm of lead in soil suggested as a ''safe'' level would contribute no more than 5 micrograms/dl to total blood lead of children under 12 years of age. Maximum permissible levels of lead in soil have been recommended based on the dose-response relationship of lead in soil and blood lead in children.
Maximum-biomass prediction of homofermentative Lactobacillus.
Cui, Shumao; Zhao, Jianxin; Liu, Xiaoming; Chen, Yong Q; Zhang, Hao; Chen, Wei
2016-07-01
Fed-batch and pH-controlled cultures have been widely used for industrial production of probiotics. The aim of this study was to systematically investigate the relationship between the maximum biomass of different homofermentative Lactobacillus and lactate accumulation, and to develop a prediction equation for the maximum biomass concentration in such cultures. The accumulation of the end products and the depletion of nutrients by various strains were evaluated. In addition, the minimum inhibitory concentrations (MICs) of acid anions for various strains at pH 7.0 were examined. The lactate concentration at the point of complete inhibition was not significantly different from the MIC of lactate for all of the strains, although the inhibition mechanism of lactate and acetate on Lactobacillus rhamnosus was different from the other strains which were inhibited by the osmotic pressure caused by acid anions at pH 7.0. When the lactate concentration accumulated to the MIC, the strains stopped growing. The maximum biomass was closely related to the biomass yield per unit of lactate produced (YX/P) and the MIC (C) of lactate for different homofermentative Lactobacillus. Based on the experimental data obtained using different homofermentative Lactobacillus, a prediction equation was established as follows: Xmax - X0 = (0.59 ± 0.02)·YX/P·C. PMID:26896862
Maximum likelihood decoding of Reed Solomon Codes
Sudan, M.
1996-12-31
We present a randomized algorithm which takes as input n distinct points ((x{sub i}, y{sub i})){sup n}{sub i=1} from F x F (where F is a field) and integer parameters t and d and returns a list of all univariate polynomials f over F in the variable x of degree at most d which agree with the given set of points in at least t places (i.e., y{sub i} = f (x{sub i}) for at least t values of i), provided t = {Omega}({radical}nd). The running time is bounded by a polynomial in n. This immediately provides a maximum likelihood decoding algorithm for Reed Solomon Codes, which works in a setting with a larger number of errors than any previously known algorithm. To the best of our knowledge, this is the first efficient (i.e., polynomial time bounded) algorithm which provides some maximum likelihood decoding for any efficient (i.e., constant or even polynomial rate) code.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing
2013-10-01
The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests
Determination of transit dose profile for a {sup 192}Ir HDR source
Fonseca, G. P.; Antunes, P. C. G.; Yoriyaz, H.
2013-05-15
Purpose: Several studies have reported methodologies to calculate and correct the transit dose component of the moving radiation source for high dose rate (HDR) brachytherapy planning systems. However, most of these works employ the average source speed, which varies significantly with the measurement technique used, and does not represent a realistic speed profile, therefore, providing an inaccurate dose determination. In this work, the authors quantified the transit dose component of a HDR unit based on the measurement of the instantaneous source speed to produce more accurate dose values. Methods: The Nucletron microSelectron-HDR Ir-192 source was characterized considering the Task Group 43 (TG-43U1) specifications. The transit dose component was considered through the calculation of the dose distribution using a Monte Carlo particle transport code, MCNP5, for each source position and correcting it by the source speed. The instantaneous source speed measurements were performed in a previous work using two optical fibers connected to a photomultiplier and an oscilloscope. Calculated doses were validated by comparing relative dose profiles with those obtained experimentally using radiochromic films. Results: TG-43U1 source parameters were calculated to validate the Monte Carlo simulations. These agreed with the literature, with differences below 1% for the majority of the points. Calculated dose profiles without transit dose were also validated by comparison with ONCENTRA{sup Registered-Sign} Brachy v. 3.3 dose values, yielding differences within 1.5%. Dose profiles obtained with MCNP5 corrected using the instantaneous source speed profile showed differences near dwell positions of up to 800% in comparison to values corrected using the average source speed, but they are in good agreement with the experimental data, showing a maximum discrepancy of approximately 3% of the maximum dose. Near a dwell position the transit dose is about 22% of the dwell dose delivered
Solar maximum: Solar array degradation
NASA Technical Reports Server (NTRS)
Miller, T.
1985-01-01
The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.
Alternative Multiview Maximum Entropy Discrimination.
Chao, Guoqing; Sun, Shiliang
2016-07-01
Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on maximum entropy and maximum margin principles, and can produce hard-margin support vector machines under some assumptions. Recently, the multiview version of MED multiview MED (MVMED) was proposed. In this paper, we try to explore a more natural MVMED framework by assuming two separate distributions p1( Θ1) over the first-view classifier parameter Θ1 and p2( Θ2) over the second-view classifier parameter Θ2 . We name the new MVMED framework as alternative MVMED (AMVMED), which enforces the posteriors of two view margins to be equal. The proposed AMVMED is more flexible than the existing MVMED, because compared with MVMED, which optimizes one relative entropy, AMVMED assigns one relative entropy term to each of the two views, thus incorporating a tradeoff between the two views. We give the detailed solving procedure, which can be divided into two steps. The first step is solving our optimization problem without considering the equal margin posteriors from two views, and then, in the second step, we consider the equal posteriors. Experimental results on multiple real-world data sets verify the effectiveness of the AMVMED, and comparisons with MVMED are also reported. PMID:26111403
Berger, Daniel . E-mail: daniel.berger@akhwien.at; Dimopoulos, Johannes; Georg, Petra; Georg, Dietmar; Poetter, Richard; Kirisits, Christian
2007-04-01
Purpose: The vagina has not been widely recognized as organ at risk in brachytherapy for cervical cancer. No widely accepted dose parameters are available. This study analyzes the uncertainties in dose reporting for the vaginal wall using tandem-ring applicators. Methods and Materials: Organ wall contours were delineated on axial magnetic resonance (MR) slices to perform dose-volume histogram (DVH) analysis. Different DVH parameters were used in a feasibility study based on 40 magnetic resonance imaging (MRI)-based treatment plans of different cervical cancer patients. Dose to the most irradiated, 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, and at defined points on the ring surface and at 5-mm tissue depth were reported. Treatment-planning systems allow different methods of dose point definition. Film dosimetry was used to verify the maximum dose at the surface of the ring applicator in an experimental setup. Results: Dose reporting for the vagina is extremely sensitive to geometrical uncertainties with variations of 25% for 1 mm shifts. Accurate delineation of the vaginal wall is limited by the finite pixel size of MRI and available treatment-planning systems. No significant correlation was found between dose-point and dose-volume parameters. The DVH parameters were often related to noncontiguous volumes and were not able to detect very different situations of spatial dose distributions inside the vaginal wall. Deviations between measured and calculated doses were up to 21%. Conclusions: Reporting either point dose values or DVH parameters for the vaginal wall is based on high inaccuracies because of contouring and geometric positioning. Therefore, the use of prospective dose constraints for individual treatment plans is not to be recommended at present. However, for large patient groups treated within one protocol correlation with vaginal morbidity can be evaluated.
Brown, Sheree; Vicini, Frank; Vanapalli, Jyotsna R.; Whitaker, Thomas J.; Pope, D. Keith; Lyden, Maureen; Bruggeman, Lisa; Haile, Kenneth L.; McLaughlin, Mark P.
2012-07-01
Purpose: The purpose of this analysis was to evaluate dose-volume relationships associated with a higher probability for developing chest wall toxicity (pain) after accelerated partial breast irradiation (APBI) by using both single-lumen and multilumen brachytherapy. Methods and Materials: Rib dose data were available for 89 patients treated with APBI and were correlated with the development of chest wall/rib pain at any point after treatment. Ribs were contoured on computed tomography planning scans, and rib dose-volume histograms (DVH) along with histograms for other structures were constructed. Rib DVH data for all patients were sampled at all volumes {>=}0.008 cubic centimeter (cc) (for maximum dose related to pain) and at volumes of 0.5, 1, 2, and 3 cc for analysis. Rib pain was evaluated at each follow-up visit. Patient responses were marked as yes or no. No attempt was made to grade responses. Eighty-nine responses were available for this analysis. Results: Nineteen patients (21.3%) complained of transient chest wall/rib pain at any point in follow-up. Analysis showed a direct correlation between total dose received and volume of rib irradiated with the probability of developing rib/chest wall pain at any point after follow-up. The median maximum dose at volumes {>=}0.008 cc of rib in patients who experienced chest wall pain was 132% of the prescribed dose versus 95% of the prescribed dose in those patients who did not experience pain (p = 0.0035). Conclusions: Although the incidence of chest wall/rib pain is quite low with APBI brachytherapy, attempts should be made to keep the volume of rib irradiated at a minimum and the maximum dose received by the chest wall as low as reasonably achievable.
Economics and Maximum Entropy Production
NASA Astrophysics Data System (ADS)
Lorenz, R. D.
2003-04-01
Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.
The contribution from transit dose for 192Ir HDR brachytherapy treatments
NASA Astrophysics Data System (ADS)
Fonseca, G. P.; Landry, G.; Reniers, B.; Hoffmann, A.; Rubo, R. A.; Antunes, P. C. G.; Yoriyaz, H.; Verhaegen, F.
2014-04-01
Brachytherapy treatment planning systems that use model-based dose calculation algorithms employ a more accurate approach that replaces the TG43-U1 water dose formalism and adopt the TG-186 recommendations regarding composition and geometry of patients and other relevant effects. However, no recommendations were provided on the transit dose due to the source traveling inside the patient. This study describes a methodology to calculate the transit dose using information from the treatment planning system (TPS) and considering the source's instantaneous and average speed for two prostate and two gynecological cases. The trajectory of the 192Ir HDR source was defined by importing applicator contour points and dwell positions from the TPS. The transit dose distribution was calculated using the maximum speed, the average speed and uniform accelerations obtained from the literature to obtain an approximate continuous source distribution simulated with a Monte Carlo code. The transit component can be negligible or significant depending on the speed profile adopted, which is not clearly reported in the literature. The significance of the transit dose can also be due to the treatment modality; in our study interstitial treatments exhibited the largest effects. Considering the worst case scenario the transit dose can reach 3% of the prescribed dose in a gynecological case with four catheters and up to 11.1% when comparing the average prostate dose for a case with 16 catheters. The transit dose component increases by increasing the number of catheters used for HDR brachytherapy, reducing the total dwell time per catheter or increasing the number of dwell positions with low dwell times. This contribution may become significant (>5%) if it is not corrected appropriately. The transit dose cannot be completely compensated using simple dwell time corrections since it may have a non-uniform distribution. An accurate measurement of the source acceleration and maximum speed should be
MedlinePlus Videos and Cool Tools
... Tipping Point by CPSC Blogger September 22 appliance child Childproofing CPSC danger death electrical fall furniture head ... TV falls with about the same force as child falling from the third story of a building. ...
Nagataki, Shigenobu; Takamura, Noboru; Kamiya, Kenji; Akashi, Makoto
2013-11-01
At the outset of the accident at Fukushima Daiichi Nuclear Power Plant in March 2011, the radiation doses experienced by residents were calculated from the readings at monitoring posts, with several assumptions being made from the point of view of protection and safety. However, health effects should also be estimated by obtaining measurements of the individual radiation doses. The individual external radiation doses, determined by a behavior survey in the "evacuation and deliberate evacuation area" in the first 4 months, were <5 mSv in 97.4% of residents (maximum: 15 mSv). Doses in Fukushima Prefecture were <3 mSv in 99.3% of 386,572 residents analyzed. External doses in Fukushima City determined by personal dosimeters were <1 mSv/3 months (September-November, 2011) in 99.7% of residents (maximum: 2.7 mSv). Thyroid radiation doses, determined in March using a NaI (TI) scintillation survey meter in children in the evacuation and deliberate evacuation area, were <10 mSv in 95.7% of children (maximum: 35 mSv). Therefore, all doses were less than the intervention level of 50 mSv proposed by international organizations. Internal radiation doses determined by cesium-134 ((134)C) and cesium-137 ((137)C) whole-body counters (WBCs) were <1 mSv in 99% of the residents, and the maximum thyroid equivalent dose by iodine-131 WBCs was 20 mSv. The exploratory committee of the Fukushima Health Management Survey mentions on its website that radiation from the accident is unlikely to be a cause of adverse health effects in the future. In any event, sincere scientific efforts must continue to obtain individual radiation doses that are as accurate as possible. However, observation of the health effects of the radiation doses described above will require reevaluation of the protocol used for determining adverse health effects. The dose-response relationship is crucial, and the aim of the survey should be to collect sufficient data to confirm the presence or absence of radiation health
Discrimination networks for maximum selection.
Jain, Brijnesh J; Wysotzki, Fritz
2004-01-01
We construct a novel discrimination network using differentiating units for maximum selection. In contrast to traditional competitive architectures like MAXNET the discrimination network does not only signal the winning unit, but also provides information about its evidence. In particular, we show that a discrimination network converges to a stable state within finite time and derive three characteristics: intensity normalization (P1), contrast enhancement (P2), and evidential response (P3). In order to improve the accuracy of the evidential response we incorporate distributed redundancy into the network. This leads to a system which is not only robust against failure of single units and noisy data, but also enables us to sharpen the focus on the problem given in terms of a more accurate evidential response. The proposed discrimination network can be regarded as a connectionist model for competitive learning by evidence. PMID:14690714
Effect of caffeine on oxidative stress during maximum incremental exercise.
Olcina, Guillermo J; Muñoz, Diego; Timón, Rafael; Caballero, M Jesús; Maynar, Juan I; Córdova, Alfredo; Maynar, Marcos
2006-01-01
Caffeine (1,3,7-trimethylxanthine) is an habitual substance present in a wide variety of beverages and in chocolate-based foods and it is also used as adjuvant in some drugs. The antioxidant ability of caffeine has been reported in contrast with its pro- oxidant effects derived from its action mechanism such as the systemic release of catecholamines. The aim of this work was to evaluate the effect of caffeine on exercise oxidative stress, measuring plasma vitamins A, E, C and malonaldehyde (MDA) as markers of non enzymatic antioxidant status and lipid peroxidation respectively. Twenty young males participated in a double blind (caffeine 5mg·kg- 1 body weight or placebo) cycling test until exhaustion. In the exercise test, where caffeine was ingested prior to the test, exercise time to exhaustion, maximum heart rate, and oxygen uptake significantly increased, whereas respiratory exchange ratio (RER) decreased. Vitamins A and E decreased with exercise and vitamin C and MDA increased after both the caffeine and placebo tests but, regarding these particular variables, there were no significant differences between the two test conditions. The results obtained support the conclusion that this dose of caffeine enhances the ergospirometric response to cycling and has no effect on lipid peroxidation or on the antioxidant vitamins A, E and C. Key PointsCaffeine ingestion may improve maximal aerobic performance in non trained men.Cellular oxidative damage is not altered by caffeine ingestion in maximal aerobic exercises.Antioxidant response to exercise, vitamins A, E and C, is not modified by caffeine action in maximal aerobic efforts. PMID:24357958
NASA Astrophysics Data System (ADS)
Yong, J. S.; Ung, N. M.; Jamalludin, Z.; Malik, R. A.; Wong, J. H. D.; Liew, Y. M.; Ng, K. H.
2016-02-01
We investigated the dosimetric impact of applicator displacement on dose specification during high dose rate (HDR) Cobalt-60 (Co-60) brachytherapy for cervical cancer through a planning study. Eighteen randomly selected HDR full insertion plans were restrospectively studied. The tandem and ovoids were virtually shifted translationally and rotationally in the x-, y- and z-axis directions on the treatment planning system. Doses to reference points and volumes of interest in the plans with shifted applicators were compared with the original plans. The impact of dose displacement on 2D (point-based) and 3D (volume-based) treatment planning techniques was also assessed. A ±2 mm translational y-axis applicator shift and ±4° rotational x-axis applicator shift resulted in dosimetric changes of more than 5% to organs at risk (OAR) reference points. Changes to the maximum doses to 2 cc of the organ (D2cc) in 3D planning were statistically significant and higher than the reference points in 2D planning for both the rectum and bladder (p<0.05). Rectal D2cc was observed to be the most sensitive to applicator displacement among all dose metrics. Applicator displacement that is greater than ±2 mm translational y-axis and ±4° rotational x-axis resulted in significant dose changes to the OAR. Thus, steps must be taken to minimize the possibility of applicator displacement during brachytherapy.
Maximum-likelihood density modification
Terwilliger, Thomas C.
2000-01-01
A likelihood-based approach to density modification is developed that can be applied to a wide variety of cases where some information about the electron density at various points in the unit cell is available. The key to the approach consists of developing likelihood functions that represent the probability that a particular value of electron density is consistent with prior expectations for the electron density at that point in the unit cell. These likelihood functions are then combined with likelihood functions based on experimental observations and with others containing any prior knowledge about structure factors to form a combined likelihood function for each structure factor. A simple and general approach to maximizing the combined likelihood function is developed. It is found that this likelihood-based approach yields greater phase improvement in model and real test cases than either conventional solvent flattening and histogram matching or a recent reciprocal-space solvent-flattening procedure [Terwilliger (1999 ▶), Acta Cryst. D55, 1863–1871]. PMID:10944333
Yi, Jianbing; Yang, Xuan Li, Yan-Ran; Chen, Guoliang
2015-10-15
3000 landmark points of ten cases by the authors’ method are 1.21 and 1.04 mm. In the EMPIRE10 lung registration challenge, the authors’ method ranks 24 of 39. According to the index of the maximum shear stretch, the authors’ method is also efficient to describe the discontinuous motion at the lung boundaries. Conclusions: By establishing the correspondence of the landmark points in the source phase and the other target phases combining shape matching and image intensity matching together, the mismatching issue in the robust point matching algorithm is adequately addressed. The target registration errors are statistically reduced by shifting the virtual target points and target points. The authors’ method with consideration of sliding conditions can effectively estimate the discontinuous motion, and the estimated motion is natural. The primary limitation of the proposed method is that the temporal constraints of the trajectories of voxels are not introduced into the motion model. However, the proposed method provides satisfactory motion information, which results in precise tumor coverage by the radiation dose during radiotherapy.
SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment
Imae, T; Haga, A; Saotome, N; Kida, S; Nakano, M; Takeuchi, Y; Shiraki, T; Yano, K; Yamashita, H; Nakagawa, K; Ohtomo, K
2014-06-01
Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions of multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.
The maximum drag reduction asymptote
NASA Astrophysics Data System (ADS)
Choueiri, George H.; Hof, Bjorn
2015-11-01
Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].
Maximum entropy production in daisyworld
NASA Astrophysics Data System (ADS)
Maunu, Haley A.; Knuth, Kevin H.
2012-05-01
Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.
Objects of Maximum Electromagnetic Chirality
NASA Astrophysics Data System (ADS)
Fernandez-Corbaton, Ivan; Fruhnert, Martin; Rockstuhl, Carsten
2016-07-01
We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. Reciprocal objects attain the upper bound if and only if they are transparent for all the fields of one polarization handedness (helicity). Additionally, electromagnetic duality symmetry, i.e., helicity preservation upon interaction, turns out to be a necessary condition for reciprocal objects to attain the upper bound. We use these results to provide requirements for the design of such extremal objects. The requirements can be formulated as constraints on the polarizability tensors for dipolar objects or on the material constitutive relations for continuous media. We also outline two applications for objects of maximum electromagnetic chirality: a twofold resonantly enhanced and background-free circular dichroism measurement setup, and angle-independent helicity filtering glasses. Finally, we use the theoretically obtained requirements to guide the design of a specific structure, which we then analyze numerically and discuss its performance with respect to maximal electromagnetic chirality.
20 CFR 228.14 - Family maximum.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...
20 CFR 228.14 - Family maximum.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...
20 CFR 228.14 - Family maximum.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...
20 CFR 228.14 - Family maximum.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...
20 CFR 228.14 - Family maximum.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Family maximum. 228.14 Section 228.14... SURVIVOR ANNUITIES The Tier I Annuity Component § 228.14 Family maximum. (a) Family maximum defined. Under... person's earnings record is limited. This limited amount is called the family maximum. The family...
A Monte Carlo study on dose distribution evaluation of Flexisource 192Ir brachytherapy source
Alizadeh, Majid; Ghorbani, Mahdi; Haghparast, Abbas; Zare, Naser; Ahmadi Moghaddas, Toktam
2015-01-01
Aim The aim of this study is to evaluate the dose distribution of the Flexisource 192Ir source. Background Dosimetric evaluation of brachytherapy sources is recommended by task group number 43 (TG. 43) of American Association of Physicists in Medicine (AAPM). Materials and methods MCNPX code was used to simulate Flexisource 192Ir source. Dose rate constant and radial dose function were obtained for water and soft tissue phantoms and compared with previous data on this source. Furthermore, dose rate along the transverse axis was obtained by simulation of the Flexisource and a point source and the obtained data were compared with those from Flexiplan treatment planning system (TPS). Results The values of dose rate constant obtained for water and soft tissue phantoms were equal to 1.108 and 1.106, respectively. The values of the radial dose function are listed in the form of tabulated data. The values of dose rate (cGy/s) obtained are shown in the form of tabulated data and figures. The maximum difference between TPS and Monte Carlo (MC) dose rate values was 11% in a water phantom at 6.0 cm from the source. Conclusion Based on dosimetric parameter comparisons with values previously published, the accuracy of our simulation of Flexisource 192Ir was verified. The results of dose rate constant and radial dose function in water and soft tissue phantoms were the same for Flexisource and point sources. For Flexisource 192Ir source, the results of TPS calculations in a water phantom were in agreement with the simulations within the calculation uncertainties. Furthermore, the results from the TPS calculation for Flexisource and MC calculation for a point source were practically equal within the calculation uncertainties. PMID:25949224
47 CFR 95.135 - Maximum authorized transmitting power.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Maximum authorized transmitting power. 95.135... transmitting power. (a) No station may transmit with more than 50 watts output power. (b) (c) A small control station at a point north of Line A or east of Line C must transmit with no more than 5 watts ERP. (d)...
47 CFR 95.135 - Maximum authorized transmitting power.
Code of Federal Regulations, 2011 CFR
2011-10-01
... transmitting power. (a) No station may transmit with more than 50 watts output power. (b) (c) A small control station at a point north of Line A or east of Line C must transmit with no more than 5 watts ERP. (d) A... 47 Telecommunication 5 2011-10-01 2011-10-01 false Maximum authorized transmitting power....
Dose Calculations for [131I] Meta-Iodobenzylguanidine-Induced Bystander Effects
Gow, M. D.; Seymour, C. B.; Boyd, M.; Mairs, R. J.; Prestiwch, W. V.; Mothersill, C. E.
2014-01-01
Targeted radiotherapy is a potentially useful treatment for some cancers and may be potentiated by bystander effects. However, without estimation of absorbed dose, it is difficult to compare the effects with conventional external radiation treatment. Methods: Using the Vynckier – Wambersie dose point kernel, a model for dose rate evaluation was created allowing for calculation of absorbed dose values to two cell lines transfected with the noradrenaline transporter (NAT) gene and treated with [131I]MIBG. Results: The mean doses required to decrease surviving fractions of UVW/NAT and EJ138/NAT cells, which received medium from [131I]MIBG-treated cells, to 25 – 30% were 1.6 and 1.7 Gy respectively. The maximum mean dose rates achieved during [131I]MIBG treatment were 0.09 – 0.75 Gy/h for UVW/NAT and 0.07 – 0.78 Gy/h for EJ138/NAT. These were significantly lower than the external beam gamma radiation dose rate of 15 Gy/h. In the case of control lines which were incapable of [131I]MIBG uptake the mean absorbed doses following radiopharmaceutical were 0.03 – 0.23 Gy for UVW and 0.03 – 0.32 Gy for EJ138. Conclusion: [131I]MIBG treatment for ICCM production elicited a bystander dose-response profile similar to that generated by external beam gamma irradiation but with significantly greater cell death. PMID:24659931
Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2006-01-01
Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.
Maximum Entropy Principle for Transportation
NASA Astrophysics Data System (ADS)
Bilich, F.; DaSilva, R.
2008-11-01
In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.
Maximum entropy principal for transportation
Bilich, F.; Da Silva, R.
2008-11-06
In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.
40 CFR 1039.140 - What is my engine's maximum engine power?
Code of Federal Regulations, 2011 CFR
2011-07-01
... kilowatt. (b) The nominal power curve of an engine configuration is the relationship between maximum available engine brake power and engine speed for an engine, using the mapping procedures of 40 CFR part... engine configuration's maximum engine power is the maximum brake power point on the nominal power...
Aircraft as adaptive nonlinear system which must be in the adaptational maximum zone for safety
Ignative, M.; Simatos, N.; Sivasundaram, S.
1994-12-31
Safety is a main problem in aircraft. We are considering this problem from the point of view related to existence of the adaptational maximum in complex developing systems. Safety space of aircraft parameters are determined. This space is transformed to different regimes of flight, when one engine malfunctions etc., are considered. Also it is shown that maximum safety is in adaptational maximum zone.
Huang, Long; Zhuang, Tingliang; Mastroianni, Anthony; Djemil, Toufik; Cui, Taoran; Xia, Ping
2016-01-01
Volumetric-modulated arc therapy (VMAT) plans may require more control points (or segments) than some of fixed-beam IMRT plans that are created with a limited number of segments. Increasing number of control points in a VMAT plan for a given prescription dose could create a large portion of the total number of segments with small number monitor units (MUs) per segment. The purpose of this study is to investigate the impact of the small number MU/segment on the delivery accuracy of VMAT delivered with various dose rates. Ten patient datasets were planned for hippocampus sparing for whole brain irradiation. For each dataset, two VMAT plans were created with maximum dose rates of 600 MU/min (the maximum field size of 21 × 40 cm2) and 1000 MU/min (the maximum field size of 15 × 15 cm2) for a daily dose of 3 Gy. Without reoptimization, the daily dose of these plans was purposely reduced to 1.5 Gy and 1.0 Gy while keeping the same total dose. Using the two dose rates and three different daily doses, six VMAT plans for each dataset were delivered to a physical phantom to investigate how the changes of dose rate and daily doses impact on delivery accuracy. Using the gamma index, we directly compared the delivered planar dose profiles with the reduced daily doses (1.5 Gy and 1.0 Gy) to the delivered planar dose at 3 Gy daily dose, delivered at dose rate of 600 MU/min and 1000 MU/min, respectively. The average numbers of segments with MU/segment ≤ 1 were 35 ± 8, 87 ± 6 for VMAT-600 1.5 Gy, VMAT-600 1 Gy plans, and 30 ± 7 and 42 ± 6 for VMAT-1000 1.5 Gy and VMAT-1000 1 Gy plans, respectively. When delivered at 600 MU/min dose rate, the average gamma index passing rates (1%/1 mm criteria) of comparing delivered 1.5 Gy VMAT planar dose profiles to 3.0 Gy VMAT delivered planar dose profiles was 98.28% ± 1.66%, and the average gamma index passing rate of comparing delivered 1.0 Gy VMAT planar dose to 3.0 Gy VMAT delivered planar dose was 83.75% ± 4.86%. If using 2%/2mm
MSClique: Multiple Structure Discovery through the Maximum Weighted Clique Problem
Alquézar, René; Serratosa, Francesc; Moreno-Noguer, Francesc; Andrade-Cetto, Juan; González Ballester, Miguel Ángel
2016-01-01
We present a novel approach for feature correspondence and multiple structure discovery in computer vision. In contrast to existing methods, we exploit the fact that point-sets on the same structure usually lie close to each other, thus forming clusters in the image. Given a pair of input images, we initially extract points of interest and extract hierarchical representations by agglomerative clustering. We use the maximum weighted clique problem to find the set of corresponding clusters with maximum number of inliers representing the multiple structures at the correct scales. Our method is parameter-free and only needs two sets of points along with their tentative correspondences, thus being extremely easy to use. We demonstrate the effectiveness of our method in multiple-structure fitting experiments in both publicly available and in-house datasets. As shown in the experiments, our approach finds a higher number of structures containing fewer outliers compared to state-of-the-art methods. PMID:26766071
MSClique: Multiple Structure Discovery through the Maximum Weighted Clique Problem.
Sanroma, Gerard; Penate-Sanchez, Adrian; Alquézar, René; Serratosa, Francesc; Moreno-Noguer, Francesc; Andrade-Cetto, Juan; González Ballester, Miguel Ángel
2016-01-01
We present a novel approach for feature correspondence and multiple structure discovery in computer vision. In contrast to existing methods, we exploit the fact that point-sets on the same structure usually lie close to each other, thus forming clusters in the image. Given a pair of input images, we initially extract points of interest and extract hierarchical representations by agglomerative clustering. We use the maximum weighted clique problem to find the set of corresponding clusters with maximum number of inliers representing the multiple structures at the correct scales. Our method is parameter-free and only needs two sets of points along with their tentative correspondences, thus being extremely easy to use. We demonstrate the effectiveness of our method in multiple-structure fitting experiments in both publicly available and in-house datasets. As shown in the experiments, our approach finds a higher number of structures containing fewer outliers compared to state-of-the-art methods. PMID:26766071
The Radiation Dose-Response of the Human Spinal Cord
Schultheiss, Timothy E.
2008-08-01
Purpose: To characterize the radiation dose-response of the human spinal cord. Methods and Materials: Because no single institution has sufficient data to establish a dose-response function for the human spinal cord, published reports were combined. Requisite data were dose and fractionation, number of patients at risk, number of myelopathy cases, and survival experience of the population. Eight data points for cervical myelopathy were obtained from five reports. Using maximum likelihood estimation correcting for the survival experience of the population, estimates were obtained for the median tolerance dose, slope parameter, and {alpha}/{beta} ratio in a logistic dose-response function. An adequate fit to thoracic data was not possible. Hyperbaric oxygen treatments involving the cervical cord were also analyzed. Results: The estimate of the median tolerance dose (cervical cord) was 69.4 Gy (95% confidence interval, 66.4-72.6). The {alpha}/{beta} = 0.87 Gy. At 45 Gy, the (extrapolated) probability of myelopathy is 0.03%; and at 50 Gy, 0.2%. The dose for a 5% myelopathy rate is 59.3 Gy. Graphical analysis indicates that the sensitivity of the thoracic cord is less than that of the cervical cord. There appears to be a sensitizing effect from hyperbaric oxygen treatment. Conclusions: The estimate of {alpha}/{beta} is smaller than usually quoted, but values this small were found in some studies. Using {alpha}/{beta} = 0.87 Gy, one would expect a considerable advantage by decreasing the dose/fraction to less than 2 Gy. These results were obtained from only single fractions/day and should not be applied uncritically to hyperfractionation.
PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS
Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.
2012-06-05
For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.
2014-01-01
Background In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed. Methods Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (α/β = 10 Gy). Results Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p = 0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p = 0.042). Conclusion Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma. PMID:24938757
ERIC Educational Resources Information Center
Hess, Richard; Grinstead, Charles; Grindstead, Marshall; Bergstrand, Deborah
2008-01-01
Suppose that we are given a rectangular box in 3-space. Given any two points on the surface of this box, we can define the surface distance between them to be the length of the shortest path between them on the surface of the box. This paper determines the pairs of points of maximum surface distance for all boxes. It is often the case that these…
Narayan, Samir Lehmann, Joerg; Coleman, Matthew A.; Vaughan, Andrew; Yang, Claus Chunli; Enepekides, Danny; Farwell, Gregory; Purdy, James A.; Laredo, Grace; Nolan, Kerry A.S.; Pearson, Francesca S.; Vijayakumar, Srinivasan
2008-11-01
Purpose: We conducted a clinical study to correlate oral cavity dose with clinical mucositis, perform in vivo dosimetry, and determine the feasibility of obtaining buccal mucosal cell samples in patients undergoing head-and-neck radiation therapy. The main objective is to establish a quantitative dose response for clinical oral mucositis. Methods and Materials: Twelve patients undergoing radiation therapy for head-and-neck cancer were prospectively studied. Four points were chosen in separate quadrants of the oral cavity. Calculated dose distributions were generated by using AcQPlan and Eclipse treatment planning systems. MOSFET dosimeters were used to measure dose at each sampled point. Each patient underwent buccal sampling for future RNA analysis before and after the first radiation treatment at the four selected points. Clinical and functional mucositis were assessed weekly according to National Cancer Institute Common Toxicity Criteria, Version 3. Results: Maximum and average doses for sampled sites ranged from 7.4-62.3 and 3.0-54.3 Gy, respectively. A cumulative point dose of 39.1 Gy resulted in mucositis for 3 weeks or longer. Mild severity (Grade {<=} 1) and short duration ({<=}1 week) of mucositis were found at cumulative point doses less than 32 Gy. Polymerase chain reaction consistently was able to detect basal levels of two known radiation responsive genes. Conclusions: In our sample, cumulative doses to the oral cavity of less than 32 Gy were associated with minimal acute mucositis. A dose greater than 39 Gy was associated with longer duration of mucositis. Our technique for sampling buccal mucosa yielded sufficient cells for RNA analysis using polymerase chain reaction.
SU-E-T-199: How Number of Control Points Influences the Dynamic IMRT Plan Quality and Deliverability
Sharma, S; Manigandan, D; Chander, S; Subramani, V; Julka, P; Rath, G
2014-06-01
Purpose: To study the influence of number of control points on plan quality and deliverability. Methods: Five previously treated patients of carcinoma of rectum were selected. Planning target volume (PTV) and organs at risk (OARs) i.e. bladder and bowel were contoured. Dynamic IMRT plans (6MV, 7-fields, 45Gy/25 fractions and prescribed at 95% isodose) were created in Eclipse (Varian medical system, Palo Alto, CA) treatment planning system (TPS) for Varian CL2300C/D linear-accelerator. Base plan was calculated with 166 control points, variable mode (Eclipse Default). For generating other plans, all parameters were kept constant, only number of control points (Fixed mode) was varied as follows: 100, 166 and 200. Then, plan quality was analyzed in terms of maximum and mean dose received by the PTV and OARs. For plan deliverability, TPS calculated fluence was verified with I’matriXX (IBA Dosimetry, Germany) array and compared with TPS dose-plane using gamma index criteria of 3% dose difference and 3mm distance to agreement (DTA). Total number of monitor units (MU) required to deliver a plan was also noted. Results: The maximum variation for the PTV maximum with respect to eclipse default control point (166) was 0.28% (0.14Gy). Similarly, PTV mean varied only up to 0.22 %( 0.11Gy). Bladder maximum and bladder mean varied up to 0.51% (0.24Gy) and 0.16% (0.06Gy). The variation for the bowel maximum and bowel mean was also only 0.39% (0.19Gy) and 0.33% (0.04Gy). Total MU was within 0.32 % (4MU). Average gamma pass rate using different control points for five patients are 98.75±0.33%, 99.37±0.09%, 99.29±0.12%, 98.14±0.13% and 99.25±0.14% respectively. Conclusion: Slight variation (<1%) in PTV and OARs maximum and mean doses was observed with varying number of control points. Monitor unit was also not varied much. Reducing number of control points did not showed any comprise in plan deliverability in terms of gamma index pass rate.
Haga, Akihiro; Sakumi, Akira; Okano, Yukari; Itoh, Saori; Saotome, Naoya; Kida, Satoshi; Igaki, Hiroshi; Shiraishi, Kenshiro; Yamashita, Hideomi; Ohtomo, Kuni; Nakagawa, Keiichi
2013-07-01
Linac parameters such as the multi-leaf collimator (MLC) position and jaw position, cumulative monitor units (MUs), and the corresponding gantry angle were recorded during the clinical delivery of volumetric modulated arc therapy for prostate, lung, and head/neck cancer patients. Then, linac parameters were converted into the beam-data format used in the treatment planning system, and the dose distribution was reconstructed. The dose-volume histogram and the dose difference (DD) were compared with the corresponding values in the treatment plan. A reproducible error of in-treatment linac parameters was observed when a sudden change of beam intensity or MLC/jaw speed occurred. The maximum cumulative MU error was more than 4 MU for lung cancer cases, and the maximum MLC position exceeded 5 mm for prostate and head/neck cancer patients. However, these errors were quickly compensated for at the next control point. All treatments analyzed in the present study were delivered within 0.4% accuracy at the planning target volume. The cumulative dose agreed with that of the plan within 3% of the prescribed dose. The 1% DD was 93.9, 99.9, and 93.4% of the prescription dose for prostate, lung, and head/neck cancer patients, respectively. PMID:23479401
CORA: Emission Line Fitting with Maximum Likelihood
NASA Astrophysics Data System (ADS)
Ness, Jan-Uwe; Wichmann, Rainer
2011-12-01
The advent of pipeline-processed data both from space- and ground-based observatories often disposes of the need of full-fledged data reduction software with its associated steep learning curve. In many cases, a simple tool doing just one task, and doing it right, is all one wishes. In this spirit we introduce CORA, a line fitting tool based on the maximum likelihood technique, which has been developed for the analysis of emission line spectra with low count numbers and has successfully been used in several publications. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise we derive the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. As an example we demonstrate the functionality of the program with an X-ray spectrum of Capella obtained with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory and choose the analysis of the Ne IX triplet around 13.5 Å.
CORA - emission line fitting with Maximum Likelihood
NASA Astrophysics Data System (ADS)
Ness, J.-U.; Wichmann, R.
2002-07-01
The advent of pipeline-processed data both from space- and ground-based observatories often disposes of the need of full-fledged data reduction software with its associated steep learning curve. In many cases, a simple tool doing just one task, and doing it right, is all one wishes. In this spirit we introduce CORA, a line fitting tool based on the maximum likelihood technique, which has been developed for the analysis of emission line spectra with low count numbers and has successfully been used in several publications. CORA uses a rigorous application of Poisson statistics. From the assumption of Poissonian noise we derive the probability for a model of the emission line spectrum to represent the measured spectrum. The likelihood function is used as a criterion for optimizing the parameters of the theoretical spectrum and a fixed point equation is derived allowing an efficient way to obtain line fluxes. As an example we demonstrate the functionality of the program with an X-ray spectrum of Capella obtained with the Low Energy Transmission Grating Spectrometer (LETGS) on board the Chandra observatory and choose the analysis of the Ne IX triplet around 13.5 Å.
Laser Transmission Holograms Maximum Permissible Exposure
NASA Astrophysics Data System (ADS)
Dawson, Paula; Wilksch, P. A.
2010-05-01
The laser illumination of holograms for public display is governed by international standard IEC 60825-3, to which the Australian Standard AS/NZS 2211.3 conforms. These standards do not accommodate vital mitigating factors of hologram replay that impinge on the level of laser power i.e. angle of the replay reference beam, the divergence of the beam, the distance of the viewer from the holographic plate and the diffraction efficiency of the hologram plate itself. Such factors indicate that a more meaningful calculation of the radiation level would be obtained from direct measurement at the position of the viewer of the hologram. The purpose of this paper is to demonstrate the importance of these factors in realistically determining the maximum permissible exposure (MPE) for viewers of large format holograms. Materials and Methods: A comparison is made between measurements based on the power or energy that can pass through a fully open pupil for Class 3B and Class 4 lasers (1. medical copper bromide laser, 2. diode laser, and 3. argon continuous wave laser), and the actual power levels when the measurement is taken from the beholder's point of view. Discussion and conclusion: these results indicate a need to review current standards.
Maximum Likelihood Estimation in Generalized Rasch Models.
ERIC Educational Resources Information Center
de Leeuw, Jan; Verhelst, Norman
1986-01-01
Maximum likelihood procedures are presented for a general model to unify the various models and techniques that have been proposed for item analysis. Unconditional maximum likelihood estimation, proposed by Wright and Haberman, and conditional maximum likelihood estimation, proposed by Rasch and Andersen, are shown as important special cases. (JAZ)
14 CFR 1261.102 - Maximum amount.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Maximum amount. 1261.102 Section 1261.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PROCESSING OF MONETARY CLAIMS (GENERAL) Employees' Personal Property Claims § 1261.102 Maximum amount. From October 1, 1982, to October 30, 1988, the maximum amount that may be...
14 CFR 1261.102 - Maximum amount.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Maximum amount. 1261.102 Section 1261.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PROCESSING OF MONETARY CLAIMS (GENERAL) Employees' Personal Property Claims § 1261.102 Maximum amount. From October 1, 1982, to October 30, 1988, the maximum amount that may be...
Kelly, Geraldine; Laxton, Carl; Garelnabi, Mariam; Alton, Brian; Addan, Fatima; Catchpole, Andrew; Thomas, Elaine; Borley, Daryl; Dee, Kieran; Boyers, Alison; Bringas, Erica; Noulin, Nicolas; Lambkin-Williams, Rob; Murray, Edward J
2015-11-01
Retroscreen (hVIVO) have developed an RSV human viral challenge model (hVCM) for testing the efficacy of novel antiviral therapies by monitoring changes in viral load and symptoms. The integrated cycler technology and Simplexa™ kits (Focus Diagnostics) currently provide fast, qualitative and sensitive diagnostic testing in hospitals and other healthcare facilities for patients with well-established respiratory illness. We have developed a novel use of qualitative integrated cycler PCR (qicPCR) technology to identify onset of RSV infection enabling an informed dosing clinical protocol in the RSV hVCM. We have validated qicPCR detection of RSV in spiked nasal wash aspirates and demonstrate that the qicPCR assay is 94% concordant with RSV plaque assay data in nasal wash samples from 53 RSV inoculated human volunteers in the hVCM. The use of qicPCR for informed dosing was successfully implemented in a recent clinical trial demonstrating efficacy of the RSV entry inhibitor GS-5806 in the hVCM (NCT01756482). Comparison of qicPCR positivity in relation to nasal wash viral load measured by both RT-qPCR and plaque assay shows that the therapeutic exposure was correctly initiated prior to onset and peak of RSV viral shedding and symptoms in the majority of volunteers. PMID:26335961
Stephans, Kevin L.; Djemil, Toufik; Diaconu, Claudiu; Reddy, Chandana A.; Xia, Ping; Woody, Neil M.; Greskovich, John; Makkar, Vinit; Videtic, Gregory M.M.
2014-09-01
Purpose: To identify factors associated with grade ≥3 treatment related late esophageal toxicity after lung or liver stereotactic body radiation therapy (SBRT). Methods and Materials: This was a retrospective review of 52 patients with a planning target volume within 2 cm of the esophagus from a prospective registry of 607 lung and liver SBRT patients treated between 2005 and 2011. Patients were treated using a risk-adapted dose regimen to a median dose of 50 Gy in 5 fractions (range, 37.5-60 Gy in 3-10 fractions). Normal structures were contoured using Radiation Therapy Oncology Group (RTOG) defined criteria. Results: The median esophageal point dose and 1-cc dose were 32.3 Gy (range, 8.9-55.4 Gy) and 24.0 Gy (range, 7.8-50.9 Gy), respectively. Two patients had an esophageal fistula at a median of 8.4 months after SBRT, with maximum esophageal point doses of 51.5 and 52 Gy, and 1-cc doses of 48.1 and 50 Gy, respectively. These point and 1-cc doses were exceeded by 9 and 2 patients, respectively, without a fistula. The risk of a fistula for point doses exceeding 40, 45, and 50 Gy was 9.5% (n=2/21), 10.5% (n=2/19), and 12.5% (n=2/16), respectively. The risk of fistula for 1-cc doses exceeding 40, 45, and 50 Gy was 25% (n=2/9), 50% (n=2/4), and 50% (n=2/4), respectively. Eighteen patients received systemic therapy after SBRT (11 systemic chemotherapy, and 6 biologic agents, and 1 both). Both patients with fistulas had received adjuvant anti-angiogenic (vascular endothelial growth factor) agents within 2 months of completing SBRT. No patient had a fistula in the absence of adjuvant VEGF-modulating agents. Conclusions: Esophageal fistula is a rare complication of SBRT. In this series, fistula was seen with esophageal point doses exceeding 51 Gy and 1-cc doses greater than 48 Gy. Notably, however, fistula was seen only in those patients who also received adjuvant VEGF-modulating agents after SBRT. The potential interaction of dose and adjuvant therapy
Calculation of Radiation Doses from Uranium Recovery Operations.
Energy Science and Technology Software Center (ESTSC)
1980-12-08
Version: 00 MILDOS estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This is a multi-purpose code system, within the range of its proper application, and can be used to evaluate population doses formore » NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. The MILDOS package includes models for both point sources (stacks, vents) and area sources (ore pads, tailings areas). Gaseous releases are limited to consideration of 222Rn plus ingrowth of daughters. Exposure pathways of concern are assumed to be inhalation of airborne radioactive material, ingestion of vegetables, meat, and milk contaminated via deposition, and external exposure to radiation emitted by airborne activity and activity deposited on ground surfaces. Liquid exposure pathways are not treated by MILDOS.« less
Robison, W.L.; Conrado, C.L.; Bogen, K.T
1999-10-06
On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other
Bayesian estimation of dose thresholds
NASA Technical Reports Server (NTRS)
Groer, P. G.; Carnes, B. A.
2003-01-01
An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.
Radiation dose delivery verification in the treatment of carcinoma-cervix
Shrotriya, D. Srivastava, R. N. L.; Kumar, S.
2015-06-24
The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for direct measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.
Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders
Supe, Sanjay S. Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.
2009-04-01
Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome
Maximum-likelihood registration of range images with missing data.
Sharp, Gregory C; Lee, Sang W; Wehe, David K
2008-01-01
Missing data are common in range images, due to geometric occlusions, limitations in the sensor field of view, poor reflectivity, depth discontinuities, and cast shadows. Using registration to align these data often fails, because points without valid correspondences can be incorrectly matched. This paper presents a maximum likelihood method for registration of scenes with unmatched or missing data. Using ray casting, correspondences are formed between valid and missing points in each view. These correspondences are used to classify points by their visibility properties, including occlusions, field of view, and shadow regions. The likelihood of each point match is then determined using statistical properties of the sensor, such as noise and outlier distributions. Experiments demonstrate a high rates of convergence on complex scenes with varying degrees of overlap. PMID:18000329
Propane spectral resolution enhancement by the maximum entropy method
NASA Technical Reports Server (NTRS)
Bonavito, N. L.; Stewart, K. P.; Hurley, E. J.; Yeh, K. C.; Inguva, R.
1990-01-01
The Burg algorithm for maximum entropy power spectral density estimation is applied to a time series of data obtained from a Michelson interferometer and compared with a standard FFT estimate for resolution capability. The propane transmittance spectrum was estimated by use of the FFT with a 2 to the 18th data sample interferogram, giving a maximum unapodized resolution of 0.06/cm. This estimate was then interpolated by zero filling an additional 2 to the 18th points, and the final resolution was taken to be 0.06/cm. Comparison of the maximum entropy method (MEM) estimate with the FFT was made over a 45/cm region of the spectrum for several increasing record lengths of interferogram data beginning at 2 to the 10th. It is found that over this region the MEM estimate with 2 to the 16th data samples is in close agreement with the FFT estimate using 2 to the 18th samples.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing
2013-01-01
[1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis
Georgia fishery study: implications for dose calculations
Turcotte, M.D.S.
1983-03-28
Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. A fish consumption value of 11.3 kg/yr should be used to recalculate dose to the average individual from L-Reactor restart. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average fish consumption value of 11.3 kg/yr, and a maximum fish consumption value of 34 kg/yr.
The myth of mean dose as a surrogate for radiation risk?
NASA Astrophysics Data System (ADS)
Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert
2010-04-01
The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. Each organ dose is assumed to be homogeneous, a representative sample or mean of which is weighted by a corresponding tissue weighting factor provided by ICRP publication 103. The weighted values are summed to provide Effective Dose (ED), the most-widely accepted surrogate for population radiation risk. For individual risk estimation, one may employ Effective Risk (ER), which further incorporates gender- and age-specific risk factors. However, both the tissue-weighting factors (as used by ED) and the risk factors (as used by ER) were derived (mostly from the atomic bomb survivor data) under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical imaging procedures. In chest CT, for example, superficial organs (eg, breasts) demonstrate a heterogeneous distribution while organs on the peripheries of the irradiation field (eg, liver) possess a nearly discontinuous dose profile. Projection radiography and mammography involve an even wider range of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ, and therefore, effective dose or effective risk, as commonly computed, can misrepresent irradiation risk. In this paper, we report the magnitude of the dose heterogeneity in both CT and projection x-ray imaging, provide an assessment of its impact on irradiation risk, and explore an alternative model-based approach for risk estimation for imaging techniques involving heterogeneous organ dose distributions.
Yang Yun; Rivard, Mark J.
2011-11-15
Purpose: Photon-emitting brachytherapy sources are used for permanent implantation to treat lung cancer. However, the current brachytherapy dose calculation formalism assumes a homogeneous water medium without considering the influence of radiation scatter or tissue heterogeneities. The purpose of this study was to determine the dosimetric effects of tissue heterogeneities for permanent lung brachytherapy. Methods: The MCNP5 v1.40 radiation transport code was used for Monte Carlo (MC) simulations. Point sources with energies of 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV were simulated to cover the range of pertinent brachytherapy energies and to glean dosimetric trends independent of specific radionuclide emissions. Source positions from postimplant CT scans of five patient implants were used for source coordinates, with dose normalized to 200 Gy at the center of each implant. With the presence of fibrosis (around the implant), cortical bone, lung, and healthy tissues, dose distributions and {sub PTV}DVH were calculated using the MCNP *FMESH4 tally and the NIST mass-energy absorption coefficients. This process was repeated upon replacing all tissues with water. For all photon energies, 10{sup 9} histories were simulated to achieve statistical errors (k = 1) typically of 1%. Results: The mean PTV doses calculated using tissue heterogeneities for all five patients changed (compared to dose to water) by only a few percent over the examined photon energy range, as did PTV dose at the implant center. The {sub PTV}V{sub 100} values were 81.2%, 90.0% (as normalized), 94.3%, 93.9%, 92.7%, and 92.2% for 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV source photons, respectively. Relative to water, the maximum bone doses were higher by factors of 3.7, 5.1, 5.2, 2.4, 1.2, and 1.0 The maximum lung doses were about 0.98, 0.94, 0.91, 0.94, 0.97, and 0.99. Relative to water, the maximum healthy tissue doses at the mediastinal position were higher by factors of 9.8, 2.2, 1.3, 1.1, 1.1, and
2011 Radioactive Materials Usage Survey for Unmonitored Point Sources
Sturgeon, Richard W.
2012-06-27
organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and
33 CFR 401.29 - Maximum draft.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Maximum draft. 401.29 Section 401.29 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.29 Maximum draft. (a) Notwithstanding any provision herein, the...
20 CFR 229.48 - Family maximum.
Code of Federal Regulations, 2014 CFR
2014-04-01
... total wages (see 20 CFR 404.203(m)) for the second year before the individual dies or becomes eligible... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a)...
20 CFR 229.48 - Family maximum.
Code of Federal Regulations, 2012 CFR
2012-04-01
... total wages (see 20 CFR 404.203(m)) for the second year before the individual dies or becomes eligible... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a)...
20 CFR 229.48 - Family maximum.
Code of Federal Regulations, 2010 CFR
2010-04-01
... total wages (see 20 CFR 404.203(m)) for the second year before the individual dies or becomes eligible... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a)...
20 CFR 229.48 - Family maximum.
Code of Federal Regulations, 2011 CFR
2011-04-01
... total wages (see 20 CFR 404.203(m)) for the second year before the individual dies or becomes eligible... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a)...
20 CFR 229.48 - Family maximum.
Code of Federal Regulations, 2013 CFR
2013-04-01
... total wages (see 20 CFR 404.203(m)) for the second year before the individual dies or becomes eligible... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Family maximum. 229.48 Section 229.48... OVERALL MINIMUM GUARANTEE Computation of the Overall Minimum Rate § 229.48 Family maximum. (a)...
7 CFR 1778.11 - Maximum grants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Maximum grants. 1778.11 Section 1778.11 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.11 Maximum grants. (a) Grants not... the filing of an application. (b) Grants made for repairs, partial replacement, or...
13 CFR 130.440 - Maximum grant.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Maximum grant. 130.440 Section 130... § 130.440 Maximum grant. No recipient shall receive an SBDC grant exceeding the greater of the minimum statutory amount, or its pro rata share of all SBDC grants as determined by the statutory formula set...
13 CFR 130.440 - Maximum grant.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Maximum grant. 130.440 Section 130... § 130.440 Maximum grant. No recipient shall receive an SBDC grant exceeding the greater of the minimum statutory amount, or its pro rata share of all SBDC grants as determined by the statutory formula set...
7 CFR 1778.11 - Maximum grants.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 12 2013-01-01 2013-01-01 false Maximum grants. 1778.11 Section 1778.11 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.11 Maximum grants. (a) Grants not... the filing of an application. (b) Grants made for repairs, partial replacement, or...
13 CFR 130.440 - Maximum grant.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maximum grant. 130.440 Section 130... § 130.440 Maximum grant. No recipient shall receive an SBDC grant exceeding the greater of the minimum statutory amount, or its pro rata share of all SBDC grants as determined by the statutory formula set...
14 CFR 1261.102 - Maximum amount.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Maximum amount. 1261.102 Section 1261.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PROCESSING OF MONETARY CLAIMS (GENERAL) Employees' Personal Property Claims § 1261.102 Maximum amount. From October 1, 1982, to October 30,...
14 CFR 1261.102 - Maximum amount.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Maximum amount. 1261.102 Section 1261.102 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION PROCESSING OF MONETARY CLAIMS (GENERAL) Employees' Personal Property Claims § 1261.102 Maximum amount. From October 1, 1982, to October 30,...
13 CFR 130.440 - Maximum grant.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Maximum grant. 130.440 Section 130.440 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS DEVELOPMENT CENTERS § 130.440 Maximum grant. No recipient shall receive an SBDC grant exceeding the greater of the...
13 CFR 130.440 - Maximum grant.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Maximum grant. 130.440 Section 130.440 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS DEVELOPMENT CENTERS § 130.440 Maximum grant. No recipient shall receive an SBDC grant exceeding the greater of the...
Magnetic field generated resistivity maximum in graphite
NASA Technical Reports Server (NTRS)
Wollam, J. A.; Kreps, L. W.; Rojeski, M.; Vold, T.; Devaty, R.
1976-01-01
In zero magnetic field, B, the electrical resistivity, rho(O,T) of highly oriented pyrolytic (polycrystalline) graphite drops smoothly with decreasing T, becoming constant below 4 K. However, in a fixed applied magnetic field B, the resistivity rho(B,T) goes through a maximum as a function of T, with larger maximum for larger B. The temperature of the maximum increases with B, but saturates to a constant value near 25 K (exact T depends on sample) at high B. In single crystal graphite a maximum in rho(B,T) as a function of T is also present, but has the effects of Landau level quantization superimposed. Several possible explanations for the rho(B,T) maximum are proposed, but a complete explanation awaits detailed calculations involving the energy band structure of graphite, and the particular scattering mechanisms involved.
Dose audit failures and dose augmentation
NASA Astrophysics Data System (ADS)
Herring, C.
1999-01-01
Standards EN 552 and ISO 11137, covering radiation sterilization, are technically equivalent in their requirements for the selection of the sterilization dose. Dose Setting Methods 1 and 2 described in Annex B of ISO 11137 can be used to meet these requirements for the selection of the sterilization dose. Both dose setting methods require a dose audit every 3 months to determine the continued validity of the sterilization dose. This paper addresses the subject of dose audit failures and investigations into their cause. It also presents a method to augment the sterilization dose when the number of audit positives exceeds the limits imposed by ISO 11137.
Estimating the seasonal maximum light use efficiency
NASA Astrophysics Data System (ADS)
Muramatsu, Kanako; Furumi, Shinobu; Soyama, Noriko; Daigo, Motomasa
2014-11-01
Light use efficiency (LUE) is a key parameter in estimating gross primary production (GPP) based on global Earth-observation satellite data and model calculations. In current LUE-based GPP estimation models, the maximum LUE is treated as a constant for each biome type. However, the maximum LUE varies seasonally. In this study, seasonal maximum LUE values were estimated from the maximum incident LUE versus the incident photosynthetically active radiation (PAR) and the fraction of absorbed PAR. First, an algorithm to estimate maximum incident LUE was developed to estimate GPP capacity using a light response curve. One of the parameters required for the light response curve was estimated from the linear relationship of the chlorophyll index and the GPP capacity at a high PAR level of 2000 (µmolm-2s-1), and was referred to as" the maximum GPP capacity at 2000". The relationship was determined for six plant functional types: needleleaf deciduous trees, broadleaf deciduous trees, needleleaf evergreen trees, broadleaf evergreen trees, C3 grass, and crops. The maximum LUE values estimated in this study displayed seasonal variation, especially those for deciduous broadleaf forest, but also those for evergreen needleleaf forest.
A {gamma} dose distribution evaluation technique using the k-d tree for nearest neighbor searching
Yuan Jiankui; Chen Weimin
2010-09-15
Purpose: The authors propose an algorithm based on the k-d tree for nearest neighbor searching to improve the {gamma} calculation time for 2D and 3D dose distributions. Methods: The {gamma} calculation method has been widely used for comparisons of dose distributions in clinical treatment plans and quality assurances. By specifying the acceptable dose and distance-to-agreement criteria, the method provides quantitative measurement of the agreement between the reference and evaluation dose distributions. The {gamma} value indicates the acceptability. In regions where {gamma}{<=}1, the predefined criterion is satisfied and thus the agreement is acceptable; otherwise, the agreement fails. Although the concept of the method is not complicated and a quick naieve implementation is straightforward, an efficient and robust implementation is not trivial. Recent algorithms based on exhaustive searching within a maximum radius, the geometric Euclidean distance, and the table lookup method have been proposed to improve the computational time for multidimensional dose distributions. Motivated by the fact that the least searching time for finding a nearest neighbor can be an O(log N) operation with a k-d tree, where N is the total number of the dose points, the authors propose an algorithm based on the k-d tree for the {gamma} evaluation in this work. Results: In the experiment, the authors found that the average k-d tree construction time per reference point is O(log N), while the nearest neighbor searching time per evaluation point is proportional to O(N{sup 1/k}), where k is between 2 and 3 for two-dimensional and three-dimensional dose distributions, respectively. Conclusions: Comparing with other algorithms such as exhaustive search and sorted list O(N), the k-d tree algorithm for {gamma} evaluation is much more efficient.
Use of a realistic breathing lung phantom to evaluate dose delivery errors
Court, Laurence E.; Seco, Joao; Lu Xingqi; Ebe, Kazuyu; Mayo, Charles; Ionascu, Dan; Winey, Brian; Giakoumakis, Nikos; Aristophanous, Michalis; Berbeco, Ross; Rottman, Joerg; Bogdanov, Madeleine; Schofield, Deborah; Lingos, Tania
2010-11-15
Purpose: To compare the effect of respiration-induced motion on delivered dose (the interplay effect) for different treatment techniques under realistic clinical conditions. Methods: A flexible resin tumor model was created using rapid prototyping techniques based on a computed tomography (CT) image of an actual tumor. Twenty micro-MOSFETs were inserted into the tumor model and the tumor model was inserted into an anthropomorphic breathing phantom. Phantom motion was programed using the motion trajectory of an actual patient. A four-dimensional CT image was obtained and several treatment plans were created using different treatment techniques and planning systems: Conformal (Eclipse), step-and-shoot intensity-modulated radiation therapy (IMRT) (Pinnacle), step-and-shoot IMRT (XiO), dynamic IMRT (Eclipse), complex dynamic IMRT (Eclipse), hybrid IMRT [60% conformal, 40% dynamic IMRT (Eclipse)], volume-modulated arc therapy (VMAT) [single-arc (Eclipse)], VMAT [double-arc (Eclipse)], and complex VMAT (Eclipse). The complex plans were created by artificially pushing the optimizer to give complex multileaf collimator sequences. Each IMRT field was irradiated five times and each VMAT field was irradiated ten times, with each irradiation starting at a random point in the respiratory cycle. The effect of fractionation was calculated by randomly summing the measured doses. The maximum deviation for each measurement point per fraction and the probability that 95% of the model tumor had dose deviations less than 2% and 5% were calculated as a function of the number of fractions. Tumor control probabilities for each treatment plan were calculated and compared. Results: After five fractions, measured dose deviations were less than 2% for more than 95% of measurement points within the tumor model for all plans, except the complex dynamic IMRT, step-and-shoot IMRT (XiO), complex VMAT, and single-arc VMAT plans. Reducing the dose rate of the complex IMRT plans from 600 to 200 MU
Amini, Arya; Westerly, David C.; Waxweiler, Timothy V.; Ryan, Nicole; Raben, David
2015-10-01
Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70 Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involved lobe treated to 70 Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4 Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3 Gy (p < 0.001). Mean penile bulb dose was 18.6 Gy for DP vs 19.2 Gy for STD (p = 0.880). Mean rectal dose was 21.0 Gy for DP vs 22.8 Gy for STD (p = 0.356). Rectum V{sub 70} (the volume receiving ≥70 Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V{sub 70} was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3 Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB.
Neutron/gamma dose characterization for use with TLD
Kee, J.C.; Magee, L.; Hefley, T.
1991-01-01
The work described in this paper was performed in preparation for establishing a thermoluminescent dosimetry (TLD) system for workers exposed to spontaneous fission neutrons from mixed plutonium isotopes, {sup 232}Th, and depleted uranium at the US Department of Energy (DOE) Pantex facility. The method proposed uses a neutron-insensitive thermoluminescent dosimeter to measure the gamma dose and apply a neutron dose/gamma dose ratio to calculate the neutron dose equivalent. This approach, while requiring multibadge dosimetry for each individual, provides a more accurate neutron dose calculation than was previously in use and reduces the maximum missed dose and falsely reported dose.
Estimating landscape carrying capacity through maximum clique analysis.
Donovan, Therese M; Warrington, Gregory S; Schwenk, W Scott; Dinitz, Jeffrey H
2012-12-01
Habitat suitability (HS) maps are widely used tools in wildlife science and establish a link between wildlife populations and landscape pattern. Although HS maps spatially depict the distribution of optimal resources for a species, they do not reveal the population size a landscape is capable of supporting--information that is often crucial for decision makers and managers. We used a new approach, "maximum clique analysis," to demonstrate how HS maps for territorial species can be used to estimate the carrying capacity, N(k), of a given landscape. We estimated the N(k) of Ovenbirds (Seiurus aurocapillus) and bobcats (Lynx rufus) in an 1153-km2 study area in Vermont, USA. These two species were selected to highlight different approaches in building an HS map as well as computational challenges that can arise in a maximum clique analysis. We derived 30-m2 HS maps for each species via occupancy modeling (Ovenbird) and by resource utilization modeling (bobcats). For each species, we then identified all pixel locations on the map (points) that had sufficient resources in the surrounding area to maintain a home range (termed a "pseudo-home range"). These locations were converted to a mathematical graph, where any two points were linked if two pseudo-home ranges could exist on the landscape without violating territory boundaries. We used the program Cliquer to find the maximum clique of each graph. The resulting estimates of N(k) = 236 Ovenbirds and N(k) = 42 female bobcats were sensitive to different assumptions and model inputs. Estimates of N(k) via alternative, ad hoc methods were 1.4 to > 30 times greater than the maximum clique estimate, suggesting that the alternative results may be upwardly biased. The maximum clique analysis was computationally intensive but could handle problems with < 1500 total pseudo-home ranges (points). Given present computational constraints, it is best suited for species that occur in clustered distributions (where the problem can be
Tradeoffs in regularized maximum-likelihood image restoration
NASA Astrophysics Data System (ADS)
Markham, Joanne; Conchello, Jose-Angel
1997-04-01
All algorithms for three-dimensional deconvolution of fluorescence microscopical images have as a common goal the estimation of a specimen function (SF) that is consistent with the recorded image and the process for image formation and recording. To check for consistency, the image of the estimated SF predicted by the imaging operator is compared to the recorded image, and the similarity between them is used as a figure of merit (FOM) in the algorithm to improve the specimen function estimate. Commonly used FOMs include squared differences, maximum entropy, and maximum likelihood (ML). The imaging operator is usually characterized by the point-spread function (PSF), the image of a point source of light, or its Fourier transform, the optical transfer function (OTF). Because the OTF is non-zero only over a small region of the spatial-frequency domain, the inversion of the image formation operator is non-unique and the estimated SF is potentially artifactual. Adding a term to the FOM that penalizes some unwanted behavior of the estimated SF effectively ameliorates potential artifacts, but at the same time biases the estimation process. For example, an intensity penalty avoids overly large pixel values but biases the SF to small pixel values. A roughness penalty avoids rapid pixel to pixel variations but biases the SF to be smooth. In this article we assess the effects of the roughness and intensity penalties on maximum likelihood image estimation.
Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jongoh; Lee, Choonsik
2015-01-01
Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1% and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the Eclipse system directly to a Monte Carlo transport code, X-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10-year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the Eclipse and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to
Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik
2015-03-21
Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10 year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support
Monte Carlo-based revised values of dose rate constants at discrete photon energies
Selvam, T. Palani; Shrivastava, Vandana; Chourasiya, Ghanashyam; Babu, D. Appala Raju
2014-01-01
Absorbed dose rate to water at 0.2 cm and 1 cm due to a point isotropic photon source as a function of photon energy is calculated using the EDKnrc user-code of the EGSnrc Monte Carlo system. This code system utilized widely used XCOM photon cross-section dataset for the calculation of absorbed dose to water. Using the above dose rates, dose rate constants are calculated. Air-kerma strength Sk needed for deriving dose rate constant is based on the mass-energy absorption coefficient compilations of Hubbell and Seltzer published in the year 1995. A comparison of absorbed dose rates in water at the above distances to the published values reflects the differences in photon cross-section dataset in the low-energy region (difference is up to 2% in dose rate values at 1 cm in the energy range 30–50 keV and up to 4% at 0.2 cm at 30 keV). A maximum difference of about 8% is observed in the dose rate value at 0.2 cm at 1.75 MeV when compared to the published value. Sk calculations based on the compilation of Hubbell and Seltzer show a difference of up to 2.5% in the low-energy region (20–50 keV) when compared to the published values. The deviations observed in the values of dose rate and Sk affect the values of dose rate constants up to 3%. PMID:24600166
Kraig, D H
1997-10-01
A series of 254 weapons design experiments was conducted by Los Alamos National Laboratory from 1944 through 1962 and resulted in the dispersal of approximately 11 PBq (300 kCi) of radioactive 140La. All shots occurred at Point Able in Bayo Canyon, east of the Los Alamos townsite. Public interest and the Government Accounting Office probe precipitated a dose reconstruction to assess potential exposures to members of the public. The information available for each shot included explosive charge size, date and time of explosion, and shot activity. Detailed meteorological data were not available for the majority of the shots, requiring the development of statistically representative meteorological data. A wind rose was developed specific to the afternoon-evening time of the shots, and the wind frequency in each sector was used to determine the fraction of activity dispersed towards each hypothetical receptor. HOTSPOT 7, a Gaussian plume-based dispersion model, was used to determine the average dose per sector per unit of shot activity. The dose from penetrating radiation from ground-deposited 140La was greater by several orders of magnitude than the dose from inhalation and immersion. The highest doses to a permanent resident probably occurred in the easternmost part of the Los Alamos townsite. The highest annual dose occurred in 1955 and was approximately 0.23 mSv. Assuming an individual had been at the location of maximum potential exposure in the Los Alamos townsite continuously throughout the experiments, the total dose from the 18-y series would have been approximately 1.4 mSv with an average dose of approximately 0.09 mSv y(-1). Doses at nearby Totavi trailer park, San Ildefonso Pueblo, and Santa Clara Pueblo were approximately 75%, 40%, and 15%, respectively, of those at Los Alamos. Visitors to nearby public areas received negligible doses. PMID:9314221
NASA Astrophysics Data System (ADS)
Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik
2015-03-01
Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10 year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support
The dose from Compton backscatter screening.
Rez, Peter; Metzger, Robert L; Mossman, Kenneth L
2011-04-01
Systems based on the detection of Compton backscattered X rays have been deployed for screening personnel for weapons and explosives. Similar principles are used for screening vehicles at border-crossing points. Based on well-established scattering cross sections and absorption coefficients in conjunction with reasonable estimates of the image contrast and resolution, the entrance skin dose and the dose at a depth of 1 cm can be calculated. The effective dose can be estimated using the same conversion coefficients as used to convert exposure measurements to the effective dose. It is shown that the effective dose is highly dependent on image resolution (i.e. pixel size).The effective doses for personnel screening systems are unlikely to be in compliance with the American National Standards Institute standard NS 43.17 unless the pixel sizes are >4 mm. Nevertheless, calculated effective doses are well below doses associated with health effects. PMID:21068018
The Maximum Entropy Principle for Generalized Entropies
NASA Astrophysics Data System (ADS)
Tsukada, Makoto
2008-03-01
It is well known that Gibbs states and the Gaussian distribution are characterized by the maximum entropy principle. In this paper we discuss probability distributions which maximize generalized entropies including Rényi's and Tsal-lis's.
Maximum forces and deflections from orthodontic appliances.
Burstone, C J; Goldberg, A J
1983-08-01
The maximum bending moment of an orthodontic wire is an important parameter in the design and use of an orthodontic appliance. It is the wire property that determines how much force an appliance can deliver. A bending test which allows direct measurement of the maximum bending moment was developed. Data produced from this test are independent of wire length and configuration. The maximum bending moment, percent recovery, and maximum springback were determined for round and rectangular cross sections of stainless steel, nickel-titanium, and beta-titanium wires. The data suggest the need for more specifically defining maximum moment and maximum springback. Three maximum bending moments are described: Me, My, and Mult. My and Mult are clinically the most significant. Appliances that are required to have no permanent deformation must operate below My. Appliances that exhibit marked permanent deformation may be used in some applications and, if so, higher bending moments can be produced. In order of magnitude, the maximum bending moment at yield is largest in stainless steel, beta-titanium, and nickel-titanium for a given cross section. Nickel-titanium and beta-titanium have significantly larger springback than stainless steel determined at the moment at yield. Nickel-titanium did not follow the theoretical ratio between ultimate bending moment and the bending moment at yield, exhibiting a very large ratio. The study supports the hypothesis that most orthodontic appliances are activated in a range where both plastic and elastic behavior occurs; therefore, the use of yield strengths for calculation of force magnitude can lead to a significant error in predicting the forces delivered. PMID:6576645
Maximum-Likelihood Detection Of Noncoherent CPM
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Simon, Marvin K.
1993-01-01
Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.
Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events.
NASA Astrophysics Data System (ADS)
Simonsen, L. C.; Nealy, J. E.
1993-02-01
The Langley heavy-ion/nucleon and the high-energy nucleon transport codes are used to predict the propagation of galactic cosmic rays (GCR's) and solar flare protons through the carbon dioxide atmosphere of Mars. Particle fluences and the resulting doses are estimated on the surface of Mars for GCR's during solar maximum conditions and the August, September, and October 1989 solar proton events. Surface doses are estimated with both a low-density and a high-density carbon dioxide model of the atmosphere for altitudes of 0, 4, 8, and 12 km above the surface. A solar modulation function is incorporated to estimate the GCR dose variation between solar minimum and maximum conditions over the 11-year solar cycle. By using current Mars mission scenarios, doses to the skin, eye, and blood-forming organs are predicted for short- and long-duration stay times on the Martian surface throughout the solar cycle.
Holmes, W.G.
2001-08-16
The offsite radiological effects from high velocity straight winds, tornadoes, and earthquakes have been estimated for a proposed facility for manufacturing enriched uranium fuel cores by powder metallurgy. Projected doses range up to 30 mrem/event to the maximum offsite individual for high winds and up to 85 mrem/event for very severe earthquakes. Even under conservative assumptions on meteorological conditions, the maximum offsite dose would be about 20 per cent of the DOE limit for accidents involving enriched uranium storage facilities. The total dose risk is low and is dominated by the risk from earthquakes. This report discusses this test.
Strenge, D.L.; Peloquin, R.A.
1981-04-01
The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure mode are also printed if requested.
A Randomized, Open-Label, Dose-Response Study of Losartan in Hypertensive Children
Wells, Thomas G.; Shahinfar, Shahnaz; Massaad, Rachid; Dankner, Wayne M.; Lam, Chun; Santoro, Emanuela Palumbo; McCrary Sisk, Christine; Blaustein, Robert O.
2014-01-01
Background and objectives Once-daily losartan reduces BP in a dose-dependent manner and is well tolerated in hypertensive children aged 6–16 years. This study assessed the dose-response relationship, safety, and tolerability of losartan in hypertensive children aged 6 months to 6 years. Design, setting, participants, & measurements This was a 12-week, randomized, open-label, dose-ranging study, with a 2-year extension. Patients were randomized to losartan at the following dosages: 0.1 mg/kg per day (low), 0.3 mg/kg per day (medium), or 0.7 mg/kg per day (high). Losartan was titrated to the next dose level (to a 1.4 mg/kg per day maximum dosage, not exceeding 100 mg/d, which was not one of the three original doses offered at randomization) at weeks 3, 6, and 9 for patients who did not attain their goal BP and were not taking the highest dose. Dose response was evaluated by analyzing the slope of change in sitting systolic BP (SBP; primary end point) and diastolic BP (DBP; secondary end point) after 3 weeks compared with baseline. Adverse events (AEs) were recorded throughout. Results Of the 101 patients randomized, 99 were included in the analysis (low dose, n=32; medium dose, n=34; and high dose, n=33). Mean sitting BP decreased from baseline in the low-, medium-, and high-dose groups by 7.3, 7.6, and 6.7 mmHg, respectively, for SBP and 8.2, 5.1, and 6.7 mmHg, respectively, for DBP after 3 weeks. No dose-response relationship was established by the slope analysis on SBP (P=0.75) or DBP (P=0.64). The BP-lowering effect was observed throughout the 2-year extension. The incidence of AEs was low and comparable between groups. Conclusions Hypertensive children aged 6 months to 6 years treated with losartan 0.1–0.7 mg/kg per day had clinically significant decreases from baseline in SBP and DBP, yet no dose-response relationship was evident. Losartan, at a dosage up to 1.4 mg/kg per day, was well tolerated. PMID:24875194
Fast range-corrected proton dose approximation method using prior dose distribution
NASA Astrophysics Data System (ADS)
Park, Peter C.; Cheung, Joey; Zhu, X. Ronald; Sahoo, Narayan; Court, Laurence; Dong, Lei
2012-06-01
For robust plan optimization and evaluation purposes, one needs a computationally efficient way to calculate dose distributions and dose-volume histograms (DVHs) under various changes in the variables associated with beam delivery and images. In this study, we report an approximate method for rapid calculation of dose when setup errors and anatomical changes occur during proton therapy. This fast dose approximation method calculates new dose distributions under various circumstances based on the prior knowledge of dose distribution from a reference setting. In order to validate the method, we calculated and compared the dose distributions from our approximation method to the dose distributions calculated from a clinically commissioned treatment planning system which was used as the ground truth. The overall accuracy of the proposed method was tested against varying degrees of setup error and anatomical deformation for selected patient cases. The setup error was simulated by rigid shifts of the patient; while the anatomical deformation was introduced using weekly acquired repeat CT data sets. We evaluated the agreement between the dose approximation method and full dose recalculation using a 3D gamma index and the root-mean-square (RMS) and maximum deviation of the cumulative dose volume histograms (cDVHs). The average passing rate of 3D gamma analysis under 3% dose and 3 mm distance-to-agreement criteria were 96% and 89% for setup errors and severe anatomy changes, respectively. The average of RMS and maximum deviation of the cDVHs under the setup error was 0.5% and 1.5%, respectively for all structures considered. Similarly, the average of RMS and maximum deviations under the weekly anatomical change were 0.6% and 2.7%, respectively. Our results show that the fast dose approximation method was able to account for the density variation of the patient due to the setup and anatomical changes with acceptable accuracy while significantly improving the computation time.
Bush, K; Holcombe, C; Kapp, D; Buyyounouski, M; Hancock, S; Xing, L; Atwood, T; King, M
2014-06-15
Purpose: Radiation-therapy dose-escalation beyond 80Gy may improve tumor control rates for patients with localized prostate cancer. Since toxicity remains a concern, treatment planners must achieve dose-escalation while still adhering to dose-constraints for surrounding structures. Patientmatching is a machine-learning technique that identifies prior patients that dosimetrically match DVH parameters of target volumes and critical structures prior to actual treatment planning. We evaluated the feasibility of patient-matching in (1)identifying candidates for safe dose-escalation; and (2)improving DVH parameters for critical structures in actual dose-escalated plans. Methods: We analyzed DVH parameters from 319 historical treatment plans to determine which plans could achieve dose-escalation (8640cGy) without exceeding Zelefsky dose-constraints (rectal and bladder V47Gy<53%, and V75.6Gy<30%, max-point dose to rectum of 8550cGy, max dose to PTV< 9504cGy). We then estimated the percentage of cases that could achieve safe dose-escalation using software that enables patient matching (QuickMatch, Siris Medical, Mountain View, CA). We then replanned a case that had violated DVH constraints with DVH parameters from patient matching, in order to determine whether this previously unacceptable plan could be made eligible with this automated technique. Results: Patient-matching improved the percentage of patients eligible for dose-escalation from 40% to 63% (p=4.7e-4, t-test). Using a commercial optimizer augmented with patient-matching, we demonstrated a case where patient-matching improved the toxicity-profile such that dose-escalation would have been possible; this plan was rapidly achieved using patientmatching software. In this patient, all lower-dose constraints were met with both the denovo and patient-matching plan. In the patient-matching plan, maximum dose to the rectum was 8385cGy, while the denovo plan failed to meet the maximum rectal constraint at 8571c
Cell Development obeys Maximum Fisher Information
Frieden, B. Roy; Gatenby, Robert A.
2014-01-01
Eukaryotic cell development has been optimized by natural selection to obey maximal intracellular flux of messenger proteins. This, in turn, implies maximum Fisher information on angular position about a target nuclear pore complex (NPR). The cell is simply modeled as spherical, with cell membrane (CM) diameter 10μm and concentric nuclear membrane (NM) diameter 6μm. The NM contains ≈ 3000 nuclear pore complexes (NPCs). Development requires messenger ligands to travel from the CM-NPC-DNA target binding sites. Ligands acquire negative charge by phosphorylation, passing through the cytoplasm over Newtonian trajectories toward positively charged NPCs (utilizing positive nuclear localization sequences). The CM-NPC channel obeys maximized mean protein flux F and Fisher information I at the NPC, with first-order δI = 0 and approximate 2nd-order δ2I ≈ 0 stability to environmental perturbations. Many of its predictions are confirmed, including the dominance of protein pathways of from 1–4 proteins, a 4nm size for the EGFR protein and the flux value F ≈1016 proteins/m2-s. After entering the nucleus, each protein ultimately delivers its ligand information to a DNA target site with maximum probability, i.e. maximum Kullback-Liebler entropy HKL. In a smoothness limit HKL → IDNA/2, so that the total CM-NPC-DNA channel obeys maximum Fisher I. Thus maximum information → non-equilibrium, one condition for life. PMID:23747917
Maximum permissible voltage of YBCO coated conductors
NASA Astrophysics Data System (ADS)
Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z.; Hong, Z.; Wang, D.; Zhou, H.; Shen, X.; Shen, C.
2014-06-01
Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (Ic) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the Ic degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.
The use of experimental design to find the operating maximum power point of PEM fuel cells
Crăciunescu, Aurelian; Pătularu, Laurenţiu; Ciumbulea, Gloria; Olteanu, Valentin; Pitorac, Cristina; Drugan, Elena
2015-03-10
Proton Exchange Membrane (PEM) Fuel Cells are difficult to model due to their complex nonlinear nature. In this paper, the development of a PEM Fuel Cells mathematical model based on the Design of Experiment methodology is described. The Design of Experiment provides a very efficient methodology to obtain a mathematical model for the studied multivariable system with only a few experiments. The obtained results can be used for optimization and control of the PEM Fuel Cells systems.
Probable maximum floods at the Yucca Mountain exploration shafts
Cardle, J.A.; Lim, S.T.
1990-10-01
This paper presents an analysis of flood flows in the Coyote Wash at the proposed high level nuclear waste repository site at Yucca Mountain, Nevada. Estimates of the hydrographs at various points in this wash resulting from the 100 year storm and from the probable maximum storms are developed and compared with other results. Flows in this particular wash are particularly critical due to the adjacent location of the proposed exploratory shafts. The resulting hydrographs at the site of the exploratory shaft pad are delineated.
Targeted maximum likelihood based causal inference: Part II.
van der Laan, Mark J
2010-01-01
In this article, we provide a template for the practical implementation of the targeted maximum likelihood estimator for analyzing causal effects of multiple time point interventions, for which the methodology was developed and presented in Part I. In addition, the application of this template is demonstrated in two important estimation problems: estimation of the effect of individualized treatment rules based on marginal structural models for treatment rules, and the effect of a baseline treatment on survival in a randomized clinical trial in which the time till event is subject to right censoring. PMID:21731531
Targeted Maximum Likelihood Based Causal Inference: Part II
van der Laan, Mark J.
2010-01-01
In this article, we provide a template for the practical implementation of the targeted maximum likelihood estimator for analyzing causal effects of multiple time point interventions, for which the methodology was developed and presented in Part I. In addition, the application of this template is demonstrated in two important estimation problems: estimation of the effect of individualized treatment rules based on marginal structural models for treatment rules, and the effect of a baseline treatment on survival in a randomized clinical trial in which the time till event is subject to right censoring. PMID:21731531
Valakh, Vladimir; Kim, Yongbok; Werts, E. Day; Trombetta, Mark G.
2012-04-01
Purpose: To investigate radiation dose to the heart in 60 patients with left-sided breast cancer who were treated with balloon-based high-dose-rate brachytherapy using MammoSite or Contura applicators. Methods and Materials: We studied 60 consecutive women with breast cancer who were treated with 34 Gy in 10 twice-daily fractions using MammoSite (n = 37) or Contura (n = 23) applicators. The whole heart and the left and right ventricles were retrospectively delineated, and dose-volume histograms were analyzed. Multiple dosimetrics were reported, such as mean dose (D{sub mean}); relative volume receiving 1.7, 5, 10, and 20 Gy (V1.7, V5, V10, and V20, respectively); dose to 1 cc (D{sub 1cc}); and maximum point dose (D{sub max}). Biologic metrics, biologically effective dose and generalized equivalent uniform dose were computed. The impact of lumpectomy cavity location on cardiac dose was investigated. Results: The average {+-} standard deviation of D{sub mean} was 2.45 {+-} 0.94 Gy (range, 0.56-4.68) and 3.29 {+-} 1.28 Gy (range, 0.77-6.35) for the heart and the ventricles, respectively. The average whole heart V5 and V10 values were 10.2% and 1.3%, respectively, and the heart D{sub max} was >20 Gy in 7 of 60 (11.7%) patients and >25 Gy in 3 of 60 (5%) patients. No cardiac tissue received {>=}30 Gy. The V1.7, V5, V10, V20, and D{sub mean} values were all higher for the ventricles than for the whole heart. For balloons located in the upper inner quadrant of the breast, the average whole heart D{sub mean} was highest. The D{sub mean}, biologically effective dose, and generalized equivalent uniform dose values for heart and ventricles decreased with increasing minimal distance from the surface of the balloon. Conclusions: On the basis of these comprehensive cardiac dosimetric data, we recommend that cardiac dose be routinely reported and kept as low as possible in balloon-based high-dose-rate brachytherapy treatment planning for patients with left-sided breast cancer so
Estimation of external dose by car-borne survey in Kerala, India.
Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi
2015-01-01
A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y. PMID:25885680
Estimation of External Dose by Car-Borne Survey in Kerala, India
Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi
2015-01-01
A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7–2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y. PMID:25885680
Surface tension maximum of liquid 3He
NASA Astrophysics Data System (ADS)
Matsumoto, Koichi; Hasegawa, Syuichi; Suzuki, Masaru; Okuda, Yuichi
2000-07-01
The surface tension of liquid 3He was measured using the capillary-rise method. Suzuki et al. have reported that its temperature dependence was almost quenched below 120 mK. Here we have examined it with higher precision and found that it has a small maximum around 100 mK. The amount of the maximum is about 3×10 -4 as a fraction of the surface tension at 0 K. The density of liquid 3He increases with temperature by about 5×10 -4 in Δ ρ/ ρ between 0 and 100 mK. This density change could be one of the reasons of the surface tension maximum around 100 mK.
The Maximum Mass of Rotating Strange Stars
NASA Astrophysics Data System (ADS)
Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.
2012-12-01
Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.
Maximum stabilizer dimension for nonproduct states
Walck, Scott N.; Lyons, David W.
2007-08-15
Composite quantum states can be classified by how they behave under local unitary transformations. Each quantum state has a stabilizer subgroup and a corresponding Lie algebra, the structure of which is a local unitary invariant. In this paper, we study the structure of the stabilizer subalgebra for n-qubit pure states, and find its maximum dimension to be n-1 for nonproduct states of three qubits and higher. The n-qubit Greenberger-Horne-Zeilinger state has a stabilizer subalgebra that achieves the maximum possible dimension for pure nonproduct states. The converse, however, is not true: We show examples of pure 4-qubit states that achieve the maximum nonproduct stabilizer dimension, but have stabilizer subalgebra structures different from that of the n-qubit GHZ state.
Carver, R; Popple, R; Benhabib, S; Antolak, J; Sprunger, C; Hogstrom, K
2014-06-01
Purpose: To evaluate the accuracy of electron dose distribution calculated by the Varian Eclipse electron Monte Carlo (eMC) algorithm for use with recent commercially available bolus electron conformal therapy (ECT). Methods: eMC-calculated electron dose distributions for bolus ECT have been compared to those previously measured for cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV CT anatomy for each site. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The bolus ECT treatment plans were imported into the Eclipse treatment planning system and calculated using the maximum allowable histories (2×10{sup 9}), resulting in a statistical error of <0.2%. Smoothing was not used for these calculations. Differences between eMC-calculated and measured dose distributions were evaluated in terms of absolute dose difference as well as distance to agreement (DTA). Results: Results from the eMC for the retromolar trigone phantom showed 89% (41/46) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of −0.12% with a standard deviation of 2.56%. Results for the nose phantom showed 95% (54/57) of dose points within 3% dose difference or 3 mm DTA. There was an average dose difference of 1.12% with a standard deviation of 3.03%. Dose calculation times for the retromolar trigone and nose treatment plans were 15 min and 22 min, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a Varian Eclipse framework agent server (FAS). Results of this study were consistent with those previously reported for accuracy of the eMC electron dose algorithm and for the .decimal, Inc. pencil beam redefinition algorithm used to plan the bolus. Conclusion: These results show that the accuracy of the Eclipse eMC algorithm is suitable for clinical implementation of bolus ECT.
Satory, P R
2012-03-01
This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient. PMID:22298238
Khosroabadi, Mohsen; Ghorbani, Mahdi; Rahmani, Faezeh; Knaup, Courtney
2014-09-01
The aim of this study is to compare dose enhancement of various agents, nanoparticles and chemotherapy drugs for neutron capture therapy. A (252)Cf source was simulated to obtain its dosimetric parameters, including air kerma strength, dose rate constant, radial dose function and total dose rates. These results were compared with previously published data. Using (252)Cf as a neutron source, the in-tumour dose enhancements in the presence of atomic (10)B, (157)Gd and (33)S agents; (10)B, (157)Gd, (33)S nanoparticles; and Bortezomib and Amifostine chemotherapy drugs were calculated and compared in neutron capture therapy. Monte Carlo code MCNPX was used for simulation of the (252)Cf source, a soft tissue phantom, and a tumour containing each capture agent. Dose enhancement for 100, 200 and 500 ppm of the mentioned media was calculated. Calculated dosimetric parameters of the (252)Cf source were in agreement with previously published values. In comparison to other agents, maximum dose enhancement factor was obtained for 500 ppm of atomic (10)B agent and (10)B nanoparticles, equal to 1.06 and 1.08, respectively. Additionally, Bortezomib showed a considerable dose enhancement level. From a dose enhancement point of view, media containing (10)B are the best agents in neutron capture therapy. Bortezomib is a chemotherapy drug containing boron and can be proposed as an agent in boron neutron capture therapy. However, it should be noted that other physical, chemical and medical criteria should be considered in comparing the mentioned agents before their clinical use in neutron capture therapy. PMID:24961208
NASA Technical Reports Server (NTRS)
Scholz, D.; Fuhs, N.; Hixson, M.
1979-01-01
The overall objective of this study was to apply and evaluate several of the currently available classification schemes for crop identification. The approaches examined were: (1) a per point Gaussian maximum likelihood classifier, (2) a per point sum of normal densities classifier, (3) a per point linear classifier, (4) a per point Gaussian maximum likelihood decision tree classifier, and (5) a texture sensitive per field Gaussian maximum likelihood classifier. Three agricultural data sets were used in the study: areas from Fayette County, Illinois, and Pottawattamie and Shelby Counties in Iowa. The segments were located in two distinct regions of the Corn Belt to sample variability in soils, climate, and agricultural practices.
Maximum predictive power and the superposition principle
NASA Technical Reports Server (NTRS)
Summhammer, Johann
1994-01-01
In quantum physics the direct observables are probabilities of events. We ask how observed probabilities must be combined to achieve what we call maximum predictive power. According to this concept the accuracy of a prediction must only depend on the number of runs whose data serve as input for the prediction. We transform each probability to an associated variable whose uncertainty interval depends only on the amount of data and strictly decreases with it. We find that for a probability which is a function of two other probabilities maximum predictive power is achieved when linearly summing their associated variables and transforming back to a probability. This recovers the quantum mechanical superposition principle.
Mazonakis, Michalis; Zacharopoulou, Fotini; Varveris, Haralambos; Damilakis, John
2008-10-15
Peripheral dose (PD) to critical structures outside treatment volume is of clinical importance. The aim of the current study was to estimate PD on a linear accelerator equipped with multileaf collimator (MLC). Dose measurements were carried out using an ionization chamber embedded in a water phantom for 6 and 18 MV photon beams. PD values were acquired for field sizes from 5x5 to 20x20 cm{sup 2} in increments of 5 cm at distances up to 24 cm from the field edge. Dose data were obtained at two collimator orientations where the measurement points are shielded by MLC and jaws. The variation of PD with the source to skin distance (SSD), depth, and lateral displacement of the measurement point was evaluated. To examine the dependence of PD upon the tissue thickness at the entrance point of the beam, scattered dose was measured using thermoluminescent dosemeters placed on three anthropomorphic phantoms simulating 5- and 10-year-old children and an average adult patient. PD from 6 MV photons varied from 0.13% to 6.75% of the central-axis maximum dose depending upon the collimator orientation, extent of irradiated area, and distance from the treatment field. The corresponding dose range from 18 MV x rays was 0.09% to 5.61%. The variation of PD with depth and with lateral displacements up to 80% of the field dimension was very small. The scattered dose from both photon beams increased with the increase of SSD or tissue thickness along beam axis. The presented dosimetric data set allows the estimation of scattered dose outside the primary beam.
Shen, Jun; Boeckmann, Alison; Vick, Andrew
2012-06-01
A mathematical absorption model (e.g. transit compartment model) is useful to describe complex absorption process. However, in such a model, an assumption has to be made to introduce multiple doses that a prior dose has been absorbed nearly completely when the next dose is administered. This is because the drug input cannot be determined from drug depot compartment through integration of the differential equation system and has to be analytically calculated. We propose a method of dose superimposition to introduce multiple doses; thereby eliminating the assumption. The code for implementing the dose superimposition in WinNonlin and NONMEM was provided. For implementation in NONMEM, we discussed a special case (SC) and a general case (GC). In a SC, dose superimposition was implemented solely using NM-TRAN abbreviated code and the maximum number of the doses that can be administered for any subject must be pre-defined. In a GC, a user-supplied function (FUNCA) in FORTRAN code was defined to perform dose superimposition to remove the restriction that the maximum number of doses must be pre-defined. PMID:22555854
A maximum likelihood approach to estimating correlation functions
Baxter, Eric Jones; Rozo, Eduardo
2013-12-10
We define a maximum likelihood (ML for short) estimator for the correlation function, ξ, that uses the same pair counting observables (D, R, DD, DR, RR) as the standard Landy and Szalay (LS for short) estimator. The ML estimator outperforms the LS estimator in that it results in smaller measurement errors at any fixed random point density. Put another way, the ML estimator can reach the same precision as the LS estimator with a significantly smaller random point catalog. Moreover, these gains are achieved without significantly increasing the computational requirements for estimating ξ. We quantify the relative improvement of the ML estimator over the LS estimator and discuss the regimes under which these improvements are most significant. We present a short guide on how to implement the ML estimator and emphasize that the code alterations required to switch from an LS to an ML estimator are minimal.
The 1984 - 1987 Solar Maximum Mission event list
NASA Technical Reports Server (NTRS)
Dennis, B. R.; Licata, J. P.; Nelson, J. J.; Tolbert, A. K.
1992-01-01
Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1984-1987 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x-ray burst spectrometer; (3) flat crystal spectrometer; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronograph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.
Skin dose from radionuclide contamination on clothing
Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.
1997-06-01
Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by proper weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.
Acute reference doses: theory and practical approaches.
Moretto, A
2000-07-01
The approach of the Joint Meeting on Pesticide Residues to the establishment of the acute reference dose for pesticides is presented and related issues are discussed. Three main points seem relevant when discussing the acute reference dose: (1) what compounds should have an acute reference dose, (2) what toxicological database is required for the establishment of an acute reference dose; (3) what safety factors are to be used. It is concluded that (1) groups of compounds that need an acute reference dose can be identified, whereas general rules for identifying groups not requiring an acute reference dose cannot be easily given; (2) studies from the standard toxicological database can often be used to allocate an acute reference dose and the usefulness of refinements (by requesting specific studies) should be evaluated after intake assessment; general rules on study requirements cannot be easily given; (3) more thought should be given to what safety factors apply in certain circumstances. PMID:10983586
Park, J; Park, H; Lee, J; Kang, S; Lee, M; Suh, T; Lee, B
2014-06-01
Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from the whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea
Ohara, Hiroshi; Nakamura, Yuji; Watanabe, Yudai; Cao, Xin; Yamazaki, Yukiko; Izumi-Nakaseko, Hiroko; Ando, Kentaro; Yamazaki, Hiroshi; Yamazaki, Junichi; Ikeda, Takanori; Sugiyama, Atsushi
2015-07-01
Azithromycin has been reported to increase the risk of death from cardiovascular causes among patients with high baseline risk. Since the information is still limited to bridge the gap between electrophysiological properties of azithromycin in vitro and cardiac death in patients, we initially assessed its electropharmacological effects in doses of 3 and 30 mg/kg, i.v., with the halothane-anesthetized dogs (n = 4). The low dose provided 5.2 times higher than the therapeutic concentration, whereas the high dose attained 17.0 times higher. The high dose delayed the ventricular repolarization in a reverse use-dependent manner, reflecting blockade of the rapid component of delayed rectifier K(+) current, and the potency was relatively weak; namely, maximum change in QTc was +20 ms (+5.6%). The high dose also induced the negative inotropic effect possibly through Ca(2+) channel-independent pathway. In order to clarify proarrhythmic risk, 30 mg/kg, i.v., of azithromycin was examined with the chronic atrioventricular block dogs (n = 4). Azithromycin neither induced torsade de pointes nor affected beat-to-beat variability of repolarization. Thus, azithromycin can be considered to lack proarrhythmic potential, but caution has to be paid on its use for patients with left ventricular dysfunction. PMID:25367413
Goldsmith, Christy; Price, Patricia; Cross, Timothy; Loughlin, Sheila; Cowley, Ian; Plowman, Nicholas
2016-04-01
Pancreatic carcinoma is an aggressive disease and radiotherapy treatment delivery to the primary tumor is constrained by the anatomical close location of the duodenum, stomach, and small bowel. Duodenal dose tolerance for radiosurgery in 2-5 fractions has been largely unknown. The literature was surveyed for quantitative models of risk in 1-5 fractions and we analyzed our own patient population of 44 patients with unresectable pancreatic tumors who received 3 or 5 fractions of stereotactic body radiotherapy (SBRT) between March 2009 and March 2013. A logistic model was constructed in the dose-volume histogram (DVH) Evaluator software for the duodenal D50%, D30cc, D5cc, D1cc, and maximum point dose D0.035cc. Dose tolerance limits from the literature were overlaid onto the clinical duodenal data in the form of a DVH Risk Map, with risk levels of the published limits estimated from the model of clinical data. In 3 fractions, Kopek 2010 found a statistically significant difference in D1cc of patients with no common terminology criteria for adverse events (CTCAE) v3 grade 2 or higher duodenal complications (mean D1cc = 25.3Gy) as compared with patients with grade 2 or higher toxicity (mean D1cc = 37.4Gy). From the logistic model of our duodenal data in 3 fractions, D1cc = 25.3Gy had 4.7% risk of grade 3-4 hemorrhage or stricture and D1cc = 37.4Gy had 20% risk. The 10% risk level was D1cc = 31.4Gy and we were able to keep duodenum dose for all our patients later this level. PMID:27000512
Maximum rotation frequency of strange stars
Zdunik, J.L.; Haensel, P. )
1990-07-15
Using the MIT bag model of strange-quark matter, we calculate the maximum angular frequency of the uniform rotation of strange stars. After studying a broad range of the MIT bag-model parameters, we obtain an upper bound of 12.3 kHz.
33 CFR 401.29 - Maximum draft.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Maximum draft. 401.29 Section 401.29 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF... 1 The main channels between the Port of Montreal and Lake Erie have a controlling depth of 8.23m....
33 CFR 401.29 - Maximum draft.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Maximum draft. 401.29 Section 401.29 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF... 1 The main channels between the Port of Montreal and Lake Erie have a controlling depth of 8.23m....
33 CFR 401.29 - Maximum draft.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Maximum draft. 401.29 Section 401.29 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF... 1 The main channels between the Port of Montreal and Lake Erie have a controlling depth of 8.23m....
33 CFR 401.29 - Maximum draft.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Maximum draft. 401.29 Section 401.29 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF... tendency to list or squat, so as to avoid striking bottom.1 1 The main channels between the Port...
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Maximum rates. 9701.312 Section 9701.312 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN...
7 CFR 1778.11 - Maximum grants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... quantity of potable water, or an anticipated acute shortage or significant decline, cannot exceed $150,000... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.11 Maximum grants. (a) Grants not to exceed $500,000 may be made to alleviate a significant decline in quantity or quality of...
7 CFR 1778.11 - Maximum grants.
Code of Federal Regulations, 2010 CFR
2010-01-01
... quantity of potable water, or an anticipated acute shortage or significant decline, cannot exceed $150,000... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.11 Maximum grants. (a) Grants not to exceed $500,000 may be made to alleviate a significant decline in quantity or quality of...
7 CFR 1778.11 - Maximum grants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... quantity of potable water, or an anticipated acute shortage or significant decline, cannot exceed $150,000... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.11 Maximum grants. (a) Grants not to exceed $500,000 may be made to alleviate a significant decline in quantity or quality of...
Maximum hyperchaos in chaotic nonmonotonic neuronal networks
NASA Astrophysics Data System (ADS)
Shuai, J. W.; Chen, Z. X.; Liu, R. T.; Wu, B. X.
1997-07-01
Hyperchaos in chaotic nonmonotonic neuronal networks is discussed with computer simulations. Maximum chaos with all Lyapunov exponents positive is found not only in the present dissipative model with weak coupling connections between neurons, but also with some strong-coupling connections. Although the model presented is a noninvertible map, the information dimension of simple chaos still yields a good approximation to the Lyapunov dimension.
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may...
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may...
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Pay and Pay Administration Overview of Pay System § 9701.312 Maximum rates. (a) DHS may...
Predicting Maximum Lake Depth from Surrounding Topography
Hollister, Jeffrey W.; Milstead, W. Bryan; Urrutia, M. Andrea
2011-01-01
Information about lake morphometry (e.g., depth, volume, size, etc.) aids understanding of the physical and ecological dynamics of lakes, yet is often not readily available. The data needed to calculate measures of lake morphometry, particularly lake depth, are usually collected on a lake-by-lake basis and are difficult to obtain across broad regions. To span the gap between studies of individual lakes where detailed data exist and regional studies where access to useful data on lake depth is unavailable, we developed a method to predict maximum lake depth from the slope of the topography surrounding a lake. We use the National Elevation Dataset and the National Hydrography Dataset – Plus to estimate the percent slope of surrounding lakes and use this information to predict maximum lake depth. We also use field measured maximum lake depths from the US EPA's National Lakes Assessment to empirically adjust and cross-validate our predictions. We were able to predict maximum depth for ∼28,000 lakes in the Northeastern United States with an average cross-validated RMSE of 5.95 m and 5.09 m and average correlation of 0.82 and 0.69 for Hydrological Unit Code Regions 01 and 02, respectively. The depth predictions and the scripts are openly available as supplements to this manuscript. PMID:21984945
Maximum Possible Transverse Velocity in Special Relativity.
ERIC Educational Resources Information Center
Medhekar, Sarang
1991-01-01
Using a physical picture, an expression for the maximum possible transverse velocity and orientation required for that by a linear emitter in special theory of relativity has been derived. A differential calculus method is also used to derive the expression. (Author/KR)
Weak scale from the maximum entropy principle
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu
2015-03-01
The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.
5 CFR 9701.312 - Maximum rates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Maximum rates. 9701.312 Section 9701.312 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN...
Comparing maximum pressures in internal combustion engines
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W; Lee, Stephen M
1922-01-01
Thin metal diaphragms form a satisfactory means for comparing maximum pressures in internal combustion engines. The diaphragm is clamped between two metal washers in a spark plug shell and its thickness is chosen such that, when subjected to explosion pressure, the exposed portion will be sheared from the rim in a short time.
24 CFR 200.15 - Maximum mortgage.
Code of Federal Regulations, 2012 CFR
2012-04-01
... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Requirements for Application, Commitment, and Endorsement... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Maximum mortgage. 200.15 Section 200.15 Housing and Urban Development Regulations Relating to Housing and Urban Development...
24 CFR 200.15 - Maximum mortgage.
Code of Federal Regulations, 2011 CFR
2011-04-01
... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Requirements for Application, Commitment, and Endorsement... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Maximum mortgage. 200.15 Section 200.15 Housing and Urban Development Regulations Relating to Housing and Urban Development...
Menu Plans: Maximum Nutrition for Minimum Cost.
ERIC Educational Resources Information Center
Texas Child Care, 1995
1995-01-01
Suggests that menu planning is the key to getting maximum nutrition in day care meals and snacks for minimum cost. Explores United States Department of Agriculture food pyramid guidelines for children and tips for planning menus and grocery shopping. Includes suggested meal patterns and portion sizes. (HTH)
Dose evaluation for skin and organ in hepatocellular carcinoma during angiographic procedure
2013-01-01
Purpose The purpose of this study is to evaluate the radiation dose in patients undergoing liver angiographic procedure and verify the usefulness of different dose measurements to prevent deterministic effects. Gafchromic film, MicroMOSFET data and DIAMENTOR device of the X-ray system were used to characterize the examined interventional radiology (IR) procedure. Materials and methods A liver embolization procedure, the SIRT (Selective Internal Radiation Therapy), was investigated. The exposure parameters from the DIAMENTOR as well as patient and geometrical data were registered. Entrance skin dose map obtained using Gafchromic film (ESDGAF) in a standard phantom as well as in 12 patients were used to calculate the maximum skin dose (MSDGAF). MicroMOSFETs were used to assess ESD in relevant points/areas. Moreover, the maximum value of five MicroMOSFETs array, due to the extension of treated area and to the relative distance of 2–3 cm of two adjacent MicroMOSFETs, was useful to predict the MSD without interfering with the clinical practice. PCXMC vers.1.5 was used to calculate effective dose (E) and equivalent dose (H). Results The mean dose-area product (DAPDIAMENTOR) for SIRT procedures was 166 Gycm2, although a wide range was observed. The mean MSDGAF for SIRT procedures was 1090 mGy, although a wide range was experienced. A correlation was found between the MSDGAF measured on a patient and the DAPDIAMENTOR value for liver embolizations. MOSFET and Gafchromic data were in agreement within 5% in homogeneous area and within 20% in high dose gradient regions. The mean equivalent dose in critical organs was 89.8 mSv for kidneys, 22.9 mSv for pancreas, 20.2 mSv for small intestine and 21.0 mSv for spleen. Whereas the mean E was 3.7 mSv (range: 0.5-13.7). Conclusions Gafchromic films result useful to study patient exposure and determine localization and amplitude of high dose skin areas to better predict the skin injuries. Then, DAPDIAMENTOR or MOSFET data
Technical basis for dose reconstruction
Anspaugh, L.R.
1996-12-31
The purpose of this paper is to consider two general topics: Technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied. 90 refs., 4 tabs.
Technical basis for dose reconstruction
Anspaugh, L.R.
1996-01-31
The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.
Okamoto, Hiroyuki; Aikawa, Ako; Wakita, Akihisa; Yoshio, Kotaro; Murakami, Naoya; Nakamura, Satoshi; Hamada, Minoru; Abe, Yoshihisa; Itami, Jun
2014-01-01
The influence of deviations in dwell times and source positions for 192Ir HDR-RALS was investigated. The potential dose errors for various kinds of brachytherapy procedures were evaluated. The deviations of dwell time ΔT of a 192Ir HDR source for the various dwell times were measured with a well-type ionization chamber. The deviations of source position ΔP were measured with two methods. One is to measure actual source position using a check ruler device. The other is to analyze peak distances from radiographic film irradiated with 20 mm gap between the dwell positions. The composite dose errors were calculated using Gaussian distribution with ΔT and ΔP as 1σ of the measurements. Dose errors depend on dwell time and distance from the point of interest to the dwell position. To evaluate the dose error in clinical practice, dwell times and point of interest distances were obtained from actual treatment plans involving cylinder, tandem-ovoid, tandem-ovoid with interstitial needles, multiple interstitial needles, and surface-mold applicators. The ΔT and ΔP were 32 ms (maximum for various dwell times) and 0.12 mm (ruler), 0.11 mm (radiographic film). The multiple interstitial needles represent the highest dose error of 2%, while the others represent less than approximately 1%. Potential dose error due to dwell time and source position deviation can depend on kinds of brachytherapy techniques. In all cases, the multiple interstitial needles is most susceptible. PMID:24566719
Adaptive dose modification for phase I clinical trials.
Chu, Yiyi; Pan, Haitao; Yuan, Ying
2016-09-10
Most phase I dose-finding methods in oncology aim to find the maximum-tolerated dose from a set of prespecified doses. However, in practice, because of a lack of understanding of the true dose-toxicity relationship, it is likely that none of these prespecified doses are equal or reasonably close to the true maximum-tolerated dose. To handle this issue, we propose an adaptive dose modification (ADM) method that can be coupled with any existing dose-finding method to adaptively modify the dose, when it is needed, during the course of dose finding. To reflect clinical practice, we divide the toxicity probability into three regions: underdosing, acceptable, and overdosing regions. We adaptively add a new dose whenever the observed data suggest that none of the investigational doses are likely to be located in the acceptable region. The new dose is estimated via a nonparametric dose-toxicity model based on local polynomial regression. The simulation study shows that ADM substantially outperforms the similar existing method. We applied ADM to a phase I cancer trial. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27027650
Maximum Aerodynamic Force on an Ascending Space Vehicle
NASA Astrophysics Data System (ADS)
Backman, Philip
2012-03-01
The March 2010 issue of The Physics Teacher includes a great article by Metz and Stinner on the kinematics and dynamics of a space shuttle launch. Within those pages is a brief mention of an event known in the language of the National Aeronautics and Space Administration (NASA) as "maximum dynamic pressure" (called simply "Max.AirPressure" in the article), where the combined effect of air density and the shuttles speed produce the greatest aerodynamic stress on the vehicle as it ascends through the atmosphere toward orbit. Official commentary during a launch2 refers to this point in the ascent with language such as "space shuttle main engines throttling back as vehicle enters area of maximum dynamic pressure" and occurs in a range between 45 and 60 s after launch. (In dealing with this stress, the space shuttles main engines reduce their thrust at approximately 45 s to reduce acceleration, and return to normal levels again some 15 s later as maximum dynamic pressure is traversed.) This paper presents an analysis, accessible to introductory-level students, that predicts the time of Max. AirPressure for a given ascending spacecraft.
Comparison of mapping approaches of design annual maximum daily precipitation
NASA Astrophysics Data System (ADS)
Szolgay, J.; Parajka, J.; Kohnová, S.; Hlavčová, K.
2009-05-01
In this study 2-year and 100-year annual maximum daily precipitation for rainfall-runoff studies and estimating flood hazard were mapped. The daily precipitation measurements at 23 climate stations from 1961-2000 were used in the upper Hron basin in central Slovakia. The choice of data preprocessing and interpolation methods was guided by their practical applicability and acceptance in the engineering hydrologic community. The main objective was to discuss the quality and properties of maps of design precipitation with a given return period with respect to the expectations of the end user. Four approaches to the preprocessing of annual maximum 24-hour precipitation data were used, and three interpolation methods employed. The first approach is the direct mapping of at-site estimates of distribution function quantiles; the second is the direct mapping of local estimates of the three parameters of the GEV distribution. In the third, the daily precipitation totals were interpolated into a regular grid network, and then the time series of the maximum daily precipitation totals in each grid point of the selected region were statistically analysed. In the fourth, the spatial distribution of the design precipitation was modeled by quantiles predicted by regional precipitation frequency analysis using the Hosking and Wallis procedure. The three interpolation methods used were the inverse distance weighting, nearest neighbor and the kriging method. Visual inspection and jackknife cross-validation were used to compare the combination of approaches.
Assessing dose rate distributions in VMAT plans
NASA Astrophysics Data System (ADS)
Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.
2016-04-01
Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within ±0.4 s and doses ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional
NASA Astrophysics Data System (ADS)
Maigne, L.; Perrot, Y.; Schaart, D. R.; Donnarieix, D.; Breton, V.
2011-02-01
The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV.
Maigne, L; Perrot, Y; Schaart, D R; Donnarieix, D; Breton, V
2011-02-01
The GATE Monte Carlo simulation platform based on the GEANT4 toolkit has come into widespread use for simulating positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging devices. Here, we explore its use for calculating electron dose distributions in water. Mono-energetic electron dose point kernels and pencil beam kernels in water are calculated for different energies between 15 keV and 20 MeV by means of GATE 6.0, which makes use of the GEANT4 version 9.2 Standard Electromagnetic Physics Package. The results are compared to the well-validated codes EGSnrc and MCNP4C. It is shown that recent improvements made to the GEANT4/GATE software result in significantly better agreement with the other codes. We furthermore illustrate several issues of general interest to GATE and GEANT4 users who wish to perform accurate simulations involving electrons. Provided that the electron step size is sufficiently restricted, GATE 6.0 and EGSnrc dose point kernels are shown to agree to within less than 3% of the maximum dose between 50 keV and 4 MeV, while pencil beam kernels are found to agree to within less than 4% of the maximum dose between 15 keV and 20 MeV. PMID:21239846
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... civil monetary penalties per the Inflation Act. See 74 FR 68701 (December 29, 2009). FRA's maximum and... materials violation was $275. 69 FR 30590, May 28, 2004. To implement these SAFETEA-LU amendments to the maximum and minimum penalties, FRA issued a final rule that was published on December 26, 2006, 71...
ERIC Educational Resources Information Center
Titze, Ingo R.
2006-01-01
Purpose: Maximum flow declination rate (MFDR) in the glottis is known to correlate strongly with vocal intensity in voicing. This declination, or negative slope on the glottal airflow waveform, is in part attributable to the maximum area declination rate (MADR) and in part to the overall inertia of the air column of the vocal tract (lungs to…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-10
...PHMSA is issuing an Advisory Bulletin to remind operators of gas and hazardous liquid pipeline facilities of their responsibilities, under Federal integrity management (IM) regulations, to perform detailed threat and risk analyses that integrate accurate data and information from their entire pipeline system, especially when calculating Maximum Allowable Operating Pressure (MAOP) or Maximum......
Studies on the toxicity and maximum allowable concentration of chloroform.
Li, L H; Jiang, X Z; Liang, Y X; Chen, Z Q; Zhou, Y F; Wang, Y L
1993-06-01
Chloroform has obvious hepato-, nephro-toxicity and carcinogenicity. In order to get necessary data for recommendation of maximum allowable concentration of chloroform in workplace, a series of studies were carried out. The results showed that exposed workers mainly distributed in the industries of perspex processing, production of refrigerants, drugs and pesticides. The exposure level ranged 4.27-147.91 mg/m3 in 119 air samples collected from 3 representative worksites, with 45.4% air samples below 20 mg/m3. The workers exposed to chloroform at 29.51 mg/m3 had slight liver damage indicated by the higher rates of abnormal serum prealbumin and transferrin levels than those of control workers. The neurobehavioral functions of these workers were also obviously affected, manifested as increases in scores of passive mood states and dose-related negative changes in neurobehavioral testing. The observed effect threshold concentration of subacute inhalation in rats was 592 mg/m3 according to the observation on the biochemical changes in liver tissue and abnormal activities of serum enzymes. Mainly based on the above results, we recommended 20 mg/m3 as the Maximum Allowable Concentration in workplace in China at present. PMID:8397901
Pareto versus lognormal: A maximum entropy test
NASA Astrophysics Data System (ADS)
Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano
2011-08-01
It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.
Model Fit after Pairwise Maximum Likelihood
Barendse, M. T.; Ligtvoet, R.; Timmerman, M. E.; Oort, F. J.
2016-01-01
Maximum likelihood factor analysis of discrete data within the structural equation modeling framework rests on the assumption that the observed discrete responses are manifestations of underlying continuous scores that are normally distributed. As maximizing the likelihood of multivariate response patterns is computationally very intensive, the sum of the log–likelihoods of the bivariate response patterns is maximized instead. Little is yet known about how to assess model fit when the analysis is based on such a pairwise maximum likelihood (PML) of two–way contingency tables. We propose new fit criteria for the PML method and conduct a simulation study to evaluate their performance in model selection. With large sample sizes (500 or more), PML performs as well the robust weighted least squares analysis of polychoric correlations. PMID:27148136
Maximum-entropy description of animal movement.
Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M
2015-03-01
We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic. PMID:25871054
Maximum-entropy description of animal movement
NASA Astrophysics Data System (ADS)
Fleming, Chris H.; Subaşı, Yiǧit; Calabrese, Justin M.
2015-03-01
We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.
Zipf's law, power laws and maximum entropy
NASA Astrophysics Data System (ADS)
Visser, Matt
2013-04-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.
A Maximum Radius for Habitable Planets.
Alibert, Yann
2015-09-01
We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope. PMID:26159097
Evaluation of the Maximum Allowable Cost Program
Lee, A. James; Hefner, Dennis; Dobson, Allen; Hardy, Ralph
1983-01-01
This article summarizes an evaluation of the Maximum Allowable Cost (MAC)-Estimated Acquisition Cost (EAC) program, the Federal Government's cost-containment program for prescription drugs.1 The MAC-EAC regulations which became effective on August 26, 1976, have four major components: (1) Maximum Allowable Cost reimbursement limits for selected multisource or generically available drugs; (2) Estimated Acquisition Cost reimbursement limits for all drugs; (3) “usual and customary” reimbursement limits for all drugs; and (4) a directive that professional fee studies be performed by each State. The study examines the benefits and costs of the MAC reimbursement limits for 15 dosage forms of five multisource drugs and EAC reimbursement limits for all drugs for five selected States as of 1979. PMID:10309857
Maximum independent set on diluted triangular lattices.
Fay, C W; Liu, J W; Duxbury, P M
2006-05-01
Core percolation and maximum independent set on random graphs have recently been characterized using the methods of statistical physics. Here we present a statistical physics study of these problems on bond diluted triangular lattices. Core percolation critical behavior is found to be consistent with the standard percolation values, though there are strong finite size effects. A transfer matrix method is developed and applied to find accurate values of the density and degeneracy of the maximum independent set on lattices of limited width but large length. An extrapolation of these results to the infinite lattice limit yields high precision results, which are tabulated. These results are compared to results found using both vertex based and edge based local probability recursion algorithms, which have proven useful in the analysis of hard computational problems, such as the satisfiability problem. PMID:16803003
Model Fit after Pairwise Maximum Likelihood.
Barendse, M T; Ligtvoet, R; Timmerman, M E; Oort, F J
2016-01-01
Maximum likelihood factor analysis of discrete data within the structural equation modeling framework rests on the assumption that the observed discrete responses are manifestations of underlying continuous scores that are normally distributed. As maximizing the likelihood of multivariate response patterns is computationally very intensive, the sum of the log-likelihoods of the bivariate response patterns is maximized instead. Little is yet known about how to assess model fit when the analysis is based on such a pairwise maximum likelihood (PML) of two-way contingency tables. We propose new fit criteria for the PML method and conduct a simulation study to evaluate their performance in model selection. With large sample sizes (500 or more), PML performs as well the robust weighted least squares analysis of polychoric correlations. PMID:27148136
Lasseter, K; Dilzer, S; Jansat, J M; Garcia Gil, E; Caracta, C F; Ortiz, S
2012-04-01
Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction and increased cholinergic tone. The global initiative for chronic obstructive lung disease (GOLD) guidelines recommend long-acting anticholinergics for COPD maintenance treatment. Aclidinium bromide is a novel, long-acting muscarinic antagonist developed for the treatment of COPD. A phase I, randomized, single-blind, multiple-dose clinical trial was conducted to assess the safety and pharmacokinetics (PK) of multiple doses of twice-daily (BID) aclidinium in healthy subjects. Thirty healthy male and female subjects received aclidinium 200 μg, 400 μg, 800 μg, or placebo twice daily for 7 days. Subjects were randomized to 1 of 3 cohorts and 10 subjects in each cohort were randomized (8:2) to either aclidinium or placebo groups. Safety was assessed via adverse events (AEs), laboratory evaluations, vital signs, and ECGs. Plasma samples were obtained at multiple time points throughout the study and analyzed for aclidinium and its inactive acid and alcohol metabolites using a fully validated method of liquid chromatography coupled with tandem mass spectrometry. A total of 9 treatment-emergent AEs were reported (1, placebo; 3, aclidinium 400 μg; 5, aclidinium 800 μg), all of which were mild in severity. No serious AEs were reported. There were no clinically meaningful changes in laboratory parameters or vital signs. PK parameters on Day 7 following BID dosing of aclidinium showed that steady state was achieved for aclidinium and its metabolites. On Days 1 and 7, maximum plasma concentrations (Cmax) of aclidinium were generally observed at the first PK time point (5 min postdose) and rapidly declined, with plasma concentrations generally less than 10% of Cmax by 6 h postdose in all aclidinium groups. Mean effective t(½) after the evening dose on Day 7 ranged from 4.6 to 7.0 h for aclidinium 400 μg and 800 μg, similar to the terminal t(½) observed on Day 1 (4.5-5.9 h
Tissue Radiation Response with Maximum Tsallis Entropy
Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar
2010-10-08
The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.
Maximum entropy production - Full steam ahead
NASA Astrophysics Data System (ADS)
Lorenz, Ralph D.
2012-05-01
The application of a principle of Maximum Entropy Production (MEP, or less ambiguously MaxEP) to planetary climate is discussed. This idea suggests that if sufficiently free of dynamical constraints, the atmospheric and oceanic heat flows across a planet may conspire to maximize the generation of mechanical work, or entropy. Thermodynamic and information-theoretic aspects of this idea are discussed. These issues are also discussed in the context of dust devils, convective vortices found in strongly-heated desert areas.
Maximum entropy and Bayesian methods. Proceedings.
NASA Astrophysics Data System (ADS)
Grandy, W. T., Jr.; Schick, L. H.
This volume contains a selection of papers presented at the Tenth Annual Workshop on Maximum Entropy and Bayesian Methods. The thirty-six papers included cover a wide range of applications in areas such as economics and econometrics, astronomy and astrophysics, general physics, complex systems, image reconstruction, and probability and mathematics. Together they give an excellent state-of-the-art overview of fundamental methods of data analysis.
Dose sculpting with generalized equivalent uniform dose
Wu Qiuwen; Djajaputra, David; Liu, Helen H.; Dong Lei; Mohan, Radhe; Wu, Yan
2005-05-01
With intensity-modulated radiotherapy (IMRT), a variety of user-defined dose distribution can be produced using inverse planning. The generalized equivalent uniform dose (gEUD) has been used in IMRT optimization as an alternative objective function to the conventional dose-volume-based criteria. The purpose of this study was to investigate the effectiveness of gEUD optimization to fine tune the dose distributions of IMRT plans. We analyzed the effect of gEUD-based optimization parameters on plan quality. The objective was to determine whether dose distribution to selected structures could be improved using gEUD optimization without adversely altering the doses delivered to other structures, as in sculpting. We hypothesized that by carefully defining gEUD parameters (EUD{sub 0} and n) based on the current dose distributions, the optimization system could be instructed to search for alternative solutions in the neighborhood, and we could maintain the dose distributions for structures already satisfactory and improve dose for structures that need enhancement. We started with an already acceptable IMRT plan optimized with any objective function. The dose distribution was analyzed first. For structures that dose should not be changed, a higher value of n was used and EUD{sub 0} was set slightly higher/lower than the EUD value at the current dose distribution for critical structures/targets. For structures that needed improvement in dose, a higher to medium value of n was used, and EUD{sub 0} was set to the EUD value or slightly lower/higher for the critical structure/target at the current dose distribution. We evaluated this method in one clinical case each of head and neck, lung and prostate cancer. Dose volume histograms, isodose distributions, and relevant tolerance doses for critical structures were used for the assessment. We found that by adjusting gEUD optimization parameters, the dose distribution could be improved with only a few iterations. A larger value of n
Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose
NASA Technical Reports Server (NTRS)
Welton, Andrew; Lee, Kerry
2010-01-01
While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.
Sensor registration using airlanes: maximum likelihood solution
NASA Astrophysics Data System (ADS)
Ong, Hwa-Tung
2004-01-01
In this contribution, the maximum likelihood estimation of sensor registration parameters, such as range, azimuth and elevation biases in radar measurements, using airlane information is proposed and studied. The motivation for using airlane information for sensor registration is that it is freely available as a source of reference and it provides an alternative to conventional techniques that rely on synchronised and correctly associated measurements from two or more sensors. In the paper, the problem is first formulated in terms of a measurement model that is a nonlinear function of the unknown target state and sensor parameters, plus sensor noise. A probabilistic model of the target state is developed based on airlane information. The maximum likelihood and also maximum a posteriori solutions are given. The Cramer-Rao lower bound is derived and simulation results are presented for the case of estimating the biases in radar range, azimuth and elevation measurements. The accuracy of the proposed method is compared against the Cramer-Rao lower bound and that of an existing two-sensor alignment method. It is concluded that sensor registration using airlane information is a feasible alternative to existing techniques.
Sensor registration using airlanes: maximum likelihood solution
NASA Astrophysics Data System (ADS)
Ong, Hwa-Tung
2003-12-01
In this contribution, the maximum likelihood estimation of sensor registration parameters, such as range, azimuth and elevation biases in radar measurements, using airlane information is proposed and studied. The motivation for using airlane information for sensor registration is that it is freely available as a source of reference and it provides an alternative to conventional techniques that rely on synchronised and correctly associated measurements from two or more sensors. In the paper, the problem is first formulated in terms of a measurement model that is a nonlinear function of the unknown target state and sensor parameters, plus sensor noise. A probabilistic model of the target state is developed based on airlane information. The maximum likelihood and also maximum a posteriori solutions are given. The Cramer-Rao lower bound is derived and simulation results are presented for the case of estimating the biases in radar range, azimuth and elevation measurements. The accuracy of the proposed method is compared against the Cramer-Rao lower bound and that of an existing two-sensor alignment method. It is concluded that sensor registration using airlane information is a feasible alternative to existing techniques.
The maximum rate of mammal evolution.
Evans, Alistair R; Jones, David; Boyer, Alison G; Brown, James H; Costa, Daniel P; Ernest, S K Morgan; Fitzgerald, Erich M G; Fortelius, Mikael; Gittleman, John L; Hamilton, Marcus J; Harding, Larisa E; Lintulaakso, Kari; Lyons, S Kathleen; Okie, Jordan G; Saarinen, Juha J; Sibly, Richard M; Smith, Felisa A; Stephens, Patrick R; Theodor, Jessica M; Uhen, Mark D
2012-03-13
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. PMID:22308461
The maximum rate of mammal evolution
NASA Astrophysics Data System (ADS)
Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.
2012-03-01
How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.
"SPURS" in the North Atlantic Salinity Maximum
NASA Astrophysics Data System (ADS)
Schmitt, Raymond
2014-05-01
The North Atlantic Salinity Maximum is the world's saltiest open ocean salinity maximum and was the focus of the recent Salinity Processes Upper-ocean Regional Study (SPURS) program. SPURS was a joint venture between US, French, Irish, and Spanish investigators. Three US and two EU cruises were involved from August, 1012 - October, 2013 as well as surface moorings, glider, drifter and float deployments. Shipboard operations included underway meteorological and oceanic data, hydrographic surveys and turbulence profiling. The goal is to improve our understanding of how the salinity maximum is maintained and how it may be changing. It is formed by an excess of evaporation over precipitation and the wind-driven convergence of the subtropical gyre. Such salty areas are getting saltier with global warming (a record high SSS was observed in SPURS) and it is imperative to determine the relative roles of surface water fluxes and oceanic processes in such trends. The combination of accurate surface flux estimates with new assessments of vertical and horizontal mixing in the ocean will help elucidate the utility of ocean salinity in quantifying the changing global water cycle.
Maximum entropy analysis of cosmic ray composition
NASA Astrophysics Data System (ADS)
Nosek, Dalibor; Ebr, Jan; Vícha, Jakub; Trávníček, Petr; Nosková, Jana
2016-03-01
We focus on the primary composition of cosmic rays with the highest energies that cause extensive air showers in the Earth's atmosphere. A way of examining the two lowest order moments of the sample distribution of the depth of shower maximum is presented. The aim is to show that useful information about the composition of the primary beam can be inferred with limited knowledge we have about processes underlying these observations. In order to describe how the moments of the depth of shower maximum depend on the type of primary particles and their energies, we utilize a superposition model. Using the principle of maximum entropy, we are able to determine what trends in the primary composition are consistent with the input data, while relying on a limited amount of information from shower physics. Some capabilities and limitations of the proposed method are discussed. In order to achieve a realistic description of the primary mass composition, we pay special attention to the choice of the parameters of the superposition model. We present two examples that demonstrate what consequences can be drawn for energy dependent changes in the primary composition.
Failure-probability driven dose painting
Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena; Berthelsen, Anne K.; Bentzen, Søren M.
2013-08-15
Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.
Strange, D. L.; Bander, T. J.
1981-04-01
The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based
Collaborative double robust targeted maximum likelihood estimation.
van der Laan, Mark J; Gruber, Susan
2010-01-01
Collaborative double robust targeted maximum likelihood estimators represent a fundamental further advance over standard targeted maximum likelihood estimators of a pathwise differentiable parameter of a data generating distribution in a semiparametric model, introduced in van der Laan, Rubin (2006). The targeted maximum likelihood approach involves fluctuating an initial estimate of a relevant factor (Q) of the density of the observed data, in order to make a bias/variance tradeoff targeted towards the parameter of interest. The fluctuation involves estimation of a nuisance parameter portion of the likelihood, g. TMLE has been shown to be consistent and asymptotically normally distributed (CAN) under regularity conditions, when either one of these two factors of the likelihood of the data is correctly specified, and it is semiparametric efficient if both are correctly specified. In this article we provide a template for applying collaborative targeted maximum likelihood estimation (C-TMLE) to the estimation of pathwise differentiable parameters in semi-parametric models. The procedure creates a sequence of candidate targeted maximum likelihood estimators based on an initial estimate for Q coupled with a succession of increasingly non-parametric estimates for g. In a departure from current state of the art nuisance parameter estimation, C-TMLE estimates of g are constructed based on a loss function for the targeted maximum likelihood estimator of the relevant factor Q that uses the nuisance parameter to carry out the fluctuation, instead of a loss function for the nuisance parameter itself. Likelihood-based cross-validation is used to select the best estimator among all candidate TMLE estimators of Q(0) in this sequence. A penalized-likelihood loss function for Q is suggested when the parameter of interest is borderline-identifiable. We present theoretical results for "collaborative double robustness," demonstrating that the collaborative targeted maximum
Collaborative Double Robust Targeted Maximum Likelihood Estimation*
van der Laan, Mark J.; Gruber, Susan
2010-01-01
Collaborative double robust targeted maximum likelihood estimators represent a fundamental further advance over standard targeted maximum likelihood estimators of a pathwise differentiable parameter of a data generating distribution in a semiparametric model, introduced in van der Laan, Rubin (2006). The targeted maximum likelihood approach involves fluctuating an initial estimate of a relevant factor (Q) of the density of the observed data, in order to make a bias/variance tradeoff targeted towards the parameter of interest. The fluctuation involves estimation of a nuisance parameter portion of the likelihood, g. TMLE has been shown to be consistent and asymptotically normally distributed (CAN) under regularity conditions, when either one of these two factors of the likelihood of the data is correctly specified, and it is semiparametric efficient if both are correctly specified. In this article we provide a template for applying collaborative targeted maximum likelihood estimation (C-TMLE) to the estimation of pathwise differentiable parameters in semi-parametric models. The procedure creates a sequence of candidate targeted maximum likelihood estimators based on an initial estimate for Q coupled with a succession of increasingly non-parametric estimates for g. In a departure from current state of the art nuisance parameter estimation, C-TMLE estimates of g are constructed based on a loss function for the targeted maximum likelihood estimator of the relevant factor Q that uses the nuisance parameter to carry out the fluctuation, instead of a loss function for the nuisance parameter itself. Likelihood-based cross-validation is used to select the best estimator among all candidate TMLE estimators of Q0 in this sequence. A penalized-likelihood loss function for Q is suggested when the parameter of interest is borderline-identifiable. We present theoretical results for “collaborative double robustness,” demonstrating that the collaborative targeted maximum
Azcona, J; Burguete, J
2014-06-01
Purpose: To obtain the pencil beam kernels that characterize a megavoltage photon beam generated in a FFF linac by experimental measurements, and to apply them for dose calculation in modulated fields. Methods: Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from a Varian True Beam (Varian Medical Systems, Palo Alto, CA) linac, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50 mm diameter circular field, collimated with a lead block. Measured dose leads to the kernel characterization, assuming that the energy fluence exiting the linac head and further collimated is originated on a point source. The three-dimensional kernel was obtained by deconvolution at each depth using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. The kernels were used to calculate modulated dose distributions in six modulated fields and compared through the gamma index to their absolute dose measured by film in the RW3 phantom. Results: The resulting kernels properly characterize the global beam penumbra. The output factor-based correction was carried out adding the amount of signal necessary to reproduce the experimental output factor in steps of 2mm, starting at a radius of 4mm. There the kernel signal was in all cases below 10% of its maximum value. With this correction, the number of points that pass the gamma index criteria (3%, 3mm) in the modulated fields for all cases are at least 99.6% of the total number of points. Conclusion: A system for independent dose calculations in modulated fields from FFF beams has been developed. Pencil beam kernels were obtained and their ability to accurately calculate dose in homogeneous media was demonstrated.
Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Akbari, Fatemeh; Mehrpouyan, Mohammad; Sobhkhiz Sabet, Leila
2016-03-01
The aim of this study is to evaluate the effect of tooth and dental restoration materials on electron dose distribution and photon contamination production in electron beams of a medical linac. This evaluation was performed on 8, 12 and 14 MeV electron beams of a Siemens Primus linac. MCNPX Monte Carlo code was utilized and a 10 × 10 cm(2) applicator was simulated in the cases of tooth and combinations of tooth and Ceramco C3 ceramic veneer, tooth and Eclipse alloy and tooth and amalgam restoration materials in a soft tissue phantom. The relative electron and photon contamination doses were calculated for these materials. The presence of tooth and dental restoration material changed the electron dose distribution and photon contamination in phantom, depending on the type of the restoration material and electron beam's energy. The maximum relative electron dose was 1.07 in the presence of tooth including amalgam for 14 MeV electron beam. When 100.00 cGy was prescribed for the reference point, the maximum absolute electron dose was 105.10 cGy in the presence of amalgam for 12 MeV electron beam and the maximum absolute photon contamination dose was 376.67 μGy for tooth in 14 MeV electron beam. The change in electron dose distribution should be considered in treatment planning, when teeth are irradiated in electron beam radiotherapy. If treatment planning can be performed in such a way that the teeth are excluded from primary irradiation, the potential errors in dose delivery to the tumour and normal tissues can be avoided. PMID:26581762
Marty, Mary S.
2013-01-01
Life-stage-dependent toxicity and dose-dependent toxicokinetics (TK) were evaluated in Sprague Dawley rats following dietary exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D renal clearance is impacted by dose-dependent saturation of the renal organic anion transporter; thus, this study focused on identifying inflection points of onset of dietary nonlinear TK to inform dose selection decisions for toxicity studies. Male and female rats were fed 2,4-D-fortified diets at doses to 1600 ppm for 4-weeks premating, <2 weeks during mating, and to test day (TD) 71 to parental (P1) males and to P1 females through gestation/lactation to TD 96. F1 offspring were exposed via milk with continuing diet exposure until postnatal day (PND) 35. As assessed by plasma area under the curve for the time-course plasma concentration, nonlinear TK was observed ≥1200 ppm (63mg/kg/day) for P1 males and between 200 and 400 ppm (14–27mg/kg/day) for P1 females. Dam milk and pup plasma levels were higher on lactation day (LD) 14 than LD 4. Relative to P1 adults, 2,4-D levels were higher in dams during late gestation/lactation and postweaning pups (PND 21–35) and coincided with elevated intake of diet/kg body weight. Using conventional maximum tolerated dose (MTD) criteria based on body weight changes for dose selection would have resulted in excessive top doses approximately 2-fold higher than those identified incorporating critical TK data. These data indicate that demonstration of nonlinear TK, if present at dose levels substantially above real-world human exposures, is a key dose selection consideration for improving the human relevance of toxicity studies compared with studies employing conventional MTD dose selection strategies. PMID:24105888
Gong, J; Sarwan, R; Pavord, D
2014-06-01
Purpose: To quantitatively compare low dose spillage outside of PTV edge in arc therapy modalities Methods: The machines used in the study are Tomotherapy Hi-Arc and Varian 21EX with millennium120 MLC. TPS are TomoPlaning and RayStation for VMAT, respectively. The phantom is a 30cm diameter cylindrical solid water (TOMOTHERAPY, TOMOPHANTOM ASSY). The PTV is 4cm length with ellipsoidal sectional shape with major axis=5cm, minor axis=3cm in the axial plane and reversed in the coronal plane. The PTV volume is created with interpolation. It is located at the center of the phantom. The prescribed dose is 1000x5 cGy to 95% the PTV. The isocenter is set co-centered with the PTV. EBT-3 film was used to measure iso-dose lines at the center plane. Film dosimetry is performed with the RIT, v6.2. Results: the study shows: (1) dose falloff gradient is usually uneven, depending on the PTV shape in the gantry rotation plane. For an elliptical shape, the low dose spillage is wider in the minor axis direction than that in the major axis direction. The more a shape is closer to circular, the more even gradient is all directions; (2)for a circular shape (CAX plane in this study), the maximum dose in % of Rx dose at 2cm from PTV is 55% for Tomo, vs. 70% for VMAT (3) the most rapid dose falloff rang is between 95%–80% IDL for both modalities. Conclusion: Tomo has more rapid dose falloff outside of PTV. In some areas, the gradient is double for Tomo helical than that for LINAC VMAT at same points. Future work will examine the differences between optimization of doses and inherent delivery limitations.
Plaque Therapy and Scatter Dose Using {sup 252}Cf Sources
Mark J. Rivard; Anita Mahajan
2000-11-12
As melanomas are radioresistant to conventional low-linear energy transfer (LET) radiations such as photons and electrons, {sup 252}Cf (high-LET due to neutrons) may offer more promising clinical results. Although {sup 252}Cf also emits photons and electrons, the majority of absorbed dose is imparted by the high-LET radiation. This study examines the impact of scattering material on the neutron dose distributions for {sup 252}Cf plaque therapy (used to treat surface lesions like melanoma). Neutrons were transported through a 10-cm-diam water phantom with a thickness of either 5 or 10 cm using the MCNP radiation transport code. The phantom was surrounded by vacuum; the {sup 252}Cf neutron energy spectrum was modeled as a Maxwellian distribution; and the source was a bare point positioned at 1.0, 0.5, or {epsilon} above or below the water/vacuum interface. These source positions were chosen to mimic the case where a plaque locates the source either above the skin's surface, e.g., 2{pi} scattering geometry, or if layers of tissue-equivalent bolus materials were placed atop the implant to provide radiation backscatter, 4{pi} geometry. Differences between the 2{pi} and 4{pi} geometries were maximized closest to the source and for source positions farthest from the water/vacuum interface. Therefore, the maximum radiation dose (closest to the {sup 252}Cf source) may be minimized by not including scattering material for plaque therapy. However, for nonrelativistic, elastic scattering for protons by neutrons, the proton range increases with neutron energy. This result was expected since the neutron energy spectrum degrades at increasing depth and the proportion of fast neutron dose to total dose is maximized closest to the source in the 2{pi} geometry. Future studies will examine this effect as a function of neutron energy, will consider synergy with the low-LET {sup 252}Cf dose component and include experimental measurements, and will assess this technique to possibly
Middle Holocene thermal maximum in eastern Beringia
NASA Astrophysics Data System (ADS)
Kaufman, D. S.; Bartlein, P. J.
2015-12-01
A new systematic review of diverse Holocene paleoenvironmental records (Kaufman et al., Quat. Sci. Rev., in revision) has clarified the primary multi-centennial- to millennial-scale trends across eastern Beringia (Alaska, westernmost Canada and adjacent seas). Composite time series from midges, pollen, and biogeochemical indicators are compared with new summaries of mountain-glacier and lake-level fluctuations, terrestrial water-isotope records, sea-ice and sea-surface-temperature analyses, and peatland and thaw-lake initiation frequencies. The paleo observations are also compared with recently published simulations (Bartlein et al., Clim. Past Discuss., 2015) that used a regional climate model to simulate the effects of global and regional-scale forcings at 11 and 6 ka. During the early Holocene (11.5-8 ka), rather than a prominent thermal maximum as suggested previously, the newly compiled paleo evidence (mostly sensitive to summer conditions) indicates that temperatures were highly variable, at times both higher and lower than present, although the overall lowest average temperatures occurred during the earliest Holocene. During the middle Holocene (8-4 ka), glaciers retreated as the regional average temperature increased to a maximum between 7 and 5 ka, as reflected in most proxy types. The paleo evidence for low and variable temperatures during the early Holocene contrasts with more uniformly high temperatures during the middle Holocene and agrees with the climate simulations, which show that temperature in eastern Beringia was on average lower at 11 ka and higher at 6 ka than at present (pre-industrial). Low temperatures during the early Holocene can be attributed in part to the summer chilling caused by flooding the continental shelves, whereas the mid-Holocene thermal maximum was likely driven by the loss of the Laurentide ice sheet, rise in greenhouse gases, higher-than-present summer insolation, and expansion of forest over tundra.
Maximum caliber inference of nonequilibrium processes.
Otten, Moritz; Stock, Gerhard
2010-07-21
Thirty years ago, Jaynes suggested a general theoretical approach to nonequilibrium statistical mechanics, called maximum caliber (MaxCal) [Annu. Rev. Phys. Chem. 31, 579 (1980)]. MaxCal is a variational principle for dynamics in the same spirit that maximum entropy is a variational principle for equilibrium statistical mechanics. Motivated by the success of maximum entropy inference methods for equilibrium problems, in this work the MaxCal formulation is applied to the inference of nonequilibrium processes. That is, given some time-dependent observables of a dynamical process, one constructs a model that reproduces these input data and moreover, predicts the underlying dynamics of the system. For example, the observables could be some time-resolved measurements of the folding of a protein, which are described by a few-state model of the free energy landscape of the system. MaxCal then calculates the probabilities of an ensemble of trajectories such that on average the data are reproduced. From this probability distribution, any dynamical quantity of the system can be calculated, including population probabilities, fluxes, or waiting time distributions. After briefly reviewing the formalism, the practical numerical implementation of MaxCal in the case of an inference problem is discussed. Adopting various few-state models of increasing complexity, it is demonstrated that the MaxCal principle indeed works as a practical method of inference: The scheme is fairly robust and yields correct results as long as the input data are sufficient. As the method is unbiased and general, it can deal with any kind of time dependency such as oscillatory transients and multitime decays. PMID:20649320
Maximum aposteriori joint source/channel coding
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Gibson, Jerry D.
1991-01-01
A maximum aposteriori probability (MAP) approach to joint source/channel coder design is presented in this paper. This method attempts to explore a technique for designing joint source/channel codes, rather than ways of distributing bits between source coders and channel coders. For a nonideal source coder, MAP arguments are used to design a decoder which takes advantage of redundancy in the source coder output to perform error correction. Once the decoder is obtained, it is analyzed with the purpose of obtaining 'desirable properties' of the channel input sequence for improving overall system performance. Finally, an encoder design which incorporates these properties is proposed.
Design of toroidal transformers for maximum efficiency
NASA Technical Reports Server (NTRS)
Dayton, J. A., Jr.
1972-01-01
The design of the most efficient toroidal transformer that can be built given the frequency, volt-ampere rating, magnetic flux density, window fill factor, and materials is described. With the above all held constant and only the dimensions of the magnetic core varied, the most efficient design occurs when the copper losses equal 60 percent of the iron losses. When this criterion is followed, efficiency is only slightly dependent on design frequency and fill factor. The ratios of inside diameter to outside diameter and height to build of the magnetic core that result in transformers of maximum efficiency are computed.
Multiperiod Maximum Loss is time unit invariant.
Kovacevic, Raimund M; Breuer, Thomas
2016-01-01
Time unit invariance is introduced as an additional requirement for multiperiod risk measures: for a constant portfolio under an i.i.d. risk factor process, the multiperiod risk should equal the one period risk of the aggregated loss, for an appropriate choice of parameters and independent of the portfolio and its distribution. Multiperiod Maximum Loss over a sequence of Kullback-Leibler balls is time unit invariant. This is also the case for the entropic risk measure. On the other hand, multiperiod Value at Risk and multiperiod Expected Shortfall are not time unit invariant. PMID:27563531
Dynamical maximum entropy approach to flocking
NASA Astrophysics Data System (ADS)
Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco; Mora, Thierry; Piovani, Duccio; Tavarone, Raffaele; Walczak, Aleksandra M.
2014-04-01
We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.
Maximum a posteriori decoder for digital communications
NASA Technical Reports Server (NTRS)
Altes, Richard A. (Inventor)
1997-01-01
A system and method for decoding by identification of the most likely phase coded signal corresponding to received data. The present invention has particular application to communication with signals that experience spurious random phase perturbations. The generalized estimator-correlator uses a maximum a posteriori (MAP) estimator to generate phase estimates for correlation with incoming data samples and for correlation with mean phases indicative of unique hypothesized signals. The result is a MAP likelihood statistic for each hypothesized transmission, wherein the highest value statistic identifies the transmitted signal.
Conductivity maximum in a charged colloidal suspension
Bastea, S
2009-01-27
Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.
Efficient maximum entropy algorithms for electronic structure
Silver, R.N.; Roeder, H.; Voter, A.F.; Kress, J.D.
1996-04-01
Two Chebyshev recursion methods are presented for calculations with very large sparse Hamiltonians, the kernel polynomial method (KPM) and the maximum entropy method (MEM). If limited statistical accuracy and energy resolution are acceptable, they provide linear scaling methods for the calculation of physical properties involving large numbers of eigenstates such as densities of states, spectral functions, thermodynamics, total energies for Monte Carlo simulations and forces for molecular dynamics. KPM provides a uniform approximation to a DOS, with resolution inversely proportional to the number of Chebyshev moments, while MEM can achieve significantly higher, but non-uniform, resolution at the risk of possible artifacts. This paper emphasizes efficient algorithms.
Georgia fishery study: implications for dose calculations. Revision 1
Turcotte, M.D.S.
1983-08-05
Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with a site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average adult fish consumption value of 11.3 kg/yr, and a maximum adult fish consumption value of 34 kg/yr. Consumption values for the teen and child age groups should be increased proportionally: (1) teen average = 8.5; maximum = 25.9 kg/yr; and (2) child average = 3.6; maximum = 11.2 kg/yr. 8 refs.
NASA Astrophysics Data System (ADS)
Yang, Gang; Tang, Zheng; Dai, Hongwei
Through analyzing the dynamics characteristic of maximum neural network with an added vertex, we find that the solution quality is mainly determined by the added vertex weights. In order to increase maximum neural network ability, a stochastic nonlinear self-feedback and flexible annealing strategy are embedded in maximum neural network, which makes the network more powerful to escape local minima and be independent of the initial values. Simultaneously, we present that solving ability of maximum neural network is dependence on problem. We introduce a new parameter into our network to improve the solving ability. The simulation in k random graph and some DIMACS clique instances in the second DIMACS challenge shows that our improved network is superior to other algorithms in light of the solution quality and CPU time.
Targeted maximum likelihood based causal inference: Part I.
van der Laan, Mark J
2010-01-01
Given causal graph assumptions, intervention-specific counterfactual distributions of the data can be defined by the so called G-computation formula, which is obtained by carrying out these interventions on the likelihood of the data factorized according to the causal graph. The obtained G-computation formula represents the counterfactual distribution the data would have had if this intervention would have been enforced on the system generating the data. A causal effect of interest can now be defined as some difference between these counterfactual distributions indexed by different interventions. For example, the interventions can represent static treatment regimens or individualized treatment rules that assign treatment in response to time-dependent covariates, and the causal effects could be defined in terms of features of the mean of the treatment-regimen specific counterfactual outcome of interest as a function of the corresponding treatment regimens. Such features could be defined nonparametrically in terms of so called (nonparametric) marginal structural models for static or individualized treatment rules, whose parameters can be thought of as (smooth) summary measures of differences between the treatment regimen specific counterfactual distributions. In this article, we develop a particular targeted maximum likelihood estimator of causal effects of multiple time point interventions. This involves the use of loss-based super-learning to obtain an initial estimate of the unknown factors of the G-computation formula, and subsequently, applying a target-parameter specific optimal fluctuation function (least favorable parametric submodel) to each estimated factor, estimating the fluctuation parameter(s) with maximum likelihood estimation, and iterating this updating step of the initial factor till convergence. This iterative targeted maximum likelihood updating step makes the resulting estimator of the causal effect double robust in the sense that it is
Targeted Maximum Likelihood Based Causal Inference: Part I
van der Laan, Mark J.
2010-01-01
Given causal graph assumptions, intervention-specific counterfactual distributions of the data can be defined by the so called G-computation formula, which is obtained by carrying out these interventions on the likelihood of the data factorized according to the causal graph. The obtained G-computation formula represents the counterfactual distribution the data would have had if this intervention would have been enforced on the system generating the data. A causal effect of interest can now be defined as some difference between these counterfactual distributions indexed by different interventions. For example, the interventions can represent static treatment regimens or individualized treatment rules that assign treatment in response to time-dependent covariates, and the causal effects could be defined in terms of features of the mean of the treatment-regimen specific counterfactual outcome of interest as a function of the corresponding treatment regimens. Such features could be defined nonparametrically in terms of so called (nonparametric) marginal structural models for static or individualized treatment rules, whose parameters can be thought of as (smooth) summary measures of differences between the treatment regimen specific counterfactual distributions. In this article, we develop a particular targeted maximum likelihood estimator of causal effects of multiple time point interventions. This involves the use of loss-based super-learning to obtain an initial estimate of the unknown factors of the G-computation formula, and subsequently, applying a target-parameter specific optimal fluctuation function (least favorable parametric submodel) to each estimated factor, estimating the fluctuation parameter(s) with maximum likelihood estimation, and iterating this updating step of the initial factor till convergence. This iterative targeted maximum likelihood updating step makes the resulting estimator of the causal effect double robust in the sense that it is
DICOM organ dose does not accurately represent calculated dose in mammography
NASA Astrophysics Data System (ADS)
Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.
2016-03-01
This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.
Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...
Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...
Peripheral doses from pediatric IMRT
Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David
2006-07-15
Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged
Berge, T.I.; Wohni, T.
1984-02-01
Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy.
OCCUPATIONAL DOSE ASSESSMENT IN INTERVENTIONAL CARDIOLOGY IN SERBIA.
Kaljevic, J; Ciraj-Bjelac, O; Stankovic, J; Arandjic, D; Bozovic, P; Antic, V
2016-09-01
The objective of this work is to assess the occupational dose in interventional cardiology in a large hospital in Belgrade, Serbia. A double-dosimetry method was applied for the estimation of whole-body dose, using thermoluminescent dosemeters, calibrated in terms of the personal dose equivalent Hp(10). Besides the double-dosimetry method, eye dose was also estimated by means of measuring ambient dose equivalent, H*(10), and doses per procedure were reported. Doses were assessed for 13 physicians, 6 nurses and 10 radiographers, for 2 consequent years. The maximum annual effective dose assessed was 4.3, 2.1 and 1.3 mSv for physicians, nurses and radiographers, respectively. The maximum doses recorded by the dosemeter worn at the collar level (over the apron) were 16.8, 11.9 and 4.5 mSv, respectively. This value was used for the eye lens dose assessment. Estimated doses are in accordance with or higher than annual dose limits for the occupational exposure. PMID:26464526
States of Maximum Thermodynamic Efficiency In Daisyworld
NASA Astrophysics Data System (ADS)
Pujol, T.
Daisyworld is the simplest example used to illustrate the implications of the Gaia hypothesis. The interaction between the environment and the biota follows from the assumption of using daisies with different colours (i.e., albedos) than that of the bare earth. Then, the amount of daisies may modify the energy absorbed by the planet. In the classical version of Daisyworld, turbulent fluxes adopt a diffusive approximation, which clearly constraints the range of values for the solar insolation from which biota may grow in the planet. Here we apply the maximum entropy principle (MEP) to Daisyworld. We conclude that the MEP sets the maximum range of values for the solar insolation with a non-zero amount of daisies. Outside this range, daisies cannot grow in the planet for any physically realistic heat flux. Inside this range, the distribution of daisies is set to agree with the MEP. The range of values for the solar insolation from which biota stabilises the climate is substantially enlarged in comparison with the classical version of Daisyworld.
Floating Point Control Library
Energy Science and Technology Software Center (ESTSC)
2007-08-02
Floating Point Control is a Library that allows for the manipulation of floating point unit exception masking funtions control exceptions in both the Streaming "Single Instruction, Multiple Data" Extension 2 (SSE2) unit and the floating point unit simultaneously. FPC also provides macros to set floating point rounding and precision control.
Understanding and using fluoroscopic dose display information.
Weinberg, Brent D; Guild, Jeffrey B; Arbique, Gary M; Chason, David P; Anderson, Jon A
2015-01-01
Fluoroscopically guided procedures are an area of radiology in which radiation exposure to the patient is highly operator dependent. Modern fluoroscopy machines display a variety of information, including technique factors, field of view, operating geometry, exposure mode, fluoroscopic time, air kerma at the reference point (RAK), and air kerma area-product. However, the presentation of this information is highly vendor specific, and many users are unaware of how to interpret this information and use it to perform a study with the minimum necessary dose. A conceptual framework for understanding the radiation dose readout during a procedure is to compare it to the dashboard of an automobile, where the rate at which radiation is being applied (the RAK rate [mGy/min]) is the dose "speed" and the cumulative amount of radiation applied (cumulative RAK [mGy]) is the dose "odometer." This analogy can be used as a starting point to improve knowledge of these parameters, including how RAK is measured, how RAK correlates with skin dose, and how parameters are displayed differently during fluoroscopy and fluorography. Awareness of these factors is critical to understanding how dose parameters translate to patient risk and the consequences of high-dose studies. With this increased awareness, physicians performing fluoroscopically guided procedures can understand how to use built-in features of the fluoroscopic equipment (pulse rate, beam filtration, and automatic exposure control) and fluoroscopic techniques (procedure planning, patient positioning, proper collimation, and magnification) to reduce patient radiation dose, thereby improving patient safety. PMID:25442356
Li, H; Mager, D E; Sandmaier, B M; Maloney, D G; Bemer, M J; McCune, J S
2012-01-01
We sought to create a population pharmacokinetic model for total mycophenolic acid (MPA), to study the effects of different covariates on MPA pharmacokinetics, to create a limited sampling schedule (LSS) to characterize MPA exposure (i.e., area under the curve or AUC) with maximum a posteriori Bayesian estimation, and to simulate an optimized dosing scheme for allogeneic hematopoietic cell transplantation (HCT) recipients. 4,496 MPA concentration-time points from 408 HCT recipients were analyzed retrospectively using a nonlinear mixed effects modeling approach. MPA pharmacokinetics was characterized with a two-compartment model with first-order elimination and a time-lagged first-order absorption process. Concomitant cyclosporine and serum albumin were significant covariates. The median MPA clearance and volume of the central compartment were 24.2 L/hr and 36.4 L, respectively, for a 70 kg patient receiving tacrolimus with a serum albumin of 3.4 g/dL. Dosing simulations indicated that higher oral MMF doses are needed with concomitant cyclosporine, which increases MPA clearance by 33.8%. The optimal LSS was immediately before and at 0.25, 1.25, 2, and 4hr after oral MMF administration. MPA AUC in an individual HCT recipient can be accurately estimated using a five-sample LSS and maximum a posteriori Bayesian estimation. PMID:23382105
Li, H; Mager, D E; Sandmaier, B M; Maloney, D G; Bemer, M J; McCune, J S
2013-04-01
We sought to create a population pharmacokinetic model for total mycophenolic acid (MPA), to study the effects of different covariates on MPA pharmacokinetics, to create a limited sampling schedule (LSS) to characterize MPA exposure (i.e., area under the curve or AUC) with maximum a posteriori Bayesian estimation, and to simulate an optimized dosing scheme for allogeneic hematopoietic cell transplantation (HCT) recipients. Four thousand four hundred ninety-six MPA concentration-time points from 408 HCT recipients were analyzed retrospectively using a nonlinear mixed effects modeling approach. MPA pharmacokinetics was characterized with a two-compartment model with first-order elimination and a time-lagged first-order absorption process. Concomitant cyclosporine and serum albumin were significant covariates. The median MPA clearance (CL) and volume of the central compartment were 24.2 L/hour and 36.4 L, respectively, for a 70 kg patient receiving tacrolimus with a serum albumin of 3.4 g/dL. Dosing simulations indicated that higher oral MMF doses are needed with concomitant cyclosporine, which increases MPA CL by 33.8%. The optimal LSS was immediately before and at 0.25 hours, 1.25 hours, 2 hours, and 4 hours after oral mycophenolate mofetil administration. MPA AUC in an individual HCT recipient can be accurately estimated using a five-sample LSS and maximum a posteriori Bayesian estimation. PMID:23382105
Haluska, Paul; Menefee, Michael; Plimack, Elizabeth R.; Rosenberg, Jonathan; Northfelt, Donald; LaVallee, Theresa; Shi, Li; Yu, Xiang-Qing; Burke, Patricia; Huang, Jaiqi; Viner, Jaye; McDevitt, Jennifer; LoRusso, Patricia
2015-01-01
Purpose This phase I, multicenter, open-label, single-arm, dose-escalation, and dose-expansion study evaluated the safety, tolerability, and antitumor activity of MEDI-573 in adults with advanced solid tumors refractory to standard therapy or for which no standard therapy exists. Experimental Design Patients received MEDI-573 in 1 of 5 cohorts (0.5, 1.5, 5, 10, or 15 mg/kg) dosed weekly or 1 of 2 cohorts (30 or 45 mg/kg) dosed every 3 weeks. Primary end points included the MEDI-573 safety profile, maximum tolerated dose (MTD), and optimal biologic dose (OBD). Secondary end points included MEDI-573 pharmacokinetics (PK), pharmacodynamics, immunogenicity, and antitumor activity. Results In total, 43 patients (20 with urothelial cancer) received MEDI-573. No dose-limiting toxicities were identified, and only 1 patient experienced hyperglycemia related to treatment. Elevations in levels of insulin and/or growth hormone were not observed. Adverse events observed in >10% of patients included fatigue, anorexia, nausea, diarrhea, and anemia. PK evaluation demonstrated that levels of MEDI-573 increased with dose at all dose levels tested. At doses >5 mg/kg, circulating levels of insulin-like growth factor (IGF)-I and IGFII were fully suppressed. Of 39 patients evaluable for response, none experienced partial or complete response and 13 had stable disease as best response. Conclusions The MTD of MEDI-573 was not reached. The OBD was 5 mg/kg weekly or 30 or 45 mg/kg every 3 weeks. MEDI-573 showed preliminary antitumor activity in a heavily pretreated population and had a favorable tolerability profile, with no notable perturbations in metabolic homeostasis. PMID:25024259
Hayes, R.B.; Haskell, E.H.; Kenner, G.H.
1996-01-01
Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.
Myofascial trigger point pain.
Jaeger, Bernadette
2013-01-01
Myofascial trigger point pain is an extremely prevalent cause of persistent pain disorders in all parts of the body, not just the head, neck, and face. Features include deep aching pain in any structure, referred from focally tender points in taut bands of skeletal muscle (the trigger points). Diagnosis depends on accurate palpation with 2-4 kg/cm2 of pressure for 10 to 20 seconds over the suspected trigger point to allow the referred pain pattern to develop. In the head and neck region, cervical muscle trigger points (key trigger points) often incite and perpetuate trigger points (satellite trigger points) and referred pain from masticatory muscles. Management requires identification and control of as many perpetuating factors as possible (posture, body mechanics, psychological stress or depression, poor sleep or nutrition). Trigger point therapies such as spray and stretch or trigger point injections are best used as adjunctive therapy. PMID:24864393
Energy and maximum norm estimates for nonlinear conservation laws
NASA Technical Reports Server (NTRS)
Olsson, Pelle; Oliger, Joseph
1994-01-01
We have devised a technique that makes it possible to obtain energy estimates for initial-boundary value problems for nonlinear conservation laws. The two major tools to achieve the energy estimates are a certain splitting of the flux vector derivative f(u)(sub x), and a structural hypothesis, referred to as a cone condition, on the flux vector f(u). These hypotheses are fulfilled for many equations that occur in practice, such as the Euler equations of gas dynamics. It should be noted that the energy estimates are obtained without any assumptions on the gradient of the solution u. The results extend to weak solutions that are obtained as point wise limits of vanishing viscosity solutions. As a byproduct we obtain explicit expressions for the entropy function and the entropy flux of symmetrizable systems of conservation laws. Under certain circumstances the proposed technique can be applied repeatedly so as to yield estimates in the maximum norm.
Test images for the maximum entropy image restoration method
NASA Technical Reports Server (NTRS)
Mackey, James E.
1990-01-01
One of the major activities of any experimentalist is data analysis and reduction. In solar physics, remote observations are made of the sun in a variety of wavelengths and circumstances. In no case is the data collected free from the influence of the design and operation of the data gathering instrument as well as the ever present problem of noise. The presence of significant noise invalidates the simple inversion procedure regardless of the range of known correlation functions. The Maximum Entropy Method (MEM) attempts to perform this inversion by making minimal assumptions about the data. To provide a means of testing the MEM and characterizing its sensitivity to noise, choice of point spread function, type of data, etc., one would like to have test images of known characteristics that can represent the type of data being analyzed. A means of reconstructing these images is presented.
14 CFR 23.1524 - Maximum passenger seating configuration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....
14 CFR 23.1524 - Maximum passenger seating configuration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....
14 CFR 23.1524 - Maximum passenger seating configuration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....
14 CFR 23.1524 - Maximum passenger seating configuration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....
14 CFR 23.1524 - Maximum passenger seating configuration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Maximum passenger seating configuration. 23... Operating Limitations and Information § 23.1524 Maximum passenger seating configuration. The maximum passenger seating configuration must be established....
Condensing heat exchangers for maximum boiler efficiency
Johnson, D.W.; DiVitto, J.G.; Rakocy, M.E.
1994-12-31
Until now, boiler efficiency has been limited due to the minimum temperature allowed at the stack. Heat lost up the stack was in exchange for keeping the flue gas temperature above the water vapor dew point. If water vapor was allowed to condense out, rapid deterioration, due to acid corrosion, of the outlet duct and stack would result. With the development of the condensing heat exchanger, boiler efficiency can now exceed 90%. Approximately 1% gain in boiler efficiency can be expected for every 40 F (4.5 C) reduction in flue gas stack temperature. In the CHX{reg_sign} condensing heat exchanger, all gas wetted surfaces are covered with DuPont Teflon{reg_sign}. The Teflon covered heat exchanger surfaces are impervious to all acids normally resulting from the combustion of fossil fuels. This allows the flue gas to be cooled to below the water vapor dew point with no subsequent corrosion of the heat exchanger surfaces.
Maximum mass, moment of inertia and compactness of relativistic stars
NASA Astrophysics Data System (ADS)
Breu, Cosima; Rezzolla, Luciano
2016-06-01
A number of recent works have highlighted that it is possible to express the properties of general-relativistic stellar equilibrium configurations in terms of functions that do not depend on the specific equation of state employed to describe matter at nuclear densities. These functions are normally referred to as `universal relations' and have been found to apply, within limits, both to static or stationary isolated stars, as well as to fully dynamical and merging binary systems. Further extending the idea that universal relations can be valid also away from stability, we show that a universal relation is exhibited also by equilibrium solutions that are not stable. In particular, the mass of rotating configurations on the turning-point line shows a universal behaviour when expressed in terms of the normalized Keplerian angular momentum. In turn, this allows us to compute the maximum mass allowed by uniform rotation, Mmax, simply in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_max ≃ (1.203 ± 0.022) M_{_TOV} for all the equations of state we have considered. We further introduce an improvement to previously published universal relations by Lattimer & Schutz between the dimensionless moment of inertia and the stellar compactness, which could provide an accurate tool to constrain the equation of state of nuclear matter when measurements of the moment of inertia become available.
An updated dose assessment for Rongelap Island
Robison, W.L.; Conrado, C.L.; Bogen, K.T.
1994-07-01
We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).
Hydraulic Limits on Maximum Plant Transpiration
NASA Astrophysics Data System (ADS)
Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.
2011-12-01
Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water
Gibb, A; Greystoke, A; Ranson, M; Linton, K; Neeson, S; Hampson, G; Illidge, T; Smith, E; Dive, C; Pettitt, A; Lister, A; Johnson, P; Radford, J
2013-01-01
Background: Myelotoxicity during initial cycles of chemotherapy for Hodgkin lymphoma is associated with better outcome, supporting the concept of individualised dosing based on pharmacodynamic end points to optimise results. This study was performed to identify the maximum tolerated dose (MTD) of doxorubicin within cycles 1–3 ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine). Circulating biomarkers of response (nucleosomal DNA, nDNA) and epithelial toxicity (Cytokeratin 18, CK18) were also measured. Methods: Dose escalation of doxorubicin in cycles 1–3 ABVD supported by pegfilgrastim was performed on a six-patient cohort basis (35, 45 and 55 mg m–2) with doxorubicin reduced to 25 mg m–2 or omitted in cycles 4–6 to maintain cumulative exposure of 103–130% standard ABVD. BVD was given at standard doses throughout. Six additional subjects were recruited at the MTD. Results: Twenty-four subjects were recruited. Dose-limiting toxicities (DLTs) of grade 3 neuropathy, pneumonitis, palmar-plantar erythema and neutropenic infection were observed at 55 mg m–2, so 45 mg m–2 was declared the MTD. In patients who subsequently experienced DLT at any time, large increases in CK18 were seen on day 3 of cycle 1 ABVD. Conclusion: Escalated ABVD incorporating doxorubicin at 45 mg m–2 in cycles 1–3 can be delivered safely with pegfilgrastim support. Circulating cell death biomarkers may assist in the development of future individualised dosing strategies. PMID:24136151
Approximate maximum likelihood decoding of block codes
NASA Technical Reports Server (NTRS)
Greenberger, H. J.
1979-01-01
Approximate maximum likelihood decoding algorithms, based upon selecting a small set of candidate code words with the aid of the estimated probability of error of each received symbol, can give performance close to optimum with a reasonable amount of computation. By combining the best features of various algorithms and taking care to perform each step as efficiently as possible, a decoding scheme was developed which can decode codes which have better performance than those presently in use and yet not require an unreasonable amount of computation. The discussion of the details and tradeoffs of presently known efficient optimum and near optimum decoding algorithms leads, naturally, to the one which embodies the best features of all of them.
Experimental shock metamorphism of maximum microcline
NASA Technical Reports Server (NTRS)
Robertson, P. B.
1975-01-01
A series of recovery experiments are conducted to study the behavior of single-crystal perthitic maximum microcline shock-loaded to a peak pressure of 417 kbar. Microcline is found to deform in a manner similar to quartz and other alkali feldspars. It is observed that shock-induced cleavages occur initially at or slightly below the Hugoniot elastic limit (60-85 kbar), that shock-induced rather than thermal disordering begins above the Hugoniot elastic limit, and that all types of planar elements form parallel to crystallographic planes of low Miller indices. When increasing pressure, it is found that bulk density, refractive indices, and birefringence of the recovered material decrease and approach diaplectic glass values, whereas disappearance and weakening of reflections in Debye-Sherrer patterns are due to disordering of the feldspar lattice.
Quantum optimization and maximum clique problems
NASA Astrophysics Data System (ADS)
Yatsenko, Vitaliy A.; Pardalos, Panos M.; Chiarini, Bruno H.
2004-08-01
This paper describes a new approach to global optimization and control uses geometric methods and modern quantum mathematics. Polynomial extremal problems (PEP) are considered. PEP constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. A general approach to optimization based on quantum holonomic computing algorithms and instanton mechanism. An optimization method based on geometric Lie - algebraic structures on Grassmann manifolds and related with Lax type flows is proposed. Making use of the differential geometric techniques it is shown that associated holonomy groups properly realizing quantum computation can be effectively found concerning polynomial problems. Two examples demonstrating calculation aspects of holonomic quantum computer and maximum clique problems in very large graphs, are considered in detail.
Diffusivity Maximum in a Reentrant Nematic Phase
Stieger, Tillmann; Mazza, Marco G.; Schoen, Martin
2012-01-01
We report molecular dynamics simulations of confined liquid crystals using the Gay–Berne–Kihara model. Upon isobaric cooling, the standard sequence of isotropic–nematic–smectic A phase transitions is found. Upon further cooling a reentrant nematic phase occurs. We investigate the temperature dependence of the self-diffusion coefficient of the fluid in the nematic, smectic and reentrant nematic phases. We find a maximum in diffusivity upon isobaric cooling. Diffusion increases dramatically in the reentrant phase due to the high orientational molecular order. As the temperature is lowered, the diffusion coefficient follows an Arrhenius behavior. The activation energy of the reentrant phase is found in reasonable agreement with the reported experimental data. We discuss how repulsive interactions may be the underlying mechanism that could explain the occurrence of reentrant nematic behavior for polar and non-polar molecules. PMID:22837730
Diffusivity maximum in a reentrant nematic phase.
Stieger, Tillmann; Mazza, Marco G; Schoen, Martin
2012-01-01
We report molecular dynamics simulations of confined liquid crystals using the Gay-Berne-Kihara model. Upon isobaric cooling, the standard sequence of isotropic-nematic-smectic A phase transitions is found. Upon further cooling a reentrant nematic phase occurs. We investigate the temperature dependence of the self-diffusion coefficient of the fluid in the nematic, smectic and reentrant nematic phases. We find a maximum in diffusivity upon isobaric cooling. Diffusion increases dramatically in the reentrant phase due to the high orientational molecular order. As the temperature is lowered, the diffusion coefficient follows an Arrhenius behavior. The activation energy of the reentrant phase is found in reasonable agreement with the reported experimental data. We discuss how repulsive interactions may be the underlying mechanism that could explain the occurrence of reentrant nematic behavior for polar and non-polar molecules. PMID:22837730
Characterizing Local Optima for Maximum Parsimony.
Urheim, Ellen; Ford, Eric; St John, Katherine
2016-05-01
Finding the best phylogenetic tree under the maximum parsimony optimality criterion is computationally difficult. We quantify the occurrence of such optima for well-behaved sets of data. When nearest neighbor interchange operations are used, multiple local optima can occur even for "perfect" sequence data, which results in hill-climbing searches that never reach a global optimum. In contrast, we show that when neighbors are defined via the subtree prune and regraft metric, there is a single local optimum for perfect sequence data, and thus, every such search finds a global optimum quickly. We further characterize conditions for which sequences simulated under the Cavender-Farris-Neyman and Jukes-Cantor models of evolution yield well-behaved search spaces. PMID:27234257
Maximum entropy model for business cycle synchronization
NASA Astrophysics Data System (ADS)
Xi, Ning; Muneepeerakul, Rachata; Azaele, Sandro; Wang, Yougui
2014-11-01
The global economy is a complex dynamical system, whose cyclical fluctuations can mainly be characterized by simultaneous recessions or expansions of major economies. Thus, the researches on the synchronization phenomenon are key to understanding and controlling the dynamics of the global economy. Based on a pairwise maximum entropy model, we analyze the business cycle synchronization of the G7 economic system. We obtain a pairwise-interaction network, which exhibits certain clustering structure and accounts for 45% of the entire structure of the interactions within the G7 system. We also find that the pairwise interactions become increasingly inadequate in capturing the synchronization as the size of economic system grows. Thus, higher-order interactions must be taken into account when investigating behaviors of large economic systems.
Spacecraft Maximum Allowable Concentrations for Airborne Contaminants
NASA Technical Reports Server (NTRS)
James, John T.
2008-01-01
The enclosed table lists official spacecraft maximum allowable concentrations (SMACs), which are guideline values set by the NASA/JSC Toxicology Group in cooperation with the National Research Council Committee on Toxicology (NRCCOT). These values should not be used for situations other than human space flight without careful consideration of the criteria used to set each value. The SMACs take into account a number of unique factors such as the effect of space-flight stress on human physiology, the uniform good health of the astronauts, and the absence of pregnant or very young individuals. Documentation of the values is given in a 5 volume series of books entitled "Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants" published by the National Academy Press, Washington, D.C. These books can be viewed electronically at http://books.nap.edu/openbook.php?record_id=9786&page=3. Short-term (1 and 24 hour) SMACs are set to manage accidental releases aboard a spacecraft and permit risk of minor, reversible effects such as mild mucosal irritation. In contrast, the long-term SMACs are set to fully protect healthy crewmembers from adverse effects resulting from continuous exposure to specific air pollutants for up to 1000 days. Crewmembers with allergies or unusual sensitivity to trace pollutants may not be afforded complete protection, even when long-term SMACs are not exceeded. Crewmember exposures involve a mixture of contaminants, each at a specific concentration (C(sub n)). These contaminants could interact to elicit symptoms of toxicity even though individual contaminants do not exceed their respective SMACs. The air quality is considered acceptable when the toxicity index (T(sub grp)) for each toxicological group of compounds is less than 1, where T(sub grp), is calculated as follows: T(sub grp) = C(sub 1)/SMAC(sub 1) + C(sub 2/SMAC(sub 2) + ...+C(sub n)/SMAC(sub n).
Maximum magnitude in the Lower Rhine Graben
NASA Astrophysics Data System (ADS)
Vanneste, Kris; Merino, Miguel; Stein, Seth; Vleminckx, Bart; Brooks, Eddie; Camelbeeck, Thierry
2014-05-01
Estimating Mmax, the assumed magnitude of the largest future earthquakes expected on a fault or in an area, involves large uncertainties. No theoretical basis exists to infer Mmax because even where we know the long-term rate of motion across a plate boundary fault, or the deformation rate across an intraplate zone, neither predict how strain will be released. As a result, quite different estimates can be made based on the assumptions used. All one can say with certainty is that Mmax is at least as large as the largest earthquake in the available record. However, because catalogs are often short relative to the average recurrence time of large earthquakes, larger earthquakes than anticipated often occur. Estimating Mmax is especially challenging within plates, where deformation rates are poorly constrained, large earthquakes are rarer and variable in space and time, and often occur on previously unrecognized faults. We explore this issue for the Lower Rhine Graben seismic zone where the largest known earthquake, the 1756 Düren earthquake, has magnitude 5.7 and should occur on average about every 400 years. However, paleoseismic studies suggest that earthquakes with magnitudes up to 6.7 occurred during the Late Pleistocene and Holocene. What to assume for Mmax is crucial for critical facilities like nuclear power plants that should be designed to withstand the maximum shaking in 10,000 years. Using the observed earthquake frequency-magnitude data, we generate synthetic earthquake histories, and sample them over shorter intervals corresponding to the real catalog's completeness. The maximum magnitudes appearing most often in the simulations tend to be those of earthquakes with mean recurrence time equal to the catalog length. Because catalogs are often short relative to the average recurrence time of large earthquakes, we expect larger earthquakes than observed to date to occur. In a next step, we will compute hazard maps for different return periods based on the
Megavoltage bremsstrahlung end point voltage diagnostic.
Feroli, T; Litz, M S; Merkel, G; Smith, T; Pereira, N R; Carroll, J J
2009-03-01
In a material, a beam of x rays is accompanied by various kinds of secondary radiation, including Compton electrons from collisions between the x rays and the material's electrons. For megavoltage bremsstrahlung in air, many of these Compton electrons are forward-directed and fast enough to be deflected outside the beam's edge by a magnetic field perpendicular to the beam. At the beam's edge, the dose from the deflected Compton electrons has a pattern that depends on the radiation's end point energy. Dose patterns measured with radiochromic film on a nominally 1 and 2 MV linear accelerator agree reasonably well with the corresponding Monte Carlo computations. With further development, the dose pattern produced outside the beam by such a sweeper magnet could become a noninvasive way to monitor megavoltage bremsstrahlung, when the end point energies are difficult to determine with other methods. PMID:19334938
Megavoltage bremsstrahlung end point voltage diagnostic
Feroli, T.; Litz, M. S.; Merkel, G.; Smith, T.; Pereira, N. R.; Carroll, J. J.
2009-03-15
In a material, a beam of x rays is accompanied by various kinds of secondary radiation, including Compton electrons from collisions between the x rays and the material's electrons. For megavoltage bremsstrahlung in air, many of these Compton electrons are forward-directed and fast enough to be deflected outside the beam's edge by a magnetic field perpendicular to the beam. At the beam's edge, the dose from the deflected Compton electrons has a pattern that depends on the radiation's end point energy. Dose patterns measured with radiochromic film on a nominally 1 and 2 MV linear accelerator agree reasonably well with the corresponding Monte Carlo computations. With further development, the dose pattern produced outside the beam by such a sweeper magnet could become a noninvasive way to monitor megavoltage bremsstrahlung, when the end point energies are difficult to determine with other methods.
A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images
Elmpt, Wouter J. C. van; Nijsten, Sebastiaan M. J. J. G.; Schiffeleers, Robert F. H.; Dekker, Andre L. A. J.; Mijnheer, Ben J.; Lambin, Philippe; Minken, Andre W. H.
2006-07-15
The verification of intensity-modulated radiation therapy (IMRT) is necessary for adequate quality control of the treatment. Pretreatment verification may trace the possible differences between the planned dose and the actual dose delivered to the patient. To estimate the impact of differences between planned and delivered photon beams, a three-dimensional (3-D) dose verification method has been developed that reconstructs the dose inside a phantom. The pretreatment procedure is based on portal dose images measured with an electronic portal imaging device (EPID) of the separate beams, without the phantom in the beam and a 3-D dose calculation engine based on the Monte Carlo calculation. Measured gray scale portal images are converted into portal dose images. From these images the lateral scattered dose in the EPID is subtracted and the image is converted into energy fluence. Subsequently, a phase-space distribution is sampled from the energy fluence and a 3-D dose calculation in a phantom is started based on a Monte Carlo dose engine. The reconstruction model is compared to film and ionization chamber measurements for various field sizes. The reconstruction algorithm is also tested for an IMRT plan using 10 MV photons delivered to a phantom and measured using films at several depths in the phantom. Depth dose curves for both 6 and 10 MV photons are reconstructed with a maximum error generally smaller than 1% at depths larger than the buildup region, and smaller than 2% for the off-axis profiles, excluding the penumbra region. The absolute dose values are reconstructed to within 1.5% for square field sizes ranging from 5 to 20 cm width. For the IMRT plan, the dose was reconstructed and compared to the dose distribution with film using the gamma evaluation, with a 3% and 3 mm criterion. 99% of the pixels inside the irradiated field had a gamma value smaller than one. The absolute dose at the isocenter agreed to within 1% with the dose measured with an ionization
Radiation dose to the global flying population.
Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H
2016-03-01
Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. PMID:26769857
REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.
UMEDA, T.; MATSUFURU, H.
2005-07-25
We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.
Farhood, Bagher
2014-01-01
Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582
NASA Astrophysics Data System (ADS)
Papagiannis, P.; Karaiskos, P.; Kozicki, M.; Rosiak, J. M.; Sakelliou, L.; Sandilos, P.; Seimenis, I.; Torrens, M.
2005-05-01
This work seeks to verify multi-shot clinical applications of stereotactic radiosurgery with a Leksell Gamma Knife model C unit employing a polymer gel-MRI based experimental procedure, which has already been shown to be capable of verifying the precision and accuracy of dose delivery in single-shot gamma knife applications. The treatment plan studied in the present work resembles a clinical treatment case of pituitary adenoma using four 8 mm and one 14 mm collimator helmet shots to deliver a prescription dose of 15 Gy to the 50% isodose line (30 Gy maximum dose). For the experimental dose verification of the treatment plan, the same criteria as those used in the clinical treatment planning evaluation were employed. These included comparison of measured and GammaPlan calculated data, in terms of percentage isodose contours on axial, coronal and sagittal planes, as well as 3D plan evaluation criteria such as dose-volume histograms for the target volume, target coverage and conformity indices. Measured percentage isodose contours compared favourably with calculated ones despite individual point fluctuations at low dose contours (e.g., 20%) mainly due to the effect of T2 measurement uncertainty on dose resolution. Dose-volume histogram data were also found in a good agreement while the experimental results for the percentage target coverage and conformity index were 94% and 1.17 relative to corresponding GammaPlan calculations of 96% and 1.12, respectively. Overall, polymer gel results verified the planned dose distribution within experimental uncertainties and uncertainty related to the digitization process of selected GammaPlan output data.
NASA Astrophysics Data System (ADS)
Nadhir, Ahmad; Naba, Agus; Hiyama, Takashi
An optimal control for maximizing extraction of power in variable-speed wind energy conversion system is presented. Intelligent gradient detection by fuzzy inference system (FIS) in maximum power point tracking control is proposed to achieve power curve operating near optimal point. Speed rotor reference can be adjusted by maximum power point tracking fuzzy controller (MPPTFC) such that the turbine operates around maximum power. Power curve model can be modelled by using adaptive neuro fuzzy inference system (ANFIS). It is required to simply well estimate just a few number of maximum power points corresponding to optimum generator rotor speed under varying wind speed, implying its training can be done with less effort. Using the trained fuzzy model, some estimated maximum power points as well as their corresponding generator rotor speed and wind speed are determined, from which a linear wind speed feedback controller (LWSFC) capable of producing optimum generator speed can be obtained. Applied to a squirrel-cage induction generator based wind energy conversion system, MPPTFC and LWSFC could maximize extraction of the wind energy, verified by a power coefficient stay at its maximum almost all the time and an actual power line close to a maximum power efficiency line reference.
Fast Forward Maximum entropy reconstruction of sparsely sampled data
NASA Astrophysics Data System (ADS)
Balsgart, Nicholas M.; Vosegaard, Thomas
2012-10-01
We present an analytical algorithm using fast Fourier transformations (FTs) for deriving the gradient needed as part of the iterative reconstruction of sparsely sampled datasets using the forward maximum entropy reconstruction (FM) procedure by Hyberts and Wagner [J. Am. Chem. Soc. 129 (2007) 5108]. The major drawback of the original algorithm is that it required one FT and one evaluation of the entropy per missing datapoint to establish the gradient. In the present study, we demonstrate that the entire gradient may be obtained using only two FT's and one evaluation of the entropy derivative, thus achieving impressive time savings compared to the original procedure. An example: A 2D dataset with sparse sampling of the indirect dimension, with sampling of only 75 out of 512 complex points (15% sampling) would lack (512 - 75) × 2 = 874 points per ν2 slice. The original FM algorithm would require 874 FT's and entropy function evaluations to setup the gradient, while the present algorithm is ˜450 times faster in this case, since it requires only two FT's. This allows reduction of the computational time from several hours to less than a minute. Even more impressive time savings may be achieved with 2D reconstructions of 3D datasets, where the original algorithm required days of CPU time on high-performance computing clusters only require few minutes of calculation on regular laptop computers with the new algorithm.
Absorbed doses from temporomandibular joint radiography
Brooks, S.L.; Lanzetta, M.L.
1985-06-01
Thermoluminescent dosimeters were used in a tissue-equivalent phantom to measure doses of radiation absorbed by various structures in the head when the temporomandibular joint was examined by four different radiographic techniques--the transcranial, transorbital, and sigmoid notch (Parma) projections and the lateral tomograph. The highest doses of radiation occurred at the point of entry for the x-ray beam, ranging from 112 mrad for the transorbital view to 990 mrad for the sigmoid notch view. Only the transorbital projection a radiation dose to the lens of the eye. Of the four techniques evaluated, the lateral tomograph produced the highest doses to the pituitary gland and the bone marrow, while the sigmoid notch radiograph produced the highest doses to the parotid gland.
Harrison, J D; Balonov, M; Martin, C J; Ortiz Lopez, P; Menzel, H-G; Simmonds, J R; Smith-Bindman, R; Wakeford, R
2016-06-01
International Commission on Radiological Protection (ICRP) Publication 103 provided a detailed explanation of the purpose and use of effective dose and equivalent dose to individual organs and tissues. Effective dose has proven to be a valuable and robust quantity for use in the implementation of protection principles. However, questions have arisen regarding practical applications, and a Task Group has been set up to consider issues of concern. This paper focusses on two key proposals developed by the Task Group that are under consideration by ICRP: (1) confusion will be avoided if equivalent dose is no longer used as a protection quantity, but regarded as an intermediate step in the calculation of effective dose. It would be more appropriate for limits for the avoidance of deterministic effects to the hands and feet, lens of the eye, and skin, to be set in terms of the quantity, absorbed dose (Gy) rather than equivalent dose (Sv). (2) Effective dose is in widespread use in medical practice as a measure of risk, thereby going beyond its intended purpose. While doses incurred at low levels of exposure may be measured or assessed with reasonable reliability, health effects have not been demonstrated reliably at such levels but are inferred. However, bearing in mind the uncertainties associated with risk projection to low doses or low dose rates, it may be considered reasonable to use effective dose as a rough indicator of possible risk, with the additional consideration of variation in risk with age, sex and population group. PMID:26980800
Differential dose contributions on total dose distribution of 125I brachytherapy source
Camgöz, B.; Yeğin, G.; Kumru, M.N.
2010-01-01
This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 125I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically. PMID:24376927
Gargett, Maegan Rosenfeld, Anatoly; Oborn, Brad; Metcalfe, Peter
2015-02-15
Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI
NASA Astrophysics Data System (ADS)
Shamsaldin, A.; Lundell, M.; Diallo, I.; Ligot, L.; Chavaudra, J.; de Vathaire, F.
2000-12-01
Radium applicators and pure beta emitters have been widely used in the past to treat skin haemangioma in early childhood. A well defined relationship between the low doses received from these applicators and radiation-induced cancers requires accurate dosimetry. A human-based CT scan phantom has been used to simulate every patient and treatment condition and then to calculate the source-target distance when radium and pure beta applicators were used. The effective transmission factor ϕ(r) for the gamma spectrum emitted by the radium sources applied on the skin surface was modelled using Monte Carlo simulations. The well-known quantization approach was used to calculate gamma doses delivered from radium applicators to various anatomical points. For 32P, 90Sr/90Y applicators and 90Y needles we have used the apparent exponential attenuation equation. The dose calculation algorithm was integrated into the ICTA software (standing for a model that constructs an Individualized phantom based on CT slices and Auxological data), which has been developed for epidemiological studies of cohorts of patients who received radium and beta-treatments for skin haemangioma. The ϕ(r) values obtained for radium skin applicators are in good agreement with the available values in the first 10 cm but higher at greater distances. Gamma doses can be calculated with this algorithm at 165 anatomical points throughout the body of patients treated with radium applicators. Lung heterogeneity and air crossed by the gamma rays are considered. Comparison of absorbed doses in water from a 10 mg equivalent radium source simulated by ICTA with those measured at the Radiumhemmet, Karolinska Hospital (RAH) showed good agreement, but ICTA estimation of organ doses did not always correspond those estimated at the RAH. Beta doses from 32P, 90Sr/90Y applicators and 90Y needles are calculated up to the maximum beta range (11 mm).
Veiga, Catarina Royle, Gary; Lourenço, Ana Mónica; Mouinuddin, Syed; Herk, Marcel van; Modat, Marc; Ourselin, Sébastien; McClelland, Jamie R.
2015-02-15
Purpose: The aims of this work were to evaluate the performance of several deformable image registration (DIR) algorithms implemented in our in-house software (NiftyReg) and the uncertainties inherent to using different algorithms for dose warping. Methods: The authors describe a DIR based adaptive radiotherapy workflow, using CT and cone-beam CT (CBCT) imaging. The transformations that mapped the anatomy between the two time points were obtained using four different DIR approaches available in NiftyReg. These included a standard unidirectional algorithm and more sophisticated bidirectional ones that encourage or ensure inverse consistency. The forward (CT-to-CBCT) deformation vector fields (DVFs) were used to propagate the CT Hounsfield units and structures to the daily geometry for “dose of the day” calculations, while the backward (CBCT-to-CT) DVFs were used to remap the dose of the day onto the planning CT (pCT). Data from five head and neck patients were used to evaluate the performance of each implementation based on geometrical matching, physical properties of the DVFs, and similarity between warped dose distributions. Geometrical matching was verified in terms of dice similarity coefficient (DSC), distance transform, false positives, and false negatives. The physical properties of the DVFs were assessed calculating the harmonic energy, determinant of the Jacobian, and inverse consistency error of the transformations. Dose distributions were displayed on the pCT dose space and compared using dose difference (DD), distance to dose difference, and dose volume histograms. Results: All the DIR algorithms gave similar results in terms of geometrical matching, with an average DSC of 0.85 ± 0.08, but the underlying properties of the DVFs varied in terms of smoothness and inverse consistency. When comparing the doses warped by different algorithms, we found a root mean square DD of 1.9% ± 0.8% of the prescribed dose (pD) and that an average of 9% ± 4% of
A study evaluating the dependence of the patient dose on the CT dose change in a SPECT/CT scan
NASA Astrophysics Data System (ADS)
Kim, Woo-Hyun; Kim, Ho-Sung; Dong, Kyung-Rae; Chung, Woon-Kwan; Cho, Jae-Hwan; Shin, Jae-Woo
2012-07-01
This study assessed ways of reducing the patient dose by examining the dependence of the patient dose on the CT (computed tomography) dose in a SPECT (single-photon emission computed tomography)/CT scan. To measure the patient dose, we used Precedence 16 SPECT/CT along with a phantom for the CT dose measurement (CT dose phantom kit for adult's head and body, Model 76-414-4150), a 100-mm ionization chamber (CT Ion Chamber) and an X-ray detector (Victoreen Model 4000M+). In addition, the patient dose was evaluated under conditions similar to those for an actual examination using an ImPACT (imaging performance assessment of CT scanners) dosimetry calculator in the Monte Carlo simulation method. The experimental method involved the use of a CT dose phantom to measure the patient dose under different CT conditions (kVp and mAs) to determine the CTDI (CT dose index) under each condition. An ImPACT dosimetry calculator was also used to measure CTDIw (CT dose index water ), CTDIv (CT dose index volume ), DLP (dose-length product), and effective dose. According to the patient dose measurements using the CT dose phantom, the CTDI showed an approximately 54 fold difference between when the maximum (140 kVp and 250 mAs) and the minimum dose (90 kVp and 25 mAs) was used. The CTDI showed a 4.2 fold difference between the conditions (120 kVp and 200 mAs) used mainly in a common CT scan and the conditions (120 kVp and 50 mAs) used mainly in a SPECT/CT scan. According to the measurement results using the dosimetry calculator, the effective dose showed an approximately 35 fold difference between the conditions for the maximum and the minimum doses, as in the case with the CT dose phantom. The effective dose showed a 4.1 fold difference between the conditions used mainly in a common CT scan and those used mainly in a SPECT/CT scan. This study examined the patient dose by reducing the CT dose in a SPECT/CT scan. As various examinations can be conducted due to the development of
Point-to-Point Multicast Communications Protocol
NASA Technical Reports Server (NTRS)
Byrd, Gregory T.; Nakano, Russell; Delagi, Bruce A.
1987-01-01
This paper describes a protocol to support point-to-point interprocessor communications with multicast. Dynamic, cut-through routing with local flow control is used to provide a high-throughput, low-latency communications path between processors. In addition multicast transmissions are available, in which copies of a packet are sent to multiple destinations using common resources as much as possible. Special packet terminators and selective buffering are introduced to avoid a deadlock during multicasts. A simulated implementation of the protocol is also described.
Sullivan, Terry
2014-12-02
ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant in order to establish a new water treatment plant. There is some residual radioactive particles from the plant which need to be brought down to levels so an individual who receives water from the new treatment plant does not receive a radioactive dose in excess of 25 mrem/y⁻¹. The objectives of this report are: (a) To present a simplified conceptual model for release from the buildings with residual subsurface structures that can be used to provide an upper bound on contaminant concentrations in the fill material; (b) Provide maximum water concentrations and the corresponding amount of mass sorbed to the solid fill material that could occur in each building for use in dose assessment calculations; (c) Estimate the maximum concentration in a well located outside of the fill material; and (d) Perform a sensitivity analysis of key parameters.
Maximum life spiral bevel reduction design
NASA Technical Reports Server (NTRS)
Savage, M.; Prasanna, M. G.; Coe, H. H.
1992-01-01
Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.
Portable measurement of maximum mouth pressures.
Hamnegård, C H; Wragg, S; Kyroussis, D; Aquilina, R; Moxham, J; Green, M
1994-02-01
We have compared a small portable mouth pressure meter (MPM) to our laboratory standard (LS) pressure recording equipment in order to evaluate this new device. The mouth pressure meter measures and displays as a digital read-out peak pressure for inspiratory and expiratory efforts. It samples the signal at 16 Hz, and an integral microprocessor is programmed to determine and display the maximum pressure averaged over one second both during inspiratory and expiratory manoeuvres (PImax and PEmax, respectively). A fine bore catheter connecting the mouthpiece of the mouth pressure meter to a Validyne pressure transducer enabled simultaneous measurement of pressure, which was analysed by LabVIEW, running on a Macintosh Quadra 700 computer. We studied 13 normal subjects and 11 patients with respiratory disease. Each subject performed inspiratory and five expiratory efforts. The values displayed from the mouth pressure meter were manually recorded. The mouth pressure meter reliably and accurately measured peak pressure and maximal pressure both for inspiratory and expiratory efforts in normals and patients. The mean +/- SD difference when compared with the Validyne method was 0.19 +/- 0.12 and -0.04 +/- 0.12 kPa, for PImax and PEmax, respectively. This portable device should be useful to measure mouth pressures, not only in the routine lung function laboratory but also at the bedside and in the clinic. PMID:8162993
Preparing for the Upcoming Solar Maximum
NASA Astrophysics Data System (ADS)
Tretkoff, Ernie
2009-07-01
As the next solar maximum approaches, society is increasingly reliant on satellite communications and navigation technologies, which are vulnerable to solar storms. To prepare for the upcoming peak in solar activity, expected in 2013, the U.S. National Space Weather Program Council organized the 2009 Space Weather Enterprise Forum, held 19-20 May in Washington, D. C. The conference, themed "Space Weather and Our Technological Society—Are We Ready for Solar Max?," attracted more than 225 participants, representing government agencies, industry, and academia. Presentations and panel discussion throughout the conference addressed issues including opportunities for coordinated collaboration among various agencies and with industry; the need for more effective outreach to stakeholders, policy makers, and the public; and ways to improve communication between scientists and space weather forecasters. Participants also agreed that it is important to plan for follow-up projects that will replace aging space weather satellites, such as the Advanced Composition Explorer (ACE), which provides continuous solar wind monitoring.
Theoretical Estimate of Maximum Possible Nuclear Explosion
DOE R&D Accomplishments Database
Bethe, H. A.
1950-01-31
The maximum nuclear accident which could occur in a Na-cooled, Be moderated, Pu and power producing reactor is estimated theoretically. (T.R.H.) 2O82 Results of nuclear calculations for a variety of compositions of fast, heterogeneous, sodium-cooled, U-235-fueled, plutonium- and power-producing reactors are reported. Core compositions typical of plate-, pin-, or wire-type fuel elements and with uranium as metal, alloy, and oxide were considered. These compositions included atom ratios in the following range: U-23B to U-235 from 2 to 8; sodium to U-235 from 1.5 to 12; iron to U-235 from 5 to 18; and vanadium to U-235 from 11 to 33. Calculations were performed to determine the effect of lead and iron reflectors between the core and blanket. Both natural and depleted uranium were evaluated as the blanket fertile material. Reactors were compared on a basis of conversion ratio, specific power, and the product of both. The calculated results are in general agreement with the experimental results from fast reactor assemblies. An analysis of the effect of new cross-section values as they became available is included. (auth)
Targeted maximum likelihood estimation in safety analysis
Lendle, Samuel D.; Fireman, Bruce; van der Laan, Mark J.
2013-01-01
Objectives To compare the performance of a targeted maximum likelihood estimator (TMLE) and a collaborative TMLE (CTMLE) to other estimators in a drug safety analysis, including a regression-based estimator, propensity score (PS)–based estimators, and an alternate doubly robust (DR) estimator in a real example and simulations. Study Design and Setting The real data set is a subset of observational data from Kaiser Permanente Northern California formatted for use in active drug safety surveillance. Both the real and simulated data sets include potential confounders, a treatment variable indicating use of one of two antidiabetic treatments and an outcome variable indicating occurrence of an acute myocardial infarction (AMI). Results In the real data example, there is no difference in AMI rates between treatments. In simulations, the double robustness property is demonstrated: DR estimators are consistent if either the initial outcome regression or PS estimator is consistent, whereas other estimators are inconsistent if the initial estimator is not consistent. In simulations with near-positivity violations, CTMLE performs well relative to other estimators by adaptively estimating the PS. Conclusion Each of the DR estimators was consistent, and TMLE and CTMLE had the smallest mean squared error in simulations. PMID:23849159
Maximum windmill efficiency in finite time
NASA Astrophysics Data System (ADS)
Huleihil, Mahmoud
2009-05-01
The fraction of the kinetic energy of the wind impinging on the rotor-swept area that a wind turbine can convert to useful power has been shown by Betz in an idealized laminar-flow model to have an upper limit of 16/27 or 59% approximately [I. H. Shames, Mechanics of Fluids, 2nd ed. (McGraw-Hill, New York, 1982), pp. A26-A31]. This figure is known as Betz number. Other studies [A. Rauh and W. Seelret, Appl. Energy 17, 15 (1984)] suggested that this figure should be considered as a guideline. In this paper, a new model is introduced and its efficiency at maximum power output is derived. The derived value is shown to be a function of the Betz number B and given by the formula ηmp=1-√1-B . This value is 36.2%, which agrees well with those of actually operating wind turbines. As a guideline, the wind turbine efficiency can be considered to be within the range of the two numbers of merit, the Betz number and ηmp.
Finding maximum JPEG image block code size
NASA Astrophysics Data System (ADS)
Lakhani, Gopal
2012-07-01
We present a study of JPEG baseline coding. It aims to determine the minimum storage needed to buffer the JPEG Huffman code bits of 8-bit image blocks. Since DC is coded separately, and the encoder represents each AC coefficient by a pair of run-length/AC coefficient level, the net problem is to perform an efficient search for the optimal run-level pair sequence. We formulate it as a two-dimensional, nonlinear, integer programming problem and solve it using a branch-and-bound based search method. We derive two types of constraints to prune the search space. The first one is given as an upper-bound for the sum of squares of AC coefficients of a block, and it is used to discard sequences that cannot represent valid DCT blocks. The second type constraints are based on some interesting properties of the Huffman code table, and these are used to prune sequences that cannot be part of optimal solutions. Our main result is that if the default JPEG compression setting is used, space of minimum of 346 bits and maximum of 433 bits is sufficient to buffer the AC code bits of 8-bit image blocks. Our implementation also pruned the search space extremely well; the first constraint reduced the initial search space of 4 nodes down to less than 2 nodes, and the second set of constraints reduced it further by 97.8%.
Maximum likelihood continuity mapping for fraud detection
Hogden, J.
1997-05-01
The author describes a novel time-series analysis technique called maximum likelihood continuity mapping (MALCOM), and focuses on one application of MALCOM: detecting fraud in medical insurance claims. Given a training data set composed of typical sequences, MALCOM creates a stochastic model of sequence generation, called a continuity map (CM). A CM maximizes the probability of sequences in the training set given the model constraints, CMs can be used to estimate the likelihood of sequences not found in the training set, enabling anomaly detection and sequence prediction--important aspects of data mining. Since MALCOM can be used on sequences of categorical data (e.g., sequences of words) as well as real valued data, MALCOM is also a potential replacement for database search tools such as N-gram analysis. In a recent experiment, MALCOM was used to evaluate the likelihood of patient medical histories, where ``medical history`` is used to mean the sequence of medical procedures performed on a patient. Physicians whose patients had anomalous medical histories (according to MALCOM) were evaluated for fraud by an independent agency. Of the small sample (12 physicians) that has been evaluated, 92% have been determined fraudulent or abusive. Despite the small sample, these results are encouraging.
TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS
Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M
2007-11-12
Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.
Approach trajectory planning system for maximum concealment
NASA Technical Reports Server (NTRS)
Warner, David N., Jr.
1986-01-01
A computer-simulation study was undertaken to investigate a maximum concealment guidance technique (pop-up maneuver), which military aircraft may use to capture a glide path from masked, low-altitude flight typical of terrain following/terrain avoidance flight enroute. The guidance system applied to this problem is the Fuel Conservative Guidance System. Previous studies using this system have concentrated on the saving of fuel in basically conventional land and ship-based operations. Because this system is based on energy-management concepts, it also has direct application to the pop-up approach which exploits aircraft performance. Although the algorithm was initially designed to reduce fuel consumption, the commanded deceleration is at its upper limit during the pop-up and, therefore, is a good approximation of a minimum-time solution. Using the model of a powered-lift aircraft, the results of the study demonstrated that guidance commands generated by the system are well within the capability of an automatic flight-control system. Results for several initial approach conditions are presented.
46 CFR 154.556 - Cargo hose: Maximum working pressure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Maximum working pressure. 154.556 Section... Equipment Cargo Hose § 154.556 Cargo hose: Maximum working pressure. A cargo hose must have a maximum working pressure not less than the maximum pressure to which it may be subjected and at least 1034...
46 CFR 154.556 - Cargo hose: Maximum working pressure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo hose: Maximum working pressure. 154.556 Section... Equipment Cargo Hose § 154.556 Cargo hose: Maximum working pressure. A cargo hose must have a maximum working pressure not less than the maximum pressure to which it may be subjected and at least 1034...
49 CFR 230.24 - Maximum allowable stress.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the...
49 CFR 230.24 - Maximum allowable stress.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the...
49 CFR 230.24 - Maximum allowable stress.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the...
49 CFR 230.24 - Maximum allowable stress.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the...
49 CFR 230.24 - Maximum allowable stress.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the...
In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans
Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Liu, Tianyu; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob
2014-01-01
Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% − 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the
In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans
Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Liu, Bob; Liu, Tianyu; Xu, X. George
2014-09-15
Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% − 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the
A Maximum-Likelihood Approach to Force-Field Calibration.
Zaborowski, Bartłomiej; Jagieła, Dawid; Czaplewski, Cezary; Hałabis, Anna; Lewandowska, Agnieszka; Żmudzińska, Wioletta; Ołdziej, Stanisław; Karczyńska, Agnieszka; Omieczynski, Christian; Wirecki, Tomasz; Liwo, Adam
2015-09-28
); and optimization of the energy-term weights and the coefficients of the torsional and multibody energy terms and use of experimental ensembles at all three temperatures (run 3). The force fields were subsequently tested with a set of 14 α-helical and two α + β proteins. Optimization run 1 resulted in better agreement with the experimental ensemble at T = 280 K compared with optimization run 2 and in comparable performance on the test set but poorer agreement of the calculated folding temperature with the experimental folding temperature. Optimization run 3 resulted in the best fit of the calculated ensembles to the experimental ones for the tryptophan cage but in much poorer performance on the training set, suggesting that use of a small α-helical protein for extensive force-field calibration resulted in overfitting of the data for this protein at the expense of transferability. The optimized force field resulting from run 2 was found to fold 13 of the 14 tested α-helical proteins and one small α + β protein with the correct topologies; the average structures of 10 of them were predicted with accuracies of about 5 Å C(α) root-mean-square deviation or better. Test simulations with an additional set of 12 α-helical proteins demonstrated that this force field performed better on α-helical proteins than the previous parametrizations of UNRES. The proposed approach is applicable to any problem of maximum-likelihood parameter estimation when the contributions to the maximum-likelihood function cannot be evaluated at the experimental points and the dimension of the configurational space is too high to construct histograms of the experimental distributions. PMID:26263302
NASA Astrophysics Data System (ADS)
Fontenot, Jonas; Taddei, Phillip; Zheng, Yuanshui; Mirkovic, Dragan; Jordan, Thomas; Newhauser, Wayne
2008-03-01
Proton therapy reduces the integral therapeutic dose required for local control in prostate patients compared to intensity-modulated radiotherapy. One proposed benefit of this reduction is an associated decrease in the incidence of radiogenic secondary cancers. However, patients are also exposed to stray radiation during the course of treatment. The purpose of this study was to quantify the stray radiation dose received by patients during proton therapy for prostate cancer. Using a Monte Carlo model of a proton therapy nozzle and a computerized anthropomorphic phantom, we determined that the effective dose from stray radiation per therapeutic dose (E/D) for a typical prostate patient was approximately 5.5 mSv Gy-1. Sensitivity analysis revealed that E/D varied by ±30% over the interval of treatment parameter values used for proton therapy of the prostate. Equivalent doses per therapeutic dose (HT/D) in specific organs at risk were found to decrease with distance from the isocenter, with a maximum of 12 mSv Gy-1 in the organ closest to the treatment volume (bladder) and 1.9 mSv Gy-1 in the furthest (esophagus). Neutrons created in the nozzle predominated effective dose, though neutrons created in the patient contributed substantially to the equivalent dose in organs near the proton field. Photons contributed less than 15% to equivalent doses.
Preliminary investigation on the relation between maximum wave height and wave spectra
NASA Astrophysics Data System (ADS)
Tao, Aifeng; Wen, Cheng; Wu, Yuqing; Wu, Haoran; Li, Shuo; Cao, Guangsui
2016-04-01
The maximum wave height is important not only for the determination of design wave parameters but also for the marine disaster defense. While it cannot be predicted straightforwardly at present, since the general numerical models for wave forecasting are all based on phase averaged spectra model. Then it becomes very useful to make clear the relationship between the maximum wave height and wave spectra parameters, such as average wave steepness, spectra width and spectra type, such as one single peak spectra or multi peaks spectra. In order to perform this research procedure, plenty of observed wave data are required. We collected ten years wave data measured from a ship in North Sea, one year wave pressure data from nine points around Korea, four years buoy data from three points along Chinese coast. The preliminary investigation results on the relations between maximum waves and spectra via the mention observed data will be present here.
Jin Jianyue; Drzymala, Robert; Li Zuofeng
2004-12-01
The purpose of this study is to develop a simple independent dose calculation method to verify treatment plans for Leksell Gamma Knife radiosurgery. Our approach uses the total integral dose within the skull as an end point for comparison. The total integral dose is computed using a spreadsheet and is compared to that obtained from Leksell GammaPlan registered . It is calculated as the sum of the integral doses of 201 beams, each passing through a cylindrical volume. The average length of the cylinders is estimated from the Skull-Scaler measurement data taken before treatment. Correction factors are applied to the length of the cylinder depending on the location of a shot in the skull. The radius of the cylinder corresponds to the collimator aperture of the helmet, with a correction factor for the beam penumbra and scattering. We have tested our simple spreadsheet program using treatment plans of 40 patients treated with Gamma Knife registered in our center. These patients differ in geometry, size, lesion locations, collimator helmet, and treatment complexities. Results show that differences between our calculations and treatment planning results are typically within {+-}3%, with a maximum difference of {+-}3.8%. We demonstrate that our spreadsheet program is a convenient and effective independent method to verify treatment planning irradiation times prior to implementation of Gamma Knife radiosurgery.
Drug and light dose responses to focal photodynamic therapy of single blood vessels in vivo
NASA Astrophysics Data System (ADS)
Khurana, Mamta; Moriyama, Eduardo H.; Mariampillai, Adrian; Samkoe, Kimberley; Cramb, David; Wilson, Brian C.
2009-11-01
As part of an ongoing program to develop two-photon (2-γ) photodynamic therapy (PDT) for treatment of wet-form age-related macular degeneration (AMD) and other vascular pathologies, we have evaluated the reciprocity of drug-light doses in focal-PDT. We targeted individual arteries in a murine window chamber model, using primarily the clinical photosensitizer Visudyne/liposomal-verteporfin. Shortly after administration of the photosensitizer, a small region including an arteriole was selected and irradiated with varying light doses. Targeted and nearby vessels were observed for a maximum of 17 to 25 h to assess vascular shutdown, tapering, and dye leakage/occlusion. For a given end-point metric, there was reciprocity between the drug and light doses, i.e., the response correlated with the drug-light product (DLP). These results provide the first quantification of photosensitizer and light dose relationships for localized irradiation of a single blood vessel and are compared to the DLP required for vessel closure between 1-γ and 2-γ activation, between focal and broad-beam irradiation, and between verteporfin and a porphyrin dimer with high 2-γ cross section. Demonstration of reciprocity over a wide range of DLP is important for further development of focal PDT treatments, such as the targeting of feeder vessels in 2-γ PDT of AMD.
Point by Point: Adding up Motivation
ERIC Educational Resources Information Center
Marchionda, Denise
2010-01-01
Students often view their course grades as a mysterious equation of teacher-given grades, teacher-given grace, and some other ethereal components based on luck. However, giving students the power to earn points based on numerous daily/weekly assignments and attendance makes the grading process objective and personal, freeing the instructor to…
Blodwell, J.F.
1987-10-01
It is argued that the point structure of space and time must be constructed from the primitive extensional character of space and time. A procedure for doing this is laid down and applied to one-dimensional and two-dimensional systems of abstract extensions. Topological and metrical properties of the constructed point systems, which differ nontrivially from the usual R and R/sup 2/ models, are examined. Briefly, constructed points are associated with directions and the Cartesian point is split. In one-dimension each point splits into a point pair compatible with the linear ordering. An application to one-dimensional particle motion is given, with the result that natural topological assumptions force the number of left point, right point transitions to remain locally finite in a continuous motion. In general, Cartesian points are seen to correspond to certain filters on a suitable Boolean algebra. Constructed points correspond to ultrafilters. Thus, point construction gives a natural refinement of the Cartesian systems.
Maximum Mouth Opening in Saudi Adolescents
Al-Dlaigan, Yousef H; Asiry, Moshabab A
2014-01-01
Background: The aim of this study was to investigate the maximum mouth opening (MMO) in a representative sample of the Saudi adolescents. Materials and Methods: A total of 1825 Saudi adolescents (1007 males and 818 females) aged 12-16 years were randomly selected. The subjects were asked to open their mouth maximally till no further opening was possible and then the distance from the incisal edge of the maxillary incisors to incisal edge of the mandibular incisors was recorded. All data were analyzed using SPSS program and simple descriptive statistics of MMO with regard to gender and age groups were reported. The Student’s t-test and one-way analysis of variance were used to examine differences in mouth opening relative to gender and age groups. Results: The mean maximal mouth opening for males was 43.5 ± 4.23 mm (range 29-59 mm). The mean maximal mouth opening for females was 35.5 ± 4.4 mm (range 20-45 mm). There was a significant difference between the mouth opening of males and females in all the age group (P = 0.000). The mouth opening, regardless of gender, increases significantly with age from the age of 12 years to the age of 14 years (P = 0.000), then remained unchanged till the age of 16 years. Conclusion: The mouth opening of males is significantly higher than that of females in all the age group. There was a significant increase in MMO with age up to the age of 14 years regardless of gender. PMID:25628483
A maximum likelihood framework for protein design
Kleinman, Claudia L; Rodrigue, Nicolas; Bonnard, Cécile; Philippe, Hervé; Lartillot, Nicolas
2006-01-01
Background The aim of protein design is to predict amino-acid sequences compatible with a given target structure. Traditionally envisioned as a purely thermodynamic question, this problem can also be understood in a wider context, where additional constraints are captured by learning the sequence patterns displayed by natural proteins of known conformation. In this latter perspective, however, we still need a theoretical formalization of the question, leading to general and efficient learning methods, and allowing for the selection of fast and accurate objective functions quantifying sequence/structure compatibility. Results We propose a formulation of the protein design problem in terms of model-based statistical inference. Our framework uses the maximum likelihood principle to optimize the unknown parameters of a statistical potential, which we call an inverse potential to contrast with classical potentials used for structure prediction. We propose an implementation based on Markov chain Monte Carlo, in which the likelihood is maximized by gradient descent and is numerically estimated by thermodynamic integration. The fit of the models is evaluated by cross-validation. We apply this to a simple pairwise contact potential, supplemented with a solvent-accessibility term, and show that the resulting models have a better predictive power than currently available pairwise potentials. Furthermore, the model comparison method presented here allows one to measure the relative contribution of each component of the potential, and to choose the optimal number of accessibility classes, which turns out to be much higher than classically considered. Conclusion Altogether, this reformulation makes it possible to test a wide diversity of models, using different forms of potentials, or accounting for other factors than just the constraint of thermodynamic stability. Ultimately, such model-based statistical analyses may help to understand the forces shaping protein sequences, and
Dosimetric adaptive IMRT driven by fiducial points
Crijns, Wouter; Van Herck, Hans; Defraene, Gilles; Van den Bergh, Laura; Haustermans, Karin; Slagmolen, Pieter; Maes, Frederik; Van den Heuvel, Frank
2014-06-15
Purpose: Intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy have become standard treatments but are more sensitive to anatomical variations than 3D conformal techniques. To correct for inter- and intrafraction anatomical variations, fast and easy to implement methods are needed. Here, the authors propose a full dosimetric IMRT correction that finds a compromise in-between basic repositioning (the current clinical practice) and full replanning. It simplifies replanning by avoiding a recontouring step and a full dose calculation. It surpasses repositioning by updating the preoptimized fluence and monitor units (MU) using a limited number of fiducial points and a pretreatment (CB)CT. To adapt the fluence the fiducial points were projected in the beam's eye view (BEV). To adapt the MUs, point dose calculation towards the same fiducial points were performed. The proposed method is intrinsically fast and robust, and simple to understand for operators, because of the use of only four fiducial points and the beam data based point dose calculations. Methods: To perform our dosimetric adaptation, two fluence corrections in the BEV are combined with two MU correction steps along the beam's path. (1) A transformation of the fluence map such that it is realigned with the current target geometry. (2) A correction for an unintended scaling of the penumbra margin when the treatment beams scale to the current target size. (3) A correction for the target depth relative to the body contour and (4) a correction for the target distance to the source. The impact of the correction strategy and its individual components was evaluated by simulations on a virtual prostate phantom. This heterogeneous reference phantom was systematically subjected to population based prostate transformations to simulate interfraction variations. Additionally, a patient example illustrated the clinical practice. The correction strategy was evaluated using both dosimetric (CTV mean
New Observations of Subarcsecond Photospheric Bright Points
NASA Technical Reports Server (NTRS)
Berger, T. E.; Schrijver, C. J.; Shine, R. A.; Tarbell, T. D.; Title, A. M.; Scharmer, G.
1995-01-01
We have used an interference filter centered at 4305 A within the bandhead of the CH radical (the 'G band') and real-time image selection at the Swedish Vacuum Solar Telescope on La Palma to produce very high contrast images of subarcsecond photospheric bright points at all locations on the solar disk. During the 6 day period of 1993 September 15-20 we observed active region NOAA 7581 from its appearance on the East limb to a near-disk-center position on September 20. A total of 1804 bright points were selected for analysis from the disk center image using feature extraction image processing techniques. The measured Full Width at Half Maximum (FWHM) distribution of the bright points in the image is lognormal with a modal value of 220 km (0 sec .30) and an average value of 250 km (0 sec .35). The smallest measured bright point diameter is 120 km (0 sec .17) and the largest is 600 km (O sec .69). Approximately 60% of the measured bright points are circular (eccentricity approx. 1.0), the average eccentricity is 1.5, and the maximum eccentricity corresponding to filigree in the image is 6.5. The peak contrast of the measured bright points is normally distributed. The contrast distribution variance is much greater than the measurement accuracy, indicating a large spread in intrinsic bright-point contrast. When referenced to an averaged 'quiet-Sun' area in the image, the modal contrast is 29% and the maximum value is 75%; when referenced to an average intergranular lane brightness in the image, the distribution has a modal value of 61% and a maximum of 119%. The bin-averaged contrast of G-band bright points is constant across the entire measured size range. The measured area of the bright points, corrected for pixelation and selection effects, covers about 1.8% of the total image area. Large pores and micropores occupy an additional 2% of the image area, implying a total area fraction of magnetic proxy features in the image of 3.8%. We discuss the implications of this
Russell, Nicholas A; Rives, Alain; Pelletier, Matthew H; Bruce, Warwick J; Walsh, William R
2013-06-01
Load bearing bone allografts are used to replace the mechanical function of bone that has been removed or to augment bone that has been damaged in trauma. In order to minimize the risk of infection and immune response, the bone is delipidated and terminally sterilized prior to implantation. The optimal method for bone graft sterilization has been the topic of considerable research. Recently, supercritical carbon dioxide (SCCO(2)) treatments have been shown to terminally sterilize bone against a range of bacteria and viruses. This study aimed to evaluate the effect of SCCO(2) treatment compared with two doses of gamma irradiation, on the mechanical properties of whole bone. Paired rabbit humeri were dissected and randomly assigned into either SCCO(2) control, SCCO(2) additive or gamma irradiation at 10 or 25 kGy treatment groups. The bones were mechanically tested in three-point and four-point bending and torsion, with the lefts acting as controls for the treated rights. Maximum load, energy to failure and stiffness were evaluated. This study found that SCCO(2) treatment with or without additive did not alter maximum load, energy to failure or stiffness significantly under any loading modality. Gamma irradiation had a deleterious dose dependant effect, with statistically significant decreases in all mechanical tests at 25 kGy; while at 10 kGy there were reductions in all loading profiles, though only reaching statistical significance in torsion. This study highlights the expediency of SCCO(2) treatment for bone allograft processing as terminal sterilization can be achieved while maintaining the intrinsic mechanical properties of the graft. PMID:22644703
El Dareer, S.M.; Kalin, J.R.; Tillery, K.F.; Hill, D.L.
1988-01-01
The disposition of 2-(2-quinolyl)-1,3-indandione (D. C. yellow No. 11, DCY) in male Fischer rats dosed intravenously or by feeding was determined. For rats given (/sup 14/C)DCY in the feed (0.00044-0.41% of the diet), recovery of radioactivity during the 24-h dosing period and the 72-h period thereafter ranged from 89.1 to 93.9% for feces and from 4.98 to 6.25 for urine. Tissues contained only trace amounts. Following intravenous dosing with (/sup 14/C)DCY (0.93 mg/kg), radioactivity distributed readily into most tissues; maximum amounts were present at 5 min, the earliest time of assay. Maximum amounts of radioactivity in fat, skin, and gut tissue, however, were present at 30 min after dosing. These three tissues also had relatively long alpha phases for the elimination of radioactivity. In 24 h after intravenous dosing, rats excreted 81.1% of the dose in the feces and 16.0% of the dose in the urine. For rats fitted with biliary cannulas, 54.5% of the dose, all of which was metabolites of (/sup 14/C), was recovered in the bile in 4 h. Associated with the rapid and extensive biliary excretion of metabolites of intravenously administered (/sup 14/C)DCY was the appearance of large amounts of radioactivity in the feces and also, at intermediate time points, in the liver, gut contents, and gut tissue. In conclusion, rats rapidly distribute, metabolize, and excrete (/sup 14/C)DCY.
el Dareer, S.M.; Kalin, J.R.; Tillery, K.F.; Hill, D.L.
1988-01-01
The disposition of 2-(2-quinolyl)-1,3-indandione (D. C. yellow number11, DCY) in male Fischer rats dosed intravenously or by feeding was determined. For rats given (/sup 14/C)DCY in the feed (0.00044-0.41% of the diet), recovery of radioactivity during the 24-h dosing period and the 72-h period thereafter ranged from 89.1 to 93.9% for feces and from 4.98 to 6.25 for urine. Tissues contained only trace amounts. Following intravenous dosing with (/sup 14/C)DCY (0.93 mg/kg), radioactivity distributed readily into most tissues; maximum amounts were present at 5 min, the earliest time of assay. Maximum amounts of radioactivity in fat, skin, and gut tissue, however, were present at 30 min after dosing. These three tissues also had relatively long alpha phases for the elimination of radioactivity. In 24 h after intravenous dosing, rats excreted 81.1% of the dose in the feces and 16.0% of the dose in the urine. For rats fitted with biliary cannulas, 54.5% of the dose, all of which was metabolites of (/sup 14/C)DCY, was recovered in the bile in 4 h. Associated with the rapid and extensive biliary excretion of metabolites of intravenously administered (/sup 14/C)DCY was the appearance of large amounts of radioactivity in the feces and also, at intermediate time points, in the liver, gut contents, and gut tissue. In conclusion, rats rapidly distribute, metabolize, and excrete (/sup 14/C)DCY.
Dose characterization in the near-source region for two high dose rate brachytherapy sources.
Wang, Ruqing; Li, X Allen
2002-08-01
High dose rate (HDR) 192Ir sources are currently used in intravascular brachytherapy (IVB) for the peripheral arterial system. This poses a demand on evaluating accurate dose parameters in the near-source region for such sources. The purpose of this work is to calculate the dose parameters for the old VariSource HDR 192Ir source and the new microSelectron HDR 192Ir source, using Monte Carlo electron and photon transport simulation. The two-dimensional (2D) dose rate distributions and the air kerma strengths for the two HDR sources were calculated by EGSnrc and EGS4 Monte Carlo codes. Based on these data, the dose parameters proposed in the AAPM TG-60 protocol were derived. The dose rate constants obtained are 13.119+/-0.028 cGy h(-1) U(-1) for the old VariSource source, and 22.751+/-0.031 cGy h(-1) U(-1) for the new microSelectron source at the reference point (r0 = 2 mm, theta = pi/2). The 2D dose rate distributions, the radial dose functions, and the anisotropy functions presented for the two sources cover radial distances ranging from 0.5 to 10 mm. In the near-source region on the transverse plane, the dose effects of the charged particle nonequilibrium and the beta-particle dose contribution were studied. It is found that at radial distances ranging from 0.5 to 2 mm, these effects increase the calculated dose rates by up to 29% for the old VariSource source, and by up to 12% for the new microSelectron source, which, in turn, change values of the radial dose function and the anisotropy function. The present dose parameters, which account for the charged particle nonequilibrium and the beta particle contribution, may be used for accurate IVB dose calculation. PMID:12201413
ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY
Smith, F.; Phifer, M.
2014-04-10
A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the
Maximum Entropy, Word-Frequency, Chinese Characters, and Multiple Meanings
Yan, Xiaoyong; Minnhagen, Petter
2015-01-01
The word-frequency distribution of a text written by an author is well accounted for by a maximum entropy distribution, the RGF (random group formation)-prediction. The RGF-distribution is completely determined by the a priori values of the total number of words in the text (M), the number of distinct words (N) and the number of repetitions of the most common word (kmax). It is here shown that this maximum entropy prediction also describes a text written in Chinese characters. In particular it is shown that although the same Chinese text written in words and Chinese characters have quite differently shaped distributions, they are nevertheless both well predicted by their respective three a priori characteristic values. It is pointed out that this is analogous to the change in the shape of the distribution when translating a given text to another language. Another consequence of the RGF-prediction is that taking a part of a long text will change the input parameters (M, N, kmax) and consequently also the shape of the frequency distribution. This is explicitly confirmed for texts written in Chinese characters. Since the RGF-prediction has no system-specific information beyond the three a priori values (M, N, kmax), any specific language characteristic has to be sought in systematic deviations from the RGF-prediction and the measured frequencies. One such systematic deviation is identified and, through a statistical information theoretical argument and an extended RGF-model, it is proposed that this deviation is caused by multiple meanings of Chinese characters. The effect is stronger for Chinese characters than for Chinese words. The relation between Zipf’s law, the Simon-model for texts and the present results are discussed. PMID:25955175
Beyond maximum entropy: Fractal Pixon-based image reconstruction
NASA Technical Reports Server (NTRS)
Puetter, Richard C.; Pina, R. K.
1994-01-01
We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other competing methods, including Goodness-of-Fit methods such as Least-Squares fitting and Lucy-Richardson reconstruction, as well as Maximum Entropy (ME) methods such as those embodied in the MEMSYS algorithms. Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME. Our past work has shown how uniform information content pixons can be used to develop a 'Super-ME' method in which entropy is maximized exactly. Recently, however, we have developed a superior pixon basis for the image, the Fractal Pixon Basis (FPB). Unlike the Uniform Pixon Basis (UPB) of our 'Super-ME' method, the FPB basis is selected by employing fractal dimensional concepts to assess the inherent structure in the image. The Fractal Pixon Basis results in the best image reconstructions to date, superior to both UPB and the best ME reconstructions. In this paper, we review the theory of the UPB and FPB pixon and apply our methodology to the reconstruction of far-infrared imaging of the galaxy M51. The results of our reconstruction are compared to published reconstructions of the same data using the Lucy-Richardson algorithm, the Maximum Correlation Method developed at IPAC, and the MEMSYS ME algorithms. The results show that our reconstructed image has a spatial resolution a factor of two better than best previous methods (and a factor of 20 finer than the width of the point response function), and detects sources two orders of magnitude fainter than other methods.
NASA Astrophysics Data System (ADS)
Meier, G.; Besson, R.; Nanz, A.; Safai, S.; Lomax, A. J.
2015-04-01
Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload. In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures. The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations. The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow.
Properties of Photospheric Bright Points outside Sunspots
NASA Astrophysics Data System (ADS)
Qu, H. X.; Yang, Y. F.; Feng, S.; Wang, F.; Deng, H.; Ji, K. F.
2015-09-01
Photospheric bright points are tiny bright features located in intergranular lanes. They are widely believed as the foot points of magnetic flux tubes. In this paper, various properties of bright points outside NOAA 11598 sunspots are analyzed using the TiO-band data detected by the 1-m New Vacuum Solar Telescope of Yunnan Observatories, which is located at the Fuxian Solar Physics Observing Station, Yunnan Province. We divide the periphery of the sunspot into four annular regions based on the dilation technology of image morphology. Then, a Laplacian and morphological dilation algorithm is used to identify bright points, and a three-dimensional segment algorithm is applied to track the evolution of bright points. Finally, we detect the parameters of the bright points in the four annular regions, including the density, intensity, size, shape, and velocity. Statistical results show that the density, size, and velocity of photospheric bright points are obviously affected by the strong magnetic fields of sunspots, and their peak values are in the second region instead of the closest region of the sunspot. The bright points decrease their densities and sizes, but increase their velocities with the distance away from the sunspot center. Additionally, the maximum intensity contrast presents the decreasing trend. However, the bright point shapes are basically invariant, and independent of this distance.
A maximum-entropy method for the planning of conformal radiotherapy.
Wu, X; Zhu, Y
2001-11-01
The maximum entropy method (MEM) is a powerful inverse analysis technique that is used in many fields of science and engineering to perform tasks such as image reconstruction and processing of nuclear magnetic resonance signals. Unlike other methods, MEM naturally incorporates a priori knowledge of the problem into the optimized cost function. This feature is especially important in radiotherapy planning, because some knowledge is usually available about the stage of tumor development and about the prescription doses, including some dose constraints to the surrounding normal organs. Inverse planning is inherently consistent with the ability of MEM to estimate parameters inversely. In this investigation, an entropy function determines the homogeneity of dose distribution in the planning target volume; a least-squares function is added to the maximum entropy function as a constraint to measure the quality of reconstructed doses in organs at risk; and an iterative Newton-Ralphson algorithm searches for the optimization solution. Here we provide two examples that validate this application of MEM and the results were compared with manual plans. Although the examples involve conformal radiotherapy, we think MEM can be adopted to optimize intensity-modulated radiation therapy. PMID:11764028
Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events
NASA Astrophysics Data System (ADS)
Simonsen, Lisa C.; Nealy, John E.
1992-02-01
The Langley heavy-ion/nucleon transport code, HZETRN, and the high-energy nucleon transport code, BRYNTRN, are used to predict the propagation of galactic cosmic rays (GCR's) and solar flare protons through the carbon dioxide atmosphere of Mars. Particle fluences and the resulting doses are estimated on the surface of Mars for GCR's during solar maximum conditions and the Aug., Sep., and Oct. 1989 solar proton events. These results extend previously calculated surface estimates for GCR's at solar minimum conditions and the Feb. 1956, Nov. 1960, and Aug. 1972 solar proton events. Surface doses are estimated with both a low-density and a high-density carbon dioxide model of the atmosphere for altitudes of 0, 4, 8, and 12 km above the surface. A solar modulation function is incorporated to estimate the GCR dose variation between solar minimum and maximum conditions over the 11-year solar cycle. By using current Mars mission scenarios, doses to the skin, eye, and blood-forming organs are predicted for short- and long-duration stay times on the Martian surface throughout the solar cycle.
Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Nealy, John E.
1992-01-01
The Langley heavy-ion/nucleon transport code, HZETRN, and the high-energy nucleon transport code, BRYNTRN, are used to predict the propagation of galactic cosmic rays (GCR's) and solar flare protons through the carbon dioxide atmosphere of Mars. Particle fluences and the resulting doses are estimated on the surface of Mars for GCR's during solar maximum conditions and the Aug., Sep., and Oct. 1989 solar proton events. These results extend previously calculated surface estimates for GCR's at solar minimum conditions and the Feb. 1956, Nov. 1960, and Aug. 1972 solar proton events. Surface doses are estimated with both a low-density and a high-density carbon dioxide model of the atmosphere for altitudes of 0, 4, 8, and 12 km above the surface. A solar modulation function is incorporated to estimate the GCR dose variation between solar minimum and maximum conditions over the 11-year solar cycle. By using current Mars mission scenarios, doses to the skin, eye, and blood-forming organs are predicted for short- and long-duration stay times on the Martian surface throughout the solar cycle.
Gauging the Nearness and Size of Cycle Maximum
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2003-01-01
A simple method for monitoring the nearness and size of conventional cycle maximum for an ongoing sunspot cycle is examined. The method uses the observed maximum daily value and the maximum monthly mean value of international sunspot number and the maximum value of the 2-mo moving average of monthly mean sunspot number to effect the estimation. For cycle 23, a maximum daily value of 246, a maximum monthly mean of 170.1, and a maximum 2-mo moving average of 148.9 were each observed in July 2000. Taken together, these values strongly suggest that conventional maximum amplitude for cycle 23 would be approx. 124.5, occurring near July 2002 +/-5 mo, very close to the now well-established conventional maximum amplitude and occurrence date for cycle 23-120.8 in April 2000.
NASA Astrophysics Data System (ADS)
Papaconstadopoulos, P.; Levesque, I. R.; Maglieri, R.; Seuntjens, J.
2016-02-01
Direct determination of the source intensity distribution of clinical linear accelerators is still a challenging problem for small field beam modeling. Current techniques most often involve special equipment and are difficult to implement in the clinic. In this work we present a maximum-likelihood expectation-maximization (MLEM) approach to the source reconstruction problem utilizing small fields and a simple experimental set-up. The MLEM algorithm iteratively ray-traces photons from the source plane to the exit plane and extracts corrections based on photon fluence profile measurements. The photon fluence profiles were determined by dose profile film measurements in air using a high density thin foil as build-up material and an appropriate point spread function (PSF). The effect of other beam parameters and scatter sources was minimized by using the smallest field size (0.5× 0.5 cm2). The source occlusion effect was reproduced by estimating the position of the collimating jaws during this process. The method was first benchmarked against simulations for a range of typical accelerator source sizes. The sources were reconstructed with an accuracy better than 0.12 mm in the full width at half maximum (FWHM) to the respective electron sources incident on the target. The estimated jaw positions agreed within 0.2 mm with the expected values. The reconstruction technique was also tested against measurements on a Varian Novalis Tx linear accelerator and compared to a previously commissioned Monte Carlo model. The reconstructed FWHM of the source agreed within 0.03 mm and 0.11 mm to the commissioned electron source in the crossplane and inplane orientations respectively. The impact of the jaw positioning, experimental and PSF uncertainties on the reconstructed source distribution was evaluated with the former presenting the dominant effect.
Papaconstadopoulos, P; Levesque, I R; Maglieri, R; Seuntjens, J
2016-02-01
Direct determination of the source intensity distribution of clinical linear accelerators is still a challenging problem for small field beam modeling. Current techniques most often involve special equipment and are difficult to implement in the clinic. In this work we present a maximum-likelihood expectation-maximization (MLEM) approach to the source reconstruction problem utilizing small fields and a simple experimental set-up. The MLEM algorithm iteratively ray-traces photons from the source plane to the exit plane and extracts corrections based on photon fluence profile measurements. The photon fluence profiles were determined by dose profile film measurements in air using a high density thin foil as build-up material and an appropriate point spread function (PSF). The effect of other beam parameters and scatter sources was minimized by using the smallest field size ([Formula: see text] cm(2)). The source occlusion effect was reproduced by estimating the position of the collimating jaws during this process. The method was first benchmarked against simulations for a range of typical accelerator source sizes. The sources were reconstructed with an accuracy better than 0.12 mm in the full width at half maximum (FWHM) to the respective electron sources incident on the target. The estimated jaw positions agreed within 0.2 mm with the expected values. The reconstruction technique was also tested against measurements on a Varian Novalis Tx linear accelerator and compared to a previously commissioned Monte Carlo model. The reconstructed FWHM of the source agreed within 0.03 mm and 0.11 mm to the commissioned electron source in the crossplane and inplane orientations respectively. The impact of the jaw positioning, experimental and PSF uncertainties on the reconstructed source distribution was evaluated with the former presenting the dominant effect. PMID:26758232
Site Specific Probable Maximum Precipitation Estimates and Professional Judgement
NASA Astrophysics Data System (ADS)
Hayes, B. D.; Kao, S. C.; Kanney, J. F.; Quinlan, K. R.; DeNeale, S. T.
2015-12-01
State and federal regulatory authorities currently rely upon the US National Weather Service Hydrometeorological Reports (HMRs) to determine probable maximum precipitation (PMP) estimates (i.e., rainfall depths and durations) for estimating flooding hazards for relatively broad regions in the US. PMP estimates for the contributing watersheds upstream of vulnerable facilities are used to estimate riverine flooding hazards while site-specific estimates for small water sheds are appropriate for individual facilities such as nuclear power plants. The HMRs are often criticized due to their limitations on basin size, questionable applicability in regions affected by orographic effects, their lack of consist methods, and generally by their age. HMR-51 for generalized PMP estimates for the United States east of the 105th meridian, was published in 1978 and is sometimes perceived as overly conservative. The US Nuclear Regulatory Commission (NRC), is currently reviewing several flood hazard evaluation reports that rely on site specific PMP estimates that have been commercially developed. As such, NRC has recently investigated key areas of expert judgement via a generic audit and one in-depth site specific review as they relate to identifying and quantifying actual and potential storm moisture sources, determining storm transposition limits, and adjusting available moisture during storm transposition. Though much of the approach reviewed was considered a logical extension of HMRs, two key points of expert judgement stood out for further in-depth review. The first relates primarily to small storms and the use of a heuristic for storm representative dew point adjustment developed for the Electric Power Research Institute by North American Weather Consultants in 1993 in order to harmonize historic storms for which only 12 hour dew point data was available with more recent storms in a single database. The second issue relates to the use of climatological averages for spatially
SU-E-T-162: Evaluation of Dose Calculation of RayStation Planning System in Heterogeneous Media
Xu, H; Yi, B; Chung, H; Prado, K; Chen, S
2014-06-01
Purpose: To investigate the clinical reliability of heterogeneity-based dose algorithm using RayStation treatment planning system v.4.0. Methods: The collapsed cone dose calculations in RayStation (RaySearch, Sweden) were compared with the measurements (ion chamber and EBT2 film) and with an in-house Monte Carlo algorithm. A heterogeneous multi-layer phantom and CT images of 4 lung cancer patients were used here. The phantom, composed of multiple solid water slabs and Styrofoams, was irradiated with 6MV beams perpendicular to the layers. The MLC-defined field sizes were 5×5, 10×10, 15×15 and 20×20cm{sup 2}. The chamber was positioned at center of central solid water layer, and the films were placed at interfaces of solid water and Styrofoam. The RayStation dose and Monte Carlo dose were compared by performing absolute gamma analysis (3mm/3%): 1D gamma for PDD in the phantom and 3D gamma for patient volumes receiving dose above 10% of maximum dose. Results: The point dose differences between RayStation and ion chamber measurement were smaller than 1% for all of the field sizes. Between RayStation and film measurement, 5×5cm2 field had the maximum differences : <4mm for the penumbra and <0.3mm for the field width at all Styrofoam-and-solid-water interfaces. The absolute gamma analysis showed good agreement between RayStation and Monte Carlo. For PDD along beam axis in the phantom, the 1D gamma was 95.4, 98.6, 99.6 and 99.3% for field size 5×5, 10×10, 15×15 and 20×202 respectively. For dose comparison using patient CT images, 3D gamma was > 95% for all the patients. Conclusion: With respect to ion chamber/film measurement and Monte Carlo calculation, the collapsed cone algorithm in RayStation computed reasonable dose in both phantom and patient cases. Heterogeneity-based dose calculation of RayStation is clinically acceptable in heterogeneous media.
Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
Stepanenko, Valeriy F; Hoshi, Masaharu; Dubasov, Yuriy V; Sakaguchi, Aya; Yamamoto, Masayoshi; Orlov, Mark Y; Bailiff, Ian K; Ivannikov, Alexander I; Skvortsov, Valeriy G; Iaskova, Elena K; Kryukova, Irina G; Zhumadilov, Kassym S; Endo, Satoru; Tanaka, Kenichi; Apsalikov, Kazbek N; Gusev, Boris I
2006-02-01
Spatial distributions of soil contamination by 137Cs (89 sampling points) and 239+240Pu (76 points) near and within Dolon village were analyzed. An essential exponential decrease of contamination was found in Dolon village: the distance of a half reduction in contamination is about 0.87-1.25 km (in a northwest-southeast direction from the supposed centerline of the radioactive trace). This fact is in agreement with the available exposure rate measurements near Dolon (September 1949 archive data): on the basis of a few measurements the pattern of the trace was estimated to comprise a narrow 2 km corridor of maximum exposure rate. To compare computed external doses in air with local dose estimates by retrospective luminescence dosimetry (RLD) the gradient of radioactive soil contamination within the village was accounted for. The computed dose associated with the central axis of the trace was found to be equal to 2260 mGy (calculations based on archive exposure rate data). Local doses near the RLD sampling points (southeast of the village) were calculated to be in the range 466-780 mGy (averaged value: 645+/-70 mGy), which is comparable with RLD data (averaged value 460+/-92 mGy with range 380-618 mGy). A comparison of the computed mean dose in the settlement with dose estimates by ESR tooth enamel dosimetry makes it possible to estimate the "upper level" of the "shielding and behavior" factor in dose reduction for inhabitants of Dolon village which was found to be 0.28+/-0.068. PMID:16571930
Efstathopoulos, E P; Pantos, I; Andreou, M; Gkatzis, A; Carinou, E; Koukorava, C; Kelekis, N L; Brountzos, E
2011-01-01
Objectives The aim of this study was to determine occupational dose levels in interventional radiology and cardiology procedures. Methods The study covered a sample of 25 procedures and monitored occupational dose for all laboratory personnel. Each individual wore eight thermoluminescent dosemeters next to the eyes, wrists, fingers and legs during each procedure. Radiation protection shields used in each procedure were recorded. Results The highest doses per procedure were recorded for interventionists at the left wrist (average 485 μSv, maximum 5239 μSv) and left finger (average 324 μSv, maximum 2877 μSv), whereas lower doses were recorded for the legs (average 124 μSv, maximum 1959 μSv) and the eyes (average 64 μSv, maximum 1129 μSv). Doses to the assisting nurses during the intervention were considerably lower; the highest doses were recorded at the wrists (average 26 μSv, maximum 41 μSv) and legs (average 18 μSv, maximum 22 μSv), whereas doses to the eyes were minimal (average 4 μSv, maximum 16 μSv). Occupational doses normalised to kerma area product (KAP) ranged from 11.9 to 117.3 μSv/1000 cGy cm2 and KAP was poorly correlated to the interventionists' extremity doses. Conclusion Calculation of the dose burden for interventionists considering the actual number of procedures performed annually revealed that dose limits for the extremities and the lenses of the eyes were not exceeded. However, there are cases in which high doses have been recorded and this can lead to exceeding the dose limits when bad practices are followed and the radiation protection tools are not properly used. PMID:21172967