Kim, Leonard; Narra, Venkat; Yue, Ning
2013-01-01
Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) * 0.930 (R(2) = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) * 0.955 (R(2) = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor. PMID:23474368
NSDL National Science Digital Library
Integrated Teaching and Learning Program,
Students learn how to find the maximum power point (MPP) of a photovoltaic (PV) panel in order to optimize its efficiency at creating solar power. They also learn about real-world applications and technologies that use this technique, as well as Ohm's law and the power equation, which govern a PV panel's ability to produce power.
Pointing at Maximum Power for PV
NSDL National Science Digital Library
Integrated Teaching and Learning Program,
Student teams measure voltage and current in order to determine the power output of a photovoltaic (PV) panel. They vary the resistance in a simple circuit connected to the panel to demonstrate the effects on voltage, current, and power output. After collecting data, they calculate power for each resistance setting, creating a graph of current vs. voltage, and indentifying the maximum power point.
Analysis of Photovoltaic Maximum Power Point Trackers
NASA Astrophysics Data System (ADS)
Veerachary, Mummadi
The photovoltaic generator exhibits a non-linear i-v characteristic and its maximum power point (MPP) varies with solar insolation. An intermediate switch-mode dc-dc converter is required to extract maximum power from the photovoltaic array. In this paper buck, boost and buck-boost topologies are considered and a detailed mathematical analysis, both for continuous and discontinuous inductor current operation, is given for MPP operation. The conditions on the connected load values and duty ratio are derived for achieving the satisfactory maximum power point operation. Further, it is shown that certain load values, falling out of the optimal range, will drive the operating point away from the true maximum power point. Detailed comparison of various topologies for MPPT is given. Selection of the converter topology for a given loading is discussed. Detailed discussion on circuit-oriented model development is given and then MPPT effectiveness of various converter systems is verified through simulations. Proposed theory and analysis is validated through experimental investigations.
A global maximum power point tracking DC-DC converter
Duncan, Joseph, 1981-
2005-01-01
This thesis describes the design, and validation of a maximum power point tracking DC-DC converter capable of following the true global maximum power point in the presence of other local maximum. It does this without the ...
Maximum likelihood estimation for cytogenetic dose-response curves
Frome, E.L.; DuFrain, R.J.
1986-03-01
In vitro dose-response curves are used to describe the relation between chromosome aberrations and radiation dose for human lymphocytes. The lymphocytes are exposed to low-LET radiation, and the resulting dicentric chromosome aberrations follow the Poisson distribution. The expected yield depends on both the magnitude and the temporal distribution of the dose. A general dose-response model that describes this relation has been presented by Kellerer and Rossi (1972, Current Topics on Radiation Research Quarterly 8, 85-158; 1978, Radiation Research 75, 471-488) using the theory of dual radiation action. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting dose-time-response models are intrinsically nonlinear in the parameters. A general-purpose maximum likelihood estimation procedure is described, and estimation for the nonlinear models is illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.
Maximum likelihood estimation for cytogenetic dose-response curves
Frome, E.L; DuFrain, R.J.
1983-10-01
In vitro dose-response curves are used to describe the relation between the yield of dicentric chromosome aberrations and radiation dose for human lymphocytes. The dicentric yields follow the Poisson distribution, and the expected yield depends on both the magnitude and the temporal distribution of the dose for low LET radiation. A general dose-response model that describes this relation has been obtained by Kellerer and Rossi using the theory of dual radiation action. The yield of elementary lesions is kappa(..gamma..d + g(t, tau)d/sup 2/), where t is the time and d is dose. The coefficient of the d/sup 2/ term is determined by the recovery function and the temporal mode of irradiation. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting models are intrinsically nonlinear in the parameters. A general purpose maximum likelihood estimation procedure is described and illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.
A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation
Li, Haisen S.; Romeijn, H. Edwin; Dempsey, James F. [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32610-0385 (United States); Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32610-0385 and Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida 32610-0385 (United States); Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32610-0385 (United States)
2006-09-15
We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near mono-energetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the orientation of the beam with respect to the dose grid was also investigated. The maximum acceptable dose grid size depends on the gradient of dose profile and in turn the range of proton beam. In the case that only the phantom scattering was considered and that the beam was aligned with the dose grid, grid sizes from 0.4 to 6.8 mm were required for proton beams with ranges from 2 to 30 cm for 2% error limit at the Bragg peak point. A near linear relation between the maximum acceptable grid size and beam range was observed. For this analysis model, the resolution requirement was not significantly related to the orientation of the beam with respect to the grid.
Savannah River Site radioiodine atmospheric releases and offsite maximum doses
Marter, W.L.
1990-11-01
Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models.
Predictive models for maximum recommended therapeutic dose of antiretroviral drugs.
Branham, Michael Lee; Ross, Edward A; Govender, Thirumala
2012-01-01
A novel method for predicting maximum recommended therapeutic dose (MRTD) is presented using quantitative structure property relationships (QSPRs) and artificial neural networks (ANNs). MRTD data of 31 structurally diverse Antiretroviral drugs (ARVs) were collected from FDA MRTD Database or package inserts. Molecular property descriptors of each compound, that is, molecular mass, aqueous solubility, lipophilicity, biotransformation half life, oxidation half life, and biodegradation probability were calculated from their SMILES codes. A training set (n = 23) was used to construct multiple linear regression and back propagation neural network models. The models were validated using an external test set (n = 8) which demonstrated that MRTD values may be predicted with reasonable accuracy. Model predictability was described by root mean squared errors (RMSEs), Kendall's correlation coefficients (tau), P-values, and Bland Altman plots for method comparisons. MRTD was predicted by a 6-3-1 neural network model (RMSE = 13.67, tau = 0.643, P = 0.035) more accurately than by the multiple linear regression (RMSE = 27.27, tau = 0.714, P = 0.019) model. Both models illustrated a moderate correlation between aqueous solubility of antiretroviral drugs and maximum therapeutic dose. MRTD prediction may assist in the design of safer, more effective treatments for HIV infection. PMID:22481974
Predictive Models for Maximum Recommended Therapeutic Dose of Antiretroviral Drugs
Branham, Michael Lee; Ross, Edward A.; Govender, Thirumala
2012-01-01
A novel method for predicting maximum recommended therapeutic dose (MRTD) is presented using quantitative structure property relationships (QSPRs) and artificial neural networks (ANNs). MRTD data of 31 structurally diverse Antiretroviral drugs (ARVs) were collected from FDA MRTD Database or package inserts. Molecular property descriptors of each compound, that is, molecular mass, aqueous solubility, lipophilicity, biotransformation half life, oxidation half life, and biodegradation probability were calculated from their SMILES codes. A training set (n = 23) was used to construct multiple linear regression and back propagation neural network models. The models were validated using an external test set (n = 8) which demonstrated that MRTD values may be predicted with reasonable accuracy. Model predictability was described by root mean squared errors (RMSEs), Kendall's correlation coefficients (tau), P-values, and Bland Altman plots for method comparisons. MRTD was predicted by a 6-3-1 neural network model (RMSE = 13.67, tau = 0.643, P = 0.035) more accurately than by the multiple linear regression (RMSE = 27.27, tau = 0.714, P = 0.019) model. Both models illustrated a moderate correlation between aqueous solubility of antiretroviral drugs and maximum therapeutic dose. MRTD prediction may assist in the design of safer, more effective treatments for HIV infection. PMID:22481974
Photovoltaic maximum power point search method using a light sensor
NASA Astrophysics Data System (ADS)
Ostrowski, Mariusz
2015-05-01
The main disadvantage of PV panels is their low efficiency and non-linear current-voltage characteristic. Both of the above depend on the insolation and the temperature. That is why, it is necessary to use the maximum power point search systems. Commonly used solutions vary not only in complexity and accuracy but also in the speed of searching the maximum power point. Usually, the measurement of current and voltage is used to determine the maximum power point. The most common in literature are the perturb and observe and incremental conductance methods. The disadvantage of these solutions is the need to search across the whole current-voltage curve, which results in a significant power loss. In order to prevent it, the techniques mentioned above are combined with other methods. This procedure determines the starting point of one of the above methods and results in shortening the search time. Modern solutions use the temperature measurement to determine the open circuit voltage. The simulations show that the voltage in the maximum power point depends mainly on the temperature of the photovoltaic panel, and the current depends mainly on the lighting conditions. The proposed method uses the measurement of illuminance and calculates the current at the maximum power point, which is used as a reference signal in power conversion system. Due to the non-linearity of the light sensor and of the photovoltaic panel, the relation between them cannot be determined directly. Therefore, the proposed method use the modified correlation function to calculate current corresponding to the light.
Individual Module Maximum Power Point Tracking for Thermoelectric Generator Systems
NASA Astrophysics Data System (ADS)
Vadstrup, Casper; Schaltz, Erik; Chen, Min
2013-07-01
In a thermoelectric generator (TEG) system the DC/DC converter is under the control of a maximum power point tracker which ensures that the TEG system outputs the maximum possible power to the load. However, if the conditions, e.g., temperature, health, etc., of the TEG modules are different, each TEG module will not produce its maximum power. If each TEG module is controlled individually, each TEG module can be operated at its maximum power point and the TEG system output power will therefore be higher. In this work a power converter based on noninverting buck-boost converters capable of handling four TEG modules is presented. It is shown that, when each module in the TEG system is operated under individual maximum power point tracking, the system output power for this specific application can be increased by up to 8.4% relative to the situation when the modules are connected in series and 16.7% relative to the situation when the modules are connected in parallel.
Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques
Trishan Esram; Patrick L. Chapman
2007-01-01
The many different techniques for maximum power point tracking of photovoltaic (PV) arrays are discussed. The techniques are taken from the literature dating back to the earliest methods. It is shown that at least 19 distinct methods have been introduced in the literature, with many variations on implementation. This paper should serve as a convenient reference for future work in
Maximum power point tracking for low power photovoltaic solar panels
Mehmet BODUR; Mummer ERMIS
1994-01-01
A maximum power point tracker unit is developed for the optimum coupling of photovoltaic panels (PVP) to the batteries and load through a controlled DC-DC power converter (chopper). The system consists of three main units: (i) the photovoltaic panels that convert solar power to electricity; (ii) a chopper which couples the power of PVP to the load or batteries at
Maximum Power Point Estimation for Photovoltaic Systems Using Neural Networks
M. Taherbaneh; K. Faez
2007-01-01
Solar panels are the power sources in photovoltaic applications which provide electrical power. Solar panel characteristics depend on environmental conditions (solar radiation level, temperature and etc.). In this paper, estimation of maximum power point of silicon solar panels is presented. We applied two different neural networks (back propagation and RBF) for the purpose of estimation in different environmental conditions. These
Amphotericin B preparations: a maximum tolerated dose in severe invasive fungal infections?
Ellis, M
2000-06-01
Availability of lipid formulations of amphotericin B has opened up the possibility of treating invasive fungal infections in immunocompromised patients with high doses of this antifungal agent. Evidence is emerging to suggest that lipid formulations may have heightened efficacy compared to conventional amphotericin B. The issue of optimal dosage has been a neglected area. This article reviews published data accrued from clinical, open-label, salvage, and other studies, and finds little support that the use of high doses of lipid formulations are more efficacious than lower doses. The response rates for invasive fungal infection from most studies are predictably around 56%, irrespective of the lipid formulation and dose used. Animal models provide evidence that low doses of a lipid formulation are as successful in reducing fungal dissemination and in prolonging survival as higher doses, although concomitant tissue fungal eradication is not as effectively achieved by the lower doses (survival-mycologic eradication dissociation). Kinetic studies performed in the clinically relevant setting of critically ill patients give further support to the use of low doses, since levels of liposomal amphotericin B at all dosages between 1 and 4 mg/kg/day are similar and above maximum inhibitory concentrations for commonly encountered fungi. There has only been one prospective randomised study designed with the primary end-point of comparing two dosages of an amphotericin B lipid formulation on clinical response and survival. That European Organization for Research and Treatment of Cancer (EORTC) study concluded that liposomal amphotericin B given at 1 mg was as efficacious as 4 mg/kg/day in treating neutropenic patients with invasive pulmonary aspergillosis. There are a multitude of unanswered questions concerning dosing, and their answers are confounded by difficulties in performing clinical trials and the multiplicity of factors other than antifungal chemotherapy that influence outcome. Maximum tolerated dose studies using existing lipid formulations, or perhaps with the newer formulations such as pegylated immunoliposomal amphotericin B, could be performed to shed light on this difficult area. PMID:11429013
Maximum power point tracker for photovoltaic power plants
Arcidiacono, V.; Corsi, S.; Lambri, L.
1982-09-01
The paper describes two different closed-loop control criteria for the maximum power point tracking of the voltage-current characteristic of a photovoltaic generator. The two criteria are discussed and compared, inter alia, with regard to the setting-up problems that they pose. Although a detailed analysis is not embarked upon, the paper also provides some quantitative information on the energy advantages obtained by using electronic maximum power point tracking systems, as compared with the situation in which the point of operation of the photovoltaic generator is not controlled at all. Lastly, the paper presents two high efficiency MPPT converters for experimental photovoltaic plants of the stand-alone and the grid-interconnected type.
A nomogram for calculating the maximum dose of local anaesthetic.
Williams, D J; Walker, J D
2014-08-01
Toxic dose limits (mg.kg(-1)) for local anaesthetics based on body weight are well-established, but calculation of the maximum safe volume (ml) of a given agent and formulation is complex, and frequently results in errors. We therefore developed a nomogram to perform this calculation. We compared the performance of the nomogram with a spreadsheet and a general purpose calculator using simulated clinical data. Bland-Altman analysis showed close agreement between the nomogram and spreadsheet, with bias of -0.07 ml and limits of agreement of -0.38 to +0.24 ml (correlation coefficient r(2) = 0.9980; p < 0.001). The nomogram produced fewer and smaller errors compared with the calculator. Our nomogram calculates the maximum safe volume (ml) of local anaesthetic to a clinically acceptable degree of accuracy. It facilitates rapid cross-checking of dosage calculations performed by electronic or other means at negligible cost, and can potentially reduce the incidence of local anaesthetic toxicity. PMID:24820093
Step-down maximum power point tracker for photovoltaic systems
Salameh, Z.M.; Dagher, F.; Lynch, W.A. )
1991-01-01
A design of a simple, inexpensive, and efficient maximum power point tracker (MPPT) is presented. This design calls for a fixed voltage and a pilot cell to track the maximum power point voltage (V{sub mp}). The tracking is done by changing the duty cycle of a step-down chopper, which is controlled by a direct feedback analog circuit. The control voltage of the tracker is the open circuit voltage (V{sub oc}) of the pilot cell multiplied by a constant. This constant is preadjusted so that it tracks the V{sub mp} of the array in response to any changes due to temperatures or insolation. This MPPT can also function as a voltage regulator for battery charging.
Estimating Maximum Possible Point Rainfall and Flooding in Western Texas
NASA Astrophysics Data System (ADS)
Cepeda, J. C.
2008-12-01
Comparison of magnitude of record floods in small to medium-sized (<1- 100 km2) rural drainage basins in western Texas suggests that record flooding on most watersheds resulted from 150 to 300 mm of rainfall in 12-24 hours. Rainfall intensity and duration and area of watershed are the most important variables in magnitude of flooding on small watersheds. The probable maximum precipitation for this time interval, however, is most likely in the range of 300 to 600 mm. This estimate is based on point rainfall records in southwestern Texas, central Oklahoma and eastern Colorado. Recently documented point precipitation records suggest that the probable maximum precipitation is much greater than has been recorded at most weather stations during the 100 plus years of weather records in this part of Texas. The greatest calendar day rainfall at Del Rio, Texas, for example, changed in 1998 from 223 mm (recorded in 1935) to 432 mm on August 23, 1998-an increase of more than 93%. Even this new rainfall record is probably significantly below the maximum probable precipitation. Probable maximum precipitation rates are probably determined by physical and meteorological limits, however, regional escarpments, and canyons cut into those escarpments, play a role in localizing and maintaining optimum conditions for precipitation and runoff. Assuming a probable maximum 1-Day precipitation of 300 to 600 mm, the probable peak discharge resulting from such an event would be 4 to 6 times the calculated 100 year flood and 2 to 3 times the calculated 500 year flood on most watersheds.
Maximum power point tracking inverter for photovoltaic source pumping applications
Taha, M.S.; Suresh, K.
1995-12-31
Inverters powered from photovoltaic arrays are becoming popular for water pumping in remote areas. Viability of these pumps will depend on the amount of power made available from the photovoltaic array. Solar trajectory tracking schemes and Maximum Power Point Tracking (MPPT) schemes have been discussed in literature. This paper examines MPPT in detail as applicable to the V/F controlled induction motor driving a submersible pump. In these the speed of motor is varied to utilize maximum power available under different irradiation condition. The micro controller based controller offers the flexibility in computing which is vital to the success of the scheme. Tests are conducted on a 1 HP pump operating from photovoltaic source inverter to verify the subject.
Hardware Implementation of Maximum Power Point Tracking for Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Maganga, Othman; Phillip, Navneesh; Burnham, Keith J.; Montecucco, Andrea; Siviter, Jonathan; Knox, Andrew; Simpson, Kevin
2014-06-01
This work describes the practical implementation of two maximum power point tracking (MPPT) algorithms, namely those of perturb and observe, and extremum seeking control. The proprietary dSPACE system is used to perform hardware in the loop (HIL) simulation whereby the two control algorithms are implemented using the MATLAB/Simulink (Mathworks, Natick, MA) software environment in order to control a synchronous buck-boost converter connected to two commercial thermoelectric modules. The process of performing HIL simulation using dSPACE is discussed, and a comparison between experimental and simulated results is highlighted. The experimental results demonstrate the validity of the two MPPT algorithms, and in conclusion the benefits and limitations of real-time implementation of MPPT controllers using dSPACE are discussed.
Sequential Switching Shunt Maximum Power Point Regulator (S3MPPR)
NASA Astrophysics Data System (ADS)
Blanes, J. M.; Garrigos, A.; Carrasco, J. A.; Weinberg, A. H.; Ejea, J. B.; Sanchis, E.; Farreres, A.; Maset, E.; Soto, A.; de la Cruz, F.
2011-10-01
This paper presents the implementation of a Sequential Switching Shunt Maximum Power Point Regulator (S3MPPR). The S3MPPR is the evolution of the traditional S3R where the fixed reference, used by the main error amplifier, is replaced by an MPPT voltage reference. With this variation, the system corresponds to a non-regulated bus topology but with the dynamic characteristics of a regulated one and with the ability to track the MPP of the solar array. This work focuses on this topic, studying the best way to implement the S3MPPR in a geostationary telecommunication satellite. In order to validate the proposal, a 1.6 kW prototype has been implemented and many tests have been carried out with the prototype, all of them showing the good behaviour of the converter.
Maximum entropy states of quasi-geostrophic point vortices
NASA Astrophysics Data System (ADS)
Miyazaki, Takeshi; Sato, Tomoyoshi; Takahashi, Naoya
2012-05-01
The statistical equilibrium state of quasi-geostrophic point vortices is investigated theoretically, based on the maximum entropy theory. We search for the state of maximum Shannon entropy under the constraints of the vertical vorticity distribution P(z), the angular momentum I, and the energy of the vortex system E. Solutions of the mean field equation are obtained by the numerical procedure proposed by Turkington and Whittaker. The most probable state in an infinite fluid domain is axisymmetric, whose radial distribution depends both on the vertical vortex distribution P(z) and the total energy of the vortex system E. At a certain critical energy value Ec, the number of microscopic state of fixed angular momentum becomes largest (zero-inverse temperature state), where the radial distribution is Gaussian at any vertical height. When the energy is smaller (E < Ec: positive temperature), the radial distribution becomes flatter than the Gaussian. In contrast, if the energy is higher (E > Ec: negative temperature), the radial distribution becomes sharper showing tighter concentration near the axis of symmetry. In order to compare with these theoretical results, very long numerical computations are performed using the fast special-purpose computer for molecular dynamics simulations (GRAPE-DR). Quantitative agreements between the theoretical and numerical results are found for any cases considered.
Kong, Maiying; Rai, Shesh N.; Bolli, Roberto
2014-01-01
The maximum effective dose (MaxED) is an important quantity for therapeutic drugs. The MaxED for therapeutic drugs is defined as the dose above which no improvement in efficacy is obtained. In this article, we propose two experimental designs and analytic methods (one single-stage design and one two-stage design) to select the MaxED among several fixed doses and to compare the therapeutic effect of the selected MaxED with a control. The selection of MaxED is based on the isotonic regression under the restriction of monotonicity. In the single-stage design, both the selection of the MaxED and assessing its efficacy are carried out at the end of experiment. In the two-stage design, the selection of the MaxED and assessment of its efficacy are carried out at the interim analysis (first stage), the experiment in the second stage is carried out only at the selected MaxED and control if the first-stage test is not significant. Thus, the two-stage design enables selection of the MaxED at an earlier stage and stopping the trial earlier if the treatment effect at MaxED is extreme. Williams’ test (1972) is applied to test whether the selected MaxED is significantly different from control for the single-stage design and the first-stage test of the two-stage design. The sample size calculation for each design is provided. Extensive simulations are carried out to illustrate the performances of the proposed methods. PMID:25067994
Investigation of Maximum Power Point Tracking for Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Phillip, Navneesh; Maganga, Othman; Burnham, Keith J.; Ellis, Mark A.; Robinson, Simon; Dunn, Julian; Rouaud, Cedric
2013-07-01
In this paper, a thermoelectric generator (TEG) model is developed as a tool for investigating optimized maximum power point tracking (MPPT) algorithms for TEG systems within automotive exhaust heat energy recovery applications. The model comprises three main subsystems that make up the TEG system: the heat exchanger, thermoelectric material, and power conditioning unit (PCU). In this study, two MPPT algorithms known as the perturb and observe (P&O) algorithm and extremum seeking control (ESC) are investigated. A synchronous buck-boost converter is implemented as the preferred DC-DC converter topology, and together with the MPPT algorithm completes the PCU architecture. The process of developing the subsystems is discussed, and the advantage of using the MPPT controller is demonstrated. The simulation results demonstrate that the ESC algorithm implemented in combination with a synchronous buck-boost converter achieves favorable power outputs for TEG systems. The appropriateness is by virtue of greater responsiveness to changes in the system's thermal conditions and hence the electrical potential difference generated in comparison with the P&O algorithm. The MATLAB/Simulink environment is used for simulation of the TEG system and comparison of the investigated control strategies.
Neal H. Badner; Jacqueline A. Doyle; M. Heather Smith; Ian A. Herrick
1996-01-01
Study Objective: To investigate the effect on the use of intravenous patient-controlled analgesia (PCA) of varying the dose (D) and lockout interval (LI) while keeping the hourly maximum dose constant.Design: Randomized, prospective study.Setting: Teaching hospital.Patients: 75 patients scheduled to receive PCA morphine following abdominal surgery.Interventions: Postoperatively, patients were randomly assigned to receive PCA morphine with the following parameters: D =
The maximum single dose of resistant maltodextrin that does not cause diarrhea in humans.
Kishimoto, Yuka; Kanahori, Sumiko; Sakano, Katsuhisa; Ebihara, Shukuko
2013-01-01
The objective of the present study was to determine the maximum dose of resistant maltodextrin (Fibersol)-2, a non-viscous water-soluble dietary fiber), that does not induce transitory diarrhea. Ten healthy adult subjects (5 men and 5 women) ingested Fibersol-2 at increasing dose levels of 0.7, 0.8, 0.9, 1.0, and 1.1 g/kg body weight (bw). Each administration was separated from the previous dose by an interval of 1 wk. The highest dose level that did not cause diarrhea in any subject was regarded as the maximum non-effective level for a single dose. The results showed that no subject of either sex experienced diarrhea at dose levels of 0.7, 0.8, 0.9, or 1.0 g/kg bw. At the highest dose level of 1.1 g/kg bw, no female subject experienced diarrhea, whereas 1 male subject developed diarrhea with muddy stools 2 h after ingestion of the test substance. Consequently, the maximum non-effective level for a single dose of the resistant maltodextrin Fibersol-2 is 1.0 g/kg bw for men and >1.1 g/kg bw for women. Gastrointestinal symptoms were gurgling sounds in 4 subjects (7 events) and flatus in 5 subjects (9 events), although no association with dose level was observed. These symptoms were mild and transient and resolved without treatment. PMID:24064737
Maeda, Hideki; Kurokawa, Tatsuo
2014-08-01
Approved doses of a number of drugs in Japan are known to be different from those in the United States (US) and the European Union (EU), and doses are often set lower for the Japanese than for the western people. Similarly, some oncology drugs also have lower dose approved for the Japanese than for the western people. A total of 40 oncology drugs were approved as new molecular entities in Japan between 2001 and 2013. Of the 40 drugs, 21 were molecularly targeted drugs and 13 were cytotoxic drugs. Five (12.5 %) of the 40 drugs had different approved dose from that in the US and the EU. Of the 13 cytotoxic drugs, four drugs (30.8 %) differed in approved dose, while all the molecularly targeted drugs (21 of 21 drugs) had the same approved dose. We compared the maximum tolerated dose (MTD) of the 21 molecularly targeted drugs in the Japanese with that in the western people and found that the MTD was determined lower in the Japanese than that in the western people (two drugs), was not different (10 drugs), and MTD was not determined in the Japanese and incommensurable because of the different dose range tested in Japan (nine drugs). All the molecularly targeted drugs are the same in approved doses and few molecularly targeted drugs differ in MTD between Japan and the Western countries. PMID:24615632
Dowdy, John C; Czako, Eugene A; Stepp, Michael E; Schlitt, Steven C; Bender, Gregory R; Khan, Lateef U; Shinneman, Kenneth D; Karos, Manuel G; Shepherd, James G; Sayre, Robert M
2011-09-01
The authors compared calculations of sunlamp maximum exposure times following current USFDA Guidance Policy on the Maximum Timer Interval and Exposure Schedule, with USFDA/CDRH proposals revising these to equivalent erythemal exposures of ISO/CIE Standard Erythema Dose (SED). In 2003, [USFDA/CDRH proposed replacing their unique CDRH/Lytle] erythema action spectrum with the ISO/CIE erythema action spectrum and revising the sunlamp maximum exposure timer to 600 J m(-2) ISO/CIE effective dose, presented as being biologically equivalent. Preliminary analysis failed to confirm said equivalence, indicating instead ?38% increased exposure when applying these proposed revisions. To confirm and refine this finding, a collaboration of tanning bed and UV lamp manufacturers compiled 89 UV spectra representing a broad sampling of U.S. indoor tanning equipment. USFDA maximum recommended exposure time (Te) per current sunlamp guidance and CIE erythemal effectiveness per ISO/CIE standard were calculated. The CIE effective dose delivered per Te averaged 456 J(CIE) m(-2) (SD = 0.17) or ?4.5 SED. The authors found that CDRH's proposed 600 J(CIE) m(-2) recommended maximum sunlamp exposure exceeds current Te erythemal dose by ?33%. The current USFDA 0.75 MED initial exposure was ?0.9 SED, consistent with 1.0 SED initial dose in existing international sunlamp standards. As no sunlamps analyzed exceeded 5 SED, a revised maximum exposure of 500 J(CIE) m(-2) (?80% of CDRH's proposal) should be compatible with existing tanning equipment. A tanning acclimatization schedule is proposed beginning at 1 SED thrice-weekly, increasing uniformly stepwise over 4 wk to a 5 SED maximum exposure in conjunction with a tan maintenance schedule of twice-weekly 5 SED sessions, as biologically equivalent to current USFDA sunlamp policy. PMID:21799338
Multiple Test Procedures for Identifying the Minimum Effective and Maximum Safe Doses of a Drug
Tamhane, Ajit C.
by jointly testing for both efficacy and safety using bootstrap procedures. Coded data from an arthritis drug is the highest dose that does not exceed the mean toxicity of the zero dose by a specified threshold. Step these critical points depend on the unknown correlation coefficient between the efficacy and safety variables
Aalborg Universitet Individual Module Maximum Power Point Tracking for a Thermoelectric Generator
Schaltz, Erik
the TEG system and the load. The power converter is operated by a Maximum Power Point Tracker (MPPT) which of the system is not reached as each module will have its own operation point of maximum power. The MPPT by up to 9.5 % in compare to when MPPT only is applied at stack level. #12;
Analysis and Optimization of Maximum Power Point Tracking Algorithms in the Presence of
Odam, Kofi
maximum power point tracking (MPPT) algorithms for photovoltaic systems. Noise is an essential consideration for optimization of MPPT algorithms. For example, for a perturb and observe algorithm is verified by both simulations and experiments. Index Terms--Noise, MPPT, maximum power point track- ing
Zhang Daming; See Kye Yak; Koh Wee Jin
2006-01-01
Independent boundary condition is a key factor in the prediction of maximal electric field level in a reverberation chamber and it determines the number of independent sampling points that stirrers can generate. With different independent sampling points the expected maximal electrical fields are different. With a fixed number of independent sampling points the average maximum of electric field is a
Submodule Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications
Pilawa-Podgurski, Robert C. N.
This paper explores the benefits of distributed power electronics in solar photovoltaic applications through the use of submodule integrated maximum power point trackers (MPPT). We propose a system architecture that provides ...
Microcontroller Servomotor for Maximum Effective Power Point for Solar Cell System
Al-Khalidy, M.; Al-Rawi, O.; Noaman, N.
2010-01-01
In this paper a Maximum Power point (MPP) tracking algorithm is developed using dual-axis servomotor feedback tracking control system. An efficient and accurate servomotor system is used to increase the system efficiency and reduces the solar cell...
Maximum Power Point Tracking for PV Array Under Partially Shaded Conditions
Chia Seet Chin; Prabhakaran Neelakantan; Hou Pin Yoong; Soo Siang Yang; Kenneth Tze Kin Teo
2011-01-01
Solar photovoltaic (PV) array which is exposed to the uniform solar irradiance shows the non-linear P-V characteristic. Nevertheless, the P-V characteristic becomes more complex with multiple maximum power point (MPP) when the array is operated under partially shaded condition. Conventional maximum power point tracking (MPPT) approach which is designed to track the MPP will be trapped at the local MPP.
Use of iodine for water disinfection: iodine toxicity and maximum recommended dose.
Backer, H; Hollowell, J
2000-01-01
Iodine is an effective, simple, and cost-efficient means of water disinfection for people who vacation, travel, or work in areas where municipal water treatment is not reliable. However, there is considerable controversy about the maximum safe iodine dose and duration of use when iodine is ingested in excess of the recommended daily dietary amount. The major health effect of concern with excess iodine ingestion is thyroid disorders, primarily hypothyroidism with or without iodine-induced goiter. A review of the human trials on the safety of iodine ingestion indicates that neither the maximum recommended dietary dose (2 mg/day) nor the maximum recommended duration of use (3 weeks) has a firm basis. Rather than a clear threshold response level or a linear and temporal dose-response relationship between iodine intake and thyroid function, there appears to be marked individual sensitivity, often resulting from unmasking of underlying thyroid disease. The use of iodine for water disinfection requires a risk-benefit decision based on iodine's benefit as a disinfectant and the changes it induces in thyroid physiology. By using appropriate disinfection techniques and monitoring thyroid function, most people can use iodine for water treatment over a prolonged period of time. PMID:10964787
2014-01-01
Background Despite rendering serum free thyroxine (FT4) and thyrotropin (TSH) within the normal population ranges broadly defined as euthyroidism, many patients being treated for hyperthyroidism and hypothyroidism persistently experience subnormal well-being discordant from their pre-disease healthy euthyroid state. This suggests that intra-individual physiological optimal ranges are narrower than laboratory-quoted normal ranges and implies the existence of a homeostatic set point encoded in the hypothalamic-pituitary-thyroid (HPT) axis that is unique to every individual. Methods We have previously shown that the dose–response characteristic of the hypothalamic-pituitary (HP) unit to circulating thyroid hormone levels follows a negative exponential curve. This led to the discovery that the normal reference intervals of TSH and FT4 fall within the ‘knee’ region of this curve where the maximum curvature of the exponential HP characteristic occurs. Based on this observation, we develop the theoretical framework localizing the position of euthyroid homeostasis over the point of maximum curvature of the HP characteristic. Results The euthyroid set points of patients with primary hypothyroidism and hyperthyroidism can be readily derived from their calculated HP curve parameters using the parsimonious mathematical model above. It can be shown that every individual has a euthyroid set point that is unique and often different from other individuals. Conclusions In this treatise, we provide evidence supporting a set point-based approach in tailoring euthyroid targets. Rendering FT4 and TSH within the laboratory normal ranges can be clinically suboptimal if these hormone levels are distant from the individualized euthyroid homeostatic set point. This mathematical technique permits the euthyroid set point to be realistically computed using an algorithm readily implementable for computer-aided calculations to facilitate precise targeted dosing of patients in this modern era of personalized medicine. PMID:25102854
Comparison of maximum power point control methods for thermoelectric power generator
H. Nagayoshi; T. Kajikawa; T. Sugiyama
2002-01-01
This paper describes the comparison of operating point control methods such as maximum power point tracking control (MPPT) and a constant voltage control applied to the thermoelectric devices. To experimentally evaluate the power control methods, a one-chip micro controller controlled DC-DC converter was inserted between the thermoelectric module and a load. The derived power from the module by constant voltage
Yoshioka, Mayumi; Imanaga, Makoto; Ueyama, Hiromi; Yamane, Miya; Kubo, Yoshiko; Boivin, André; St-Amand, Jonny; Tanaka, Hiroaki; Kiyonaga, Akira
2004-06-01
Dietary red pepper suppresses energy intake and modifies macronutrient intake. We have investigated whether a stimulus in the mouth and the sensation of spiciness are necessary for red pepper-induced changes in energy and macronutrient intake in human volunteers. In a preliminary test, sixteen Japanese male volunteers tasted samples of a soup with graded doses of red pepper in order to define a moderate and a maximum tolerable (strong) dose of red pepper. On the day of the experiment, a standardised breakfast was given to the volunteers. At lunchtime, the subjects ingested one of four experimental soups containing either a placebo, a moderate or a strong dose of red pepper plus placebo capsules, or a placebo soup plus capsules delivering a strong dose of red pepper. The rest of the meal was given ad libitum to all subjects. The amount of food, protein and carbohydrate ingested was similar for all conditions. Energy and fat intake were similar after the ingestion of the moderate soup compared with placebo. However, the strong soup significantly lowered fat intake compared with placebo (P=0.043), and ingestion of strong capsules also tended to suppress it (P=0.080). Moreover, energy intake after strong soup and capsules tended to be lower than placebo (P=0.089 and 0.076, respectively). The present results indicate that the maximum tolerable dose is necessary to have a suppressive effect of red pepper on fat intake. The main site of the action of red pepper is not in the mouth. PMID:15182402
A nomogram to calculate the maximum dose of local anaesthetic in a paediatric dental setting.
Walker, J D; Summers, A; Williams, D J
2015-04-24
While local anaesthetic agents are usually safe and are used ubiquitously, inadvertent overdoses may have potentially fatal consequences. Errors in the dosing of local anaesthetics frequently occur due to inherent difficulties in remembering the toxic dosage limits, difficulties in performing the appropriate calculations correctly, and errors in estimating patient weight. We have developed a simple graphical calculation aid (nomogram) to overcome these problems and facilitate rapid cross-checking of the maximum safe dose for a variety of local anaesthetic agents in common use. Standard mathematical techniques were used to draft the nomogram. A randomised blinded study using simulated patient data and Bland-Altman analysis was used to assess the accuracy and precision of the nomogram. The nomogram was found to have a bias of 0.0 ml, with limits of agreement -0.05-0.04 ml. It was found to be easy to use and suitably accurate for clinical use. PMID:25908360
Automatic maximum power point tracker for solar PV modules using dSPACE software
S. Chatterji; Atif Iqbal
2010-01-01
Maximization of power from a solar photovoltaic (SPV) module is of special interest as the efficiency of the SPV module is very low. The present work describes the maximum power point tracker (MPPT) for the SPV module connected at variable load conditions. A personal computer (PC) is used for control of the MPPT algorithm. The power tracker is developed and
Performance of Photovoltaic Maximum Power Point Tracking Algorithms in the Presence of Noise
Odam, Kofi
tracking (MPPT) algorithms for photovoltaic systems, including how noise affects both tracking speed a better understanding of how noise affects performance and it can be used to optimize an MPPT system. I. Introduction Maximum power point tracking (MPPT) has become a standard technique for high
Sub-Module Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications
Perreault, Dave
applications through the use of sub-module integrated maximum power point trackers (MPPT). We propose a system of miniature MPPT power converters into existing junction boxes. We describe the design and implementation of a high-efficiency (>98%) synchronous buck MPPT converter, along with digital control techniques
Sub-Module Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications
Perreault, Dave
of sub-module integrated maximum power point trackers (MPPT). We propose a system architecture of miniature MPPT power converters into existing junction boxes. We describe the design and implementation of a high-efficiency (>98%) synchronous buck MPPT converter, along with digital control techniques
Liu, Ruifeng; Tawa, Gregory; Wallqvist, Anders
2012-10-15
Toxicological experiments in animals are carried out to determine the type and severity of any potential toxic effect associated with a new lead compound. The collected data are then used to extrapolate the effects on humans and determine initial dose regimens for clinical trials. The underlying assumption is that the severity of the toxic effects in animals is correlated with that in humans. However, there is a general lack of toxic correlations across species. Thus, it is more advantageous to predict the toxicological effects of a compound on humans directly from the human toxicological data of related compounds. However, many popular quantitative structure-activity relationship (QSAR) methods that build a single global model by fitting all training data appear inappropriate for predicting toxicological effects of structurally diverse compounds because the observed toxicological effects may originate from very different and mostly unknown molecular mechanisms. In this article, we demonstrate, via application to the human maximum recommended daily dose data that locally weighted learning methods, such as k-nearest neighbors, are well suited for predicting toxicological effects of structurally diverse compounds. We also show that a significant flaw of the k-nearest neighbor method is that it always uses a constant number of nearest neighbors in making prediction for a target compound, irrespective of whether the nearest neighbors are structurally similar enough to the target compound to ensure that they share the same mechanism of action. To remedy this flaw, we proposed and implemented a variable number nearest neighbor method. The advantages of the variable number nearest neighbor method over other QSAR methods include (1) allowing more reliable predictions to be achieved by applying a tighter molecular distance threshold and (2) automatic detection for when a prediction should not be made because the compound is outside the applicable domain. PMID:22963722
A Digital Coreless Maximum Power Point Tracking Circuit for Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Kim, Shiho; Cho, Sungkyu; Kim, Namjae; Baatar, Nyambayar; Kwon, Jangwoo
2011-05-01
This paper describes a maximum power point tracking (MPPT) circuit for thermoelectric generators (TEG) without a digital controller unit. The proposed method uses an analog tracking circuit that samples the half point of the open-circuit voltage without a digital signal processor (DSP) or microcontroller unit for calculating the peak power point using iterative methods. The simulation results revealed that the MPPT circuit, which employs a boost-cascaded-with-buck converter, handled rapid variation of temperature and abrupt changes of load current; this method enables stable operation with high power transfer efficiency. The proposed MPPT technique is a useful analog MPPT solution for thermoelectric generators.
Helms, H.-J.; Benda, N.; Friede, T.
2015-01-01
In a clinical dose finding study with active control a new drug with several dose levels is compared with an active comparator drug. The main focus of such studies often lies on the estimation of a target dose that leads to the same efficacy as the control. This article investigates the finite sample properties of the maximum likelihood estimation of the target dose and compares several approaches for constructing corresponding confidence intervals under the assumption of a linear dose-response curve and normal error terms. Furthermore, the impact of deviations from the model assumptions regarding the error distribution is explored. PMID:24918730
Brenner, David Jonathan
Breast radiotherapy in the prone position primarily reduces the maximum out-of-field measured dose advantages of prone position breast radiotherapy in terms of the radiation exposure to out-of-field organs) was to the treatment volume, the more dose spar- ing was seen for prone vs supine positioning. Breast radiotherapy
Sweileh, Waleed M.; Odeh, Jihad Bani; Shraim, Naser Y.; Zyoud, Sa’ed H.; Sawalha, Ansam F.; Al-Jabi, Samah W.
2013-01-01
Objective The present study was carried out to investigate and compare the three methods for calculating total antipsychotic dose among outpatients with schizophrenia attending primary psychiatric health care centers. The three methods were: Defined Daily Doses (DDDs), chlorpromazine equivalents (CPZeq) and percentages of the British National Formulary (BNF) maximum. Methodology Antipsychotic drug dosing data for 250 patients with schizophrenia were investigated by calculating Spearman’s rank correlation coefficients. Factors associated with antipsychotic dose, expressed as DDDs, CPZeq and percentages of the BNF maximum recommended daily dose, were investigated by means of linear regression analysis. Results Spearman’s correlation showed that there is a significant relationship between all pairs of the three dosing methods. In all three methods, coherence was strongest when dealing with first generation antipsychotics (FGA). Linear regression analyses showed a high degree of coherence between antipsychotic doses expressed as DDDs, CPZeq and percentages of the BNF maximum recommended daily dose. Conclusion All three tested methods are reliable and coherent for calculating antipsychotic dosing. PMID:24648824
NASA Astrophysics Data System (ADS)
Kareim, Ameer A.; Mansor, Muhamad Bin
2013-06-01
The aim of this paper is to improve efficiency of maximum power point tracking (MPPT) for PV systems. The Support Vector Machine (SVM) was proposed to achieve the MPPT controller. The theoretical, the perturbation and observation (P&O), and incremental conductance (IC) algorithms were used to compare with proposed SVM algorithm. MATLAB models for PV module, theoretical, SVM, P&O, and IC algorithms are implemented. The improved MPPT uses the SVM method to predict the optimum voltage of the PV system in order to extract the maximum power point (MPP). The SVM technique used two inputs which are solar radiation and ambient temperature of the modeled PV module. The results show that the proposed SVM technique has less Root Mean Square Error (RMSE) and higher efficiency than P&O and IC methods.
Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control
NASA Astrophysics Data System (ADS)
Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed
2012-12-01
In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC ?uk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.
Photovoltaic Maximum Power Point Prediction Using Robust Radial Basis Function Network
NASA Astrophysics Data System (ADS)
Liao, Chiung-Chou
2009-08-01
By operating PV systems near the maximum power point (MPP), the output efficiency of PV panels can be increased. Traditionally, the k-means algorithm is one of the most popular methods to classify the input patterns of the radial basis function network (RBFN). Although the KMA has an ability to cluster the training patterns rapidly, it usually converges to a local minimum and can be oversensitive to randomly initial partitions. To solve these significant problems, a hybrid skill called Genetic k-Means Algorithm is proposed to improve the effectiveness of maximum power point track. By precisely clustering of the training patterns, the objective to accurately and rapidly approximate the MPP of PV system can be achieved with the least squares criterion in RBF network.
Tracking the global maximum power point of PV arrays under partial shading conditions
NASA Astrophysics Data System (ADS)
Fennich, Meryem
This thesis presents the theoretical and simulation studies of the global maximum power point tracking (MPPT) for photovoltaic systems under partial shading. The main goal is to track the maximum power point of the photovoltaic module so that the maximum possible power can be extracted from the photovoltaic panels. When several panels are connected in series with some of them shaded partially either due to clouds or shadows from neighboring buildings, several local maxima appear in the power vs. voltage curve. A power increment based MPPT algorithm is effective in identifying the global maximum from the several local maxima. Several existing MPPT algorithms are explored and the state-of-the-art power increment method is simulated and tested for various partial shading conditions. The current-voltage and power-voltage characteristics of the PV model are studied under different partial shading conditions, along with five different cases demonstrating how the MPPT algorithm performs when shading switches from one state to another. Each case is supplemented with simulation results. The method of tracking the Global MPP is based on controlling the DC-DC converter connected to the output of the PV array. A complete system simulation including the PV array, the direct current to direct current (DC-DC) converter and the MPPT is presented and tested using MATLAB software. The simulation results show that the MPPT algorithm works very well with the buck converter, while the boost converter needs further changes and implementation.
Lee, Larissa J.; Sadow, Cheryl A.; Russell, Anthony; Viswanathan, Akila N.
2009-11-01
Purpose: To compare high dose rate (HDR) point B to pelvic lymph node dose using three-dimensional-planned brachytherapy for cervical cancer. Methods and Materials: Patients with FIGO Stage IB-IIIB cervical cancer received 70 tandem HDR applications using CT-based treatment planning. The obturator, external, and internal iliac lymph nodes (LN) were contoured. Per fraction (PF) and combined fraction (CF) right (R), left (L), and bilateral (Bil) nodal doses were analyzed. Point B dose was compared with LN dose-volume histogram (DVH) parameters by paired t test and Pearson correlation coefficients. Results: Mean PF and CF doses to point B were R 1.40 Gy +- 0.14 (CF: 7 Gy), L 1.43 +- 0.15 (CF: 7.15 Gy), and Bil 1.41 +- 0.15 (CF: 7.05 Gy). The correlation coefficients between point B and the D100, D90, D50, D2cc, D1cc, and D0.1cc LN were all less than 0.7. Only the D2cc to the obturator and the D0.1cc to the external iliac nodes were not significantly different from the point B dose. Significant differences between R and L nodal DVHs were seen, likely related to tandem deviation from irregular tumor anatomy. Conclusions: With HDR brachytherapy for cervical cancer, per fraction nodal dose approximates a dose equivalent to teletherapy. Point B is a poor surrogate for dose to specific nodal groups. Three-dimensional defined nodal contours during brachytherapy provide a more accurate reflection of delivered dose and should be part of comprehensive planning of the total dose to the pelvic nodes, particularly when there is evidence of pathologic involvement.
Development of a microcontroller-based, photovoltaic maximum power point tracking control system
Eftichios Koutroulis; Kostas Kalaitzakis; Nicholas C. Voulgaris
2001-01-01
Maximum power point tracking (MPPT) is used in photovoltaic (PV) systems to maximize the photovoltaic array output power, irrespective of the temperature and irradiation conditions and of the load electrical characteristics. A new MPPT system has been developed, consisting of a buck-type DC\\/DC converter, which is controlled by a microcontroller-based unit. The main difference between the method used in the
Maximum power point tracking for variable speed grid connected small wind turbine
Mazen Abdel-Salam; Adel Ahmed; Mohamed Abdel-Sater
2010-01-01
This paper presents a method for harmonic mitigation and maximum power point tracking (MPPT) for a variable speed-grid connected 20 kW wind turbine. The wind energy conversion systems consist of permanent magnet synchronous generator (PMSG) driven by variable-speed 20 kW wind turbine. The output of the PMSG is connected to a single switch three-phase boost rectifier to generate DC voltage
NASA Astrophysics Data System (ADS)
Park, Hyunbin; Sim, Minseob; Kim, Shiho
2015-06-01
We propose a way of achieving maximum power and power-transfer efficiency from thermoelectric generators by optimized selection of maximum-power-point-tracking (MPPT) circuits composed of a boost-cascaded-with-buck converter. We investigated the effect of switch resistance on the MPPT performance of thermoelectric generators. The on-resistances of the switches affect the decrease in the conversion gain and reduce the maximum output power obtainable. Although the incremental values of the switch resistances are small, the resulting difference in the maximum duty ratio between the input and output powers is significant. For an MPPT controller composed of a boost converter with a practical nonideal switch, we need to monitor the output power instead of the input power to track the maximum power point of the thermoelectric generator. We provide a design strategy for MPPT controllers by considering the compromise in which a decrease in switch resistance causes an increase in the parasitic capacitance of the switch.
Kulkarni, Sanjeev
is to use a max- imum power point tracking (MPPT) algorithm to dynamically tune either control current or voltage to the maximum power operating point. Typically MPPT algorithms are implemented on a solar array
Farah, J; Trianni, A; Carinou, E; Ciraj-Bjelac, O; Clairand, I; Dabin, J; De Angelis, C; Domienik, J; Jarvinen, H; Kopec, R; Majer, M; Malchair, F; Negri, A; Novák, L; Siiskonen, T; Vanhavere, F; Kneževi?, Ž
2015-04-01
To help operators acknowledge patient dose during interventional procedures, EURADOS WG-12 focused on measuring patient skin dose using XR-RV3 gafchromic films, thermoluminescent detector (TLD) pellets or 2D TL foils and on investigating possible correlation to the on-line dose indicators such as fluoroscopy time, Kerma-area product (KAP) and cumulative air Kerma at reference point (CK). The study aims at defining non-centre-specific European alert thresholds for skin dose in three interventional procedures: chemoembolization of the liver (CE), neuroembolization (NE) and percutaneous coronary interventions (PCI). Skin dose values of >3 Gy (ICRP threshold for skin injuries) were indeed measured in these procedures confirming the need for dose indicators that correlate with maximum skin dose (MSD). However, although MSD showed fairly good correlation with KAP and CK, several limitations were identified challenging the set-up of non-centre-specific European alert thresholds. This paper presents preliminary results of this wide European measurement campaign and focuses on the main challenges in the definition of European alert thresholds. PMID:25316909
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.
1989-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Astrophysics Data System (ADS)
Pitone, D. S.; Klein, J. R.; Twambly, B. J.
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Astrophysics Data System (ADS)
Pitone, D. S.; Klein, J. R.
1989-10-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance.
Unbounded Binary Search for a Fast and Accurate Maximum Power Point Tracking
NASA Astrophysics Data System (ADS)
Kim, Yong Sin; Winston, Roland
2011-12-01
This paper presents a technique for maximum power point tracking (MPPT) of a concentrating photovoltaic system using cell level power optimization. Perturb and observe (P&O) has been a standard for an MPPT, but it introduces a tradeoff between the tacking speed and the accuracy of the maximum power delivered. The P&O algorithm is not suitable for a rapid environmental condition change by partial shading and self-shading due to its tracking time being linear to the length of the voltage range. Some of researches have been worked on fast tracking but they come with internal ad hoc parameters. In this paper, by using the proposed unbounded binary search algorithm for the MPPT, tracking time becomes a logarithmic function of the voltage search range without ad hoc parameters.
Maximum loadability of power systems using interior point non-linear optimization method
Irisarri, G.D.; Wang, X.; Tong, J.; Mokhtari, S. [Siemens Empros Power Systems Control, Brooklyn Park, MN (United States)] [Siemens Empros Power Systems Control, Brooklyn Park, MN (United States)
1997-02-01
This paper proposes a non-linear optimization Interior Point (IP) method for the determination of maximum loadability in a power system. Details of the implementation of pure primal-dual and predictor-corrector primal-dual IP algorithms are presented. It is shown that most of the computational effort of the algorithm is taken by the formation and factorization of the augmented Hessian matrix of the IP algorithm. The size of this matrix can be as large as ten times the number of buses in the system. Comparisons of the two IP implementations with large scale power systems with as many as 4,000 buses are presented. It is shown that the IP algorithm constitutes an effective method for the determination of the maximum loadability in a power system.
Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum
2014-12-01
Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 ?W at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level. PMID:25365216
Kimball, Jonathan W.
simple circuit im- plementations. Index Terms--Maximum power point tracking (MPPT), photo- voltaic (PV), ripple correlation control (RCC). I. INTRODUCTION MANY MAXIMUM power point tracking (MPPT) techniques papers on different MPPT techniques, dating from 1968. These techniques are reviewed and compared in [15
Dong H Shin; Michael S McCracken; Rick E Bendel; Robert Pearlman; Mark S Juzych; Bret A Hughes; Laura L Schulz; Chaesik Kim; Nam H Baek
1999-01-01
ObjectiveTo assess the efficacy of latanoprost additive therapy in patients with intraocular pressure (IOP) out of control while taking maximum-tolerated medications and to determine whether pilocarpine therapy has a dose-dependent adverse effect on the efficacy of latanoprost therapy.
Wang, Heming; Park, Jae-Do; Ren, Zhiyong
2012-05-01
Microbial fuel cell (MFC) technology offers a sustainable approach to harvest electricity from biodegradable materials. Energy production from MFCs has been demonstrated using external resistors or charge pumps, but such methods can only dissipate energy through heat or receive electrons passively from the MFC without any controllability. This study developed a new approach and system that can actively extract energy from MFC reactors at any operating point without using any resistors, especially at the peak power point to maximize energy production. Results show that power harvesting from a recirculating-flow MFC can be well maintained by the maximum power point circuit (MPPC) at its peak power point, while a charge pump was not able to change operating point due to current limitation. Within 18-h test, the energy gained from the MPPC was 76.8 J, 76 times higher than the charge pump (1.0 J) that was commonly used in MFC studies. Both conditions resulted in similar organic removal, but the Coulombic efficiency obtained from the MPPC was 21 times higher than that of the charge pump. Different numbers of capacitors could be used in the MPPC for various energy storage requirements and power supply, and the energy conversion efficiency of the MPPC was further characterized to identify key factors for system improvement. This active energy harvesting approach provides a new perspective for energy harvesting that can maximize MFC energy generation and system controllability. PMID:22486712
Object recognition in 3D point clouds with maximum likelihood estimation
NASA Astrophysics Data System (ADS)
Dantanarayana, Harshana G.; Huntley, Jonathan M.
2015-05-01
A novel technique for object recognition and localization within a 3D point cloud has been developed, by constructing a likelihood function for the pose vector of a known model in a measured scene. The function is based on surface features in the model and corresponding surface features detected in the scene. Using an optimization algorithm, the maximum of the function was found, corresponding to the 6 degree of freedom (DOF) pose of the model within the scene even in the presence of significant clutter.
NASA Technical Reports Server (NTRS)
Appelbaum, J.; Singer, S.
1989-01-01
A calculation of the starting torque ratio of permanent magnet, series, and shunt-excited dc motors powered by solar cell arrays is presented for two cases, i.e., with and without a maximum-power-point tracker (MPPT). Defining motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 for the permanent magnet motor and a magnification of 7 for both the series and shunt motors are obtained. The study also shows that all motor types are less sensitive to solar insolation variation in systems including MPPTs as compared to systems without MPPTs.
A complementary review of maximum power point tracking methods for wind generators
NASA Astrophysics Data System (ADS)
Cr?ciunescu, Aurelian; Popescu, Claudia; Popescu, Mihai
2012-09-01
Maximum power point tracking (MPPT) is a very important necessity in a system of energy conversion from a renewable energy source. In this paper, is made an attempt to provide a brief review of 12 very recent publications, not analyzed in the last surveys appeared in 2010 and 2011, and to make a comparative analyze and a classification of all available MPPT algorithms, highlighting their strength and drawbacks. After addressing the reasons for use of MPPT techniques, various power optimization schemes are surveyed. The comparative analysis and a classification of the MPPT algorithms are useful for the designers of wind energy power systems.
NASA Astrophysics Data System (ADS)
>Tey Kok Soon,
2013-06-01
This paper proposed an improved incremental conductance method to track the Maximum Power Point (MPP) for PV Panel under fast changing solar irradiation. When there is increment in solar irradiation level, the conventional incremental conductance method is confused and responses incorrectly. The proposed method response correctly and there is no steady state oscillation compared to the conventional method. Matlab simulation is carried out for both the improved and conventional incremental conductance method under fast changing solar irradiation level. The simulation results showed the system able to track the MPP faster than the conventional method.
A reliable, fast and low cost maximum power point tracker for photovoltaic applications
Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A.
2010-01-15
This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)
Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo
2008-05-01
Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation. PMID:18561656
Fondevila, Damian; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Monica; Dosoretz, Bernardo [Vidt Centro Medico, Vidt 1924, Buenos Aires (Argentina)
2008-05-15
Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle ({alpha}{sub max}) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining {alpha}{sub max}, which is a function of the thickness of the barrier (t{sub E}) and the equilibrium tenth-value layer (TVL{sub e}) of the shielding material for the nominal energy of the beam. It can be seen that {alpha}{sub max} increases for increasing TVL{sub e} (hence, beam energy) and decreases for increasing t{sub E}, with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.
Shapiro, A; Schwartz, B; Windham, J P; Kereiakes, J G
1976-01-01
The results of neutron-transport flux-density and dose rate calculations for implantable Californium-252 point and line sources in essentially infinite tissue-equivalent material are presented. The point-source flux densities were obtained from a discrete ordinates calculation, and the point dose rates were established by multiplying the flux densities by their appropriate kerma factors. Line-source dose rates were evaluated by integrating the point dose rates over the length of the line source. Dose-rate data are given within a 20 X 20-cm region from the source center for source lengths of 1.5, 2, and 3 cm. The dose rates established by these calculations showed good agreement with an independent Monte Carlo calculation. Detailed point-source flux-density data as a function of energy and position are also given. PMID:958169
Escude, Lluis [Servei de Radio-oncologia, Instituto Oncologico Teknon, Barcelona (Spain)]. E-mail: lluis.escude@gmx.net; Linero, Dolors [Servei de Radio-oncologia, Instituto Oncologico Teknon, Barcelona (Spain); Molla, Meritxell [Servei de Radio-oncologia, Instituto Oncologico Teknon, Barcelona (Spain); Miralbell, Raymond [Servei de Radio-oncologia, Instituto Oncologico Teknon, Barcelona (Spain); Service de Radio-oncologie, Hopitaux Universitaires, Geneva (Switzerland)
2006-11-15
Purpose: We aimed to evaluate an optimization algorithm designed to find the most favorable points to position an ionization chamber (IC) for quality assurance dose measurements of patients treated for prostate cancer with intensity-modulated radiotherapy (IMRT) and fields up to 10 cm x 10 cm. Methods and Materials: Three cylindrical ICs (PTW, Freiburg, Germany) were used with volumes of 0.6 cc, 0.125 cc, and 0.015 cc. Dose measurements were made in a plastic phantom (PMMA) at 287 optimized points. An algorithm was designed to search for points with the lowest dose gradient. Measurements were made also at 39 nonoptimized points. Results were normalized to a reference homogeneous field introducing a dose ratio factor, which allowed us to compare measured vs. calculated values as percentile dose ratio factor deviations {delta}F (%). A tolerance range of {delta}F (%) of {+-}3% was considered. Results: Half of the {delta}F (%) values obtained at nonoptimized points were outside the acceptable range. Values at optimized points were widely spread for the largest IC (i.e., 60% of the results outside the tolerance range), whereas for the two small-volume ICs, only 14.6% of the results were outside the tolerance interval. No differences were observed when comparing the two small ICs. Conclusions: The presented optimization algorithm is a useful tool to determine the best IC in-field position for optimal dose measurement conditions. A good agreement between calculated and measured doses can be obtained by positioning small volume chambers at carefully selected points in the field. Large chambers may be unreliable even in optimized points for IMRT fields {<=}10 cm x 10 cm.
Solar Panel System for Street Light Using Maximum Power Point Tracking (MPPT) Technique
NASA Astrophysics Data System (ADS)
Wiedjaja, A.; Harta, S.; Josses, L.; Winardi; Rinda, H.
2014-03-01
Solar energy is one form of the renewable energy which is very abundant in regions close to the equator. One application of solar energy is for street light. This research focuses on using the maximum power point tracking technique (MPPT), particularly the perturb and observe (P&O) algorithm, to charge battery for street light system. The proposed charger circuit can achieve 20.73% higher power efficiency compared to that of non-MPPT charger. We also develop the LED driver circuit for the system which can achieve power efficiency up to 91.9% at a current of 1.06 A. The proposed street lightning system can be implemented with a relatively low cost for public areas.
Maximum Power Point tracking charge controllers for telecom applications -- Analysis and economics
Wills, R.H.
1997-12-31
Simple charge controllers connect photovoltaic modules directly to the battery bank resulting in a significant power loss if the battery bank voltage differs greatly from the PV Maximum Power Point (MPP) voltage. Recent modeling work at AES has shown that dc-dc converter type MPP tracking charge controllers can deliver more than 30% more energy from PV modules to the battery when the PV modules are cool and the battery state of charge is low--this is typically both the worst case condition (i.e., winter) and also the design condition that determines the PV array size. Economic modeling, based on typical telecom system installed costs shows benefits of more than $3/Wp for MPPT over conventional charge controllers in this application--a value that greatly exceeds the additional cost of the dc-dc converter.
Paranjpe, Madhav G; Denton, Melissa D; Vidmar, Tom J; Elbekai, Reem H
2015-07-01
High doses in Tg.rasH2 carcinogenicity studies are usually set at the maximum tolerated dose (MTD), although this dose selection strategy has not been critically evaluated. We analyzed the body weight gains (BWGs), mortality, and tumor response in control and treated groups of 29 Tg.rasH2 studies conducted at BioReliance. Based on our analysis, it is evident that the MTD was exceeded at the high and/or mid-doses in several studies. The incidence of tumors in high doses was lower when compared to the low and mid-doses of both sexes. Thus, we recommend that the high dose in male mice should not exceed one-half of the estimated MTD (EMTD), as it is currently chosen, and the next dose should be one-fourth of the EMTD. Because females were less sensitive to decrements in BWG, the high dose in female mice should not exceed two-third of EMTD and the next dose group should be one-third of EMTD. If needed, a third dose group should be set at one-eighth EMTD in males and one-sixth EMTD in females. In addition, for compounds that do not show toxicity in the range finding studies, a limit dose should be applied for the 26-week carcinogenicity studies. PMID:25391312
Fast maximum likelihood estimation using continuous-time neural point process models.
Lepage, Kyle Q; MacDonald, Christopher J
2015-06-01
A recent report estimates that the number of simultaneously recorded neurons is growing exponentially. A commonly employed statistical paradigm using discrete-time point process models of neural activity involves the computation of a maximum-likelihood estimate. The time to computate this estimate, per neuron, is proportional to the number of bins in a finely spaced discretization of time. By using continuous-time models of neural activity and the optimally efficient Gaussian quadrature, memory requirements and computation times are dramatically decreased in the commonly encountered situation where the number of parameters p is much less than the number of time-bins n. In this regime, with q equal to the quadrature order, memory requirements are decreased from O(np) to O(qp), and the number of floating-point operations are decreased from O(np(2)) to O(qp(2)). Accuracy of the proposed estimates is assessed based upon physiological consideration, error bounds, and mathematical results describing the relation between numerical integration error and numerical error affecting both parameter estimates and the observed Fisher information. A check is provided which is used to adapt the order of numerical integration. The procedure is verified in simulation and for hippocampal recordings. It is found that in 95 % of hippocampal recordings a q of 60 yields numerical error negligible with respect to parameter estimate standard error. Statistical inference using the proposed methodology is a fast and convenient alternative to statistical inference performed using a discrete-time point process model of neural activity. It enables the employment of the statistical methodology available with discrete-time inference, but is faster, uses less memory, and avoids any error due to discretization. PMID:25788412
NASA Astrophysics Data System (ADS)
Park, Jungyong; Kim, Shiho
2012-06-01
An analog maximum power point tracking (MPPT) circuit for a thermoelectric generator (TEG) is proposed. We show that the peak point of the voltage conversion gain of a boost DC-DC converter with an input voltage source having an internal resistor is the maximum power point of the TEG. The key characteristic of the proposed MPPT controller is that the duty ratio of the input clock pulse to the boost DC-DC converter shifts toward the maximum power point of the TEG by seeking the peak gain point of the boost DC-DC converters. The proposed MPPT technique provides a simple and useful analog MPPT solution, without employing digital microcontroller units.
NASA Astrophysics Data System (ADS)
Manikandan, S.; Kaushik, S. C.
2015-04-01
Thermoelectric generator (TEG) operated thermoelectric cooler (TEC) is a highly compatible combination for low-cooling power application. The conventional TEG-TEC combined systems have low operating efficiency and low cooling power because maximum power output from the TEG is not fully utilized. This paper proposes and analyses the combined system with maximum power point tracking technique (MPPT) to maximize the cooling power and overall efficiency. This paper also presents the effect of TEG, TEC source temperature and the effect of heat transfer area in the performance of the combined system. The thermodynamic models of the combined system are developed in MATLAB simulink environment with temperature dependent material properties and analysed for variable operating temperatures. It has been found that, in the irreversible thermodynamic model of the combined system with MPPT, when the hot and cold side of TEG and TEC are kept at a temperature difference of 150 K and 10 K respectively, the power output of TEG increases from 20.49 W to 43.92 W, cooling power of TEC increases from 32.66 W to 46.51 W and the overall combined system efficiency increases from 2.606% to 4.375% respectively when compared with the irreversible combined system without MPPT. The characteristics improvements obtained by this practice in the combined system for the above mentioned operating conditions is also true for other range of operating temperatures. It is also been observed that the external irreversibilities decreases the cooling power and the overall system efficiency of the combined system by 36.49% and by 16.9% respectively.
Shinozuka, Masanobu
operation of superca- pacitors during cold booting, and maximum power point tracking (MPPT) over a variety to the array of larger-value supercapacitors. For MPPT, we de- signed a bound-control circuit for PFM regulator. To be efficient and self-configuring, it performs max- imum power point tracking (MPPT) for not only a specific
Long Duration Balloon Maximum Power Point Tracking (MPPT) solar power system development
NASA Astrophysics Data System (ADS)
Perez, Juan
High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to 40 days. Longer missions, with durations of up to 100 days (Ultra Long), are in the planning stages. Due to the flight durations, solar power systems have been utilized throughout the Long Duration Balloon (LDB) flight program to power the necessary electronic systems. Recently, Maximum Power Point Tracking (MPPT) charge controllers have become available off-the-shelf. These controllers along with high efficiency mono-crystalline solar cells have become reliable, low cost solutions even in the harsh environments they operate in. The LDB program at the Columbia Scientific Balloon Facility (CSBF) began supporting solar power systems with custom units fabricated by the Physical Science Laboratory (PSL) of New Mexico State University (NMSU). These charge controllers proved to be very reliable systems; however, they required intensive labor to build and were relatively expensive. As off-the-shelf MPPT charge controllers have become available, they have been integrated into the LDB flight support systems. Coupled with PSL developed interface electronics for monitoring and power switching, they have proven to be as reliable, less expensive, and more efficient. The addition of MPPT allows for the controller to operate the solar panel at it highest power production point. Newer, off-the-shelf controllers with smarter MPPT, are currently being tested. This paper describes the long and ultra-long balloon missions and the role that solar power plays in mission success. More importantly, it discusses the recent developments in off-the-shelf MPPT charge controllers configured for use in the harsh high altitude balloon environment.
A maximum-likelihood search for neutrino point sources with the AMANDA-II detector
NASA Astrophysics Data System (ADS)
Braun, James R.
Neutrino astronomy offers a new window to study the high energy universe. The AMANDA-II detector records neutrino-induced muon events in the ice sheet beneath the geographic South Pole, and has accumulated 3.8 years of livetime from 2000 - 2006. After reconstructing muon tracks and applying selection criteria, we arrive at a sample of 6595 events originating from the Northern Sky, predominantly atmospheric neutrinos with primary energy 100 GeV to 8 TeV. We search these events for evidence of astrophysical neutrino point sources using a maximum-likelihood method. No excess above the atmospheric neutrino background is found, and we set upper limits on neutrino fluxes. Finally, a well-known potential dark matter signature is emission of high energy neutrinos from annihilation of WIMPs gravitationally bound to the Sun. We search for high energy neutrinos from the Sun and find no excess. Our limits on WIMP-nucleon cross section set new constraints on MSSM parameter space.
Validation of a dose-point kernel convolution technique for internal dosimetry.
Giap, H B; Macey, D J; Bayouth, J E; Boyer, A L
1995-03-01
The objective of this study was to validate a dose-point kernel convolution technique that provides a three-dimensional (3D) distribution of absorbed dose from a 3D distribution of the radionuclide 131I. A dose-point kernel for the penetrating radiations was calculated by a Monte Carlo simulation and cast in a 3D rectangular matrix. This matrix was convolved with the 3D activity map furnished by quantitative single-photon-emission computed tomography (SPECT) to provide a 3D distribution of absorbed dose. The convolution calculation was performed using a 3D fast Fourier transform (FFT) technique, which takes less than 40 s for a 128 x 128 x 16 matrix on an Intel 486 DX2 (66 MHz) personal computer. The calculated photon absorbed dose was compared with values measured by thermoluminescent dosimeters (TLDS) inserted along the diameter of a 22 cm diameter annular source of 131I. The mean and standard deviation of the percentage difference between the measurements and the calculations were equal to -1% and 3.6%, respectively. This convolution method was also used to calculate the 3D dose distribution in an Alderson abdominal phantom containing a liver, a spleen, and a spherical tumour volume loaded with various concentrations of 131I. By averaging the dose calculated throughout the liver, spleen, and tumour the dose-point kernel approach was compared with values derived using the MIRD formalism, and found to agree to better than 15%. PMID:7732068
Gangopadhyay, Noopur; Shah, Manjool; Skolnick, Gary B; Patel, Kamlesh B; Naidoo, Sybill D; Woo, Albert S
2014-01-01
The aesthetic success of sagittal synostosis reconstruction is measured by cephalic index (CI). This limited measure does not fully account for the abnormal head shape in sagittal synostosis. In this retrospective study, we investigate a new objective measure, point of maximum width (PMW) of the skull from a vertex view, to determine where the head is widest for children with sagittal synostosis as compared to normal controls. Preoperative CT scans of 27 children with sagittal synostosis and 14 postoperative CT scans at least 8 months after surgery were obtained. Normal CT scans were matched for age, gender, and race. Three-dimensional renderings were standardized for orientation. Average PMW in patients with sagittal synostosis was 53% ± 1% compared to 57% ± 1% in controls (p<0.001). Average CI in patients with sagittal synostosis was 66.8% ± 0.8% compared to 83.3% ± 1.0% in controls (p<0.001). The correlation between PMW and CI was weak in both controls (R2=0.002, p=0.824) and uncorrected cases (R2=0.083, p=0.145). After surgical correction, both CI and PMW significantly improved. Average PMW in patients after surgical release of sagittal synostosis was 58% ± 1% compared to 58% ± 1% in controls (p=0.986). PMW is not a surrogate for CI but is a novel, valid measure of skull shape, which aids in quantifying the widest region of the skull. PMW is significantly more anterior in children with sagittal synostosis and exhibits a consistent posterior shift along the cranium after surgery, showing no difference compared to healthy children. PMID:25006901
Gangopadhyay, Noopur; Shah, Manjool; Skolnick, Gary B; Patel, Kamlesh B; Naidoo, Sybill D; Woo, Albert S
2014-07-01
The esthetic success of sagittal synostosis reconstruction is measured by cephalic index (CI). This limited measure does not fully account for the abnormal head shape in sagittal synostosis. In this retrospective study, we investigate a new objective measure, point of maximum width (PMW) of the skull from a vertex view, to determine where the head is widest for children with sagittal synostosis as compared with normal controls. Preoperative computed tomography (CT) scans of 27 children with sagittal synostosis and 14 postoperative CT scans at least 8 months after surgery were obtained. Normal CT scans were matched for age, sex, and race. Three-dimensional renderings were standardized for orientation. Mean (SE) PMW in patients with sagittal synostosis was 53% (1%) compared with 57% (1%) in controls (P < 0.001). Mean (SE) CI in patients with sagittal synostosis was 66.8% (0.8%) compared with 83.3% (1.0%) in controls (P < 0.001). The correlation between PMW and CI was weak in both controls (r2 = 0.002, P = 0.824) and uncorrected cases (r2 = 0.083, P = 0.145). After surgical correction, both CI and PMW significantly improved. Mean (SE) PMW in patients after surgical release of sagittal synostosis was 58% (1%) compared with 58% (1%) in controls (P = 0.986). The PMW is not a surrogate for CI but is a novel, valid measure of skull shape, which aids in quantifying the widest region of the skull. It is significantly more anterior in children with sagittal synostosis and exhibits a consistent posterior shift along the cranium after surgery, showing no difference compared with healthy children. PMID:25006901
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Singer, S.
1989-01-01
Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.
The optimal shape of an object for generating maximum gravity field at a given point in space
NASA Astrophysics Data System (ADS)
Wang, Xiao-Wei; Su, Yue
2015-09-01
How can we design the shape of an object, in the framework of Newtonian gravity, in order to generate maximum gravity at a given point in space? In this work we present a study on this interesting problem. We obtain compact solutions for all dimensional cases. The results are commonly characterized by a simple ‘physical’ feature that any mass element unit on the object surface generates the same gravity strength at the considered point, in the direction along the rotational symmetry axis.
Chao, R.M.; Ko, S.H.; Lin, I.H.; Pai, F.S.; Chang, C.C.
2009-12-15
The historically high cost of crude oil price is stimulating research into solar (green) energy as an alternative energy source. In general, applications with large solar energy output require a maximum power point tracking (MPPT) algorithm to optimize the power generated by the photovoltaic effect. This work aims to provide a stand-alone solution for solar energy applications by integrating a DC/DC buck converter to a newly developed quadratic MPPT algorithm along with its appropriate software and hardware. The quadratic MPPT method utilizes three previously used duty cycles with their corresponding power outputs. It approaches the maximum value by using a second order polynomial formula, which converges faster than the existing MPPT algorithm. The hardware implementation takes advantage of the real-time controller system from National Instruments, USA. Experimental results have shown that the proposed solar mechatronics system can correctly and effectively track the maximum power point without any difficulties. (author)
Mohsen Taherbaneh; Hasan Ghafori Frard; Amir Hossein Rezaie; Shahab Karbasian
2007-01-01
Solar panels are power sources in photovoltaic applications. Solar panels I-V curves depend on environmental conditions such as irradiance, temperature, load and degradation level. In this paper, design and implementation of simultaneous fuzzy-based maximum power point tracker (MPPT) and sun tracker are presented for deployable solar panels. A digital controller was implemented by an AVR microcontroller. Results showed that the
Allen, B C; Van Landingham, C; Yang, Y; Youk, A O; Marsh, G M; Esmen, N; Gentry, P R; Clewell, H J; Himmelstein, M W
2014-10-01
?-Chloroprene (2-chloro-1,3-butadiene, CD) is used in the manufacture of polychloroprene rubber. Chronic inhalation studies have demonstrated that CD is carcinogenic in B6C3F1 mice and Fischer 344 rats. However, epidemiological studies do not provide compelling evidence for an increased risk of mortality from total cancers of the lung. Differences between the responses observed in animals and humans may be related to differences in toxicokinetics, the metabolism and detoxification of potentially active metabolites, as well as species differences in sensitivity. The purpose of this study was to develop and apply a novel method that combines the results from available physiologically based kinetic (PBK) models for chloroprene with a statistical maximum likelihood approach to test commonality of low-dose risk across species. This method allows for the combined evaluation of human and animal cancer study results to evaluate the difference between predicted risks using both external and internal dose metrics. The method applied to mouse and human CD data supports the hypothesis that a PBK-based metric reconciles the differences in mouse and human low-dose risk estimates and further suggests that, after PBK metric exposure adjustment, humans are equally or less sensitive than mice to low levels of CD exposure. PMID:25010378
Suitability of point kernel dose calculation techniques in brachytherapy treatment planning.
Lakshminarayanan, Thilagam; Subbaiah, K V; Thayalan, K; Kannan, S E
2010-04-01
Brachytherapy treatment planning system (TPS) is necessary to estimate the dose to target volume and organ at risk (OAR). TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC) results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i) Board of Radiation Isotope and Technology (BRIT) low dose rate (LDR) applicator and (ii) Fletcher Green type LDR applicator (iii) Fletcher Williamson high dose rate (HDR) applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron). The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5.5% for BRIT LDR applicator, found to vary from 2.6 to 5.1% for Fletcher green type LDR applicator and are up to -4.7% for Fletcher-Williamson HDR applicator. The isodose distribution plots also show good agreements with the results of previous literatures. The isodose distributions around the shielded vaginal cylinder computed using BrachyTPS code show better agreement (less than two per cent deviation) with MC results in the unshielded region compared to shielded region, where the deviations are observed up to five per cent. The present study implies that the accurate and fast validation of complicated treatment planning calculations is possible with the point kernel code package. PMID:20589118
Point dose calculations using an analytical pencil beam kernel for IMRT plan checking.
Watanabe, Y
2001-04-01
A method to verify the monitor units for a treatment plan is to calculate point doses, possibly at the isocentre, by using a simple calculation method. This verification is recommended to find mistakes in the treatment plan. Treatment plans for intensity modulated radiation therapy are no exception. The method should employ a simple physical model and a dose calculation algorithm, which is different from the method used for the treatment plan. Our approach uses a convolution algorithm and an analytical pencil beam kernel with eight parameters. The model is intuitive and simple. At the same time, the method is so general that it can be applied to both step-and-shoot and sliding-window techniques. The results of applications to actual treatment plans show that the calculated total isocentre doses are accurate within +/-2% of planned doses for six-field prostate plans when calculation points are in a uniform dose region. Head and neck cases show a slightly larger difference than prostate cases. When calculation points are located in a region of high dose gradient, however, the difference could be greater than 5%. PMID:11324949
Development, Testing, and Application of a Beta Radiation Point Source Dose Distribution Function
NASA Astrophysics Data System (ADS)
Khalifeh, Abdulnasser
Present calculational techniques to determine beta radiation dose rates from sources of known characteristics in various source-receptor geometries are confined to desk -top type dose estimations of doses in infinite homogeneous media or relatively complicated methods to be applied to cases where activity is on or in other material separated from the dose medium of concern. This dissertation has concentrated on the development, testing, and applications of a new point source dose distribution function for assessing dose from beta-emitting radionuclides when beta radiation is transported through multiple media; both theoretical analyses and experimental measurements have been carried out. Measurements have been made using P-32, TI-204, and Pm-147 beta-emitting sources, and fabricated metallic particles of Co-60 with known thickness of material absorbers (including mica, mylar, polyethylene, aluminum foil, carbon, and polystyrene foam) between the respective source and an air extrapolation ionization chamber. Results of the measurements have been used to modify the analytical equation of the point source dose rate function, as necessary, to account for discrepancies between results predicted by the function and results from measurements.
Thermoelectric automotive waste heat energy recovery using maximum power point tracking
Chuang Yu; K. T. Chau
2009-01-01
This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC–DC ?uk converter to charge a battery using maximum power
A novel maximum power point tracking technique for solar panels using a SEPIC or Cuk converter
Henry Shu-Hung Chung; K. K. Tse; S. Y. Ron Hui; C. M. Mok; M. T. Ho
2003-01-01
A novel technique for efficiently extracting the maximum output power from a solar panel under varying meteorological conditions is presented. The methodology is based on connecting a pulse-width-modulated (PWM) DC\\/DC SEPIC or Cuk converter between a solar panel and a load or battery bus. The converter operates in discontinuous capacitor voltage mode whilst its input current is continuous. By modulating
Tachim Medjo, Theodore, E-mail: tachimt@fiu.ed [Florida International University, Department of Mathematics (United States)
2010-08-15
We study in this article the Pontryagin's maximum principle for a class of control problems associated with the primitive equations (PEs) of the ocean with two point boundary state constraint. These optimal problems involve a two point boundary state constraint similar to that considered in Wang, Nonlinear Anal. 51, 509-536, 2002 for the three-dimensional Navier-Stokes (NS) equations. The main difference between this work and Wang, Nonlinear Anal. 51, 509-536, 2002 is that the nonlinearity in the PEs is stronger than in the three-dimensional NS systems.
NASA Technical Reports Server (NTRS)
Harvey, K. L.; Tang, F. Y. C.; Gaizauskas, V.; Poland, A. I.
1986-01-01
A dominate association of coronal bright points (as seen in He wavelength 10830) was confirmed with the approach and subsequent disappearance of opposite polarity magnetic network. While coronal bright points do occur with ephemeral regions, this association is a factor of 2 to 4 less than with sites of disappearing magnetic flux. The intensity variations seen in He I wavelength 10830 are intermittent and often rapid, varying over the 3 minute time resolution of the data; their bright point counterparts in the C IV wavelength 1548 and 20 cm wavelength show similar, though not always coincident time variations. Ejecta are associated with about 1/3 of the dark points and are evident in the C IV and H alpha data. These results support the idea that the anti-correlation of X-ray bright points with the solar cycle can be explained by the correlation of these coronal emission structures with sites of cancelling flux, indicating that, in some cases, the process of magnetic flux removal results in the release of energy. That the intensity variations are rapid and variable suggests that this process works intermittently.
Martina Calais; Hartmut Hinz
1998-01-01
This paper describes a maximum power point tracking algorithm for a single-phase, grid-connected photovoltaic system with a transformerless, diode-clamped inverter. The algorithm is based on the fact that in single-phase systems the instantaneous power oscillates at twice the line frequency. The oscillation of the AC power also causes a ripple of twice the line frequency on the DC voltage and
Charles R. Sullivan; Matthew J. Powers
1993-01-01
A maximum power point tracker for photovoltaic arrays is presented. Components are optimized for weight\\/power-loss tradeoff in a solar-powered vehicle, resulting in over 97% efficiency. The control circuit uses a robust auto-oscillation method. Measurement and multiplication of array voltage and current is shown to be unnecessary, and the control is based only on output current measurement. Multiple local maxima arising
N. Khaehintung; P. Sirisuk
2004-01-01
This paper presents the development of maximum power point tracking (MPPT) using a fuzzy logic controller (FLC). By applying the synthetic fuzzy inference algorithm, the relation between input and output of FLC can be effectively stored in a memory-limited lookup table (LUT). As a consequence, the controller can be efficiently implemented on a low-cost 16F872 RISC microcontroller. A practical system
Mazen Abdel-Salam; Adel Ahmed; Mohamed Abdel-Sater
2011-01-01
This article presents a method for harmonic mitigation and maximum power point tracking for a variable-speed grid-connected 20-kW wind turbine. The wind energy conversion system consists of a permanent magnet synchronous generator driven by variable-speed 20-kW wind turbine. The output of the permanent magnet synchronous generator is connected to a single-switch three-phase boost rectifier to generate DC voltage, which feeds
Maximum likelihood estimation of cascade point-process neural encoding models.
Paninski, Liam
2004-11-01
Recent work has examined the estimation of models of stimulus-driven neural activity in which some linear filtering process is followed by a nonlinear, probabilistic spiking stage. We analyze the estimation of one such model for which this nonlinear step is implemented by a known parametric function; the assumption that this function is known speeds the estimation process considerably. We investigate the shape of the likelihood function for this type of model, give a simple condition on the nonlinearity ensuring that no non-global local maxima exist in the likelihood-leading, in turn, to efficient algorithms for the computation of the maximum likelihood estimator-and discuss the implications for the form of the allowed nonlinearities. Finally, we note some interesting connections between the likelihood-based estimators and the classical spike-triggered average estimator, discuss some useful extensions of the basic model structure, and provide two novel applications to physiological data. PMID:15600233
NASA Astrophysics Data System (ADS)
Ahmadian, Radin
2010-09-01
This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 ? potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.
NASA Astrophysics Data System (ADS)
Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi
This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.
NASA Astrophysics Data System (ADS)
Januzis, Natalie; Nguyen, Giao; Hoang, Jenny K.; Lowry, Carolyn; Yoshizumi, Terry T.
2015-02-01
The purpose of this study was to validate a novel approach of applying a partial volume correction factor (PVCF) using a limited number of MOSFET detectors in the effective dose (E) calculation. The results of the proposed PVCF method were compared to the results from both the point dose (PD) method and a commercial CT dose estimation software (CT-Expo). To measure organ doses, an adult female anthropomorphic phantom was loaded with 20 MOSFET detectors and was scanned using the non-contrast and 2 phase contrast-enhanced parathyroid imaging protocols on a 64-slice multi-detector computed tomography scanner. E was computed by three methods: the PD method, the PVCF method, and the CT-Expo method. The E (in mSv) for the PD method, the PVCF method, and CT-Expo method was 2.6? ± ?0.2, 1.3? ± ?0.1, and 1.1 for the non-contrast scan, 21.9? ± ?0.4, 13.9? ± ?0.2, and 14.6 for the 1st phase of the contrast-enhanced scan, and 15.5? ± ?0.3, 9.8? ± ?0.1, and 10.4 for the 2nd phase of the contrast-enhanced scan, respectively. The E with the PD method differed from the PVCF method by 66.7% for the non-contrast scan, by 44.9% and by 45.5% respectively for the 1st and 2nd phases of the contrast-enhanced scan. The E with PVCF was comparable to the results from the CT-Expo method with percent differences of 15.8%, 5.0%, and 6.3% for the non-contrast scan and the 1st and 2nd phases of the contrast-enhanced scan, respectively. To conclude, the PVCF method estimated E within 16% difference as compared to 50–70% in the PD method. In addition, the results demonstrate that E can be estimated accurately from a limited number of detectors.
Januzis, Natalie; Nguyen, Giao; Hoang, Jenny K; Lowry, Carolyn; Yoshizumi, Terry T
2015-03-01
The purpose of this study was to validate a novel approach of applying a partial volume correction factor (PVCF) using a limited number of MOSFET detectors in the effective dose (E) calculation. The results of the proposed PVCF method were compared to the results from both the point dose (PD) method and a commercial CT dose estimation software (CT-Expo). To measure organ doses, an adult female anthropomorphic phantom was loaded with 20 MOSFET detectors and was scanned using the non-contrast and 2 phase contrast-enhanced parathyroid imaging protocols on a 64-slice multi-detector computed tomography scanner. E was computed by three methods: the PD method, the PVCF method, and the CT-Expo method. The E (in mSv) for the PD method, the PVCF method, and CT-Expo method was 2.6? ± ?0.2, 1.3? ± ?0.1, and 1.1 for the non-contrast scan, 21.9? ± ?0.4, 13.9? ± ?0.2, and 14.6 for the 1st phase of the contrast-enhanced scan, and 15.5? ± ?0.3, 9.8? ± ?0.1, and 10.4 for the 2nd phase of the contrast-enhanced scan, respectively. The E with the PD method differed from the PVCF method by 66.7% for the non-contrast scan, by 44.9% and by 45.5% respectively for the 1st and 2nd phases of the contrast-enhanced scan. The E with PVCF was comparable to the results from the CT-Expo method with percent differences of 15.8%, 5.0%, and 6.3% for the non-contrast scan and the 1st and 2nd phases of the contrast-enhanced scan, respectively. To conclude, the PVCF method estimated E within 16% difference as compared to 50-70% in the PD method. In addition, the results demonstrate that E can be estimated accurately from a limited number of detectors. PMID:25658032
Code of Federal Regulations, 2012 CFR
2012-04-01
25 Indians 2 2012-04-01...and how many maximum points can be awarded for...Section 1000.70 Indians OFFICE OF THE ASSISTANT...AMENDMENTS TO THE INDIAN SELF-DETERMINATION...and how many maximum points can be awarded...
Code of Federal Regulations, 2011 CFR
2011-04-01
25 Indians 2 2011-04-01...and how many maximum points can be awarded for...Section 1000.70 Indians OFFICE OF THE ASSISTANT...AMENDMENTS TO THE INDIAN SELF-DETERMINATION...and how many maximum points can be awarded...
Code of Federal Regulations, 2013 CFR
2013-04-01
25 Indians 2 2013-04-01...and how many maximum points can be awarded for...Section 1000.70 Indians OFFICE OF THE ASSISTANT...AMENDMENTS TO THE INDIAN SELF-DETERMINATION...and how many maximum points can be awarded...
Code of Federal Regulations, 2014 CFR
2014-04-01
25 Indians 2 2014-04-01...and how many maximum points can be awarded for...Section 1000.70 Indians OFFICE OF THE ASSISTANT...AMENDMENTS TO THE INDIAN SELF-DETERMINATION...and how many maximum points can be awarded...
Badkul, R; McClinton, C; Kumar, P; Mitchell, M
2014-06-01
Purpose: Brachytherapy plays a crucial role in management of cervix cancer. MRI compatible applicators have made it possible to accurately delineate gross-target-volume(GTV) and organs-at-risk(OAR) volumes, as well as directly plan, optimize and adapt dose-distribution for each insertion. We sought to compare DVH of tumor-coverage and OARs to traditional Point-A, ICRU-38 bladder and rectum point-doses for four different planning-techniques. Methods: MRI based 3D-planning was performed on Nucletron-Oncentra-TPS for 3 selected patients with varying tumor-sizes and anatomy. GTV,high-risk-clinical-target-volume(HR-CTV), intermediate-risk-clinical-target-volume(IR-CTV) and OARs: rectum, bladder, sigmoid-colon, vaginal-mucosa were delineated. Three conventionally used techniques: mg-Radium-equivalent(RaEq),equal-dwell-weights(EDW), Medical-College-of-Wisconsin proposed points-optimization (MCWO) and a manual-graphical-optimization(MGO) volume-coverage based technique were applied for each patient. Prescription was 6Gy delivered to point-A in Conventional techniques (RaEq, EDW, MCWO). For MGO, goal was to achieve 90%-coverage (D90) to HR-CTV with prescription-dose. ICRU point doses for rectum and bladder, point-A doses, DVH-doses for HR-CTV-D90,0.1cc-volume(D0.1),1ccvolume( D1),2cc-volume(D2) were collected for all plans and analyzed . Results: Mean D90 for HR-CTV normalized to MGO were 0.89,0.84,0.9,1.0 for EDW, RaEq, MCWO, MGO respectively. Mean point-A doses were 21.7% higher for MGO. Conventional techniques with Point-A prescriptions under covered HR-CTV-D90 by average of 12% as compared to MGO. Rectum, bladder and sigmoid doses were highest in MGO-plans for ICRU points as well as D0.1,D1 and D2 doses. Among conventional-techniques, rectum and bladder ICRU and DVH doses(0.1,1,2cc) were not significantly different (within 7%).Rectum D0.1 provided good estimation of ICRU-rectum-point doses (within 3.9%),rectum D0.1 were higher from 0.8 to 3.9% while bladder D0.1 overestimated the bladder ICRU point dose up to 43% for conventional-techniques.Bladder-D2 provided a good estimation of ICRU bladder point-doses(within 3.6%) for conventional-techniques. This correlation is not observed for MGO plans perhaps due to steering of isodose line, leading to unpredictable dwell-weighting. Conclusion: MRI based HDR-planning provides accurate delineation of tumor volumes and normal structures, and optimized tumor-coverage can be achieved with acceptable normal-tissue doses. This study showed that for conventional techniques D0.1 rectum dose and D2 bladder dose are good representation of ICRU-reference-point doses.
NASA Astrophysics Data System (ADS)
Gudowska, I.; Brahme, A.; Andreo, P.; Gudowski, W.; Kierkegaard, J.
1999-09-01
The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)±0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15±0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.
NASA Astrophysics Data System (ADS)
Lemofouet, Sylvain; Rufer, Alfred
This paper presents a hybrid energy storage system mainly based on Compressed Air, where the storage and withdrawal of energy are done within maximum efficiency conditions. As these maximum efficiency conditions impose the level of converted power, an intermittent time-modulated operation mode is applied to the thermodynamic converter to obtain a variable converted power. A smoothly variable output power is achieved with the help of a supercapacitive auxiliary storage device used as a filter. The paper describes the concept of the system, the power-electronic interfaces and especially the Maximum Efficiency Point Tracking (MEPT) algorithm and the strategy used to vary the output power. In addition, the paper introduces more efficient hybrid storage systems where the volumetric air machine is replaced by an oil-hydraulics and pneumatics converter, used under isothermal conditions. Practical results are also presented, recorded from a low-power air motor coupled to a small DC generator, as well as from a first prototype of the hydro-pneumatic system. Some economical considerations are also made, through a comparative cost evaluation of the presented hydro-pneumatic systems and a lead acid batteries system, in the context of a stand alone photovoltaic home application. This evaluation confirms the cost effectiveness of the presented hybrid storage systems.
Siy, P.F.; Carter, J.T.; D'Addario, L.R.; Loeber, D.A.
1991-08-01
The MITRE Corporation has performed in-flux radiation testing of the Texas Instruments TMS320C30 32-bit floating point digital signal processor in both total dose and dose rate radiation environments. This test effort has provided data relating to the applicability of the TMS320C30 in systems with total dose and/or dose rate survivability requirements. In order to accomplish these tests, the MITRE Corporation developed custom hardware and software for in-flux radiation testing. This paper summarizes the effort by providing an overview of the TMS320C30, MITRE's test methodology, test facilities, statistical analysis, and full coverage of the test results. (Author)
Nakagawa, Akiko; Ohno, Tatsuya; Noda, Shin-ei; Kubo, Nobuteru; Kuwako, Keiko; Saitoh, Jun-ichi; Nakano, Takashi
2014-01-01
We investigated the rectal dose-sparing effect and tumor control of a point A dose-reduced plan in patients with Stage I–II cervical cancer (?4 cm) arising from a small-sized uterus. Between October 2008 and August 2011, 19 patients with Stage I–II cervical cancer (?4 cm) were treated with external beam radiotherapy (EBRT) for the pelvis and CT-guided brachytherapy. Seven patients were treated with brachytherapy with standard loading of source-dwell positions and a fraction dose of 6 Gy at point A (conventional brachy-plan). The other 12 patients with a small uterus close to the rectum or small intestine were treated with brachytherapy with a point A dose-reduction to match D2cc of the rectum and <6 Gy as the dose constraint (‘point A dose-reduced plan’) instead of the 6-Gy plan at point A (‘tentative 6-Gy plan’). The total doses from EBRT and brachytherapy were added up and normalized to a biological equivalent dose of 2 Gy per fraction (EQD2). The median doses to the high-risk clinical target volume (HR-CTV) D90 in the conventional brachy-plan, tentative 6-Gy plan and point A dose-reduced plan were 62 GyEQD2, 80 GyEQD2 and 64 GyEQD2, respectively. The median doses of rectal D2cc in the corresponding three plans were 42 GyEQD2, 62 GyEQD2 and 51 GyEQD2, respectively. With a median follow-up period of 35 months, three patients developed Grade-1 late rectal complications and no patients developed local recurrence. Our preliminary results suggested that CT-guided brachytherapy using an individualized point A dose-reduced plan might be useful for reducing late rectal complications while maintaining primary tumor control. PMID:24566721
A. Ikeda; K. Nishimura; H. Koyama; M. Tsukino; M. Mishima; T. Izumi
1996-01-01
BACKGROUND: Although the bronchodilating effect of inhaled anticholinergics has been established in patients with chronic obstructive pulmonary disease (COPD), their effects on exercise capacity are still controversial. Previous studies have suggested that the standard dosage hardly affects exercise tolerance, whereas higher doses might elicit an improvement. The aim of the present study was to determine the dose of ipratropium bromide
Roelands, B; Watson, P; Cordery, P; Decoster, S; Debaste, E; Maughan, R; Meeusen, R
2012-10-01
A maximal dose of bupropion has enabled subjects to maintain a higher power output than reported during the placebo session in the heat. Because this drug is taken in different doses it is important to know if there is a dose-response relationship with regard to exercise at high ambient temperature. Ten well-trained male cyclists ingested placebo (pla; 200?mg) or bupropion (50%, 75%, 100% of maximal dose: bup50: 150?mg; bup75: 225?mg; bup100: 300?mg) the evening before and morning of the experimental trial. Trials were conducted in 30?°C (humidity 48%). Subjects cycled for 60?min at 55% W (max) , immediately followed by a time trial to measure performance. Bup100 improved performance (pla: 33'42"?±?2'06"; bup100: 32'06"?±?1'54"; P?=?0.035). Bupropion increased core temperature at the end of exercise, while heart rate was higher only in the bup100 trial (P?doses of bupropion were not ergogenic, indicating there was no dose-response effect. Interestingly, despite an increase in core temperature and improved performance in the maximal dose, there was no change in RPE and thermal sensation, suggesting an altered motivation or drive to continue exercise. PMID:22845895
Murphy, B.L.
1981-09-01
The National Council on Radiation Protection and Measurements (NCRP) has issued a statement advising that it is considering lowering the maximum permissible dose for neutrons. This action would present substantive problems to radiation protection programs at DOE facilities where a potential for neutron exposure exists. In addition to altering administrative controls, a lowering of the maximum permissible dose for neutrons will require advances in personnel neutron dosimetry systems, and neutron detection and measurement instrumentation. Improvement in the characterization of neutron fields and spectra at work locations will also be needed. DOE has initiated research and development programs in these areas. However, problems related to the control of personnel neutron exposure have yet to be resolved and investigators are encouraged to continue collaboration with both United States and international authorities.
Ristic, S; Collober-Maugeais, C; Pecher, E; Cressier, F
2006-01-01
Aims To compare the effects of nateglinide plus metformin with gliclazide plus metformin on glycaemic control in patients with Type 2 diabetes. Methods Double-blind, double-dummy, parallel group, randomized, multicentre study over 24 weeks. Patients with inadequate glucose control on maximal doses of metformin were randomized to additionally receive nateglinide (n = 133) or gliclazide (n = 129). Changes from baseline in HbA1c, fasting plasma glucose (FPG) and mealtime glucose and insulin excursions were examined. Results HbA1c was significantly (P < 0.001) decreased from baseline in both treatment groups (mean changes: nateglinide ?0.41%, gliclazide ?0.57%), but with no significant difference between treatments. Proportions of patients achieving a reduction of HbA1c ? 0.5% or an end point HbA1c < 7% were also similar (nateglinide 58.1%, gliclazide 60.2%). Changes from baseline in FPG were similarly significant in both treatment groups (nateglinide ?0.63, gliclazide ?0.82 mmol/l). Reduction from baseline in maximum postprandial glucose excursion were significant in the nateglinide group only (nateglinide ?0.71, gliclazide ?0.10 mmol/l; P = 0.037 for difference). Postprandial insulin levels were significantly higher with nateglinide compared with gliclazide. The overall rate of hypoglycaemia events was similar in the nateglinide group compared with the gliclazide group. Conclusions No significant difference was seen between nateglinide plus metformin and gliclazide plus metformin in terms of HbA1c. However, the nateglinide combination demonstrated better postprandial glucose control. PMID:16842480
A Signal-to-Noise Crossover Dose as the Point of Departure for Health Risk Assessment
Portier, Christopher J.; Krewski, Daniel
2011-01-01
Background: The U.S. National Toxicology Program (NTP) cancer bioassay database provides an opportunity to compare both existing and new approaches to determining points of departure (PoDs) for establishing reference doses (RfDs). Objectives: The aims of this study were a) to investigate the risk associated with the traditional PoD used in human health risk assessment [the no observed adverse effect level (NOAEL)]; b) to present a new approach based on the signal-to-noise crossover dose (SNCD); and c) to compare the SNCD and SNCD-based RfD with PoDs and RfDs based on the NOAEL and benchmark dose (BMD) approaches. Methods: The complete NTP database was used as the basis for these analyses, which were performed using the Hill model. We determined NOAELs and estimated corresponding extra risks. Lower 95% confidence bounds on the BMD (BMDLs) corresponding to extra risks of 1%, 5%, and 10% (BMDL01, BMDL05, and BMDL10, respectively) were also estimated. We introduce the SNCD as a new PoD, defined as the dose where the additional risk is equal to the “background noise” (the difference between the upper and lower bounds of the two-sided 90% confidence interval on absolute risk) or a specified fraction thereof. Results: The median risk at the NOAEL was approximately 10%, and the default uncertainty factor (UF = 100) was considered most applicable to the BMDL10. Therefore, we chose a target risk of 1/1,000 (0.1/100) to derive an SNCD-based RfD by linear extrapolation. At the median, this approach provided the same RfD as the BMDL10 divided by the default UF. Conclusions: Under a standard BMD approach, the BMDL10 is considered to be the most appropriate PoD. The SNCD approach, which is based on the lowest dose at which the signal can be reliably detected, warrants further development as a PoD for human health risk assessment. PMID:21813365
NASA Astrophysics Data System (ADS)
Favarel, C.; Champier, D.; Bédécarrats, J. P.; Kousksou, T.; Strub, F.
2012-06-01
According to the International Energy Agency, 1.4 billion people are without electricity in the poorest countries and 2.5 billion people rely on biomass to meet their energy needs for cooking in developing countries. The use of cooking stoves equipped with small thermoelectric generator to provide electricity for basic needs (LED, cell phone and radio charging device) is probably a solution for houses far from the power grid. The cost of connecting every house with a landline is a lot higher than dropping thermoelectric generator in each house. Thermoelectric generators have very low efficiency but for isolated houses, they might become really competitive. Our laboratory works in collaboration with plane`te-bois (a non governmental organization) which has developed energy-efficient multifunction (cooking and hot water) stoves based on traditional stoves designs. A prototype of a thermoelectric generator (Bismuth Telluride) has been designed to convert a small part of the energy heating the sanitary water into electricity. This generator can produce up to 10 watts on an adapted load. Storing this energy in a battery is necessary as the cooking stove only works a few hours each day. As the working point of the stove varies a lot during the use it is also necessary to regulate the electrical power. An electric DC DC converter has been developed with a maximum power point tracker (MPPT) in order to have a good efficiency of the electronic part of the thermoelectric generator. The theoretical efficiency of the MMPT converter is discussed. First results obtained with a hot gas generator simulating the exhaust of the combustion chamber of a cooking stove are presented in the paper.
NASA Astrophysics Data System (ADS)
Huang, Yu
Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.
Locally Weighted Learning Methods for Predicting Dose-Dependent Toxicity with Application the type and severity of any potential toxic effect associated with a new lead compound. The collected data. The underlying assumption is that the severity of the toxic effects in animals is correlated with that in humans
Spiegler, P.
1981-09-01
As part of the assessment of the potential radiological consequences of the proposed Waste Isolation Pilot Plant (WIPP), this report evaluates the post-closure radiation dose commitments associated with a possible breach event which involves dissolution of the repository by groundwaters and subsequent transport of the nuclear waste through an aquifer to a well assumed to exist at a point 3 miles downstream from the repository. The concentrations of uranium and plutonium isotopes at the well are based on the nuclear waste inventory presently proposed for WIPP and basic assumptions concerning the transport of waste as well as treatment to reduce the salinity of the water. The concentrations of U-233, Pu-239, and Pu-240, all radionuclides originally emplaced as waste in the repository, would exceed current EPA drinking water limits. The concentrations of U-234, U-235, and U-236, all decay products of plutonium isotopes originally emplaced as waste, would be well below current EPA drinking water limits. The 50-year dose commitments from one year of drinking treated water contaminated with U-233 or Pu-239 and Pu-240 were found to be comparable to a one-year dose from natural background. The 50-year dose commitments from one year of drinking milk would be no more than about 1/5 the dose obtained from ingestion of treated water. These doses are considered upper bounds because of several very conservative assumptions which are discussed in the report.
NASA Astrophysics Data System (ADS)
Mroczka, Janusz; Ostrowski, Mariusz
2015-06-01
Disadvantages of photovoltaic panels are their low efficiency and non-linear current-voltage characteristic. Therefore it is necessary to apply the maximum power tracking systems which are dependent on the sun exposure and temperature. Trackers, that are used in photovoltaic systems, differ from each other in the speed and accuracy of tracking. Typically, in order to determine the maximum power point, trackers use measure of current and voltage. The perturb and observe algorithm or the incremental conductance method are frequent in the literature. The drawback of these solutions is the need to search the entire current-voltage curve, resulting in a significant loss of power in the fast-changing lighting conditions. Modern solutions use an additional measurement of temperature, short-circuit current or open circuit voltage in order to determine the starting point of one of the above methods, what decreases the tracking time. For this paper, a sequence of simulations and tests in real shading and temperature conditions for the investigated method, which uses additional light sensor to increase the speed of the perturb and observe algorithm in fast-changing illumination conditions was performed. Due to the non-linearity of the light sensor and the photovoltaic panel and the influence of temperature on the used sensor and panel characteristics, we cannot directly determine the relationship between them. For this reason, the tested method is divided into two steps. In the first step algorithm uses the correlation curve of the light sensor and current at the maximum power point and determines the current starting point with respect of which the perturb and observe algorithm is run. When the maximum power point is reached, in a second step, the difference between the starting point and the actual maximum power point is calculated and on this basis the coefficients of correlation curve are modified.
Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura
2015-04-01
Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses. PMID:25790059
Takeda, Atsuya; Oku, Yohei; Sanuki, Naoko; Eriguchi, Takahisa; Aoki, Yousuke; Enomoto, Tatsuji; Kaneko, Takeshi; Nishimura, Shuichi; Kunieda, Etsuo
2014-01-01
We evaluated toxicity and outcomes for patients with peripheral lung tumors treated with stereotactic body radiation therapy (SBRT) in a dose-escalation and dose-convergence study. A total of 15 patients were enrolled. SBRT was performed with 60 Gy in 5 fractions (fr.) prescribed to the 60% isodose line of maximum dose, which was 100 Gy in 5 fr., covering the planning target volume (PTV) surface (60 Gy/5 fr. ? (60%-isodose)) using dynamic conformal multiple arc therapy (DCMAT). The primary endpoint was radiation pneumonitis (RP) ? Grade 2 within 6 months. Toxicities were graded according to the Common Terminology Criteria for Adverse Events, version 4.0. Using dose–volumetric analysis, the trial regimen of 60 Gy/5 fr. ? (60%-isodose) was compared with our institutional conventional regimen of 50 Gy/5 fr. ? (80%-isodose). The enrolled consecutive patients had either a solitary peripheral tumor or two ipsilateral tumors. The median follow-up duration was 22.0 (12.0–27.0) months. After 6 months post-SBRT, the respective number of RP Grade 0, 1 and 2 cases was 5, 9 and 1. In the Grade 2 RP patient, the image showed an organizing pneumonia pattern at 6.0 months post-SBRT. No other toxicity was found. At last follow-up, there was no evidence of recurrence of the treated tumors. The target volumes of 60 Gy/ 5 fr. ? (60%-isodose) were irradiated with a significantly higher dose than those of 50 Gy/5 fr. ? (80%-isodose), while the former dosimetric parameters of normal lung were almost equivalent to the latter. SBRT with 60 Gy/5 fr. ? (60%-isodose) using DCMAT allowed the delivery of very high and convergent doses to peripheral lung tumors with feasibility in the acute and subacute phases. Further follow-up is required to assess for late toxicity. PMID:24833770
Bhandare, N. [University of Florida (United States)
2014-06-01
Purpose: To estimate and compare the doses received by the obturator, external and internal iliac lymph nodes and point Methods: CT-MR fused image sets of 15 patients obtained for each of 5 fractions of HDR brachytherapy using tandem and ring applicator, were used to generate treatment plans optimized to deliver a prescription dose to HRCTV-D90 and to minimize the doses to organs at risk (OARs). For each set of image, target volume (GTV, HRCTV) OARs (Bladder, Rectum, Sigmoid), and both left and right pelvic lymph nodes (obturator, external and internal iliac lymph nodes) were delineated. Dose-volume histograms (DVH) were generated for pelvic nodal groups (left and right obturator group, internal and external iliac chains) Per fraction DVH parameters used for dose comparison included dose to 100% volume (D100), and dose received by 2cc (D2cc), 1cc (D1cc) and 0.1 cc (D0.1cc) of nodal volume. Dose to point B was compared with each DVH parameter using 2 sided t-test. Pearson correlation were determined to examine relationship of point B dose with nodal DVH parameters. Results: FIGO clinical stage varied from 1B1 to IIIB. The median pretreatment tumor diameter measured on MRI was 4.5 cm (2.7– 6.4cm).The median dose to bilateral point B was 1.20 Gy ± 0.12 or 20% of the prescription dose. The correlation coefficients were all <0.60 for all nodal DVH parameters indicating low degree of correlation. Only 2 cc of obturator nodes was not significantly different from point B dose on t-test. Conclusion: Dose to point B does not adequately represent the dose to any specific pelvic nodal group. When using image guided 3D dose-volume optimized treatment nodal groups should be individually identified and delineated to obtain the doses received by pelvic nodes.
Amini, Richard; Panchal, Ashish R.; Bahner, David; Adhikari, Srikar
2015-01-01
This report describes a patient with sub-massive pulmonary embolism (PE) who was successfully treated with half-dose thrombolytics guided by the use of point-of-care (POC) ultrasound. In this case, POC ultrasound was the only possible imaging since computed tomography was contraindicated. POC ultrasound demonstrated a deep vein thrombosis and evidence of cardiac strain. In situations or locations where definitive imaging is unobtainable, POC ultrasound can help diagnose submassive PE and direct the use of half-dose tissue plasminogen activator. PMID:25671038
Detector density and small field dosimetry: Integral versus point dose measurement schemes
Underwood, T. S. A. Hill, M. A.; Fenwick, J. D.
2013-08-01
Purpose: TheAlfonso et al. [Med. Phys.35, 5179–5186 (2008)] formalism for small field dosimetry proposes a set of correction factors (k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}) which account for differences between the detector response in nonstandard (clinical) and machine-specific-reference fields. In this study, the Monte Carlo method was used to investigate the viability of such small field correction factors for four different detectors irradiated under a variety of conditions. Because k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values for single detector position measurements are influenced by several factors, a new theoretical formalism for integrated-detector-position [dose area product (DAP)] measurements is also presented and was tested using Monte Carlo simulations. Methods: A BEAMnrc linac model was built and validated for a Varian Clinac iX accelerator. Using the egs++ geometry package, detailed virtual models were built for four different detectors: a PTW 60012 unshielded diode, a PTW 60003 Diamond detector, a PTW 31006 PinPoint (ionization chamber), and a PTW 31018 MicroLion (liquid-filled ionization chamber). The egs-chamber code was used to investigate the variation ofk{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} with detector type, detector construction, field size, off-axis position, and the azimuthal angle between the detector and beam axis. Simulations were also used to consider the DAP obtained by each detector: virtual detectors and water voxels were scanned through high resolution grids of positions extending far beyond the boundaries of the fields under consideration. Results: For each detector, the correction factor (k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}) was shown to depend strongly on detector off-axis position and detector azimuthal angle in addition to field size. In line with previous studies, substantial interdetector variation was also observed. However, it was demonstrated that by considering DAPs rather than single-detector-position dose measurements the high level of interdetector variation could be eliminated. Under small field conditions, mass density was found to be the principal determinant of water equivalence. Additionally, the mass densities of components outside the sensitive volumes were found to influence the detector response. Conclusions: k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values for existing detector designs depend on a host of variables and their calculation typically relies on the use of time-intensive Monte Carlo methods. Future moves toward density-compensated detector designs or DAP based protocols may simplify the methodology of small field dosimetry.
Calculation and measurement of the dose to points outside the primary beam for CO-60 gamma radiation
Van Der Giessen, P.H.; Hurkmans, C.W.
1993-10-20
In radiation therapy one sometimes needs to estimate the dose to points in the body outside the primary beam. Therefore a generalized model is developed to calculate this dose with reasonable accuracy. Measurements were made for a cobalt beam to determine separately the contribution of leakage radiation, radiation scattered from the collimator, scattered from the floor and radiation scattered inside the patient. The radiation scattered in the patient shows a strong dependence on field size and distance to the beam axis and is predominant only at short distances. The radiation scattered from the collimator also depends strongly on distance and field size and is more important than the leakage radiation. With appropriate factors, correcting for patient dimensions and field shape, the total dose outside the primary beam can be calculated with an accuracy better than {+-}30%. The results are in accordance with published data. Using the measured data it is possible to calculate the dose at any point of the body outside the primary beam for Co-60 gamma radiation. The accuracy is considered to be adequate for risk assessment. 13 refs., 7 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Maleki, Mohammad Reza; Amiri, Amirhossein; Mousavi, Seyed Meysam
2015-07-01
In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, first we use an artificial neural network (ANN)-based method in the literature for detecting the variance shifts as well as diagnosing the sources of variation in the multivariate-attribute processes. Then, based on the quality characteristics responsible for the out-of-control state, we propose a modular model based on the ANN for estimating the time of step change in the multivariate-attribute process variability. We also compare the performance of the ANN-based estimator with the estimator based on maximum likelihood method (MLE). A numerical example based on simulation study is used to evaluate the performance of the estimators in terms of the accuracy and precision criteria. The results of the simulation study show that the proposed ANN-based estimator outperforms the MLE estimator under different out-of-control scenarios where different shift magnitudes in the covariance matrix of multivariate-attribute quality characteristics are manifested.
McBride, Carl; Noya, Eva G; Vega, Carlos; 10.1039/C2CP42393F
2012-01-01
The melting point of ice Ih, as well as the temperature of maximum density (TMD) in the liquid phase, has been computed using the path integral Monte Carlo method. Two new models are introduced; TIP4PQ_D2O and TIP4PQ_T2O which are specifically designed to study D2O and T2O respectively. We have also used these models to study the "competing quantum effects" proposal of Habershon, Markland and Manolopoulos; the TIP4PQ/2005, TIP4PQ/2005 (D2O) and TIP4PQ/2005 (T2O) models are able to study the isotopic substitution of hydrogen for deuterium or tritium whilst constraining the geometry, while the TIP4PQ_D2O and TIP4PQ_T2O models, where the O-H bond lengths are progressively shortened, permit the study of the influence of geometry (and thus dipole moment) on the isotopic effects. For TIP4PQ_D2O - TIP4PQ/2005 we found a melting point shift of 4.9 K (experimentally the value is 3.68K) and a TMD shift of 6K (experimentally 7.2K). For TIP4PQ_T2O - TIP4PQ/2005 we found a melting point shift of 5.2 K (experimentally the ...
Dewji, Shaheen Azim; Bellamy, Michael; Hertel, Nolan; Leggett, Richard; Sherbini, Sami; Saba, Mohammad; Eckerman, Keith
2015-09-01
The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 (I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations of a human source and target. The latter simulations considered the time-dependent distribution of I in the patient and attenuation of emitted photons by the patient's tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of the Phantom with Movable Arms and Legs (PIMAL), previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 cm to 300 cm between the phantoms. Dose rates estimated from these simulations are compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration. PMID:26222218
Cheng, C.-W.; Sang, Hyun Cho; Taylor, Michael; Das, Indra J.
2007-08-15
In this study, zero-field percent depth dose (PDD) and tissue maximum ratio (TMR) for 6 MV x rays have been determined by extrapolation from dosimetric measurements over the field size range 1x1-10x10 cm{sup 2}. The key to small field dosimetry is the selection of a proper dosimeter for the measurements, as well as the alignment of the detector with the central axis (CAX) of beam. The measured PDD results are compared with those obtained from Monte Carlo (MC) simulation to examine the consistency and integrity of the measured data from which the zero-field PDD is extrapolated. Of the six most commonly used dosimeters in the clinic, the stereotactic diode field detector (SFD), the PTW Pinpoint, and the Exradin A14 are the most consistent and produce results within 2% of each other over the entire field size range 1x1-40x40 cm{sup 2}. Although the diamond detector has the smallest sensitive volume, it is the least stable and tends to disagree with all other dosimeters by more than 10%. The zero-field PDD data extrapolated from larger field measurements obtained with the SFD are in good agreement with the MC results. The extrapolated and MC data agree within 2.5% over the clinical depth range (d{sub max}-30 cm), when the MC data for the zero field are derived from a 1x1 cm{sup 2} field simulation using a miniphantom (1x1x48 cm{sup 3}). The agreement between the measured PDD and the MC data based on a full phantom (48x48x48 cm{sup 3}) simulation is fairly good within 1% at shallow depths to approximately 5% at 30 cm. Our results seem to indicate that zero-field TMR can be accurately calculated from PDD measurements with a proper choice of detector and a careful alignment of detector axis with the CAX.
Dewji, Shaheen A.; Bellamy, Michael B.; Hertel, Nolan E.; Leggett, Richard Wayne; Sherbini, Sami; Saba, Mohammad S.; Eckerman, Keith F.
2015-09-01
The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 (131I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations that considered the time-dependent distribution of 131I in the patient and attenuation of emitted photons by the patient’s tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of the Phantommore »with Movable Arms and Legs, previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 to 300 cm between the phantoms and compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from 131I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an 131I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration.« less
Kareva, Irina; Waxman, David J; Lakka Klement, Giannoula
2015-03-28
The administration of chemotherapy at reduced doses given at regular, frequent time intervals, termed 'metronomic' chemotherapy, presents an alternative to standard maximal tolerated dose (MTD) chemotherapy. The primary target of metronomic chemotherapy was originally identified as endothelial cells supporting the tumor vasculature, and not the tumor cells themselves, consistent with the emerging concept of cancer as a systemic disease involving both tumor cells and their microenvironment. While anti-angiogenesis is an important mechanism of action of metronomic chemotherapy, other mechanisms, including activation of anti-tumor immunity and a decrease in acquired therapeutic resistance, have also been identified. Here we present evidence supporting a mechanistic explanation for the improved activity of cancer chemotherapy when administered on a metronomic, rather than an MTD schedule and discuss the implications of these findings for further translation into the clinic. PMID:25541061
Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma
Sha, Rajib Lochan; Reddy, Palreddy Yadagiri; Rao, Ramakrishna; Muralidhar, Kanaparthy R.; Kudchadker, Rajat J.
2011-01-01
High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.
Maximum Acceleration Recording Circuit
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.
Papadimitroulas, Panagiotis; Loudos, George; Nikiforidis, George C.; Kagadis, George C. [Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 265 04 (Greece) and Department of Medical Instruments Technology, Technological Educational institute of Athens, Ag. Spyridonos Street, Egaleo GR 122 10, Athens (Greece); Department of Medical Instruments Technology, Technological Educational institute of Athens, Ag. Spyridonos Street, Egaleo GR 122 10, Athens (Greece); Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 265 04 (Greece)
2012-08-15
Purpose: GATE is a Monte Carlo simulation toolkit based on the Geant4 package, widely used for many medical physics applications, including SPECT and PET image simulation and more recently CT image simulation and patient dosimetry. The purpose of the current study was to calculate dose point kernels (DPKs) using GATE, compare them against reference data, and finally produce a complete dataset of the total DPKs for the most commonly used radionuclides in nuclear medicine. Methods: Patient-specific absorbed dose calculations can be carried out using Monte Carlo simulations. The latest version of GATE extends its applications to Radiotherapy and Dosimetry. Comparison of the proposed method for the generation of DPKs was performed for (a) monoenergetic electron sources, with energies ranging from 10 keV to 10 MeV, (b) beta emitting isotopes, e.g., {sup 177}Lu, {sup 90}Y, and {sup 32}P, and (c) gamma emitting isotopes, e.g., {sup 111}In, {sup 131}I, {sup 125}I, and {sup 99m}Tc. Point isotropic sources were simulated at the center of a sphere phantom, and the absorbed dose was stored in concentric spherical shells around the source. Evaluation was performed with already published studies for different Monte Carlo codes namely MCNP, EGS, FLUKA, ETRAN, GEPTS, and PENELOPE. A complete dataset of total DPKs was generated for water (equivalent to soft tissue), bone, and lung. This dataset takes into account all the major components of radiation interactions for the selected isotopes, including the absorbed dose from emitted electrons, photons, and all secondary particles generated from the electromagnetic interactions. Results: GATE comparison provided reliable results in all cases (monoenergetic electrons, beta emitting isotopes, and photon emitting isotopes). The observed differences between GATE and other codes are less than 10% and comparable to the discrepancies observed among other packages. The produced DPKs are in very good agreement with the already published data, which allowed us to produce a unique DPKs dataset using GATE. The dataset contains the total DPKs for {sup 67}Ga, {sup 68}Ga, {sup 90}Y, {sup 99m}Tc, {sup 111}In, {sup 123}I, {sup 124}I, {sup 125}I, {sup 131}I, {sup 153}Sm, {sup 177}Lu {sup 186}Re, and {sup 188}Re generated in water, bone, and lung. Conclusions: In this study, the authors have checked GATE's reliability for absorbed dose calculation when transporting different kind of particles, which indicates its robustness for dosimetry applications. A novel dataset of DPKs is provided, which can be applied in patient-specific dosimetry using analytical point kernel convolution algorithms.
NSDL National Science Digital Library
Siegrist, Kyle
This material introduces the basic theory of maximum likelihood estimation by discussing the likelihood function, the log likelihood function, and maximizing these functions using calculus. Several exercises ask students to derive certain estimators, while others have students compare the behavior of those estimators with other possibilities through the use of various JAVA applets. The applets use the same control features: the sliders set the parameter values, the Â?Stop #Â? drop down menu sets the number of samples taken, the Â?Update #Â? drop down menu sets how often the graph and tables update during the experiment, the single arrow takes one sample, the double arrow runs the full experiment, the square stops the experiment, and the back arrow resets the applet. This page is one lesson from the Virtual Laboratories in Statistics.
Webster, A. Francina; Chepelev, Nikolai; Gagné, Rémi; Kuo, Byron; Recio, Leslie; Williams, Andrew; Yauk, Carole L.
2015-01-01
Many regulatory agencies are exploring ways to integrate toxicogenomic data into their chemical risk assessments. The major challenge lies in determining how to distill the complex data produced by high-content, multi-dose gene expression studies into quantitative information. It has been proposed that benchmark dose (BMD) values derived from toxicogenomics data be used as point of departure (PoD) values in chemical risk assessments. However, there is limited information regarding which genomics platforms are most suitable and how to select appropriate PoD values. In this study, we compared BMD values modeled from RNA sequencing-, microarray-, and qPCR-derived gene expression data from a single study, and explored multiple approaches for selecting a single PoD from these data. The strategies evaluated include several that do not require prior mechanistic knowledge of the compound for selection of the PoD, thus providing approaches for assessing data-poor chemicals. We used RNA extracted from the livers of female mice exposed to non-carcinogenic (0, 2 mg/kg/day, mkd) and carcinogenic (4, 8 mkd) doses of furan for 21 days. We show that transcriptional BMD values were consistent across technologies and highly predictive of the two-year cancer bioassay-based PoD. We also demonstrate that filtering data based on statistically significant changes in gene expression prior to BMD modeling creates more conservative BMD values. Taken together, this case study on mice exposed to furan demonstrates that high-content toxicogenomics studies produce robust data for BMD modelling that are minimally affected by inter-technology variability and highly predictive of cancer-based PoD doses. PMID:26313361
Kim, Hayeon; Beriwal, Sushil; Houser, Chris; Huq, M. Saiful
2011-07-01
The purpose of this study was to analyze the dosimetric outcome of 3D image-guided high-dose-rate (HDR) brachytherapy planning for cervical cancer treatment and compare dose coverage of high-risk clinical target volume (HRCTV) to traditional Point A dose. Thirty-two patients with stage IA2-IIIB cervical cancer were treated using computed tomography/magnetic resonance imaging-based image-guided HDR brachytherapy (IGBT). Brachytherapy dose prescription was 5.0-6.0 Gy per fraction for a total 5 fractions. The HRCTV and organs at risk (OARs) were delineated following the GYN GEC/ESTRO guidelines. Total doses for HRCTV, OARs, Point A, and Point T from external beam radiotherapy and brachytherapy were summated and normalized to a biologically equivalent dose of 2 Gy per fraction (EQD2). The total planned D90 for HRCTV was 80-85 Gy, whereas the dose to 2 mL of bladder, rectum, and sigmoid was limited to 85 Gy, 75 Gy, and 75 Gy, respectively. The mean D90 and its standard deviation for HRCTV was 83.2 {+-} 4.3 Gy. This is significantly higher (p < 0.0001) than the mean value of the dose to Point A (78.6 {+-} 4.4 Gy). The dose levels of the OARs were within acceptable limits for most patients. The mean dose to 2 mL of bladder was 78.0 {+-} 6.2 Gy, whereas the mean dose to rectum and sigmoid were 57.2 {+-} 4.4 Gy and 66.9 {+-} 6.1 Gy, respectively. Image-based 3D brachytherapy provides adequate dose coverage to HRCTV, with acceptable dose to OARs in most patients. Dose to Point A was found to be significantly lower than the D90 for HRCTV calculated using the image-based technique. Paradigm shift from 2D point dose dosimetry to IGBT in HDR cervical cancer treatment needs advanced concept of evaluation in dosimetry with clinical outcome data about whether this approach improves local control and/or decreases toxicities.
Kim, Hayeon; Beriwal, Sushil; Houser, Chris; Huq, M Saiful
2011-01-01
The purpose of this study was to analyze the dosimetric outcome of 3D image-guided high-dose-rate (HDR) brachytherapy planning for cervical cancer treatment and compare dose coverage of high-risk clinical target volume (HRCTV) to traditional Point A dose. Thirty-two patients with stage IA2-IIIB cervical cancer were treated using computed tomography/magnetic resonance imaging-based image-guided HDR brachytherapy (IGBT). Brachytherapy dose prescription was 5.0-6.0 Gy per fraction for a total 5 fractions. The HRCTV and organs at risk (OARs) were delineated following the GYN GEC/ESTRO guidelines. Total doses for HRCTV, OARs, Point A, and Point T from external beam radiotherapy and brachytherapy were summated and normalized to a biologically equivalent dose of 2 Gy per fraction (EQD2). The total planned D90 for HRCTV was 80-85 Gy, whereas the dose to 2 mL of bladder, rectum, and sigmoid was limited to 85 Gy, 75 Gy, and 75 Gy, respectively. The mean D90 and its standard deviation for HRCTV was 83.2 ± 4.3 Gy. This is significantly higher (p < 0.0001) than the mean value of the dose to Point A (78.6 ± 4.4 Gy). The dose levels of the OARs were within acceptable limits for most patients. The mean dose to 2 mL of bladder was 78.0 ± 6.2 Gy, whereas the mean dose to rectum and sigmoid were 57.2 ± 4.4 Gy and 66.9 ± 6.1 Gy, respectively. Image-based 3D brachytherapy provides adequate dose coverage to HRCTV, with acceptable dose to OARs in most patients. Dose to Point A was found to be significantly lower than the D90 for HRCTV calculated using the image-based technique. Paradigm shift from 2D point dose dosimetry to IGBT in HDR cervical cancer treatment needs advanced concept of evaluation in dosimetry with clinical outcome data about whether this approach improves local control and/or decreases toxicities. PMID:20488690
Uusijärvi, Helena; Chouin, Nicolas; Bernhardt, Peter; Ferrer, Ludovic; Bardiès, Manuel; Forssell-Aronsson, Eva
2009-08-01
Point kernels describe the energy deposited at a certain distance from an isotropic point source and are useful for nuclear medicine dosimetry. They can be used for absorbed-dose calculations for sources of various shapes and are also a useful tool when comparing different Monte Carlo (MC) codes. The aim of this study was to compare point kernels calculated by using the mixed MC code, PENELOPE (v. 2006), with point kernels calculated by using the condensed-history MC codes, ETRAN, GEANT4 (v. 8.2), and MCNPX (v. 2.5.0). Point kernels for electrons with initial energies of 10, 100, 500, and 1 MeV were simulated with PENELOPE. Spherical shells were placed around an isotropic point source at distances from 0 to 1.2 times the continuous-slowing-down-approximation range (R(CSDA)). Detailed (event-by-event) simulations were performed for electrons with initial energies of less than 1 MeV. For 1-MeV electrons, multiple scattering was included for energy losses less than 10 keV. Energy losses greater than 10 keV were simulated in a detailed way. The point kernels generated were used to calculate cellular S-values for monoenergetic electron sources. The point kernels obtained by using PENELOPE and ETRAN were also used to calculate cellular S-values for the high-energy beta-emitter, 90Y, the medium-energy beta-emitter, 177Lu, and the low-energy electron emitter, 103mRh. These S-values were also compared with the Medical Internal Radiation Dose (MIRD) cellular S-values. The greatest differences between the point kernels (mean difference calculated for distances, <0.9 r/R(CSDA)), using PENELOPE and those from ETRAN, GEANT4, and MCNPX, were 3.6%, 6.2%, and 14%, respectively. The greatest difference between the cellular S-values for monoenergetic electrons was 1.4%, 2.5%, and 6.9% for ETRAN, GEANT4, and MCNPX, respectively, compared to PENELOPE, if omitting the S-values when the activity was distributed on the cell surface for 10-keV electrons. The largest difference between the cellular S-values for the radionuclides, between PENELOPE and ETRAN, was seen for 177Lu (1.2%). There were large differences between the MIRD cellular S-values and those obtained from PENELOPE: up to 420% for monoenergetic electrons and <22% for the radionuclides, with the largest difference for 103mRh. In conclusion, differences were found between the point kernels generated by different MC codes, but these differences decreased when cellular S-values were calculated, and decreased even further when the energy spectra of the radionuclides were taken into consideration. PMID:19694581
NASA Astrophysics Data System (ADS)
Singleton, B.
First formulated one hundred and fifty years ago by the heretical scholar Nikolai Federov, the doctrine of cosmism begins with an absolute refusal to treat the most basic factors conditioning life on Earth gravity and death as necessary constraints on action. As manifest through the intoxicated cheers of its early advocates that humans should storm the heavens and conquer death, cosmism's foundational gesture was to conceive of the earth as a trap. Its duty was therefore to understand the duty of philosophy, economics and design to be the creation of means to escape it. This could be regarded as a jailbreak at the maximum possible scale, a heist in which the human species could steal itself from the vault of the Earth. After several decades of relative disinterest new space ventures are inspiring scientific, technological and popular imaginations, this essay explores what kind of cosmism might be constructed today. In this paper cosmism's position as a means of escape is both reviewed and evaluated by reflecting on the potential of technology that actually can help us achieve its aims and also through the lens and state-ofthe-art philosophy of accelerationism, which seeks to outrun modern tropes by intensifying them.
NASA Astrophysics Data System (ADS)
Pukhkaya, V.; Trompier, F.; Ollier, N.
2014-09-01
P-related paramagnetic point defects were studied in irradiated Yb-doped phosphate glasses by electron paramagnetic resonance spectroscopy (X and Q-bands). A strong impact of the glass network type on the defect nature is shown. In all glasses, r-POHC defects formation is in strong correlation with Q2 tetrahedra amount supporting the structure of r-POHC. Ultra-phosphate glasses contain the larger defect type: Peroxy radicals, P1, P2, and P4 defects whose formation is linked to Q3 tetrahedra presence. In meta-phosphate and poly-phosphate glasses, peroxy radicals appear with r-POHC thermal recovery. In meta-phosphate glasses, a combination of P1 and P3 defects was evidenced for the first time, whereas in poly-phosphate glasses, only P3 defects were identified. Dose effect as well as defect recovery were analyzed.
Piero Chiarelli
2013-05-20
In the present paper the gas, liquid and solid phases made of structureless particles, are visited to the light of the quantum stochastic hydrodynamic analogy (SQHA). The SQHA shows that the open quantum mechanical behavior is maintained on a distance shorter than the theory-defined quantum correlation length (lc). When, the physical length of the problem is larger than lc, the model shows that the quantum (potential) interactions may have a finite range of interaction maintaining the non-local behavior on a finite distance quantum non-locality length lq. The present work shows that when the mean molecular distance is larger than the quantum non-locality length we have a classical phases (gas and van der Waals liquids) while when the mean molecular distance becomes smaller than lq or than lc we have phases such as the solid crystal or the superfluid one, respectively, that show quantum characteristics. The model agrees with Lindemann empirical law (and explains it), for the mean square deviation of atom from the equilibrium position at melting point of crystal, and shows a connection between the maximum density at the He lambda point and that one near the water-ice solidification point.
Variability of Marker-Based Rectal Dose Evaluation in HDR Cervical Brachytherapy
Wang Zhou; Jaggernauth, Wainwright; Malhotra, Harish K.; Podgorsak, Matthew B.
2010-01-01
In film-based intracavitary brachytherapy for cervical cancer, position of the rectal markers may not accurately represent the anterior rectal wall. This study was aimed at analyzing the variability of rectal dose estimation as a result of interfractional variation of marker placement. A cohort of five patients treated with multiple-fraction tandem and ovoid high-dose-rate (HDR) brachytherapy was studied. The cervical os point and the orientation of the applicators were matched among all fractional plans for each patient. Rectal points obtained from all fractions were then input into each clinical treated plan. New fractional rectal doses were obtained and a new cumulative rectal dose for each patient was calculated. The maximum interfractional variation of distances between rectal dose points and the closest source positions was 1.1 cm. The corresponding maximum variability of fractional rectal dose was 65.5%. The percentage difference in cumulative rectal dose estimation for each patient was 5.4%, 19.6%, 34.6%, 23.4%, and 13.9%, respectively. In conclusion, care should be taken when using rectal markers as reference points for estimating rectal dose in HDR cervical brachytherapy. The best estimate of true rectal dose for each fraction should be determined by the most anterior point among all fractions.
Pukhkaya, V.; Ollier, N.; Trompier, F.
2014-09-28
P-related paramagnetic point defects were studied in irradiated Yb-doped phosphate glasses by electron paramagnetic resonance spectroscopy (X and Q-bands). A strong impact of the glass network type on the defect nature is shown. In all glasses, r-POHC defects formation is in strong correlation with Q{sup 2} tetrahedra amount supporting the structure of r-POHC. Ultra-phosphate glasses contain the larger defect type: Peroxy radicals, P{sub 1}, P{sub 2}, and P{sub 4} defects whose formation is linked to Q{sup 3} tetrahedra presence. In meta-phosphate and poly-phosphate glasses, peroxy radicals appear with r-POHC thermal recovery. In meta-phosphate glasses, a combination of P{sub 1} and P{sub 3} defects was evidenced for the first time, whereas in poly-phosphate glasses, only P{sub 3} defects were identified. Dose effect as well as defect recovery were analyzed.
Some contributions to maximum likelihood factor analysis
K. G. Jöreskog
1967-01-01
A new computational method for the maximum likelihood solution in factor analysis is presented. This method takes into account the fact that the likelihood function may not have a maximum in a point of the parameter space where all unique variances are positive. Instead, the maximum may be attained on the boundary of the parameter space where one or more
Nose, Takayuki [Department of Radiation Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo (Japan); Department of Physics, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo (Japan)], E-mail: takayuki.nose@jfcr.or.jp; Koizumi, Masahiko [Department of Radiation Oncology, Osaka Medical Center, Osaka (Japan); Yoshida, Ken [Department of Radiology, Osaka National Hospital, Osaka (Japan); Nishiyama, Kinji; Sasaki, Junichi; Ohnishi, Takeshi [Department of Radiation Oncology, Osaka Medical Center, Osaka (Japan); Kozuka, Takuyo; Gomi, Kotaro; Oguchi, Masahiko [Department of Radiation Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo (Japan); Sumida, Iori [Department of Radiation Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo (Japan); Department of Physics, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo (Japan); Takahashi, Yutaka; Ito, Akira [Department of Physics, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo (Japan); Yamashita, Takashi [Department of Radiation Oncology, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo (Japan); Department of Physics, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo (Japan)
2008-02-01
Purpose: To perform the largest in vivo dosimetry study for interstitial brachytherapy yet to be undertaken using a new radiophotoluminescence glass dosimeter (RPLGD) in patients with pelvic malignancy and to study the limits of contemporary planning software based on the results. Patients and Methods: Sixty-six patients with pelvic malignancy were treated with high-dose-rate interstitial brachytherapy, including prostate (n = 26), gynecological (n = 35), and miscellaneous (n = 5). Doses for a total of 1004 points were measured by RPLGDs and calculated with planning software in the following locations: rectum (n = 549), urethra (n = 415), vagina (n = 25), and perineum (n = 15). Compatibility (measured dose/calculated dose) was analyzed according to dosimeter location. Results: The compatibility for all dosimeters was 0.98 {+-} 0.23, stratified by location: rectum, 0.99 {+-} 0.20; urethra, 0.96 {+-} 0.26; vagina, 0.91 {+-} 0.08; and perineum, 1.25 {+-} 0.32. Conclusions: Deviations between measured and calculated doses for the rectum and urethra were greater than 20%, which is attributable to the independent movements of these organs and the applicators. Missing corrections for inhomogeneity are responsible for the 9% negative shift near the vaginal cylinder (specific gravity = 1.24), whereas neglect of transit dose contributes to the 25% positive shift in the perineal dose. Dose deviation of >20% for nontarget organs should be taken into account in the planning process. Further development of planning software and a real-time dosimetry system are necessary to use the current findings and to achieve adaptive dose delivery.
Kahn, Steven A; Lentz, Christopher W
2015-01-01
The use of high-dose vitamin C (hdVC, 66 mg/kg/hour × 18 hours) infusion is a useful adjunct to reducing fluid requirements during resuscitation of burn shock. Routine point-of-care glucose (POCG) analysis has been inaccurately high in observed patients undergoing hdVC. Inaccurate POCG could potentially lead to iatrogenic hypoglycemia if the fictitious hyperglycemia is treated with insulin. This study is a retrospective analysis of plasma glucose measurements from a central laboratory (LG) compared with POCG during and 24 hours after hdVC infusion. Records of adult patients receiving hdVC infusions during burn resuscitation over 1 year were reviewed. Charts selected for analysis included those with glucose measurements using POCG and LG that were taken simultaneously, during hdVC infusion, and 24 hours after completion. All specimens were drawn from arterial lines. POCG was measured with Accu-Chek Inform (Roche, Indianapolis, IN) and LG was measured by Siemens Dimension Vista 500 (Siemens, Deerfield, IL) using biochromic analysis. Nonparametric statistical analysis was performed using Wilcoxon's matched pairs test and Spearman correlation with significance at P < .05. Of 18 adult patients undergoing burn resuscitation with hdVC infusion, 5 were chosen for analysis (%TBSA 40 ± 15; age 51 ± 18). All data were pooled with 11 comparisons both during and after hdVC. The mean POCG (225 ± 71) was significantly higher than mean LG (138 ± 41) on hdVC (P = .002). There was no difference between POCG (138 ± 30) and LG (128 ± 23) after hdVC was finished (P = .09). There was a negative correlation between POCG and LG on hdVC (-0.64, P = .04) and a positive correlation off hdVC (0.89, P = .0005). POCG analysis during hdVC infusion is significantly higher than laboratory glucose measurements. Once the hdVC infusion is complete, POCG and laboratory glucose measurements are not statistically different. Treating erroneously high glucose based on POC testing is potentially dangerous and could lead to hypoglycemia and seizures. PMID:25162951
In order to characterize the potential developmental effects of atrazine (ATR) metabolites at low doses, an environmentally-based mixture (EBM) of ATR and its metabolites hydroxyatrazine, diaminochlorotriazine, deethylatrazine, and deisopropylatrazine was formulated based on surv...
NASA Technical Reports Server (NTRS)
Cheeseman, Peter; Stutz, John
2005-01-01
A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].
NASA Astrophysics Data System (ADS)
Mo, Xiao-Hu; Zhang, Jian-Yong; Zhang, Tian-Bao; Zhang, Qing-Jiang; Achasov, Mikhail; Fu, Cheng-Dong; Muchnoi, Nikolay; Qin, Qing; Qu, Hua-Min; Wang, Yi-Fang; Wu, Jing-Min; Xu, Jin-Qiang; Yu, Bo-Xiang
2009-10-01
The technique details for measuring radiation dose are expounded. The results of gamma and neutron radiation levels are presented and the corresponding radiation shielding is discussed based on the simplified estimation. In addition, the photon radiation level move as background for future experiments is measured by a NaI(Tl) detector.
Hamarneh, Ghassan
to the next. These variations are caused by factors such as variable bladder, bowel, and rectal fillingEstimation of Bladder-Wall Cumulative Dose in Multi-Fraction Image-Based Gynaecological Introduction Definitive treatment for cervical cancer most often consists of fractionated external beam
Salguero, Francisco J.; Saleh-Sayah, Nahla K.; Yan, Chenyu; Siebers, Jeffrey V.
2011-01-01
Purpose: This article presents a general procedural framework to assess the point-by-point precision in mapped dose associated with the intrinsic uncertainty of a deformable image registration (DIR) for any arbitrary patient. Methods: Dose uncertainty is obtained via a three-step process. In the first step, for each voxel in an imaging pair, a cluster of points is obtained by an iterative DIR procedure. In the second step, the dispersion of the points due to the imprecision of the DIR method is used to compute the spatial uncertainty. Two different ways to quantify the spatial uncertainty are presented in this work. Method A consists of a one-dimensional analysis of the modules of the position vectors, whereas method B performs a more detailed 3D analysis of the coordinates of the points. In the third step, the resulting spatial uncertainty estimates are used in combination with the mapped dose distribution to compute the point-by-point dose standard deviation. The process is demonstrated to estimate the dose uncertainty induced by mapping a 62.6 Gy dose delivered on maximum exhale to maximum inhale of a ten-phase four-dimensional lung CT. Results: For the demonstration lung image pair, the standard deviation of inconsistency vectors is found to be up to 9.2 mm with a mean ? of 1.3 mm. This uncertainty results in a maximum estimated dose uncertainty of 29.65 Gy if method A is used and 21.81 Gy for method B. The calculated volume with dose uncertainty above 10.00 Gy is 602 cm3 for method A and 1422 cm3 for method B. Conclusions: This procedure represents a useful tool to evaluate the precision of a mapped dose distribution due to the intrinsic DIR uncertainty in a patient. The procedure is flexible, allowing incorporation of alternative intrinsic error models. PMID:21361202
SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment
Imae, T; Haga, A; Saotome, N; Kida, S; Nakano, M; Takeuchi, Y; Shiraki, T; Yano, K; Yamashita, H; Nakagawa, K; Ohtomo, K [University of Tokyo Hospital, Bunkyou-ku, Tokyo (Japan)
2014-06-01
Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions of multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was ?1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.
Restricted maximum principles for elastic bodies
NASA Technical Reports Server (NTRS)
Rose, M. E.
1983-01-01
A maximum principle for the equilibrium of an elastic material body which is free of body forces is described not all of the components of the displacement vector or of the principal stresses can simultaneously have a strict maximum or minimum at any point in the body which does not be either on the surface or on a material interface.
A silicon strip detector dose magnifying glass for IMRT dosimetry
Wong, J. H. D.; Carolan, M.; Lerch, M. L. F.; Petasecca, M.; Khanna, S.; Perevertaylo, V. L.; Metcalfe, P.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia) and Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia) and Illawarra Cancer Care Centre, Wollongong Hospital, New South Wales 2500 (Australia); Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia); St. George Cancer Care Centre, Kogarah, Sydney, New South Wales 2217 (Australia); SPA BIT, 01034 Kiev (Ukraine); Centre for Medical Radiation Physics, University of Wollongong, New South Wales 2522 (Australia)
2010-02-15
Purpose: Intensity modulated radiation therapy (IMRT) allows the delivery of escalated radiation dose to tumor while sparing adjacent critical organs. In doing so, IMRT plans tend to incorporate steep dose gradients at interfaces between the target and the organs at risk. Current quality assurance (QA) verification tools such as 2D diode arrays, are limited by their spatial resolution and conventional films are nonreal time. In this article, the authors describe a novel silicon strip detector (CMRP DMG) of high spatial resolution (200 {mu}m) suitable for measuring the high dose gradients in an IMRT delivery. Methods: A full characterization of the detector was performed, including dose per pulse effect, percent depth dose comparison with Farmer ion chamber measurements, stem effect, dose linearity, uniformity, energy response, angular response, and penumbra measurements. They also present the application of the CMRP DMG in the dosimetric verification of a clinical IMRT plan. Results: The detector response changed by 23% for a 390-fold change in the dose per pulse. A correction function is derived to correct for this effect. The strip detector depth dose curve agrees with the Farmer ion chamber within 0.8%. The stem effect was negligible (0.2%). The dose linearity was excellent for the dose range of 3-300 cGy. A uniformity correction method is described to correct for variations in the individual detector pixel responses. The detector showed an over-response relative to tissue dose at lower photon energies with the maximum dose response at 75 kVp nominal photon energy. Penumbra studies using a Varian Clinac 21EX at 1.5 and 10.0 cm depths were measured to be 2.77 and 3.94 mm for the secondary collimators, 3.52 and 5.60 mm for the multileaf collimator rounded leaf ends, respectively. Point doses measured with the strip detector were compared to doses measured with EBT film and doses predicted by the Philips Pinnacle treatment planning system. The differences were 1.1%{+-}1.8% and 1.0%{+-}1.6%, respectively. They demonstrated the high temporal resolution capability of the detector readout system, which will allow one to investigate the temporal dose pattern of IMRT and volumetric modulated arc therapy (VMAT) deliveries. Conclusions: The CMRP silicon strip detector dose magnifying glass interfaced to a TERA ASIC DAQ system has high spatial and temporal resolution. It is a novel and valuable tool for QA in IMRT dose delivery and for VMAT dose delivery.
NSDL National Science Digital Library
Kristine DeLong
Short lecture on CLIMAP project (see PowerPoint) 20 minutes Powerpoint (PowerPoint 444kB Nov7 10) Group activity - Reading for CLIMAP study assumptions, 20 minutes to read, 20 minutes for discussion Student Handout (Microsoft Word 50kB Nov7 10) Students break into groups (4 per group is good division of work) with 2 students per paper. Split the assumptions between students. Each group skims the CLIMAP papers for the assumptions (modern and/or LGM) used in the CLIMAP model-based reconstruction of the LGM. In the groups, students compare the assumptions between papers. Resources: CLIMAP (1976), The surface of the ice-age earth, Science, 191(4232), 1131-1137 and CLIMAP (1984), The last interglacial ocean, Quaternary Research, 21(2), 123. Class Discussion - Summarize assumptions used in CLIMAP studies. Group activity Exploring CLIMAP LGM Reconstructions, 40 minutes for model data, 20 minutes for discussion (Could be modified with as a "jigsaw" activity with a larger class). Learn more about the jigsaw teaching method. Students work on this activity in pairs; one person will create LGM maps, the other modern. Students should sit together with their computer monitors close together to compare. The students will use the IRI/LDEO Climate Data Library to access the CLIMAP reconstruction and produce maps using the tools available on this web site. In a web browser, go to http://iridl.ldeo.columbia.edu/SOURCES/.CLIMAP/ This is the main page for the CLIMAP Model output for the LGM 18,000 BP. In the middle of the page is the label "Datasets and variables" with two data sets below http://iridl.ldeo.columbia.edu/SOURCES/.CLIMAP/.LGM/ and http://iridl.ldeo.columbia.edu/SOURCES/.CLIMAP/.MOD/. Each student clicks on the link they are assigned to. There are several data sets listed for each period and the students will examine each data set and compare the LGM and Modern. As a class, go through each data set allowing pairs to compare the maps then summarize the results as a class. The worksheet has a table for the students and the PowerPoint has table for summarizing. Class Discussion - Summarize differences between modern and LGM in the CLIMAP model output. Discuss how the assumptions of the CLIMAP model studies may have influenced the results. Extra activities The students can explore the data further using the data selection and filters in the IRI/LDEO Climate Data Library. For the two SST data sets, click on "Data Selection" and narrow the data to the just the tropics (23.5º N-S). Click on "Filters" then select XY next to "Average over." The next window gives you the average over the tropics close to the top of the page. In the next class, the students repeat the Readings exercise by reading the COHMAP and MARGO papers to see how the scientific knowledge has progressed since the original CLIMAP studies. COHMAP Members, (1988), Climatic Changes of the Last 18,000 Years: Observations and Model Simulations, Science, 241(4869), 1043-1052. MARGO (2009), Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, Nature Geoscience, 2(2), 127-132.
Maximum Dispersion and Geometric Maximum Weight Cliques
Fekete, Sándor P.
are represented by points in d-dimensional space, and edge weights cor- respond to rectilinear distances Cliques 133 the problem is strongly NP-hard [14]. It should be noted that H°astad [9] showed is in general hard to approximate within n1- . For the heaviest subgraph problem, we want to maximize the number
3D Dose Verification Using Tomotherapy CT Detector Array
Sheng Ke; Jones, Ryan; Yang Wensha; Saraiya, Siddharth; Schneider, Bernard; Chen Quan; Sobering, Geoff; Olivera, Gustavo; Read, Paul
2012-02-01
Purpose: To evaluate a three-dimensional dose verification method based on the exit dose using the onboard detector of tomotherapy. Methods and Materials: The study included 347 treatment fractions from 24 patients, including 10 prostate, 5 head and neck (HN), and 9 spinal stereotactic body radiation therapy (SBRT) cases. Detector sonograms were retrieved and back-projected to calculate entrance fluence, which was then forward-projected on the CT images to calculate the verification dose, which was compared with ion chamber and film measurement in the QA plans and with the planning dose in patient plans. Results: Root mean square (RMS) errors of 2.0%, 2.2%, and 2.0% were observed comparing the dose verification (DV) and the ion chamber measured point dose in the phantom plans for HN, prostate, and spinal SBRT patients, respectively. When cumulative dose in the entire treatment is considered, for HN patients, the error of the mean dose to the planning target volume (PTV) varied from 1.47% to 5.62% with a RMS error of 3.55%. For prostate patients, the error of the mean dose to the prostate target volume varied from -5.11% to 3.29%, with a RMS error of 2.49%. The RMS error of maximum doses to the bladder and the rectum were 2.34% (-4.17% to 2.61%) and 2.64% (-4.54% to 3.94%), respectively. For the nine spinal SBRT patients, the RMS error of the minimum dose to the PTV was 2.43% (-5.39% to 2.48%). The RMS error of maximum dose to the spinal cord was 1.05% (-2.86% to 0.89%). Conclusions: An excellent agreement was observed between the measurement and the verification dose. In the patient treatments, the agreement in doses to the majority of PTVs and organs at risk is within 5% for the cumulative treatment course doses. The dosimetric error strongly depends on the error in multileaf collimator leaf opening time with a sensitivity correlating to the gantry rotation period.
Li, Heng; Park, Peter; Liu, Wei; Matney, Jason; Balter, Peter; Zhang, Xiaodong; Li, Xiaoqiang; Zhu, X. Ronald; Liao, Zhongxing; Li, Yupeng
2013-12-15
Purpose: The objective of this study was to quantify respiratory motion-induced dose uncertainty at the planning stage for step-and-shoot intensity-modulated radiation therapy (IMRT) using an analytical technique.Methods: Ten patients with stage II/III lung cancer who had undergone a planning four-dimensional (4D) computed tomographic scan and step-and-shoot IMRT planning were selected with a mix of motion and tumor size for this retrospective study. A step-and-shoot IMRT plan was generated for each patient. The maximum and minimum doses with respiratory motion were calculated for each plan, and the mean deviation from the 4D dose was calculated, taking delivery time, fractionation, and patient breathing cycle into consideration.Results: For all patients evaluated in this study, the mean deviation from the 4D dose in the planning target volume (PTV) was <2.5%, with a standard deviation <1.2%, and maximum point dose variation from the 4D dose was <6.2% in the PTV assuming delivery dose rate of 200 MU/min and patient breathing cycle of 8 s. The motion-induced dose uncertainty is a function of motion, fractionation, MU (plan modulation), dose rate, and patient breathing cycle.Conclusions: Respiratory motion-induced dose uncertainty varies from patient to patient. Therefore, it is important to evaluate the dose uncertainty on a patient-specific basis, which could be useful for plan evaluation and treatment strategy determination for selected patients.
Spline-based procedures for dose-finding studies with active control
Helms, Hans-Joachim; Benda, Norbert; Zinserling, Jörg; Kneib, Thomas; Friede, Tim
2015-01-01
In a dose-finding study with an active control, several doses of a new drug are compared with an established drug (the so-called active control). One goal of such studies is to characterize the dose–response relationship and to find the smallest target dose concentration d*, which leads to the same efficacy as the active control. For this purpose, the intersection point of the mean dose–response function with the expected efficacy of the active control has to be estimated. The focus of this paper is a cubic spline-based method for deriving an estimator of the target dose without assuming a specific dose–response function. Furthermore, the construction of a spline-based bootstrap CI is described. Estimator and CI are compared with other flexible and parametric methods such as linear spline interpolation as well as maximum likelihood regression in simulation studies motivated by a real clinical trial. Also, design considerations for the cubic spline approach with focus on bias minimization are presented. Although the spline-based point estimator can be biased, designs can be chosen to minimize and reasonably limit the maximum absolute bias. Furthermore, the coverage probability of the cubic spline approach is satisfactory, especially for bias minimal designs. © 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25319931
Determination of transit dose profile for a {sup 192}Ir HDR source
Fonseca, G. P.; Antunes, P. C. G.; Yoriyaz, H.
2013-05-15
Purpose: Several studies have reported methodologies to calculate and correct the transit dose component of the moving radiation source for high dose rate (HDR) brachytherapy planning systems. However, most of these works employ the average source speed, which varies significantly with the measurement technique used, and does not represent a realistic speed profile, therefore, providing an inaccurate dose determination. In this work, the authors quantified the transit dose component of a HDR unit based on the measurement of the instantaneous source speed to produce more accurate dose values. Methods: The Nucletron microSelectron-HDR Ir-192 source was characterized considering the Task Group 43 (TG-43U1) specifications. The transit dose component was considered through the calculation of the dose distribution using a Monte Carlo particle transport code, MCNP5, for each source position and correcting it by the source speed. The instantaneous source speed measurements were performed in a previous work using two optical fibers connected to a photomultiplier and an oscilloscope. Calculated doses were validated by comparing relative dose profiles with those obtained experimentally using radiochromic films. Results: TG-43U1 source parameters were calculated to validate the Monte Carlo simulations. These agreed with the literature, with differences below 1% for the majority of the points. Calculated dose profiles without transit dose were also validated by comparison with ONCENTRA{sup Registered-Sign} Brachy v. 3.3 dose values, yielding differences within 1.5%. Dose profiles obtained with MCNP5 corrected using the instantaneous source speed profile showed differences near dwell positions of up to 800% in comparison to values corrected using the average source speed, but they are in good agreement with the experimental data, showing a maximum discrepancy of approximately 3% of the maximum dose. Near a dwell position the transit dose is about 22% of the dwell dose delivered by the source dwelling 1 s and reached 104.0 cGy per irradiation in a hypothetical clinical case studied in this work. Conclusions: The present work demonstrated that the transit dose correction based on average source speed fails to accurately correct the dose, indicating that the correct speed profile should be considered. The impact on total dose due to the transit dose correction near the dwell positions is significant and should be considered more carefully in treatments with high dose rate, several catheters, multiple dwell positions, small dwell times, and several fractions.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing
2013-10-01
The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.
NASA Astrophysics Data System (ADS)
Portnykh, I. A.; Kozlov, A. V.; Panchenko, V. L.
2014-06-01
The microstructure of samples of cladding tubes made of steel 0.07C-16Cr-19Ni-2Mo-2Mn-Ti-Si-V-P-B (EK164) irradiated to different damaging doses (up to 77 dpa) in the BN-600 reactor at temperatures from 440 to 600°C has been investigated. Characteristics of radiation porosity formed during irradiation in different temperature intervals have been determined. The dependences of the porosity characteristics on the rate of generation of atomic displacements and temperature of neutron irradiation have been established.
NSDL National Science Digital Library
Siegrist, Kyle
Created by Kyle Siegrist of the University of Alabama-Huntsville, this is an online, interactive lesson on point estimation. The author provides examples, exercises, and applets about the topic. More specifically, they concern estimators, method of moments, maximum likelihood, Bayes' estimators, best unbiased estimators, and sufficient, complete and ancillary statistics. Additionally, the author provides links to external resources for students looking to engage in a more in-depth study of the topic. This is simply one lesson in a series of seventeen. They are easily accessible as the author has created the site in an online textbook format.
Court, Laurence E. Tishler, Roy B.
2007-10-01
Purpose: To investigate experimentally the impact of different head-and-neck intensity-modulated radiation therapy (IMRT) planning techniques on doses to the skin and shallow targets. Methods and Materials: A semicylindrical phantom was constructed with micro-MOSFET dosimeters (Thomson-Nielson, Ottawa, Ontario, Canada) at 0-, 3-, 6-, 9-, and 12-mm depths. The planning target volume (PTV) was pulled back 0, 3, or 5 mm from the body contour. The IMRT plans were created to maximize PTV coverage, with one of the following strategies: (a) aim for a maximum 110% hotspot, with 115% allowed; (b) aims for a maximum 105% hotspot; (c) aims for a maximum 105% hotspot and 50% of skin to get a maximum 70% of the prescribed dose; and (d) aim for 99% of the PTV volume to receive 90-93% of prescribed dose, with a maximum 105% hotspot, and with the dose to the skin structure minimized. Doses delivered using a linear accelerator were measured. Setup uncertainty was simulated by intentionally shifting the phantom in a range of {+-}8 mm, and calculating the delivered dose for a range of systematic and random uncertainties. Results: From lowest to highest skin dose, the planning strategies were in the order of c, d, b, and a, but c showed a tendency to underdose tissues at depth. Delivered doses varied by 10-20%, depending on planning strategy. For typical setup uncertainties, cumulative dose reduction to a point 6 mm deep was <4%. Conclusions: It is useful to use skin as a sensitive structure, but a minimum dose constraint must be used for the PTV if unwanted reductions in dose to nodes near the body surface are to be avoided. Setup uncertainties are unlikely to give excessive reductions in cumulative dose.
Berger, Daniel [Department of Radiotherapy and Radiobiology, Medical University of Vienna, Vienna (Austria)]. E-mail: daniel.berger@akhwien.at; Dimopoulos, Johannes [Department of Radiotherapy and Radiobiology, Medical University of Vienna, Vienna (Austria); Georg, Petra [Department of Radiotherapy and Radiobiology, Medical University of Vienna, Vienna (Austria); Georg, Dietmar [Department of Radiotherapy and Radiobiology, Medical University of Vienna, Vienna (Austria); Poetter, Richard [Department of Radiotherapy and Radiobiology, Medical University of Vienna, Vienna (Austria); Kirisits, Christian [Department of Radiotherapy and Radiobiology, Medical University of Vienna, Vienna (Austria)
2007-04-01
Purpose: The vagina has not been widely recognized as organ at risk in brachytherapy for cervical cancer. No widely accepted dose parameters are available. This study analyzes the uncertainties in dose reporting for the vaginal wall using tandem-ring applicators. Methods and Materials: Organ wall contours were delineated on axial magnetic resonance (MR) slices to perform dose-volume histogram (DVH) analysis. Different DVH parameters were used in a feasibility study based on 40 magnetic resonance imaging (MRI)-based treatment plans of different cervical cancer patients. Dose to the most irradiated, 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, and at defined points on the ring surface and at 5-mm tissue depth were reported. Treatment-planning systems allow different methods of dose point definition. Film dosimetry was used to verify the maximum dose at the surface of the ring applicator in an experimental setup. Results: Dose reporting for the vagina is extremely sensitive to geometrical uncertainties with variations of 25% for 1 mm shifts. Accurate delineation of the vaginal wall is limited by the finite pixel size of MRI and available treatment-planning systems. No significant correlation was found between dose-point and dose-volume parameters. The DVH parameters were often related to noncontiguous volumes and were not able to detect very different situations of spatial dose distributions inside the vaginal wall. Deviations between measured and calculated doses were up to 21%. Conclusions: Reporting either point dose values or DVH parameters for the vaginal wall is based on high inaccuracies because of contouring and geometric positioning. Therefore, the use of prospective dose constraints for individual treatment plans is not to be recommended at present. However, for large patient groups treated within one protocol correlation with vaginal morbidity can be evaluated.
Maximum Abundant Isotopes Correlation
G. S. Anagnostatos
1978-01-01
The neutron excess of the most abundant isotopes of the elements shows an overall linear dependence upon the neutron number for nuclei between netron closed shells. This maximum abundant isotopes correlation supports the arguments for a common history of the elements during nucleosynthesis.
Maximum abundant isotopes correlation
G. S. Anagnostatos
1978-01-01
The neutron excess of the most abundant isotopes of the elements shows an overall linear dependence upon the neutron number for nuclei between netron closed shells. This maximum abundant isotopes correlation supports the arguments for a common history of the elements during nucleosynthesis.
Maximum entropy diffraction tomography
Ali MOHAMMAD-DJAFARI; Guy DEMOMENT
1986-01-01
In diffraction tomography, the generalized Radon theorem relates the Fourier Transform (FT) of the diffracted field to the two-dimensional FT of the diffracting object. The relation stands on algebraic contours, which are semi-circles in the case of Born or Rytov first order linear approximations. We propose a Maximum Entropy method to reconstruct the object from either the Fourier domain data
Calculation of organ doses from breast cancer radiotherapy: a Monte Carlo study.
Berris, Theocharis; Mazonakis, Michael; Stratakis, John; Tzedakis, Antonios; Fasoulaki, Anastasia; Damilakis, John
2013-01-01
The current study aimed to: a) utilize Monte Carlo simulation methods for the assessment of radiation doses imparted to all organs at risk to develop secondary radiation induced cancer, for patients undergoing radiotherapy for breast cancer; and b) evaluate the effect of breast size on dose to organs outside the irradiation field. A simulated linear accelerator model was generated. The in-field accuracy of the simulated photon beam properties was verified against percentage depth dose (PDD) and dose profile measurements on an actual water phantom. Off-axis dose calculations were verified with thermoluminescent dosimetry (TLD) measurements on a humanoid physical phantom. An anthropomorphic mathematical phantom was used to simulate breast cancer radiotherapy with medial and lateral fields. The effect of breast size on the calculated organ dose was investigated. Local differences between measured and calculated PDDs and dose profiles did not exceed 2% for the points at depths beyond the depth of maximum dose and the plateau region of the profile, respectively. For the penumbral regions of the dose profiles, the distance to agreement (DTA) did not exceed 2 mm. The mean difference between calculated out-of-field doses and TLD measurements was 11.4% ± 5.9%. The calculated doses to peripheral organs ranged from 2.32 cGy up to 161.41 cGy depending on breast size and thus the field dimensions applied, as well as the proximity of the organs to the primary beam. An increase to the therapeutic field area by 50% to account for the large breast led to a mean organ dose elevation by up to 85.2% for lateral exposure. The contralateral breast dose ranged between 1.4% and 1.6% of the prescribed dose to the tumor. Breast size affects dose deposition substantially. PMID:23318389
Brown, Sheree, E-mail: shereedst32@hotmail.com [Department of Radiation Oncology, WellStar Kennestone Hospital, Marietta, Georgia (United States); Vicini, Frank [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Vanapalli, Jyotsna R.; Whitaker, Thomas J.; Pope, D. Keith [Department of Radiation Oncology, WellStar Kennestone Hospital, Marietta, Georgia (United States); Lyden, Maureen [BioStat International, Inc., Tampa, Florida (United States); Bruggeman, Lisa; Haile, Kenneth L.; McLaughlin, Mark P. [Department of Radiation Oncology, WellStar Kennestone Hospital, Marietta, Georgia (United States)
2012-07-01
Purpose: The purpose of this analysis was to evaluate dose-volume relationships associated with a higher probability for developing chest wall toxicity (pain) after accelerated partial breast irradiation (APBI) by using both single-lumen and multilumen brachytherapy. Methods and Materials: Rib dose data were available for 89 patients treated with APBI and were correlated with the development of chest wall/rib pain at any point after treatment. Ribs were contoured on computed tomography planning scans, and rib dose-volume histograms (DVH) along with histograms for other structures were constructed. Rib DVH data for all patients were sampled at all volumes {>=}0.008 cubic centimeter (cc) (for maximum dose related to pain) and at volumes of 0.5, 1, 2, and 3 cc for analysis. Rib pain was evaluated at each follow-up visit. Patient responses were marked as yes or no. No attempt was made to grade responses. Eighty-nine responses were available for this analysis. Results: Nineteen patients (21.3%) complained of transient chest wall/rib pain at any point in follow-up. Analysis showed a direct correlation between total dose received and volume of rib irradiated with the probability of developing rib/chest wall pain at any point after follow-up. The median maximum dose at volumes {>=}0.008 cc of rib in patients who experienced chest wall pain was 132% of the prescribed dose versus 95% of the prescribed dose in those patients who did not experience pain (p = 0.0035). Conclusions: Although the incidence of chest wall/rib pain is quite low with APBI brachytherapy, attempts should be made to keep the volume of rib irradiated at a minimum and the maximum dose received by the chest wall as low as reasonably achievable.
Independent dose calculations for the corvus MLC IMRT.
Ayyangar, K M; Nizin, P S; Saw, C B; Gearheart, D; Shen, B; Enke, C A
2001-01-01
Two independent dose calculation methods have been explored to validate MLC-based IMRT plans from the NOMOS CORVUS system. After the plan is generated on the CORVUS planning system, the beam parameters are imported into an independent workstation. The beam parameters consist of intensity maps at each gantry angle. In addition, CT scans of the patient are imported into the independent workstation to obtain the external contour of the patient. The coordinate system is defined relative to the alignment point chosen in the CORVUS plan. The 2 independent calculation methods are based on a pencil beam kernel convolution and a Clarkson-type differential scatter summation, respectively. The pencil beam data for a 1 x 1-cm beam, as formed by the multileaf collimator, were measured for the 6-MV photon beam from a Siemens PRIMUS linear accelerator using film dosimetry. In the pencil beam method, the dose at a point is calculated using the depth and off-axis distance from a given pencil beam, corrected for beam intensity. The scatter summation method used the conversion of measured depth dose data into scatter maximum ratios. In this method, the differential scatter from each pencil beam is corrected for the beam intensity. Isodose distributions were generated using the independent dose calculations and compared to the CORVUS plans. Although isodose distributions from both methods show good agreement with the CORVUS plan, our implementation of the differential scatter summation approach seems more favorable. The 2 independent dose calculation algorithms are described in this paper. PMID:11444515
Maximum information photoelectron metrology
Hockett, P; Wollenhaupt, M; Baumert, T
2015-01-01
Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...
Maximum Confidence Quantum Measurements
Sarah Croke; Erika Andersson; Stephen M. Barnett; Claire R. Gilson; John Jeffers
2006-04-05
We consider the problem of discriminating between states of a specified set with maximum confidence. For a set of linearly independent states unambiguous discrimination is possible if we allow for the possibility of an inconclusive result. For linearly dependent sets an analogous measurement is one which allows us to be as confident as possible that when a given state is identified on the basis of the measurement result, it is indeed the correct state.
Nagataki, Shigenobu; Takamura, Noboru; Kamiya, Kenji; Akashi, Makoto
2013-11-01
At the outset of the accident at Fukushima Daiichi Nuclear Power Plant in March 2011, the radiation doses experienced by residents were calculated from the readings at monitoring posts, with several assumptions being made from the point of view of protection and safety. However, health effects should also be estimated by obtaining measurements of the individual radiation doses. The individual external radiation doses, determined by a behavior survey in the "evacuation and deliberate evacuation area" in the first 4 months, were <5 mSv in 97.4% of residents (maximum: 15 mSv). Doses in Fukushima Prefecture were <3 mSv in 99.3% of 386,572 residents analyzed. External doses in Fukushima City determined by personal dosimeters were <1 mSv/3 months (September-November, 2011) in 99.7% of residents (maximum: 2.7 mSv). Thyroid radiation doses, determined in March using a NaI (TI) scintillation survey meter in children in the evacuation and deliberate evacuation area, were <10 mSv in 95.7% of children (maximum: 35 mSv). Therefore, all doses were less than the intervention level of 50 mSv proposed by international organizations. Internal radiation doses determined by cesium-134 ((134)C) and cesium-137 ((137)C) whole-body counters (WBCs) were <1 mSv in 99% of the residents, and the maximum thyroid equivalent dose by iodine-131 WBCs was 20 mSv. The exploratory committee of the Fukushima Health Management Survey mentions on its website that radiation from the accident is unlikely to be a cause of adverse health effects in the future. In any event, sincere scientific efforts must continue to obtain individual radiation doses that are as accurate as possible. However, observation of the health effects of the radiation doses described above will require reevaluation of the protocol used for determining adverse health effects. The dose-response relationship is crucial, and the aim of the survey should be to collect sufficient data to confirm the presence or absence of radiation health effects. In particular, the schedule of decontamination needs reconsideration. The decontamination map is determined based on the results of airborne monitoring and the radiation dose calculated from readings taken at the monitoring posts at the initial period of the accident. The decontamination protocol should be reevaluated based on the individual doses of the people who desire to live in those areas. PMID:24131040
van't Veld, A A; van Luijk, P; Praamstra, F; van der Hulst, P C
2000-05-01
Accurate measurement of radiation beam penumbras is essential for conformal radiotherapy. For this purpose a detailed knowledge of the dosimeter's spatial response is required. However, experimental determination of detector spatial response is cumbersome and restricted to the specific detector type and beam spectrum used. A model has therefore been developed to calculate in slit beam geometry both dose profiles and detector response profiles. Summations over representative photon beam spectra yield profiles for polyenergetic beams. In the present study the model is described and resulting dose profiles verified. The model combines Compton scattering of incident photons, transport of resulting electrons by Fermi-Eyges small-angle multiple scattering theory, and functions to limit electron transport. This analytic model thus yields line spread kernels of primary dose in a water phantom. It is shown that the spatial response of an ideal point detector to a primary photon beam can be well described by the model; the calculations are verified by measurements with a diamond detector in a telescopic slit geometry in which all dose contributions except for the primary dose can be excluded. Effects of photon detector behavior, source size of the linear accelerator (linac) and detector size are studied. Measurements show that slit dose profiles calculated by means of the kernel are accurate within 0.1 mm of the full-width at half-maximum. For a theoretical point source and point detector combined with a 0.2 mm wide slit, the full-width half-maximum values of the slit beam dose profiles are calculated as 0.37 mm and 0.42 mm in a 6 MV and 25 MV x-ray beam, respectively. The present study shows that the model is adequate to calculate local dose effects that are dominated by approximately mono-directional, primary photon fluence. The analytic model further provides directional electron fluence information and is designed to be applied to various detectors and linac beam spectra. PMID:10841395
Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.
2009-01-01
We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.
Fisher, Darrell R.; Shen, Sui; Meredith, Ruby F.
2009-04-16
Absorbed dose calculations provide a scientific basis for evaluating the biological effects associated with administered radiopharmaceuticals. In cancer therapy, radiation dosimetry also supports treatment planning, dose-response analyses, predictions of therapy effectiveness, and completeness of patient medical records. In this study, we evaluated the organ radiation absorbed doses resulting from intravenously administered 111In- and 90Y-Ibritumomab Tiuxetan (Zevalin). Methods: Ten patients (six male, four female) with non-Hodgkin’s lymphoma, cared for at three different medical centers, were administered tracer 111In-Ibritumomab Tiuxetan and were assessed using planar scintillation camera imaging at five time points, blood clearance measurements, and CT-organ volumetrics, to determine patient-specific organ biokinetics and dosimetry. Explicit attenuation correction based on transmission scan or transmission measurements provided the fraction of 111In administered activity in seven major organs, the whole body, and remainder tissues over time through complete decay. Activity-time curves were constructed, and radiation doses were calculated using MIRD methods and implementing software (OLINDA-EXM). Results: Mean radiation absorbed doses in 10 cancer patients for 111In- and for 90-Y-Ibritumomab Tiuxetan are reported for 24 organs and the whole body. Biological uptake and retention data are given for seven major source organs, remainder tissues, and the whole body. Median absorbed dose values calculated by this method were compared to previously published dosimetry for Zevalin and the product package insert. Conclusions: Careful dosimetry techniques provide useful information on absorbed dose from administered radiopharmaceuticals in patients. The importance of patient-specific dosimetry emerges in high-dose radioimmunotherapy when the objective of treatment planning is to achieve disease cures safely by limiting radiation doses to any critical normal organ to a maximum tolerable value.
Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate
Riegel, Adam C.; Ahmad, Moiz; Sun Xiaojun; Pan Tinsu
2008-12-15
Dose calculation for thoracic radiotherapy is commonly performed on a free-breathing helical CT despite artifacts caused by respiratory motion. Four-dimensional computed tomography (4D-CT) is one method to incorporate motion information into the treatment planning process. Some centers now use the respiration-averaged CT (RACT), the pixel-by-pixel average of the ten phases of 4D-CT, for dose calculation. This method, while sparing the tedious task of 4D dose calculation, still requires 4D-CT technology. The authors have recently developed a means to reconstruct RACT directly from unsorted cine CT data from which 4D-CT is formed, bypassing the need for a respiratory surrogate. Using RACT from cine CT for dose calculation may be a means to incorporate motion information into dose calculation without performing 4D-CT. The purpose of this study was to determine if RACT from cine CT can be substituted for RACT from 4D-CT for the purposes of dose calculation, and if increasing the cine duration can decrease differences between the dose distributions. Cine CT data and corresponding 4D-CT simulations for 23 patients with at least two breathing cycles per cine duration were retrieved. RACT was generated four ways: First from ten phases of 4D-CT, second, from 1 breathing cycle of images, third, from 1.5 breathing cycles of images, and fourth, from 2 breathing cycles of images. The clinical treatment plan was transferred to each RACT and dose was recalculated. Dose planes were exported at orthogonal planes through the isocenter (coronal, sagittal, and transverse orientations). The resulting dose distributions were compared using the gamma ({gamma}) index within the planning target volume (PTV). Failure criteria were set to 2%/1 mm. A follow-up study with 50 additional lung cancer patients was performed to increase sample size. The same dose recalculation and analysis was performed. In the primary patient group, 22 of 23 patients had 100% of points within the PTV pass {gamma} criteria. The average maximum and mean {gamma} indices were very low (well below 1), indicating good agreement between dose distributions. Increasing the cine duration generally increased the dose agreement. In the follow-up study, 49 of 50 patients had 100% of points within the PTV pass the {gamma} criteria. The average maximum and mean {gamma} indices were again well below 1, indicating good agreement. Dose calculation on RACT from cine CT is negligibly different from dose calculation on RACT from 4D-CT. Differences can be decreased further by increasing the cine duration of the cine CT scan.
Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2006-01-01
Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.
Campanelli, Manuela; Lousto, Carlos O; Zlochower, Yosef; Merritt, David
2007-06-01
Recent calculations of gravitational radiation recoil generated during black-hole binary mergers have reopened the possibility that a merged binary can be ejected even from the nucleus of a massive host galaxy. Here we report the first systematic study of gravitational recoil of equal-mass binaries with equal, but counteraligned, spins parallel to the orbital plane. Such an orientation of the spins is expected to maximize the recoil. We find that recoil velocity (which is perpendicular to the orbital plane) varies sinusoidally with the angle that the initial spin directions make with the initial linear momenta of each hole and scales up to a maximum of approximately 4000 km s-1 for maximally rotating holes. Our results show that the amplitude of the recoil velocity can depend sensitively on spin orientations of the black holes prior to merger. PMID:17677894
NASA Technical Reports Server (NTRS)
Rust, D. M.
1984-01-01
The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots.
Maximum likelihood clustering with dependent feature trees
NASA Technical Reports Server (NTRS)
Chittineni, C. B. (principal investigator)
1981-01-01
The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.
The Radiation Dose-Response of the Human Spinal Cord
Schultheiss, Timothy E.
2008-08-01
Purpose: To characterize the radiation dose-response of the human spinal cord. Methods and Materials: Because no single institution has sufficient data to establish a dose-response function for the human spinal cord, published reports were combined. Requisite data were dose and fractionation, number of patients at risk, number of myelopathy cases, and survival experience of the population. Eight data points for cervical myelopathy were obtained from five reports. Using maximum likelihood estimation correcting for the survival experience of the population, estimates were obtained for the median tolerance dose, slope parameter, and {alpha}/{beta} ratio in a logistic dose-response function. An adequate fit to thoracic data was not possible. Hyperbaric oxygen treatments involving the cervical cord were also analyzed. Results: The estimate of the median tolerance dose (cervical cord) was 69.4 Gy (95% confidence interval, 66.4-72.6). The {alpha}/{beta} = 0.87 Gy. At 45 Gy, the (extrapolated) probability of myelopathy is 0.03%; and at 50 Gy, 0.2%. The dose for a 5% myelopathy rate is 59.3 Gy. Graphical analysis indicates that the sensitivity of the thoracic cord is less than that of the cervical cord. There appears to be a sensitizing effect from hyperbaric oxygen treatment. Conclusions: The estimate of {alpha}/{beta} is smaller than usually quoted, but values this small were found in some studies. Using {alpha}/{beta} = 0.87 Gy, one would expect a considerable advantage by decreasing the dose/fraction to less than 2 Gy. These results were obtained from only single fractions/day and should not be applied uncritically to hyperfractionation.
Secondary Neutron Doses for Several Beam Configurations for Proton Therapy
Shin, Dongho; Yoon, Myonggeun; Kwak, Jungwon; Shin, Jungwook; Lee, Se Byeong Park, Sung Yong; Park, Soah; Kim, Dae Yong; Cho, Kwan Ho
2009-05-01
Purpose: To compare possible neutron doses produced in scanning and scattering modes, with the latter assessed using a newly built passive-scattering proton beam line. Methods and Materials: A 40 x 30.5 x 30-cm water phantom was irradiated with 230-MeV proton beams using a gantry angle of 270{sup o}, a 10-cm-diameter snout, and a brass aperture with a diameter of 7 cm and a thickness of 6.5 cm. The secondary neutron doses during irradiation were measured at various points using CR-39 detectors, and these measurements were cross-checked using a neutron survey meter with a 22-cm range and a 5-cm spread-out Bragg peak. Results: The maximum doses due to secondary neutrons produced by a scattering beam-delivery system were on the order of 0.152 mSv/Gy and 1.17 mSv/Gy at 50 cm from the beam isocenter in the longitudinal (0{sup o}) and perpendicular (90{sup o}) directions, respectively. The neutron dose equivalent to the proton absorbed dose, measured from 10 cm to 100 cm from the isocenter, ranged from 0.071 mSv/Gy to 1.96 mSv/Gy in the direction of the beam line (i.e., {phi} = 0 deg.). The largest neutron dose, of 3.88 mSv/Gy, was observed at 135{sup o} and 25 cm from the isocenter. Conclusions: Although the secondary neutron doses in proton therapy were higher when a scattering mode rather than a scanning mode was used, they did not exceed the scattered photon dose in typical photon treatments.
Okamoto, Hiroyuki; Aikawa, Ako; Wakita, Akihisa; Yoshio, Kotaro; Murakami, Naoya; Nakamura, Satoshi; Hamada, Minoru; Abe, Yoshihisa; Itami, Jun
2014-01-01
The influence of deviations in dwell times and source positions for 192Ir HDR-RALS was investigated. The potential dose errors for various kinds of brachytherapy procedures were evaluated. The deviations of dwell time ?T of a 192Ir HDR source for the various dwell times were measured with a well-type ionization chamber. The deviations of source position ?P were measured with two methods. One is to measure actual source position using a check ruler device. The other is to analyze peak distances from radiographic film irradiated with 20 mm gap between the dwell positions. The composite dose errors were calculated using Gaussian distribution with ?T and ?P as 1? of the measurements. Dose errors depend on dwell time and distance from the point of interest to the dwell position. To evaluate the dose error in clinical practice, dwell times and point of interest distances were obtained from actual treatment plans involving cylinder, tandem-ovoid, tandem-ovoid with interstitial needles, multiple interstitial needles, and surface-mold applicators. The ?T and ?P were 32 ms (maximum for various dwell times) and 0.12 mm (ruler), 0.11 mm (radiographic film). The multiple interstitial needles represent the highest dose error of 2%, while the others represent less than approximately 1%. Potential dose error due to dwell time and source position deviation can depend on kinds of brachytherapy techniques. In all cases, the multiple interstitial needles is most susceptible. PMID:24566719
PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS
Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.
2012-06-05
For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.
2014-01-01
Background In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed. Methods Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (?/??=?10 Gy). Results Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p?=?0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p?=?0.042). Conclusion Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma. PMID:24938757
Haga, Akihiro; Sakumi, Akira; Okano, Yukari; Itoh, Saori; Saotome, Naoya; Kida, Satoshi; Igaki, Hiroshi; Shiraishi, Kenshiro; Yamashita, Hideomi; Ohtomo, Kuni; Nakagawa, Keiichi
2013-07-01
Linac parameters such as the multi-leaf collimator (MLC) position and jaw position, cumulative monitor units (MUs), and the corresponding gantry angle were recorded during the clinical delivery of volumetric modulated arc therapy for prostate, lung, and head/neck cancer patients. Then, linac parameters were converted into the beam-data format used in the treatment planning system, and the dose distribution was reconstructed. The dose-volume histogram and the dose difference (DD) were compared with the corresponding values in the treatment plan. A reproducible error of in-treatment linac parameters was observed when a sudden change of beam intensity or MLC/jaw speed occurred. The maximum cumulative MU error was more than 4 MU for lung cancer cases, and the maximum MLC position exceeded 5 mm for prostate and head/neck cancer patients. However, these errors were quickly compensated for at the next control point. All treatments analyzed in the present study were delivered within 0.4% accuracy at the planning target volume. The cumulative dose agreed with that of the plan within 3% of the prescribed dose. The 1% DD was 93.9, 99.9, and 93.4% of the prescription dose for prostate, lung, and head/neck cancer patients, respectively. PMID:23479401
Narayan, Samir [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States)], E-mail: narayans@trinity-health.org; Lehmann, Joerg [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Coleman, Matthew A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Vaughan, Andrew; Yang, Claus Chunli [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Enepekides, Danny; Farwell, Gregory [Department of Otolaryngology, University of California Davis Medical Center, Sacramento, CA (United States); Purdy, James A.; Laredo, Grace [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Nolan, Kerry A.S.; Pearson, Francesca S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Vijayakumar, Srinivasan [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States)
2008-11-01
Purpose: We conducted a clinical study to correlate oral cavity dose with clinical mucositis, perform in vivo dosimetry, and determine the feasibility of obtaining buccal mucosal cell samples in patients undergoing head-and-neck radiation therapy. The main objective is to establish a quantitative dose response for clinical oral mucositis. Methods and Materials: Twelve patients undergoing radiation therapy for head-and-neck cancer were prospectively studied. Four points were chosen in separate quadrants of the oral cavity. Calculated dose distributions were generated by using AcQPlan and Eclipse treatment planning systems. MOSFET dosimeters were used to measure dose at each sampled point. Each patient underwent buccal sampling for future RNA analysis before and after the first radiation treatment at the four selected points. Clinical and functional mucositis were assessed weekly according to National Cancer Institute Common Toxicity Criteria, Version 3. Results: Maximum and average doses for sampled sites ranged from 7.4-62.3 and 3.0-54.3 Gy, respectively. A cumulative point dose of 39.1 Gy resulted in mucositis for 3 weeks or longer. Mild severity (Grade {<=} 1) and short duration ({<=}1 week) of mucositis were found at cumulative point doses less than 32 Gy. Polymerase chain reaction consistently was able to detect basal levels of two known radiation responsive genes. Conclusions: In our sample, cumulative doses to the oral cavity of less than 32 Gy were associated with minimal acute mucositis. A dose greater than 39 Gy was associated with longer duration of mucositis. Our technique for sampling buccal mucosa yielded sufficient cells for RNA analysis using polymerase chain reaction.
Dose perturbation caused by high-density inhomogeneities in small beams in stereotactic radiosurgery
NASA Astrophysics Data System (ADS)
Rustgi, Surendra N.; Rustgi, Atul K.; Jiang, Steve B.; Ayyangar, Komanduri M.
1998-12-01
The influence of high-density tissue heterogeneities in small-diameter beams used in stereotactic radiosurgery has been investigated. Dose perturbation immediately behind aluminium sheets, used to simulate a high-density tissue inhomogeneity such as bone, was studied in a solid water phantom. Dose reduction factors (DRFs), which are the ratios of the dose in the presence of the inhomogeneity to dose in a uniform density solid water phantom, were measured with a diamond detector for three thicknesses of aluminium. DRFs exhibit dependence on both the inhomogeneity thickness and the beam diameter. The DRF decreases with inhomogeneity thickness. The DRF initially decreases with increase in the beam diameter from 12.5 to 25 mm. For fields greater than 25 mm, the DRFs are nearly constant. The commonly used algorithms such as the TAR ratio method underestimate the magnitude of the measured effect. A good agreement between these measurements and Monte Carlo calculations is obtained. The influence of the high-density inhomogeneity on the tissue maximum ratio (TMR) was also measured with the inhomogeneity at a fixed depth from the entrance surface. The TMR is reduced for all detector-inhomogeneity distances investigated. The dose build-up phenomenon observed in the presence of low-density air inhomogeneity is absent in the presence of a high-density inhomogeneity. The beam width (defined by 50% dose points) immediately beyond the inhomogeneity is unaffected by the high-density inhomogeneity. However, the 90%-10% and 80%-20% dose penumbra widths and the dose outside the beam edge (beyond the 50% dose point) are reduced. This reduction in dose outside the beam edge is caused by the reduced range of the secondary radiation (photons and electrons) in the high-density medium.
Rustgi, S N; Rustgi, A K; Jiang, S B; Ayyangar, K M
1998-12-01
The influence of high-density tissue heterogeneities in small-diameter beams used in stereotactic radiosurgery has been investigated. Dose perturbation immediately behind aluminium sheets, used to simulate a high-density tissue inhomogeneity such as bone, was studied in a solid water phantom. Dose reduction factors (DRFs), which are the ratios of the dose in the presence of the inhomogeneity to dose in a uniform density solid water phantom, were measured with a diamond detector for three thicknesses of aluminium. DRFs exhibit dependence on both the inhomogeneity thickness and the beam diameter. The DRF decreases with inhomogeneity thickness. The DRF initially decreases with increase in the beam diameter from 12.5 to 25 mm. For fields greater than 25 mm, the DRFs are nearly constant. The commonly used algorithms such as the TAR ratio method underestimate the magnitude of the measured effect. A good agreement between these measurements and Monte Carlo calculations is obtained. The influence of the high-density inhomogeneity on the tissue maximum ratio (TMR) was also measured with the inhomogeneity at a fixed depth dmax from the entrance surface. The TMR is reduced for all detector-inhomogeneity distances investigated. The dose build-up phenomenon observed in the presence of low-density air inhomogeneity is absent in the presence of a high-density inhomogeneity. The beam width (defined by 50% dose points) immediately beyond the inhomogeneity is unaffected by the high-density inhomogeneity. However, the 90%-10% and 80%-20% dose penumbra widths and the dose outside the beam edge (beyond the 50% dose point) are reduced. This reduction in dose outside the beam edge is caused by the reduced range of the secondary radiation (photons and electrons) in the high-density medium. PMID:9869028
Shin, Dongho; Yoon, Myonggeun [Research Institute and Hospital, National Cancer Center, Ilsandong-gu, Goyang (Korea, Republic of); Park, Sung Yong [Research Institute and Hospital, National Cancer Center, Ilsandong-gu, Goyang (Korea, Republic of)], E-mail: cool_park@ncc.re.kr; Park, Dong Hyun; Lee, Se Byeong; Kim, Dae Yong; Cho, Kwan Ho [Research Institute and Hospital, National Cancer Center, Ilsandong-gu, Goyang (Korea, Republic of)
2007-01-01
Intensity-modulated radiation therapy (IMRT) is one of the most complex applications of radiotherapy that requires patient-specific quality assurance (QA). Here, we describe a novel method of 3-dimensional (3D) dose-verification using 12 acrylic slabs in a 3D phantom (30 x 30 x 12 cm{sup 3}) with extended dose rate (EDR2) films, which is both faster than conventionally used methods, and clinically useful. With custom-written software modules written in Microsoft Excel Visual Basic Application, the measured and planned dose distributions for the axial, coronal, and sagittal planes were superimposed by matching their origins, and the point doses were compared at all matched positions. Then, an optimization algorithm was used to correct the detected setup errors. The results show that this optimization method significantly reduces the average maximum dose difference by 7.73% and the number of points showing dose differences of more than 5% by 8.82% relative to the dose differences without an optimization. Our results indicate that the dose difference was significantly decreased with optimization and this optimization method is statistically reliable and effective. The results of 3D optimization are discussed in terms of various patient-specific QA data obtained from statistical analyses.
Bayesian estimation of dose thresholds
NASA Technical Reports Server (NTRS)
Groer, P. G.; Carnes, B. A.
2003-01-01
An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.
Field in Focus with a Maximum Longitudinal Electric Component
H. P. Urbach; S. F. Pereira
2008-01-01
Closed formulas are presented for the field in the lens pupil for which the longitudinal electric component at the focal point is larger than any other focused field with the same power. The fullwidth-at-half-maximum of the squared amplitude of the maximum longitudinal component is 15% to 30% less than that of the classical Airy spot.
Dose-dependent pharmacokinetics of dexamethasone
D. Loew; O. Schuster; E. H. Graul
1986-01-01
The dose dependency of the pharmacokinetics of dexamethasone and its influence on the endogenous secretion of cortisol has been studied in healthy females. The maximum plasma level occurred between 1.6 and 2.0 h after doses of 0.5–3.0 mg independent of the type of administration. AUC, distribution volume, plasma clearance and cmax did not increase in proportion to the dose but
Dose enhancement by various nanoparticles in prostate brachytherapy.
Ghorbani, Mahdi; Bakhshabadi, Mahdi; Golshan, Alireza; Knaup, Courtney
2013-12-01
The aim of this Monte Carlo study is to calculate dose enhancement in tumours by various nanoparticles in prostate brachytherapy using (125)I interstitial implants. ProstaSeed (125)I brachytherapy source was simulated using MCNPX Monte Carlo code. Dose rate constant, radial dose function and anisotropy function values were calculated and compared with previously published data. Dose enhancement factors (DEFs) were calculated for Fe2O3, Ag, Gd, Pt and Au nanoparticles with concentrations of 7, 18 and 30 mg/ml. Our source simulation was validated by comparing our results with previously published data. Maximum DEF values on the central transverse line, within the tumour, for Fe2O3, Ag, Gd, Pt and Au nanoparticles with 30 mg/ml concentration were 1.27, 1.15, 1.14, 1.32, 1.79, respectively. No general trend in DEF with increasing atomic number, or concentration of nanoparticles was observed. However, DEF was the highest for 30 mg/ml concentration of Au. The 50 % isodose line tightened toward the central point of the spherical tumour and the central 100 % isodose line expanded outward. The presence of nanoparticles in a prostate tumour increases the dose inside tumour and decreases the dose outside it, thus the treatment time and source activity can be decreased due to dose enhancement in the tumour. While more preclinical studies on other aspects are necessary, using nanoparticles can be proposed as a useful tool in prostate brachytherapy. Au nanoparticles with higher concentrations can be more useful for this purpose when compared to other nanoparticles. PMID:24307601
Pathogenic effects of low dose irradiation: dose–effect relationships
Roland Masse
2002-01-01
There is no evidence of pathogenic effects in human groups exposed to less than 100 mSv at low dose-rate. The attributed effects are therefore the result of extrapolations from higher doses. The validity of such extrapolations is discussed from the point of view of epidemiology as well as cellular and molecular biology. The Chernobyl accident resulted in large excess of thyroid
Heath Kouns; Jih-Sheng Lai; Charles E. Konrad
2004-01-01
The efficiency of an induction motor drive plays an important role in energy conservation, especially for electric vehicle applications. For the most commonly referred motor drive efficiency indexes, maximum efficiency (or minimum loss) and maximum torque per Ampere, it was found that through theoretical derivation, these two indexes do not occur at the same point in most speed and torque
Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders
Supe, Sanjay S. [Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka (India)], E-mail: sanjayssupe@gmail.com; Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M. [Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka (India)
2009-04-01
Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome points were higher for the apex model compared with the non-apex model. Mean doses to the optimization points for both the cylinder models and all the cylinder diameters were 6 Gy, matching with the prescription dose of 6 Gy. Iterative optimization routine resulted in the highest dose to apex point and dome points. The mean dose for optimization point was 6.01 Gy for iterative optimization and was much higher than 5.74 Gy for geometric and equal times routines. Step size of 1 cm gave the highest dose to the apex point. This step size was superior in terms of mean dose to optimization points. Selection of dose optimization points for the derivation of optimized dose distributions for vaginal cylinders affects the dose distributions.
CS105 Maximum Matching Winter 2005 6 Maximum Matching
Chakrabarti, Amit
CS105 Maximum Matching Winter 2005 6 Maximum Matching Consider an undirected graph G = (V, E). Definition: A matching, M, of G is a subset of the edges E, such that no vertex in V is incident to more that one edge in M. Intuitively we can say that no two edges in M have a common vertex. Maximal Matching
The myth of mean dose as a surrogate for radiation risk?
NASA Astrophysics Data System (ADS)
Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert
2010-04-01
The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. Each organ dose is assumed to be homogeneous, a representative sample or mean of which is weighted by a corresponding tissue weighting factor provided by ICRP publication 103. The weighted values are summed to provide Effective Dose (ED), the most-widely accepted surrogate for population radiation risk. For individual risk estimation, one may employ Effective Risk (ER), which further incorporates gender- and age-specific risk factors. However, both the tissue-weighting factors (as used by ED) and the risk factors (as used by ER) were derived (mostly from the atomic bomb survivor data) under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical imaging procedures. In chest CT, for example, superficial organs (eg, breasts) demonstrate a heterogeneous distribution while organs on the peripheries of the irradiation field (eg, liver) possess a nearly discontinuous dose profile. Projection radiography and mammography involve an even wider range of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ, and therefore, effective dose or effective risk, as commonly computed, can misrepresent irradiation risk. In this paper, we report the magnitude of the dose heterogeneity in both CT and projection x-ray imaging, provide an assessment of its impact on irradiation risk, and explore an alternative model-based approach for risk estimation for imaging techniques involving heterogeneous organ dose distributions.
Haney, J
2015-07-01
Dose-dependent changes in target tissue absorption have important implications for determining the most defensible approach for developing a cancer-based oral toxicity factor for hexavalent chromium (CrVI). For example, mouse target tissue absorption per unit dose is an estimated 10-fold lower at the CrVI dose corresponding to the federal maximum contaminant level (MCL) than at the USEPA draft oral slope factor (SFo) point of departure dose. This decreasing target tissue absorption as doses decrease to lower, more environmentally-relevant doses is inconsistent with linear low-dose extrapolation. The shape of the dose-response curve accounting for this toxicokinetic phenomenon would clearly be non-linear. Furthermore, these dose-dependent differences in absorption indicate that the magnitude of risk overestimation by a linear low-dose extrapolation approach (e.g., SFo) increases and is likely to span one or perhaps more orders of magnitude as it is used to predict risk at progressively lower, more environmentally-relevant doses. An additional apparent implication is that no single SFo can reliably predict risk across potential environmental doses (e.g., doses corresponding to water concentrations?the federal MCL). A non-linear approach, consistent with available mode of action data, is most scientifically defensible for derivation of an oral toxicity factor for CrVI-induced carcinogenesis. PMID:25910675
Maximum likelihood as a common computational framework in tomotherapy.
Olivera, G H; Shepard, D M; Reckwerdt, P J; Ruchala, K; Zachman, J; Fitchard, E E; Mackie, T R
1998-11-01
Tomotherapy is a dose delivery technique using helical or axial intensity modulated beams. One of the strengths of the tomotherapy concept is that it can incorporate a number of processes into a single piece of equipment. These processes include treatment optimization planning, dose reconstruction and kilovoltage/megavoltage image reconstruction. A common computational technique that could be used for all of these processes would be very appealing. The maximum likelihood estimator, originally developed for emission tomography, can serve as a useful tool in imaging and radiotherapy. We believe that this approach can play an important role in the processes of optimization planning, dose reconstruction and kilovoltage and/or megavoltage image reconstruction. These processes involve computations that require comparable physical methods. They are also based on equivalent assumptions, and they have similar mathematical solutions. As a result, the maximum likelihood approach is able to provide a common framework for all three of these computational problems. We will demonstrate how maximum likelihood methods can be applied to optimization planning, dose reconstruction and megavoltage image reconstruction in tomotherapy. Results for planning optimization, dose reconstruction and megavoltage image reconstruction will be presented. Strengths and weaknesses of the methodology are analysed. Future directions for this work are also suggested. PMID:9832016
Eldib, Mootaz; Bini, Jason; Lairez, Olivier; Faul, David D; Oesingmann, Niels; Fayad, Zahi A; Mani, Venkatesh
2015-01-01
The purpose of this study was to develop and validate low dose 18F-FDG-PET acquisition protocols for detection of inflamed carotid plaques specifically for simultaneous PET/MR imaging. The hypothesis was that increasing the duration of the PET acquisition to match that of the MR acquisition might allow for the use of lower levels of the radiotracer, while preserving quantification and image quality. Seven subjects were scanned twice at least one week apart on a simultaneous PET/MR scanner using either the standard clinical dose of 18F-FDG (373 ± 63 MBq) for 8 minutes or a low dose (93 ± 17 MBq) for 75 minutes. A maximum absolute percent difference of only 4.17% and 7.49% in the left and right carotid TBR was found between the standard dose and four time points of the low dose acquisitions (8, 24, 45, 75 minutes). Only the 8-minute low dose PET data was significantly different in terms of SNR (P = 0.009; % difference = -51%) and qualitative image quality evaluation (P = 0.0005; % difference = -45%). Our preliminary findings indicate that up to 75% reduction of the clinical standard 18F-FDG dose could be achieved using the proposed acquisition scheme while maintaining accurate quantification and SNR. PMID:26269777
Minimizing the probable maximum flood
Woodbury, M.S.; Pansic, N. ); Eberlein, D.T. )
1994-06-01
This article examines Wisconsin Electric Power Company's efforts to determine an economical way to comply with Federal Energy Regulatory Commission requirements at two hydroelectric developments on the Michigamme River. Their efforts included refinement of the area's probable maximum flood model based, in part, on a newly developed probable maximum precipitation estimate.
A Maximum Likelihood Stereo Algorithm
Ingemar J. Cox; Sunita L. Hingorani; Satish B. Rao; Bruce M. Maggs
1996-01-01
A stereo algorithm is presented that optimizes a maximum likelihood cost function. The maximum likelihood cost function assumes that corresponding features in the left and right images are normally distributed about a common true value and consists of a weighted squared error term if two features are matched or a (fixed) cost if a feature is determined to be occluded.
Maximum Entropy Production and the
Zeng, Ning
Maximum Entropy Production and the Carbon Cycle Ryan Pavlick METO658 March 28, 2006 #12;Thermodynamics 101 Maximum Entropy Production Conceptual schematic of MEP and Climate-Vegetation Interactions and some advertisements Outline #12;What is Entropy? Entropy is a measure of disorder. In a thermodynamic
Maximum Likelihood Estimation and Hypothesis
Sontag, Eduardo
Chapter 6 Maximum Likelihood Estimation and Hypothesis Testing This chapter is a brief introduction to two important statistical methods-- maximum likelihood estimation and hypothesis testing. We shall we do not really know, and our model, 1 #12;Estimation and Testing 2 which is an hypothesis. Model I
Minimal length, Friedmann equations and maximum density
NASA Astrophysics Data System (ADS)
Awad, Adel; Ali, Ahmed Farag
2014-06-01
Inspired by Jacobson's thermodynamic approach [4], Cai et al. [5, 6] have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation [6] of Friedmann equations to accommodate a general entrop-yarea law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p( ?, a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p = ?? through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.
Dose audit failures and dose augmentation
NASA Astrophysics Data System (ADS)
Herring, C.
1999-01-01
Standards EN 552 and ISO 11137, covering radiation sterilization, are technically equivalent in their requirements for the selection of the sterilization dose. Dose Setting Methods 1 and 2 described in Annex B of ISO 11137 can be used to meet these requirements for the selection of the sterilization dose. Both dose setting methods require a dose audit every 3 months to determine the continued validity of the sterilization dose. This paper addresses the subject of dose audit failures and investigations into their cause. It also presents a method to augment the sterilization dose when the number of audit positives exceeds the limits imposed by ISO 11137.
Estimation of eye lens doses received by pediatric interventional cardiologists.
Alejo, L; Koren, C; Ferrer, C; Corredoira, E; Serrada, A
2015-09-01
Maximum Hp(0.07) dose to the eye lens received in a year by the pediatric interventional cardiologists has been estimated. Optically stimulated luminescence dosimeters were placed on the eyes of an anthropomorphic phantom, whose position in the room simulates the most common irradiation conditions. Maximum workload was considered with data collected from procedures performed in the Hospital. None of the maximum values obtained exceed the dose limit of 20mSv recommended by ICRP. PMID:26048324
Amini, Arya; Westerly, David C; Waxweiler, Timothy V; Ryan, Nicole; Raben, David
2015-01-01
Targeted focal therapy strategies for treating single-lobe prostate cancer are under investigation. In this planning study, we investigate the feasibility of treating a portion of the prostate to full-dose external beam radiation with reduced dose to the opposite lobe, compared with full-dose radiation delivered to the entire gland using hypofractionated radiation. For 10 consecutive patients with low- to intermediate-risk prostate cancer, 2 hypofractionated, single-arc volumetric-modulated arc therapy (VMAT) plans were designed. The first plan (standard hypofractionation regimen [STD]) included the entire prostate gland, treated to 70Gy delivered in 28 fractions. The second dose painting plan (DP) encompassed the involved lobe treated to 70Gy delivered in 28 fractions, whereas the opposing, uninvolved lobe received 50.4Gy in 28 fractions. Mean dose to the opposing neurovascular bundle (NVB) was considerably lower for DP vs STD, with a mean dose of 53.9 vs 72.3Gy (p < 0.001). Mean penile bulb dose was 18.6Gy for DP vs 19.2Gy for STD (p = 0.880). Mean rectal dose was 21.0Gy for DP vs 22.8Gy for STD (p = 0.356). Rectum V70 (the volume receiving ?70Gy) was 2.01% for DP vs 2.74% for STD (p = 0.328). Bladder V70 was 1.69% for DP vs 2.78% for STD (p = 0.232). Planning target volume (PTV) maximum dose points were 76.5 and 76.3Gy for DP and STD, respectively (p = 0.760). This study demonstrates the feasibility of using VMAT for partial-lobe prostate radiation in patients with prostate cancer involving 1 lobe. Partial-lobe prostate plans appeared to spare adjacent critical structures including the opposite NVB. PMID:25824420
NASA Astrophysics Data System (ADS)
Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik
2015-03-01
Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10?year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support retrospective epidemiological studies of late effects in radiotherapy patients.
Strenge, D.L.; Peloquin, R.A.
1981-04-01
The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure mode are also printed if requested.
Maximum entropy signal restoration with linear programming
Mastin, G.A.; Hanson, R.J.
1988-05-01
Dantzig's bounded-variable method is used to express the maximum entropy restoration problem as a linear programming problem. This is done by approximating the nonlinear objective function with piecewise linear segments, then bounding the variables as a function of the number of segments used. The use of a linear programming approach allows equality constraints found in the traditional Lagrange multiplier method to be relaxed. A robust revised simplex algorithm is used to implement the restoration. Experimental results from 128- and 512-point signal restorations are presented.
Holmes, W.G.
2001-08-16
The offsite radiological effects from high velocity straight winds, tornadoes, and earthquakes have been estimated for a proposed facility for manufacturing enriched uranium fuel cores by powder metallurgy. Projected doses range up to 30 mrem/event to the maximum offsite individual for high winds and up to 85 mrem/event for very severe earthquakes. Even under conservative assumptions on meteorological conditions, the maximum offsite dose would be about 20 per cent of the DOE limit for accidents involving enriched uranium storage facilities. The total dose risk is low and is dominated by the risk from earthquakes. This report discusses this test.
The 1989 Solar Maximum Mission event list
NASA Technical Reports Server (NTRS)
Dennis, B. R.; Licata, J. P.; Tolbert, A. K.
1992-01-01
This document contains information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1989 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Flat Crystal Spectrometer, (4) Bent Crystal Spectrometer, (5) Ultraviolet Spectrometer Polarimeter, and (6) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Satellite (GOES) X-ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.
SU-E-T-199: How Number of Control Points Influences the Dynamic IMRT Plan Quality and Deliverability
Sharma, S; Manigandan, D; Chander, S; Subramani, V; Julka, P; Rath, G
2014-06-01
Purpose: To study the influence of number of control points on plan quality and deliverability. Methods: Five previously treated patients of carcinoma of rectum were selected. Planning target volume (PTV) and organs at risk (OARs) i.e. bladder and bowel were contoured. Dynamic IMRT plans (6MV, 7-fields, 45Gy/25 fractions and prescribed at 95% isodose) were created in Eclipse (Varian medical system, Palo Alto, CA) treatment planning system (TPS) for Varian CL2300C/D linear-accelerator. Base plan was calculated with 166 control points, variable mode (Eclipse Default). For generating other plans, all parameters were kept constant, only number of control points (Fixed mode) was varied as follows: 100, 166 and 200. Then, plan quality was analyzed in terms of maximum and mean dose received by the PTV and OARs. For plan deliverability, TPS calculated fluence was verified with I’matriXX (IBA Dosimetry, Germany) array and compared with TPS dose-plane using gamma index criteria of 3% dose difference and 3mm distance to agreement (DTA). Total number of monitor units (MU) required to deliver a plan was also noted. Results: The maximum variation for the PTV maximum with respect to eclipse default control point (166) was 0.28% (0.14Gy). Similarly, PTV mean varied only up to 0.22 %( 0.11Gy). Bladder maximum and bladder mean varied up to 0.51% (0.24Gy) and 0.16% (0.06Gy). The variation for the bowel maximum and bowel mean was also only 0.39% (0.19Gy) and 0.33% (0.04Gy). Total MU was within 0.32 % (4MU). Average gamma pass rate using different control points for five patients are 98.75±0.33%, 99.37±0.09%, 99.29±0.12%, 98.14±0.13% and 99.25±0.14% respectively. Conclusion: Slight variation (<1%) in PTV and OARs maximum and mean doses was observed with varying number of control points. Monitor unit was also not varied much. Reducing number of control points did not showed any comprise in plan deliverability in terms of gamma index pass rate.
Bakhshabadi, Mahdi; Ghorbani, Mahdi; Meigooni, Ali Soleimani
2013-09-01
In the present study, a number of brachytherapy sources and activation media were simulated using MCNPX code and the results were analyzed based on the dose enhancement factor values. Furthermore, two new brachytherapy sources (¹³¹Cs and a hypothetical ¹??Tm) were evaluated for their application in photon activation therapy (PAT). ¹²?I, ¹?³Pd, ¹³¹Cs and hypothetical ¹??Tm brachytherapy sources were simulated in water and their dose rate constant and the radial dose functions were compared with previously published data. The sources were then simulated in a soft tissue phantom which was composed of Ag, I, Pt or Au as activation media uniformly distributed in the tumour volume. These simulations were performed using the MCNPX code, and dose enhancement factor (DEF) was obtained for 7, 18 and 30 mg/ml concentrations of the activation media. Each source, activation medium and concentration was evaluated separately in a separate simulation. The calculated dose rate constant and radial dose functions were in agreement with the published data for the aforementioned sources. The maximum DEF was found to be 5.58 for a combination of the ¹??Tm source with 30 mg/ml concentration of I. The DEFs for ¹³¹Cs and ¹??Tm sources for all the four activation media were higher than those for other sources and activation media. From this point of view, these two sources can be more useful in photon activation therapy with photon emitter sources. Furthermore, ¹³¹Cs and ¹??Tm brachytherapy sources can be proposed as new options for use in the field of PAT. PMID:23934379
Satory, P R
2012-03-01
This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient. PMID:22298238
Park, J [Dept. of Pediatrics, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA (United States); Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Park, H [Dept. of Radiation Oncology, Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, J [Konkuk University Medical Center, Seoul (Korea, Republic of); Kang, S; Lee, M; Suh, T [Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Dept. of Biomedical Engineering, The Catholic University of Korea, Seoul (Korea, Republic of); Lee, B [Dept. of Bio-Convergence Engineering, Korea University, Seoul (Korea, Republic of); Dept. of Radiation Oncology, Sun Medical Center, Daejeon (Korea, Republic of)
2014-06-01
Purpose: Dosimetric effect and discrepancy according to the rectum definition methods and dose perturbation by air cavity in an endo-rectal balloon (ERB) were verified using rectal-wall (Rwall) dose maps considering systematic errors in dose optimization and calculation accuracy in intensity-modulated radiation treatment (IMRT) for prostate cancer patients. Methods: When the inflated ERB having average diameter of 4.5 cm and air volume of 100 cc is used for patient, Rwall doses were predicted by pencil-beam convolution (PBC), anisotropic analytic algorithm (AAA), and AcurosXB (AXB) with material assignment function. The errors of dose optimization and calculation by separating air cavity from the whole rectum (Rwhole) were verified with measured rectal doses. The Rwall doses affected by the dose perturbation of air cavity were evaluated using a featured rectal phantom allowing insert of rolled-up gafchromic films and glass rod detectors placed along the rectum perimeter. Inner and outer Rwall doses were verified with reconstructed predicted rectal wall dose maps. Dose errors and extent at dose levels were evaluated with estimated rectal toxicity. Results: While AXB showed insignificant difference of target dose coverage, Rwall doses underestimated by up to 20% in dose optimization for the Rwhole than Rwall at all dose range except for the maximum dose. As dose optimization for Rwall was applied, the Rwall doses presented dose error less than 3% between dose calculation algorithm except for overestimation of maximum rectal dose up to 5% in PBC. Dose optimization for Rwhole caused dose difference of Rwall especially at intermediate doses. Conclusion: Dose optimization for Rwall could be suggested for more accurate prediction of rectal wall dose prediction and dose perturbation effect by air cavity in IMRT for prostate cancer. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP) (Grant No. 200900420)
Shen, Jun; Boeckmann, Alison; Vick, Andrew
2012-06-01
A mathematical absorption model (e.g. transit compartment model) is useful to describe complex absorption process. However, in such a model, an assumption has to be made to introduce multiple doses that a prior dose has been absorbed nearly completely when the next dose is administered. This is because the drug input cannot be determined from drug depot compartment through integration of the differential equation system and has to be analytically calculated. We propose a method of dose superimposition to introduce multiple doses; thereby eliminating the assumption. The code for implementing the dose superimposition in WinNonlin and NONMEM was provided. For implementation in NONMEM, we discussed a special case (SC) and a general case (GC). In a SC, dose superimposition was implemented solely using NM-TRAN abbreviated code and the maximum number of the doses that can be administered for any subject must be pre-defined. In a GC, a user-supplied function (FUNCA) in FORTRAN code was defined to perform dose superimposition to remove the restriction that the maximum number of doses must be pre-defined. PMID:22555854
Dose-response analysis using spreadsheets.
Haas, C N
1994-12-01
The task of fitting dose-response models to experimental data can be performed using a spreadsheet with a built-in optimization engine. This paper shows how the task of point and interval estimation can be performed using Microsoft EXCEL. A case study is presented on the carcinogenic dose-response behavior of chloroform. PMID:7846318
Estimation of External Dose by Car-Borne Survey in Kerala, India
Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi
2015-01-01
A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 ?Gy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7–2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 ?Gy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y. PMID:25885680
Estimation of external dose by car-borne survey in Kerala, India.
Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi
2015-01-01
A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 ?Gy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 ?Gy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y. PMID:25885680
Rekeda, Ludmyla; Rank, Douglas; Llorens, Lily
2013-01-01
A randomized, double-blind, placebo-controlled, 3-period crossover study was conducted in 54 healthy adults to assess the effect of ceftaroline fosamil on the corrected QT (QTc) interval. The QT interval, corrected for heart rate using an individual correction formula (QTcIb), was determined predose and at 1, 1.25, 1.5, 2, 4, 8, 12, and 24.5 h after intravenous dosing with a supratherapeutic dose (1,500 mg) of ceftaroline fosamil, 400 mg moxifloxacin (positive control), and placebo. The pharmacokinetic profile of ceftaroline was also evaluated. At each time point following ceftaroline fosamil administration, the upper limit of the 90% confidence interval (CI) for the placebo-corrected change from predose baseline in QTcIb (??QTcIb) was below 10 ms (maximum, 3.4 ms at 1.5 h after dosing), indicating an absence of clinically meaningful QTc increase. The lower limit of the 90% CI of ??QTcIb for moxifloxacin versus placebo was greater than 5 ms at 5 time points (maximum, 12.8 ms at 1 h after dosing), demonstrating assay sensitivity. There was no apparent correlation between ceftaroline plasma concentrations and ??QTcIb. The supratherapeutic dose of ceftaroline fosamil (1,500 mg) resulted in substantially greater systemic exposure to ceftaroline than previously observed with standard therapeutic doses. Ceftaroline fosamil was well tolerated after a single 1,500-mg intravenous dose, and no clinically meaningful abnormalities in laboratory values or vital signs were observed. PMID:23357764
Riccobene, Todd A; Rekeda, Ludmyla; Rank, Douglas; Llorens, Lily
2013-04-01
A randomized, double-blind, placebo-controlled, 3-period crossover study was conducted in 54 healthy adults to assess the effect of ceftaroline fosamil on the corrected QT (QTc) interval. The QT interval, corrected for heart rate using an individual correction formula (QTcIb), was determined predose and at 1, 1.25, 1.5, 2, 4, 8, 12, and 24.5 h after intravenous dosing with a supratherapeutic dose (1,500 mg) of ceftaroline fosamil, 400 mg moxifloxacin (positive control), and placebo. The pharmacokinetic profile of ceftaroline was also evaluated. At each time point following ceftaroline fosamil administration, the upper limit of the 90% confidence interval (CI) for the placebo-corrected change from predose baseline in QTcIb (??QTcIb) was below 10 ms (maximum, 3.4 ms at 1.5 h after dosing), indicating an absence of clinically meaningful QTc increase. The lower limit of the 90% CI of ??QTcIb for moxifloxacin versus placebo was greater than 5 ms at 5 time points (maximum, 12.8 ms at 1 h after dosing), demonstrating assay sensitivity. There was no apparent correlation between ceftaroline plasma concentrations and ??QTcIb. The supratherapeutic dose of ceftaroline fosamil (1,500 mg) resulted in substantially greater systemic exposure to ceftaroline than previously observed with standard therapeutic doses. Ceftaroline fosamil was well tolerated after a single 1,500-mg intravenous dose, and no clinically meaningful abnormalities in laboratory values or vital signs were observed. PMID:23357764
Dynamically accumulated dose and 4D accumulated dose for moving tumors
Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)
2012-12-15
Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference between the dynamic dose and 4D dose as a function of number of deliveries and/or total deliver time was also established.
ERIC Educational Resources Information Center
Greenslade, Thomas B., Jr.
1985-01-01
Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)
Abolishing the maximum tension principle
NASA Astrophysics Data System (ADS)
Da¸browski, Mariusz P.; Gohar, H.
2015-09-01
We find the series of example theories for which the relativistic limit of maximum tension Fmax =c4 / 4 G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.
Maximum Acceptable Weight of Lift
S. H. Snook; C. H. Irvine
1967-01-01
This paper discusses the maximum amount of weight that an individual can be expected to lift comfortably and without strain. Recommendations based on empirical estimates, biomechanical techniques, and psychophysical methods are reviewed, including those of the International Labour Office, the Swiss Accident Insurance Institute, the Danish National Association for Infantile Paralysis, and the U. S. Air Force. The approach used
Low doses of animal antigen attenuates the late asthmatic reaction.
Schiff, M J; Boris, M; Weindorf, S
1992-07-01
Five subjects with a history of asthma after exposure to cat or dog underwent a trial of low-dose antigen injection followed by bronchoprovocation with the relevant antigen. The neutralization dose of antigen was determined by serial and point dilution skin testing. In a crossover protocol, patients received this antigen or placebo injections. They then underwent bronchoprovocation with the same antigen. The results of the early and late reaction to bronchoprovocation were compared, with each patient serving as her own control. As measured by the number of breath units to lower the FEV1 by 20%, placebo group tolerated only 6.9 +/- 2 breath units, whereas the neutralization group tolerated 29 +/- 3 breath units (p less than 0.05). The maximum decline in FEV1 during the late reaction was 27 +/- 13% after injection of placebo and 12 +/- 12% after injection of antigen (p less than 0.05). In this model of antigen-induced asthma, injection of low doses of allergen immediately preceding bronchoprovocation blunted the immediate and delayed asthmatic reaction. PMID:1528609
Failure-probability driven dose painting
Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark)] [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark); Berthelsen, Anne K. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark)] [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark); Bentzen, Søren M. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Departments of Human Oncology and Medical Physics, University of Wisconsin, Madison, Wisconsin 53792 (United States)] [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Departments of Human Oncology and Medical Physics, University of Wisconsin, Madison, Wisconsin 53792 (United States)
2013-08-15
Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.
Kelly, Geraldine; Laxton, Carl; Garelnabi, Mariam; Alton, Brian; Addan, Fatima; Catchpole, Andrew; Thomas, Elaine; Borley, Daryl; Dee, Kieran; Boyers, Alison; Bringas, Erica; Noulin, Nicolas; Lambkin-Williams, Rob; Murray, Edward J
2015-11-01
Retroscreen (hVIVO) have developed an RSV human viral challenge model (hVCM) for testing the efficacy of novel antiviral therapies by monitoring changes in viral load and symptoms. The integrated cycler technology and Simplexa™ kits (Focus Diagnostics) currently provide fast, qualitative and sensitive diagnostic testing in hospitals and other healthcare facilities for patients with well-established respiratory illness. We have developed a novel use of qualitative integrated cycler PCR (qicPCR) technology to identify onset of RSV infection enabling an informed dosing clinical protocol in the RSV hVCM. We have validated qicPCR detection of RSV in spiked nasal wash aspirates and demonstrate that the qicPCR assay is 94% concordant with RSV plaque assay data in nasal wash samples from 53 RSV inoculated human volunteers in the hVCM. The use of qicPCR for informed dosing was successfully implemented in a recent clinical trial demonstrating efficacy of the RSV entry inhibitor GS-5806 in the hVCM (NCT01756482). Comparison of qicPCR positivity in relation to nasal wash viral load measured by both RT-qPCR and plaque assay shows that the therapeutic exposure was correctly initiated prior to onset and peak of RSV viral shedding and symptoms in the majority of volunteers. PMID:26335961
Dose uncertainties in photon pencil kernel calculations at off-axis positions.
Olofsson, Jörgen; Nyholm, Tufve; Ahnesjö, Anders; Karlsson, Mikael
2006-09-01
The purpose of this study was to investigate the specific problems associated with photon dose calculations in points located at a distance from the central beam axis. These problems are related to laterally inhomogeneous energy fluence distributions and spectral variations causing a lateral shift in the beam quality, commonly referred to as off-axis softening (OAS). We have examined how the dose calculation accuracy is affected when enabling and disabling explicit modeling of these two effects. The calculations were performed using a pencil kernel dose calculation algorithm that facilitates modeling of OAS through laterally varying kernel properties. Together with a multi-source model that provides the lateral energy fluence distribution this generates the total dose output, i.e., the dose per monitor unit, at an arbitrary point of interest. The dose calculation accuracy was evaluated through comparisons with 264 measured output factors acquired at 5, 10, and 20 cm depth in four different megavoltage photon beams. The measurements were performed up to 18 cm from the central beam axis, inside square fields of varying size and position. The results show that calculations including explicit modeling of OAS were considerably more accurate, up to 4%, than those ignoring the lateral beam quality shift. The deviations caused by simplified head scatter modeling were smaller, but near the field edges additional errors close to 1% occurred. When enabling full physics modeling in the dose calculations the deviations display a mean value of -0.1%, a standard deviation of 0.7%, and a maximum deviation of -2.2%. Finally, the results were analyzed in order to quantify and model the inherent uncertainties that are present when leaving the central beam axis. The off-axis uncertainty component showed to increase with both off-axis distance and depth, reaching 1% (1 standard deviation) at 20 cm depth. PMID:17022238
Legrand, C; Hartmann, G H; Karger, C P
2012-06-01
The displacement effect of cylindrical ionization chambers is taken into account either by an effective point of measurement (EPOM) or, alternatively, by using a displacement perturbation factor. The dependence of these effects in water was examined as a function of the cavity radius using cylindrical chambers with different radii and a plane-parallel chamber, whose EPOM is well known. Depth-dose curves were measured in terms of absolute absorbed dose in water and evaluated according to the international protocol IAEA TRS-398 as well as the German protocol DIN 6800-2. As expected, evaluation of absorbed dose under reference conditions following both protocols agreed well within a standard uncertainty of 0.1%. However, values of absorbed dose at depths beyond the dose maximum showed deviations up to 0.3% and 0.5% for IAEA TRS-398 and DIN 6800-2, respectively. Values in the build-up and maximum region did not agree very well. Deviations of more than 1% were found for both protocols. It was concluded that the corrections recommended in both protocols are not fully appropriate. A procedure is suggested to measure the absorbed depth-dose distribution including the build-up region with an improved accuracy by means of cylindrical chambers. PMID:22581186
NASA Astrophysics Data System (ADS)
Legrand, C.; Hartmann, G. H.; Karger, C. P.
2012-06-01
The displacement effect of cylindrical ionization chambers is taken into account either by an effective point of measurement (EPOM) or, alternatively, by using a displacement perturbation factor. The dependence of these effects in water was examined as a function of the cavity radius using cylindrical chambers with different radii and a plane-parallel chamber, whose EPOM is well known. Depth-dose curves were measured in terms of absolute absorbed dose in water and evaluated according to the international protocol IAEA TRS-398 as well as the German protocol DIN 6800-2. As expected, evaluation of absorbed dose under reference conditions following both protocols agreed well within a standard uncertainty of 0.1%. However, values of absorbed dose at depths beyond the dose maximum showed deviations up to 0.3% and 0.5% for IAEA TRS-398 and DIN 6800-2, respectively. Values in the build-up and maximum region did not agree very well. Deviations of more than 1% were found for both protocols. It was concluded that the corrections recommended in both protocols are not fully appropriate. A procedure is suggested to measure the absorbed depth-dose distribution including the build-up region with an improved accuracy by means of cylindrical chambers.
Technical basis for dose reconstruction
Anspaugh, L.R.
1996-01-31
The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.
NSDL National Science Digital Library
Randall Munroe
This is an illustration of the ionizing radiation dose a person can absorb from various sources. It provides a visual comparison of doses ranging from 0.1 microsieverts (from eating a banana) to a fatal dose of 8 sieverts.
... Ionizing & Non-Ionizing Radiation Understanding Radiation: Calculate Your Radiation Dose Health Effects Main Page Exposure Pathways Calculate Your Dose Estimating Risk Radiation Doses in Perspective Directions Enter values or select entries ...
Radiation Doses in Perspective
... Health Effects Ionizing & Non-Ionizing Radiation Understanding Radiation: Radiation Doses in Perspective Health Effects Main Page Exposure Pathways ... Sources Doses from Common Radiation Sources Average U.S. Radiation Doses and Sources All of us are exposed to ...
Dose to radiotherapy technologist from air activation
McGinley, P.H.; Wright, B.A.; Meding, C.J.
1984-11-01
Production rates of the activation of oxygen and nitrogen by high-energy x-ray beams from medical accelerators were measured as functions of the accelerator energy. A technique was developed in which the air-activation production rates are used to evaluate the concentration of radioactive gas in the treatment room and the dose received by the technologist who operates the accelerator. It was found that for typical operating conditions of medical accelerators, the dose received by personnel entering the treatment room is negligible compared to the maximum permissible dose limit.
Dose and dose rate effectiveness of space radiation.
Schimmerling, W; Cucinotta, F A
2006-01-01
Dose and dose rate effectiveness factors (DDREF), in conjunction with other weighting factors, are commonly used to scale atomic bomb survivor data in order to establish limits for occupational radiation exposure, including radiation exposure in space. We use some well-known facts about the microscopic pattern of energy deposition of high-energy heavy ions, and about the dose rate dependence of chemical reactions initiated by radiation, to show that DDREF are likely to vary significantly as a function of particle type and energy, cell, tissue, and organ type, and biological end point. As a consequence, we argue that validation of DDREF by conventional methods, e.g. irradiating animal colonies and compiling statistics of cancer mortality, is not appropriate. However, the use of approaches derived from information theory and thermodynamics is a very wide field, and the present work can only be understood as a contribution to an ongoing discussion. PMID:17169950
Crime Location Prediction Based on the Maximum-Likelihood Theory
Su Mingche; Li Hanyu; Qin Yiming; Zhang Xiaohang
\\u000a In this paper, we are required to construct models to predict the offender’s location. Initially, we take a rough anchor point\\u000a locating based on psychological analysis of offenders. Then we construct a mathematical model based on the maximum-likelihood\\u000a theory to make accurate predictions about the anchor point and next crime locations. Then we choose an actual crime cases\\u000a to test
BGIM : Maximum Likelihood Estimation Primer
NSDL National Science Digital Library
Purcell, Shaun
Created by Shaun Purcell of the Social, Genetic and Development Pyschiatry Research Centre, this set of pages is an introduction to the maximum likelihood estimation. It discusses the likelihood and log-likelihood functions and the process of optimizing. The author breaks the page down in this way: introduction, model-fitting, MLE in practice, likelihood ratio test, MLE analysis of twin data and MLE analysis of linkage data. The author offers further reading for extra study of this statistical method.
Solar maximum: Solar array degradation
NASA Technical Reports Server (NTRS)
Miller, T.
1985-01-01
The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.
20 CFR 228.14 - Family maximum.
Code of Federal Regulations, 2010 CFR
2010-04-01
...Component § 228.14 Family maximum. (a) Family maximum defined. Under the Social Security Act, the...limited amount is called the family maximum. The family...column IV the primary insurance amount of the...
Maximum Neighborhood Margin Discriminant Projection for Classification
Zhan, Yongzhao; Shen, Xiangjun; Du, Lan
2014-01-01
We develop a novel maximum neighborhood margin discriminant projection (MNMDP) technique for dimensionality reduction of high-dimensional data. It utilizes both the local information and class information to model the intraclass and interclass neighborhood scatters. By maximizing the margin between intraclass and interclass neighborhoods of all points, MNMDP cannot only detect the true intrinsic manifold structure of the data but also strengthen the pattern discrimination among different classes. To verify the classification performance of the proposed MNMDP, it is applied to the PolyU HRF and FKP databases, the AR face database, and the UCI Musk database, in comparison with the competing methods such as PCA and LDA. The experimental results demonstrate the effectiveness of our MNMDP in pattern classification. PMID:24701144
Strange, D. L.; Bander, T. J.
1981-04-01
The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based on recommendations of the International Commission on Radiological Protection (ICRP). These factors are fixed internally in the code, and are not part of the input option. Dose commitments which are available from the code are as follows: • Individual dose commitments for use in predictive 40 CFR 190 compliance evaluations (Radon and short-lived daughters are excluded) • Total individual dose commitments (impacts from all available radionuclides are considered) • Annual population dose commitments (regional, extraregional, total and cummulative). This model is primarily designed for uranium mill facilities, and should not be used for operations with different radionuclides or processes.
Gong, J; Sarwan, R; Pavord, D
2014-06-01
Purpose: To quantitatively compare low dose spillage outside of PTV edge in arc therapy modalities Methods: The machines used in the study are Tomotherapy Hi-Arc and Varian 21EX with millennium120 MLC. TPS are TomoPlaning and RayStation for VMAT, respectively. The phantom is a 30cm diameter cylindrical solid water (TOMOTHERAPY, TOMOPHANTOM ASSY). The PTV is 4cm length with ellipsoidal sectional shape with major axis=5cm, minor axis=3cm in the axial plane and reversed in the coronal plane. The PTV volume is created with interpolation. It is located at the center of the phantom. The prescribed dose is 1000x5 cGy to 95% the PTV. The isocenter is set co-centered with the PTV. EBT-3 film was used to measure iso-dose lines at the center plane. Film dosimetry is performed with the RIT, v6.2. Results: the study shows: (1) dose falloff gradient is usually uneven, depending on the PTV shape in the gantry rotation plane. For an elliptical shape, the low dose spillage is wider in the minor axis direction than that in the major axis direction. The more a shape is closer to circular, the more even gradient is all directions; (2)for a circular shape (CAX plane in this study), the maximum dose in % of Rx dose at 2cm from PTV is 55% for Tomo, vs. 70% for VMAT (3) the most rapid dose falloff rang is between 95%–80% IDL for both modalities. Conclusion: Tomo has more rapid dose falloff outside of PTV. In some areas, the gradient is double for Tomo helical than that for LINAC VMAT at same points. Future work will examine the differences between optimization of doses and inherent delivery limitations.
Maximum Total Energy of the Van Allen Radiation Belt
A. J. Dessler; E. H. Vestine
1960-01-01
It is the purpose of this letter to point out that the results of the spherical harmonic analysis of the geomagnetic field place an upper limit on the energy that can be stored in the Van Allen radiation belt. It will be shown that conservative figures indicate a maximum energy in trapped radiation of 6 X 10 5 joules. Such
NASA Technical Reports Server (NTRS)
Savage, M.; Mackulin, M. J.; Coe, H. H.; Coy, J. J.
1991-01-01
Optimization procedures allow one to design a spur gear reduction for maximum life and other end use criteria. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial guess values. The optimization algorithm is described, and the models for gear life and performance are presented. The algorithm is compact and has been programmed for execution on a desk top computer. Two examples are presented to illustrate the method and its application.
Pharmacokinetics and dose proportionality of ceftibuten in men.
Lin, C; Lim, J; Radwanski, E; Marco, A; Affrime, M
1995-01-01
The pharmacokinetics and dose proportionality of ceftibuten were evaluated in healthy male volunteers receiving single oral doses of 200, 400, and 800 mg of ceftibuten. The drug was absorbed with similar times to the maximum concentration of drug in plasma for all three doses. Concentrations of ceftibuten in plasma increased with increasing dose. Analysis of variance was carried out on the dose-adjusted values for the maximum concentration of drug in plasma and the area under the plasma concentration-time curve; the results indicated that the concentrations in plasma after the 200- and 400-mg doses were dose proportional, and after the 800-mg of dose they were less than dose proportional. The elimination half-life from plasma ranged from 2.0 to 2.3 h and was independent of dose. The total excretion of unchanged ceftibuten in urine accounted for 53 to 68% of the dose, and the renal clearance was estimated to be 53 to 61 ml/min after all doses. The amount of ceftibuten-trans, the major in vitro and in vivo conversion product of ceftibuten, was low in both plasma and urine. PMID:7726498
Plaque Therapy and Scatter Dose Using {sup 252}Cf Sources
Mark J. Rivard; Anita Mahajan
2000-11-12
As melanomas are radioresistant to conventional low-linear energy transfer (LET) radiations such as photons and electrons, {sup 252}Cf (high-LET due to neutrons) may offer more promising clinical results. Although {sup 252}Cf also emits photons and electrons, the majority of absorbed dose is imparted by the high-LET radiation. This study examines the impact of scattering material on the neutron dose distributions for {sup 252}Cf plaque therapy (used to treat surface lesions like melanoma). Neutrons were transported through a 10-cm-diam water phantom with a thickness of either 5 or 10 cm using the MCNP radiation transport code. The phantom was surrounded by vacuum; the {sup 252}Cf neutron energy spectrum was modeled as a Maxwellian distribution; and the source was a bare point positioned at 1.0, 0.5, or {epsilon} above or below the water/vacuum interface. These source positions were chosen to mimic the case where a plaque locates the source either above the skin's surface, e.g., 2{pi} scattering geometry, or if layers of tissue-equivalent bolus materials were placed atop the implant to provide radiation backscatter, 4{pi} geometry. Differences between the 2{pi} and 4{pi} geometries were maximized closest to the source and for source positions farthest from the water/vacuum interface. Therefore, the maximum radiation dose (closest to the {sup 252}Cf source) may be minimized by not including scattering material for plaque therapy. However, for nonrelativistic, elastic scattering for protons by neutrons, the proton range increases with neutron energy. This result was expected since the neutron energy spectrum degrades at increasing depth and the proportion of fast neutron dose to total dose is maximized closest to the source in the 2{pi} geometry. Future studies will examine this effect as a function of neutron energy, will consider synergy with the low-LET {sup 252}Cf dose component and include experimental measurements, and will assess this technique to possibly improve in vivo dose distributions.
Georgia fishery study: implications for dose calculations. Revision 1
Turcotte, M.D.S.
1983-08-05
Fish consumption will contribute a major portion of the estimated individual and population doses from L-Reactor liquid releases and Cs-137 remobilization in Steel Creek. It is therefore important that the values for fish consumption used in dose calculations be as realistic as possible. Since publication of the L-Reactor Environmental Information Document (EID), data have become available on sport fishing in the Savannah River. These data provide SRP with a site-specific sport fish harvest and consumption values for use in dose calculations. The Georgia fishery data support the total population fish consumption and calculated dose reported in the EID. The data indicate, however, that both the EID average and maximum individual fish consumption have been underestimated, although each to a different degree. The average fish consumption value used in the EID is approximately 3% below the lower limit of the fish consumption range calculated using the Georgia data. Maximum fish consumption in the EID has been underestimated by approximately 60%, and doses to the maximum individual should also be recalculated. Future dose calculations should utilize an average adult fish consumption value of 11.3 kg/yr, and a maximum adult fish consumption value of 34 kg/yr. Consumption values for the teen and child age groups should be increased proportionally: (1) teen average = 8.5; maximum = 25.9 kg/yr; and (2) child average = 3.6; maximum = 11.2 kg/yr. 8 refs.
Measurement verification of dose distributions in pulsed-dose rate brachytherapy in breast cancer
Mantaj, Patrycja; Zwierzchowski, Grzegorz
2013-01-01
Aim The aim of the study was to verify the dose distribution optimisation method in pulsed brachytherapy. Background The pulsed-dose rate brachytherapy is a very important method of breast tumour treatment using a standard brachytheraphy equipment. The appropriate dose distribution round an implant is an important issue in treatment planning. Advanced computer systems of treatment planning are equipped with algorithms optimising dose distribution. Materials and methods The wax-paraffin phantom was constructed and seven applicators were placed within it. Two treatment plans (non-optimised, optimised) were prepared. The reference points were located at a distance of 5 mm from the applicators’ axis. Thermoluminescent detectors were placed in the phantom at suitable 35 chosen reference points. Results The dosimetry verification was carried out in 35 reference points for the plans before and after optimisation. Percentage difference for the plan without optimisation ranged from ?8.5% to 1.4% and after optimisation from ?8.3% to 0.01%. In 16 reference points, the calculated percentage difference was negative (from ?8.5% to 1.3% for the plan without optimisation and from ?8.3% to 0.8% for the optimised plan). In the remaining 19 points percentage difference was from 9.1% to 1.4% for the plan without optimisation and from 7.5% to 0.01% for the optimised plan. No statistically significant differences were found between calculated doses and doses measured at reference points in both dose distribution non-optimised treatment plans and optimised treatment plans. Conclusions No statistically significant differences were found in dose values at reference points between doses calculated by the treatment planning system and those measured by TLDs. This proves the consistency between the measurements and the calculations. PMID:24416545
Karlsson, Kristin, E-mail: kristin.karlsson@karolinska.se [Department of Medical Physics, Karolinska University Hospital, Stockholm (Sweden); Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden); Nyman, Jan [Department of Oncology, Sahlgrenska University Hospital, Gothenburg (Sweden); Baumann, Pia; Wersäll, Peter [Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm (Sweden); Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden); Drugge, Ninni [Department of Radiation Physics, Sahlgrenska University Hospital, Gothenburg (Sweden); Gagliardi, Giovanna [Department of Medical Physics, Karolinska University Hospital, Stockholm (Sweden); Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden); Johansson, Karl-Axel [Department of Radiation Physics, Sahlgrenska University Hospital, Gothenburg (Sweden); Persson, Jan-Olov [Statistical Research Group, Mathematical Statistics, Stockholm University, Stockholm (Sweden); Rutkowska, Eva [Physics Department, Clatterbridge Cancer Centre, Wirral (United Kingdom); Tullgren, Owe [Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm (Sweden); Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden); Lax, Ingmar [Department of Medical Physics, Karolinska University Hospital, Stockholm (Sweden); Department of Oncology-Pathology, Karolinska Institute, Stockholm (Sweden)
2013-11-01
Purpose: To evaluate the dose–response relationship between radiation-induced atelectasis after stereotactic body radiation therapy (SBRT) and bronchial dose. Methods and Materials: Seventy-four patients treated with SBRT for tumors close to main, lobar, or segmental bronchi were selected. The association between incidence of atelectasis and bronchial dose parameters (maximum point-dose and minimum dose to the high-dose bronchial volume [ranging from 0.1 cm{sup 3} up to 2.0 cm{sup 3}]) was statistically evaluated with survival analysis models. Results: Prescribed doses varied between 4 and 20 Gy per fraction in 2-5 fractions. Eighteen patients (24.3%) developed atelectasis considered to be radiation-induced. Statistical analysis showed a significant correlation between the incidence of radiation-induced atelectasis and minimum dose to the high-dose bronchial volumes, of which 0.1 cm{sup 3} (D{sub 0.1cm3}) was used for further analysis. The median value of D{sub 0.1cm3} (?/? = 3 Gy) was EQD{sub 2,LQ} = 147 Gy{sub 3} (range, 20-293 Gy{sub 3}). For patients who developed atelectasis the median value was EQD{sub 2,LQ} = 210 Gy{sub 3}, and for patients who did not develop atelectasis, EQD{sub 2,LQ} = 105 Gy{sub 3}. Median time from treatment to development of atelectasis was 8.0 months (range, 1.1-30.1 months). Conclusion: In this retrospective study a significant dose–response relationship between the incidence of atelectasis and the dose to the high-dose volume of the bronchi is shown.
Maximum-information photoelectron metrology
NASA Astrophysics Data System (ADS)
Hockett, P.; Lux, C.; Wollenhaupt, M.; Baumert, T.
2015-07-01
Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are high-information, coherent observables. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, three-dimensional (3D), photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyze the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et al., Phys. Rev. Lett. 112, 223001 (2014), 10.1103/PhysRevLett.112.223001] concerning the main spectral features, but also indicate unexpected symmetry breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum-information measurements of coherent observables for quantum metrology of complex systems.
Linear time maximum margin clustering.
Wang, Fei; Zhao, Bin; Zhang, Changshui
2010-02-01
Maximum margin clustering (MMC) is a newly proposed clustering method which has shown promising performance in recent studies. It extends the computational techniques of support vector machine (SVM) to the unsupervised scenario. Traditionally, MMC is formulated as a nonconvex integer programming problem which makes it difficult to solve. Several methods have been proposed in the literature to solve the MMC problem based on either semidefinite programming (SDP) or alternating optimization. However, these methods are still time demanding when handling large scale data sets, which limits its application in real-world problems. In this paper, we propose a cutting plane maximum margin clustering (CPMMC) algorithm. It first decomposes the nonconvex MMC problem into a series of convex subproblems by making use of the constrained concave-convex procedure (CCCP), then for each subproblem, our algorithm adopts the cutting plane algorithm to solve it. Moreover, we show that the CPMMC algorithm takes O(sn) time to converge with guaranteed accuracy, where n is the number of samples in the data set and s is the sparsity of the data set, i.e., the average number of nonzero features of the data samples. We also derive the multiclass version of our CPMMC algorithm. Experimental evaluations on several real-world data sets show that CPMMC performs better than existing MMC methods, both in efficiency and accuracy. PMID:20083456
Maximum-entropy image reconstruction using wavelets
Klaus Maisinger; M. P. Hobson; A. N. Lasenby
2003-03-12
Wavelet functions allow the sparse and efficient representation of a signal at different scales. Recently the application of wavelets to the denoising of maps of cosmic microwave background (CMB) fluctuations has been proposed. The maximum-entropy method (MEM) is also often used for enhancing astronomical images and has been applied to CMB data. In this paper, we give a systematic discussion of combining these two approaches by the use of the MEM in wavelet bases for the denoising and deconvolution of CMB maps and more general images. Certain types of wavelet transforms, such as the a trous transform, can be viewed as a multi-channel intrinsic correlation function (ICF). We find that the wavelet MEM has lower reconstruction residuals than conventional pixel-basis MEM in the case when the signal-to-noise ratio is low and the point spread function narrow. Furthermore, the Bayesian evidence for the wavelet MEM reconstructions is generally higher for a wide range of images. From a Bayesian point of view, the wavelet basis thus provides a better model of the image.
Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...
Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...
Peripheral doses from pediatric IMRT.
Klein, Eric E; Maserang, Beth; Wood, Roy; Mansur, David
2006-07-01
Peripheral dose (PD) data exist for conventional fields (> or = 10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10(-10) scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/conventional ranged from 0.47-0.94) doses approximately [0.4-1.8 cGy]/[0.9-2.9 cGy]/fraction, respectively. Prior phantom reports are for fields 10 cm or greater, while pediatric central nervous system fields range from 4 to 7 cm, and effectively much smaller for IMRT (2-6 cm). Peripheral dose in close proximity (< 10 cm from the field edge) is dominated by internal scatter; therefore, field-size differences overwhelm phantom size affects and increased MU. Distant peripheral dose, dominated by head leakage, was higher than predicted, even when accounting for MUs (approximtely factor of 3) likely due to the pediatric phantom size. The ratio of the testes dose ranged from 3.3-5.3 for IMRT/conventional. PD to OAR for pediatric IMRT cannot be predicted from large-field full phantom studies. For regional OAR, doses are likely lower than predicted by existing "large field" data, while the distant PD is higher. PMID:16898456
An updated dose assessment for Rongelap Island
Robison, W.L.; Conrado, C.L.; Bogen, K.T.
1994-07-01
We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).
Understanding and using fluoroscopic dose display information.
Weinberg, Brent D; Guild, Jeffrey B; Arbique, Gary M; Chason, David P; Anderson, Jon A
2015-01-01
Fluoroscopically guided procedures are an area of radiology in which radiation exposure to the patient is highly operator dependent. Modern fluoroscopy machines display a variety of information, including technique factors, field of view, operating geometry, exposure mode, fluoroscopic time, air kerma at the reference point (RAK), and air kerma area-product. However, the presentation of this information is highly vendor specific, and many users are unaware of how to interpret this information and use it to perform a study with the minimum necessary dose. A conceptual framework for understanding the radiation dose readout during a procedure is to compare it to the dashboard of an automobile, where the rate at which radiation is being applied (the RAK rate [mGy/min]) is the dose "speed" and the cumulative amount of radiation applied (cumulative RAK [mGy]) is the dose "odometer." This analogy can be used as a starting point to improve knowledge of these parameters, including how RAK is measured, how RAK correlates with skin dose, and how parameters are displayed differently during fluoroscopy and fluorography. Awareness of these factors is critical to understanding how dose parameters translate to patient risk and the consequences of high-dose studies. With this increased awareness, physicians performing fluoroscopically guided procedures can understand how to use built-in features of the fluoroscopic equipment (pulse rate, beam filtration, and automatic exposure control) and fluoroscopic techniques (procedure planning, patient positioning, proper collimation, and magnification) to reduce patient radiation dose, thereby improving patient safety. PMID:25442356
Hayes, R.B.; Haskell, E.H.; Kenner, G.H. [Utah Univ., Salt Lake City, UT (United States)
1996-01-01
Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.
ERIC Educational Resources Information Center
Hess, Richard; Grinstead, Charles; Grindstead, Marshall; Bergstrand, Deborah
2008-01-01
Suppose that we are given a rectangular box in 3-space. Given any two points on the surface of this box, we can define the surface distance between them to be the length of the shortest path between them on the surface of the box. This paper determines the pairs of points of maximum surface distance for all boxes. It is often the case that these…
2011 Radioactive Materials Usage Survey for Unmonitored Point Sources
Sturgeon, Richard W. [Los Alamos National Laboratory
2012-06-27
This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.
Farhood, Bagher
2014-01-01
Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements. PMID:25834582
Paton, A M; Chalmers, K E; Coomber, H; Cameron, A L
2012-01-01
Objective The aim of this study was to assess the impact of dose escalation on the proportion of patients requiring MR image-guided optimisation rather than standard Manchester-based CT-guided planning, and the level of escalation achievable. Methods 30 patients with cervical cancer treated with external beam radiotherapy and image-guided brachytherapy (IGBT) had MR images acquired at the first fraction of IGBT. Gross tumour volume and high-risk clinical target volume (HR CTV) were contoured and treatment plans retrospectively produced for a range of total 2-Gy equivalent (EQD2) prescription doses from 66 Gy?/?=10 to 90 Gy?/?=10 (HR CTV D90). Standard Manchester system-style plans were produced, prescribed to point A and then optimised where necessary with the aim of delivering at least the prescription dose to the HR CTV D90 while respecting organ-at-risk (OAR) tolerances. Results Increasing the total EQD2 from 66 Gy?/?=10 to 90 Gy?/?=10 increased the number of plans requiring optimisation from 13.3% to 90%. After optimisation, the number of plans achieving the prescription dose ranged from 93.3% (66 Gy?/?=10) to 63.3% (90 Gy?/?=10) with the mean±standard deviation for HR CTV D90 EQD2 from 78.4±12.4 Gy?/?=10 (66 Gy?/?=10) to 94.1±19.9 Gy?/?=10 (90 Gy?/?=10). Conclusion As doses are escalated, the need for non-standard optimised planning increases, while benefits in terms of increased target doses actually achieved diminish. The maximum achievable target dose is ultimately limited by proximity of OARs. Advances in knowledge This work represents a guide for other centres in determining the highest practicable prescription doses while considering patient throughput and maintaining acceptable OAR doses. PMID:23175490
Discontinuity of maximum entropy inference and quantum phase transitions
NASA Astrophysics Data System (ADS)
Chen, Jianxin; Ji, Zhengfeng; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Yu, Nengkun; Zeng, Bei; Zhou, Duanlu
2015-08-01
In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit.
Almén, A; Sandblom, V; Båth, M; Lundh, C
2015-03-01
The optimisation of occupational radiological protection is challenging and a variety of factors have to be considered. Physicians performing image-guided interventions are working in an environment with one of the highest radiation risk levels in healthcare. Appropriate knowledge about the radiation environment is a prerequisite for conducting the optimisation process. Information about the dose rate variation during the interventions could provide valuable input to this process. The overall purpose of this study was to explore the prerequisite and feasibility to measure dose rate in scattered radiation and to assess the usefulness of such data in the optimisation process.Using an active dosimeter system, the dose rate in the unshielded scattered radiation field was measured in a fixed point close to the patient undergoing an image-guided intervention. The measurements were performed with a time resolution of one second and the dose rate data was continuously timed in a data log. In two treatment rooms, data was collected during a 6?month time period, resulting in data from 380 image-guided interventions and vascular treatments in the abdomen, arms and legs. These procedures were categorised into eight types according to the purpose of the treatment and the anatomical region involved.The dose rate varied substantially between treatment types, both regarding the levels and the distribution during the procedure. The maximum dose rate for different types of interventions varied typically between 5 and 100?mSv?h(-1), but substantially higher and lower dose rates were also registered. The average dose rate during a complete procedure was however substantially lower and varied typically between 0.05 and 1?mSv?h(-1). An analysis of the distribution disclosed that for a large part of the treatment types, the major amount of the total accumulated dose for a procedure was delivered in less than 10% of the exposure time and in less than 1% of the total procedure time.The present study shows that systematic dose rate measurements are feasible. Such measurements can be used to give a general indication of the exposure level to the staff and could serve as a first risk assessment tool when introducing new treatment types or x-ray equipment in the clinic. For example, it could provide an indication for when detailed eye dose measurements are needed. It also gives input to risk management considerations and the development of efficient routines for other radiological protection measures. PMID:25517218
Fast maximum entropy Doppler mapping
H. C. Spruit
1998-06-10
A numerical code is described for constructing Doppler maps from the orbital variation of line profiles of (mass transfering) binaries. It uses an algorithm related to Richardson-Lucy iteration, and is much faster than the standard algorithm used for ME problems. The method has been tested on data of cataclysmic variables (including WZ Sge and SS Cyg), producing maps of up to 300X300 points. It includes an IDL-based set of routines for manipulating and plotting the input and output data, and can be downloaded from http://www.mpa-garching.mpg.de/~henk
Multiple-dose, linear, dose-proportional pharmacokinetics of retigabine in healthy volunteers.
Ferron, Geraldine M; Paul, Jeffrey; Fruncillo, Richard; Richards, Lyette; Knebel, Norbert; Getsy, John; Troy, Steven
2002-02-01
Retigabine, a first-in-class selective M-current potassium channel opener, is a novel antiepileptic compound currently in clinical development. The purpose of this randomized placebo-controlled study was to assess retigabine oral safety and pharmacokinetics in healthy male volunteers (N = 45). Subjects received one dose on day 1 and doses every 12 hours for the next 14 days. Fixed doses were given to the first four groups (200, 400, 500, and 600 mg per day). Titrated doses were given to group 5 in 100 mg increases every 4 days, achieving 700 mg per day on day 15. Serial blood samples were collected on days 1 and 15. Pharmacokinetic parameters were compared between days and among dose groups. After administration of a single dose, retigabine was rapidly absorbed, with maximum concentrations of 387 ng/ml (normalized to a 100 mg dose) occurring within 1.5 hours. Retigabine was eliminated with a mean terminal half-life of 8.0 hours and an apparent oral clearance of 0.70 L/h/kg in white subjects. In black subjects, retigabine clearance and volume of distribution were 25% and 30% lower, respectively, after normalizing by body weight, leading to higher exposure in this population. Retigabine's pharmocokinetics was linearly dose proportional. Steady-state pharmacokinetics was in agreement with single-dose pharmacokinetics, and the accumulation ratio was about 1.5. Retigabine and AWD21-360 trough evening concentrations were significantly lower (about 30% to 35%) than morning values. The titration regimen allowed for higher doses to be tolerated compared to the fixed-dose regimen. In conclusion, the pharmacokinetics of retigabine is linearly dose proportional for daily doses of 100 to 700 mg and is not modified on multiple administrations. PMID:11831540
Dose escalation with over-dose and under-dose controls in Phase I/II clinical trials.
Chen, Zhengjia; Yuan, Ying; Li, Zheng; Kutner, Michael; Owonikoko, Taofeek; Curran, Walter J; Khuri, Fadlo; Kowalski, Jeanne
2015-07-01
To save valuable time and resources in new drug development, Phase I/II clinical trials with toxicity control and drug efficacy as dual primary endpoints have become increasingly popular. Escalation with over-dose control (the EWOC) is a Bayesian adaptive Phase I clinical trial design that can accurately estimate the maximum tolerated dose (MTD) level and control the probability of overdosing patients during the dose allocation phase. In this paper, we extend EWOC to Phase I/II clinical trials by controlling for under-dosing with a Gumbel Copula model to provide patients with at least minimum drug efficacy. We propose a utility function to measure the composite effect of toxicity and efficacy and select the optimal dose. To deal with the common issue that the efficacy endpoint often cannot be quickly ascertained, we employ Bayesian data augmentation to handle delayed efficacy and allow for flexible patient accrual without a waiting period. Extensive simulations demonstrate that the proposed new design not only provides better therapeutic effect by reducing the probability of treating patients at under-dose levels while protecting patients from being overdosed, but also improves trial efficiency and increases the accuracy of dose recommendation for subsequent clinical trials. We apply the proposed design to a Phase I/II solid tumor trial. PMID:26012358
Uncertainties on lung doses from inhaled plutonium.
Puncher, Matthew; Birchall, Alan; Bull, Richard K
2011-10-01
In a recent epidemiological study, Bayesian uncertainties on lung doses have been calculated to determine lung cancer risk from occupational exposures to plutonium. These calculations used a revised version of the Human Respiratory Tract Model (HRTM) published by the ICRP. In addition to the Bayesian analyses, which give probability distributions of doses, point estimates of doses (single estimates without uncertainty) were also provided for that study using the existing HRTM as it is described in ICRP Publication 66; these are to be used in a preliminary analysis of risk. To infer the differences between the point estimates and Bayesian uncertainty analyses, this paper applies the methodology to former workers of the United Kingdom Atomic Energy Authority (UKAEA), who constituted a subset of the study cohort. The resulting probability distributions of lung doses are compared with the point estimates obtained for each worker. It is shown that mean posterior lung doses are around two- to fourfold higher than point estimates and that uncertainties on doses vary over a wide range, greater than two orders of magnitude for some lung tissues. In addition, we demonstrate that uncertainties on the parameter values, rather than the model structure, are largely responsible for these effects. Of these it appears to be the parameters describing absorption from the lungs to blood that have the greatest impact on estimates of lung doses from urine bioassay. Therefore, accurate determination of the chemical form of inhaled plutonium and the absorption parameter values for these materials is important for obtaining reliable estimates of lung doses and hence risk from occupational exposures to plutonium. PMID:21692652
NASA Astrophysics Data System (ADS)
Shamsaldin, A.; Lundell, M.; Diallo, I.; Ligot, L.; Chavaudra, J.; de Vathaire, F.
2000-12-01
Radium applicators and pure beta emitters have been widely used in the past to treat skin haemangioma in early childhood. A well defined relationship between the low doses received from these applicators and radiation-induced cancers requires accurate dosimetry. A human-based CT scan phantom has been used to simulate every patient and treatment condition and then to calculate the source-target distance when radium and pure beta applicators were used. The effective transmission factor ?(r) for the gamma spectrum emitted by the radium sources applied on the skin surface was modelled using Monte Carlo simulations. The well-known quantization approach was used to calculate gamma doses delivered from radium applicators to various anatomical points. For 32P, 90Sr/90Y applicators and 90Y needles we have used the apparent exponential attenuation equation. The dose calculation algorithm was integrated into the ICTA software (standing for a model that constructs an Individualized phantom based on CT slices and Auxological data), which has been developed for epidemiological studies of cohorts of patients who received radium and beta-treatments for skin haemangioma. The ?(r) values obtained for radium skin applicators are in good agreement with the available values in the first 10 cm but higher at greater distances. Gamma doses can be calculated with this algorithm at 165 anatomical points throughout the body of patients treated with radium applicators. Lung heterogeneity and air crossed by the gamma rays are considered. Comparison of absorbed doses in water from a 10 mg equivalent radium source simulated by ICTA with those measured at the Radiumhemmet, Karolinska Hospital (RAH) showed good agreement, but ICTA estimation of organ doses did not always correspond those estimated at the RAH. Beta doses from 32P, 90Sr/90Y applicators and 90Y needles are calculated up to the maximum beta range (11 mm).
In vitro dose measurements in a human cadaver with abdomen/pelvis CT scans
Zhang, Da; Padole, Atul; Li, Xinhua; Singh, Sarabjeet; Khawaja, Ranish Deedar Ali; Lira, Diego; Liu, Tianyu; Shi, Jim Q.; Otrakji, Alexi; Kalra, Mannudeep K.; Xu, X. George; Liu, Bob
2014-01-01
Purpose: To present a study of radiation dose measurements with a human cadaver scanned on a clinical CT scanner. Methods: Multiple point dose measurements were obtained with high-accuracy Thimble ionization chambers placed inside the stomach, liver, paravertebral gutter, ascending colon, left kidney, and urinary bladder of a human cadaver (183 cm in height and 67.5 kg in weight) whose abdomen/pelvis region was scanned repeatedly with a multidetector row CT. The flat energy response and precision of the dosimeters were verified, and the slight differences in each dosimeter's response were evaluated and corrected to attain high accuracy. In addition, skin doses were measured for radiosensitive organs outside the scanned region with OSL dosimeters: the right eye, thyroid, both nipples, and the right testicle. Three scan protocols were used, which shared most scan parameters but had different kVp and mA settings: 120-kVp automA, 120-kVp 300 mA, and 100-kVp 300 mA. For each protocol three repeated scans were performed. Results: The tube starting angle (TSA) was found to randomly vary around two major conditions, which caused large fluctuations in the repeated point dose measurements: for the 120-kVp 300 mA protocol this angle changed from approximately 110° to 290°, and caused 8% ? 25% difference in the point dose measured at the stomach, liver, colon, and urinary bladder. When the fluctuations of the TSA were small (within 5°), the maximum coefficient of variance was approximately 3.3%. The soft tissue absorbed doses averaged from four locations near the center of the scanned region were 27.2 ± 3.3 and 16.5 ± 2.7 mGy for the 120 and 100-kVp fixed-mA scans, respectively. These values were consistent with the corresponding size specific dose estimates within 4%. The comparison of the per-100-mAs tissue doses from the three protocols revealed that: (1) dose levels at nonsuperficial locations in the TCM scans could not be accurately deduced by simply scaling the fix-mA doses with local mA values; (2) the general power law relationship between dose and kVp varied from location to location, with the power index ranged between 2.7 and 3.5. The averaged dose measurements at both nipples, which were about 0.6 cm outside the prescribed scan region, ranged from 23 to 27 mGy at the left nipple, and varied from 3 to 20 mGy at the right nipple over the three scan protocols. Large fluctuations over repeated scans were also observed, as a combined result of helical scans of large pitch (1.375) and small active areas of the skin dosimeters. In addition, the averaged skin dose fell off drastically with the distance to the nearest boundary of the scanned region. Conclusions: This study revealed the complexity of CT dose fluctuation and variation with a human cadaver. PMID:25186398
SVMs, Generative Kernels & Maximum Margin Statistical Models
Gales, Mark
SVMs, Generative Kernels & Maximum Margin Statistical Models Mark Gales & Martin Layton 16 December 2004 Cambridge University Engineering Department Institute of Statistical Mathematics #12;SVMs, Generative Kernels and Maximum Margin Statistical Models Overview · Dependency Modelling in Speech
Maximum entropy principal for transportation
Bilich, F.; Da Silva, R.
2008-11-06
In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.
Propane spectral resolution enhancement by the maximum entropy method
NASA Technical Reports Server (NTRS)
Bonavito, N. L.; Stewart, K. P.; Hurley, E. J.; Yeh, K. C.; Inguva, R.
1990-01-01
The Burg algorithm for maximum entropy power spectral density estimation is applied to a time series of data obtained from a Michelson interferometer and compared with a standard FFT estimate for resolution capability. The propane transmittance spectrum was estimated by use of the FFT with a 2 to the 18th data sample interferogram, giving a maximum unapodized resolution of 0.06/cm. This estimate was then interpolated by zero filling an additional 2 to the 18th points, and the final resolution was taken to be 0.06/cm. Comparison of the maximum entropy method (MEM) estimate with the FFT was made over a 45/cm region of the spectrum for several increasing record lengths of interferogram data beginning at 2 to the 10th. It is found that over this region the MEM estimate with 2 to the 16th data samples is in close agreement with the FFT estimate using 2 to the 18th samples.
Maximum Metric Spanning Tree Made Byzantine Tolerant
Swan, Dubois
Maximum Metric Spanning Tree Made Byzantine Tolerant Swan Dubois1 , Toshimitsu Masuzawa2 , and S-stabilizing and Byzantine tolerant. We consider the well known problem of constructing a maximum met- ric tree first provide two new impossibility results about the construction of a maximum metric tree in presence
Relationship of Maximum Strength to Weightlifting Performance
Michael H Stone; William A Sands; Kyle C Pierce; Jon Carlock; Marco Cardinale; Robert U Newton
2005-01-01
Purpose: The primary objective was to assess the relationship of maximum strength to weightlifting ability using established scaling methods. The secondary objective was to compare men and women weightlifters on strength and weightlifting ability. Methods: Two correlational observations were carried out using Pearson's r. In the first observation (N = 65) the relationship of dynamic maximum strength (one-repetition maximum (IRM)
Smoothing methods in maximum entropy language modeling
S. C. Martin; H. Ney; J. Zaplo
1999-01-01
This paper discusses various aspects of smoothing techniques in maximum entropy language modeling, a topic not sufficiently covered by previous publications. We show: (1) that straightforward maximum entropy models with nested features, e.g. tri-, bi-, and unigrams, result in unsmoothed relative frequencies models; (2) that maximum entropy models with nested features and discounted feature counts approximate backing-off smoothed relative frequencies
Jin Jianyue; Drzymala, Robert; Li Zuofeng [Department of Radiation Oncology, Siteman Cancer Center, Washington University Medical Center, St. Louis, Missouri 63110 (United States)
2004-12-01
The purpose of this study is to develop a simple independent dose calculation method to verify treatment plans for Leksell Gamma Knife radiosurgery. Our approach uses the total integral dose within the skull as an end point for comparison. The total integral dose is computed using a spreadsheet and is compared to that obtained from Leksell GammaPlan registered . It is calculated as the sum of the integral doses of 201 beams, each passing through a cylindrical volume. The average length of the cylinders is estimated from the Skull-Scaler measurement data taken before treatment. Correction factors are applied to the length of the cylinder depending on the location of a shot in the skull. The radius of the cylinder corresponds to the collimator aperture of the helmet, with a correction factor for the beam penumbra and scattering. We have tested our simple spreadsheet program using treatment plans of 40 patients treated with Gamma Knife registered in our center. These patients differ in geometry, size, lesion locations, collimator helmet, and treatment complexities. Results show that differences between our calculations and treatment planning results are typically within {+-}3%, with a maximum difference of {+-}3.8%. We demonstrate that our spreadsheet program is a convenient and effective independent method to verify treatment planning irradiation times prior to implementation of Gamma Knife radiosurgery.
Applicationsfor2014 5 points 4 points 3 points 2 points 1 point
New South Wales, University of
Footballers' Association (A or W League) Member of Australian Team open or underage (all sports) Member of Australian underage team for a particular sport #12;MUSIC Applicationsfor2014 5 points 4 points 3 points 2
el Dareer, S.M.; Kalin, J.R.; Tillery, K.F.; Hill, D.L.
1988-01-01
The disposition of 2-(2-quinolyl)-1,3-indandione (D. C. yellow number11, DCY) in male Fischer rats dosed intravenously or by feeding was determined. For rats given (/sup 14/C)DCY in the feed (0.00044-0.41% of the diet), recovery of radioactivity during the 24-h dosing period and the 72-h period thereafter ranged from 89.1 to 93.9% for feces and from 4.98 to 6.25 for urine. Tissues contained only trace amounts. Following intravenous dosing with (/sup 14/C)DCY (0.93 mg/kg), radioactivity distributed readily into most tissues; maximum amounts were present at 5 min, the earliest time of assay. Maximum amounts of radioactivity in fat, skin, and gut tissue, however, were present at 30 min after dosing. These three tissues also had relatively long alpha phases for the elimination of radioactivity. In 24 h after intravenous dosing, rats excreted 81.1% of the dose in the feces and 16.0% of the dose in the urine. For rats fitted with biliary cannulas, 54.5% of the dose, all of which was metabolites of (/sup 14/C)DCY, was recovered in the bile in 4 h. Associated with the rapid and extensive biliary excretion of metabolites of intravenously administered (/sup 14/C)DCY was the appearance of large amounts of radioactivity in the feces and also, at intermediate time points, in the liver, gut contents, and gut tissue. In conclusion, rats rapidly distribute, metabolize, and excrete (/sup 14/C)DCY.
El Dareer, S.M.; Kalin, J.R.; Tillery, K.F.; Hill, D.L.
1988-01-01
The disposition of 2-(2-quinolyl)-1,3-indandione (D. C. yellow No. 11, DCY) in male Fischer rats dosed intravenously or by feeding was determined. For rats given (/sup 14/C)DCY in the feed (0.00044-0.41% of the diet), recovery of radioactivity during the 24-h dosing period and the 72-h period thereafter ranged from 89.1 to 93.9% for feces and from 4.98 to 6.25 for urine. Tissues contained only trace amounts. Following intravenous dosing with (/sup 14/C)DCY (0.93 mg/kg), radioactivity distributed readily into most tissues; maximum amounts were present at 5 min, the earliest time of assay. Maximum amounts of radioactivity in fat, skin, and gut tissue, however, were present at 30 min after dosing. These three tissues also had relatively long alpha phases for the elimination of radioactivity. In 24 h after intravenous dosing, rats excreted 81.1% of the dose in the feces and 16.0% of the dose in the urine. For rats fitted with biliary cannulas, 54.5% of the dose, all of which was metabolites of (/sup 14/C), was recovered in the bile in 4 h. Associated with the rapid and extensive biliary excretion of metabolites of intravenously administered (/sup 14/C)DCY was the appearance of large amounts of radioactivity in the feces and also, at intermediate time points, in the liver, gut contents, and gut tissue. In conclusion, rats rapidly distribute, metabolize, and excrete (/sup 14/C)DCY.
Meier, G; Besson, R; Nanz, A; Safai, S; Lomax, A J
2015-04-01
Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload. In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures. The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations. The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow. PMID:25779992
NASA Astrophysics Data System (ADS)
Meier, G.; Besson, R.; Nanz, A.; Safai, S.; Lomax, A. J.
2015-04-01
Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload. In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures. The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations. The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow.
ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY
Smith, F.; Phifer, M.
2014-04-10
A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.
Jiang, Runqing; Barnett, Rob B; Chow, James C L; Chen, Jeff Z Y
2007-03-01
The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15 degree increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients. PMID:17301465
A STRONG MAXIMUM PRINCIPLE FOR A CLASS OF NONPOSITONE SINGULAR ELLIPTIC PROBLEMS
Ramaswamy, Mythily
A STRONG MAXIMUM PRINCIPLE FOR A CLASS OF NONPOSITONE SINGULAR ELLIPTIC PROBLEMS LUCIO DAMASCELLI not exist in the points where Du vanishes. #12; SMP FOR NONPOSITONE PROBLEMS 3 Therefore, though we also
SU-E-T-162: Evaluation of Dose Calculation of RayStation Planning System in Heterogeneous Media
Xu, H; Yi, B; Chung, H; Prado, K; Chen, S [University of Maryland School of Medicine, Baltimore, MD (United States)
2014-06-01
Purpose: To investigate the clinical reliability of heterogeneity-based dose algorithm using RayStation treatment planning system v.4.0. Methods: The collapsed cone dose calculations in RayStation (RaySearch, Sweden) were compared with the measurements (ion chamber and EBT2 film) and with an in-house Monte Carlo algorithm. A heterogeneous multi-layer phantom and CT images of 4 lung cancer patients were used here. The phantom, composed of multiple solid water slabs and Styrofoams, was irradiated with 6MV beams perpendicular to the layers. The MLC-defined field sizes were 5×5, 10×10, 15×15 and 20×20cm{sup 2}. The chamber was positioned at center of central solid water layer, and the films were placed at interfaces of solid water and Styrofoam. The RayStation dose and Monte Carlo dose were compared by performing absolute gamma analysis (3mm/3%): 1D gamma for PDD in the phantom and 3D gamma for patient volumes receiving dose above 10% of maximum dose. Results: The point dose differences between RayStation and ion chamber measurement were smaller than 1% for all of the field sizes. Between RayStation and film measurement, 5×5cm2 field had the maximum differences : <4mm for the penumbra and <0.3mm for the field width at all Styrofoam-and-solid-water interfaces. The absolute gamma analysis showed good agreement between RayStation and Monte Carlo. For PDD along beam axis in the phantom, the 1D gamma was 95.4, 98.6, 99.6 and 99.3% for field size 5×5, 10×10, 15×15 and 20×202 respectively. For dose comparison using patient CT images, 3D gamma was > 95% for all the patients. Conclusion: With respect to ion chamber/film measurement and Monte Carlo calculation, the collapsed cone algorithm in RayStation computed reasonable dose in both phantom and patient cases. Heterogeneity-based dose calculation of RayStation is clinically acceptable in heterogeneous media.
A novel method to estimate the maximum power for a photovoltaic inverter system
E. I. rtiz-Rivera; Fang Peng
2004-01-01
This paper describes a novel method to approximate the maximum power for a photovoltaic inverter system for solar distributed generation. It is designed for power systems applications and utilities. The proposed method takes in consideration the interaction between solar panels, photovoltaic inverter, maximum power point tracking (MPPT) control, solar panel DC side dynamic model and the effective intensity of light
Allometric scaling of maximum population density: a common rule for marine phytoplankton
Gillooly, Jamie
IDEA Allometric scaling of maximum population density: a common rule for marine phytoplankton population densities of marine phytoplankton. These results imply that the abundance of primary producers phytoplankton in Sweden (Belgrano et al. 1999). The maximum abundance of marine phytoplankton (black points, Fig
Maximum Power Transfer Tracking in a Solar USB Charger for Smartphones
Pedram, Massoud
Maximum Power Transfer Tracking in a Solar USB Charger for Smartphones Abstract--Battery life of commercial chargers using solar power have been developed. They focus on correct functionality, but system chargers do not perform the maximum power point tracking [2], [3] of the solar panel. We exclude
Abusaris, Huda; Hoogeman, M.; Nuyttens, Joost J.
2012-01-01
The purpose of the present study was to explore the outcome, cumulative dose in tumor and organs at risk and toxicity after extra-cranial stereotactic re-irradiation. Twenty-seven patients were evaluated who had been re-irradiated with stereotactic body radiotherapy (SBRT) after conventional radiotherapy (CRT). The dose summation of the SBRT and CRT plans was done by dose point calculations accounting for fraction size by the linear-quadratic model. Efficacy and toxicity was scored by looking at the reduction in tumor size, pain and bleeding. Symptomatic response was observed in 96% of the patients. The median maximum SBRT dose to the tumor was 90 Gy3 (range: 42-420 Gy3). The median cumulative dose for the rectum, bowel and bladder resulted in 104 Gy3, 98 Gy3 and 113 Gy3, respectively. No grades 5, 4 and 3 acute and late toxicity was observed. In conclusion: re-irradiation to the same region using extra-cranial stereotactic radiotherapy is feasible and resulted in a 96% symptomatic response with low toxicity. PMID:22568625
Huang, Yanxiao; Willomitzer, Christian; Zakaria, Golam Abu; Hartmann, Guenther H
2010-01-01
Measurements of depth-dose curves in water phantom using a cylindrical ionization chamber require that its effective point of measurement is located at the measuring depth. Recommendations for the position of the effective point of measurement with respect to the central axis valid for high-energy electron and photon beams are given in dosimetry protocols. According to these protocols, the use of a constant shift P(eff) is currently recommended. However, this is still based on a very limited set of experimental results. It is therefore expected that an improved knowledge of the exact position of the effective point of measurement will further improve the accuracy of dosimetry. Recent publications have revealed that the position of the effective point of measurement is indeed varying with beam energy, field size and also with chamber geometry. The aim of this study is to investigate whether the shift of P(eff) can be taken to be constant and independent from the beam energy. An experimental determination of the effective point of measurement is presented based on a comparison between cylindrical chambers and a plane-parallel chamber using conventional dosimetry equipment. For electron beams, the determination is based on the comparison of halfvalue depth R(50) between the cylindrical chamber of interest and a well guarded plane-parallel Roos chamber. For photon beams, the depth of dose maximum, d(max), the depth of 80% dose, d(80), and the dose parameter PDD(10) were used. It was again found that the effective point of measurement for both, electron and photon beams Dosimetry, depends on the beam energy. The deviation from a constant value remains very small for photons, whereas significant deviations were found for electrons. It is therefore concluded that use of a single upstream shift value from the centre of the cylindrical chamber as recommended in current dosimetry protocols is adequate for photons, however inadequate for accurate electron beam dosimetry. PMID:19926506
Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
Velec, Michael; Moseley, Joanne L.; Eccles, Cynthia L.; Craig, Tim; Sharpe, Michael B.; Dawson, Laura A.; Brock, Kristy K.
2011-05-01
Purpose: To investigate the effect of breathing motion and dose accumulation on the planned radiotherapy dose to liver tumors and normal tissues using deformable image registration. Methods and Materials: Twenty-one free-breathing stereotactic liver cancer radiotherapy patients, planned on static exhale computed tomography (CT) for 27-60 Gy in six fractions, were included. A biomechanical model-based deformable image registration algorithm retrospectively deformed each exhale CT to inhale CT. This deformation map was combined with exhale and inhale dose grids from the treatment planning system to accumulate dose over the breathing cycle. Accumulation was also investigated using a simple rigid liver-to-liver registration. Changes to tumor and normal tissue dose were quantified. Results: Relative to static plans, mean dose change (range) after deformable dose accumulation (as % of prescription dose) was -1 (-14 to 8) to minimum tumor, -4 (-15 to 0) to maximum bowel, -4 (-25 to 1) to maximum duodenum, 2 (-1 to 9) to maximum esophagus, -2 (-13 to 4) to maximum stomach, 0 (-3 to 4) to mean liver, and -1 (-5 to 1) and -2 (-7 to 1) to mean left and right kidneys. Compared to deformable registration, rigid modeling had changes up to 8% to minimum tumor and 7% to maximum normal tissues. Conclusion: Deformable registration and dose accumulation revealed potentially significant dose changes to either a tumor or normal tissue in the majority of cases as a result of breathing motion. These changes may not be accurately accounted for with rigid motion.
Dose-dependent pharmacokinetics of dexamethasone.
Loew, D; Schuster, O; Graul, E H
1986-01-01
The dose dependency of the pharmacokinetics of dexamethasone and its influence on the endogenous secretion of cortisol has been studied in healthy females. The maximum plasma level occurred between 1.6 and 2.0 h after doses of 0.5-3.0 mg independent of the type of administration. AUC, distribution volume, plasma clearance and cmax did not increase in proportion to the dose but only by the factor of about 0.6-0.7 after the oral administration of 0.5-1.5 mg. Comparatively high values were reached after 3.0 mg i.m. This may be due to reduced bioavailability of the oral doses. Within the first 12 h after the administration of 0.5-3.0 mg, endogenous cortisol secretion was influenced independent of dose. However, the suppressive effect after 24 h was dose dependent and amounted to approximately 24% for 0.5 mg p.o., 62% for 1.5 mg p.o. and 90% for 3.0 mg i.m. In the case of administration every second day, the integral reduction within 24 h after the administration of 0.5 mg dexamethasone was 44 to 65% and for 1.5 mg between 59 and 62%. PMID:3709651
NOAA Technical Memorandum NMFS-SEFSC-570 ESTIMATION OF EFFORT, MAXIMUM SUSTAINABLE YIELD, and Mike Travis. 2008. Estimation of effort, maximum sustainable yield, and maximum economic yield, AND MAXIMUM ECONOMIC YIELD IN THE SHRIMP FISHERY OF THE GULF OF MEXICO BY JAMES NANCE, WALTER KEITHLY, JR
Effect of jaw size in megavoltage CT on image quality and dose
Jung, Jae Hong; Cho, Kwang Hwan; Kim, Yong Ho; Moon, Seong Kwon; Min, Chul Kee; Kim, Woo Chul; Kim, Eun Seog; Chang, Ah Ram; Kim, Tae Ho; Yoon, Jai-Woong; Suh, Tae-Suk; Huh, Hyun Do
2012-08-15
Purpose: Recently, the jaw size for the TomoTherapy Hi-Art II{sup Registered-Sign} (TomoTherapy Inc., Madison, WI) was reduced from 4 mm (J4) to 1 mm (J1) to improve the longitudinal (IEC-Y) resolution in megavoltage computed tomography (MVCT) images. This study evaluated the effect of jaw size on the image quality and dose, as well as the dose delivered to the lens of the eye, which is a highly radiosensitive tissue. Methods: MVCT image quality (image noise, uniformity, contrast linearity, high-contrast resolution, and full width at half-maximum) and multiple scan average dose (MSAD) were measured at different jaw sizes. A head phantom and photoluminescence glass dosimeters (PLDs) were used to measure the exposed lens dose (cGy). Different MVCT scan modes (pitch = 1, 2, and 3) and scan lengths (108 mm, 156 mm, and 204 mm) were applied in the MSAD and PLDs measurements. Results: The change in jaw size from J4 to J1 produced no change or only a slight improvement in image noise, uniformity, contrast linearity, and high-contrast resolution. However, the full-width at half-maximum reduced from approximately 7.2 at J4 to 4.5 mm at J1, which represents an enhancement in the longitudinal resolution. The MSAD at the center point changed from approximately 0.69-2.32 cGy (peripheral: 0.83-2.49 cGy) at J4 to 0.85-2.81 cGy (peripheral: 1.05-2.86 cGy) at J1. The measured lens dose increased from 0.92-3.36 cGy at J4 to 1.06-3.91 cGy at J1. Conclusions: The change in jaw size improved longitudinal resolution. The MVCT imaging dose of approximately 3.86 cGy, 1.92 cGy, and 1.22 cGy was delivered at a pitch of 1, 2, and 3, respectively, per fraction in the head and neck treatment plans. Therefore, allowance for an approximately 15% increase in lens dose over that with J4 should be provided with J1.
Other Point Processes 1. Cox Point Processes.
Zhang, Tonglin
Other Point Processes 1. Cox Point Processes. A Cox point process N is a Poisson point process used Cox point processes are: · The mixed Poisson process: there is a determinstic function (s) and a nonnegative random variable Y such that (A) = Y A (s)ds. Then, the Cox point process is called the mixed
7 CFR 993.602 - Maximum tolerances.
Code of Federal Regulations, 2011 CFR
2011-01-01
...Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA Grade Regulations § 993.602 Maximum...
7 CFR 993.602 - Maximum tolerances.
Code of Federal Regulations, 2010 CFR
2010-01-01
...Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA Grade Regulations § 993.602 Maximum...
Determinants of thiopental induction dose requirements.
Avram, M J; Sanghvi, R; Henthorn, T K; Krejcie, T C; Shanks, C A; Fragen, R J; Howard, K A; Kaczynski, D A
1993-01-01
Dose requirements for thiopental anesthetic induction have significant age- and gender-related variability. We studied the association of the patient characteristics age, gender, weight, lean body mass, and cardiac output with thiopental requirements. Doses of thiopental, infused at 150 mg/min, required to reach both a clinical end-point and an electroencephalographic (EEG) end-point were determined in 30 males and 30 females, aged 18-83 yr. Univariate least squares linear regression analysis revealed outliers in the relationships of age, weight, lean body mass, and cardiac output to thiopental dose at clinical and EEG endpoints. Differential weighting of data points minimized the effect of outliers in the construction of a robust multiple linear regression model of the relationship between several selected independent variables and the dependent variables thiopental dose at clinical and EEG endpoints. The multiple linear regression model for thiopental dose at the clinical end-point selecting the regressor variables age, weight, and gender (R2 = 0.76) was similar to that for age, lean body mass, and gender (R2 = 0.75). Thiopental dose at the EEG endpoint was better described by models selecting the variables age, weight, and cardiac output (R2 = 0.88) or age, lean body mass, and cardiac output (R2 = 0.87). Although cardiac output varied with age, age always remained a selected variable. Because weight and lean body mass differed with gender, their selection as variables in the model eliminated gender as a selected variable or minimized its importance. PMID:8418708
[Non-monotonous dose-response relationship in the region of low doses of ionizing radiation].
Kolomi?tseva, I K
2003-01-01
The statement about nonmonotony of dose-effect curves as a result of nonmonotony of the time-effect relationship including the field of low doses is discussed. The living cells possess a fundamental property to response to action of different stress agents by oscillatory--nonmonotonous--hanges of metabolism. The systems keeping up homeostasis by direct and feed-back regulation return metabolism to norm. In the fixed temporary point a dose-effect dependence may take the nonmonotonous character e.g. reverse dose-response relationship. The changes of the oscillation parameters suggested the inclusion of the different pathway for homeostasis keeping. Radiation hormesis does not focused on the metabolic and functional nonmonotonous response. Radiation stimulation is considered as consequence of the peculiarity of the homeostasis maintenance pathways in the certain interval of the low doses of ionizing radiation. PMID:12754804
BENCHMARK DOSE SOFTWARE (BMDS)
EPA has announced the latest update to the Benchmark Dose Software (BMDS) tool which is used to facilitate the application of benchmark dose (BMD) methods to EPA hazardous pollutant risk assessments. This latest version (1.4.1b) contains seventeen (17) different models that ar...
BENCHMARK DOSE SOFTWARE (BMDS)
EPA has announced the latest update to the Benchmark Dose Software (BMDS) tool which is used to facilitate the application of benchmark dose (BMD) methods to EPA hazardous pollutant risk assessments. This latest version (1.4.1b) contains seventeen (17) different models that ar...
Summary: Radiation Dose Estimates from Hanford Radioactive Material Releases to the Air and the Columbia River April 21,1994 TheTechnid Steering Panel of the Hanford - Environmental Dose Reconstruction than 40years, the U.S. Government made plutonium for nuclear weapons at the Hanford
Planning Consequences of the Maximum dB(A) CONCEPT—A Perspective
NASA Astrophysics Data System (ADS)
RYLANDER, R.; BJÖRKMAN, M.
2002-02-01
The maximum noise concept based on the noisiest event represents a new principle to control the effects of an environmental pollutant in the urban area. The report describes these newly developed dose descriptors for the relation between exposure and effects and presents examples for practical actions to control noise exposure.
Hamby, D M; Addis, R P; Beals, D M; Boni, A L; Cadieux, J R; Carlton, W H; Dunn, D L; Hall, G; Hayes, D W; Heffner, J D
1993-07-01
Between 22 December and 25 December 1991, approximately 570 L of tritiated water was released from the K Reactor at the Savannah River Site. Analyses of river flow rates and measured tritium concentrations showed that approximately 210 TBq of tritium had been released from the reactor and was being transported down the Savannah River. Elevated tritium concentrations in the Savannah River were first detected on 26 December 1991. The maximum measured tritium concentration at Highway 301 (a major sampling point 37 km downstream of the Savannah River Site) was 2.5 Bq mL-1. A hypothetical maximum individual located at Highway 301 would have received a drinking water dose of approximately 0.35 microSv, less than 1% of the Environmental Protection Agency's 40 microSv y-1 drinking water standard. Concentrations at the intake canals to two water treatment facilities, approximately 160 km downstream, began to rise above normal on 28 December. The population dose to users of the downstream domestic water supplies and consumers of Savannah River biota was estimated to be 4.7 x 10(-3) person-Sv. PMID:8505227
Decay heat and gamma dose-rate prediction capability in spent LWR fuel
Neely, G J; Schmittroth, F
1982-08-01
The ORIGEN2 code was established as a valid means to predict decay heat from LWR spent fuel assemblies for decay times up to 10,000 year. Calculational uncertainties ranged from 8.6% to a maximum of 16% at 2.5 years and 300 years cooling time, respectively. The calculational uncertainties at 2.5 years cooling time are supported by experiment. Major sources of uncertainty at the 2.5 year cooling time were identifed as irradiation history (5.7%) and nuclear data together with calculational methods (6.3%). The QAD shielding code was established as a valid means to predict interior and exterior gamma dose rates of spent LWR fuel assemblies. A calculational/measurement comparison was done on two assemblies with different irradiation histories and supports a 35% calculational uncertainty at the 1.8 and 3.0 year decay times studied. Uncertainties at longer times are expected to increase, but not significantly, due to an increased contribution from the actinides whose inventories are assigned a higher uncertainty. The uncertainty in decay heat rises to a maximum of 16% due to actinide uncertainties. A previous study was made of the neutron emission rate from a typical Turkey Point Unit 3, Region 4 spent fuel assembly at 5 years decay time. A conservative estimate of the neutron dose rate at the assembly surface was less than 0.5 rem/hr.
Hamby, D.M.; Addis, R.P.; Beals, D.M.; Boni, A.L.; Cadieux, J.R.; Carlton, W.H.; Dunn, D.L.; Hall, G.; Hayes, D.W.; Heffner, J.D. )
1993-07-01
Between 22 December and 25 December 1991, approximately 570 L of tritiated water was released from the K Reactor at the Savannah River Site. Analyses of river flow rates and measured tritium concentrations showed that approximately 210 TBq of tritium had been released from the reactor and was being transported down the Savannah River. Elevated tritium concentrations in the Savannah River were first detected on 26 December 1991. The maximum measured tritium concentration at Highway 301 (a major sampling point 37 km downstream of the Savannah River Site) was 2.5 Bq mL-1. A hypothetical maximum individual located at Highway 301 would have received a drinking water dose of approximately 0.35 microSv, less than 1% of the Environmental Protection Agency's 40 microSv y-1 drinking water standard. Concentrations at the intake canals to two water treatment facilities, approximately 160 km downstream, began to rise above normal on 28 December. The population dose to users of the downstream domestic water supplies and consumers of Savannah River biota was estimated to be 4.7 x 10[sup [minus]3] person-Sv.
NASA Technical Reports Server (NTRS)
Scholz, D.; Fuhs, N.; Hixson, M.
1979-01-01
The overall objective of this study was to apply and evaluate several of the currently available classification schemes for crop identification. The approaches examined were: (1) a per point Gaussian maximum likelihood classifier, (2) a per point sum of normal densities classifier, (3) a per point linear classifier, (4) a per point Gaussian maximum likelihood decision tree classifier, and (5) a texture sensitive per field Gaussian maximum likelihood classifier. Three agricultural data sets were used in the study: areas from Fayette County, Illinois, and Pottawattamie and Shelby Counties in Iowa. The segments were located in two distinct regions of the Corn Belt to sample variability in soils, climate, and agricultural practices.
Paithankar, Karthik S.; Garman, Elspeth F.
2010-04-01
The program RADDOSE computes the dose absorbed by a macromolecular crystal and here a guide is provided to help to ensure the proper use of the program. In the new version (v.3) described here, modifications to include the energy deposited owing to Compton scattering have been made. The program RADDOSE is widely used to compute the dose absorbed by a macromolecular crystal during an X-ray diffraction experiment. A number of factors affect the absorbed dose, including the incident X-ray flux density, the photon energy and the composition of the macromolecule and of the buffer in the crystal. An experimental dose limit for macromolecular crystallography (MX) of 30 MGy at 100 K has been reported, beyond which the biological information obtained may be compromised. Thus, for the planning of an optimized diffraction experiment the estimation of dose has become an additional tool. A number of approximations were made in the original version of RADDOSE. Recently, the code has been modified in order to take into account fluorescent X-ray escape from the crystal (version 2) and the inclusion of incoherent (Compton) scattering into the dose calculation is now reported (version 3). The Compton cross-section, although negligible at the energies currently commonly used in MX, should be considered in dose calculations for incident energies above 20 keV. Calculations using version 3 of RADDOSE reinforce previous studies that predict a reduction in the absorbed dose when data are collected at higher energies compared with data collected at 12.4 keV. Hence, a longer irradiation lifetime for the sample can be achieved at these higher energies but this is at the cost of lower diffraction intensities. The parameter ‘diffraction-dose efficiency’, which is the diffracted intensity per absorbed dose, is revisited in an attempt to investigate the benefits and pitfalls of data collection using higher and lower energy radiation, particularly for thin crystals.
Antic, V; Ciraj-Bjelac, O; Rehani, M; Aleksandric, S; Arandjic, D; Ostojic, M
2013-01-01
Workers involved in interventional cardiology procedures receive high eye lens dose if protection is not used. Currently, there is no suitable method for routine use for the measurement of eye dose. Since most angiography machines are equipped with suitable patient dosemeters, deriving factors linking staff eye doses to the patient doses can be helpful. In this study the patient kerma-area product, cumulative dose at an interventional reference point and eye dose in terms of Hp(3) of the cardiologists, nurses and radiographers for interventional cardiology procedures have been measured. Correlations between the patient dose and the staff eye dose were obtained. The mean eye dose was 121 µSv for the first operator, 33 µSv for the second operator/nurse and 12 µSv for radiographer. Normalised eye lens doses per unit kerma-area product were 0.94 µSv Gy?¹ cm?² for the first operator, 0.33 µSv Gy?¹ cm?² for the second operator/nurse and 0.16 µSv Gy?¹ cm?² for radiographers. Statistical analysis indicated that there is a weak but significant (p < 0.01) correlation between the eye dose and the kerma-area product for all three staff categories. These values are based on a local practice and may provide useful reference for other studies for validation and for wider utilisation in assessing the eye dose using patient dose values. PMID:23152146
NASA Astrophysics Data System (ADS)
Needham, David John; Meyer, John Christopher
2015-08-01
In this note, we highlight a difference in the conditions of the classical weak maximum principle and the classical strong maximum principle for linear parabolic partial differential inequalities. We demonstrate, by the careful construction of a specific function, that the condition in the classical strong maximum principle on the coefficient of the zeroth-order term in the linear parabolic partial differential inequality cannot be relaxed to the corresponding condition in the classical weak maximum principle. In addition, we demonstrate that results (often referred to as boundary point lemmas) which conclude positivity of the outward directional derivatives of nontrivial solutions to linear parabolic partial differential inequalities at certain points on the boundary where a maxima is obtained cannot be obtained under the same zeroth-order coefficient conditions as in the classical strong maximum principle.
TRAINING BASED MAXIMUM LIKELIHOOD CHANNEL IDENTIFICATION #
TRAINING BASED MAXIMUM LIKELIHOOD CHANNEL IDENTIFICATION # Olivier Rousseaux 1 , Geert Leus 1 the problem of identifying convolutive channels in a Maximum Likelihood (ML) fashion when a constant training of the channel). There are no requirements on the length of the training sequence and all the received symbols
49 CFR 107.329 - Maximum penalties.
Code of Federal Regulations, 2010 CFR
2010-10-01
...the maximum civil penalty is $110,000 if the violation results in death, serious illness...minimum $495 civil penalty applies to a violation...the maximum civil penalty is $110,000 if the violation results in death, serious...
49 CFR 107.329 - Maximum penalties.
Code of Federal Regulations, 2011 CFR
2011-10-01
...the maximum civil penalty is $110,000 if the violation results in death, serious illness...minimum $495 civil penalty applies to a violation...the maximum civil penalty is $110,000 if the violation results in death, serious...
Boosting and Maximum Likelihood for Exponential Models
Lebanon, Guy
Boosting and Maximum Likelihood for Exponential Models Guy Lebanon School of Computer Science between AdaBoost and the dual of a convex optimization problem, showing that the only difference between mini- mizing the exponential loss used by AdaBoost and maximum likelihood for exponential models
Boosting and Maximum Likelihood for Exponential Models
Boosting and Maximum Likelihood for Exponential Models Guy Lebanon School of Computer Science between AdaBoost and the dual of a convex optimization problem, showing that the only difference between miniÂ mizing the exponential loss used by AdaBoost and maximum likelihood for exponential models
Maximum Induced Matchings of Random Cubic Graphs
Wormald, Nick
Maximum Induced Matchings of Random Cubic Graphs W. Duckworthy, N.C. Wormaldy and M. Zitoz 1 y present an algorithm for finding a maximum induced matching M of cubic graphs. We analyse the performance of the induced matching returned by the alÂ gorithm. The corresponding upper bound is derived by means
Maximum Likelihood of Evolutionary Trees is Hard
Beimel, Amos
Maximum Likelihood of Evolutionary Trees is Hard Benny Chor School of Computer Science Tel-Aviv University Joint work with Tamir Tuller Maximum Likelihood ofEvolutionary Trees is Hard Â p.1 #12;Challenging on evolutionary trees is hard Â p.2 #12;Challenging Basic Science Questions (1) Creation and evolution
49 CFR 107.329 - Maximum penalties.
Code of Federal Regulations, 2013 CFR
2013-10-01
...the maximum civil penalty is $175,000 if the violation results in death, serious illness...no minimum civil penalty, except for a minimum...the maximum civil penalty is $175,000 if the violation results in death, serious...
49 CFR 107.329 - Maximum penalties.
Code of Federal Regulations, 2014 CFR
2014-10-01
...the maximum civil penalty is $175,000 if the violation results in death, serious illness...no minimum civil penalty, except for a minimum...the maximum civil penalty is $175,000 if the violation results in death, serious...
49 CFR 107.329 - Maximum penalties.
Code of Federal Regulations, 2012 CFR
2012-10-01
...the maximum civil penalty is $110,000 if the violation results in death, serious illness...minimum $495 civil penalty applies to a violation...the maximum civil penalty is $110,000 if the violation results in death, serious...
Balcarek, Joanna; Sevá Pessôa, Bruno; Bryson, Catherine; Azizi, Michel; Ménard, Joël; Garrelds, Ingrid M; McGeehan, Gerard; Reeves, Richard A; Griffith, Sue G; Danser, A H Jan; Gregg, Richard
2014-05-01
This study compared the pharmacodynamic/pharmacokinetic profile of the new renin inhibitor VTP-27999 in salt-depleted healthy volunteers, administered once daily (75, 150, 300, and 600 mg) for 10 days, versus placebo and 300 mg aliskiren. VTP-27999 was well tolerated with no significant safety issues. It was rapidly absorbed, attaining maximum plasma concentrations at 1 to 4 hours after dosing, with a terminal half-life of 24 to 30 hours. Plasma renin activity remained suppressed during the 24-hour dosing interval at all doses. VTP-27999 administration resulted in a dose-dependent induction of renin, increasing the concentration of plasma renin maximally 350-fold. This induction was greater than with aliskiren, indicating greater intrarenal renin inhibition. VTP-27999 decreased plasma angiotensin II and aldosterone. At 24 hours and later time points after dosing on day 10 in the 600-mg group, angiotensin II and aldosterone levels were increased, and plasma renin activity was also increased at 48 and 72 hours, compared with baseline. VTP-27999 decreased urinary aldosterone excretion versus placebo on day 1. On day 10, urinary aldosterone excretion was higher in the 300- and 600-mg VTP-27999 dose groups compared with baseline. VTP-27999 decreased blood pressure to the same degree as aliskiren. In conclusion, excessive intrarenal renin inhibition, obtained at VTP-27999 doses of 300 mg and higher, is accompanied by plasma renin rises, that after stopping drug intake, exceed the capacity of extrarenal VTP-27999 to block fully the enzymatic reaction. This results in significant rises of angiotensin II and aldosterone. Therefore, renin inhibition has an upper limit. PMID:24470465
A chronic oral reference dose for hexavalent chromium-induced intestinal cancer.
Thompson, Chad M; Kirman, Christopher R; Proctor, Deborah M; Haws, Laurie C; Suh, Mina; Hays, Sean M; Hixon, J Gregory; Harris, Mark A
2014-05-01
High concentrations of hexavalent chromium [Cr(VI)] in drinking water induce villous cytotoxicity and compensatory crypt hyperplasia in the small intestines of mice (but not rats). Lifetime exposure to such cytotoxic concentrations increases intestinal neoplasms in mice, suggesting that the mode of action for Cr(VI)-induced intestinal tumors involves chronic wounding and compensatory cell proliferation of the intestine. Therefore, we developed a chronic oral reference dose (RfD) designed to be protective of intestinal damage and thus intestinal cancer. A physiologically based pharmacokinetic model for chromium in mice was used to estimate the amount of Cr(VI) entering each intestinal tissue section (duodenum, jejunum and ileum) from the lumen per day (normalized to intestinal tissue weight). These internal dose metrics, together with corresponding incidences for diffuse hyperplasia, were used to derive points of departure using benchmark dose modeling and constrained nonlinear regression. Both modeling techniques resulted in similar points of departure, which were subsequently converted to human equivalent doses using a human physiologically based pharmacokinetic model. Applying appropriate uncertainty factors, an RfD of 0.006 mg kg(-1) day(-1) was derived for diffuse hyperplasia-an effect that precedes tumor formation. This RfD is protective of both noncancer and cancer effects in the small intestine and corresponds to a safe drinking water equivalent level of 210 µg l(-1). This concentration is higher than the current federal maximum contaminant level for total Cr (100 µg l(-1)) and well above levels of Cr(VI) in US drinking water supplies (typically ? 5 µg l(-1)). PMID:23943231
Borot de Battisti, M; Maenhout, M; Denis de Senneville, B; Hautvast, G; Binnekamp, D; Lagendijk, J J W; van Vulpen, M; Moerland, M A
2015-09-21
Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5?cm(3)to 23.3?cm(3)) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20?min and a clinically acceptable plan was reached on average using only four needle insertions. PMID:26378657
A chronic oral reference dose for hexavalent chromium-induced intestinal cancer†
Thompson, Chad M; Kirman, Christopher R; Proctor, Deborah M; Haws, Laurie C; Suh, Mina; Hays, Sean M; Hixon, J Gregory; Harris, Mark A
2014-01-01
High concentrations of hexavalent chromium [Cr(VI)] in drinking water induce villous cytotoxicity and compensatory crypt hyperplasia in the small intestines of mice (but not rats). Lifetime exposure to such cytotoxic concentrations increases intestinal neoplasms in mice, suggesting that the mode of action for Cr(VI)-induced intestinal tumors involves chronic wounding and compensatory cell proliferation of the intestine. Therefore, we developed a chronic oral reference dose (RfD) designed to be protective of intestinal damage and thus intestinal cancer. A physiologically based pharmacokinetic model for chromium in mice was used to estimate the amount of Cr(VI) entering each intestinal tissue section (duodenum, jejunum and ileum) from the lumen per day (normalized to intestinal tissue weight). These internal dose metrics, together with corresponding incidences for diffuse hyperplasia, were used to derive points of departure using benchmark dose modeling and constrained nonlinear regression. Both modeling techniques resulted in similar points of departure, which were subsequently converted to human equivalent doses using a human physiologically based pharmacokinetic model. Applying appropriate uncertainty factors, an RfD of 0.006?mg?kg–1?day–1 was derived for diffuse hyperplasia—an effect that precedes tumor formation. This RfD is protective of both noncancer and cancer effects in the small intestine and corresponds to a safe drinking water equivalent level of 210 µg l–1. This concentration is higher than the current federal maximum contaminant level for total Cr (100 µg l–1) and well above levels of Cr(VI) in US drinking water supplies (typically???5 µg l–1). © 2013 The Authors. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:23943231
NASA Astrophysics Data System (ADS)
Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.
2015-10-01
Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5?cm3to 23.3?cm3) by using 2–14 needle insertions. The total computation time of the optimizer workflow was below 20?min and a clinically acceptable plan was reached on average using only four needle insertions.
Non-hereditary maximum parsimony trees
Fischer, Mareike
2010-01-01
In this paper, we investigate a conjecture by von Haeseler concerning the Maximum Parsimony method for phylogenetic estimation, which was published by the Newton Institute in Cambridge on a list of open phylogenetic problems in 2007. This conjecture deals with the question whether Maximum Parsimony trees are hereditary. The conjecture suggests that a Maximum Parsimony tree for a particular (DNA) alignment necessarily has subtrees of all possible sizes which are most parsimonious for the corresponding subalignments. We answer the conjecture affirmatively for binary alignments on five taxa but also show how to construct examples for which Maximum Parsimony trees are not hereditary. Apart from showing that a most parsimonious tree cannot generally be reduced to a most parsimonious tree on fewer taxa, we also show that compatible most parsimonious quartets do not have to provide a most parsimonious supertree. Last, we show that our results can be generalized to Maximum Likelihood for certain nucleotide substituti...
Magnetic field generated resistivity maximum in graphite
NASA Technical Reports Server (NTRS)
Wollam, J. A.; Kreps, L. W.; Rojeski, M.; Vold, T.; Devaty, R.
1976-01-01
In zero magnetic field, B, the electrical resistivity, rho(O,T) of highly oriented pyrolytic (polycrystalline) graphite drops smoothly with decreasing T, becoming constant below 4 K. However, in a fixed applied magnetic field B, the resistivity rho(B,T) goes through a maximum as a function of T, with larger maximum for larger B. The temperature of the maximum increases with B, but saturates to a constant value near 25 K (exact T depends on sample) at high B. In single crystal graphite a maximum in rho(B,T) as a function of T is also present, but has the effects of Landau level quantization superimposed. Several possible explanations for the rho(B,T) maximum are proposed, but a complete explanation awaits detailed calculations involving the energy band structure of graphite, and the particular scattering mechanisms involved.
Triadic conceptual structure of the maximum entropy approach to evolution.
Herrmann-Pillath, Carsten; Salthe, Stanley N
2011-03-01
Many problems in evolutionary theory are cast in dyadic terms, such as the polar oppositions of organism and environment. We argue that a triadic conceptual structure offers an alternative perspective under which the information generating role of evolution as a physical process can be analyzed, and propose a new diagrammatic approach. Peirce's natural philosophy was deeply influenced by his reception of both Darwin's theory and thermodynamics. Thus, we elaborate on a new synthesis which puts together his theory of signs and modern Maximum Entropy approaches to evolution in a process discourse. Following recent contributions to the naturalization of Peircean semiosis, pointing towards 'physiosemiosis' or 'pansemiosis', we show that triadic structures involve the conjunction of three different kinds of causality, efficient, formal and final. In this, we accommodate the state-centered thermodynamic framework to a process approach. We apply this on Ulanowicz's analysis of autocatalytic cycles as primordial patterns of life. This paves the way for a semiotic view of thermodynamics which is built on the idea that Peircean interpretants are systems of physical inference devices evolving under natural selection. In this view, the principles of Maximum Entropy, Maximum Power, and Maximum Entropy Production work together to drive the emergence of information carrying structures, which at the same time maximize information capacity as well as the gradients of energy flows, such that ultimately, contrary to Schrödinger's seminal contribution, the evolutionary process is seen to be a physical expression of the Second Law. PMID:21055440
NASA Astrophysics Data System (ADS)
Merrill, S.; Horowitz, J.; Traino, A. C.; Chipkin, S. R.; Hollot, C. V.; Chait, Y.
2011-02-01
Calculation of the therapeutic activity of radioiodine 131I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of 131I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent 131I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration 131I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.
Investigation of the spatial resolution of an online dose verification device
Asuni, G.; Rickey, D. W.; McCurdy, B. M. C. [Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada) and Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Division of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada) and Department of Radiology, University of Manitoba, Winnipeg, Manitoba R3A 1R9 (Canada)
2012-02-15
Purpose: The aim of this work is to characterize a new online dose verification device, COMPASS transmission detector array (IBA Dosimetry, Schwarzenbruck, Germany). The array is composed of 1600 cylindrical ionization chambers of 3.8 mm diameter, separated by 6.5 mm center-to-center spacing, in a 40 x 40 arrangement. Methods: The line spread function (LSF) of a single ion chamber in the detector was measured with a narrow slit collimator for a 6 MV photon beam. The 0.25 x 10 mm{sup 2} slit was formed by two machined lead blocks. The LSF was obtained by laterally translating the detector in 0.25 mm steps underneath the slit over a range of 24 mm and taking a measurement at each step. This measurement was validated with Monte Carlo simulation using BEAMnrc and DOSXYZnrc. The presampling modulation transfer function (MTF), the Fourier transform of the line spread function, was determined and compared to calculated (Monte Carlo and analytical) MTFs. Two head-and-neck intensity modulated radiation therapy (IMRT) fields were measured using the device and were used to validate the LSF measurement. These fields were simulated with the BEAMnrc Monte Carlo model, and the Monte Carlo generated incident fluence was convolved with the 2D detector response function (derived from the measured LSF) to obtain calculated dose. The measured and calculated dose distributions were then quantitatively compared using {chi}-comparison criteria of 3% dose difference and 3 mm distance-to-agreement for in-field points (defined as those above the 10% maximum dose threshold). Results: The full width at half-maximum (FWHM) of the measured detector response for a single chamber is 4.3 mm, which is comparable to the chamber diameter of 3.8 mm. The pre-sampling MTF was calculated, and the resolution of one chamber was estimated as 0.25 lp/mm from the first zero crossing. For both examined IMRT fields, the {chi}-comparison between measured and calculated data show good agreement with 95.1% and 96.3% of in-field points below {chi} of 1.0 for fields 1 and 2, respectively (with an average {chi} of 0.29 for IMRT field 1 and 0.24 for IMRT field 2). Conclusions: The LSF for a new novel online detector has been measured at 6 MV using a narrow slit technique, and this measurement has been validated by Monte Carlo simulation. The detector response function derived from line spread function has been applied to recover measured IMRT fields. The results have shown that the device measures IMRT fields accurately within acceptable tolerance.
The Jacobian as a measure of planar dose congruence
Paniak, L D
2007-01-01
We propose a new starting point for comparing dose distributions in therapeutic radiation physics using a Jacobian-based measure. The measure is normalization independent, free of tunable parameters, bounded and converges to a unique value when comparing unrelated dose distributions. We present a preliminary demonstration of the sensitivity and general characteristics of this measure.
Norisuke Nakayama; Wasaburo Koizumi; Tohru Sasaki; Katsuhiko Higuchi; Satoshi Tanabe; Ken Nishimura; Chikatoshi Katada; Kento Nakatani; Seiichi Takagi; Katsunori Saigenji
2008-01-01
Objective: This dose-escalation study of a combination of docetaxel, cisplatin and S-1 investigated the dose-limiting toxicity (DLT), maximum-tolerated dose (MTD), recommended dose (RD) and antitumor activity in advanced gastric cancer. Patients and Methods: Patients received docetaxel (40 mg\\/m2), cisplatin (DIV on day 1) and S-1 (40 mg\\/m2 p.o., twice daily, on days 1–14 every 28 days). The starting dose of
Synchronized dynamic dose reconstruction
Litzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J.
2007-01-15
Variations in target volume position between and during treatment fractions can lead to measurable differences in the dose distribution delivered to each patient. Current methods to estimate the ongoing cumulative delivered dose distribution make idealized assumptions about individual patient motion based on average motions observed in a population of patients. In the delivery of intensity modulated radiation therapy (IMRT) with a multi-leaf collimator (MLC), errors are introduced in both the implementation and delivery processes. In addition, target motion and MLC motion can lead to dosimetric errors from interplay effects. All of these effects may be of clinical importance. Here we present a method to compute delivered dose distributions for each treatment beam and fraction, which explicitly incorporates synchronized real-time patient motion data and real-time fluence and machine configuration data. This synchronized dynamic dose reconstruction method properly accounts for the two primary classes of errors that arise from delivering IMRT with an MLC: (a) Interplay errors between target volume motion and MLC motion, and (b) Implementation errors, such as dropped segments, dose over/under shoot, faulty leaf motors, tongue-and-groove effect, rounded leaf ends, and communications delays. These reconstructed dose fractions can then be combined to produce high-quality determinations of the dose distribution actually received to date, from which individualized adaptive treatment strategies can be determined.
Management of Erythrodermic Psoriasis with Low-Dose Cyclosporin
B. Giannotti
1993-01-01
Thirty-three patients (M\\/F 25\\/8, aged 19–71 years) with severe erythrodermic psoriasis entered an open multicenter study to evaluate the efficacy (induction and maintenance of clinical remission) and tolerability of long-term treatment with cyclosporin. It was given at a maximum initial dose of 5 mg\\/kg\\/day (initial mean dose 4.2 mg\\/kg\\/day), subsequently adjusted during the course of treatment according to clinical response,
Confusion: acetaminophen dosing changes based on NO evidence in adults.
Krenzelok, Edward P; Royal, Mike A
2012-06-01
Acetaminophen (paracetamol) plays a vital role in American health care, with in excess of 25 billion doses being used annually as a nonprescription medication. Over 200 million acetaminophen-containing prescriptions, usually in combination with an opioid, are dispensed annually. While acetaminophen is recognized as a safe and effective analgesic and antipyretic, it is also associated with significant morbidity and mortality (hepatotoxicity) if doses in excess of the therapeutic amount are ingested inappropriately. The maximum daily therapeutic dose of 3900-4000?mg was established in separate actions in 1977 and 1988, respectively, via the Food and Drug Administration (FDA) monograph process for nonprescription medications. The FDA has conducted multiple advisory committee meetings to evaluate acetaminophen and its safety profile, and has suggested (but not mandated) a reduction in the maximum daily dosage from 3900-4000?mg to 3000-3250?mg. In 2011, McNeil, the producer of the Tylenol® brand of acetaminophen, voluntarily reduced the maximum daily dose of its 500?mg tablet product to 3000?mg/day, and it has pledged to change the labeling of its 325?mg/tablet product to reflect a maximum of 3250?mg/day. Generic manufacturers have not changed their dosing regimens and they have remained consistent with the established monograph dose. Therefore, confusion will be inevitable as both consumers and health care professionals try to determine the proper therapeutic dose of acetaminophen. Which is the correct dose of acetaminophen: 3000?mg if 500?mg tablets are used, 3250?mg with 325?mg tablets, or 3900?mg when 650?mg arthritis-strength products are used? PMID:22530736
Raisali, G; Davilu, H; Haghighishad, A; Khodadadi, R; Sabet, M
2006-01-01
In this research, total effective dose equivalent (TEDE) and collective dose (CD) are calculated for the most adverse potential accident in Bushehr Nuclear Power Plant from the viewpoint of radionuclides release to the environment. Calculations are performed using a Gaussian diffusion model and a slightly modified version of AIREM computer code to adopt for conditions in Bushehr. The results are comparable with the final safety analysis report which used DOZAM code. Results of our calculations show no excessive dose in populated regions. Maximum TEDE is determined to be in the WSW direction. CD in the area around the nuclear power plant by a distance of 30 km (138 man Sv) is far below the accepted limits. Thyroid equivalent dose is also calculated for the WSW direction (maximum 25.6 mSv) and is below the limits at various distances from the reactor stack. PMID:16785243
Retrospective monte carlo dose calculations with limited beam weight information.
Lindsay, Patricia E; El Naqa, Issam; Hope, Andrew J; Vicic, Milos; Cui, Jing; Bradley, Jeffrey D; Deasy, Joseph O
2007-01-01
An important unresolved issue in outcomes analysis for lung complications is the effect of poor or completely lacking heterogeneity corrections in previously archived treatment plans. To estimate this effect, we developed a novel method based on Monte Carlo (MC) dose calculations which can be applied retrospectively to RTOG/AAPM-style archived treatment plans (ATP). We applied this method to 218 archived nonsmall cell lung cancer lung treatment plans that were originally calculated either without heterogeneity corrections or with primitive corrections. To retrospectively specify beam weights and wedges, beams were broken into Monte Carlo-generated beamlets, simulated using the VMC++ code, and mathematical optimization was used to match the archived water-based dose distributions. The derived beam weights (and any wedge effects) were then applied to Monte Carlo beamlets regenerated based on the patient computed tomography densities. Validation of the process was performed against five comparable lung treatment plans generated using a commercial convolution/superposition implementation. For the application here (normal lung, esophagus, and planning target volume dose distributions), the agreement was very good. Resulting MC and convolution/superposition values were similar when dose distributions without heterogeneity corrections or dose distributions with corrections were compared. When applied to the archived plans (218), the average absolute percent difference between water-based MC and water-based ATPs, for doses above 2.5% of the maximum dose was 1.8+/-0.6%. The average absolute percent difference between heterogeneity-corrected MC and water-based ATPs increased to 3.1+/-0.9%. The average absolute percent difference between the MC heterogeneity-corrected and the ATP heterogeneity-corrected dose distributions was 3.8+/-1.6% (available in 132/218 archives). The entire dose-volume-histograms for lung, tumor, and esophagus from the different calculation methods, as well as specific dose metrics, were compared. The average difference in maximum lung dose between water-based ATPs and heterogeneity-corrected MC dose distributions was -1.0+/-2.1 Gy. Potential errors in relying on primitive heterogeneity corrections are most evident from a comparison of maximum lung doses, for which the average MC heterogeneity-corrected values were 5.3+/-2.8 Gy less than the ATP heterogeneity-corrected values. We have demonstrated that recalculation of archived dose distributions, without explicit information about beam weights or wedges, is feasible using beamlet-based optimization methods. The method provides heterogeneity-corrected dose data consistent with convolution-superposition calculations and is one feasible approach for improving dosimetric data for outcomes analyses. PMID:17278519
Correction of CT artifacts and its influence on Monte Carlo dose calculations
Bazalova, Magdalena; Beaulieu, Luc; Palefsky, Steven; Verhaegen, Frank
2007-06-15
Computed tomography (CT) images of patients having metallic implants or dental fillings exhibit severe streaking artifacts. These artifacts may disallow tumor and organ delineation and compromise dose calculation outcomes in radiotherapy. We used a sinogram interpolation metal streaking artifact correction algorithm on several phantoms of exact-known compositions and on a prostate patient with two hip prostheses. We compared original CT images and artifact-corrected images of both. To evaluate the effect of the artifact correction on dose calculations, we performed Monte Carlo dose calculation in the EGSnrc/DOSXYZnrc code. For the phantoms, we performed calculations in the exact geometry, in the original CT geometry and in the artifact-corrected geometry for photon and electron beams. The maximum errors in 6 MV photon beam dose calculation were found to exceed 25% in original CT images when the standard DOSXYZnrc/CTCREATE calibration is used but less than 2% in artifact-corrected images when an extended calibration is used. The extended calibration includes an extra calibration point for a metal. The patient dose volume histograms of a hypothetical target irradiated by five 18 MV photon beams in a hypothetical treatment differ significantly in the original CT geometry and in the artifact-corrected geometry. This was found to be mostly due to miss-assignment of tissue voxels to air due to metal artifacts. We also developed a simple Monte Carlo model for a CT scanner and we simulated the contribution of scatter and beam hardening to metal streaking artifacts. We found that whereas beam hardening has a minor effect on metal artifacts, scatter is an important cause of these artifacts.
Capture and analysis of radiation dose reports for radiology.
Midgley, S M
2014-12-01
Radiographic imaging systems can produce records of exposure and dose parameters for each patient. A variety of file formats are in use including plain text, bit map images showing pictures of written text and radiation dose structured reports as text or extended markup language files. Whilst some of this information is available with image data on the hospital picture archive and communication system, access is restricted to individual patient records, thereby making it difficult to locate multiple records for the same scan protocol. This study considers the exposure records and dose reports from four modalities. Exposure records for mammography and general radiography are utilized for repeat analysis. Dose reports for fluoroscopy and computed tomography (CT) are utilized to study the distribution of patient doses for each protocol. Results for dosimetric quantities measured by General Radiography, Fluoroscopy and CT equipment are summarised and presented in the Appendix. Projection imaging uses the dose (in air) area product and derived quantities including the dose to the reference point as a measure of the air kerma reaching the skin, ignoring movement of the beam for fluoroscopy. CT uses the dose indices CTDIvol and dose length product as a measure of the dose per axial slice, and to the scanned volume. Suitable conversion factors are identified and used to estimate the effective dose to an average size patient (for CT and fluoroscopy) and the entrance skin dose for fluoroscopy. PMID:25315104
A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery
Tyagi, Neelam; Yang Kai; Gersten, David; Yan Di
2012-12-15
Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle{sup 3} Trade-Mark-Sign format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 {+-} 0.59 mm and 0.05 {+-} 0.31 Degree-Sign , indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5 Degree-Sign were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 {+-} 0.21%, 0.99 {+-} 0.59%, and 1.18 {+-} 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There is a strong correlation between total integral error and PTV mean (r= 0.683, p= 0.015), minimum (r= 0.6147, p= 0.033), and maximum dose (r= 0.6038, p= 0.0376). Conclusions: Errors may exist during complex VMAT planning and delivery. Linac data monitor is capable of detecting and quantifying mechanical and dosimetric errors at various stages of planning and delivery.
Estimating the seasonal maximum light use efficiency
NASA Astrophysics Data System (ADS)
Muramatsu, Kanako; Furumi, Shinobu; Soyama, Noriko; Daigo, Motomasa
2014-11-01
Light use efficiency (LUE) is a key parameter in estimating gross primary production (GPP) based on global Earth-observation satellite data and model calculations. In current LUE-based GPP estimation models, the maximum LUE is treated as a constant for each biome type. However, the maximum LUE varies seasonally. In this study, seasonal maximum LUE values were estimated from the maximum incident LUE versus the incident photosynthetically active radiation (PAR) and the fraction of absorbed PAR. First, an algorithm to estimate maximum incident LUE was developed to estimate GPP capacity using a light response curve. One of the parameters required for the light response curve was estimated from the linear relationship of the chlorophyll index and the GPP capacity at a high PAR level of 2000 (µmolm-2s-1), and was referred to as" the maximum GPP capacity at 2000". The relationship was determined for six plant functional types: needleleaf deciduous trees, broadleaf deciduous trees, needleleaf evergreen trees, broadleaf evergreen trees, C3 grass, and crops. The maximum LUE values estimated in this study displayed seasonal variation, especially those for deciduous broadleaf forest, but also those for evergreen needleleaf forest.
Counts, J L; Goodman, J I
1995-06-01
The purpose of the bioassay is not to simply find chemicals that can be labeled as carcinogens. On the contrary, the overall goal is to provide a reasonable assessment of the possible hazard that a chemical might pose to people under realistic conditions of exposure. This paper focuses upon the doses commonly used in the bioassay within the context that dose influences mechanism and, over a wide range of doses, mechanism changes with changing dose. Thus, a carcinogenic effect observed at a high dose is not necessarily expected to occur at lower doses. A variety of examples are provided to illustrate the points that (a) any high dose, no matter how high, that permits test animals to live long enough to develop tumors is not an appropriate criterion for defining an acceptable high dose to employ in a carcinogen bioassay; and (b) emphasis should be placed upon research that may discern probable thresholds for the carcinogenic effect of chemicals, especially nongenotoxic chemicals. PMID:7480895
MicroShield analysis to calculate external radiation dose rates for several spent fuel casks
Marincel, M.K. [Missouri Univ., Rolla, MO (United States); Weiner, R.F.; Osborn, D.M. [Sandia National Laboratories, Albuquerque, NM (United States)
2007-07-01
The purpose of this MicroShield analysis is to calculate the external radiation, primarily gamma, dose rate for spent fuel casks. The reason for making this calculation is that currently all analyses of transportation risk assume that this external dose rate is the maximum allowed by regulation, 10 mrem/hr at 2 m from the casks, and the risks of incident-free transportation are thus always overestimated to an unknown extent. In order to do this, the program by Grove Software, MicroShield 7.01, was used to model three Nuclear Regulatory Commission (NRC) approved casks: HI-STAR 100, GA-4, and NAC-STC, loaded with specific source material. Dimensions were obtained from NUREG/CR-6672 and the Certificates of Compliance for each respective cask. Detectors were placed at the axial point at 1 m and 2 m from the outer gamma shielding of the casks. In the April 8, 2004 publication of the Federal Register, a notice of intent to prepare a Supplemental Yucca Mountain Environmental Impact Statement (DOE/EIS-0250F-S1) was published by the Office of Civilian Radioactive Waste Management (OCRWM) in order to consider design, construction, operation, and transportation of spent nuclear fuel to the Yucca Mountain repository [1]. These more accurate estimates of the external dose rates could be used in order to provide a more risk-informed analysis. (authors)
Andrews, David W. [Department of Neurologic Surgery, Thomas Jefferson University (United States)], E-mail: david.andrews@jefferson.edu; Werner-Wasik, Maria; Den, Robert B. [Department of Radiation Oncology, Thomas Jefferson University (United States); Paek, Sun Ha [Department of Neurosurgery, Seoul National University (Korea, Republic of); Downes-Phillips, Beverly [Department of Neurologic Surgery, Thomas Jefferson University (United States); Willcox, Thomas O. [Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University (United States); Bednarz, Greg; Maltenfort, Mitchel; Evans, James J. [Department of Neurologic Surgery, Thomas Jefferson University (United States); Curran, Walter J. [Department of Radiation Oncology, Thomas Jefferson University (United States)
2009-06-01
Purpose: To describe our initial experience of fractionated stereotactic radiotherapy dose reduction comparing two dose cohorts with examination of tumor control rates and serviceable hearing preservation rates. Methods and Materials: After institutional review board approval, we initiated a retrospective chart review to study the hearing outcomes and tumor control rates. All data were entered into a JMP, version 7.01, statistical spreadsheet for analysis. Results: A total of 89 patients with serviceable hearing had complete serial audiometric data available for analysis. The higher dose cohort included 43 patients treated to 50.4 Gy with a median follow-up (latest audiogram) of 53 weeks and the lower dose cohort included 46 patients treated to 46.8 Gy with a median follow-up of 65 weeks. The tumor control rate was 100% in both cohorts, and the pure tone average was significantly improved in the low-dose cohort (33 dB vs. 40 dB, p = 0.023, chi-square). When the patient data were analyzed at comparable follow-up points, the actuarial hearing preservation rate was significantly longer for the low-dose cohort than for the high-dose cohort (165 weeks vs. 79 weeks, p = .0318, log-rank). Multivariate analysis revealed the dose cohort (p = 0.0282) and pretreatment Gardner-Robertson class (p = 0.0215) to be highly significant variables affecting the hearing outcome. Conclusion: A lower total dose at 46.8 Gy was associated with a 100% local control tumor rate and a greater hearing preservation rate. An additional dose reduction is justified to achieve the optimal dose that will yield the greatest hearing preservation rate without compromising tumor control for these patients.
Maximum principles for the relativistic heat equation
Evan Miller; Ari Stern
2015-07-17
The classical heat equation is incompatible with relativity, since the strong maximum principle allows for disturbances to propagate instantaneously. Some authors have proposed limiting the propagation speed by adding a linear hyperbolic correction term, but then even a weak maximum principle fails to hold. We study a more recently introduced relativistic heat equation, which replaces the Laplace operator by a quasilinear elliptic operator, and show that strong and weak maximum principles hold for stationary and time-varying solutions, respectively, as well as for sub- and supersolutions. Moreover, by transforming the equation into an equivalent form, related to the mean curvature operator, we prove even stronger tangency and comparison principles.
On the definition of absorbed dose
NASA Astrophysics Data System (ADS)
Grusell, Erik
2015-02-01
Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.
Bioavailability of diclofenac potassium at low doses
Hinz, Burkhard; Chevts, Julia; Renner, Bertold; Wuttke, Henrike; Rau, Thomas; Schmidt, Andreas; Szelenyi, Istvan; Brune, Kay; Werner, Ulrike
2005-01-01
Aim Diclofenac-K has been recently launched at low oral doses in different countries for over-the-counter use. However, given the considerable first-pass metabolism of diclofenac, the degree of absorption of diclofenac-K at low doses remained to be determined. The aim of this study was to determine the bioavailability of low-dose diclofenac-K. Methods A randomized, three-way, cross-over study was performed in 10 subjects. Each received diclofenac-K, 22.5 mg via short-term i.v. infusion and orally at single doses of 12.5 mg and 25 mg. Results Mean (± SD) times to maximal plasma concentration (tmax) of diclofenac were 0.48 ± 0.28 h (12.5 mg) and 0.93 ± 0.96 h (25 mg). The absolute bioavailability of diclofenac-K after oral administration did not differ significantly in the 12.5-mg and 25-mg dose group (63.1 ± 12.6% vs. 65.1 ± 19.4%, respectively). The 90% confidence intervals for the AUC? and AUCt ratios for the two oral regimes were 82.6, 103.4% (point estimate 92.4%) and 86.2, 112.9% (point estimate 98.6%), respectively. These values were within the acceptance criteria for bioequivalence (80–125%). Conclusions Our data indicate that diclofenac-K is rapidly and well absorbed at low dose, and are consistent with a rapid onset of action of the drug. Abbreviations AUC, area under plasma concentraton-time curve; Cmax, peak plasma concentration; CI, confidence interval; COX, cyclooxygenase; D, dose; F, absolute bioavailability; tmax, time to reach Cmax. PMID:15606444
Taking ibuprofen can help children feel better when they have colds or minor injuries. As with all drugs, it is important to give children the correct dose. Ibuprofen is safe when taken as directed. But taking ...
Disposition of firocoxib in equine plasma after an oral loading dose and a multiple dose regimen.
Cox, S; Villarino, N; Sommardahl, C; Kvaternick, V; Zarabadipour, C; Siger, L; Yarbrough, J; Amicucci, A; Reed, K; Breeding, D; Doherty, T
2013-11-01
The objective of this study was to determine if a single loading dose (LD), 3× the label dose of firocoxib oral paste, followed by nine maintenance doses at the current label dose achieves and maintains near steady state concentrations. Six healthy, adult mares were administered 0.3mg/kg of firocoxib on Day 0, and 0.1 mg/kg 24 h later on Day 1, and at 24 h intervals from Day 2 to Day 9, for a total of 10 doses. Blood samples were collected throughout the study. The mean firocoxib maximum plasma concentration and standard deviation was 199±97 ng/mL, 175±44 ng/mL and 183±50 ng/mL after the LD, and first and last maintenance doses, respectively. The minimum mean concentration (C(min)) increased from 100±23 ng/mL after the LD to 132±38 ng/mL at Day 7. Then, the C(min) remained constant until Day 9. The average concentration at steady state (C(avg)) was 150±45 ng/mL, which compares well to the C(avg) (130±36 ng/mL) reported after multiple daily doses at 0.1 mg/kg. The administration of the single LD allowed achievement of the average steady state drug concentrations faster than a multi-dose regimen without a loading dose. After the LD, firocoxib at 0.1 mg/kg every 24 h was able to maintain a relatively constant average drug concentration which should produce less variability in onset of action and efficacy. PMID:24076125
Hong, Linda X; Shankar, Viswanathan; Shen, Jin; Kuo, Hsiang-Chi; Mynampati, Dinesh; Yaparpalvi, Ravindra; Goddard, Lee; Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A
2015-01-01
We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage-prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)-ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff-ratio of 50% PIV to the PTV (R50%); (4) and maximum dose in percentage of PD at 2cm from PTV in any direction (D2cm) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The ?(2) test was used to examine the difference in parameters between groups. The PTV V100% PD ? 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V90% PD ? 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D2cm, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives. PMID:25498838
Bremsstrahlung doses from natural uranium ingots.
Anderson, Jeri L; Hertel, Nolan E
2005-01-01
In the past, some privately owned commercial facilities in the United States were involved in producing or processing radioactive materials used in the production of atomic weapons. Seven different geometrical objects, representative of the configurations of natural uranium metal potentially encountered by workers at these facilities, are modelled to determine gamma ray and bremsstrahlung dose rates. The dose rates are calculated using the MCNP5 code and also by using the MICROSHIELD point-kernel code. Both gamma ray and bremsstrahlung dose rates are calculated and combined to obtain a total dose rate. The two methods were found to be in good agreement despite differences in modelling assumptions and method differences. Computed total dose rates on the surface of these objects ranged from approximately 51-84 microSv h(-1) and 17-95 microSv h(-1) using the MCNP5 and the MICROSHIELD modeling, respectively. The partitioning of the computed dose rates between gamma rays and bremsstrahlung were the same order of magnitude for each object. PMID:16381733
NASA Technical Reports Server (NTRS)
Brenner, D. J.; Hall, E. J.
1992-01-01
There is now a substantial body of evidence for end points such as oncogenic transformation in vitro, and carcinogenesis and life shortening in vivo, suggesting that dose protraction leads to an increase in effectiveness relative to a single, acute exposure--at least for radiations of medium linear energy transfer (LET) such as neutrons. Table I contains a summary of the pertinent data from studies in which the effect is seen. [table: see text] This phenomenon has come to be known as the "inverse dose rate effect," because it is in marked contrast to the situation at low LET, where protraction in delivery of a dose of radiation, either by fractionation or low dose rate, results in a decreased biological effect; additionally, at medium and high LET, for radiobiological end points such as clonogenic survival, the biological effectiveness is independent of protraction. The quantity and quality of the published reports on the "inverse dose rate effect" leaves little doubt that the effect is real, but the available evidence indicates that the magnitude of the effect is due to a complex interplay between dose, dose rate, and radiation quality. Here, we first summarize the available data on the inverse dose rate effect and suggest that it follows a consistent pattern in regard to dose, dose rate, and radiation quality; second, we describe a model that predicts these features; and, finally, we describe the significance of the effect for radiation protection.
Influence of maximum bite force on jaw movement during gummy jelly mastication.
Kuninori, T; Tomonari, H; Uehara, S; Kitashima, F; Yagi, T; Miyawaki, S
2014-05-01
It is known that maximum bite force has various influences on chewing function; however, there have not been studies in which the relationships between maximum bite force and masticatory jaw movement have been clarified. The aim of this study was to investigate the effect of maximum bite force on masticatory jaw movement in subjects with normal occlusion. Thirty young adults (22 men and 8 women; mean age, 22.6 years) with good occlusion were divided into two groups based on whether they had a relatively high or low maximum bite force according to the median. The maximum bite force was determined according to the Dental Prescale System using pressure-sensitive sheets. Jaw movement during mastication of hard gummy jelly (each 5.5 g) on the preferred chewing side was recorded using a six degrees of freedom jaw movement recording system. The motion of the lower incisal point of the mandible was computed, and the mean values of 10 cycles (cycles 2-11) were calculated. A masticatory performance test was conducted using gummy jelly. Subjects with a lower maximum bite force showed increased maximum lateral amplitude, closing distance, width and closing angle; wider masticatory jaw movement; and significantly lower masticatory performance. However, no differences in the maximum vertical or maximum anteroposterior amplitudes were observed between the groups. Although other factors, such as individual morphology, may influence masticatory jaw movement, our results suggest that subjects with a lower maximum bite force show increased lateral jaw motion during mastication. PMID:24612273
Lift modulation for maximum endurance planetary entry
NASA Astrophysics Data System (ADS)
Yang, C.-Y.; Chern, J.-S.
1981-09-01
Optimal lift modulation for maximum endurance planetary entry trajectories of Shuttle type vehicles is investigated. The force field of the planet is considered Newtonian, and the atmosphere is assumed to be exponential. Motion is confined to the plane of a great circle to obtain maximum endurance, and a set of dimensionless variables and a normalized lift coefficient are used to obtain an overview of the optimal trajectories. The variational problem is reduced to a two-parameter function, and maximum endurance trajectories for a Shuttle reentering the earth atmosphere are derived by integrating the dimensionless state equation with a certain specified initial state. The optimal lift control is also formulated for maximum endurance gliding trajectories of fighter type vehicles at low altitudes and speed, and tends to the value of the steady state solution, the square root of three.
Maximum Pseudo Likelihood Estimation in Network Tomography
Yu, Bin
monitoring and diagnosis are key to improving network performance. The difficulties of performance monitoringmaximum likelihood [18] in finance by White (1994). With today's fast growing Internet, network monitoring
Probable maximum floods at the Yucca Mountain exploration shafts
Cardle, J.A.; Lim, S.T. [Dept. of Civil Engineering, Univ. of Nevada, Las Vegas, Las Vegas, NV (United States)
1990-10-01
This paper presents an analysis of flood flows in the Coyote Wash at the proposed high level nuclear waste repository site at Yucca Mountain, Nevada. Estimates of the hydrographs at various points in this wash resulting from the 100 year storm and from the probable maximum storms are developed and compared with other results. Flows in this particular wash are particularly critical due to the adjacent location of the proposed exploratory shafts. The resulting hydrographs at the site of the exploratory shaft pad are delineated.
Blind deconvolution of fluorescence micrographs by maximum-likelihood estimation
NASA Astrophysics Data System (ADS)
Liu, Yi-Hwa; Krishnamurthi, Vijaykumar; Bhattacharyya, Santosh; Turner, James N.; Holmes, Timothy J.
1995-10-01
We report some recent algorithmic refinements and the resulting simulated and real image reconstructions of fluorescence micrographs by using a blind-deconvolution algorithm based on maximum-likelihood estimation. Blind-deconvolution methods encompass those that do not require either calibrated or theoretical predetermination of the point-spread function (PSF). Instead, a blind deconvolution reconstructs the PSF concurrently with deblurring of the image data. Two-dimensional computer simulations give some definitive evidence of the integrity of the reconstructions of both the fluorescence concentration and the PSF. A reconstructed image and a reconstructed PSF from a two-dimensional fluorescent data set show that the blind version of the algorithm produces
Maximum Tension: with and without a cosmological constant
Barrow, John D.; Gibbons, G. W.
2014-12-04
be assigned a mass M and a radius or size R. Since inertial mass, passive gravitational mass, and active gravitational mass 7 are equal to a high degree of precision, the de?nition of mass is unambiguous. The precise de?nition of radius is not completely clear... of maximum force in Newtonian gravity. Point particle masses can get arbitrarily close to one another and so the forces between them are unbounded in principle. An important example was constructed by Xia (1992). He considered a 5-body system consisting...
Dose-response model for teratological experiments involving quantal responses
Rai, K.; Van Ryzin, J.
1985-03-01
This paper introduces a dose-response model for teratological quantal response data where the probability of response for an offspring from a female at a given dose varies with the litter size. The maximum likelihood estimators for the parameters of the model are given as the solution of a nonlinear iterative algorithm. Two methods of low-dose extrapolation are presented, one based on the litter size distribution and the other a conservative method. The resulting procedures are then applied to a teratological data set from the literature.
Multidimensional maximum-entropy covariance extension
H. Lev-Ari
1985-01-01
A universal characterization of multi-dimensional maximum-entropy covariances is presented. We show that the maximum-entropy extension of an arbitrary covariance band of a (nonstationary) multi-dimensional signal must have a banded inverse. Furthermore, we show that for one-dimensional signals such banded-inverse covariances are characterized by finite-order autoregressive models. The same kind of model is inadequate for multi-dimensional signals, but it can be
Low-complexity maximum intensity projection
Benjamin Mora; David S. Ebert
2005-01-01
Many techniques have already been proposed to improve the efficiency of maximum intensity projection (MIP) volume rendering, but none of them considered the possible hypothesis of a better complexity than either O(n) for finding the maximum value of n samples along a ray or O(n3) for an object-order algorithm. Here, we fully model and analyze the use of octrees for
Maximum Likelihood of Evolutionary Trees Is Hard
Benny Chor; Tamir Tuller
2005-01-01
\\u000a Maximum likelihood (ML) is an increasingly popular optimality criterion for selecting evolutionary trees (Felsenstein, 1981).\\u000a Finding optimal ML trees appears to be a very hard computational task, but for tractable cases, ML is the method of choice.\\u000a In particular, algorithms and heuristics for ML take longer to run than algorithms and heuristics for the second major character\\u000a based criterion, maximum
Dose-finding approach for dose escalation with overdose control considering incomplete observations.
Mauguen, A; Le Deley, M C; Zohar, S
2011-06-15
We propose a hybrid design, the time-to-event dose-escalation method with overdose control (TITE-EWOC), introducing the time-to-event approach, developed by Cheungit et al., in the EWOC method, developed by Babb et al. The aim of this new design is to decrease the dose-finding trial duration, without impairing the characteristics of the EWOC design, especially the overdose control ability. We conducted a simulation study, exploring four dose–toxicity relationships and three mean inter-patient arrival times. Performances of TITE-EWOC were compared with those of the EWOC method. This study shows that the trial duration can be greatly decreased with the TITE-EWOC, without impacting the proportion of overdosed patients or the number of dose-limiting toxicities by trial, for all explored dose–toxicity relationships, except for very short inter-patient arrival times. The ability of the method to find the true maximum tolerated dose remains unchanged. PMID:21351289
Effets pathogènes d'un faible débit de dose : la relation « dose effet »
NASA Astrophysics Data System (ADS)
Masse, Roland
2002-10-01
There is no evidence of pathogenic effects in human groups exposed to less than 100 mSv at low dose-rate. The attributed effects are therefore the result of extrapolations from higher doses. The validity of such extrapolations is discussed from the point of view of epidemiology as well as cellular and molecular biology. The Chernobyl accident resulted in large excess of thyroid cancers in children; it also raised the point that some actual sanitary effects among distressed populations might be a direct consequence of low doses. Studies under the control of UN have not confirmed this point identifying no dose-effect relationship and " severe socio-economic and psychological pressures… poverty, poor diet and living conditions, and lifestyle factors" as the main cause for depressed health. Some hypothesis are considered for explaining the dose-dependence and high prevalence of non-cancer causes of death among human groups exposed to more than 300 mSv. To cite this article: R. Masse, C. R. Physique 3 (2002) 1049-1058.
A generalized a priori dose uncertainty model of IMRT delivery
Jin, Hosang; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong
2008-03-15
Multileaf collimator-based intensity modulated radiation therapy (IMRT) is complex because each intensity modulated field consists of hundreds of subfields, each of which is associated with an intricate interplay of uncertainties. In this study, the authors have revised the previously introduced uncertainty model to provide an a priori accurate prediction of dose uncertainty during treatment planning in IMRT. In the previous model, the dose uncertainties were categorized into space-oriented dose uncertainty (SOU) and nonspace-oriented dose uncertainty (NOU). The revised model further divided the uncertainty sources into planning and delivery. SOU and NOU associated with a planning system were defined as inherent dose uncertainty. A convolution method with seven degrees of freedom was also newly applied to generalize the model for practical clinical cases. The model parameters were quantified through a set of measurements, accumulated routine quality assurance (QA) data, and peer-reviewed publications. The predicted uncertainty maps were compared with dose difference distributions between computations and 108 simple open-field measurements using a two-dimensional diode array detector to verify the validity of the model parameters and robustness of the generalized model. To examine the applicability of the model to overall dose uncertainty prediction in IMRT, a retrospective analysis of QA measurements using the diode array detector for 32 clinical IM fields was also performed. A scatter diagram and a correlation coefficient were employed to investigate a correlation of the predicted dose uncertainty distribution with the dose discrepancy distribution between calculation and delivery. In addition, a {gamma} test was performed to correlate failed regions in dose verification with the dose uncertainty map. The quantified model parameters well correlated the predicted dose uncertainty with the probable dose difference between calculations and measurements. It was visually validated with the scatter diagrams. The average correlation coefficient between uncertainty and dose difference of 108 verification measurements was 0.80{+-}0.04, indicating a strong linear correlation. In the clinical IM field studies, the dose uncertainty map mimicked the probable dose difference distribution. The average correlation coefficient between the overall dose uncertainty and the dose difference of 32 QA measurements (total 13 184 comparison points) was 0.75{+-}0.07, which also indicated a strong linear correlation between them. The failed regions of the {gamma} test remarkably corresponded to relatively high dose uncertainty. In conclusion, the dose uncertainty map was able to highlight high dose uncertainty regions, where more care should be taken during the treatment plan. The a priori accurate prediction of dose uncertainty in IMRT will significantly improve the treatment plan evaluation process, thus improving the quality of radiation treatments.
Litwin, Jeffrey S; Benedict, Michael S; Thorn, Michael D; Lawrence, Laura E; Cammarata, Sue K; Sun, Eugene
2015-06-01
A randomized, double-blind, placebo-controlled, 4-period crossover study was conducted in 52 healthy adults to assess the effect of delafloxacin on the corrected QT (QTc) interval. The QT interval, corrected for heart rate using Fridericia's formula (QTcF), was determined predose and at 0.5, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 12, 18, and 24 h after dosing with delafloxacin at 300 mg intravenously (i.v.; therapeutic), delafloxacin at 900 mg i.v. (supratherapeutic), moxifloxacin at 400 mg orally (p.o.; positive control), and placebo. The pharmacokinetic profile of delafloxacin was also evaluated. At each time point after delafloxacin administration, the upper limit of the 90% confidence interval (CI) for the placebo-corrected change from the predose baseline in QTcF (??QTcF) was less than 10 ms (maximum, 3.9 ms at 18 h after dosing), indicating an absence of a clinically meaningful increase in the QTc interval. The lower limit of the 90% CI of ??QTcF for moxifloxacin versus placebo was longer than 5 ms at all 5 time points selected for assay sensitivity analysis, demonstrating that the study was adequately sensitive to assess QTc prolongation. There was no positive relationship between delafloxacin plasma concentrations and ??QTcF. Treatment-emergent adverse events (AEs) were more frequent among subjects receiving a single supratherapeutic dose of 900 mg delafloxacin. There were no deaths, serious AEs, or AEs leading to study discontinuation and no clinically meaningful abnormalities in laboratory values or vital signs observed at any time point after any dose of the study drug. PMID:25845864
The estimation of galactic cosmic ray penetration and dose rates
NASA Technical Reports Server (NTRS)
Burrell, M. O.; Wright, J. J.
1972-01-01
This study is concerned with approximation methods that can be readily applied to estimate the absorbed dose rate from cosmic rays in rads - tissue or rems inside simple geometries of aluminum. The present work is limited to finding the dose rate at the center of spherical shells or behind plane slabs. The dose rate is calculated at tissue-point detectors or for thin layers of tissue. This study considers cosmic-rays dose rates for both free-space and earth-orbiting missions.
40 CFR 141.65 - Maximum residual disinfectant levels.
Code of Federal Regulations, 2014 CFR
2014-07-01
...2014-07-01 false Maximum residual disinfectant levels. 141.65 Section 141.65 Protection...Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.65 Maximum residual...
40 CFR 141.65 - Maximum residual disinfectant levels.
Code of Federal Regulations, 2013 CFR
2013-07-01
...2013-07-01 false Maximum residual disinfectant levels. 141.65 Section 141.65 Protection...Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.65 Maximum residual...
40 CFR 141.65 - Maximum residual disinfectant levels.
Code of Federal Regulations, 2012 CFR
2012-07-01
...2012-07-01 false Maximum residual disinfectant levels. 141.65 Section 141.65 Protection...Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.65 Maximum residual...
40 CFR 141.65 - Maximum residual disinfectant levels.
Code of Federal Regulations, 2011 CFR
2011-07-01
...2011-07-01 false Maximum residual disinfectant levels. 141.65 Section 141.65 Protection...Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.65 Maximum residual...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2010 CFR
2010-07-01
...false Determination of maximum test speed. 94.107 Section 94.107 Protection...107 Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2012 CFR
2012-07-01
...false Determination of maximum test speed. 94.107 Section 94.107 Protection...107 Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2013 CFR
2013-07-01
...false Determination of maximum test speed. 94.107 Section 94.107 Protection...107 Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2014 CFR
2014-07-01
...true Determination of maximum test speed. 94.107 Section 94.107 Protection...107 Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum...
40 CFR 94.107 - Determination of maximum test speed.
Code of Federal Regulations, 2011 CFR
2011-07-01
...false Determination of maximum test speed. 94.107 Section 94.107 Protection...107 Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum...
40 CFR 141.65 - Maximum residual disinfectant levels.
Code of Federal Regulations, 2010 CFR
2010-07-01
...PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS National Primary Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.65 Maximum residual disinfectant levels. (a) Maximum...
40 CFR 141.66 - Maximum contaminant levels for radionuclides.
Code of Federal Regulations, 2010 CFR
2010-07-01
...2010-07-01 false Maximum contaminant levels for radionuclides. 141...Drinking Water Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.66 Maximum contaminant levels for radionuclides....
MPI Point-to-Point Communication
NSDL National Science Digital Library
This module details and differentiates the various types of point-to-point communication available in MPI. Point-to-point communication involves transmission of a message between a pair of processes, as opposed to collective communication, which involves a group of processes.
A maximum likelihood approach to estimating correlation functions
Baxter, Eric Jones [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Rozo, Eduardo, E-mail: ebaxter@uchicago.edu [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)
2013-12-10
We define a maximum likelihood (ML for short) estimator for the correlation function, ?, that uses the same pair counting observables (D, R, DD, DR, RR) as the standard Landy and Szalay (LS for short) estimator. The ML estimator outperforms the LS estimator in that it results in smaller measurement errors at any fixed random point density. Put another way, the ML estimator can reach the same precision as the LS estimator with a significantly smaller random point catalog. Moreover, these gains are achieved without significantly increasing the computational requirements for estimating ?. We quantify the relative improvement of the ML estimator over the LS estimator and discuss the regimes under which these improvements are most significant. We present a short guide on how to implement the ML estimator and emphasize that the code alterations required to switch from an LS to an ML estimator are minimal.
Russo, James K. [Department of Radiation Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina (United States); Armeson, Kent E. [Division of Biostatistics and Epidemiology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina (United States); Richardson, Susan, E-mail: srichardson@radonc.wustl.edu [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri (United States)
2012-05-01
Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address this issue.
Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.
2013-02-15
Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT MLC sequences. For all phantoms and plans, time-resolved (10 Hz) ion chamber dose was collected. In addition, coronal (XY) films were exposed in the cube phantom to a VMAT beam with two different starting phases, and compared to the reconstructed motion-perturbed dose planes. Results: For the X or Y motions with the moving strip and geometrical phantoms, the maximum difference between perturbation-reconstructed and ion chamber doses did not exceed 1.9%, and the average for any motion pattern/starting phase did not exceed 1.3%. For the VMAT plans on the cubic and thoracic phantoms, one point exhibited a 3.5% error, while the remaining five were all within 1.1%. Across all the measurements (N = 22), the average disagreement was 0.5 {+-} 1.3% (1 SD). The films exhibited {gamma}(3%/3 mm) passing rates {>=}90%. Conclusions: The dose to an arbitrary moving voxel in a patient can be estimated with acceptable accuracy for a VMAT delivery, by performing a single QA measurement with a cylindrical phantom and applying two consecutive perturbations to the TPS-calculated patient dose. The first one accounts for the differences between the planned and delivered static doses, while the second one corrects for the motion.
NASA Astrophysics Data System (ADS)
Mavroidis, Panayiotis; Lind, Bengt K.; Brahme, Anders
2001-10-01
Developments in radiation therapy planning have improved the information about the three-dimensional dose distribution in the patient. Isodose graphs, dose volume histograms and most recently radiobiological models can be used to evaluate the dose distribution delivered to the irradiated organs and volumes of interest. The concept of a biologically effective uniform dose (D) assumes that any two dose distributions are equivalent if they cause the same probability for tumour control or normal tissue complication. In the present paper the D concept both for tumours and normal tissues is presented, making use of the fact that probabilities averaged over both dose distribution and organ radiosensitivity are more relevant to the clinical outcome than the expected number of surviving clonogens or functional subunits. D can be calculated in complex target volumes or organs at risk either from the 3D dose matrix or from the corresponding dose volume histograms of the dose plan. The value of the D concept is demonstrated by applying it to two treatment plans of a cervix cancer. Comparison is made of the D concept with the effective dose (Deff) and equivalent uniform dose (EUD) that have been suggested in the past. The value of the concept for complex targets and fractionation schedules is also pointed out.
Maximum Aerodynamic Force on an Ascending Space Vehicle
NASA Astrophysics Data System (ADS)
Backman, Philip
2012-03-01
The March 2010 issue of The Physics Teacher includes a great article by Metz and Stinner on the kinematics and dynamics of a space shuttle launch. Within those pages is a brief mention of an event known in the language of the National Aeronautics and Space Administration (NASA) as "maximum dynamic pressure" (called simply "Max.AirPressure" in the article), where the combined effect of air density and the shuttles speed produce the greatest aerodynamic stress on the vehicle as it ascends through the atmosphere toward orbit. Official commentary during a launch2 refers to this point in the ascent with language such as "space shuttle main engines throttling back as vehicle enters area of maximum dynamic pressure" and occurs in a range between 45 and 60 s after launch. (In dealing with this stress, the space shuttles main engines reduce their thrust at approximately 45 s to reduce acceleration, and return to normal levels again some 15 s later as maximum dynamic pressure is traversed.) This paper presents an analysis, accessible to introductory-level students, that predicts the time of Max. AirPressure for a given ascending spacecraft.
Maximum magnitude earthquakes induced by fluid injection
NASA Astrophysics Data System (ADS)
McGarr, A.
2014-02-01
Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.
Maximum permissible voltage of YBCO coated conductors
NASA Astrophysics Data System (ADS)
Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z.; Hong, Z.; Wang, D.; Zhou, H.; Shen, X.; Shen, C.
2014-06-01
Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (Ic) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the Ic degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor)
1994-01-01
A p-MOSFET total dose dosimeter where the gate voltage is proportional to the incident radiation dose. It is configured in an n-WELL of a p-BODY substrate. It is operated in the saturation region which is ensured by connecting the gate to the drain. The n-well is connected to zero bias. Current flow from source to drain, rather than from peripheral leakage, is ensured by configuring the device as an edgeless MOSFET where the source completely surrounds the drain. The drain junction is the only junction not connected to zero bias. The MOSFET is connected as part of the feedback loop of an operational amplifier. The operational amplifier holds the drain current fixed at a level which minimizes temperature dependence and also fixes the drain voltage. The sensitivity to radiation is made maximum by operating the MOSFET in the OFF state during radiation soak.
Split dose cytotoxic experiments with misonidazole.
Stratford, I. J.
1978-01-01
The toxicity of misonidazole (1-(2-nitroimidazol-1-yl)-3-methoxy-2-propanol) towards mammalian cells in vitro has been determined as a function of O2 tension. Misonidazole under hypoxic conditions (less than 10 Parts/10(6) O2) shows the greatest toxicity. Split-dose experiments indicate that lethal damage can be "repaired" by O2, the magnitude of this repair being time dependent and a function of O2 concentration, with maximum repair in air seen after 2 h at 37 degree C. Unlike radiation damage this repair is not inhibited by modest hyperthermia (41 degrees C) during the split-dose interval. The implication of these results as regards the mechanism of misonidazole toxicity under anaerobic conditions is discussed. PMID:687510
Split dose cytotoxic experiments with misonidazole.
Stratford, I J
1978-07-01
The toxicity of misonidazole (1-(2-nitroimidazol-1-yl)-3-methoxy-2-propanol) towards mammalian cells in vitro has been determined as a function of O2 tension. Misonidazole under hypoxic conditions (less than 10 Parts/10(6) O2) shows the greatest toxicity. Split-dose experiments indicate that lethal damage can be "repaired" by O2, the magnitude of this repair being time dependent and a function of O2 concentration, with maximum repair in air seen after 2 h at 37 degree C. Unlike radiation damage this repair is not inhibited by modest hyperthermia (41 degrees C) during the split-dose interval. The implication of these results as regards the mechanism of misonidazole toxicity under anaerobic conditions is discussed. PMID:687510
NASA Astrophysics Data System (ADS)
Haryanto, Freddy
2010-06-01
In medical linear accelerator, the energy parameter of electron plays important role to produce electron beam. The percentage depth dose of electron beams takes account not only on the value of electron's energy, but also on the type of electron's energy. The aims of this work are to carry on the effect of energy parameter of electron on the percentage depth dose of electron beam. Monte Carlo method is chosen in this project, due to the superior of this method for simulating the random process such as the transport particle in matter. The DOSXYZnrc usercode was used to simulate the electron transport in water phantom. Two aspects of electron's energy parameter were investigated using Monte Carlo simulations. In the first aspect, electron energy's value was varied also its spectrum. In the second aspect, the geometry of electron's energy was taken account on. The parallel beam and the point source were chosen as the geometry of The measurements of percentage depth dose were conducted to compare with its simulation. The ionization chamber was used in these measurements. Presentation of the results of this work is given not only based on the shape of the percentage depth dose from the simulation and measurement, but also on the other aspect in its curve. The result of comparison between the simulation and its measurement shows that the shape of its curve depends on the energy value of electron and the type of its energy. The energy value of electron affected the depth maximum of dose.
WAGGONER, L.O.
2000-05-16
As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.
Two prospective dosing methods for nortriptyline.
Perry, P J; Browne, J L; Alexander, B; Tsuang, M T; Sherman, A D; Dunner, F J
1984-01-01
This study compared two prospective pharmacokinetic dosing methods to predict steady-state concentrations of nortriptyline. One method required multiple determinations of the nortriptyline plasma concentration to estimate the drug's steady-state concentration. The second method required a single nortriptyline concentration drawn at a fixed time, preferably 36 hours, following a nortriptyline test dose. The 36-hour nortriptyline plasma concentrations (NTP 36h) were substituted into the straight-line equation of Cssav = 17.2 + 3.74 (NTP 36h), where Cssav is the average steady-state concentration for a 100 mg/day dose of nortriptyline. No differences were noted between the observed steady-state nortriptyline concentration of 121 +/- 19 ng/ml, the 36-hour single-point prediction mean concentration of 121 +/- 21 ng/ml, or the multiple-point prediction mean concentration of 122 +/- 19 ng/ml. Because of the similar findings between the two methods, the clinical advantages and disadvantages of each kinetic approach are discussed to put these prospective dosing protocols into their proper perspective. PMID:6509862
SU-E-T-259: Particle Swarm Optimization in Radial Dose Function Fitting for a Novel Iodine-125 Seed
Wu, X; Duan, J; Popple, R; Huang, M; Shen, S; Brezovich, I; Cardan, R; Benhabib, S
2014-06-01
Purpose: To determine the coefficients of bi- and tri-exponential functions for the best fit of radial dose functions of the new iodine brachytherapy source: Iodine-125 Seed AgX-100. Methods: The particle swarm optimization (PSO) method was used to search for the coefficients of the biand tri-exponential functions that yield the best fit to data published for a few selected radial distances from the source. The coefficients were encoded into particles, and these particles move through the search space by following their local and global best-known positions. In each generation, particles were evaluated through their fitness function and their positions were changed through their velocities. This procedure was repeated until the convergence criterion was met or the maximum generation was reached. All best particles were found in less than 1,500 generations. Results: For the I-125 seed AgX-100 considered as a point source, the maximum deviation from the published data is less than 2.9% for bi-exponential fitting function and 0.2% for tri-exponential fitting function. For its line source, the maximum deviation is less than 1.1% for bi-exponential fitting function and 0.08% for tri-exponential fitting function. Conclusion: PSO is a powerful method in searching coefficients for bi-exponential and tri-exponential fitting functions. The bi- and tri-exponential models of Iodine-125 seed AgX-100 point and line sources obtained with PSO optimization provide accurate analytical forms of the radial dose function. The tri-exponential fitting function is more accurate than the bi-exponential function.
The Maximum Mass of Rotating Strange Stars
NASA Astrophysics Data System (ADS)
Szkudlarek, M.; Gondek-Rosi?; ska, D.; Villain, L.; Ansorg, M.
2012-12-01
Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.
Maximum transport capacity of a network
NASA Astrophysics Data System (ADS)
Liu, Gang; Li, Yongshu; Guo, Jiawei; Li, Zheng
2015-08-01
The transport capacity of a network can be enhanced and the congestion can be controlled by improving routing algorithms. Its upper limit is, however, unknown in detail. This study shows that any connected network has a maximum transport capacity largely depending on the topological and structural properties of the network. Network transport capacity is limited and cannot be greater than the ratio of the sum of all the capacities of the nodes to the average path length of the network, regardless of the adopted routing algorithm. When the capacity of all nodes is equal to 1, the maximum transport capacity of the network is not greater than the ratio of the network size to the average path length. The results demonstrate that the maximum transport capacity of a network, which is the essential characteristic of the network, is mainly determined by the topological structure of the network and is independent of the routing strategies.
Bowdle, T A; Ward, R J
1989-01-01
The purpose of this study was to examine the dose versus EEG response relationship, the speed of onset, and the thiopental requirement for induction of anesthesia with small doses of sufentanil and fentanyl. The power spectrum of the electroencephalogram (EEG) was used to quantify the effect of the opioids. Eight male surgical patients, 52-80 yr old, were randomly divided into eight groups of ten to receive fentanyl, 5, 7, 10, or 13 micrograms/kg, or sufentanil, 0.5, 0.7, 1.0, or 1.3 micrograms/kg. The opioid was given iv over 1 min at a constant rate of infusion. Three to four minutes after the start of the opioid dose, thiopental was given iv in 25 mg increments every 30 s until the patient was unconscious. Power in the 1-3 Hz band reached maximum levels in less than 4 min after the start of opioid administration. At fentanyl doses of 7.0 micrograms/kg or less, or sufentanil doses of 1.0 micrograms/kg or less, the EEG effects did not increase in proportion to the dose of opioid. There was not a significant difference in the maximum power achieved in the 1-3 Hz band for sufentanil, 0.5, 0.7 and 1.0, and fentanyl, 5 and 7 micrograms/kg. Doses of fentanyl, 10 or 13 micrograms/kg, or sufentanil, 1.3 micrograms/kg were substantially more effective; the maximum power increased significantly between 7 and 10 micrograms/kg of fentanyl and 1.0 and 1.3 micrograms/kg of sufentanil (P less than 0.0001). The potency of sufentanil and fentanyl were compared by super-imposing, the dose versus response (power) curves. The potency ratio was 1:8 (sufentanil:fentanyl).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2521435
Majumder, Dipanjan; Patra, Niladri Bihari; Chatterjee, Debashis; Mallick, Swapan Kumar; Kabasi, Apurba Kumar; Majumder, Anjali
2014-01-01
Background and Purpose: Spinal cord toxicity can be dreaded complication while treating head and neck cancer by conventional radiotherapy. Cord sparing approach is applied by two phase planning in conventional head neck radiotherapy. In spite of cord sparing approach spinal cord still receives considerable scatter dose. Our study aims to do the volumetric analysis of spinal cord dosimetry and to correlate with the clinical findings. Materials and Methods: Treatment planning was done in two phases. First phase treatment fields include gross disease- both tumor and involved nodes. in the second phase, treatment field shrinkage was done to cover the gross disease sparing the spinal cord. These fields are termed as off-cord fields. 42 patients with histological proven squamous cell carcinoma of the head and neck region were analysed with two groups. In Group A, 46 Gy was given in 23 fractions, and then tumor-boost with off-cord field received 24 Gy in 12 fractions. In Group B 50 Gy was prescribed in 25 fractions initially, then off-cord field given 20 Gy in 10 fractions to analyze theoutcome. Planning Computed tomography (CT) scan was done Philips Brilliance 16 slice CT scan machine, and contouring and dose calculation were done at ASHA treatment planning software. Results: Maximum dose and dose at 1 cm3, 2 cm3, and 5 cm3 were calculated. Maximum dose to cord was 52.6 Gy (range 48.1-49.7 Gy) in Group A and 54.3 Gy (range 51.48-52.33 Gy) in Group B initially. Off-cord fields received mean dose 8.07 Gy (85.85% of maximum) in Group A and 5.47 Gy (86.84% of maximum) in Group B. At the end of 6 months from the last date of radiotherapy, grade 1 spinal cord toxicity found in two patients in Group A and one patient in Group B respectively (P = 0.55). Both groups received additional dose, which are higher than the prescribed dose, but no patients show significant spinal cord toxicity after 6 month of follow-up. Conclusion: Spinal cord received scatter dose which much higher than the predicted dose in conventional radiotherapy of head neck cancer. Short term follow up failed to establish clinical correlation with volumetric dose of spinal cord. Two phase cord sparing head neck radiation planning if practiced should be used with caution. PMID:24665442
Dose specification for radiation therapy: dose to water or dose to medium?
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, Jinsheng
2011-05-01
The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.
Maximum predictive power and the superposition principle
NASA Technical Reports Server (NTRS)
Summhammer, Johann
1994-01-01
In quantum physics the direct observables are probabilities of events. We ask how observed probabilities must be combined to achieve what we call maximum predictive power. According to this concept the accuracy of a prediction must only depend on the number of runs whose data serve as input for the prediction. We transform each probability to an associated variable whose uncertainty interval depends only on the amount of data and strictly decreases with it. We find that for a probability which is a function of two other probabilities maximum predictive power is achieved when linearly summing their associated variables and transforming back to a probability. This recovers the quantum mechanical superposition principle.
Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment
Unger, L.M.; Trubey, D.K.
1982-05-01
Tables of specific gamma-ray dose constants (the unshielded gamma-ray dose equivalent rate at 1 m from a point source) have been computed for approximately 500 nuclides important to dosimetry and radiological assessment. The half life, the mean attenuation coefficient, and thickness for a lead shield providing 95% dose equivalent attenuation are also listed.
NASA Astrophysics Data System (ADS)
Area, María C.; Calvo, Ana M.; Felissia, Fernando E.; Docters, Andrea; Miranda, María V.
2014-03-01
The aim of this study was to evaluate the effects of dose and dose rate of gamma irradiation on the physical properties of commercial papers commonly used in libraries and archives to optimize the irradiation conditions. Three different brands of paper of different fiber compositions were treated, using a 32 factorial design with four replicates of the center point, with doses ranging from 2 to 11 kGy and dose rates between 1 and 11 kGy/h. Chemical, mechanical and optical properties were determined on the samples. With some differences between the different kinds of papers, tensile strength, elongation, TEA, and air resistance were in general, unaffected by the treatment. The minimum loss of tear resistance and brightness were obtained with doses in the range 4-6 kGy at any dose rate for all three kinds of paper. These conditions are ideal to remove insects and sufficient to eliminate fungus.
Data required for testicular dose calculation during radiotherapy of seminoma
Mazonakis, Michalis; Kokona, Georgiana; Varveris, Haralambos; Damilakis, John; Gourtsoyiannis, Nicholas [Department of Medical Physics, University Hospital of Iraklion, 71110 Iraklion (Greece); Department of Radiotherapy, Faculty of Medicine, University of Crete, 71409 Iraklion (Greece); Department of Medical Physics, Faculty of Medicine, University of Crete, 71409 Iraklion (Greece); Department of Radiology, Faculty of Medicine, University of Crete, 71409 Iraklion (Greece)
2006-07-15
The purpose of this study was to provide the required data for the direct calculation of testicular dose resulting from radiotherapy in patients with seminoma. Paraortic (PA) treatment fields and dog-leg (DL) portals including paraortic and ipsilateral pelvic nodes were simulated on a male anthropomorphic phantom equipped with an artificial testicle. Anterior and posterior irradiations were performed for five different PA and DL field dimensions. Dose measurements were carried out using a calibrated ionization chamber. The dependence of testicular dose upon the distance separating the testicle from the treatment volume and upon the tissue thickness at the entrance point of the beam was investigated. A clamshell lead shield was used to reduce testicular dose. The scattered dose to testicle was measured in nine patients using thermoluminescent dosimeters. Phantom and patient exposures were generated with a 6 MV x-ray beam. Linear and nonlinear regression analysis was employed to obtain formulas describing the relation between the radiation dose to an unshielded and/or shielded testicle with the field size and the distance from the inferior field edge. Correction factors showing the variation of testicular dose with the patient thickness along beam axis were found. Bland-Altman statistical analysis showed that testicular dose obtained by the proposed calculation method may differ from the measured dose value by less than 25%. The current study presents a method providing reasonable estimations of testicular dose for individual patients undergoing PA or DL radiotherapy.
Megavoltage bremsstrahlung end point voltage diagnostic
Feroli, T.; Litz, M. S.; Merkel, G.; Smith, T.; Pereira, N. R.; Carroll, J. J.
2009-03-15
In a material, a beam of x rays is accompanied by various kinds of secondary radiation, including Compton electrons from collisions between the x rays and the material's electrons. For megavoltage bremsstrahlung in air, many of these Compton electrons are forward-directed and fast enough to be deflected outside the beam's edge by a magnetic field perpendicular to the beam. At the beam's edge, the dose from the deflected Compton electrons has a pattern that depends on the radiation's end point energy. Dose patterns measured with radiochromic film on a nominally 1 and 2 MV linear accelerator agree reasonably well with the corresponding Monte Carlo computations. With further development, the dose pattern produced outside the beam by such a sweeper magnet could become a noninvasive way to monitor megavoltage bremsstrahlung, when the end point energies are difficult to determine with other methods.
Skin dose mapping for fluoroscopically guided interventions
Johnson, Perry B.; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E. [Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States); Radiology, Columbia University Medical Center, New York, New York 10032 (United States); Radiology, University of Florida, Jacksonville, Florida 32209 (United States); Radiology, Division of Vascular Interventional Radiology, University of Florida, Jacksonville, Florida 32209 (United States); Biomedical Engineering, University of Florida, Gainesville, Florida 32611 (United States)
2011-10-15
Purpose: To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. Methods: In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Results: Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in-clinic monitor of an interventional fluoroscopy system. Conclusions: The skin dose mapping program developed in this work represents a new tool that, as the RDSR becomes available through automated export or real-time streaming, can provide the interventional physician information needed to modify behavior when clinically appropriate. The program is nonproprietary and transferable, and also functions independent to the software systems already installed on the control room workstation. The next step will be clinical implementation where the workflow will be optimized along with further analysis of real-time capabilities.
Oral desensitization to milk: how to choose the starting dose!
Mori, Francesca; Pucci, Neri; Rossi, Maria Elisabetta; de Martino, Maurizio; Azzari, Chiara; Novembre, Elio
2010-01-01
Mori F, Pucci N, Rossi ME, de Martino M, Azzari C, Novembre E. Oral desensitization to milk: how to choose the starting dose! Pediatr Allergy Immunol 2010: 21: e450–e453. © 2009 John Wiley & Sons A/S A renewed interest in oral desensitization as treatment for food allergy has been observed in the last few years. We studied a novel method based on the end point skin prick test procedure to establish the starting dose for oral desensitization in a group of 30 children higly allergic to milk. The results (in terms of reactions to the first dose administered) were compared with a group of 20 children allergic to milk as well. Such control group started to swallow the same dose of 0.015 mg/ml of milk. None reacted to the first dose when administered according to the end point skin prick test. On the other side, ten out of 20 children (50%) from the control group showed mild allergic reactions to the first dose of milk. In conclusion the end point skin prick test procedure results safe and easy to be performed in each single child in order to find out the starting dose for oral desensitization to milk, also by taking into account the individual variability. PMID:19624618
Belief space planning assuming maximum likelihood observations
Tedrake, Russ
Belief space planning assuming maximum likelihood observations Robert Platt Jr., Russ Tedrake observable control problem as a fully observable underactuated stochastic control problem in belief space and apply standard planning and control techniques. One of the difficulties of belief space planning
Maximum Likelihood Approach to Joint Array
George Mason University
Maximum Likelihood Approach to Joint Array Detection/Estimation ROY E. BETHEL The MITRE Corp' addresses: R. E. Bethel, The MITRE Corp. MS H415, 7515 Colshire Drive, McLean, VA 22102-7508, E-mail: (rbethel@mitre.org]; K. L. Bell, Dept. of Appl. & Eng. Statistics, MS 4A7, George Mason University, Fairfax
Maximum a Posteriori Tree Augmented Naive Bayes
MÃ¡ntaras, Ramon LÃ³pez de
Maximum a Posteriori Tree Augmented Naive Bayes Classifiers INSTITUT D'INVESTIGACIÂ´O EN INTELÂ´us Cerquides Ramon LÂ´opez de M`antaras October 2003 Abstract Bayesian classifiers such as Naive Bayes or Tree Augmented Naive Bayes (TAN) have shown excellent performance given their simplicity and heavy underlying
Exegeses on Maximum Genetic Differentiation Franois Rousset*,
Rosenberg, Noah
that is directly applicable to genetic data and that reflects the dependence on marker features can be given- tational features intrinsic to the genetic markers. Interest in FST stems in part from its relativeCOMMENTARY Exegeses on Maximum Genetic Differentiation François Rousset*, *Centre National de la
Remarks on the maximum correlation coefficient
Amir Dembo; Abram Kagan; Lawrence A. Shepp
2001-01-01
The maximum correlation coefficient between partial sums of independent and identically distributed random variables with finite second moment equals the classical (Pearson) correlation coefficient between the sums, and thus does not depend on the distribution of the random variables. This result is proved, and relations between the linearity of regression of each of two random variables on the other and
Maximum Margin Discriminant Analysis based Face Recognition
Szepesvari, Csaba
Maximum Margin Discriminant Analysis based Face Recognition Korn´el Kov´acs1 , Andr´as Kocsor1 recognition is a highly non-trivial classification problem since the input is high that MMDA is capable of finding good features in face recognition and performs very well provided
Integrating Correlated Bayesian Networks Using Maximum Entropy
Jarman, Kenneth D.; Whitney, Paul D.
2011-08-30
We consider the problem of generating a joint distribution for a pair of Bayesian networks that preserves the multivariate marginal distribution of each network and satisfies prescribed correlation between pairs of nodes taken from both networks. We derive the maximum entropy distribution for any pair of multivariate random vectors and prescribed correlations and demonstrate numerical results for an example integration of Bayesian networks.
Maximum Locally Stable Matchings Christine T. Cheng
Cheng, Christine
Maximum Locally Stable Matchings Christine T. Cheng Eric McDermid Abstract Motivated by the observation that most companies are more likely to consider job applicants suggested by their employees than that r is simultaneously an employee of h and a neighbor of r in G. Such a pair is likely to compromise
Weak scale from the maximum entropy principle
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu
2015-03-01
The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.
Weak Scale From the Maximum Entropy Principle
Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana
2015-03-28
The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\
Weak Scale From the Maximum Entropy Principle
Hamada, Yuta; Kawana, Kiyoharu
2015-01-01
The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\
Menu Plans: Maximum Nutrition for Minimum Cost.
ERIC Educational Resources Information Center
Texas Child Care, 1995
1995-01-01
Suggests that menu planning is the key to getting maximum nutrition in day care meals and snacks for minimum cost. Explores United States Department of Agriculture food pyramid guidelines for children and tips for planning menus and grocery shopping. Includes suggested meal patterns and portion sizes. (HTH)
Comparing maximum pressures in internal combustion engines
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W; Lee, Stephen M
1922-01-01
Thin metal diaphragms form a satisfactory means for comparing maximum pressures in internal combustion engines. The diaphragm is clamped between two metal washers in a spark plug shell and its thickness is chosen such that, when subjected to explosion pressure, the exposed portion will be sheared from the rim in a short time.
Maximum Possible Transverse Velocity in Special Relativity.
ERIC Educational Resources Information Center
Medhekar, Sarang
1991-01-01
Using a physical picture, an expression for the maximum possible transverse velocity and orientation required for that by a linear emitter in special theory of relativity has been derived. A differential calculus method is also used to derive the expression. (Author/KR)
Partitioned algorithms for maximum likelihood and
Smyth, Gordon K.
Partitioned algorithms for maximum likelihood and other nonlinear estimation Gordon K. Smyth There are a variety of methods in the literature which seek to make iterative estimation algorithms more manageable by breaking the iterations into a greater number of simpler or faster steps. Those algorithms which deal
Maximum Mean Discrepancy Imitation Learning Beomjoon Kim
Pineau, Joelle
Maximum Mean Discrepancy Imitation Learning Beomjoon Kim School of Computer Science McGill University Montreal, Canada Email: jpineau@cs.mcgill.ca Abstract--Imitation learning is an efficient method for many robots to acquire complex skills. Some recent approaches to imitation learning provide strong
Boosting and Maximum Likelihood for Exponential Models
Boosting and Maximum Likelihood for Exponential Models Guy Lebanon John La#11;erty October 6, 2001 Recent research has considered the relationship between boosting and more standard statistical methods, such as logistic regression, concluding that AdaBoost is similar but somehow still very di#11;erent from
MAXIMUM ENTROPY APPROACH TO OPTIMAL SENSOR PLACEMENT
Kreinovich, Vladik
, El Paso, TX 79968, USA y Abstract. The ideal design of an airplane should include builtin sensors. In this paper, we overcome the first obstacle by using maximum entropy ap proach (MaxEnt) to select integrity of aerospace systems is very important. Structural integrity is extremely important for airplanes
MAXIMUM ENTROPY APPROACH TO OPTIMAL SENSOR PLACEMENT
Kreinovich, Vladik
, El Paso, TX 79968, USA Abstract. The ideal design of an airplane should include built-in sensors. In this paper, we overcome the first obstacle by using maximum entropy ap- proach (MaxEnt) to select integrity of aerospace systems is very important. Structural integrity is extremely important for airplanes
Uncertainties in adaptive maximum entropy frequency estimators
R. Keeler
1978-01-01
For a real sinusoid in white noise, the weight vector noise associated with an adaptive maximum entropy (AME) frequency estimator causes the spectrum peak to shift away from the input frequency. For a long adaptive filter, approximate expressions for this estimator's peak value and frequency variance are derived. For low SNR, the probability of obtaining a spurious peak is evaluated.
Maximum Induced Matchings of Random Cubic Graphs
Wormald, Nick
Maximum Induced Matchings of Random Cubic Graphs W. Duckworth1 , N.C. Wormald1 and M. Zito2Â§ 1, University of Liverpool, UK Abstract We present a heuristic for finding a large induced matching of cubic graphs using differential equations and obtain a lower bound on the expected size of the induced match
Maximum Sunspot Numbers and Active Days
NASA Astrophysics Data System (ADS)
Chang, Heon-Young
2013-09-01
Parameters associated with solar minimum have been studied to relate them to solar activity at solar maximum so that one could possibly predict behaviors of an upcoming solar cycle. The number of active days has been known as a reliable indicator of solar activity around solar minimum. Active days are days with sunspots reported on the solar disk. In this work, we have explored the relationship between the sunspot numbers at solar maximum and the characteristics of the monthly number of active days. Specifically, we have statistically examined how the maximum monthly sunspot number of a given solar cycle is correlated with the slope of the linear relationship between monthly sunspot numbers and the monthly number of active days for the corresponding solar cycle. We have calculated the linear correlation coefficient r and the Spearman rank-order correlation coefficient rs for data sets prepared under various conditions. Even though marginal correlations are found, they turn out to be insufficiently significant (r ~ 0.3). Nonetheless, we have confirmed that the slope of the linear relationship between monthly sunspot numbers and the monthly number of active days is less steep when solar cycles belonging to the "Modern Maximum" are considered compared with rests of solar cycles. We conclude, therefore, that the slope of the linear relationship between monthly sunspot numbers and the monthly number of active days is indeed dependent on the solar activity at its maxima, but that this simple relationship should be insufficient as a valid method to predict the following solar activity amplitude.
Bond, V.P.
1991-01-01
Although an enormous amount of progress has been made in the fields of radiation protection and risk assessment, a number of significant problems remain. The one problem which transcends all the rest, and which has been subject to considerable misunderstanding, involves what has come to be known as the 'linear non-threshold hypothesis', or 'linear hypothesis'. Particularly troublesome has been the interpretation that any amount of radiation can cause an increase in the excess incidence of cancer. The linear hypothesis has dominated radiation protection philosophy for more than three decades, with enormous financial, societal and political impacts and has engendered an almost morbid fear of low-level exposure to ionizing radiation in large segments of the population. This document presents a different interpretation of the linear hypothesis. The basis for this view lies in the evolution of dose-response functions, particularly with respect to their use initially in the context of early acute effects, and then for the late effects, carcinogenesis and mutagenesis. 11 refs., 4 figs. (MHB)
Climate Change Impacts on Probable Maximum Precipitation
NASA Astrophysics Data System (ADS)
Kunkel, K.; Easterling, D. R.
2011-12-01
The estimation of the potential impacts of anthropogenic forcing of the climate system on extreme weather events relies heavily on the direct output of global and regional climate models, combined perhaps with extreme value statistical techniques. In this study, we use these tools along with physical and theoretical considerations to examine the potential impacts on Probable Maximum Precipitation estimates. Probable Maximum Precipitation (PMP) is the theoretically greatest depth of precipitation for a given duration that is physically possible over a particular drainage basin at a particular time of year. PMP values are used in the design of long-lived structures with lifetimes of many decades, such as dams. Climate change is an unavoidable consideration on those time scales. Many studies have documented an upward temporal trend in the frequency and intensity of extreme precipitation events. As the globe warms in response to increasing greenhouse gas concentrations, there is the potential for further changes in precipitation extremes. There are reasons why warming could lead to increased PMP values. One, the Clausius-Clapeyron relationship indicates that the saturation water vapor pressure increases with temperature; thus, precipitation-producing systems could have more "fuel" to precipitate. Two, warming may lead to an increase in the length of the convective season, when most of the extreme precipitation events occur. The methodology for estimation of PMP values has changed little over the last 30-40 years. The basic approach is to consider the factors that contribute to heavy precipitation and then consider the potential precipitation rates if all of those factors were simultaneously maximized. Convergence and vertical motion is one factor. Past work has assumed that there no empirical or satisfactory theoretical basis for assigning maximum values to this factor. The approach has been to use observed rainfall in notable storms as an indirect measure of maximum convergence and vertical motion. Notable storms are chosen to indicate the likely occurrence of near-maximum values. A second central factor is moisture availability. Observational data are used to determine maximum levels of moisture availability. Where topographic effects are important, wind maximization is a third factor. We are examining these factors in present-day and future simulations from global and regional climate models. Initial results strongly indicate the possibility for large future increases in maximum moisture, by about the same amount as increases in mean moisture content. This would lead directly to substantial increases in PMP values. Given the potential catastrophic consequences of dam failure, these findings should be considered carefully in future design activities.
Shapiro, A; Lin, B I; Windham, J P; Kereiakes, J G
1976-07-01
Gamma flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were integrated over the line source to obtain line source dose rates. Container attenuation was accounted for by evaluating the point dose rate as a function of platinum thickness. Both primary and secondary flux densities and dose rates are presented. The agreement with an independent Monte Carlo calculation was excellent. The data presented should be useful for the design of new source configurations. PMID:972917
Roberts, Jason A.; Field, Jonathan; Visser, Adam; Whitbread, Rosemary; Tallot, Mandy; Lipman, Jeffrey; Kirkpatrick, Carl M. J.
2010-01-01
The objective of the present prospective pharmacokinetic study was to describe the variability of plasma gentamicin concentrations in critically ill patients with acute kidney injury (AKI) necessitating extended daily diafiltration (EDD-f) using a population pharmacokinetic model and to subsequently perform Monte Carlo dosing simulations to determine which dose regimen achieves the pharmacodynamic targets the most consistently. We collected data from 28 gentamicin doses in 14 critically ill adult patients with AKI requiring EDD-f and therapeutic gentamicin. Serial plasma samples were collected. A population pharmacokinetic model was used to describe the pharmacokinetics of gentamicin and perform Monte Carlo simulations with doses of between 3 mg/kg of body weight and 7 mg/kg and at various time points before commencement of EDD-f to evaluate the optimal dosing regimen for achieving pharmacodynamic targets. A two-compartment pharmacokinetic model adequately described the gentamicin clearance while patients were on and off EDD-f. The plasma half-life of gentamicin during EDD-f was 13.8 h, whereas it was 153.4 h without EDD-f. Monte Carlo simulations suggest that dosing with 6 mg/kg every 48 h either 30 min or 1 h before the commencement of EDD-f results in 100% attainment of the target maximum concentration drug in plasma (<10 mg/liter) and sufficient attainment of the target area under the concentration-time curve from 0 to 24 h (AUC0-24; 70 to 120 mg·h/liter). None of the simulated dosing regimens satisfactorily achieved the targets of the minimum concentrations of drug in plasma (<1.0 mg/liter) at 24 h. In conclusion, dosing of gentamicin 30 min to 1 h before the commencement of an EDD-f treatment enables attainment of target peak concentrations for maximal therapeutic effect while enhancing drug clearance to minimize toxicity. Redosing in many patients should occur after 48 h, and we recommend the use of therapeutic drug monitoring to guide dosing to optimize achievement of the AUC0-24 targets. PMID:20547809
Roberts, Jason A; Field, Jonathan; Visser, Adam; Whitbread, Rosemary; Tallot, Mandy; Lipman, Jeffrey; Kirkpatrick, Carl M J
2010-09-01
The objective of the present prospective pharmacokinetic study was to describe the variability of plasma gentamicin concentrations in critically ill patients with acute kidney injury (AKI) necessitating extended daily diafiltration (EDD-f) using a population pharmacokinetic model and to subsequently perform Monte Carlo dosing simulations to determine which dose regimen achieves the pharmacodynamic targets the most consistently. We collected data from 28 gentamicin doses in 14 critically ill adult patients with AKI requiring EDD-f and therapeutic gentamicin. Serial plasma samples were collected. A population pharmacokinetic model was used to describe the pharmacokinetics of gentamicin and perform Monte Carlo simulations with doses of between 3 mg/kg of body weight and 7 mg/kg and at various time points before commencement of EDD-f to evaluate the optimal dosing regimen for achieving pharmacodynamic targets. A two-compartment pharmacokinetic model adequately described the gentamicin clearance while patients were on and off EDD-f. The plasma half-life of gentamicin during EDD-f was 13.8 h, whereas it was 153.4 h without EDD-f. Monte Carlo simulations suggest that dosing with 6 mg/kg every 48 h either 30 min or 1 h before the commencement of EDD-f results in 100% attainment of the target maximum concentration drug in plasma (<10 mg/liter) and sufficient attainment of the target area under the concentration-time curve from 0 to 24 h (AUC(0-24); 70 to 120 mg.h/liter). None of the simulated dosing regimens satisfactorily achieved the targets of the minimum concentrations of drug in plasma (<1.0 mg/liter) at 24 h. In conclusion, dosing of gentamicin 30 min to 1 h before the commencement of an EDD-f treatment enables attainment of target peak concentrations for maximal therapeutic effect while enhancing drug clearance to minimize toxicity. Redosing in many patients should occur after 48 h, and we recommend the use of therapeutic drug monitoring to guide dosing to optimize achievement of the AUC(0-24) targets. PMID:20547809
Maximum power point tracking using GA-optimized artificial neural network for Solar PV system
R. Ramaprabha; V. Gothandaraman; K. Kanimozhi; R. Divya; B. L. Mathur
2011-01-01
Solar energy is a green energy which is not only perennial but also accessible to every strata of the world. An easy way to convert solar energy into electric energy is to use Solar Photovoltaic (SPV) system. Solar panel is a power source having nonlinear internal resistance. As the intensity of light falling on the panel varies, its voltage as
Perreault, Dave
Thermophotovoltaic Power Generator Robert C.N. Pilawa-Podgurski, Wei Li, Ivan Celanovic, David J. Perreault power generator. The design, implemented in 0.35 µm CMOS technology, consists of a low-power control in low-bandgap semiconductors and photonic crystals, has enabled the development of TPV power generators
A new maximum power point tracker of photovoltaic arrays using fuzzy controller
Chung-Yuen Won; Duk-Heon Kim; Sei-Chan Kim; Won-Sam Kim; Hack-Sung Kim
1994-01-01
Studies on photovoltaic systems are increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the renewable energy system, it is
A Fuzzy-Based Maximum Power Point Tracker for Body Mounted Solar Panels in LEO Satellites
M. Taherbaneh; M. B. Menhaj
2007-01-01
Solar panels are the power subsystem components which provide satellite electrical power. Solar panels characteristics depend on environmental conditions (insolation level, temperature and etc.). In this paper, design and simulation of fuzzy-based MPPT for the body mounted solar panel in a LEO satellite are presented. To show how good the proposed technique is; we applied it into a real system.
Study of Different Implementation Approaches for a Maximum Power Point Florent Boico Brad Lehman
Lehman, Brad
(MPPT) for low power portable solar array applications. The discussion will compare different digital that the method of implementation (analog, digital) has an influence on the robustness of the MPPT particularly Amplfication &filtering Isense To gate Q DD (a) (b) (c) Fig. 1: Three possible implementation of MPPT studied
Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators
Pilawa, Robert
This paper describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design and ...
Modeling of Wind Turbine Driving Permanent Magnet Generator with Maximum Power Point Tracking System
Ali M. Eltamaly
2007-01-01
This paper elaborates on the analysis and simulation of 15 kW Wind Turbine Generator (WTG) driving low speed Permanent Magnet Synchronous Generator (PMSG) using PSIM computer simulation program. The system consists of wind turbine, permanent magnet generator, three-phase diode rectifier, boost converter, and voltage source inverter models. In the WTG model, the best performance coefficient has been determined according to
Maximum Power-Point Extraction of Small Switched-Inductor Piezoelectric Harvesters
Rincon-Mora, Gabriel A.
electrostatic and electromagnetic systems. Still, tiny transducers only derive a small fraction of what they normally generate more power than their electrostatic and electromagnetic counterparts [3]. But since and batteries establish static dc voltage
Sullivan, Terry
2014-12-02
ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant in order to establish a new water treatment plant. There is some residual radioactive particles from the plant which need to be brought down to levels so an individual who receives water from the new treatment plant does not receive a radioactive dose in excess of 25 mrem/y?¹. The objectives of this report are: (a) To present a simplified conceptual model for release from the buildings with residual subsurface structures that can be used to provide an upper bound on contaminant concentrations in the fill material; (b) Provide maximum water concentrations and the corresponding amount of mass sorbed to the solid fill material that could occur in each building for use in dose assessment calculations; (c) Estimate the maximum concentration in a well located outside of the fill material; and (d) Perform a sensitivity analysis of key parameters.
Pharmacokinetics of Clinafloxacin after Single and Multiple Doses
Randinitis, Edward J.; Brodfuehrer, Joanne I.; Eiseman, Irene; Vassos, Artemios B.
2001-01-01
Clinafloxacin (CI-960) is a potent broad-spectrum, fluoroquinolone antibiotic that has been studied for parenteral and oral administration in patients with serious infections. The objectives of these studies were to examine the pharmacokinetics and safety of clinafloxacin following administration of single and twice-daily intravenous (i.v.) and oral doses to volunteers. Plasma and urine samples were assayed by validated liquid chromatographic methods, and pharmacokinetic parameter values were determined by noncompartmental methods. Safety was evaluated by clinical observation and laboratory tests. Absorption was rapid after oral administration, with maximum concentrations in plasma (Cmax) generally occurring within 2 h. Concentrations in plasma declined biexponentially, with an average terminal half-life of 4 to 6 h after single doses and 5 to 7 h after multiple doses. Increases in Cmax and area under the concentration-time curves (AUC) were generally proportional to the dose. The volume of distribution was much greater than total body water. Approximately 40 to 75% of the clinafloxacin doses were excreted unchanged into urine. Absolute bioavailability of orally administered clinafloxacin was approximately 90% and did not change with increasing dose. Therefore, switching patients from i.v. to oral dosing should achieve similar concentrations in plasma. The tolerability of clinafloxacin was acceptable. No serious adverse events occurred. Cmax values and minimum plasma clinafloxacin concentrations during multiple dosing exceeded MICs for a wide range of organisms. PMID:11502525
Estradiol valerate and alcohol intake: dose-response assessments
Quirarte, Gina L; Reid, Larry D; de la Teja, I Sofía Ledesma; Reid, Meta L; Sánchez, Marco A; Díaz-Trujillo, Arnulfo; Aguilar-Vazquez, Azucena; Prado-Alcalá, Roberto A
2007-01-01
Background An injection of estradiol valerate (EV) provides estradiol for a prolonged period. Recent research indicates that a single 2.0 mg injection of EV modifies a female rat's appetite for alcoholic beverages. This research extends the initial research by assessing 8 doses of EV (from .001 to 2.0 mg/female rat), as well assessing the effects of 2.0 mg EV in females with ovariectomies. Results With the administration of EV, there was a dose-related loss of bodyweight reaching the maximum loss, when it occurred, at about 4 days after injections. Subsequently, rats returned to gaining weight regularly. Of the doses tested, only the 2.0 mg dose produced a consistent increase in intake of ethanol during the time previous research indicated that the rats would show enhanced intakes. There was, however, a dose-related trend for smaller doses to enhance intakes. Rats with ovariectomies showed a similar pattern of effects, to intact rats, with the 2 mg dose. After extensive histories of intake of alcohol, both placebo and EV-treated females had estradiol levels below the average measured in females without a history of alcohol-intake. Conclusion The data support the conclusion that pharmacological doses of estradiol can produce enduring changes that are manifest as an enhanced appetite for alcoholic beverages. The effect can occur among females without ovaries. PMID:17335585
ERIC Educational Resources Information Center
Titze, Ingo R.
2006-01-01
Purpose: Maximum flow declination rate (MFDR) in the glottis is known to correlate strongly with vocal intensity in voicing. This declination, or negative slope on the glottal airflow waveform, is in part attributable to the maximum area declination rate (MADR) and in part to the overall inertia of the air column of the vocal tract (lungs to…
Dose estimation for different skin models in interstitial breast brachytherapy
Kabaci?ska, Renata; Makarewicz, Roman
2014-01-01
Purpose Skin is a major organ at risk in breast-conserving therapy (BCT). The American Brachytherapy Society (ABS) recommendations require monitoring of maximum dose received, however, there is no unambiguous way of skin contouring provided. The purpose of this study was to compare the doses received by the skin in different models. Material and methods Standard treatment plans of 20 patients who underwent interstitial breast brachytherapy were analyzed. Every patient had a new treatment plan prepared according to Paris system and had skin contoured in three different ways. The first model, Skin 2 mm, corresponds to the dermatological breast skin thickness and is reaching 2 mm into an external patient contour. It was rejected in a further analysis, because of distinct discontinuities in contouring. The second model, Skin 4 mm, replaced Skin 2 mm, and is reaching 2 mm inside and 2 mm outside of the External contour. The third model, Skin EXT, is created on the External contour and it expands 4 mm outside. Doses received by the most exposed 0.1 cc, 1 cc, 2 cc, and the maximum doses for Skin 4 mm and Skin EXT were compared. Results Mean, median, maximum, and standard deviation of percentage dose difference between Skin EXT and Skin 4 mm for the most exposed 0.1 cc (D0.1cc) of skin were 18.01%, 17.20%, 27.84%, and 4.01%, respectively. All differences were statistically significant (p < 0.05). Conclusions Monitoring of doses received by skin is necessary to avoid complications and obtain a satisfactory cosmetic effect. It is difficult to assess the compatibility of treatment plans with recommendations, while there is no unambiguous way of skin contouring. Especially, if a mean difference of doses between two models of skin contouring is 18% for the most exposed 0.1 cc and can reach almost 28% in some cases. Differences of this magnitude can result in skin complications during BCT. PMID:25097562
Singular point, organizing center and acupuncture point.
Shang, C
1989-01-01
A hypothesis is proposed on the nature of acupuncture point and organizing center, the role of meridian system in growth regulation, and the mechanism of acupuncture. Both organizing centers and acupuncture points have low electric resistance. The low electric resistance is related to the distribution of gap junction and thus intercellular communication. Some acupuncture points may be organizing centers. The meridian system is important in coordination and regulation of morphogenesis. The properties of organizing centers and acupuncture points can be explained in view of singular point. Coupling and oscillation may underlie the mechanism of acupuncture as well as growth regulation. PMID:2561250
Pemetrexed combined with paclitaxel: a dose-finding study evaluating three schedules in solid tumors
Axel-R. Hanauske; Herlinde Dumez; Martine Piccart; Emine Yilmaz; Tobias Graefe; Thierry Gil; Lorinda Simms; Luna Musib; Ahmad Awada
2009-01-01
Summary The objectives of this phase I study were to determine the maximum tolerated dose (MTD), recommended phase II dose (RD), antitumor\\u000a activity, safety, and pharmacokinetics of pemetrexed–paclitaxel combination. Patients (N?=?95) with advanced solid tumors were assigned to three schedules (21-day cycles [q21d]). Starting doses for each schedule\\u000a of pemetrexed and paclitaxel, respectively, were: (S1) 400 and 135 mg\\/m2 on d1; (S2)
NASA Astrophysics Data System (ADS)
Nadhir, Ahmad; Naba, Agus; Hiyama, Takashi
An optimal control for maximizing extraction of power in variable-speed wind energy conversion system is presented. Intelligent gradient detection by fuzzy inference system (FIS) in maximum power point tracking control is proposed to achieve power curve operating near optimal point. Speed rotor reference can be adjusted by maximum power point tracking fuzzy controller (MPPTFC) such that the turbine operates around maximum power. Power curve model can be modelled by using adaptive neuro fuzzy inference system (ANFIS). It is required to simply well estimate just a few number of maximum power points corresponding to optimum generator rotor speed under varying wind speed, implying its training can be done with less effort. Using the trained fuzzy model, some estimated maximum power points as well as their corresponding generator rotor speed and wind speed are determined, from which a linear wind speed feedback controller (LWSFC) capable of producing optimum generator speed can be obtained. Applied to a squirrel-cage induction generator based wind energy conversion system, MPPTFC and LWSFC could maximize extraction of the wind energy, verified by a power coefficient stay at its maximum almost all the time and an actual power line close to a maximum power efficiency line reference.
Estimation of the Dose and Dose Rate Effectiveness Factor
NASA Technical Reports Server (NTRS)
Chappell, L.; Cucinotta, F. A.
2013-01-01
Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.
High dose per fraction dosimetry of small fields with Gafchromic EBT2 film
Hardcastle, Nicholas; Basavatia, Amar; Bayliss, Adam; Tome, Wolfgang A.
2011-07-15
Purpose: Small field dosimetry is prone to uncertainties due to the lack of electronic equilibrium and the use of the correct detector size relative to the field size measured. It also exhibits higher sensitivity to setup errors as well as large variation in output with field size and shape. Radiochromic film is an attractive method for reference dosimetry in small fields due to its ability to provide 2D dose measurements while having minimal impact on the dose distribution. Gafchromic EBT2 has a dose range of up to 40 Gy; therefore, it could potentially be useful for high dose reference dosimetry with high spatial resolution. This is a requirement in stereotactic radiosurgery deliveries, which deliver high doses per fraction to small targets. Methods: Targets of 4 mm and 12 mm diameters were treated to a minimum peripheral dose of 21 Gy prescribed to 80% of the maximum dose in one fraction. Target doses were measured with EBT2 film (both targets) and an ion chamber (12 mm target only). Measured doses were compared with planned dose distributions using profiles through the target and minimum peripheral dose coverage. Results: The measured target doses and isodose coverage agreed with the planned dose within {+-}1 standard deviation of three measurements, which were 2.13% and 2.5% for the 4 mm and 12 mm targets, respectively. Conclusions: EBT2 film is a feasible dosimeter for high dose per fraction reference 2D dosimetry.
Williams, C; Lewis, J
2014-06-01
Purpose: To quantify the relationship between the amount of dose heterogeneity in a treatment plan that uses an internal target volume (ITV) to account for respiratory motion and the true amount of heterogeneity in the dose delivered to the tumor contained within that ITV. Methods: We develop a convolution-based framework for calculating dose delivered to a tumor moving inside an ITV according to a common sinusoid-based breathing model including asymmetry. We model the planned ITV dose distribution as a centrally peaked analytic function approximating the profile of clinical stereotactic body radiotherapy treatments. Expressions for the minimum and maximum dose received by the tumor are derived and evaluated for a range of clinically relevant parameters. Results of the model are validated with phantom measurements using an ion chamber array. Results: An analytic expression is presented for the maximum and minimum doses received by the tumor relative to the planned ITV dose. The tumor dose heterogeneity depends solely on the ratio of tumor size to ITV size, the peak dose in the planned ITV dose distribution, and the respiratory asymmetry parameter. Under the assumptions of this model, using a typical breathing asymmetry parameter and a dose distribution with a fixed size ITV covered by the 100% line and with a 130% hotspot, the maximum dose to the tumor varies between 113%–130%, and the minimum dose varies between 100%–116% depending on the amount of tumor motion. Conclusion: This modeling exercise demonstrates the interplay between motion and dose heterogeneity. Tumors that exhibit large amounts of respiratory motion relative to their size will receive a more homogeneous dose and a larger minimum dose than would be inferred from the ITV dose distribution. This effect is not captured in current clinical treatment planning methods unless 4D dose calculation techniques are used. This work was partially supported by a Varian Medical Systems research grant.
Matsunaga, Yuta; Kawaguchi, Ai; Kobayashi, Kenichi; Asada, Yasuki; Takikawa, Yukinori; Yamada, Masami; Suzuki, Shoichi
2013-12-01
Using a 2011 questionnaire, the Japanese Society of Radiological Technology conducted a nationwide survey on the exposure conditions in diagnostic radiography. The purpose of this study was to measure the entrance surface dose and absorbed dose for each organ dose and to calculate the effective dose using a human phantom with the 2011 exposure conditions. We estimated the patient exposure doses during skull (antero-posterior), chest (postero-anterior), abdomen (antero-posterior), and lumbar vertebrae (antero-posterior, left-right, and right-left) radiographs. The radiation doses were determined by placing 255 thermoluminescence dosimeters at various positions on and in the phantom, including the surface of the skin, head, thyroid, lung, breast, esophagus, stomach, liver, and gonads. The maximum entrance surface dose was 7.83 mGy, which occurred to the lateral lumbar spine. In addition, the minimum entrance surface dose was 0.24 mGy, to the chest. The maximum organ dose was 3.15 mGy, to the stomach of the lateral lumbar vertebrae (LR). Meanwhile, the maximum effective dose was 0.63 mSv, to the lateral lumbar vertebrae (LR). On the contrary, the minimum effective dose was 0.03 mSv, to the head. We could evaluate the entrance surface dose, absorbed dose for each organ dose, and effective doses using the 2011 exposure conditions in Japan. The entrance surface dose of 5 examinations with these exposure conditions was below the guidance level of the IAEA. In the future, it can be said that the entrance surface dose as well as the effective dose require diagnostic reference levels in radiography. PMID:24366557
Reassessing benzene risks using internal doses and Monte-Carlo uncertainty analysis
Cox, L.A. Jr. [Cox Associates, Denver, CO (United States)
1996-12-01
Human cancer risks from benzene have been estimated from epidemiological data, with supporting evidence from animal bioassay data. This article reexamines the animal-based risk assessments using physiologically based pharmacokinetic (PBPK) models of benzene metabolism in animals and humans. Internal doses (total benzene metabolites) from oral gavage experiments in mice are well predicted by the PBPK model. Both the data and the PBPK model outputs are also well described by a simple nonlinear (Michaelis-Menten) regression model, as previously used by Bailer and Hoel. Refitting the multistage model family to internal doses changes the maximum-likelihood estimate (MLE) dose-response curve for mice from linear-quadratic to purely cubic, so that low-dose risk estimates are smaller than in previous risk assessments. In contrast to Bailer and Hoel`s findings using interspecies dose conversion, the use of internal dose estimates for humans from a PBPK model reduces estimated human risks at low doses. Sensitivity analyses suggest that the finding of a nonlinear MLE dose response curve at low doses is robust to changes in internal dose definitions and more consistent with epidemiological data than earlier risk models. A Monte-Carlo uncertainty analysis based on maximum-entropy probabilities and Bayesian conditioning is used to develop an entire probability distribution for the true but unknown dose-response function. 23 refs., 9 figs., 6 tabs.
Improvement of dose distribution with irregular surface compensator in whole breast radiotherapy
Hideki, Fujita; Nao, Kuwahata; Hiroyuki, Hattori; Hiroshi, Kinoshita; Haruyuki, Fukuda
2013-01-01
Aim of this study was to compare the dosimetric aspects of whole breast radiotherapy (WBRT) between an irregular surface compensator (ISC) and a conventional tangential field technique using physical wedges. Treatment plans were produced for 20 patients. The Eclipse treatment planning system (Varian Medical Systems) was used for the dose calculation: For the physical wedge technique, the wedge angle was selected to provide the best dose homogeneity; for the ISC technique, the fluence editor application was used to extend the optimal fluence. These two treatment plans were compared in terms of doses in the planning target volume, the dose homogeneity index, the maximum dose, ipsilateral lung and heart doses for left breast irradiation, and the monitor unit counts required for treatment. Compared with the physical wedge technique, the ISC technique significantly reduced the dose homogeneity index, the maximum dose, the volumes received at 105% of the prescription dose, as well as reducing both the ipsilateral lung and heart doses (P < 0.01 for all comparisons). However, the monitor unit counts were not significantly different between the techniques (P > 0.05). Thus, the ISC technique for WBRT enables significantly better dose distribution in the planning target volume. PMID:24049317
Improvement of dose distribution with irregular surface compensator in whole breast radiotherapy.
Hideki, Fujita; Nao, Kuwahata; Hiroyuki, Hattori; Hiroshi, Kinoshita; Haruyuki, Fukuda
2013-07-01
Aim of this study was to compare the dosimetric aspects of whole breast radiotherapy (WBRT) between an irregular surface compensator (ISC) and a conventional tangential field technique using physical wedges. Treatment plans were produced for 20 patients. The Eclipse treatment planning system (Varian Medical Systems) was used for the dose calculation: For the physical wedge technique, the wedge angle was selected to provide the best dose homogeneity; for the ISC technique, the fluence editor application was used to extend the optimal fluence. These two treatment plans were compared in terms of doses in the planning target volume, the dose homogeneity index, the maximum dose, ipsilateral lung and heart doses for left breast irradiation, and the monitor unit counts required for treatment. Compared with the physical wedge technique, the ISC technique significantly reduced the dose homogeneity index, the maximum dose, the volumes received at 105% of the prescription dose, as well as reducing both the ipsilateral lung and heart doses (P < 0.01 for all comparisons). However, the monitor unit counts were not significantly different between the techniques (P > 0.05). Thus, the ISC technique for WBRT enables significantly better dose distribution in the planning target volume. PMID:24049317
36.8 33.8 43.9 32.7 16.1 23.6 23.8 25.5 0 5 10 15 20 25 30 35 40 45 50 Bx in Degassed Buffer Flash-frozen Bx Pre-Dose Deep Pre-Dose Shallow Post-Dose Shallow Validation and Fitness Testing of a Quantitative Immunoassay for HIF1? in Biopsy Specimens
Early phase studies with paclitaxel/low-dose carboplatin in patients with solid tumors.
Creaven, P J; Raghavan, D; Perez, R P; Pendyala, L; Berghorn, E J; Loewen, G; Meropol, N J
1996-12-01
In preparation for the design of phase II studies in lung cancer, low-dose carboplatin, fixed at a target area under the concentration-time curve (AUC) of 4.0 or 4.5 mg x min/mL, has been combined with escalating doses of paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) in a series of studies to establish the maximum tolerated dose of the combination. In patients who had received prior chemotherapy, the maximum tolerated paclitaxel dose was 135 mg/m2 (carboplatin target AUC 4.0); the dose-limiting toxicity was febrile neutropenia. Without granulocyte colony-stimulating factor support in chemotherapy-naive patients (carboplatin target AUC 4.5), and with granulocyte colony-stimulating factor in chemotherapy-pretreated patients, the current paclitaxel dose is 290 mg/m2. The maximum tolerated dose has not been defined. In a study in which paclitaxel was given by 1-hour infusion with carboplatin (target AUC 4.5), a 205 mg/m2 dose was poorly tolerated. No evidence of pharmacokinetic interactions between paclitaxel and carboplatin was found. Twenty-one evaluable patients with lung cancer have been treated to date. There have been two partial responses, one minor response, and 10 patients with stable disease at paclitaxel doses of 100 to 270 mg/m2. PMID:9007117
to the Population of the Continental U.S. from High Yield Weapons Tests Conducted by the U.S., U.K. and U-2000 from nuclear weapons tests. Doses were calculated for tests carried out in the Pacific by the U by Congress to the CDC and NCI to investigate the impact on the U.S. population from weapons tests, the NCI
Dzintars, Eric; Stathakis, Sotirios; Mavroidis, Panayiotis; Sadeghi, Amir; Papanikolaou, Nikos
2012-12-01
Currently, a software-based second check dose calculation for helical tomotherapy (HT) is not available. The goal of this study is to evaluate the dose calculation accuracy of the in-house software using EGS4/MCSIM Monte Carlo environment against the treatment planning system calculations. In-house software was used to convert HT treatment plan information into a non-helical format. The MCSIM dose calculation code was evaluated by comparing point dose calculations and dose profiles against those from the HT treatment plan. Fifteen patients, representing five treatment sites, were used in this comparison. Point dose calculations between the HT treatment planning system and the EGS4/MCSIM Monte Carlo environment had percent difference values below 5 % for the majority of this study. Vertical and horizontal planar profiles also had percent difference values below 5 % for the majority of this study. Down sampling was seen to improve speed without much loss of accuracy. EGS4/MCSIM Monte Carlo environment showed good agreement with point dose measurements, compared to the HT treatment plans. Vertical and horizontal profiles also showed good agreement. Significant time saving may be obtained by down-sampling beam projections. The dose calculation accuracy of the in-house software using the MCSIM code against the treatment planning system calculations was evaluated. By comparing point doses and dose profiles, the EGS4/MCSIM Monte Carlo environment was seen to provide an accurate independent dose calculation. PMID:23143880
ERIC Educational Resources Information Center
Penfield, Randall D.
2007-01-01
The standard error of the maximum likelihood ability estimator is commonly estimated by evaluating the test information function at an examinee's current maximum likelihood estimate (a point estimate) of ability. Because the test information function evaluated at the point estimate may differ from the test information function evaluated at an…
Dose rate, dose-equivalent rate, and quality factor in SLS-1.
Badhwar, G D; Braby, L A; Cucinotta, F A; Atwell, W
1992-07-01
A tissue-equivalent proportional counter (TEPC) sensitive to the lineal energy range of 0.26-300 keV micrometer-1 was flown on STS-40 (39 degrees x 278 km x 296 km) inside the Spacelab. This instrument was previously flown on STS-31 but was modified to provide a finer resolution at lower lineal energies to better map the South Atlantic Anomaly (SAA) protons. The instrument was turned on 6 June 1991, and operated for 7470 min (124.5 h). The flight duration was characterized by a very large number of X-ray solar flares and enhanced magnetic field fluctuations; however, no significant dose from the solar particles was measured at the location of this instrument. The flight data can be separated into trapped and galactic cosmic radiation parts. The dose rate, dose-equivalent rate and quality factor for trapped radiation were 4.21 +/- 0.03 mrad day-1, 7.72 +/- 0.05 mrem day-1, and 1.83 +/- 0.1, respectively. The dose rate, dose-equivalent rate, and quality factor for galactic cosmic radiation were 5.34 +/- 0.03 mrad day-1, 14.63 +/- 0.06 mrem day-1, and 2.74 +/- 0.1, respectively. The overall quality factor for the flight was 2.38. The dose from the GCR is higher than from SAA protons because of the high inclination and low altitude of this flight. The AP8MAX model of the trapped radiation gives a dose rate of 2.43 mrad day-1 and a quality factor of 1.77. The CREME solar maximum model of galactic cosmic radiation gives a dose rate of 2.54 mrad day-1 and a quality factor of 2.91. Thus the AP8MAX model underestimates the dose by a factor of 1.8 whereas the CREME model leads to an underestimation of the dose by a factor of 2. A comparison of the LET spectra using the AP8MAX model and galactic cosmic radiation transport codes shows only a qualitative agreement. PMID:11537535
Dose rate, dose-equivalent rate, and quality factor in SLS-1
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Braby, L. A.; Cucinotta, F. A.; Atwell, W.
1992-01-01
A tissue-equivalent proportional counter (TEPC) sensitive to the lineal energy range of 0.26-300 keV micrometer-1 was flown on STS-40 (39 degrees x 278 km x 296 km) inside the Spacelab. This instrument was previously flown on STS-31 but was modified to provide a finer resolution at lower lineal energies to better map the South Atlantic Anomaly (SAA) protons. The instrument was turned on 6 June 1991, and operated for 7470 min (124.5 h). The flight duration was characterized by a very large number of X-ray solar flares and enhanced magnetic field fluctuations; however, no significant dose from the solar particles was measured at the location of this instrument. The flight data can be separated into trapped and galactic cosmic radiation parts. The dose rate, dose-equivalent rate and quality factor for trapped radiation were 4.21 +/- 0.03 mrad day-1, 7.72 +/- 0.05 mrem day-1, and 1.83 +/- 0.1, respectively. The dose rate, dose-equivalent rate, and quality factor for galactic cosmic radiation were 5.34 +/- 0.03 mrad day-1, 14.63 +/- 0.06 mrem day-1, and 2.74 +/- 0.1, respectively. The overall quality factor for the flight was 2.38. The dose from the GCR is higher than from SAA protons because of the high inclination and low altitude of this flight. The AP8MAX model of the trapped radiation gives a dose rate of 2.43 mrad day-1 and a quality factor of 1.77. The CREME solar maximum model of galactic cosmic radiation gives a dose rate of 2.54 mrad day-1 and a quality factor of 2.91. Thus the AP8MAX model underestimates the dose by a factor of 1.8 whereas the CREME model leads to an underestimation of the dose by a factor of 2. A comparison of the LET spectra using the AP8MAX model and galactic cosmic radiation transport codes shows only a qualitative agreement.
Maximum a posteriori resampling of noisy, spatially correlated data
NASA Astrophysics Data System (ADS)
Goff, John A.; Jenkins, Chris; Calder, Brian
2006-08-01
In any geologic application, noisy data are sources of consternation for researchers, inhibiting interpretability and marring images with unsightly and unrealistic artifacts. Filtering is the typical solution to dealing with noisy data. However, filtering commonly suffers from ad hoc (i.e., uncalibrated, ungoverned) application. We present here an alternative to filtering: a newly developed method for correcting noise in data by finding the "best" value given available information. The motivating rationale is that data points that are close to each other in space cannot differ by "too much," where "too much" is governed by the field covariance. Data with large uncertainties will frequently violate this condition and therefore ought to be corrected, or "resampled." Our solution for resampling is determined by the maximum of the a posteriori density function defined by the intersection of (1) the data error probability density function (pdf) and (2) the conditional pdf, determined by the geostatistical kriging algorithm applied to proximal data values. A maximum a posteriori solution can be computed sequentially going through all the data, but the solution depends on the order in which the data are examined. We approximate the global a posteriori solution by randomizing this order and taking the average. A test with a synthetic data set sampled from a known field demonstrates quantitatively and qualitatively the improvement provided by the maximum a posteriori resampling algorithm. The method is also applied to three marine geology/geophysics data examples, demonstrating the viability of the method for diverse applications: (1) three generations of bathymetric data on the New Jersey shelf with disparate data uncertainties; (2) mean grain size data from the Adriatic Sea, which is a combination of both analytic (low uncertainty) and word-based (higher uncertainty) sources; and (3) side-scan backscatter data from the Martha's Vineyard Coastal Observatory which are, as is typical for such data, affected by speckle noise. Compared to filtering, maximum a posteriori resampling provides an objective and optimal method for reducing noise, and better preservation of the statistical properties of the sampled field. The primary disadvantage is that maximum a posteriori resampling is a computationally expensive procedure.
Zipf's law, power laws and maximum entropy
NASA Astrophysics Data System (ADS)
Visser, Matt
2013-04-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.
Zipf's law, power laws, and maximum entropy
Visser, Matt
2012-01-01
Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines - from astronomy to demographics to economics to linguistics to zoology, and even warfare. A recent model of random group formation [RGF] attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present article I argue that the cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.
Maximum Likelihood Analysis in the PEN Experiment
NASA Astrophysics Data System (ADS)
Lehman, Martin
2013-10-01
The experimental determination of the ?+ -->e+ ? (?) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 ?e 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (?+ -->e+ ? , ?+ -->?+ ? , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.
A Maximum Radius for Habitable Planets.
Alibert, Yann
2015-09-01
We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope. PMID:26159097
Pareto versus lognormal: A maximum entropy test
NASA Astrophysics Data System (ADS)
Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano
2011-08-01
It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.
MAXIMUM LIKELIHOOD ESTIMATION FOR SOCIAL NETWORK DYNAMICS
Snijders, Tom A.B.; Koskinen, Johan; Schweinberger, Michael
2014-01-01
A model for network panel data is discussed, based on the assumption that the observed data are discrete observations of a continuous-time Markov process on the space of all directed graphs on a given node set, in which changes in tie variables are independent conditional on the current graph. The model for tie changes is parametric and designed for applications to social network analysis, where the network dynamics can be interpreted as being generated by choices made by the social actors represented by the nodes of the graph. An algorithm for calculating the Maximum Likelihood estimator is presented, based on data augmentation and stochastic approximation. An application to an evolving friendship network is given and a small simulation study is presented which suggests that for small data sets the Maximum Likelihood estimator is more efficient than the earlier proposed Method of Moments estimator. PMID:25419259
A Maximum Radius for Habitable Planets
NASA Astrophysics Data System (ADS)
Alibert, Yann
2015-09-01
We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.
Maximum-entropy description of animal movement
NASA Astrophysics Data System (ADS)
Fleming, Chris H.; Suba??, Yi?it; Calabrese, Justin M.
2015-03-01
We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.
REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.
UMEDA, T.; MATSUFURU, H.
2005-07-25
We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.
MAXIMUM VARIATION OF TOTAL RISK Robin Pemantle
MAXIMUM VARIATION OF TOTAL RISK Robin Pemantle Let Z be a positive real random variable. The hazard to Lebesgue measure and F(t) = R t 0 f(t), the hazard rate is f(t)=[1 F(t)]dt and it is easy to see(t) is its natural #12;ltration (see [1, prop. 3.28]). Suppose that the information available at time
A Maximum Likelihood Investigation Into Texture Classification
N. Sebe; M. Lew; D. p. Huijsmans
Textures are one of the basic features in visualsearching and computional vision. In literature, mostof the attention has been focussed on the texture featureswith minimal consideration of the noise models.In this paper we investigate the problem of textureclassification from a maximum likelihood perspective.We take into account the texture model, the noise distribution,and the inter-dependence of the texture features.Our investigation shows
QCD Level Density from Maximum Entropy Method
Shinji Ejiri; Tetsuo Hatsuda
2005-09-24
We propose a method to calculate the QCD level density directly from the thermodynamic quantities obtained by lattice QCD simulations with the use of the maximum entropy method (MEM). Understanding QCD thermodynamics from QCD spectral properties has its own importance. Also it has a close connection to phenomenological analyses of the lattice data as well as experimental data on the basis of hadronic resonances. Our feasibility study shows that the MEM can provide a useful tool to study QCD level density.
Tissue Radiation Response with Maximum Tsallis Entropy
Sotolongo-Grau, O.; Rodriguez-Perez, D.; Antoranz, J. C.; Sotolongo-Costa, Oscar
2010-10-08
The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.