These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Heterogeneity-corrected vs -uncorrected critical structure maximum point doses in breast balloon brachytherapy  

SciTech Connect

Recent studies have reported potentially clinically meaningful dose differences when heterogeneity correction is used in breast balloon brachytherapy. In this study, we report on the relationship between heterogeneity-corrected and -uncorrected doses for 2 commonly used plan evaluation metrics: maximum point dose to skin surface and maximum point dose to ribs. Maximum point doses to skin surface and ribs were calculated using TG-43 and Varian Acuros for 20 patients treated with breast balloon brachytherapy. The results were plotted against each other and fit with a zero-intercept line. Max skin dose (Acuros) = max skin dose (TG-43) ? 0.930 (R{sup 2} = 0.995). The average magnitude of difference from this relationship was 1.1% (max 2.8%). Max rib dose (Acuros) = max rib dose (TG-43) ? 0.955 (R{sup 2} = 0.9995). The average magnitude of difference from this relationship was 0.7% (max 1.6%). Heterogeneity-corrected maximum point doses to the skin surface and ribs were proportional to TG-43-calculated doses. The average deviation from proportionality was 1%. The proportional relationship suggests that a different metric other than maximum point dose may be needed to obtain a clinical advantage from heterogeneity correction. Alternatively, if maximum point dose continues to be used in recommended limits while incorporating heterogeneity correction, institutions without this capability may be able to accurately estimate these doses by use of a scaling factor.

Kim, Leonard, E-mail: kimlh@umdnj.edu [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States); Narra, Venkat; Yue, Ning [Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States)

2013-07-01

2

Maximum Power Point  

NSDL National Science Digital Library

Students learn how to find the maximum power point (MPP) of a photovoltaic (PV) panel in order to optimize its efficiency at creating solar power. They also learn about real-world applications and technologies that use this technique, as well as Ohm's law and the power equation, which govern a PV panel's ability to produce power.

2014-09-18

3

[Local anesthetics--maximum recommended doses].  

PubMed

"Maximum doses" determined up to now do not take account of such important pharmacokinetic and toxicological data as: 1) the dependence of blood levels measured on the technique of regional anaesthesia, 2) and the raised toxicity of a local anaesthetic solution containing adrenaline following inadvertent intravascular (intravenous) injection. A maximum dose recommendation differs according to the technique of local anaesthesia for A: subcutaneous injection, B: injection in regions of high absorption, C: single injection (perineural, e.g. plexus), D: protracted injection (catheter, combined techniques), E: injection into vasoactive regions (near to the spinal cord, spinal, epidural, sympathetic). This sequential categorization also underscores the need to select appropriate techniques as well as concomitant monitoring according to the technique of administration and to the expected and possible plasma level curve. The "maximum recommended doses" (in mg) of mepivacaine for use with the above five different techniques of regional anaesthesia are (doses together with the vasoconstrictor adrenaline are in brackets): A: 400 (500), B: 200, C: 400 (500), D: 500, E: 1-25 ml; those for lidocaine: A: 400 (500), B: 200, C: 400 (500), D: 500, E: 1-25 ml, for prilocaine: A: 600, B: 300, C: 600, D: 700, E: 1-25 ml, for bupivacaine: A: 150, B: 75, C: 150, D: 200, E: 1-25 ml, for etidocaine: A: 300, B: 150, C: 300, D: 300, E: up to 25 ml (no spinal anaesthesia). These "recommended maximum doses" are low for zones of raised absorption and higher for techniques of protracted injection. For prilocaine, bupivacaine and etidocaine, the "maximum recommended doses" are the same regardless of whether or not the solutions contain adrenaline. The preparation containing adrenaline is limited by the total adrenaline content (0.25 mg). The dose spectrum must be specified for all injections carried out close to the spinal cord because of the specific risk: even very tiny volumes can have an intensive effect and they involve high risks. The values specified for techniques C and D also restrict the overall dose for the techniques specified under E when high doses are necessary. The amount of the repetition dose of bupivacaine can be reliably given as 30 mg/h. Recommended maximum doses given here relate to normal conditions (70 kg body weight). They must be varied individually depending on the body weight and condition of the patient. Recommended maximum doses are of orientative significance, they do not constitute a maximum dose. There is no quantitative limit for ropivaccine because the recommended techniques do not allow higher volumes of this long acting local anaesthetic. PMID:9324365

Niesel, H C

1997-01-01

4

Integrated photovoltaic maximum power point tracking converter  

Microsoft Academic Search

A low-power low-cost highly efficient maximum power point tracker (MPPT) to be integrated into a photovoltaic (PV) panel is proposed. This can result in a 25% energy enhancement compared to a standard photovoltaic panel, while performing functions like battery voltage regulation and matching of the PV array with the load. Instead of using an externally connected MPPT, it is proposed

Johan H. R. Enslin; Mario S. Wolf; D. B. Snyman; Wernher Swiegers

1997-01-01

5

Pointing at Maximum Power for PV  

NSDL National Science Digital Library

Student teams measure voltage and current in order to determine the power output of a photovoltaic (PV) panel. They vary the resistance in a simple circuit connected to the panel to demonstrate the effects on voltage, current, and power output. After collecting data, they calculate power for each resistance setting, creating a graph of current vs. voltage, and indentifying the maximum power point.

Integrated Teaching and Learning Program,

6

A global maximum power point tracking DC-DC converter  

E-print Network

This thesis describes the design, and validation of a maximum power point tracking DC-DC converter capable of following the true global maximum power point in the presence of other local maximum. It does this without the ...

Duncan, Joseph, 1981-

2005-01-01

7

Pulmonary carcinogenicity of inhaled particles and the maximum tolerated dose.  

PubMed Central

Chronic inhalation bioassays in rodents are used to assess pulmonary carcinogenicity for purposes of hazard identification and potentially for risk characterization. The influence of high experimental doses on tumor development has been recognized for some time and has led to the concept of maximum tolerated dose (MTD) for dose selection, with the highest dose being at the MTD. Exposure at the MTD should ensure that the animals are sufficiently challenged while at the same time the animal's normal longevity is not altered from effects other than carcinogenicity. A characteristic of exposure-dose-response relationships for chronically inhaled particles is that lung tumors are significantly increased only at high exposure levels, and that lung tumors are seen in rats only but not in mice or hamsters. This lung tumor response in rats is thought to be secondary to persistent alveolar inflammation, indicating that the MTD may have been exceeded. Thus, mechanisms of toxicity and carcinogenicity may be dose dependent and may not operate at lower doses that humans normally experience. Despite awareness of this problem, carcinogenicity bioassays that evaluate particulate compounds in rodents have not always been designed with the MTD concept in mind. This is due to several problems associated with determining an appropriate MTD for particle inhalation studies. One requirement for the MTD is that some toxicity should be observed. However, it is difficult to define what degree of toxic response is indicative of the MTD. For particle inhalation studies, various noncancer end points in addition to mortality and body weight gain have been considered as indicators of the MTD, i.e., pulmonary inflammation, increased epithelial cell proliferation, increased lung weight, impairment of particle clearance function, and significant histopathological findings at the end of a subchronic study. However, there is no general agreement about quantification of these end points to define the MTD. To determine whether pulmonary responses are indicative of the MTD, we suggest defining an MTD based on results of a multidose subchronic and chronic inhalation study with a known human particulate carcinogen, e.g., asbestos or crystalline silica. Quantification of effects in such a study using the noncancer end points listed above would identify a dose level without significant signs of toxicity at the end of the subchronic study. If this dose level still results in significant lung tumor incidence at the end of the chronic study. We will have a sound basis for characterizing the MTD and justifying its use in future particle inhalation studies. Also, a better understanding of cellular and molecular mechanisms of particle-induced lung tumors is needed to support the MTD concept. PMID:9400749

Oberdörster, G

1997-01-01

8

Optimization of perturb and observe maximum power point tracking method  

Microsoft Academic Search

Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point (MPP) which depends on panels temperature and on irradiance conditions. The issue of MPPT has been addressed in different ways in the literature but, especially for low-cost implementations, the perturb and observe (P&O) maximum

Nicola Femia; Giovanni Petrone; Giovanni Spagnuolo; Massimo Vitelli

2005-01-01

9

Maximum Power Point Tracking for Ocean Wave Energy Conversion  

Microsoft Academic Search

Many forms of renewable energy exist in the world's oceans, with ocean wave energy showing great potential. However, the ocean environment presents many challenges for cost-effective renewable energy conversion, including optimal control of a wave energy converter (WEC). This paper presents a maximum power point tracking (MPPT) algorithm for control of a point absorber WEC. The algorithm and testing hardware

Ean A. Amon; Ted K. A. Brekken; Alphonse A. Schacher

2012-01-01

10

Maximum likelihood estimation for cytogenetic dose-response curves  

SciTech Connect

In vitro dose-response curves are used to describe the relation between the yield of dicentric chromosome aberrations and radiation dose for human lymphocytes. The dicentric yields follow the Poisson distribution, and the expected yield depends on both the magnitude and the temporal distribution of the dose for low LET radiation. A general dose-response model that describes this relation has been obtained by Kellerer and Rossi using the theory of dual radiation action. The yield of elementary lesions is kappa(..gamma..d + g(t, tau)d/sup 2/), where t is the time and d is dose. The coefficient of the d/sup 2/ term is determined by the recovery function and the temporal mode of irradiation. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting models are intrinsically nonlinear in the parameters. A general purpose maximum likelihood estimation procedure is described and illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.

Frome, E.L; DuFrain, R.J.

1983-10-01

11

Maximum power point tracking for low power photovoltaic solar panels  

Microsoft Academic Search

A maximum power point tracker unit is developed for the optimum coupling of photovoltaic panels (PVP) to the batteries and load through a controlled DC-DC power converter (chopper). The system consists of three main units: (i) the photovoltaic panels that convert solar power to electricity; (ii) a chopper which couples the power of PVP to the load or batteries at

Mehmet BODUR; Mummer ERMIS

1994-01-01

12

Maximum Power Point Estimation for Photovoltaic Systems Using Neural Networks  

Microsoft Academic Search

Solar panels are the power sources in photovoltaic applications which provide electrical power. Solar panel characteristics depend on environmental conditions (solar radiation level, temperature and etc.). In this paper, estimation of maximum power point of silicon solar panels is presented. We applied two different neural networks (back propagation and RBF) for the purpose of estimation in different environmental conditions. These

M. Taherbaneh; K. Faez

2007-01-01

13

Savannah River Site radioiodine atmospheric releases and offsite maximum doses  

SciTech Connect

Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models.

Marter, W.L.

1990-11-01

14

Maximum number of fixed points in regulatory Boolean networks.  

PubMed

Boolean networks (BNs) have been extensively used as mathematical models of genetic regulatory networks. The number of fixed points of a BN is a key feature of its dynamical behavior. Here, we study the maximum number of fixed points in a particular class of BNs called regulatory Boolean networks, where each interaction between the elements of the network is either an activation or an inhibition. We find relationships between the positive and negative cycles of the interaction graph and the number of fixed points of the network. As our main result, we exhibit an upper bound for the number of fixed points in terms of minimum cardinality of a set of vertices meeting all positive cycles of the network, which can be applied in the design of genetic regulatory networks. PMID:18306974

Aracena, Julio

2008-07-01

15

A solar battery charger with maximum power point tracking  

Microsoft Academic Search

This paper presents a solar charger ASIC for Li-Ion and Nickel-based (NiCd or NiMH) batteries. The system is a DC\\/DC converter that operates the solar panel at its maximum power point by tracking it using a hill-climbing algorithm. Only one external inductor and one diode are necessary. The circuit is fabricated in a 0.5?m 5V process. It features a low

Marc Pastre; Francois Krummenacher; Onur Kazanc; Naser Khosro Pour; Catherine Pace; Stefan Rigert; Maher Kayal

2011-01-01

16

Prediction-data-based maximum-power-point-tracking method for photovoltaic power generation systems  

Microsoft Academic Search

A new maximum-power-point-tracking (MPPT) method for a photovoltaic (PV) power generation system was studied which can efficiently generate PV power even under changing weather conditions. In order to research a method suitable for the actual photovoltaic power system, PV characteristics of the maximum power point were measured for more than six months using a PV curve tracer. The actual maximum

Nobuyoshi Mutoh; Takatoshi Matuo; Kazuhito Okada; Masahiro Sakai

2002-01-01

17

An InteriorPoint Algorithm for the MaximumVolume Ellipsoid Problem \\Lambda  

E-print Network

An Interior­Point Algorithm for the Maximum­Volume Ellipsoid Problem \\Lambda Technical Report TR98 in extending and applying interior­point methodology to solving practically important opti­ mization problems frameworks for applying interior­point methods. We propose a practical interior­point algorithm based on one

Zhang, Yin

18

The effect of high leverage points on the maximum estimated likelihood for separation in logistic regression  

NASA Astrophysics Data System (ADS)

This article is concerned with the performance of the maximum estimated likelihood estimator in the presence of separation in the space of the independent variables and high leverage points. The maximum likelihood estimator suffers from the problem of non overlap cases in the covariates where the regression coefficients are not identifiable and the maximum likelihood estimator does not exist. Consequently, iteration scheme fails to converge and gives faulty results. To remedy this problem, the maximum estimated likelihood estimator is put forward. It is evident that the maximum estimated likelihood estimator is resistant against separation and the estimates always exist. The effect of high leverage points are then investigated on the performance of maximum estimated likelihood estimator through real data sets and Monte Carlo simulation study. The findings signify that the maximum estimated likelihood estimator fails to provide better parameter estimates in the presence of both separation, and high leverage points.

Ariffin, Syaiba Balqish; Midi, Habshah; Arasan, Jayanthi; Rana, Md Sohel

2015-02-01

19

Implementation of a Solar Power Battery Energy Storage System with Maximum Power Point Tracking  

Microsoft Academic Search

This work implements a solar power battery energy storage system (BESS) with maximum power point tracking (MPPT) under substantial variation in temperature and intensity of illumination. A tracker is also designed based on the perturbation and observation method to track rapidly the maximum power point of the energy output of the solar cells. The power generation data are then transmitted

Yu-Lung Ke; Ying-Chun Chuang; Yuan-Kang Wu; Bo-Tsung Jou

2010-01-01

20

A Seamless Mode Transfer Maximum Power Point Tracking Controller for Thermoelectric Generator Applications  

Microsoft Academic Search

A boost-cascaded-with-buck converter based power conditioning system employing a seamless mode transfer maximum power point tracking controller is proposed to maximize energy production of a thermoelectric generator while balancing the vehicle battery charging, alternator output power, and vehicle load. When a maximum power point exceeds a load demand, the proposed controller switches to a power matching mode seamlessly by a

Rae-Young Kim; Jih-Sheng Lai

2007-01-01

21

Bayesian designs of phase II oncology trials to select maximum effective dose assuming monotonic dose-response relationship  

PubMed Central

Background For many molecularly targeted agents, the probability of response may be assumed to either increase or increase and then plateau in the tested dose range. Therefore, identifying the maximum effective dose, defined as the lowest dose that achieves a pre-specified target response and beyond which improvement in the response is unlikely, becomes increasingly important. Recently, a class of Bayesian designs for single-arm phase II clinical trials based on hypothesis tests and nonlocal alternative prior densities has been proposed and shown to outperform common Bayesian designs based on posterior credible intervals and common frequentist designs. We extend this and related approaches to the design of phase II oncology trials, with the goal of identifying the maximum effective dose among a small number of pre-specified doses. Methods We propose two new Bayesian designs with continuous monitoring of response rates across doses to identify the maximum effective dose, assuming monotonicity of the response rate across doses. The first design is based on Bayesian hypothesis tests. To determine whether each dose level achieves a pre-specified target response rate and whether the response rates between doses are equal, multiple statistical hypotheses are defined using nonlocal alternative prior densities. The second design is based on Bayesian model averaging and also uses nonlocal alternative priors. We conduct simulation studies to evaluate the operating characteristics of the proposed designs, and compare them with three alternative designs. Results In terms of the likelihood of drawing a correct conclusion using similar between-design average sample sizes, the performance of our proposed design based on Bayesian hypothesis tests and nonlocal alternative priors is more robust than that of the other designs. Specifically, the proposed Bayesian hypothesis test-based design has the largest probability of being the best design among all designs under comparison and the smallest probability of being an inadequate design, under sensible definitions of the best design and an inadequate design, respectively. Conclusions The use of Bayesian hypothesis tests and nonlocal alternative priors under ordering constraints between dose groups results in a robust performance of the design, which is thus superior to other common designs. PMID:25074481

2014-01-01

22

Microcontroller Servomotor for Maximum Effective Power Point for Solar Cell System  

E-print Network

In this paper a Maximum Power point (MPP) tracking algorithm is developed using dual-axis servomotor feedback tracking control system. An efficient and accurate servomotor system is used to increase the system efficiency and reduces the solar cell...

Al-Khalidy, M.; Al-Rawi, O.; Noaman, N.

2010-01-01

23

Submodule Integrated Distributed Maximum Power Point Tracking for Solar Photovoltaic Applications  

E-print Network

This paper explores the benefits of distributed power electronics in solar photovoltaic applications through the use of submodule integrated maximum power point trackers (MPPT). We propose a system architecture that provides ...

Pilawa-Podgurski, Robert C. N.

24

Challenges of overcurrent protection devices in photovoltaic arrays brought by maximum power point tracker  

Microsoft Academic Search

This paper discusses the challenges of overcurrent protection devices (OCPD) brought by the maximum power point tracker (MPPT) of the centralized grid-connected inverter in a photovoltaic (PV) array. Since PV arrays have non-linear output characteristics, MPPT algorithms of PV inverters are often used to harvest the maximum output power from PV arrays. Most MPPTs are designed to respond to unexpected

Ye Zhao; Brad Lehman; Jean-Francois de Palma; Jerry Mosesian; Robert Lyons

2011-01-01

25

Near maximum likelihood detection using an interior point method and semidefinite programming  

Microsoft Academic Search

In this paper a maximum likelihood detection problem for a digital communication system is reformulated as a semidefinite programming (SDP) problem. A relaxation of this problem is done. An interior point method will be used to efficiently solve the semidefinite program arising from the relaxation. From the solution given by this interior point method, an approximate of the solution of

Hedi Laamari; Jean Claude Belfiore; Nicolas Ibrahim

2004-01-01

26

A novel maximum power point tracking algorithm for ocean wave energy devices  

Microsoft Academic Search

Many forms of renewable energy exist in the world's oceans, with ocean wave energy showing great potential. However, the ocean environment presents many challenges for cost-effective renewable energy conversion, including optimal control of a wave energy converter (WEC). This paper presents a novel maximum power point tracking (MPPT) algorithm for control of a point absorber WEC. The algorithm and control

Ean A. Amon; Alphonse A. Schacher; Ted K. A. Brekken

2009-01-01

27

Design of Small Wind Turbine with Maximum Power Point Tracking Algorithm  

Microsoft Academic Search

This paper presents a complex design of Turbine with AC\\/DC converter containing Point Tracking Algorithm. The paper describes phenomenon and problems connected with designing particular parts for small wind turbine, such a generator addition, it shows short discussion between two different Maximum Power Point Tracking approaches experimental results.

M. Rolak; R. Kot; M. Malinowski; Z. Goryca; J. T. Szuster

2011-01-01

28

Maximum power point traking controller for PV systems using neural networks  

Microsoft Academic Search

This paper presents a development and implementation of a PC-based maximum power point tracker (MPPT) for PV system using neural networks (NN). The system consists of a PV module via a MPPT supplying a dc motor that drives an air fan. The control algorithm is developed to use the artificial NN for detecting the optimal operating point under different operating

A. B. G. Bahgat; N. H. Helwa; G. E. Ahmad; E. T. El Shenawy

2005-01-01

29

The homeostatic set point of the hypothalamus-pituitary-thyroid axis – maximum curvature theory for personalized euthyroid targets  

PubMed Central

Background Despite rendering serum free thyroxine (FT4) and thyrotropin (TSH) within the normal population ranges broadly defined as euthyroidism, many patients being treated for hyperthyroidism and hypothyroidism persistently experience subnormal well-being discordant from their pre-disease healthy euthyroid state. This suggests that intra-individual physiological optimal ranges are narrower than laboratory-quoted normal ranges and implies the existence of a homeostatic set point encoded in the hypothalamic-pituitary-thyroid (HPT) axis that is unique to every individual. Methods We have previously shown that the dose–response characteristic of the hypothalamic-pituitary (HP) unit to circulating thyroid hormone levels follows a negative exponential curve. This led to the discovery that the normal reference intervals of TSH and FT4 fall within the ‘knee’ region of this curve where the maximum curvature of the exponential HP characteristic occurs. Based on this observation, we develop the theoretical framework localizing the position of euthyroid homeostasis over the point of maximum curvature of the HP characteristic. Results The euthyroid set points of patients with primary hypothyroidism and hyperthyroidism can be readily derived from their calculated HP curve parameters using the parsimonious mathematical model above. It can be shown that every individual has a euthyroid set point that is unique and often different from other individuals. Conclusions In this treatise, we provide evidence supporting a set point-based approach in tailoring euthyroid targets. Rendering FT4 and TSH within the laboratory normal ranges can be clinically suboptimal if these hormone levels are distant from the individualized euthyroid homeostatic set point. This mathematical technique permits the euthyroid set point to be realistically computed using an algorithm readily implementable for computer-aided calculations to facilitate precise targeted dosing of patients in this modern era of personalized medicine. PMID:25102854

2014-01-01

30

A Closed-Loop Maximum Power Point Tracker for Subwatt Photovoltaic Panels  

Microsoft Academic Search

This paper proposes a closed-loop maximum power point tracker (MPPT) for subwatt photovoltaic (PV) panels used in wireless sensor networks. Both high power efficiency and low circuit complexity are achieved. A microcontroller (µC) driven by a fast clock was used to implement an MPPT algorithm with a low processing time. This leads to a maximum central-processing-unit duty cycle of 6%

Oscar Lopez-Lapena; Maria Teresa Penella; Manel Gasulla

2012-01-01

31

Relation between the points of flow reattachment and maximum heat transfer for regions of flow separation  

Microsoft Academic Search

Wind tunnel experiments with a circular cylinder oriented longitudinal to a uniform freestream are performed to investigate factors influencing the relative positions of the maximum streamwise distribution of the Nusselt number within and just downstream of a region of flow separation and the point of reattachment of the flow. Numerical solutions were provided for the blunt-face case and for the

E. M. Sparrow; S. S. Kang; W. Chuck

1987-01-01

32

Adaptive Control of Ultrasonic Motors Using the Maximum Power Point Tracking Method  

E-print Network

Adaptive Control of Ultrasonic Motors Using the Maximum Power Point Tracking Method Markus.perriard@epfl.ch Abstract--The properties of ultrasonic piezoelectric motors depend on applied load and temperature for ultrasonic motors known from literature. The resonant frequency can be tracked over a far wider working range

Psaltis, Demetri

33

Development of a thermoelectric battery-charger with microcontroller-based maximum power point tracking technique  

Microsoft Academic Search

This article describes a battery charger, which is powered by thermoelectric (TE) power modules. This system uses TE devices that directly convert heat energy to electricity to charge a battery. The characteristics of the TE module were tested at different temperatures. A SEPIC dc–dc converter was applied and controlled by a microcontroller with the maximum power point tracking (MPPT) feature.

Jensak Eakburanawat; Itsda Boonyaroonate

2006-01-01

34

Sensorless Maximum Power Point Tracking of Wind by DFIG Using Rotor Position Phase Lock Loop (PLL)  

Microsoft Academic Search

This paper presents an invention, the rotor position phase lock loop (PLL), which enables maximum power point (MPPT) tracking of wind by doubly-fed induction generators without needing a tachometer, an absolute position encoder, or an anemometer. The rotor position PLL is parameter variation insensitive, requiring only an estimate of the magnetization inductance for it to operate. It is also insensitive

Baike Shen; Bakari Mwinyiwiwa; Yongzheng Zhang; Boon-Teck Ooi

2009-01-01

35

A new maximum power point tracking method for photovoltaic arrays using golden section search algorithm  

Microsoft Academic Search

This paper introduces a new maximum power point tracking (MPPT) method with the golden section search (GSS) algorithm for photovoltaic (PV) systems. The basic principle and the implementation procedures of the GSS algorithm are elaborated in the paper; and the PV simulation model in Matlab\\/Simulink is also developed. Then the PV system with a boost chopper is modeled and simulated

Riming Shao; Liuchen Chang

2008-01-01

36

Analysis and Design of Maximum Power Point Tracking Scheme for Thermoelectric Battery Energy Storage System  

Microsoft Academic Search

The analysis and design of an adaptive maximum power point tracking (MPPT) scheme using incremental impedance are presented. A small-signal model is mathematically derived, and the impact of two major design parameters, which are scaling factor and sampling interval, is analyzed in the frequency domain. Four factors which specifically affect the MPPT response are also clearly addressed. Based on this

Rae-Young Kim; Jih-Sheng Lai; Ben York; Ahmed Koran

2009-01-01

37

Design of DC\\/DC Boost converter with FNN solar cell Maximum Power Point Tracking controller  

Microsoft Academic Search

This paper demonstrates the Maximum Power Point Tracking (MPPT) controller that uses a DC\\/DC Boost converter with a Fuzzy Neural Network (FNN) system. It simplifies the topology of the DC\\/DC boost converter model to state equations, which is easy to simulate with Matlab. Additionally, the FNN system uses an integrated Fuzzy and Neural Network (NN), which advantages include uncertainty information

Hung-Ching Lu; Te-Lung Shih

2010-01-01

38

Efficiency improvement of the maximum power point tracking for PV systems using support vector machine technique  

NASA Astrophysics Data System (ADS)

The aim of this paper is to improve efficiency of maximum power point tracking (MPPT) for PV systems. The Support Vector Machine (SVM) was proposed to achieve the MPPT controller. The theoretical, the perturbation and observation (P&O), and incremental conductance (IC) algorithms were used to compare with proposed SVM algorithm. MATLAB models for PV module, theoretical, SVM, P&O, and IC algorithms are implemented. The improved MPPT uses the SVM method to predict the optimum voltage of the PV system in order to extract the maximum power point (MPP). The SVM technique used two inputs which are solar radiation and ambient temperature of the modeled PV module. The results show that the proposed SVM technique has less Root Mean Square Error (RMSE) and higher efficiency than P&O and IC methods.

Kareim, Ameer A.; Mansor, Muhamad Bin

2013-06-01

39

Tracking the global maximum power point of PV arrays under partial shading conditions  

NASA Astrophysics Data System (ADS)

This thesis presents the theoretical and simulation studies of the global maximum power point tracking (MPPT) for photovoltaic systems under partial shading. The main goal is to track the maximum power point of the photovoltaic module so that the maximum possible power can be extracted from the photovoltaic panels. When several panels are connected in series with some of them shaded partially either due to clouds or shadows from neighboring buildings, several local maxima appear in the power vs. voltage curve. A power increment based MPPT algorithm is effective in identifying the global maximum from the several local maxima. Several existing MPPT algorithms are explored and the state-of-the-art power increment method is simulated and tested for various partial shading conditions. The current-voltage and power-voltage characteristics of the PV model are studied under different partial shading conditions, along with five different cases demonstrating how the MPPT algorithm performs when shading switches from one state to another. Each case is supplemented with simulation results. The method of tracking the Global MPP is based on controlling the DC-DC converter connected to the output of the PV array. A complete system simulation including the PV array, the direct current to direct current (DC-DC) converter and the MPPT is presented and tested using MATLAB software. The simulation results show that the MPPT algorithm works very well with the buck converter, while the boost converter needs further changes and implementation.

Fennich, Meryem

40

Maximum power point tracking for variable speed grid connected small wind turbine  

Microsoft Academic Search

This paper presents a method for harmonic mitigation and maximum power point tracking (MPPT) for a variable speed-grid connected 20 kW wind turbine. The wind energy conversion systems consist of permanent magnet synchronous generator (PMSG) driven by variable-speed 20 kW wind turbine. The output of the PMSG is connected to a single switch three-phase boost rectifier to generate DC voltage

Mazen Abdel-Salam; Adel Ahmed; Mohamed Abdel-Sater

2010-01-01

41

A Seamless Mode Transfer Maximum Power Point Tracking Controller For Thermoelectric Generator Applications  

Microsoft Academic Search

A boost-cascaded-with-buck converter-based power conditioning system employing a seamless mode transfer maximum power point tracking controller is proposed to maximize energy production of a thermoelectric generator while balancing a vehicle battery, alternator output power, and vehicle load. When a vehicle battery is fully charged, the proposed controller switches to a power matching mode seamlessly by a dual loop control system,

Rae-Young Kim; Jih-Sheng Lai

2008-01-01

42

Achieving Maximum Power from Thermoelectric Generators with Maximum-Power-Point-Tracking Circuits Composed of a Boost-Cascaded-with-Buck Converter  

NASA Astrophysics Data System (ADS)

We propose a way of achieving maximum power and power-transfer efficiency from thermoelectric generators by optimized selection of maximum-power-point-tracking (MPPT) circuits composed of a boost-cascaded-with-buck converter. We investigated the effect of switch resistance on the MPPT performance of thermoelectric generators. The on-resistances of the switches affect the decrease in the conversion gain and reduce the maximum output power obtainable. Although the incremental values of the switch resistances are small, the resulting difference in the maximum duty ratio between the input and output powers is significant. For an MPPT controller composed of a boost converter with a practical nonideal switch, we need to monitor the output power instead of the input power to track the maximum power point of the thermoelectric generator. We provide a design strategy for MPPT controllers by considering the compromise in which a decrease in switch resistance causes an increase in the parasitic capacitance of the switch.

Park, Hyunbin; Sim, Minseob; Kim, Shiho

2015-01-01

43

On Finding a Fixed Point in a Boolean Network with Maximum Indegree 2  

NASA Astrophysics Data System (ADS)

Finding fixed points in discrete dynamical systems is important because fixed points correspond to steady-states. The Boolean network is considered as one of the simplest discrete dynamical systems and is often used as a model of genetic networks. It is known that detection of a fixed point in a Boolean network with n nodes and maximum indegree K can be polynomially transformed into (K+1)-SAT with n variables. In this paper, we focus on the case of K = 2 and present an O(1.3171n) expected time algorithm, which is faster than the naive algorithm based on a reduction to 3-SAT, where we assume that nodes with indegree 2 do not contain self-loops. We also show an algorithm for the general case of K = 2 that is slightly faster than the naive algorithm.

Akutsu, Tatsuya; Tamura, Takeyuki

44

Evaluation of Defined Daily Dose, percentage of British National Formulary maximum and chlorpromazine equivalents in antipsychotic drug utilization  

PubMed Central

Objective The present study was carried out to investigate and compare the three methods for calculating total antipsychotic dose among outpatients with schizophrenia attending primary psychiatric health care centers. The three methods were: Defined Daily Doses (DDDs), chlorpromazine equivalents (CPZeq) and percentages of the British National Formulary (BNF) maximum. Methodology Antipsychotic drug dosing data for 250 patients with schizophrenia were investigated by calculating Spearman’s rank correlation coefficients. Factors associated with antipsychotic dose, expressed as DDDs, CPZeq and percentages of the BNF maximum recommended daily dose, were investigated by means of linear regression analysis. Results Spearman’s correlation showed that there is a significant relationship between all pairs of the three dosing methods. In all three methods, coherence was strongest when dealing with first generation antipsychotics (FGA). Linear regression analyses showed a high degree of coherence between antipsychotic doses expressed as DDDs, CPZeq and percentages of the BNF maximum recommended daily dose. Conclusion All three tested methods are reliable and coherent for calculating antipsychotic dosing. PMID:24648824

Sweileh, Waleed M.; Odeh, Jihad Bani; Shraim, Naser Y.; Zyoud, Sa’ed H.; Sawalha, Ansam F.; Al-Jabi, Samah W.

2013-01-01

45

High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.  

PubMed

Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 ?W at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level. PMID:25365216

Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

2014-12-01

46

Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems  

NASA Technical Reports Server (NTRS)

A calculation of the starting torque ratio of permanent magnet, series, and shunt-excited dc motors powered by solar cell arrays is presented for two cases, i.e., with and without a maximum-power-point tracker (MPPT). Defining motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 for the permanent magnet motor and a magnification of 7 for both the series and shunt motors are obtained. The study also shows that all motor types are less sensitive to solar insolation variation in systems including MPPTs as compared to systems without MPPTs.

Appelbaum, J.; Singer, S.

1989-01-01

47

A reliable, fast and low cost maximum power point tracker for photovoltaic applications  

SciTech Connect

This work presents a new maximum power point tracker system for photovoltaic applications. The developed system is an analog version of the ''P and O-oriented'' algorithm. It maintains its main advantages: simplicity, reliability and easy practical implementation, and avoids its main disadvantages: inaccurateness and relatively slow response. Additionally, the developed system can be implemented in a practical way at a low cost, which means an added value. The system also shows an excellent behavior for very fast variables in incident radiation levels. (author)

Enrique, J.M.; Andujar, J.M.; Bohorquez, M.A. [Departamento de Ingenieria Electronica, de Sistemas Informaticos y Automatica, Universidad de Huelva (Spain)

2010-01-15

48

Maximum Likelihood Estimation of Point Scatterers for Computational Time-reversal Imaging  

Microsoft Academic Search

We present a statistical framework for the fixed-frequency\\u000acomputational time-reversal imaging problem assuming point\\u000ascatterers in a known background medium. Our statistical\\u000ameasurement models are based on the physical models of the\\u000amultistatic response matrix, the distorted wave Born approximation\\u000aand Foldy-Lax multiple scattering models. We develop maximum\\u000alikelihood (ML) estimators of the locations and reflection\\u000aparameters of the scatterers.

Gang Shi; Arye Nehorai

2005-01-01

49

Correlation of Point B and Lymph Node Dose in 3D-Planned High-Dose-Rate Cervical Cancer Brachytherapy  

SciTech Connect

Purpose: To compare high dose rate (HDR) point B to pelvic lymph node dose using three-dimensional-planned brachytherapy for cervical cancer. Methods and Materials: Patients with FIGO Stage IB-IIIB cervical cancer received 70 tandem HDR applications using CT-based treatment planning. The obturator, external, and internal iliac lymph nodes (LN) were contoured. Per fraction (PF) and combined fraction (CF) right (R), left (L), and bilateral (Bil) nodal doses were analyzed. Point B dose was compared with LN dose-volume histogram (DVH) parameters by paired t test and Pearson correlation coefficients. Results: Mean PF and CF doses to point B were R 1.40 Gy +- 0.14 (CF: 7 Gy), L 1.43 +- 0.15 (CF: 7.15 Gy), and Bil 1.41 +- 0.15 (CF: 7.05 Gy). The correlation coefficients between point B and the D100, D90, D50, D2cc, D1cc, and D0.1cc LN were all less than 0.7. Only the D2cc to the obturator and the D0.1cc to the external iliac nodes were not significantly different from the point B dose. Significant differences between R and L nodal DVHs were seen, likely related to tandem deviation from irregular tumor anatomy. Conclusions: With HDR brachytherapy for cervical cancer, per fraction nodal dose approximates a dose equivalent to teletherapy. Point B is a poor surrogate for dose to specific nodal groups. Three-dimensional defined nodal contours during brachytherapy provide a more accurate reflection of delivered dose and should be part of comprehensive planning of the total dose to the pelvic nodes, particularly when there is evidence of pathologic involvement.

Lee, Larissa J. [Harvard Radiation Oncology Program, Brigham and Women's Hospital, Boston, MA (United States); Sadow, Cheryl A. [Department of Radiology, Brigham and Women's Hospital, Boston, MA (United States); Russell, Anthony [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.ed [Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA (United States)

2009-11-01

50

Measurement of maximum skin dose in interventional radiology and cardiology and challenges in the set-up of European alert thresholds.  

PubMed

To help operators acknowledge patient dose during interventional procedures, EURADOS WG-12 focused on measuring patient skin dose using XR-RV3 gafchromic films, thermoluminescent detector (TLD) pellets or 2D TL foils and on investigating possible correlation to the on-line dose indicators such as fluoroscopy time, Kerma-area product (KAP) and cumulative air Kerma at reference point (CK). The study aims at defining non-centre-specific European alert thresholds for skin dose in three interventional procedures: chemoembolization of the liver (CE), neuroembolization (NE) and percutaneous coronary interventions (PCI). Skin dose values of >3 Gy (ICRP threshold for skin injuries) were indeed measured in these procedures confirming the need for dose indicators that correlate with maximum skin dose (MSD). However, although MSD showed fairly good correlation with KAP and CK, several limitations were identified challenging the set-up of non-centre-specific European alert thresholds. This paper presents preliminary results of this wide European measurement campaign and focuses on the main challenges in the definition of European alert thresholds. PMID:25316909

Farah, J; Trianni, A; Carinou, E; Ciraj-Bjelac, O; Clairand, I; Dabin, J; De Angelis, C; Domienik, J; Jarvinen, H; Kopec, R; Majer, M; Malchair, F; Negri, A; Novák, L; Siiskonen, T; Vanhavere, F; Kneževi?, Ž

2015-04-01

51

Solar Panel System for Street Light Using Maximum Power Point Tracking (MPPT) Technique  

NASA Astrophysics Data System (ADS)

Solar energy is one form of the renewable energy which is very abundant in regions close to the equator. One application of solar energy is for street light. This research focuses on using the maximum power point tracking technique (MPPT), particularly the perturb and observe (P&O) algorithm, to charge battery for street light system. The proposed charger circuit can achieve 20.73% higher power efficiency compared to that of non-MPPT charger. We also develop the LED driver circuit for the system which can achieve power efficiency up to 91.9% at a current of 1.06 A. The proposed street lightning system can be implemented with a relatively low cost for public areas.

Wiedjaja, A.; Harta, S.; Josses, L.; Winardi; Rinda, H.

2014-03-01

52

Experimental evaluation of actual delivered dose using mega-voltage cone-beam CT and direct point dose measurement  

SciTech Connect

Radiation therapy in patients is planned by using computed tomography (CT) images acquired before start of the treatment course. Here, tumor shrinkage or weight loss or both, which are common during the treatment course for patients with head-and-neck (H and N) cancer, causes unexpected differences from the plan, as well as dose uncertainty with the daily positional error of patients. For accurate clinical evaluation, it is essential to identify these anatomical changes and daily positional errors, as well as consequent dosimetric changes. To evaluate the actual delivered dose, the authors proposed direct dose measurement and dose calculation with mega-voltage cone-beam CT (MVCBCT). The purpose of the present study was to experimentally evaluate dose calculation by MVCBCT. Furthermore, actual delivered dose was evaluated directly with accurate phantom setup. Because MVCBCT has CT-number variation, even when the analyzed object has a uniform density, a specific and simple CT-number correction method was developed and applied for the H and N site of a RANDO phantom. Dose distributions were calculated with the corrected MVCBCT images of a cylindrical polymethyl methacrylate phantom. Treatment processes from planning to beam delivery were performed for the H and N site of the RANDO phantom. The image-guided radiation therapy procedure was utilized for the phantom setup to improve measurement reliability. The calculated dose in the RANDO phantom was compared to the measured dose obtained by metal-oxide-semiconductor field-effect transistor detectors. In the polymethyl methacrylate phantom, the calculated and measured doses agreed within about +3%. In the RANDO phantom, the dose difference was less than +5%. The calculated dose based on simulation-CT agreed with the measured dose within±3%, even in the region with a high dose gradient. The actual delivered dose was successfully determined by dose calculation with MVCBCT, and the point dose measurement with the image-guided radiation therapy procedure.

Matsubara, Kana, E-mail: matsubara-kana@hs.tmu.ac.jp [Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku Tokyo (Japan); Kohno, Ryosuke [National Cancer Center Hospital East, Chiba (Japan); National Cancer Center Research Institute, Chiba (Japan); Nishioka, Shie; Shibuya, Toshiyuki; Ariji, Takaki; Akimoto, Tetsuo [National Cancer Center Hospital East, Chiba (Japan); Saitoh, Hidetoshi [Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku Tokyo (Japan)

2013-07-01

53

Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities  

SciTech Connect

Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle ({alpha}{sub max}) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining {alpha}{sub max}, which is a function of the thickness of the barrier (t{sub E}) and the equilibrium tenth-value layer (TVL{sub e}) of the shielding material for the nominal energy of the beam. It can be seen that {alpha}{sub max} increases for increasing TVL{sub e} (hence, beam energy) and decreases for increasing t{sub E}, with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation.

Fondevila, Damian; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Monica; Dosoretz, Bernardo [Vidt Centro Medico, Vidt 1924, Buenos Aires (Argentina)

2008-05-15

54

Maximum dose angle for oblique incidence on primary beam protective barriers in the design of medical radiation therapy facilities.  

PubMed

Primary barrier determinations for the shielding of medical radiation therapy facilities are generally made assuming normal beam incidence on the barrier, since this is geometrically the most unfavorable condition for that shielding barrier whenever the occupation line is allowed to run along the barrier. However, when the occupation line (for example, the wall of an adjacent building) runs perpendicular to the barrier (especially roof barrier), then two opposing factors come in to play: increasing obliquity angle with respect to the barrier increases the attenuation, while the distance to the calculation point decreases, hence, increasing the dose. As a result, there exists an angle (alpha(max)) for which the equivalent dose results in a maximum, constituting the most unfavorable geometric condition for that shielding barrier. Based on the usual NCRP Report No. 151 model, this article presents a simple formula for obtaining alpha(max), which is a function of the thickness of the barrier (t(E)) and the equilibrium tenth-value layer (TVL(e)) of the shielding material for the nominal energy of the beam. It can be seen that alpha(max) increases for increasing TVL(e) (hence, beam energy) and decreases for increasing t(E), with a range of variation that goes from 13 to 40 deg for concrete barriers thicknesses in the range of 50-300 cm and most commercially available teletherapy machines. This parameter has not been calculated in the existing literature for radiotherapy facilities design and has practical applications, as in calculating the required unoccupied roof shielding for the protection of a nearby building located in the plane of the primary beam rotation. PMID:18561656

Fondevila, Damián; Arbiser, Silvio; Sansogne, Rosana; Brunetto, Mónica; Dosoretz, Bernardo

2008-05-01

55

Application of Maximum Power Point Tracker with Self-organizing Fuzzy Logic Controller for Solar-powered Traffic Lights  

Microsoft Academic Search

This paper presents the development of maximum power point tracking (MPPT) using an adjustable self-organizing fuzzy logic controller (SOFLC) for a solar-powered traffic light equipment (SPTLE) with an integrated maximum power point tracking (MPPT) system on a low-cost microcontroller. The proposed system is integrated with a boost converter for realizing of high performance SPTLE, whose adaptability properties are very attractive

Noppadol Khaehintung; P. Sirisuk

2007-01-01

56

Infimum Microlensing Amplification of the Maximum Number of Images of $n$-point Lens Systems  

E-print Network

The total amplification of a source inside a caustic curve of a binary lens is no less than 3. Here we show that the infimum amplification 3 is satisfied by a family of binary lenses where the source position is at the mid-point between the lens positions independently of the mass ratio which parameterizes the family. We present a new proof of an underlying constraint that the total amplification of the two positive images is bigger than that of the three negative images by one inside a caustic. We show that a similar constraint holds for an arbitrary class of $n$-point lens systems for the sources in the `maximal domains'. We introduce the notion that a source plane consists of {\\it graded caustic domains} and the `maximal domain' is the area of the source plane where a source star results in the maximum $n^2+1$ images. We show that the infimum amplification of a three point lens is 7, and it is bigger than $n^2+1-n$ for $n\\ge 4$. This paper has raised many interesting and very basic questions such as ``whether lensing is a physical process, a mathematical process, or both" since it was submitted for publication a year ago. The result is the addition of 8 page appendix, and that is the reason of this replacement. We hope that the future authors wouldn't have to pay so long for using the elegant Jacobian matrix in complex coordinate basis. (They are neither wrong nor funny!!)

Sun Hong Rhie

1996-08-04

57

Performance Comparison of various Maximum Likelihood Nonlinear Mixed-effects Estimation Methods for Dose-  

E-print Network

preclinical and clinical trials. Within drug development, NLMEM were initially used for pharmacokinetic (PK with dose-response analyses. On top of the structural mathematical model fit to PK or/and PD observations

Paris-Sud XI, Université de

58

Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems  

NASA Technical Reports Server (NTRS)

Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.

Appelbaum, Joseph; Singer, S.

1989-01-01

59

Sustained long-term hematologic efficacy of hydroxyurea at maximum tolerated dose in children with sickle cell disease  

Microsoft Academic Search

Hydroxyurea improves hematologic pa- rameters for children with sickle cell dis- ease (SCD), but its long-term efficacy at maximum tolerated dose (MTD) has not been determined. Between 1995 and 2002, hydroxyurea therapy was initiated for 122 pediatric patients with SCD including 106 with homozygous sickle cell anemia (HbSS), 7 with sickle hemoglobin C (HbSC), 7 with sickle\\/-thalassemia (HbS\\/ -thalassemia (6

Sherri A. Zimmerman; William H. Schultz; Jacqueline S. Davis; Chrisley V. Pickens; Nicole A. Mortier; Thad A. Howard; Russell E. Ware

2003-01-01

60

Comparison of dose at an interventional reference point between the displayed estimated value and measured value.  

PubMed

Today, interventional radiology (IR) X-ray units are required for display of doses at an interventional reference point (IRP) for the operator (IR physician). The dose displayed at the IRP (the reference dose) of an X-ray unit has been reported to be helpful for characterizing patient exposure in real time. However, no detailed report has evaluated the accuracy of the reference doses displayed on X-ray equipment. Thus, in this study, we compared the displayed reference dose to the actual measured value in many IR X-ray systems. Although the displayed reference doses of many IR X-ray systems agreed with the measured actual values within approximately 15%, the doses of a few IR units were not close. Furthermore, some X-ray units made in Japan displayed reference doses quite different from the actual measured value, probably because the reference point of these units differs from the International Electrotechnical Commission standard. Thus, IR physicians should pay attention to the location of the IRP of the displayed reference dose in Japan. Furthermore, physicians should be aware of the accuracy of the displayed reference dose of the X-ray system that they use for IR. Thus, regular checks of the displayed reference dose of the X-ray system are important. PMID:21643656

Chida, Koichi; Inaba, Yohei; Morishima, Yoshiaki; Taura, Masaaki; Ebata, Ayako; Yanagawa, Isao; Takeda, Ken; Zuguchi, Masayuki

2011-07-01

61

Combination of Fuzzy-Based Maximum Power Point Tracker and Sun Tracker for Deployable Solar Panels in Photovoltaic Systems  

Microsoft Academic Search

Solar panels are power sources in photovoltaic applications. Solar panels I-V curves depend on environmental conditions such as irradiance, temperature, load and degradation level. In this paper, design and implementation of simultaneous fuzzy-based maximum power point tracker (MPPT) and sun tracker are presented for deployable solar panels. A digital controller was implemented by an AVR microcontroller. Results showed that the

Mohsen Taherbaneh; Hasan Ghafori Frard; Amir Hossein Rezaie; Shahab Karbasian

2007-01-01

62

The Maximum or Minimum Number of Rational Points on Genus Three Curves over Finite Fields  

Microsoft Academic Search

We show that for all finite fields Fq, there exists a curve C over Fq of genus 3 such that the number of rational points on C is within 3 of the Serre–Weil upper or lower bound. For some q, we also obtain improvements on the upper bound for the number of rational points on a genus 3 curve over

Kristin Lauter; Jean-Pierre Serre

2002-01-01

63

On the maximum number of isosceles right triangles in a finite point set  

E-print Network

. For a fixed n, Erdos and Purdy asked to determine the maximum possible value of SQ(P), denoted by SQ(n), over(n). 1 Introduction In the 1970s Paul Erdos and George Purdy [6, 7, 8] posed the question, "Given

Fernandez, Silvia

64

Thermoelectric automotive waste heat energy recovery using maximum power point tracking  

Microsoft Academic Search

This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC–DC ?uk converter to charge a battery using maximum power

Chuang Yu; K. T. Chau

2009-01-01

65

Translating a Convex Polygon to Contain a Maximum Number of Points  

Microsoft Academic Search

Gill BarequetyMatthew DickersonzPetru Paux1 IntroductionFinding an optimal transformation of a region such thatit contains (encloses) a given point set or subset is a problemthat has received considerable attention. Applicationsinclude optimal object placement (CAD), clustering, andstatistical data analysis. As may be expected, there aremany variants of this generally stated problem. For example,finding the smallest circle enclosing a given point setS is

1995-01-01

66

The maximum or minimum number of rational points on curves of genus three over finite fields  

Microsoft Academic Search

We show that for all finite fields F_q, there exists a curve C over F_q of genus 3 such that the number of rational points on C is within 3 of the Serre-Weil upper or lower bound. For some q, we also obtain improvements on the upper bound for the number of rational points on a genus 3 curve over

Kristin Lauter; Jean-Pierre Serre

2001-01-01

67

A novel maximum power point tracking technique for solar panels using a SEPIC or Cuk converter  

Microsoft Academic Search

A novel technique for efficiently extracting the maximum output power from a solar panel under varying meteorological conditions is presented. The methodology is based on connecting a pulse-width-modulated (PWM) DC\\/DC SEPIC or Cuk converter between a solar panel and a load or battery bus. The converter operates in discontinuous capacitor voltage mode whilst its input current is continuous. By modulating

Henry Shu-Hung Chung; K. K. Tse; S. Y. Ron Hui; C. M. Mok; M. T. Ho

2003-01-01

68

Ephemeral active regions and coronal bright points: A solar maximum Mission 2 guest investigator study  

NASA Technical Reports Server (NTRS)

A dominate association of coronal bright points (as seen in He wavelength 10830) was confirmed with the approach and subsequent disappearance of opposite polarity magnetic network. While coronal bright points do occur with ephemeral regions, this association is a factor of 2 to 4 less than with sites of disappearing magnetic flux. The intensity variations seen in He I wavelength 10830 are intermittent and often rapid, varying over the 3 minute time resolution of the data; their bright point counterparts in the C IV wavelength 1548 and 20 cm wavelength show similar, though not always coincident time variations. Ejecta are associated with about 1/3 of the dark points and are evident in the C IV and H alpha data. These results support the idea that the anti-correlation of X-ray bright points with the solar cycle can be explained by the correlation of these coronal emission structures with sites of cancelling flux, indicating that, in some cases, the process of magnetic flux removal results in the release of energy. That the intensity variations are rapid and variable suggests that this process works intermittently.

Harvey, K. L.; Tang, F. Y. C.; Gaizauskas, V.; Poland, A. I.

1986-01-01

69

Maximum Principle of Optimal Control of the Primitive Equations of the Ocean with Two Point Boundary State Constraint  

SciTech Connect

We study in this article the Pontryagin's maximum principle for a class of control problems associated with the primitive equations (PEs) of the ocean with two point boundary state constraint. These optimal problems involve a two point boundary state constraint similar to that considered in Wang, Nonlinear Anal. 51, 509-536, 2002 for the three-dimensional Navier-Stokes (NS) equations. The main difference between this work and Wang, Nonlinear Anal. 51, 509-536, 2002 is that the nonlinearity in the PEs is stronger than in the three-dimensional NS systems.

Tachim Medjo, Theodore, E-mail: tachimt@fiu.ed [Florida International University, Department of Mathematics (United States)

2010-08-15

70

A Low-Cost Solar-Powered Light-Flasher with Built-in Maximum Power Point Tracking  

Microsoft Academic Search

This paper presents the development of a RISC- microcontroller based solar-powered light-flasher with built- in Maximum Power Point Tracking (MPPT) system. The unit captures solar energy by a solar array and delivers into battery through a boost converter. With the built-in MPPT, solar power can then be efficiently drawn from the solar array. In this research work, the MPPT based

Noppadol Khaehintung; Borpit Tuvirat; Krisada Pramotung; Phaophak Sirisuk

71

Implementation of maximum power point tracking using fuzzy logic controller for solar-powered light-flasher applications  

Microsoft Academic Search

This paper presents the development of maximum power point tracking (MPPT) using a fuzzy logic controller (FLC). By applying the synthetic fuzzy inference algorithm, the relation between input and output of FLC can be effectively stored in a memory-limited lookup table (LUT). As a consequence, the controller can be efficiently implemented on a low-cost 16F872 RISC microcontroller. A practical system

N. Khaehintung; P. Sirisuk

2004-01-01

72

A high-efficiency maximum power point tracker for photovoltaic arrays in a solar-powered race vehicle  

Microsoft Academic Search

A maximum power point tracker for photovoltaic arrays is presented. Components are optimized for weight\\/power-loss tradeoff in a solar-powered vehicle, resulting in over 97% efficiency. The control circuit uses a robust auto-oscillation method. Measurement and multiplication of array voltage and current is shown to be unnecessary, and the control is based only on output current measurement. Multiple local maxima arising

Charles R. Sullivan; Matthew J. Powers

1993-01-01

73

RISC microcontroller built-in fuzzy logic controller for maximum power point tracking in solar-powered for battery charger  

Microsoft Academic Search

This paper presents the development of maximum power point tracking (MPPT) using a fuzzy logic controller (FLC). By applying the synthetic fuzzy inference algorithm, the relationship between input and output of FLC can be effectively stored in a memory-limited lookup table (LUT). As a consequence, the controller can be efficiently implemented on a low-cost 16F872 RISC microcontroller. The proposed controller

Noppadol Khaehintung; Krisada Pramotung; Phaophak Sirisuk

2004-01-01

74

Penetrative Rayleigh-Bénard convection in water near its maximum density point  

NASA Astrophysics Data System (ADS)

The presence of a density maximum in water near 4 °C significantly modifies the nature and onset conditions of convective flows due to imposed temperature differences. In the present study, vertical temperature gradients are imposed upon a horizontal, rectangular layer of water, with the top and bottom surfaces maintained above and below the maximum density temperature, respectively. In such an arrangement, convection beginning in the lower, unstable portion of the layer (as small as 1/3 of the layer height) may penetrate into the upper, stable region. The resulting convection patterns are visualized using schlieren or shadowgraph techniques along multiple visual axes. The measured onset conditions and observed patterns are discussed in the context of preceding predictions and experimental observations in similar penetrative systems. As expected from the non-Boussinesq nature of water in this temperature range, convection sets in at temperature differences below those predicted by linear stability theory when the unstable portion of the layer is sufficiently small. The conduction-convection transition is also hysteretic in nature. At onset, the convection pattern consists of parallel, transverse rolls due to the boundary conditions of the fluid chamber. When the unstable portion of the layer is significantly less than half of the fluid layer height, the convective motion is found to penetrate only partway into the upper stable region, within which weakly counter-rotating motions are driven. At higher Rayleigh numbers, the fluid undergoes secondary transitions to either hexagonal cellular or longitudinal roll states which are visualized for the first time. Pattern heights and wavenumbers were measured in some instances, establishing qualitative (in general) and quantitative (over some parameter ranges) agreement with linear theory.

Large, E.; Andereck, C. D.

2014-09-01

75

TiO2 dye sensitized solar cell (DSSC): linear relationship of maximum power point and anthocyanin concentration  

NASA Astrophysics Data System (ADS)

This study investigated the relationship of anthocyanin concentration from different organic fruit species and output voltage and current in a TiO2 dye-sensitized solar cell (DSSC) and hypothesized that fruits with greater anthocyanin concentration produce higher maximum power point (MPP) which would lead to higher current and voltage. Anthocyanin dye solution was made with crushing of a group of fresh fruits with different anthocyanin content in 2 mL of de-ionized water and filtration. Using these test fruit dyes, multiple DSSCs were assembled such that light enters through the TiO2 side of the cell. The full current-voltage (I-V) co-variations were measured using a 500 ? potentiometer as a variable load. Point-by point current and voltage data pairs were measured at various incremental resistance values. The maximum power point (MPP) generated by the solar cell was defined as a dependent variable and the anthocyanin concentration in the fruit used in the DSSC as the independent variable. A regression model was used to investigate the linear relationship between study variables. Regression analysis showed a significant linear relationship between MPP and anthocyanin concentration with a p-value of 0.007. Fruits like blueberry and black raspberry with the highest anthocyanin content generated higher MPP. In a DSSC, a linear model may predict MPP based on the anthocyanin concentration. This model is the first step to find organic anthocyanin sources in the nature with the highest dye concentration to generate energy.

Ahmadian, Radin

2010-09-01

76

25 CFR 1000.70 - What criteria will the Director use to rank the applications and how many maximum points can be...  

Code of Federal Regulations, 2010 CFR

... What criteria will the Director use to rank the applications and how many maximum... What criteria will the Director use to rank the applications and how many maximum points...following criteria and point system to rank the applications: (a) The...

2010-04-01

77

A Solar-powered Battery Charger with Neural Network Maximum Power Point Tracking Implemented on a Low-Cost PIC-microcontroller  

Microsoft Academic Search

This paper presents the development of a maximum power point tracking algorithm using an artificial neural network for a solar power system. By applying a three layers neural network and some simple activation functions, the maximum power point of a solar array can be efficiently tracked. The tracking algorithm integrated with a solar-powered battery charging system has been successfully implemented

P. Petchjatuporn; W. Ngamkham; N. Khaehintung; P. Sirisuk; W. Kiranon

2005-01-01

78

Hybrid Energy Storage System Based on Compressed Air and Super-Capacitors with Maximum Efficiency Point Tracking (MEPT)  

NASA Astrophysics Data System (ADS)

This paper presents a hybrid energy storage system mainly based on Compressed Air, where the storage and withdrawal of energy are done within maximum efficiency conditions. As these maximum efficiency conditions impose the level of converted power, an intermittent time-modulated operation mode is applied to the thermodynamic converter to obtain a variable converted power. A smoothly variable output power is achieved with the help of a supercapacitive auxiliary storage device used as a filter. The paper describes the concept of the system, the power-electronic interfaces and especially the Maximum Efficiency Point Tracking (MEPT) algorithm and the strategy used to vary the output power. In addition, the paper introduces more efficient hybrid storage systems where the volumetric air machine is replaced by an oil-hydraulics and pneumatics converter, used under isothermal conditions. Practical results are also presented, recorded from a low-power air motor coupled to a small DC generator, as well as from a first prototype of the hydro-pneumatic system. Some economical considerations are also made, through a comparative cost evaluation of the presented hydro-pneumatic systems and a lead acid batteries system, in the context of a stand alone photovoltaic home application. This evaluation confirms the cost effectiveness of the presented hybrid storage systems.

Lemofouet, Sylvain; Rufer, Alfred

79

Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not.  

PubMed

While the collection of genotoxicity data and insights into potential mechanisms of action for nano-sized particulate materials (NPs) are steadily increasing, there is great uncertainty whether current standard assays are suitable to appropriately characterize potential risks. We investigated the effects of NPs in an in vivo Comet/micronucleus (MN) combination assay and in an in vitro MN assay performed with human blood. We also incorporated additional endpoints into the in vivo study in an effort to delineate primary from secondary mechanisms. Amorphous silica NPs (15 and 55 nm) were chosen for their known reactivity, while gold nano/microparticles (2, 20, and 200 nm) were selected for their wide size range and lower reactivity. DNA damage in liver, lung and blood cells and micronuclei in circulating reticulocytes were measured after 3 consecutive intravenous injections to male Wistar rats at 48, 24 and 4h before sacrifice. Gold nano/microparticles were negative for MN induction in vitro and in vivo, and for the induction of DNA damage in all tissues. Silica particles, however, caused a small but reproducible increase in DNA damage and micronucleated reticulocytes when tested at their maximum tolerated dose (MTD). No genotoxic effects were observed at lower doses, and the in vitro MN assay was also negative. We hypothesize that silica NPs initiate secondary genotoxic effects through release of inflammatory cell-derived oxidants, similar to that described for crystalline silica (quartz). Such a mechanism is supported by the occurrence of increased neutrophilic infiltration, necrosis, and apoptotic cells in the liver, and induction of inflammatory markers TNF-? and IL-6 in plasma at the MTDs. These results were fairly consistent between silica NPs and the quartz control, thereby strengthening the argument that silica NPs may act in a similar, thresholded manner. The observed profile is supportive of a secondary genotoxicity mechanism that is driven by inflammation. PMID:22504169

Downs, Thomas R; Crosby, Meredith E; Hu, Ting; Kumar, Shyam; Sullivan, Ashley; Sarlo, Katherine; Reeder, Bob; Lynch, Matt; Wagner, Matthew; Mills, Tim; Pfuhler, Stefan

2012-06-14

80

The point of transition on the dose-effect curve as a reference point in the evaluation of in vitro toxicity data.  

PubMed

Dose-effect evaluation is an increasingly important step of health risk assessment. The foreseen increase of in vitro methods argues for the development and evaluation of a clearly defined reference points for dose-effect modelling of in vitro data. In the present study, the traditional use of a concentration corresponding to 10% or 50% of the maximal effect (EC?? or EC??) is compared with a strategy, under which, a reference point (Benchmark dose, BMD(T) ) is calculated that represents the dose where the slope of the dose-effect curve changes the most (per unit log-dose) in the low dose region. To illustrate the importance of the reference point, dose-effect data on CYP1A1 enzyme activity for 30 polychlorinated biphenyl (PCB) congeners were evaluated in order to calculate relative potencies, in relation to 2,3,7,8-TCDD, with confidence intervals (CIs). The present study shows that the interpretation of the results as potency and rank orders potentially depends on the choice and definition of the reference point (BMD(T) , EC?? or EC??). This is important as potency ranking may be used as a method for screening and prioritization, in research, in policy development or in pharmaceutical development. The use of the BMD(T) implies a focus on the change of structure in the parameter's dose-response rather than a particular percentage change in the response in such a parameter. In conclusion, the BMD(T) may be used as an alternative base for evaluation of dose-effect relationships in vitro. It offers an objective geometrical definition of a reference point in the low-dose region of the dose-effect curve. PMID:22733407

Sand, Salomon; Ringblom, Joakim; Håkansson, Helen; Öberg, Mattias

2012-10-01

81

A novel method of estimating effective dose from the point dose method: a case study—parathyroid CT scans  

NASA Astrophysics Data System (ADS)

The purpose of this study was to validate a novel approach of applying a partial volume correction factor (PVCF) using a limited number of MOSFET detectors in the effective dose (E) calculation. The results of the proposed PVCF method were compared to the results from both the point dose (PD) method and a commercial CT dose estimation software (CT-Expo). To measure organ doses, an adult female anthropomorphic phantom was loaded with 20 MOSFET detectors and was scanned using the non-contrast and 2 phase contrast-enhanced parathyroid imaging protocols on a 64-slice multi-detector computed tomography scanner. E was computed by three methods: the PD method, the PVCF method, and the CT-Expo method. The E (in mSv) for the PD method, the PVCF method, and CT-Expo method was 2.6? ± ?0.2, 1.3? ± ?0.1, and 1.1 for the non-contrast scan, 21.9? ± ?0.4, 13.9? ± ?0.2, and 14.6 for the 1st phase of the contrast-enhanced scan, and 15.5? ± ?0.3, 9.8? ± ?0.1, and 10.4 for the 2nd phase of the contrast-enhanced scan, respectively. The E with the PD method differed from the PVCF method by 66.7% for the non-contrast scan, by 44.9% and by 45.5% respectively for the 1st and 2nd phases of the contrast-enhanced scan. The E with PVCF was comparable to the results from the CT-Expo method with percent differences of 15.8%, 5.0%, and 6.3% for the non-contrast scan and the 1st and 2nd phases of the contrast-enhanced scan, respectively. To conclude, the PVCF method estimated E within 16% difference as compared to 50–70% in the PD method. In addition, the results demonstrate that E can be estimated accurately from a limited number of detectors.

Januzis, Natalie; Nguyen, Giao; Hoang, Jenny K.; Lowry, Carolyn; Yoshizumi, Terry T.

2015-02-01

82

A novel method of estimating effective dose from the point dose method: a case study-parathyroid CT scans.  

PubMed

The purpose of this study was to validate a novel approach of applying a partial volume correction factor (PVCF) using a limited number of MOSFET detectors in the effective dose (E) calculation. The results of the proposed PVCF method were compared to the results from both the point dose (PD) method and a commercial CT dose estimation software (CT-Expo). To measure organ doses, an adult female anthropomorphic phantom was loaded with 20 MOSFET detectors and was scanned using the non-contrast and 2 phase contrast-enhanced parathyroid imaging protocols on a 64-slice multi-detector computed tomography scanner. E was computed by three methods: the PD method, the PVCF method, and the CT-Expo method. The E (in mSv) for the PD method, the PVCF method, and CT-Expo method was 2.6? ± ?0.2, 1.3? ± ?0.1, and 1.1 for the non-contrast scan, 21.9? ± ?0.4, 13.9? ± ?0.2, and 14.6 for the 1st phase of the contrast-enhanced scan, and 15.5? ± ?0.3, 9.8? ± ?0.1, and 10.4 for the 2nd phase of the contrast-enhanced scan, respectively. The E with the PD method differed from the PVCF method by 66.7% for the non-contrast scan, by 44.9% and by 45.5% respectively for the 1st and 2nd phases of the contrast-enhanced scan. The E with PVCF was comparable to the results from the CT-Expo method with percent differences of 15.8%, 5.0%, and 6.3% for the non-contrast scan and the 1st and 2nd phases of the contrast-enhanced scan, respectively. To conclude, the PVCF method estimated E within 16% difference as compared to 50-70% in the PD method. In addition, the results demonstrate that E can be estimated accurately from a limited number of detectors. PMID:25658032

Januzis, Natalie; Nguyen, Giao; Hoang, Jenny K; Lowry, Carolyn; Yoshizumi, Terry T

2015-02-21

83

Simple analytical expressions for the dose of point photon sources in homogeneous media.  

PubMed

The contributions to the dose of a point photon source in homogeneous media due to primary and first, second, ..., nth scattered photons are investigated. Assuming a simple statistical model, an analytical form comes out for each of these contributions. It includes a polynomial and a single exponential and depends on three parameters which have a physical meaning. The values of these parameters for different energies and for water, as a test case, are obtained from numerical fits to the results of a Monte Carlo simulation with the code PENELOPE. The average differences between the model and the Monte Carlo results, after the fitting process, are below 1%. Our model permits to obtain improved versions of the classical approach of Berger in a straightforward way. The expressions obtained also describe the dose build-up of the primary photons. PMID:18854613

Sabariego, M P; Porras, I; Lallena, A M

2008-11-01

84

Simple analytical expressions for the dose of point photon sources in homogeneous media  

NASA Astrophysics Data System (ADS)

The contributions to the dose of a point photon source in homogeneous media due to primary and first, second, ..., nth scattered photons are investigated. Assuming a simple statistical model, an analytical form comes out for each of these contributions. It includes a polynomial and a single exponential and depends on three parameters which have a physical meaning. The values of these parameters for different energies and for water, as a test case, are obtained from numerical fits to the results of a Monte Carlo simulation with the code PENELOPE. The average differences between the model and the Monte Carlo results, after the fitting process, are below 1%. Our model permits to obtain improved versions of the classical approach of Berger in a straightforward way. The expressions obtained also describe the dose build-up of the primary photons.

Sabariego, M. P.; Porras, I.; Lallena, A. M.

2008-11-01

85

Dose–volume histogram parameters of high-dose-rate brachytherapy for Stage I–II cervical cancer (?4cm) arising from a small-sized uterus treated with a point A dose-reduced plan  

PubMed Central

We investigated the rectal dose-sparing effect and tumor control of a point A dose-reduced plan in patients with Stage I–II cervical cancer (?4 cm) arising from a small-sized uterus. Between October 2008 and August 2011, 19 patients with Stage I–II cervical cancer (?4 cm) were treated with external beam radiotherapy (EBRT) for the pelvis and CT-guided brachytherapy. Seven patients were treated with brachytherapy with standard loading of source-dwell positions and a fraction dose of 6 Gy at point A (conventional brachy-plan). The other 12 patients with a small uterus close to the rectum or small intestine were treated with brachytherapy with a point A dose-reduction to match D2cc of the rectum and <6 Gy as the dose constraint (‘point A dose-reduced plan’) instead of the 6-Gy plan at point A (‘tentative 6-Gy plan’). The total doses from EBRT and brachytherapy were added up and normalized to a biological equivalent dose of 2 Gy per fraction (EQD2). The median doses to the high-risk clinical target volume (HR-CTV) D90 in the conventional brachy-plan, tentative 6-Gy plan and point A dose-reduced plan were 62 GyEQD2, 80 GyEQD2 and 64 GyEQD2, respectively. The median doses of rectal D2cc in the corresponding three plans were 42 GyEQD2, 62 GyEQD2 and 51 GyEQD2, respectively. With a median follow-up period of 35 months, three patients developed Grade-1 late rectal complications and no patients developed local recurrence. Our preliminary results suggested that CT-guided brachytherapy using an individualized point A dose-reduced plan might be useful for reducing late rectal complications while maintaining primary tumor control. PMID:24566721

Nakagawa, Akiko; Ohno, Tatsuya; Noda, Shin-ei; Kubo, Nobuteru; Kuwako, Keiko; Saitoh, Jun-ichi; Nakano, Takashi

2014-01-01

86

Study of a thermoelectric system equipped with a maximum power point tracker for stand-alone electric generation.  

NASA Astrophysics Data System (ADS)

According to the International Energy Agency, 1.4 billion people are without electricity in the poorest countries and 2.5 billion people rely on biomass to meet their energy needs for cooking in developing countries. The use of cooking stoves equipped with small thermoelectric generator to provide electricity for basic needs (LED, cell phone and radio charging device) is probably a solution for houses far from the power grid. The cost of connecting every house with a landline is a lot higher than dropping thermoelectric generator in each house. Thermoelectric generators have very low efficiency but for isolated houses, they might become really competitive. Our laboratory works in collaboration with plane`te-bois (a non governmental organization) which has developed energy-efficient multifunction (cooking and hot water) stoves based on traditional stoves designs. A prototype of a thermoelectric generator (Bismuth Telluride) has been designed to convert a small part of the energy heating the sanitary water into electricity. This generator can produce up to 10 watts on an adapted load. Storing this energy in a battery is necessary as the cooking stove only works a few hours each day. As the working point of the stove varies a lot during the use it is also necessary to regulate the electrical power. An electric DC DC converter has been developed with a maximum power point tracker (MPPT) in order to have a good efficiency of the electronic part of the thermoelectric generator. The theoretical efficiency of the MMPT converter is discussed. First results obtained with a hot gas generator simulating the exhaust of the combustion chamber of a cooking stove are presented in the paper.

Favarel, C.; Champier, D.; Bédécarrats, J. P.; Kousksou, T.; Strub, F.

2012-06-01

87

[Usefulness of one point measurement method of pediatric dose and UV spectrophotometry for filterability test of in-line filter].  

PubMed

The adsorption of Bevacizumab, Trastuzumab, Rituximab, Nedaplatin, Vincristine sulfate, Nogitecan hydrochloride, Actinomycin D and Ramosetron hydrochloride to 0.2 ?m endotoxin-retentive in-line filters was evaluated with pediatric doses by UV spectrophotometry. The results indicated that some drug adsorption was shown with Nogitecan hydrochloride, Actinomycin D and Ramosetron hydrochloride, and good recovery was shown with the other five drugs. For the three drugs which showed some losses, drug recovery was investigated at multiple test doses. The approximation formula for each drug adsorption was recorded as Y=100-A/X (X: dose (mg), Y: recovery rate (%), A: a constant for individual drug). The results showed there was high correlation between the reciprocal of test drug dose and the recovery rate. Furthermore, in the cases where adsorption to the filter were observed, it was found that it was possible to determine the relationship between dose and the recovery rate from a filterability test with one point pediatric dose. Since the recovery rate obtained from the approximation formula with multiple doses and that calculated from the prediction formula with one point pediatric dose were almost the same, then it was concluded that it is not necessary to conduct the filterability tests with multiple doses. We have shown that using UV spectrophotometry and carrying out a filterability test using one point pediatric dose is relatively easy method and reduces the effort and expense. This method for analysis of drug adsorption is extremely useful when using in-line filters with infusion therapy. PMID:24790051

Yamanouchi, Tsuneaki; Horiuchi, Kenichi; Ishii, Kazunari; Mimura, Yasuhiko; Kato, Atsushi; Adachi, Isao

2014-01-01

88

Methodology used to compute maximum potential doses from ingestion of edible plants and wildlife found on the Hanford Site  

SciTech Connect

The purpose of this report is to summarize the assumptions, dose factors, consumption rates, and methodology used to evaluate potential radiation doses to persons who may eat contaminated wildlife or contaminated plants collected from the Hanford Site. This report includes a description of the number and variety of wildlife and edible plants on the Hanford Site, methods for estimation of the quantities of these items consumed and conversion of intake of radionuclides to radiation doses, and example calculations of radiation doses from consumption of plants and wildlife. Edible plants on the publicly accessible margins of the shoreline of the Hanford Site and Wildlife that move offsite are potential sources of contaminated food for the general public. Calculations of potential radiation doses from consumption of agricultural plants and farm animal products are made routinely and reported annually for those produced offsite, using information about concentrations of radionuclides, consumption rates, and factors for converting radionuclide intake into dose. Dose calculations for onsite plants and wildlife are made intermittently when appropriate samples become available for analysis or when special studies are conducted. Consumption rates are inferred from the normal intake rates of similar food types raised offsite and from the edible weight of the onsite product that is actually available for harvest. 19 refs., 4 tabs.

Soldat, J.K.; Price, K.R.; Rickard, W.H.

1990-10-01

89

A Signal-to-Noise Crossover Dose as the Point of Departure for Health Risk Assessment  

PubMed Central

Background: The U.S. National Toxicology Program (NTP) cancer bioassay database provides an opportunity to compare both existing and new approaches to determining points of departure (PoDs) for establishing reference doses (RfDs). Objectives: The aims of this study were a) to investigate the risk associated with the traditional PoD used in human health risk assessment [the no observed adverse effect level (NOAEL)]; b) to present a new approach based on the signal-to-noise crossover dose (SNCD); and c) to compare the SNCD and SNCD-based RfD with PoDs and RfDs based on the NOAEL and benchmark dose (BMD) approaches. Methods: The complete NTP database was used as the basis for these analyses, which were performed using the Hill model. We determined NOAELs and estimated corresponding extra risks. Lower 95% confidence bounds on the BMD (BMDLs) corresponding to extra risks of 1%, 5%, and 10% (BMDL01, BMDL05, and BMDL10, respectively) were also estimated. We introduce the SNCD as a new PoD, defined as the dose where the additional risk is equal to the “background noise” (the difference between the upper and lower bounds of the two-sided 90% confidence interval on absolute risk) or a specified fraction thereof. Results: The median risk at the NOAEL was approximately 10%, and the default uncertainty factor (UF = 100) was considered most applicable to the BMDL10. Therefore, we chose a target risk of 1/1,000 (0.1/100) to derive an SNCD-based RfD by linear extrapolation. At the median, this approach provided the same RfD as the BMDL10 divided by the default UF. Conclusions: Under a standard BMD approach, the BMDL10 is considered to be the most appropriate PoD. The SNCD approach, which is based on the lowest dose at which the signal can be reliably detected, warrants further development as a PoD for human health risk assessment. PMID:21813365

Portier, Christopher J.; Krewski, Daniel

2011-01-01

90

Verification of dose calculations with a clinical treatment planning system based on a point kernel dose engine.  

PubMed

Dose calculations with a collapsed cone algorithm implemented in a clinical treatment planning system have been studied. The algorithm has been evaluated in homogeneous as well as in heterogeneous media, and the results have been compared to measurements and Monte Carlo simulations. Commonly encountered clinical beam configurations as well as more complex geometries have been pursued to test the limitations of the model. The results show that the accuracy level reached allows for clinical use. Some situations, e.g., large wedge beams and dose calculations in the build up region, not specific to the collapsed cone model, show deviations (outside +/- 3%) compared to measurements. PMID:11958648

Weber, Lars; Nilsson, Per

2002-01-01

91

Variation in sitting pressure distribution and location of the points of maximum pressure with rotation of the pelvis, gender and body characteristics  

Microsoft Academic Search

The pressure distribution and the locations of the points of maximum pressure, usually below the ischial tuberosities, were measured for subjects sitting on a flat, hard and horizontal support, and at various angles of the rotation of the pelvis. The pressure data were analysed for force- and pressure-related quantities. Multiple regression was applied to explore relationships between these quantities and

Niels C. C. M. Moes

2007-01-01

92

Variation in Sitting Pressure Distribution and Location of the Points of Maximum Pressure with Rotation of the Pelvis, Gender and Body Characteristics  

Microsoft Academic Search

The pressure distribution and the location of the points of maximum pressure, usually below the ischial tuberosities, was measured for subjects sitting on a flat, hard and horizontal support, and varying angle of the rotation of the pelvis. The pressure data were analyzed for force- and pressure-related quantities. Multiple regression was applied to explore relationships between these quantities and (i)

C. C. M. Moes

2007-01-01

93

Approach to calculating upper bounds on maximum individual doses from the use of contaminated well water following a WIPP repository breach. Report EEG-9  

SciTech Connect

As part of the assessment of the potential radiological consequences of the proposed Waste Isolation Pilot Plant (WIPP), this report evaluates the post-closure radiation dose commitments associated with a possible breach event which involves dissolution of the repository by groundwaters and subsequent transport of the nuclear waste through an aquifer to a well assumed to exist at a point 3 miles downstream from the repository. The concentrations of uranium and plutonium isotopes at the well are based on the nuclear waste inventory presently proposed for WIPP and basic assumptions concerning the transport of waste as well as treatment to reduce the salinity of the water. The concentrations of U-233, Pu-239, and Pu-240, all radionuclides originally emplaced as waste in the repository, would exceed current EPA drinking water limits. The concentrations of U-234, U-235, and U-236, all decay products of plutonium isotopes originally emplaced as waste, would be well below current EPA drinking water limits. The 50-year dose commitments from one year of drinking treated water contaminated with U-233 or Pu-239 and Pu-240 were found to be comparable to a one-year dose from natural background. The 50-year dose commitments from one year of drinking milk would be no more than about 1/5 the dose obtained from ingestion of treated water. These doses are considered upper bounds because of several very conservative assumptions which are discussed in the report.

Spiegler, P.

1981-09-01

94

Multiple-input Maximum Power Point Tracking algorithm for solar panels with reduced sensing circuitry for portable applications  

Microsoft Academic Search

A method to track the maximum power of multiple-input, portable, photovoltaic systems is proposed. The method shares a single current sensor by interleaving Perturb and Observe operations. The system has reduced size and cost, making it attractive for compact portable solar panels and solar battery chargers, such as for cell phones, laptops, and other portable electronics with rechargeable batteries. A

F. Boico; B. Lehman

95

Design, Construction and Testing of a Voltage-based Maximum Power Point Tracker (VMPPT) for Small Satellite Power Supply  

Microsoft Academic Search

It is shown that at maximum power, the Photovoltaic (PV) voltage varies nonlinearily with temperature and isolation level, but is directly proportional to the PV cell open circuit voltage. The proportionality voltage-factor is fixed for a given PV generator regardless of temperature, isolation and panel configuration, but depends on cell material and manufacturing. This remarkable property is used to achieve

96

A Single Cell Maximum Power Point Tracking Converter without a Current Sensor for High Performance Vehicle Solar Arrays  

Microsoft Academic Search

A maximum power tracker is developed for a single high performance GaAs solar cell to reduce the impact of variations in cell illumination for highly curved arrays as required for vehicle applications. This solution also finds applications in concentrating photovoltaic systems where the incident energy may vary due to optical imperfections. On a curved array, each cell has a directly

P. J. Wolfs; L. Tang

2005-01-01

97

Speed and Position Sensor-less Maximum Power Point Tracking Control for Wind Generation System with Squirrel Cage Induction Generator  

Microsoft Academic Search

Wind energy is a significant and powerful resource. It is safe, clean, and abundant. Variable speed power generation for a wind turbine is attractive, because maximum efficiency can be achieved at all wind velocities. However, this system requires a rotor speed sensor for vector control purposes, which increases the cost of the system. In this paper, a technique is proposed

Tomonobu Senjyu; Yasutaka Ochi; Endusa Muhando; Naomitsu Urasaki; Hideomi Sekine

2006-01-01

98

A Single-Stage Grid Connected Inverter Topology for Solar PV Systems With Maximum Power Point Tracking  

Microsoft Academic Search

This paper proposes a high performance, single-stage inverter topology for grid connected PV systems. The proposed configuration can not only boost the usually low photovoltaic (PV) array voltage, but can also convert the solar dc power into high quality ac power for feeding into the grid, while tracking the maximum power from the PV array. Total harmonic distortion of the

Sachin Jain; Vivek Agarwal

2007-01-01

99

A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images.  

PubMed

Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based 'thin-plate-spline robust point matching' algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses. PMID:25790059

Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K; Yashar, Catheryn M; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

2015-04-01

100

A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images  

NASA Astrophysics Data System (ADS)

Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

2015-04-01

101

Calculation of electron and isotopes dose point kernels with fluka Monte Carlo code for dosimetry in nuclear medicine therapy  

SciTech Connect

Purpose: The calculation of patient-specific dose distribution can be achieved by Monte Carlo simulations or by analytical methods. In this study, fluka Monte Carlo code has been considered for use in nuclear medicine dosimetry. Up to now, fluka has mainly been dedicated to other fields, namely high energy physics, radiation protection, and hadrontherapy. When first employing a Monte Carlo code for nuclear medicine dosimetry, its results concerning electron transport at energies typical of nuclear medicine applications need to be verified. This is commonly achieved by means of calculation of a representative parameter and comparison with reference data. Dose point kernel (DPK), quantifying the energy deposition all around a point isotropic source, is often the one. Methods: fluka DPKs have been calculated in both water and compact bone for monoenergetic electrons (10{sup -3} MeV) and for beta emitting isotopes commonly used for therapy ({sup 89}Sr, {sup 90}Y, {sup 131}I, {sup 153}Sm, {sup 177}Lu, {sup 186}Re, and {sup 188}Re). Point isotropic sources have been simulated at the center of a water (bone) sphere, and deposed energy has been tallied in concentric shells. fluka outcomes have been compared to penelope v.2008 results, calculated in this study as well. Moreover, in case of monoenergetic electrons in water, comparison with the data from the literature (etran, geant4, mcnpx) has been done. Maximum percentage differences within 0.8{center_dot}R{sub CSDA} and 0.9{center_dot}R{sub CSDA} for monoenergetic electrons (R{sub CSDA} being the continuous slowing down approximation range) and within 0.8{center_dot}X{sub 90} and 0.9{center_dot}X{sub 90} for isotopes (X{sub 90} being the radius of the sphere in which 90% of the emitted energy is absorbed) have been computed, together with the average percentage difference within 0.9{center_dot}R{sub CSDA} and 0.9{center_dot}X{sub 90} for electrons and isotopes, respectively. Results: Concerning monoenergetic electrons, within 0.8{center_dot}R{sub CSDA} (where 90%-97% of the particle energy is deposed), fluka and penelope agree mostly within 7%, except for 10 and 20 keV electrons (12% in water, 8.3% in bone). The discrepancies between fluka and the other codes are of the same order of magnitude than those observed when comparing the other codes among them, which can be referred to the different simulation algorithms. When considering the beta spectra, discrepancies notably reduce: within 0.9{center_dot}X{sub 90}, fluka and penelope differ for less than 1% in water and less than 2% in bone with any of the isotopes here considered. Complete data of fluka DPKs are given as Supplementary Material as a tool to perform dosimetry by analytical point kernel convolution. Conclusions: fluka provides reliable results when transporting electrons in the low energy range, proving to be an adequate tool for nuclear medicine dosimetry.

Botta, F.; Mairani, A.; Battistoni, G.; Cremonesi, M.; Di Dia, A.; Fasso, A.; Ferrari, A.; Ferrari, M.; Paganelli, G.; Pedroli, G.; Valente, M. [Medical Physics Department, European Institute of Oncology, Via Ripamonti 435, 20141 Milan (Italy); Istituto Nazionale di Fisica Nucleare (I.N.F.N.), Via Celoria 16, 20133 Milan (Italy); Medical Physics Department, European Institute of Oncology, Via Ripamonti 435, 20141 Milan (Italy); Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606 (United States); CERN, 1211 Geneva 23 (Switzerland); Medical Physics Department, European Institute of Oncology, Milan (Italy); Nuclear Medicine Department, European Institute of Oncology, Via Ripamonti 435, 2014 Milan (Italy); Medical Physics Department, European Institute of Oncology, Via Ripamonti 435, 20141 Milan (Italy); FaMAF, Universidad Nacional de Cordoba and CONICET, Cordoba, Argentina C.P. 5000 (Argentina)

2011-07-15

102

RISC-microcontroller built-in fuzzy logic controller of maximum power point tracking for solar-powered light-flasher applications  

Microsoft Academic Search

This paper presents the development of maximum power point tracking (MPPT) using a fuzzy logic controller (FLC). By applying the synthetic fuzzy inference algorithm, the relationship between input and output of FLC can be effectively stored in a memory-limited lookup table (LUT). As a consequence, the controller can be efficiently implemented on a low-cost 16F872 RISC microcontroller. A practical system

Noppadol Khaehintung; K. Pramotung; B. Tuvirat; P. Sirisuk

2004-01-01

103

Detector density and small field dosimetry: Integral versus point dose measurement schemes  

SciTech Connect

Purpose: TheAlfonso et al. [Med. Phys.35, 5179–5186 (2008)] formalism for small field dosimetry proposes a set of correction factors (k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}) which account for differences between the detector response in nonstandard (clinical) and machine-specific-reference fields. In this study, the Monte Carlo method was used to investigate the viability of such small field correction factors for four different detectors irradiated under a variety of conditions. Because k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values for single detector position measurements are influenced by several factors, a new theoretical formalism for integrated-detector-position [dose area product (DAP)] measurements is also presented and was tested using Monte Carlo simulations. Methods: A BEAMnrc linac model was built and validated for a Varian Clinac iX accelerator. Using the egs++ geometry package, detailed virtual models were built for four different detectors: a PTW 60012 unshielded diode, a PTW 60003 Diamond detector, a PTW 31006 PinPoint (ionization chamber), and a PTW 31018 MicroLion (liquid-filled ionization chamber). The egs-chamber code was used to investigate the variation ofk{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} with detector type, detector construction, field size, off-axis position, and the azimuthal angle between the detector and beam axis. Simulations were also used to consider the DAP obtained by each detector: virtual detectors and water voxels were scanned through high resolution grids of positions extending far beyond the boundaries of the fields under consideration. Results: For each detector, the correction factor (k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}) was shown to depend strongly on detector off-axis position and detector azimuthal angle in addition to field size. In line with previous studies, substantial interdetector variation was also observed. However, it was demonstrated that by considering DAPs rather than single-detector-position dose measurements the high level of interdetector variation could be eliminated. Under small field conditions, mass density was found to be the principal determinant of water equivalence. Additionally, the mass densities of components outside the sensitive volumes were found to influence the detector response. Conclusions: k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values for existing detector designs depend on a host of variables and their calculation typically relies on the use of time-intensive Monte Carlo methods. Future moves toward density-compensated detector designs or DAP based protocols may simplify the methodology of small field dosimetry.

Underwood, T. S. A., E-mail: tracy.underwood@oncology.ox.ac.uk; Hill, M. A. [CRUK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford, OX3 7DQ (United Kingdom); Winter, H. C. [Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Headington, Oxford OX3 7LE (United Kingdom); Fenwick, J. D. [Department of Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford, OX3 7DQ (United Kingdom)

2013-08-01

104

Evaluation of the benchmark dose for point of departure determination for a variety of chemical classes in applied regulatory settings.  

PubMed

Repeated-dose studies received by the New Substances Assessment and Control Bureau (NSACB) of Health Canada are used to provide hazard information toward risk calculation. These studies provide a point of departure (POD), traditionally the NOAEL or LOAEL, which is used to extrapolate the quantity of substance above which adverse effects can be expected in humans. This project explored the use of benchmark dose (BMD) modeling as an alternative to this approach for studies with few dose groups. Continuous data from oral repeated-dose studies for chemicals previously assessed by NSACB were reanalyzed using U.S. EPA benchmark dose software (BMDS) to determine the BMD and BMD 95% lower confidence limit (BMDL(05) ) for each endpoint critical to NOAEL or LOAEL determination for each chemical. Endpoint-specific benchmark dose-response levels , indicative of adversity, were consistently applied. An overall BMD and BMDL(05) were calculated for each chemical using the geometric mean. The POD obtained from benchmark analysis was then compared with the traditional toxicity thresholds originally used for risk assessment. The BMD and BMDL(05) generally were higher than the NOAEL, but lower than the LOAEL. BMDL(05) was generally constant at 57% of the BMD. Benchmark provided a clear advantage in health risk assessment when a LOAEL was the only POD identified, or when dose groups were widely distributed. Although the benchmark method cannot always be applied, in the selected studies with few dose groups it provided a more accurate estimate of the real no-adverse-effect level of a substance. PMID:22126138

Izadi, Hoda; Grundy, Jean E; Bose, Ranjan

2012-05-01

105

On dose distribution comparison  

NASA Astrophysics Data System (ADS)

In radiotherapy practice, one often needs to compare two dose distributions. Especially with the wide clinical implementation of intensity-modulated radiation therapy, software tools for quantitative dose (or fluence) distribution comparison are required for patient-specific quality assurance. Dose distribution comparison is not a trivial task since it has to be performed in both dose and spatial domains in order to be clinically relevant. Each of the existing comparison methods has its own strengths and weaknesses and there is room for improvement. In this work, we developed a general framework for comparing dose distributions. Using a new concept called maximum allowed dose difference (MADD), the comparison in both dose and spatial domains can be performed entirely in the dose domain. Formulae for calculating MADD values for various comparison methods, such as composite analysis and gamma index, have been derived. For convenience in clinical practice, a new measure called normalized dose difference (NDD) has also been proposed, which is the dose difference at a point scaled by the ratio of MADD to the predetermined dose acceptance tolerance. Unlike the simple dose difference test, NDD works in both low and high dose gradient regions because it considers both dose and spatial acceptance tolerances through MADD. The new method has been applied to a test case and a clinical example. It was found that the new method combines the merits of the existing methods (accurate, simple, clinically intuitive and insensitive to dose grid size) and can easily be implemented into any dose/intensity comparison tool.

Jiang, Steve B.; Sharp, Greg C.; Neicu, Toni; Berbeco, Ross I.; Flampouri, Stella; Bortfeld, Thomas

2006-02-01

106

Development of a novel multi-point plastic scintillation detector with a single optical transmission line for radiation dose measurement*  

PubMed Central

Purpose The goal of this study was to develop a novel multi-point plastic scintillation detector (mPSD) capable of measuring the dose accurately at multiple positions simultaneously using a single optical transmission line. Methods A 2-point mPSD used a band-pass approach that included splitters, color filters, and an EMCCD camera. The 3-point mPSD was based on a new full-spectrum approach, in which a spectrograph was coupled to a CCD camera. Irradiations of the mPSDs and of an ion chamber were performed with a 6-MV photon beam at various depths and lateral positions in a water tank. Results For the 2-point mPSD, the average relative differences between mPSD and ion chamber measurements for the depth-dose were 2.4±1.6% and 1.3±0.8% for BCF-60 and BCF-12, respectively. For the 3-point mPSD, the average relative differences over all conditions were 2.3±1.1%, 1.6±0.4%, and 0.32±0.19% for BCF-60, BCF-12, and BCF-10, respectively. Conclusions This study demonstrates the practical feasibility of mPSDs. This type of detector could be very useful for pre-treatment quality assurance applications as well as an accurate tool for real-time in vivo dosimetry. PMID:23060069

Therriault-Proulx, François; Archambault, Louis; Beaulieu, Luc; Beddar, Sam

2013-01-01

107

Development of a novel multi-point plastic scintillation detector with a single optical transmission line for radiation dose measurement  

NASA Astrophysics Data System (ADS)

The goal of this study was to develop a novel multi-point plastic scintillation detector (mPSD) capable of measuring the dose accurately at multiple positions simultaneously using a single optical transmission line. A 2-point mPSD used a band-pass approach that included splitters, color filters and an EMCCD camera. The 3-point mPSD was based on a new full-spectrum approach, in which a spectrograph was coupled to a CCD camera. Irradiations of the mPSDs and of an ion chamber were performed with a 6 MV photon beam at various depths and lateral positions in a water tank. For the 2-point mPSD, the average relative differences between mPSD and ion chamber measurements for the depth-dose were 2.4±1.6% and 1.3±0.8% for BCF-60 and BCF-12, respectively. For the 3-point mPSD, the average relative differences over all conditions were 2.3±1.1%, 1.6±0.4% and 0.32±0.19% for BCF-60, BCF-12 and BCF-10, respectively. This study demonstrates the practical feasibility of mPSDs. This type of detector could be very useful for pre-treatment quality assurance applications as well as an accurate tool for real-time in vivo dosimetry. US Patent pending.

Therriault-Proulx, François; Archambault, Louis; Beaulieu, Luc; Beddar, Sam

2012-11-01

108

Generating Arbitrary Chemical Patterns for Multi-Point Dosing of Single Cells  

PubMed Central

Living cells reside within anisotropic microenvironments that orchestrate a broad range of polarized responses through physical and chemical cues. To unravel how localized chemical signals influence complex behaviors, tools must be developed for establishing patterns of chemical gradients that vary over subcellular dimensions. Here, we present a strategy for addressing this critical need in which an arbitrary number of chemically distinct, subcellular dosing streams are created in real time within a microfluidic environment. In this approach, cells are cultured on a thin polymer membrane that serves as a barrier between the cell-culture environment and a reagent chamber containing multiple reagent species flowing in parallel under low Reynolds number conditions. Focal ablation of the membrane creates pores that allow solution to flow from desired regions within this reagent pattern into the cell-culture chamber, resulting in narrow, chemically distinct dosing streams. Unlike previous dosing strategies, this system provides the capacity to tailor arbitrary patterns of reagents on-the-fly to suit the geometry and orientation of specific cells. PMID:23427919

Hoppe, Todd J.; Moorjani, Samira G.; Shear, Jason B.

2013-01-01

109

A dose-point-kernel model for a low energy gamma-emitting stent in a heterogeneous medium.  

PubMed

A computer dose model for a low energy gamma-emitting stent in a heterogeneous medium is described. The method is based on the Sievert model which is adapted to the dose-point-kernel (DPK) model to compute the dose distribution about filtered gamma sources (Sievert-DPK model). The new gamma stent model can take into account effects such as the metallic wire attenuation and the presence of dense calcified plaque in a stented artery. The Sievert-DPK model is tested against numerical simulations around cylindrical shell sources with dimensions comparable to those of a stent using a Monte Carlo transport code. For low energy gamma sources (Cs-131 and Pd-103), it is shown that the Sievert-DPK model is consistent with the Monte Carlo results to about 5%-10% for distances up to 5 mm from the cylindrical surface and 2.5 mm beyond the cylinder edges. These results indicate that the Sievert-DPK model may be useful to predict the dose in intravascular therapy applications for heterogeneous systems consisting of soft tissue, metal and dense plaque. PMID:11488570

Janicki, C; Duggan, D M; Rahdert, D A

2001-07-01

110

Investigation on the effect of sharp phantom edges on point dose measurement during patient-specific dosimetry with Rapid Arc  

PubMed Central

The objective of this work was to investigate and quantify the effect of sharp edges of the phantom on the point dose measurement during patient-specific dosimetry with Rapid Arc (RA). Ten patients with carcinoma of prostate were randomly selected for this dosimetric study. Rapid Arc plans were generated with 6 MV X-rays in the Eclipse (v 8.6.14) with single arc (clockwise). Dosimetry verification plans were generated for two phantoms (cylindrical and rectangular). The cylindrical phantom was solid water (diameter 34 cm) and the rectangular phantom was a water phantom (25 cm × 25 cm × 10 cm). These phantoms were pre-scanned in computed tomography (CT) machine with cylindrical ionization chamber (FC65) in place. The plans were delivered with Novalis Tx linear accelerator with 6 MV X-rays for both the phantoms separately. The measured dose was compared with the planned dose for both the phantoms. Mean percentage deviation between measured and planned doses was found to be 4.19 (SD 0.82) and 3.63 (SD 0.89) for cylindrical and rectangular phantoms, respectively. No significant dosimetric variation was found due to the geometry (sharp edges) of the phantom. The sharp edges of the phantom do not perturb the patient specific Rapid Arc dosimetry significantly. PMID:24049321

Kinhikar, R. A.; Pandey, V. P.; Jose, Rojas K.; Mahantshetty, U.; Dhote, D. S.; Deshpande, D. D.; Shrivastava, S. K.

2013-01-01

111

Pharmacokinetic and Maximum Tolerated Dose Study of Micafungin in Combination with Fluconazole versus Fluconazole Alone for Prophylaxis of Fungal Infections in Adult Patients Undergoing a Bone Marrow or Peripheral Stem Cell Transplant  

Microsoft Academic Search

In this dose escalation study, 74 adult cancer patients undergoing bone marrow or peripheral blood stem cell transplantation received fluconazole (400 mg\\/day) and either normal saline (control) (12 subjects) or mica- fungin (12.5 to 200 mg\\/day) (62 subjects) for up to 4 weeks. The maximum tolerated dose (MTD) of micafungin was not reached, based on the development of Southwest Oncology

J. Hiemenz; P. Cagnoni; D. Simpson; S. Devine; N. Chao; J. Keirns; W. Lau; D. Facklam; D. Buell

2005-01-01

112

Point-guided modeling and segmentation of myocardium for low dose cardiac CT images.  

PubMed

Cardiac CT is emerging as a preferable modality to detect myocardial stress/rest perfusion; however the insufficient contrast of myocardium on CT image makes its segmentation difficult. In this paper, we present a point-guided modeling and deformable model-based segmentation method. This method first builds a triangular surface model of myocardium through Bézier contour fitting based on a few points selected by clinicians. Then, a deformable model-based segmentation method is developed to refine the segmentation result. The experiments on 8 cases show the accuracy of the segmentation in terms of true positive volume fraction, false positive volume fractions, and average surface distance can reach 91.0%, 0.3%, and 0.6mm, respectively. The comparison between the proposed method and a graph cut-based method is performed. The results demonstrate that this method is effective in improving the accuracy further. PMID:23367132

Liu, Yixun; Nacif, Marcelo Souto; Liu, Songtao; Sibley, Christopher T; Bluemke, David A; Summers, Ronald M; Yao, Jianhua

2012-01-01

113

Computational analysis of the maximum power point for GaAs sub-cells in InGaP/GaAs/Ge triple-junction space solar cells  

NASA Astrophysics Data System (ADS)

The radiation resistance in InGaP/GaAs/Ge triple-junction solar cells is limited by that of the middle GaAs sub-cell. In this work, the electrical performance degradation of different GaAs sub-cells under 1 MeV electron irradiation at fluences below 4 × 1015 cm?2 has been analyzed by means of a computer simulation. The numerical simulations have been carried out using the one-dimensional device modeling program PC1D. The effects of the base and emitter carrier concentrations of the p- and n-type GaAs structures on the maximum power point have been researched using a radiative recombination lifetime, a damage constant for the minority carrier lifetime and carrier removal rate models. An analytical model has been proposed, which is useful to either determine the maximum exposure time or select the appropriate device in order to ensure that the electrical parameters of different GaAs sub-cells will have a satisfactory response to radiation since they will be kept above 80% with respect to the non-irradiated values.

Cappelletti, M. A.; Cédola, A. P.; Blancá, E. L. Peltzer y.

2014-11-01

114

Pharmacokinetic and Maximum Tolerated Dose Study of Micafungin in Combination with Fluconazole versus Fluconazole Alone for Prophylaxis of Fungal Infections in Adult Patients Undergoing a Bone Marrow or Peripheral Stem Cell Transplant  

PubMed Central

In this dose escalation study, 74 adult cancer patients undergoing bone marrow or peripheral blood stem cell transplantation received fluconazole (400 mg/day) and either normal saline (control) (12 subjects) or micafungin (12.5 to 200 mg/day) (62 subjects) for up to 4 weeks. The maximum tolerated dose (MTD) of micafungin was not reached, based on the development of Southwest Oncology Group criteria for grade 3 toxicity; drug-related toxicities were rare. Commonly occurring adverse events considered related to micafungin were headache (6.8%), arthralgia (6.8%), hypophosphatemia (4.1%), insomnia (4.1%), maculopapular rash (4.1%), and rash (4.1%). Pharmacokinetic profiles for micafungin on days 1 and 7 were similar. The mean half-life was approximately 13 h, with little variance after repeated or increasing doses. Mean maximum concentrations of the drug in serum and areas under the concentration-time curve from 0 to 24 h were approximately proportional to dose. There was no clinical or kinetic evidence of interaction between micafungin and fluconazole. Five of 12 patients (42%) in the control group and 14 of 62 (23%) in the micafungin-plus-fluconazole groups had a suspected fungal infection during treatment which resulted in empirical treatment with amphotericin B. The combination of micafungin and fluconazole was found to be safe in this high-risk patient population. The MTD of micafungin was not reached even at doses up to 200 mg/day for 4 weeks. The pharmacokinetic profile of micafungin in adult cancer patients with blood or marrow transplants is consistent with the profile in healthy volunteers, and the area under the curve is proportional to dose. PMID:15793107

Hiemenz, J.; Cagnoni, P.; Simpson, D.; Devine, S.; Chao, N.; Keirns, J.; Lau, W.; Facklam, D.; Buell, D.

2005-01-01

115

Pharmacokinetic and maximum tolerated dose study of micafungin in combination with fluconazole versus fluconazole alone for prophylaxis of fungal infections in adult patients undergoing a bone marrow or peripheral stem cell transplant.  

PubMed

In this dose escalation study, 74 adult cancer patients undergoing bone marrow or peripheral blood stem cell transplantation received fluconazole (400 mg/day) and either normal saline (control) (12 subjects) or micafungin (12.5 to 200 mg/day) (62 subjects) for up to 4 weeks. The maximum tolerated dose (MTD) of micafungin was not reached, based on the development of Southwest Oncology Group criteria for grade 3 toxicity; drug-related toxicities were rare. Commonly occurring adverse events considered related to micafungin were headache (6.8%), arthralgia (6.8%), hypophosphatemia (4.1%), insomnia (4.1%), maculopapular rash (4.1%), and rash (4.1%). Pharmacokinetic profiles for micafungin on days 1 and 7 were similar. The mean half-life was approximately 13 h, with little variance after repeated or increasing doses. Mean maximum concentrations of the drug in serum and areas under the concentration-time curve from 0 to 24 h were approximately proportional to dose. There was no clinical or kinetic evidence of interaction between micafungin and fluconazole. Five of 12 patients (42%) in the control group and 14 of 62 (23%) in the micafungin-plus-fluconazole groups had a suspected fungal infection during treatment which resulted in empirical treatment with amphotericin B. The combination of micafungin and fluconazole was found to be safe in this high-risk patient population. The MTD of micafungin was not reached even at doses up to 200 mg/day for 4 weeks. The pharmacokinetic profile of micafungin in adult cancer patients with blood or marrow transplants is consistent with the profile in healthy volunteers, and the area under the curve is proportional to dose. PMID:15793107

Hiemenz, J; Cagnoni, P; Simpson, D; Devine, S; Chao, N; Keirns, J; Lau, W; Facklam, D; Buell, D

2005-04-01

116

Metronomic chemotherapy: An attractive alternative to maximum tolerated dose therapy that can activate anti-tumor immunity and minimize therapeutic resistance.  

PubMed

The administration of chemotherapy at reduced doses given at regular, frequent time intervals, termed 'metronomic' chemotherapy, presents an alternative to standard maximal tolerated dose (MTD) chemotherapy. The primary target of metronomic chemotherapy was originally identified as endothelial cells supporting the tumor vasculature, and not the tumor cells themselves, consistent with the emerging concept of cancer as a systemic disease involving both tumor cells and their microenvironment. While anti-angiogenesis is an important mechanism of action of metronomic chemotherapy, other mechanisms, including activation of anti-tumor immunity and a decrease in acquired therapeutic resistance, have also been identified. Here we present evidence supporting a mechanistic explanation for the improved activity of cancer chemotherapy when administered on a metronomic, rather than an MTD schedule and discuss the implications of these findings for further translation into the clinic. PMID:25541061

Kareva, Irina; Waxman, David J; Lakka Klement, Giannoula

2015-03-28

117

Novel applications using maximum-likelihood estimation in optical metrology and nuclear medical imaging: Point-diffraction interferometry and BazookaPET  

NASA Astrophysics Data System (ADS)

This dissertation aims to investigate two different applications in optics using maximum-likelihood (ML) estimation. The first application of ML estimation is used in optical metrology. For this application, an innovative iterative search method called the synthetic phase-shifting (SPS) algorithm is proposed. This search algorithm is used for estimation of a wavefront that is described by a finite set of Zernike Fringe (ZF) polynomials. In this work, we estimate the ZF coefficient, or parameter values of the wavefront using a single interferogram obtained from a point-diffraction interferometer (PDI). In order to find the estimates, we first calculate the squared-difference between the measured and simulated interferograms. Under certain assumptions, this squared-difference image can be treated as an interferogram showing the phase difference between the true wavefront deviation and simulated wavefront deviation. The wavefront deviation is defined as the difference between the reference and the test wavefronts. We calculate the phase difference using a traditional phase-shifting technique without physical phase-shifters. We present a detailed forward model for the PDI interferogram, including the effect of the nite size of a detector pixel. The algorithm was validated with computational studies and its performance and constraints are discussed. A prototype PDI was built and the algorithm was also experimentally validated. A large wavefront deviation was successfully estimated without using null optics or physical phase-shifters. The experimental result shows that the proposed algorithm has great potential to provide an accurate tool for non-null testing. The second application of ML estimation is used in nuclear medical imaging. A high-resolution positron tomography scanner called BazookaPET is proposed. We have designed and developed a novel proof-of-concept detector element for a PET system called BazookaPET. In order to complete the PET configuration, at least two detector elements are required to detect positron-electron annihilation events. Each detector element of the BazookaPET has two independent data-acquisition channels. One of the detector channels is a 4 x 4 silicon photomultiplier (SiPM) array referred to as the SiPM-side. The SiPM-side is directly coupled to an optical window of the scintillator with optical grease. The other channel is a CCD-based gamma camera with an imaging intensier called the Bazooka-side. Instead of coupling by direct contact like the SiPM-side, an F/1.4 lens pair is used for optical coupling. The scintillation light from the opposite optical window to the SiPM-side is imaged by the F/1.4 lens to the Bazooka-side. Using these two separate channels, we can potentially obtain high energy, temporal and spatial resolution data by associating the data outputs via several ML estimation steps. We present the concept of the system and the prototype detector element. In this work, we focus on characterizing individual detector channels, and initial experimental calibration results are shown along with preliminary performance-evaluation results. We also address the limitations and the challenges of associating the outputs of the two detector channels.

Park, Ryeojin

118

Dose point kernels in liquid water: an intra-comparison between GEANT4-DNA and a variety of Monte Carlo codes.  

PubMed

Modeling the radio-induced effects in biological medium still requires accurate physics models to describe the interactions induced by all the charged particles present in the irradiated medium in detail. These interactions include inelastic as well as elastic processes. To check the accuracy of the very low energy models recently implemented into the GEANT4 toolkit for modeling the electron slowing-down in liquid water, the simulation of electron dose point kernels remains the preferential test. In this context, we here report normalized radial dose profiles, for mono-energetic point sources, computed in liquid water by using the very low energy "GEANT4-DNA" physics processes available in the GEANT4 toolkit. In the present study, we report an extensive intra-comparison of profiles obtained by a large selection of existing and well-documented Monte-Carlo codes, namely, EGSnrc, PENELOPE, CPA100, FLUKA and MCNPX. PMID:23478094

Champion, C; Incerti, S; Perrot, Y; Delorme, R; Bordage, M C; Bardiès, M; Mascialino, B; Tran, H N; Ivanchenko, V; Bernal, M; Francis, Z; Groetz, J-E; Fromm, M; Campos, L

2014-01-01

119

Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma  

SciTech Connect

High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

Sha, Rajib Lochan [Department of Radiation Physics, Indo-American Cancer Institute and Research Centre, Hyderabad (India); Department of Physics, Osmania University, Hyderabad (India); Reddy, Palreddy Yadagiri [Department of Physics, Osmania University, Hyderabad (India); Rao, Ramakrishna [Department of Radiation Physics, MNJ Institute of Oncology and Regional Cancer Center, Hyderabad (India); Muralidhar, Kanaparthy R. [Department of Radiation Physics, Indo-American Cancer Institute and Research Centre, Hyderabad (India); Kudchadker, Rajat J., E-mail: rkudchad@mdanderson.org [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

2011-01-01

120

Maximum Likelihood  

NSDL National Science Digital Library

This material introduces the basic theory of maximum likelihood estimation by discussing the likelihood function, the log likelihood function, and maximizing these functions using calculus. Several exercises ask students to derive certain estimators, while others have students compare the behavior of those estimators with other possibilities through the use of various JAVA applets. The applets use the same control features: the sliders set the parameter values, the Â?Stop #Â? drop down menu sets the number of samples taken, the Â?Update #Â? drop down menu sets how often the graph and tables update during the experiment, the single arrow takes one sample, the double arrow runs the full experiment, the square stops the experiment, and the back arrow resets the applet. This page is one lesson from the Virtual Laboratories in Statistics.

Siegrist, Kyle

121

Determination of absorbed dose in water at the reference point d(r0, theta0) for an 192Ir HDR brachytherapy source using a Fricke system.  

PubMed

A ring-shaped Fricke device was developed to measure the absolute dose on the transverse bisector of a 192Ir high dose rate (HDR) source at 1 cm from its center in water, D(r0, theta0). It consists of a polymethylmethacrylate (PMMA) rod (axial axis) with a cylindrical cavity at its center to insert the 192Ir radioactive source. A ring cavity around the source with 1.5 mm thickness and 5 mm height is centered at 1 cm from the central axis of the source. This ring cavity is etched in a disk shaped base with 2.65 cm diameter and 0.90 cm thickness. The cavity has a wall around it 0.25 cm thick. This ring is filled with Fricke solution, sealed, and the whole assembly is immersed in water during irradiations. The device takes advantage of the cylindrical geometry to measure D(r0, theta0). Irradiations were performed with a Nucletron microselectron HDR unit loaded with an 192Ir Alpha Omega radioactive source. A Spectronic 1001 spectrophotometer was used to measure the optical absorbance using a 1 mL quartz cuvette with 1.00 cm light pathlength. The PENELOPE Monte Carlo code (MC) was utilized to simulate the Fricke device and the 192Ir Alpha Omega source in detail to calculate the perturbation introduced by the PMMA material. A NIST traceable calibrated well type ionization chamber was used to determine the air-kerma strength, and a published dose-rate constant was used to determine the dose rate at the reference point. The time to deliver 30.00 Gy to the reference point was calculated. This absorbed dose was then compared to the absorbed dose measured by the Fricke solution. Based on MC simulation, the PMMA of the Fricke device increases the D(r0, theta0) by 2.0%. Applying the corresponding correction factor, the D(r0, theta0) value assessed with the Fricke device agrees within 2.0% with the expected value with a total combined uncertainty of 3.43% (k=1). The Fricke device provides a promising method towards calibration of brachytherapy radiation sources in terms of D(r0, theta0) and audit HDR source calibrations. PMID:19175095

Austerlitz, C; Mota, H C; Sempau, J; Benhabib, S M; Campos, D; Allison, R; DeAlmeida, C E; Zhu, D; Sibata, C H

2008-12-01

122

Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.  

PubMed

Point kernels describe the energy deposited at a certain distance from an isotropic point source and are useful for nuclear medicine dosimetry. They can be used for absorbed-dose calculations for sources of various shapes and are also a useful tool when comparing different Monte Carlo (MC) codes. The aim of this study was to compare point kernels calculated by using the mixed MC code, PENELOPE (v. 2006), with point kernels calculated by using the condensed-history MC codes, ETRAN, GEANT4 (v. 8.2), and MCNPX (v. 2.5.0). Point kernels for electrons with initial energies of 10, 100, 500, and 1 MeV were simulated with PENELOPE. Spherical shells were placed around an isotropic point source at distances from 0 to 1.2 times the continuous-slowing-down-approximation range (R(CSDA)). Detailed (event-by-event) simulations were performed for electrons with initial energies of less than 1 MeV. For 1-MeV electrons, multiple scattering was included for energy losses less than 10 keV. Energy losses greater than 10 keV were simulated in a detailed way. The point kernels generated were used to calculate cellular S-values for monoenergetic electron sources. The point kernels obtained by using PENELOPE and ETRAN were also used to calculate cellular S-values for the high-energy beta-emitter, 90Y, the medium-energy beta-emitter, 177Lu, and the low-energy electron emitter, 103mRh. These S-values were also compared with the Medical Internal Radiation Dose (MIRD) cellular S-values. The greatest differences between the point kernels (mean difference calculated for distances, <0.9 r/R(CSDA)), using PENELOPE and those from ETRAN, GEANT4, and MCNPX, were 3.6%, 6.2%, and 14%, respectively. The greatest difference between the cellular S-values for monoenergetic electrons was 1.4%, 2.5%, and 6.9% for ETRAN, GEANT4, and MCNPX, respectively, compared to PENELOPE, if omitting the S-values when the activity was distributed on the cell surface for 10-keV electrons. The largest difference between the cellular S-values for the radionuclides, between PENELOPE and ETRAN, was seen for 177Lu (1.2%). There were large differences between the MIRD cellular S-values and those obtained from PENELOPE: up to 420% for monoenergetic electrons and <22% for the radionuclides, with the largest difference for 103mRh. In conclusion, differences were found between the point kernels generated by different MC codes, but these differences decreased when cellular S-values were calculated, and decreased even further when the energy spectra of the radionuclides were taken into consideration. PMID:19694581

Uusijärvi, Helena; Chouin, Nicolas; Bernhardt, Peter; Ferrer, Ludovic; Bardiès, Manuel; Forssell-Aronsson, Eva

2009-08-01

123

Benchmark Dose Modeling  

EPA Science Inventory

Finite doses are employed in experimental toxicology studies. Under the traditional methodology, the point of departure (POD) value for low dose extrapolation is identified as one of these doses. Dose spacing necessarily precludes a more accurate description of the POD value. ...

124

CT-guided intracavitary radiotherapy for cervical cancer: Comparison of conventional point A plan with clinical target volume-based three-dimensional plan using dose-volume parameters  

SciTech Connect

Purpose: To perform an intracavitary radiotherapy (ICR) plan comparison between the conventional point A plan (conventional plan) and computed tomography (CT)-guided clinical target volume-based plan (CTV plan) by analysis of the quantitative dose-volume parameters and irradiated volumes of organs at risk in patients with cervical cancer. Methods and Materials: Thirty plans for {sup 192}Ir high-dose-rate ICR after 30-40-Gy external beam radiotherapy were investigated. CT images were acquired at the first ICR session with artifact-free applicators in place. The gross tumor volume, clinical target volume (CTV), point A, and International Commission on Radiation Units and Measurements Report 38 rectal and bladder points were defined on reconstructed CT images. A fractional 100% dose was prescribed to point A in the conventional plan and to the outermost point to cover all CTVs in the CTV plan. The reference volume receiving 100% of the prescribed dose (V{sub ref}), and the dose-volume parameters of the coverage index, conformal index, and external volume index were calculated from the dose-volume histogram. The bladder, rectal point doses, and percentage of volumes receiving 50%, 80%, and 100% of the prescribed dose were also analyzed. Results: Conventional plans were performed, and patients were categorized on the basis of whether the 100% isodose line of point A prescription dose fully encompassed the CTV (Group 1, n = 20) or not (Group 2, n = 10). The mean gross tumor volume (11.6 cm{sup 3}) and CTV (24.9 cm{sup 3}) of Group 1 were smaller than the corresponding values (23.7 and 44.7 cm{sup 3}, respectively) for Group 2 (p = 0.003). The mean V{sub ref} for all patients was 129.6 cm{sup 3} for the conventional plan and 97.0 cm{sup 3} for the CTV plan (p = 0.003). The mean V{sub ref} in Group 1 decreased markedly with the CTV plan (p < 0.001). For the conventional and CTV plans in all patients, the mean coverage index, conformal index, and external volume index were 0.98 and 1.0, 0.23 and 0.34, and 3.86 and 2.15, respectively. Statistical analysis showed that the conformal index and external volume index improved significantly with the CTV plan, and this improvement was more marked in Group 1. The mean values of the bladder and rectal point doses and volume fractions receiving 50%, 80%, and 100% of the reference dose did not differ between plans for all patients. The reduction in the mean rectal and bladder point doses and irradiated volumes for the CTV plan was statistically significant in Group 1. Conclusion: Computed tomography-guided CTV planning of ICR is superior to conventional point A planning in terms of conformity of target coverage and avoidance of overdosed normal tissue volume. To ascertain the potential benefit of treatment outcome, ICR with image-guided three-dimensional plans will be pursued and correlated with the dose-volume parameters.

Shin, Kyung Hwan [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Kim, Tae Hyun [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of)]. E-mail: k2onco@ncc.re.kr; Cho, Jung Keun [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Kim, Joo-Young [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Park, Sung Yong [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Park, Sang-Yoon [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Kim, Dae Yong [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Chie, Eui Kyu [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Pyo, Hong Ryull [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of); Cho, Kwan Ho [Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi (Korea, Republic of)

2006-01-01

125

New insights on P-related paramagnetic point defects in irradiated phosphate glasses: Impact of glass network type and irradiation dose  

SciTech Connect

P-related paramagnetic point defects were studied in irradiated Yb-doped phosphate glasses by electron paramagnetic resonance spectroscopy (X and Q-bands). A strong impact of the glass network type on the defect nature is shown. In all glasses, r-POHC defects formation is in strong correlation with Q{sup 2} tetrahedra amount supporting the structure of r-POHC. Ultra-phosphate glasses contain the larger defect type: Peroxy radicals, P{sub 1}, P{sub 2}, and P{sub 4} defects whose formation is linked to Q{sup 3} tetrahedra presence. In meta-phosphate and poly-phosphate glasses, peroxy radicals appear with r-POHC thermal recovery. In meta-phosphate glasses, a combination of P{sub 1} and P{sub 3} defects was evidenced for the first time, whereas in poly-phosphate glasses, only P{sub 3} defects were identified. Dose effect as well as defect recovery were analyzed.

Pukhkaya, V.; Ollier, N., E-mail: nadege.ollier@polytechnique.edu [Laboratoire des Solides Irradiés, UMR 7642 CEA-CNRS-Ecole Polytechnique, Palaiseau (France); Trompier, F. [Institut de Radioprotection et de Sûreté Nucléaire DRPH/SDE/LDRI, Fontenay-aux-roses (France)

2014-09-28

126

Cord Dose Specification and Validation for Stereotactic Body Radiosurgery of Spine  

SciTech Connect

Effective dose to a portion of the spinal cord in treatment segment, rather than the maximum point dose in the cord surface, was set as the dose limit in stereotactic-body radiosurgery (SBRS) of spine. Such a cord dose specification is sensitive to the volume size and position errors. Thus, we used stereotactic image guidance to minimize phantom positioning errors and compared the results of a 0.6-cm{sup 3} Farmer ionization chamber and a 0.01-cm{sup 3} compact ionization chamber to determine the detector size effect on 9 SBRS cases. The experimental errors ranging from 2% to 7% were estimated by the deviation of the mean dose in plans to the chamber with spatial displacements of 0.5 mm. The mean and measured doses for the large chamber to individual cases were significantly ({approx}17%) higher than the doses with the compact chamber placed at the same point. Our experimental results shown that the mean doses to the volume of interest could represent the measured cord doses. For the 9 patients, the mean doses to 10% of the cord were about 10 Gy, while the maximum cord doses varied from 11.6 to 17.6 Gy. The mean dose, possibly correlated with the cord complication, provided us an alternative and reliable cord dose specification in SBRS of spine.

Li Shidong [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States) and Department of Radiation Oncology, Temple University Hospital, Philadelphia, PA (United States)], E-mail: Shidong.Li@thus.temple.edu; Liu Yan; Chen Qing; Jin Jianyue [Department of Radiation Oncology, Henry Ford Health System, Detroit, MI (United States) Department of Radiation Oncology, Temple University Hospital, Philadelphia, PA (United States)

2009-01-01

127

Variability of Marker-Based Rectal Dose Evaluation in HDR Cervical Brachytherapy  

SciTech Connect

In film-based intracavitary brachytherapy for cervical cancer, position of the rectal markers may not accurately represent the anterior rectal wall. This study was aimed at analyzing the variability of rectal dose estimation as a result of interfractional variation of marker placement. A cohort of five patients treated with multiple-fraction tandem and ovoid high-dose-rate (HDR) brachytherapy was studied. The cervical os point and the orientation of the applicators were matched among all fractional plans for each patient. Rectal points obtained from all fractions were then input into each clinical treated plan. New fractional rectal doses were obtained and a new cumulative rectal dose for each patient was calculated. The maximum interfractional variation of distances between rectal dose points and the closest source positions was 1.1 cm. The corresponding maximum variability of fractional rectal dose was 65.5%. The percentage difference in cumulative rectal dose estimation for each patient was 5.4%, 19.6%, 34.6%, 23.4%, and 13.9%, respectively. In conclusion, care should be taken when using rectal markers as reference points for estimating rectal dose in HDR cervical brachytherapy. The best estimate of true rectal dose for each fraction should be determined by the most anterior point among all fractions.

Wang Zhou, E-mail: Zhou.Wang@RoswellPark.or [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY (United States); Jaggernauth, Wainwright; Malhotra, Harish K.; Podgorsak, Matthew B. [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY (United States)

2010-01-01

128

Generalized Maximum Entropy  

NASA Technical Reports Server (NTRS)

A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

Cheeseman, Peter; Stutz, John

2005-01-01

129

MAMMARY GLAND DEVELOPMENT AS A SENSITIVE END-POINT FOLLOWING ACUTE PERNATAL EXPOSURE TO A LOW DOSE ATRAZINE METABOLITE MIXTURE IN FEMALE LONG EVANS RATS  

EPA Science Inventory

In order to characterize the potential developmental effects of atrazine (ATR) metabolites at low doses, an environmentally-based mixture (EBM) of ATR and its metabolites hydroxyatrazine, diaminochlorotriazine, deethylatrazine, and deisopropylatrazine was formulated based on surv...

130

Maximum modular graphs  

NASA Astrophysics Data System (ADS)

Modularity has been explored as an important quantitative metric for community and cluster detection in networks. Finding the maximum modularity of a given graph has been proven to be NP-complete and therefore, several heuristic algorithms have been proposed. We investigate the problem of finding the maximum modularity of classes of graphs that have the same number of links and/or nodes and determine analytical upper bounds. Moreover, from the set of all connected graphs with a fixed number of links and/or number of nodes, we construct graphs that can attain maximum modularity, named maximum modular graphs. The maximum modularity is shown to depend on the residue obtained when the number of links is divided by the number of communities. Two applications in transportation networks and data-centers design that can benefit of maximum modular partitioning are proposed.

Trajanovski, S.; Wang, H.; Van Mieghem, P.

2012-07-01

131

Last Glacial Maximum  

NSDL National Science Digital Library

Short lecture on CLIMAP project (see PowerPoint) 20 minutes Powerpoint (PowerPoint 444kB Nov7 10) Group activity - Reading for CLIMAP study assumptions, 20 minutes to read, 20 minutes for discussion Student Handout (Microsoft Word 50kB Nov7 10) Students break into groups (4 per group is good division of work) with 2 students per paper. Split the assumptions between students. Each group skims the CLIMAP papers for the assumptions (modern and/or LGM) used in the CLIMAP model-based reconstruction of the LGM. In the groups, students compare the assumptions between papers. Resources: CLIMAP (1976), The surface of the ice-age earth, Science, 191(4232), 1131-1137 and CLIMAP (1984), The last interglacial ocean, Quaternary Research, 21(2), 123. Class Discussion - Summarize assumptions used in CLIMAP studies. Group activity Exploring CLIMAP LGM Reconstructions, 40 minutes for model data, 20 minutes for discussion (Could be modified with as a "jigsaw" activity with a larger class). Learn more about the jigsaw teaching method. Students work on this activity in pairs; one person will create LGM maps, the other modern. Students should sit together with their computer monitors close together to compare. The students will use the IRI/LDEO Climate Data Library to access the CLIMAP reconstruction and produce maps using the tools available on this web site. In a web browser, go to http://iridl.ldeo.columbia.edu/SOURCES/.CLIMAP/ This is the main page for the CLIMAP Model output for the LGM 18,000 BP. In the middle of the page is the label "Datasets and variables" with two data sets below http://iridl.ldeo.columbia.edu/SOURCES/.CLIMAP/.LGM/ and http://iridl.ldeo.columbia.edu/SOURCES/.CLIMAP/.MOD/. Each student clicks on the link they are assigned to. There are several data sets listed for each period and the students will examine each data set and compare the LGM and Modern. As a class, go through each data set allowing pairs to compare the maps then summarize the results as a class. The worksheet has a table for the students and the PowerPoint has table for summarizing. Class Discussion - Summarize differences between modern and LGM in the CLIMAP model output. Discuss how the assumptions of the CLIMAP model studies may have influenced the results. Extra activities The students can explore the data further using the data selection and filters in the IRI/LDEO Climate Data Library. For the two SST data sets, click on "Data Selection" and narrow the data to the just the tropics (23.5º N-S). Click on "Filters" then select XY next to "Average over." The next window gives you the average over the tropics close to the top of the page. In the next class, the students repeat the Readings exercise by reading the COHMAP and MARGO papers to see how the scientific knowledge has progressed since the original CLIMAP studies. COHMAP Members, (1988), Climatic Changes of the Last 18,000 Years: Observations and Model Simulations, Science, 241(4869), 1043-1052. MARGO (2009), Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum, Nature Geoscience, 2(2), 127-132.

Kristine DeLong

132

Determination of absorbed dose in water at the reference point D(r{sub 0},{theta}{sub 0}) for an {sup 192}Ir HDR brachytherapy source using a Fricke system  

SciTech Connect

A ring-shaped Fricke device was developed to measure the absolute dose on the transverse bisector of a {sup 192}Ir high dose rate (HDR) source at 1 cm from its center in water, D(r{sub 0},{theta}{sub 0}). It consists of a polymethylmethacrylate (PMMA) rod (axial axis) with a cylindrical cavity at its center to insert the {sup 192}Ir radioactive source. A ring cavity around the source with 1.5 mm thickness and 5 mm height is centered at 1 cm from the central axis of the source. This ring cavity is etched in a disk shaped base with 2.65 cm diameter and 0.90 cm thickness. The cavity has a wall around it 0.25 cm thick. This ring is filled with Fricke solution, sealed, and the whole assembly is immersed in water during irradiations. The device takes advantage of the cylindrical geometry to measure D(r{sub 0},{theta}{sub 0}). Irradiations were performed with a Nucletron microselectron HDR unit loaded with an {sup 192}Ir Alpha Omega radioactive source. A Spectronic 1001 spectrophotometer was used to measure the optical absorbance using a 1 mL quartz cuvette with 1.00 cm light pathlength. The PENELOPE Monte Carlo code (MC) was utilized to simulate the Fricke device and the {sup 192}Ir Alpha Omega source in detail to calculate the perturbation introduced by the PMMA material. A NIST traceable calibrated well type ionization chamber was used to determine the air-kerma strength, and a published dose-rate constant was used to determine the dose rate at the reference point. The time to deliver 30.00 Gy to the reference point was calculated. This absorbed dose was then compared to the absorbed dose measured by the Fricke solution. Based on MC simulation, the PMMA of the Fricke device increases the D(r{sub 0},{theta}{sub 0}) by 2.0%. Applying the corresponding correction factor, the D(r{sub 0},{theta}{sub 0}) value assessed with the Fricke device agrees within 2.0% with the expected value with a total combined uncertainty of 3.43%(k=1). The Fricke device provides a promising method towards calibration of brachytherapy radiation sources in terms of D(r{sub 0},{theta}{sub 0}) and audit HDR source calibrations.

Austerlitz, C.; Mota, H. C.; Sempau, J.; Benhabib, S. M.; Campos, D.; Allison, R.; Almeida, C. E. de; Zhu, D.; Sibata, C. H. [Department of Radiation Oncology, East Carolina University, Greenville, North Carolina 27834 (United States); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Department of Radiation Oncology, East Carolina University, Greenville, North Carolina 27834 (United States); Laboratorio de Cie circumflex ncias Radiologicas, Universidade do Estado do Rio de Janeiro, 20550 Rio de Janeiro (Brazil); Department of Radiation Oncology, East Carolina University, Greenville, North Carolina 27834 (United States)

2008-12-15

133

Dialysis dose and frequency  

Microsoft Academic Search

Background. From the beginning of the dialysis era, the issue of optimal dialysis dose and frequency has been a central topic in the delivery of dialysis treatment. Methods. We undertook a discussion to achieve a consensus on key points relating to dialysis dose and frequency, focusing on the relationships with clinical and patient outcomes. Results. Traditionally, dialysis adequacy has been

Francesco Locatelli; Umberto Buoncristiani; Bernard Canaud; Hans Kohler; Thierry Petitclerc; Pietro Zucchelli; Ospedale A. Manzoni; CHU Montpellier; Schwerpunkt Nephrologie

2004-01-01

134

The Last Glacial Maximum  

Microsoft Academic Search

We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing

Peter U. Clark; Arthur S. Dyke; Jeremy D. Shakun; Anders E. Carlson; Jorie Clark; Barbara Wohlfarth; Jerry X. Mitrovica; Steven W. Hostetler; A. Marshall McCabe

2009-01-01

135

Point Estimation  

NSDL National Science Digital Library

Created by Kyle Siegrist of the University of Alabama-Huntsville, this is an online, interactive lesson on point estimation. The author provides examples, exercises, and applets about the topic. More specifically, they concern estimators, method of moments, maximum likelihood, Bayes' estimators, best unbiased estimators, and sufficient, complete and ancillary statistics. Additionally, the author provides links to external resources for students looking to engage in a more in-depth study of the topic. This is simply one lesson in a series of seventeen. They are easily accessible as the author has created the site in an online textbook format.

Siegrist, Kyle

136

Maximum Entropy Image Reconstruction  

Microsoft Academic Search

Two-dimensional digital image reconstruction is an important imaging process in many of the physical sciences. If the data are insufficient to specify a unique reconstruction, an additional criterion must be introduced, either implicitly or explicitly before the best estimate can be computed. Here we use a principle of maximum entropy, which has proven useful in other contexts, to design a

Stephen J. Wernecke; Larry R. D'addario

1977-01-01

137

Benchmarking for maximum value.  

PubMed

Speaking at the most recent Healthcare Estates conference, Ed Baldwin, of international built asset consultancy EC Harris LLP, examined the role of benchmarking and market-testing--two of the key methods used to evaluate the quality and cost-effectiveness of hard and soft FM services provided under PFI healthcare schemes to ensure they are offering maximum value for money. PMID:19344004

Baldwin, Ed

2009-03-01

138

Maximum likelihood pitch estimation  

Microsoft Academic Search

A method for estimating the pitch period of voiced speech sounds is developed based on a maximum likelihood (ML) formulation. It is capable of resolution finer than one sampling period and is shown to perform better in the presence of noise than the cepstrum method.

J. Wise; J. Caprio; T. Parks

1976-01-01

139

Maximum Confidence Quantum Measurements  

E-print Network

We consider the problem of discriminating between states of a specified set with maximum confidence. For a set of linearly independent states unambiguous discrimination is possible if we allow for the possibility of an inconclusive result. For linearly dependent sets an analogous measurement is one which allows us to be as confident as possible that when a given state is identified on the basis of the measurement result, it is indeed the correct state.

Sarah Croke; Erika Andersson; Stephen M. Barnett; Claire R. Gilson; John Jeffers

2006-04-05

140

3D Dose Verification Using Tomotherapy CT Detector Array  

SciTech Connect

Purpose: To evaluate a three-dimensional dose verification method based on the exit dose using the onboard detector of tomotherapy. Methods and Materials: The study included 347 treatment fractions from 24 patients, including 10 prostate, 5 head and neck (HN), and 9 spinal stereotactic body radiation therapy (SBRT) cases. Detector sonograms were retrieved and back-projected to calculate entrance fluence, which was then forward-projected on the CT images to calculate the verification dose, which was compared with ion chamber and film measurement in the QA plans and with the planning dose in patient plans. Results: Root mean square (RMS) errors of 2.0%, 2.2%, and 2.0% were observed comparing the dose verification (DV) and the ion chamber measured point dose in the phantom plans for HN, prostate, and spinal SBRT patients, respectively. When cumulative dose in the entire treatment is considered, for HN patients, the error of the mean dose to the planning target volume (PTV) varied from 1.47% to 5.62% with a RMS error of 3.55%. For prostate patients, the error of the mean dose to the prostate target volume varied from -5.11% to 3.29%, with a RMS error of 2.49%. The RMS error of maximum doses to the bladder and the rectum were 2.34% (-4.17% to 2.61%) and 2.64% (-4.54% to 3.94%), respectively. For the nine spinal SBRT patients, the RMS error of the minimum dose to the PTV was 2.43% (-5.39% to 2.48%). The RMS error of maximum dose to the spinal cord was 1.05% (-2.86% to 0.89%). Conclusions: An excellent agreement was observed between the measurement and the verification dose. In the patient treatments, the agreement in doses to the majority of PTVs and organs at risk is within 5% for the cumulative treatment course doses. The dosimetric error strongly depends on the error in multileaf collimator leaf opening time with a sensitivity correlating to the gantry rotation period.

Sheng Ke, E-mail: ks2mc@virginia.edu [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Jones, Ryan; Yang Wensha; Saraiya, Siddharth; Schneider, Bernard [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Chen Quan; Sobering, Geoff; Olivera, Gustavo [TomoTherapy, Inc., Madison, WI (United States); Read, Paul [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)

2012-02-01

141

40 CFR 94.107 - Determination of maximum test speed.  

Code of Federal Regulations, 2010 CFR

...increasing speed, it is not necessary to generate points with power less than 75 percent of the maximum power value. (c) Normalization of lug curve. (1) Identify the point (power and speed) on the lug curve at which maximum power occurs....

2010-07-01

142

40 CFR 94.107 - Determination of maximum test speed.  

Code of Federal Regulations, 2011 CFR

...increasing speed, it is not necessary to generate points with power less than 75 percent of the maximum power value. (c) Normalization of lug curve. (1) Identify the point (power and speed) on the lug curve at which maximum power occurs....

2011-07-01

143

Patient-specific quantification of respiratory motion-induced dose uncertainty for step-and-shoot IMRT of lung cancer  

SciTech Connect

Purpose: The objective of this study was to quantify respiratory motion-induced dose uncertainty at the planning stage for step-and-shoot intensity-modulated radiation therapy (IMRT) using an analytical technique.Methods: Ten patients with stage II/III lung cancer who had undergone a planning four-dimensional (4D) computed tomographic scan and step-and-shoot IMRT planning were selected with a mix of motion and tumor size for this retrospective study. A step-and-shoot IMRT plan was generated for each patient. The maximum and minimum doses with respiratory motion were calculated for each plan, and the mean deviation from the 4D dose was calculated, taking delivery time, fractionation, and patient breathing cycle into consideration.Results: For all patients evaluated in this study, the mean deviation from the 4D dose in the planning target volume (PTV) was <2.5%, with a standard deviation <1.2%, and maximum point dose variation from the 4D dose was <6.2% in the PTV assuming delivery dose rate of 200 MU/min and patient breathing cycle of 8 s. The motion-induced dose uncertainty is a function of motion, fractionation, MU (plan modulation), dose rate, and patient breathing cycle.Conclusions: Respiratory motion-induced dose uncertainty varies from patient to patient. Therefore, it is important to evaluate the dose uncertainty on a patient-specific basis, which could be useful for plan evaluation and treatment strategy determination for selected patients.

Li, Heng; Park, Peter; Liu, Wei; Matney, Jason; Balter, Peter; Zhang, Xiaodong; Li, Xiaoqiang; Zhu, X. Ronald [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)] [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Liao, Zhongxing [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)] [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Li, Yupeng [Applied Research, Varian Medical Systems, Palo Alto, California 94304 (United States)] [Applied Research, Varian Medical Systems, Palo Alto, California 94304 (United States)

2013-12-15

144

Patient-specific quantification of respiratory motion-induced dose uncertainty for step-and-shoot IMRT of lung cancer  

PubMed Central

Purpose: The objective of this study was to quantify respiratory motion-induced dose uncertainty at the planning stage for step-and-shoot intensity-modulated radiation therapy (IMRT) using an analytical technique. Methods: Ten patients with stage II/III lung cancer who had undergone a planning four-dimensional (4D) computed tomographic scan and step-and-shoot IMRT planning were selected with a mix of motion and tumor size for this retrospective study. A step-and-shoot IMRT plan was generated for each patient. The maximum and minimum doses with respiratory motion were calculated for each plan, and the mean deviation from the 4D dose was calculated, taking delivery time, fractionation, and patient breathing cycle into consideration. Results: For all patients evaluated in this study, the mean deviation from the 4D dose in the planning target volume (PTV) was <2.5%, with a standard deviation <1.2%, and maximum point dose variation from the 4D dose was <6.2% in the PTV assuming delivery dose rate of 200 MU/min and patient breathing cycle of 8 s. The motion-induced dose uncertainty is a function of motion, fractionation, MU (plan modulation), dose rate, and patient breathing cycle. Conclusions: Respiratory motion-induced dose uncertainty varies from patient to patient. Therefore, it is important to evaluate the dose uncertainty on a patient-specific basis, which could be useful for plan evaluation and treatment strategy determination for selected patients. PMID:24320498

Li, Heng; Park, Peter; Liu, Wei; Matney, Jason; Liao, Zhongxing; Balter, Peter; Li, Yupeng; Zhang, Xiaodong; Li, Xiaoqiang; Zhu, X. Ronald

2013-01-01

145

Spline-based procedures for dose-finding studies with active control.  

PubMed

In a dose-finding study with an active control, several doses of a new drug are compared with an established drug (the so-called active control). One goal of such studies is to characterize the dose-response relationship and to find the smallest target dose concentration d(*), which leads to the same efficacy as the active control. For this purpose, the intersection point of the mean dose-response function with the expected efficacy of the active control has to be estimated. The focus of this paper is a cubic spline-based method for deriving an estimator of the target dose without assuming a specific dose-response function. Furthermore, the construction of a spline-based bootstrap CI is described. Estimator and CI are compared with other flexible and parametric methods such as linear spline interpolation as well as maximum likelihood regression in simulation studies motivated by a real clinical trial. Also, design considerations for the cubic spline approach with focus on bias minimization are presented. Although the spline-based point estimator can be biased, designs can be chosen to minimize and reasonably limit the maximum absolute bias. Furthermore, the coverage probability of the cubic spline approach is satisfactory, especially for bias minimal designs. PMID:25319931

Helms, Hans-Joachim; Benda, Norbert; Zinserling, Jörg; Kneib, Thomas; Friede, Tim

2015-01-30

146

The last glacial maximum  

USGS Publications Warehouse

We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

2009-01-01

147

The Last Glacial Maximum.  

PubMed

We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level approximately 14.5 ka. PMID:19661421

Clark, Peter U; Dyke, Arthur S; Shakun, Jeremy D; Carlson, Anders E; Clark, Jorie; Wohlfarth, Barbara; Mitrovica, Jerry X; Hostetler, Steven W; McCabe, A Marshall

2009-08-01

148

Determination of transit dose profile for a {sup 192}Ir HDR source  

SciTech Connect

Purpose: Several studies have reported methodologies to calculate and correct the transit dose component of the moving radiation source for high dose rate (HDR) brachytherapy planning systems. However, most of these works employ the average source speed, which varies significantly with the measurement technique used, and does not represent a realistic speed profile, therefore, providing an inaccurate dose determination. In this work, the authors quantified the transit dose component of a HDR unit based on the measurement of the instantaneous source speed to produce more accurate dose values. Methods: The Nucletron microSelectron-HDR Ir-192 source was characterized considering the Task Group 43 (TG-43U1) specifications. The transit dose component was considered through the calculation of the dose distribution using a Monte Carlo particle transport code, MCNP5, for each source position and correcting it by the source speed. The instantaneous source speed measurements were performed in a previous work using two optical fibers connected to a photomultiplier and an oscilloscope. Calculated doses were validated by comparing relative dose profiles with those obtained experimentally using radiochromic films. Results: TG-43U1 source parameters were calculated to validate the Monte Carlo simulations. These agreed with the literature, with differences below 1% for the majority of the points. Calculated dose profiles without transit dose were also validated by comparison with ONCENTRA{sup Registered-Sign} Brachy v. 3.3 dose values, yielding differences within 1.5%. Dose profiles obtained with MCNP5 corrected using the instantaneous source speed profile showed differences near dwell positions of up to 800% in comparison to values corrected using the average source speed, but they are in good agreement with the experimental data, showing a maximum discrepancy of approximately 3% of the maximum dose. Near a dwell position the transit dose is about 22% of the dwell dose delivered by the source dwelling 1 s and reached 104.0 cGy per irradiation in a hypothetical clinical case studied in this work. Conclusions: The present work demonstrated that the transit dose correction based on average source speed fails to accurately correct the dose, indicating that the correct speed profile should be considered. The impact on total dose due to the transit dose correction near the dwell positions is significant and should be considered more carefully in treatments with high dose rate, several catheters, multiple dwell positions, small dwell times, and several fractions.

Fonseca, G. P. [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Sao Paulo 05508-000, Brazil and Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Rubo, R. A.; Santos, G. R. dos [Hospital das Clinicas da Universidade de Sao Paulo - HC/FMUSP, Sao Paulo 05403-900 (Brazil); Minamisawa, R. A. [Laboratory for Micro- and Nanotechnology Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Antunes, P. C. G.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Sao Paulo 05508-000 (Brazil)

2013-05-15

149

NAIRAS aircraft radiation model development, dose climatology, and initial validation  

NASA Astrophysics Data System (ADS)

The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.

Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

2013-10-01

150

Can we improve the dose distribution for single or multi-lumen breast balloons used for Accelerated Partial Breast Irradiation?  

PubMed Central

Purpose The aim of the study was to verify dose distribution parameters for multi-lumen, and artificially created single-lumen balloon applicator used for the same patient with two optimization algorithms: inverse planning simulated annealing (IPSA) and dose point optimization with distance option. Material and methods Group of 24 patients with multi-lumen balloon applied were investigated. Each patient received 10 fractions of 3.4 Gy (2 fractions daily). For every patient, four treatment plans were prepared. Firstly, for five-lumen balloon optimized with IPSA algorithm and optimization parameters adjusted for each case. Secondly, for the same applicator optimized with dose point optimization and distant option. Two other plans were prepared for single-lumen applicator, created by removing four peripheral lumens, optimized with both algorithms. Results The highest D95 parameter was obtained for plans optimized with IPSA algorithm, mean value 99.3 percent of prescribed dose, and it was significantly higher than plans optimized with dose point algorithm (mean = 83.50%, p < 0.0001), IPSA single-lumen balloon plan (mean = 83.50%, p = 0.0037) and optimized to dose point single-lumen balloon (mean = 85.51%, p < 0.0001). There were no statistically significant differences concerning maximum doses distributed to skin surface for neither application nor optimization method. Volumes receiving 200% of prescribed dose in PTV were higher for multi-lumen balloon dose point optimized plans (mean = 8.78%), than for other plans (IPSA multi-lumen balloon plan: mean = 7.37%, p < 0.0001, single-lumen IPSA: mean = 7.20%, p < 0.0001, single-lumen dose point: mean = 7.19%, p < 0.0001). Conclusions Basing on performed survey, better dose distribution parameters are obtained for patients with multi-lumen balloon applied and optimized using IPSA algorithm with individualized optimization parameters. PMID:24143147

Biel?da, Grzegorz; ?aski, Piotr; Kycler, Witold

2013-01-01

151

Dose-proportional intraindividual single- and repeated-dose pharmacokinetics of roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor.  

PubMed

The dose-proportional, intraindividual, single- and repeated-dose pharmacokinetics of roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor under investigation for chronic obstructive pulmonary disease and asthma, was investigated in healthy subjects. In an open, randomized, 2-period, 2-sequence crossover study, 15 subjects received immediate-release tablets of roflumilast 250 or 500 microg as single (day 1) and as repeated, once-daily doses for 8 days (days 5-12). Dose-adjusted point estimates and 90% confidence intervals of test (500 microg)/reference (250 microg) ratios for AUC and Cmax of roflumilast and its pharmacologically active N-oxide metabolite after single and repeated dosing were all within the standard equivalence acceptance range (0.80, 1.25) indicating dose proportionality. The pharmacokinetic properties of both roflumilast dosage forms provide clinically relevant evidence of predictable, intraindividual total (AUC) and maximum (Cmax) exposure of roflumilast and roflumilast N-oxide. Repeated oral dosing with roflumilast 250 and 500 microg once daily was well tolerated. PMID:17192499

Bethke, Thomas D; Böhmer, Gabriele M; Hermann, Robert; Hauns, Bernhard; Fux, Richard; Mörike, Klaus; David, Michael; Knoerzer, Dietrich; Wurst, Wilhelm; Gleiter, Christoph H

2007-01-01

152

Experimental Evaluation of the Impact of Different Head-and-Neck Intensity-Modulated Radiation Therapy Planning Techniques on Doses to the Skin and Shallow Targets  

SciTech Connect

Purpose: To investigate experimentally the impact of different head-and-neck intensity-modulated radiation therapy (IMRT) planning techniques on doses to the skin and shallow targets. Methods and Materials: A semicylindrical phantom was constructed with micro-MOSFET dosimeters (Thomson-Nielson, Ottawa, Ontario, Canada) at 0-, 3-, 6-, 9-, and 12-mm depths. The planning target volume (PTV) was pulled back 0, 3, or 5 mm from the body contour. The IMRT plans were created to maximize PTV coverage, with one of the following strategies: (a) aim for a maximum 110% hotspot, with 115% allowed; (b) aims for a maximum 105% hotspot; (c) aims for a maximum 105% hotspot and 50% of skin to get a maximum 70% of the prescribed dose; and (d) aim for 99% of the PTV volume to receive 90-93% of prescribed dose, with a maximum 105% hotspot, and with the dose to the skin structure minimized. Doses delivered using a linear accelerator were measured. Setup uncertainty was simulated by intentionally shifting the phantom in a range of {+-}8 mm, and calculating the delivered dose for a range of systematic and random uncertainties. Results: From lowest to highest skin dose, the planning strategies were in the order of c, d, b, and a, but c showed a tendency to underdose tissues at depth. Delivered doses varied by 10-20%, depending on planning strategy. For typical setup uncertainties, cumulative dose reduction to a point 6 mm deep was <4%. Conclusions: It is useful to use skin as a sensitive structure, but a minimum dose constraint must be used for the PTV if unwanted reductions in dose to nodes near the body surface are to be avoided. Setup uncertainties are unlikely to give excessive reductions in cumulative dose.

Court, Laurence E. [Department of Radiation Oncology, Dana-Farber and Brigham and Women's Cancer Center, Boston, MA (United States)], E-mail: lcourt@lroc.harvard.edu; Tishler, Roy B. [Department of Radiation Oncology, Dana-Farber and Brigham and Women's Cancer Center, Boston, MA (United States)

2007-10-01

153

Running title: Maximum discrimination HMMs Maximum Discrimination Hidden Markov Models  

E-print Network

Running title: Maximum discrimination HMMs Maximum Discrimination Hidden Markov Models of Sequence for building hidden Markov models (HMMs) of protein or nucleic acid primary sequence consensus. The method. Keywords: hidden Markov model, database searching, sequence consensus, sequence weighting #12; Introduction

Eddy, Sean

154

Maximum likelihood clustering with dependent feature trees  

NASA Technical Reports Server (NTRS)

The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.

Chittineni, C. B. (principal investigator)

1981-01-01

155

Impact of the number of control points has on isodose distributions in a dynamic multileaf collimator intensity-modulated radiation therapy delivery  

SciTech Connect

Intensity-modulated radiation therapy (IMRT) is a powerful technique in planning the delivery of dose. The most common IMRT delivery requires the use of moving multileaf collimators (MLCs) to deliver the requested fluence pattern. A dynamic delivery IMRT field file will contain several control points that are defined MLC shapes at a marked fraction of the delivered monitor units. The size of this file and the fidelity of the deliverable fluence are proportional to the number of control points defined. This study investigates the effect of reducing the number of control points has on the resultant dose distribution quality in complex IMRT in efforts to reduce transfer times, loading times, check sum times and file storage. Analysis was performed with 6 head and neck patients on an Eclipse version 8.5 treatment planning system (Varian, Palo Alto, CA). To ensure the quality of all treatments, Eclipse defines a minimum of 64 and a maximum of 320 control points per subfield (Eclipse Algorithms Reference guide). All 6 patients' plans were calculated with fixed 64, 166, and 320 control points using the sliding window technique. In addition, each plan was calculated in variable mode (Normal mode) in which the planning system determined the required number of control points. Each of the 4 plans for each patient was renormalized to provide the same mean planning target volume (PTV) 70 dose. Dose values for critical and target structures were examined for each patient. When examining the minimum, maximum, and mean doses to all target structures, it was noted that the greatest reduction in target dose coverage caused by reduced number of control points was 0.5%, which occurred for the minimum dose to the PTV56 structure in one plan.' Dose analysis for critical structures showed no clinically significant increase in dose when compared with the 320 control point plan.

Goraj, Andrew [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY (United States); Boer, Steven F. de, E-mail: steven.deboer@roswellpark.org [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY (United States); Department of Physiology and Biophysics, State University of New York at Buffalo, NY (United States)

2012-01-01

156

Factors Associated With Chest Wall Toxicity After Accelerated Partial Breast Irradiation Using High-Dose-Rate Brachytherapy  

SciTech Connect

Purpose: The purpose of this analysis was to evaluate dose-volume relationships associated with a higher probability for developing chest wall toxicity (pain) after accelerated partial breast irradiation (APBI) by using both single-lumen and multilumen brachytherapy. Methods and Materials: Rib dose data were available for 89 patients treated with APBI and were correlated with the development of chest wall/rib pain at any point after treatment. Ribs were contoured on computed tomography planning scans, and rib dose-volume histograms (DVH) along with histograms for other structures were constructed. Rib DVH data for all patients were sampled at all volumes {>=}0.008 cubic centimeter (cc) (for maximum dose related to pain) and at volumes of 0.5, 1, 2, and 3 cc for analysis. Rib pain was evaluated at each follow-up visit. Patient responses were marked as yes or no. No attempt was made to grade responses. Eighty-nine responses were available for this analysis. Results: Nineteen patients (21.3%) complained of transient chest wall/rib pain at any point in follow-up. Analysis showed a direct correlation between total dose received and volume of rib irradiated with the probability of developing rib/chest wall pain at any point after follow-up. The median maximum dose at volumes {>=}0.008 cc of rib in patients who experienced chest wall pain was 132% of the prescribed dose versus 95% of the prescribed dose in those patients who did not experience pain (p = 0.0035). Conclusions: Although the incidence of chest wall/rib pain is quite low with APBI brachytherapy, attempts should be made to keep the volume of rib irradiated at a minimum and the maximum dose received by the chest wall as low as reasonably achievable.

Brown, Sheree, E-mail: shereedst32@hotmail.com [Department of Radiation Oncology, WellStar Kennestone Hospital, Marietta, Georgia (United States); Vicini, Frank [Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan (United States); Vanapalli, Jyotsna R.; Whitaker, Thomas J.; Pope, D. Keith [Department of Radiation Oncology, WellStar Kennestone Hospital, Marietta, Georgia (United States); Lyden, Maureen [BioStat International, Inc., Tampa, Florida (United States); Bruggeman, Lisa; Haile, Kenneth L.; McLaughlin, Mark P. [Department of Radiation Oncology, WellStar Kennestone Hospital, Marietta, Georgia (United States)

2012-07-01

157

The contribution from transit dose for (192)Ir HDR brachytherapy treatments.  

PubMed

Brachytherapy treatment planning systems that use model-based dose calculation algorithms employ a more accurate approach that replaces the TG43-U1 water dose formalism and adopt the TG-186 recommendations regarding composition and geometry of patients and other relevant effects. However, no recommendations were provided on the transit dose due to the source traveling inside the patient. This study describes a methodology to calculate the transit dose using information from the treatment planning system (TPS) and considering the source's instantaneous and average speed for two prostate and two gynecological cases. The trajectory of the (192)Ir HDR source was defined by importing applicator contour points and dwell positions from the TPS. The transit dose distribution was calculated using the maximum speed, the average speed and uniform accelerations obtained from the literature to obtain an approximate continuous source distribution simulated with a Monte Carlo code. The transit component can be negligible or significant depending on the speed profile adopted, which is not clearly reported in the literature. The significance of the transit dose can also be due to the treatment modality; in our study interstitial treatments exhibited the largest effects. Considering the worst case scenario the transit dose can reach 3% of the prescribed dose in a gynecological case with four catheters and up to 11.1% when comparing the average prostate dose for a case with 16 catheters. The transit dose component increases by increasing the number of catheters used for HDR brachytherapy, reducing the total dwell time per catheter or increasing the number of dwell positions with low dwell times. This contribution may become significant (>5%) if it is not corrected appropriately. The transit dose cannot be completely compensated using simple dwell time corrections since it may have a non-uniform distribution. An accurate measurement of the source acceleration and maximum speed should be incorporated in clinical practice or provided by the manufacturer to determine the transit dose component with high accuracy. PMID:24625517

Fonseca, G P; Landry, G; Reniers, B; Hoffmann, A; Rubo, R A; Antunes, P C G; Yoriyaz, H; Verhaegen, F

2014-04-01

158

The contribution from transit dose for 192Ir HDR brachytherapy treatments  

NASA Astrophysics Data System (ADS)

Brachytherapy treatment planning systems that use model-based dose calculation algorithms employ a more accurate approach that replaces the TG43-U1 water dose formalism and adopt the TG-186 recommendations regarding composition and geometry of patients and other relevant effects. However, no recommendations were provided on the transit dose due to the source traveling inside the patient. This study describes a methodology to calculate the transit dose using information from the treatment planning system (TPS) and considering the source's instantaneous and average speed for two prostate and two gynecological cases. The trajectory of the 192Ir HDR source was defined by importing applicator contour points and dwell positions from the TPS. The transit dose distribution was calculated using the maximum speed, the average speed and uniform accelerations obtained from the literature to obtain an approximate continuous source distribution simulated with a Monte Carlo code. The transit component can be negligible or significant depending on the speed profile adopted, which is not clearly reported in the literature. The significance of the transit dose can also be due to the treatment modality; in our study interstitial treatments exhibited the largest effects. Considering the worst case scenario the transit dose can reach 3% of the prescribed dose in a gynecological case with four catheters and up to 11.1% when comparing the average prostate dose for a case with 16 catheters. The transit dose component increases by increasing the number of catheters used for HDR brachytherapy, reducing the total dwell time per catheter or increasing the number of dwell positions with low dwell times. This contribution may become significant (>5%) if it is not corrected appropriately. The transit dose cannot be completely compensated using simple dwell time corrections since it may have a non-uniform distribution. An accurate measurement of the source acceleration and maximum speed should be incorporated in clinical practice or provided by the manufacturer to determine the transit dose component with high accuracy.

Fonseca, G. P.; Landry, G.; Reniers, B.; Hoffmann, A.; Rubo, R. A.; Antunes, P. C. G.; Yoriyaz, H.; Verhaegen, F.

2014-04-01

159

Maximum principles for a family of nonlocal boundary value problems  

Microsoft Academic Search

We study a family of three-point nonlocal boundary value problems (BVPs) for an nth- order linear forward difference equation. In particular, we obtain a maximum principle and determine sign properties of a corresponding Green function. Of interest, we show that the methods used for two-point disconjugacy or right-disfocality results apply to this family of three-point BVPs.

Paul W. Eloe

2004-01-01

160

Measurements of individual radiation doses in residents living around the Fukushima Nuclear Power Plant.  

PubMed

At the outset of the accident at Fukushima Daiichi Nuclear Power Plant in March 2011, the radiation doses experienced by residents were calculated from the readings at monitoring posts, with several assumptions being made from the point of view of protection and safety. However, health effects should also be estimated by obtaining measurements of the individual radiation doses. The individual external radiation doses, determined by a behavior survey in the "evacuation and deliberate evacuation area" in the first 4 months, were <5 mSv in 97.4% of residents (maximum: 15 mSv). Doses in Fukushima Prefecture were <3 mSv in 99.3% of 386,572 residents analyzed. External doses in Fukushima City determined by personal dosimeters were <1 mSv/3 months (September-November, 2011) in 99.7% of residents (maximum: 2.7 mSv). Thyroid radiation doses, determined in March using a NaI (TI) scintillation survey meter in children in the evacuation and deliberate evacuation area, were <10 mSv in 95.7% of children (maximum: 35 mSv). Therefore, all doses were less than the intervention level of 50 mSv proposed by international organizations. Internal radiation doses determined by cesium-134 ((134)C) and cesium-137 ((137)C) whole-body counters (WBCs) were <1 mSv in 99% of the residents, and the maximum thyroid equivalent dose by iodine-131 WBCs was 20 mSv. The exploratory committee of the Fukushima Health Management Survey mentions on its website that radiation from the accident is unlikely to be a cause of adverse health effects in the future. In any event, sincere scientific efforts must continue to obtain individual radiation doses that are as accurate as possible. However, observation of the health effects of the radiation doses described above will require reevaluation of the protocol used for determining adverse health effects. The dose-response relationship is crucial, and the aim of the survey should be to collect sufficient data to confirm the presence or absence of radiation health effects. In particular, the schedule of decontamination needs reconsideration. The decontamination map is determined based on the results of airborne monitoring and the radiation dose calculated from readings taken at the monitoring posts at the initial period of the accident. The decontamination protocol should be reevaluated based on the individual doses of the people who desire to live in those areas. PMID:24131040

Nagataki, Shigenobu; Takamura, Noboru; Kamiya, Kenji; Akashi, Makoto

2013-11-01

161

Research and simulation on photovoltaic power system maximum power control  

Microsoft Academic Search

Photovoltaic power generation system implements an effective utilization of solar energy, but generally has very low conversion efficiency. Maximum power point tracker (MPPT) control is essential to ensure the output of photovoltaic power generation system at the maximum power output as possible. Photovoltaic cells model of photovoltaic power generation system and basic control algorithm is discussed in this paper. MPPT

Ling Lu; Ping Liu

2011-01-01

162

MIRD Dose Estimate Report No. 20: Radiation Absorbed-Dose Estimates for 111In- and 90Y-Ibritumomab Tiuxetan  

SciTech Connect

Absorbed dose calculations provide a scientific basis for evaluating the biological effects associated with administered radiopharmaceuticals. In cancer therapy, radiation dosimetry also supports treatment planning, dose-response analyses, predictions of therapy effectiveness, and completeness of patient medical records. In this study, we evaluated the organ radiation absorbed doses resulting from intravenously administered 111In- and 90Y-Ibritumomab Tiuxetan (Zevalin). Methods: Ten patients (six male, four female) with non-Hodgkin’s lymphoma, cared for at three different medical centers, were administered tracer 111In-Ibritumomab Tiuxetan and were assessed using planar scintillation camera imaging at five time points, blood clearance measurements, and CT-organ volumetrics, to determine patient-specific organ biokinetics and dosimetry. Explicit attenuation correction based on transmission scan or transmission measurements provided the fraction of 111In administered activity in seven major organs, the whole body, and remainder tissues over time through complete decay. Activity-time curves were constructed, and radiation doses were calculated using MIRD methods and implementing software (OLINDA-EXM). Results: Mean radiation absorbed doses in 10 cancer patients for 111In- and for 90-Y-Ibritumomab Tiuxetan are reported for 24 organs and the whole body. Biological uptake and retention data are given for seven major source organs, remainder tissues, and the whole body. Median absorbed dose values calculated by this method were compared to previously published dosimetry for Zevalin and the product package insert. Conclusions: Careful dosimetry techniques provide useful information on absorbed dose from administered radiopharmaceuticals in patients. The importance of patient-specific dosimetry emerges in high-dose radioimmunotherapy when the objective of treatment planning is to achieve disease cures safely by limiting radiation doses to any critical normal organ to a maximum tolerable value.

Fisher, Darrell R.; Shen, Sui; Meredith, Ruby F.

2009-04-16

163

Dose calculation with respiration-averaged CT processed from cine CT without a respiratory surrogate  

SciTech Connect

Dose calculation for thoracic radiotherapy is commonly performed on a free-breathing helical CT despite artifacts caused by respiratory motion. Four-dimensional computed tomography (4D-CT) is one method to incorporate motion information into the treatment planning process. Some centers now use the respiration-averaged CT (RACT), the pixel-by-pixel average of the ten phases of 4D-CT, for dose calculation. This method, while sparing the tedious task of 4D dose calculation, still requires 4D-CT technology. The authors have recently developed a means to reconstruct RACT directly from unsorted cine CT data from which 4D-CT is formed, bypassing the need for a respiratory surrogate. Using RACT from cine CT for dose calculation may be a means to incorporate motion information into dose calculation without performing 4D-CT. The purpose of this study was to determine if RACT from cine CT can be substituted for RACT from 4D-CT for the purposes of dose calculation, and if increasing the cine duration can decrease differences between the dose distributions. Cine CT data and corresponding 4D-CT simulations for 23 patients with at least two breathing cycles per cine duration were retrieved. RACT was generated four ways: First from ten phases of 4D-CT, second, from 1 breathing cycle of images, third, from 1.5 breathing cycles of images, and fourth, from 2 breathing cycles of images. The clinical treatment plan was transferred to each RACT and dose was recalculated. Dose planes were exported at orthogonal planes through the isocenter (coronal, sagittal, and transverse orientations). The resulting dose distributions were compared using the gamma ({gamma}) index within the planning target volume (PTV). Failure criteria were set to 2%/1 mm. A follow-up study with 50 additional lung cancer patients was performed to increase sample size. The same dose recalculation and analysis was performed. In the primary patient group, 22 of 23 patients had 100% of points within the PTV pass {gamma} criteria. The average maximum and mean {gamma} indices were very low (well below 1), indicating good agreement between dose distributions. Increasing the cine duration generally increased the dose agreement. In the follow-up study, 49 of 50 patients had 100% of points within the PTV pass the {gamma} criteria. The average maximum and mean {gamma} indices were again well below 1, indicating good agreement. Dose calculation on RACT from cine CT is negligibly different from dose calculation on RACT from 4D-CT. Differences can be decreased further by increasing the cine duration of the cine CT scan.

Riegel, Adam C.; Ahmad, Moiz; Sun Xiaojun; Pan Tinsu [Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States); Department of Imaging Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 (United States)

2008-12-15

164

Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions  

NASA Technical Reports Server (NTRS)

Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.

Kim, Myung-Hee; Cucinotta, Francis A.

2006-01-01

165

Radiological Dose Assessment 8 2007 Site environmental report8-  

E-print Network

Radiological Dose Assessment 8 2007 Site environmental report8- DRAFT Brookhaven National that the overall radiological dose impact to members of the public, workers, visitors, and the environment is "As radiological dose to the public is calculated at the site boundary as the "maximum" dose that could be received

166

A Maximum Likelihood Stereo Algorithm  

Microsoft Academic Search

A stereo algorithm is presented that optimizes a maximum likelihood cost function. The maximum likelihood cost function assumes that corresponding features in the left and right images are normally distributed about a common true value and consists of a weighted squared error term if two features are matched or a (fixed) cost if a feature is determined to be occluded.

Ingemar J. Cox; Sunita L. Hingorani; Satish B. Rao; Bruce M. Maggs

1996-01-01

167

Dose error from deviation of dwell time and source position for high dose-rate 192Ir in remote afterloading system  

PubMed Central

The influence of deviations in dwell times and source positions for 192Ir HDR-RALS was investigated. The potential dose errors for various kinds of brachytherapy procedures were evaluated. The deviations of dwell time ?T of a 192Ir HDR source for the various dwell times were measured with a well-type ionization chamber. The deviations of source position ?P were measured with two methods. One is to measure actual source position using a check ruler device. The other is to analyze peak distances from radiographic film irradiated with 20 mm gap between the dwell positions. The composite dose errors were calculated using Gaussian distribution with ?T and ?P as 1? of the measurements. Dose errors depend on dwell time and distance from the point of interest to the dwell position. To evaluate the dose error in clinical practice, dwell times and point of interest distances were obtained from actual treatment plans involving cylinder, tandem-ovoid, tandem-ovoid with interstitial needles, multiple interstitial needles, and surface-mold applicators. The ?T and ?P were 32 ms (maximum for various dwell times) and 0.12 mm (ruler), 0.11 mm (radiographic film). The multiple interstitial needles represent the highest dose error of 2%, while the others represent less than approximately 1%. Potential dose error due to dwell time and source position deviation can depend on kinds of brachytherapy techniques. In all cases, the multiple interstitial needles is most susceptible. PMID:24566719

Okamoto, Hiroyuki; Aikawa, Ako; Wakita, Akihisa; Yoshio, Kotaro; Murakami, Naoya; Nakamura, Satoshi; Hamada, Minoru; Abe, Yoshihisa; Itami, Jun

2014-01-01

168

The Radiation Dose-Response of the Human Spinal Cord  

SciTech Connect

Purpose: To characterize the radiation dose-response of the human spinal cord. Methods and Materials: Because no single institution has sufficient data to establish a dose-response function for the human spinal cord, published reports were combined. Requisite data were dose and fractionation, number of patients at risk, number of myelopathy cases, and survival experience of the population. Eight data points for cervical myelopathy were obtained from five reports. Using maximum likelihood estimation correcting for the survival experience of the population, estimates were obtained for the median tolerance dose, slope parameter, and {alpha}/{beta} ratio in a logistic dose-response function. An adequate fit to thoracic data was not possible. Hyperbaric oxygen treatments involving the cervical cord were also analyzed. Results: The estimate of the median tolerance dose (cervical cord) was 69.4 Gy (95% confidence interval, 66.4-72.6). The {alpha}/{beta} = 0.87 Gy. At 45 Gy, the (extrapolated) probability of myelopathy is 0.03%; and at 50 Gy, 0.2%. The dose for a 5% myelopathy rate is 59.3 Gy. Graphical analysis indicates that the sensitivity of the thoracic cord is less than that of the cervical cord. There appears to be a sensitizing effect from hyperbaric oxygen treatment. Conclusions: The estimate of {alpha}/{beta} is smaller than usually quoted, but values this small were found in some studies. Using {alpha}/{beta} = 0.87 Gy, one would expect a considerable advantage by decreasing the dose/fraction to less than 2 Gy. These results were obtained from only single fractions/day and should not be applied uncritically to hyperfractionation.

Schultheiss, Timothy E. [Department of Radiation Oncology, City of Hope Cancer Center, Duarte, CA (United States)], E-mail: schultheiss@coh.org

2008-08-01

169

Minimal length, Friedmann equations and maximum density  

NASA Astrophysics Data System (ADS)

Inspired by Jacobson's thermodynamic approach [4], Cai et al. [5, 6] have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation [6] of Friedmann equations to accommodate a general entrop-yarea law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p( ?, a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p = ?? through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.

Awad, Adel; Ali, Ahmed Farag

2014-06-01

170

PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS  

SciTech Connect

For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

2012-06-05

171

Prospective Evaluation to Establish a Dose Response for Clinical Oral Mucositis in Patients Undergoing Head-and-Neck Conformal Radiotherapy  

SciTech Connect

Purpose: We conducted a clinical study to correlate oral cavity dose with clinical mucositis, perform in vivo dosimetry, and determine the feasibility of obtaining buccal mucosal cell samples in patients undergoing head-and-neck radiation therapy. The main objective is to establish a quantitative dose response for clinical oral mucositis. Methods and Materials: Twelve patients undergoing radiation therapy for head-and-neck cancer were prospectively studied. Four points were chosen in separate quadrants of the oral cavity. Calculated dose distributions were generated by using AcQPlan and Eclipse treatment planning systems. MOSFET dosimeters were used to measure dose at each sampled point. Each patient underwent buccal sampling for future RNA analysis before and after the first radiation treatment at the four selected points. Clinical and functional mucositis were assessed weekly according to National Cancer Institute Common Toxicity Criteria, Version 3. Results: Maximum and average doses for sampled sites ranged from 7.4-62.3 and 3.0-54.3 Gy, respectively. A cumulative point dose of 39.1 Gy resulted in mucositis for 3 weeks or longer. Mild severity (Grade {<=} 1) and short duration ({<=}1 week) of mucositis were found at cumulative point doses less than 32 Gy. Polymerase chain reaction consistently was able to detect basal levels of two known radiation responsive genes. Conclusions: In our sample, cumulative doses to the oral cavity of less than 32 Gy were associated with minimal acute mucositis. A dose greater than 39 Gy was associated with longer duration of mucositis. Our technique for sampling buccal mucosa yielded sufficient cells for RNA analysis using polymerase chain reaction.

Narayan, Samir [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States)], E-mail: narayans@trinity-health.org; Lehmann, Joerg [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Coleman, Matthew A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Vaughan, Andrew; Yang, Claus Chunli [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Enepekides, Danny; Farwell, Gregory [Department of Otolaryngology, University of California Davis Medical Center, Sacramento, CA (United States); Purdy, James A.; Laredo, Grace [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States); Nolan, Kerry A.S.; Pearson, Francesca S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Vijayakumar, Srinivasan [Department of Radiation Oncology, University of California Davis Medical Center, Sacramento, CA (United States)

2008-11-01

172

Maximum likelihood as a common computational framework in tomotherapy.  

PubMed

Tomotherapy is a dose delivery technique using helical or axial intensity modulated beams. One of the strengths of the tomotherapy concept is that it can incorporate a number of processes into a single piece of equipment. These processes include treatment optimization planning, dose reconstruction and kilovoltage/megavoltage image reconstruction. A common computational technique that could be used for all of these processes would be very appealing. The maximum likelihood estimator, originally developed for emission tomography, can serve as a useful tool in imaging and radiotherapy. We believe that this approach can play an important role in the processes of optimization planning, dose reconstruction and kilovoltage and/or megavoltage image reconstruction. These processes involve computations that require comparable physical methods. They are also based on equivalent assumptions, and they have similar mathematical solutions. As a result, the maximum likelihood approach is able to provide a common framework for all three of these computational problems. We will demonstrate how maximum likelihood methods can be applied to optimization planning, dose reconstruction and megavoltage image reconstruction in tomotherapy. Results for planning optimization, dose reconstruction and megavoltage image reconstruction will be presented. Strengths and weaknesses of the methodology are analysed. Future directions for this work are also suggested. PMID:9832016

Olivera, G H; Shepard, D M; Reckwerdt, P J; Ruchala, K; Zachman, J; Fitchard, E E; Mackie, T R

1998-11-01

173

Maximum entropy signal restoration with linear programming  

SciTech Connect

Dantzig's bounded-variable method is used to express the maximum entropy restoration problem as a linear programming problem. This is done by approximating the nonlinear objective function with piecewise linear segments, then bounding the variables as a function of the number of segments used. The use of a linear programming approach allows equality constraints found in the traditional Lagrange multiplier method to be relaxed. A robust revised simplex algorithm is used to implement the restoration. Experimental results from 128- and 512-point signal restorations are presented.

Mastin, G.A.; Hanson, R.J.

1988-05-01

174

Solar Maximum Mission experiment: ultraviolet spectroscopy and polarimetry on the Solar Maximum Mission  

Microsoft Academic Search

The Ultraviolet Spectrometer and Polarimeter on the Solar Maximum Mission spacecraft is described. It is pointed out that the instrument, which operates in the wavelength range 1150-3600 A, has a spatial resolution of 2-3 arcsec and a spectral resolution of 0.02 A FWHM in second order. A Gregorian telescope, with a focal length of 1.8 m, feeds a 1 m

E. Tandberg-Hanssen; B. E. Woodgate; J. M. Beckers; R. D. Chapman; E. C. Bruner; J. B. Gurman; C. L. Hyder; P. J. Kenney; A. G. Michalitsianos; R. A. Rehse; S. A. Schoolman; R. A. Shine; W. Henze

1981-01-01

175

Bayesian estimation of dose thresholds  

NASA Technical Reports Server (NTRS)

An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

Groer, P. G.; Carnes, B. A.

2003-01-01

176

The 1980 solar maximum mission event listing  

NASA Technical Reports Server (NTRS)

Information is contained on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1980 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Hard X-Ray Imaging Spectrometer, (4) Flat Crystal Spectrometer, (5) Bent Crystal Spectrometer, (6) Ultraviolet Spectrometer and Polarimeter, and (7) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from Sun center are also included.

Speich, D. M.; Nelson, J. J.; Licata, J. P.; Tolbert, A. K.

1991-01-01

177

Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders  

SciTech Connect

Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome points were higher for the apex model compared with the non-apex model. Mean doses to the optimization points for both the cylinder models and all the cylinder diameters were 6 Gy, matching with the prescription dose of 6 Gy. Iterative optimization routine resulted in the highest dose to apex point and dome points. The mean dose for optimization point was 6.01 Gy for iterative optimization and was much higher than 5.74 Gy for geometric and equal times routines. Step size of 1 cm gave the highest dose to the apex point. This step size was superior in terms of mean dose to optimization points. Selection of dose optimization points for the derivation of optimized dose distributions for vaginal cylinders affects the dose distributions.

Supe, Sanjay S. [Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka (India)], E-mail: sanjayssupe@gmail.com; Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M. [Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka (India)

2009-04-01

178

Unenhanced low-dose versus standard-dose CT localization in patients with upper urinary calculi for minimally invasive percutaneous nephrolithotomy (MPCNL)  

PubMed Central

Background & objectives: With the ethical concern about the dose of CT scan and wide use of CT in protocol of suspected renal colic, more attention has been paid to low dose CT. The aim of the present study was to make a comparison of unenhanced low-dose spiral CT localization with unenhanced standard-dose spiral CT in patients with upper urinary tract calculi for minimally invasive percutaneous nephrolithotomy (MPCNL) treatment. Methods: Twenty eight patients with ureter and renal calculus, preparing to take MPCNL, underwent both abdominal low-dose CT (25 mAs) and standard-dose CT (100 mAs). Low-dose CT and standard-dose CT were independently evaluated for the characterization of renal/ureteral calculi, perirenal adjacent organs, blood vessels, indirect signs of renal or ureteral calculus (renal enlargement, pyeloureteral dilatation), and the indices of localization (percutaneous puncture angulation and depth) used in the MPCNL procedure. Results: In all 28 patients, low-dose CT was 100 per cent coincidence 100 per cent sensitive and 100 per cent specific for depicting the location of the renal and ureteral calculus, renal enlargement, pyeloureteral dilatation, adjacent organs, and the presumptive puncture point and a 96.3 per cent coincidence 96 per cent sensitivity and 93 per cent specificity for blood vessel signs within the renal sinus, and with an obvious lower radiation exposure for patients when compared to standard-dose CT (P<0.05). The indices of puncture depth, puncture angulation, and maximum calculus transverse diameter on the axial surface showed no significant difference between the two doses of CT scans, with a significant variation in calculus visualization slice numbers (P<0.05). Interpretation & conclusions: Our findings show that unenhanced low-dose CT achieves a sensitivity and accuracy similar to that of standard-dose CT in assessing the localization of renal ureteral calculus and adjacent organs conditions and identifying the maximum calculus transverse diameter on the axial surface, percutaneous puncture depth, and angulation in patients, with a significant lower radiation exposure, who are to be treated by MPCNL, and can be used as an alternative localization method. PMID:24820832

Licheng, Jiang; Yidong, Fan; Ping, Wang; Keqiang, Yan; Xueting, Wang; Yingchen, Zhang; Lei, Gao; Jiyang, Ding; Zhonghua, Xu

2014-01-01

179

Continuity of the Maximum-Entropy Inference  

NASA Astrophysics Data System (ADS)

We study the inverse problem of inferring the state of a finite-level quantum system from expected values of a fixed set of observables, by maximizing a continuous ranking function. We have proved earlier that the maximum-entropy inference can be a discontinuous map from the convex set of expected values to the convex set of states because the image contains states of reduced support, while this map restricts to a smooth parametrization of a Gibbsian family of fully supported states. Here we prove for arbitrary ranking functions that the inference is continuous up to boundary points. This follows from a continuity condition in terms of the openness of the restricted linear map from states to their expected values. The openness condition shows also that ranking functions with a discontinuous inference are typical. Moreover it shows that the inference is continuous in the restriction to any polytope which implies that a discontinuity belongs to the quantum domain of non-commutative observables and that a geodesic closure of a Gibbsian family equals the set of maximum-entropy states. We discuss eight descriptions of the set of maximum-entropy states with proofs of accuracy and an analysis of deviations.

Stephan, Weis

2014-09-01

180

Dose profile measurement of a four-dimensional CT (4D-CT) including scattered radiation  

NASA Astrophysics Data System (ADS)

We have developed a four-dimensional CT (4D CT) using continuous rotation of cone-beam x-ray. The maximum nominal beam width of the 4D CT is 128 mm at the center of rotation in the longitudinal direction. In order to obtain appropriate estimations of exposure dose, detailed single-slice dose profi les perpendicular to the rotation axis including scattered radiation were measured in PMMA cylindrical phantoms, which were cylindrical lucite phantoms of 160 mm and 320 mm diameter and 900 mm length. Dose profi les were measured with a pin photodiode detector at the center and a peripheral point of 10 mm depth. A pin silicon photodiode sensor with 3 × 3 × 3 mm sensitive region was used as an x-ray detector, which was scanned along longitudinal direction in the phantom for beam widths of 20, 42, 74, 106 and 138 mm. The dose profi les had long tails caused by scattered radiation more than 200 mm out of the beam width edge. The exposure dose covered 95 % was distributed along about 360 mm length at the center and about 310 mm at the periphery, which was independent of the beam width. Before the advent of multi-detector CT, CTDI100 was used to approximate integral dose for clinical scan conditions. However, for 4D CT employing a variable beam width, the standard CTDI was not a good estimation. This work was carried out to establish a method of the dose measurements including scattered radiation for cone-beam CT such as 4D CT. In order to perform the dose assessment including scattered radiation, dose measured length should be recommended to measure integral dose over beam widths plus at least 230 mm, which covered 95 % total exposure dose.

Endo, Masahiro; Mori, Schin'ichiro; Tsunoo, Takanori; Nishizawa, Kanae; Aoyama, Takahiko

2004-05-01

181

The myth of mean dose as a surrogate for radiation risk?  

NASA Astrophysics Data System (ADS)

The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. Each organ dose is assumed to be homogeneous, a representative sample or mean of which is weighted by a corresponding tissue weighting factor provided by ICRP publication 103. The weighted values are summed to provide Effective Dose (ED), the most-widely accepted surrogate for population radiation risk. For individual risk estimation, one may employ Effective Risk (ER), which further incorporates gender- and age-specific risk factors. However, both the tissue-weighting factors (as used by ED) and the risk factors (as used by ER) were derived (mostly from the atomic bomb survivor data) under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical imaging procedures. In chest CT, for example, superficial organs (eg, breasts) demonstrate a heterogeneous distribution while organs on the peripheries of the irradiation field (eg, liver) possess a nearly discontinuous dose profile. Projection radiography and mammography involve an even wider range of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ, and therefore, effective dose or effective risk, as commonly computed, can misrepresent irradiation risk. In this paper, we report the magnitude of the dose heterogeneity in both CT and projection x-ray imaging, provide an assessment of its impact on irradiation risk, and explore an alternative model-based approach for risk estimation for imaging techniques involving heterogeneous organ dose distributions.

Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert

2010-04-01

182

Evaluation of brachytherapy lung implant dose distributions from photon-emitting sources due to tissue heterogeneities  

SciTech Connect

Purpose: Photon-emitting brachytherapy sources are used for permanent implantation to treat lung cancer. However, the current brachytherapy dose calculation formalism assumes a homogeneous water medium without considering the influence of radiation scatter or tissue heterogeneities. The purpose of this study was to determine the dosimetric effects of tissue heterogeneities for permanent lung brachytherapy. Methods: The MCNP5 v1.40 radiation transport code was used for Monte Carlo (MC) simulations. Point sources with energies of 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV were simulated to cover the range of pertinent brachytherapy energies and to glean dosimetric trends independent of specific radionuclide emissions. Source positions from postimplant CT scans of five patient implants were used for source coordinates, with dose normalized to 200 Gy at the center of each implant. With the presence of fibrosis (around the implant), cortical bone, lung, and healthy tissues, dose distributions and {sub PTV}DVH were calculated using the MCNP *FMESH4 tally and the NIST mass-energy absorption coefficients. This process was repeated upon replacing all tissues with water. For all photon energies, 10{sup 9} histories were simulated to achieve statistical errors (k = 1) typically of 1%. Results: The mean PTV doses calculated using tissue heterogeneities for all five patients changed (compared to dose to water) by only a few percent over the examined photon energy range, as did PTV dose at the implant center. The {sub PTV}V{sub 100} values were 81.2%, 90.0% (as normalized), 94.3%, 93.9%, 92.7%, and 92.2% for 0.02, 0.03, 0.05, 0.1, 0.2, and 0.4 MeV source photons, respectively. Relative to water, the maximum bone doses were higher by factors of 3.7, 5.1, 5.2, 2.4, 1.2, and 1.0 The maximum lung doses were about 0.98, 0.94, 0.91, 0.94, 0.97, and 0.99. Relative to water, the maximum healthy tissue doses at the mediastinal position were higher by factors of 9.8, 2.2, 1.3, 1.1, 1.1, and 1.1. However, the maximum doses to these healthy tissues were only 3.1, 7.2, 11.3, 10.9, 9.0, and 8.1 Gy while maximum bone doses were 66, 177, 236, 106, 49, and 39 Gy, respectively. Similarly, maximum lung doses were 55, 66, 73, 74, 73, and 73 Gy, respectively. Conclusions: The current brachytherapy dose calculation formalism overestimates PTV dose and significantly underestimates doses to bone and healthy tissue. Further investigation using specific brachytherapy source models and patient-based CT datasets as MC input may indicate whether the observed trends can be generalized for low-energy lung brachytherapy dosimetry.

Yang Yun; Rivard, Mark J. [Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

2011-11-15

183

Original article Approximate restricted maximum  

E-print Network

, the estimation of a genetic (co-)variance component involves the trace of the product of the inverse variances. Several examples are presented to illustrate the method. variance and covariance components de Maximum de Vraisemblance Restreint (REML), l'estimation des composantes de (co)variance génétique

Boyer, Edmond

184

Original article Restricted maximum likelihood  

E-print Network

to transform the constrained optimisation problem imposed in estimating covariance components-free algorithm. restricted maximum likelihood / derivative / algorithm / variance component esti- mation Résumé'optimisation avec contrainte que soulève l'estimation des composantes de variance en un problème sans contrainte, ce

Paris-Sud XI, Université de

185

Maximum entropy beam diagnostic tomography  

SciTech Connect

This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore.

Mottershead, C.T.

1985-10-01

186

Maximum entropy beam diagnostic tomography  

SciTech Connect

This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs.

Mottershead, C.T.

1985-01-01

187

TMDLs (Total Maximum Daily Loads)  

NSDL National Science Digital Library

The Water Quality Information Center at the National Agricultural Library (USDA) offers this excellent resource on TMDLs (Total Maximum Daily Loads), with links to dozens of relevant and current publications. From basic questions and answers to current policies regarding TMDLs, this collection of resources is well worth browsing.

188

Maximum Margin Clustering Made Practical  

Microsoft Academic Search

Motivated by the success of large margin methods in supervised learning, maximum margin clustering (MMC) is a recent approach that aims at extending large margin methods to unsupervised learning. However, its optimization problem is nonconvex and existing MMC methods all rely on reformulating and relaxing the nonconvex optimization problem as semidefinite programs (SDP). Though SDP is convex and standard solvers

Kai Zhang; Ivor W. Tsang; James T. Kwok

2009-01-01

189

Dose audit failures and dose augmentation  

NASA Astrophysics Data System (ADS)

Standards EN 552 and ISO 11137, covering radiation sterilization, are technically equivalent in their requirements for the selection of the sterilization dose. Dose Setting Methods 1 and 2 described in Annex B of ISO 11137 can be used to meet these requirements for the selection of the sterilization dose. Both dose setting methods require a dose audit every 3 months to determine the continued validity of the sterilization dose. This paper addresses the subject of dose audit failures and investigations into their cause. It also presents a method to augment the sterilization dose when the number of audit positives exceeds the limits imposed by ISO 11137.

Herring, C.

1999-01-01

190

Point Groups  

NSDL National Science Digital Library

This exercise involves identifying symmetry in crystals and using that information to assign crystals to crystal systems and point groups. Students examine cardboard models and wooden blocks and fill their symmetry elements into a table. Then they figure out what what crystal system and point group each sample belongs to and fill in another table.

Dexter Perkins

191

A {gamma} dose distribution evaluation technique using the k-d tree for nearest neighbor searching  

SciTech Connect

Purpose: The authors propose an algorithm based on the k-d tree for nearest neighbor searching to improve the {gamma} calculation time for 2D and 3D dose distributions. Methods: The {gamma} calculation method has been widely used for comparisons of dose distributions in clinical treatment plans and quality assurances. By specifying the acceptable dose and distance-to-agreement criteria, the method provides quantitative measurement of the agreement between the reference and evaluation dose distributions. The {gamma} value indicates the acceptability. In regions where {gamma}{<=}1, the predefined criterion is satisfied and thus the agreement is acceptable; otherwise, the agreement fails. Although the concept of the method is not complicated and a quick naieve implementation is straightforward, an efficient and robust implementation is not trivial. Recent algorithms based on exhaustive searching within a maximum radius, the geometric Euclidean distance, and the table lookup method have been proposed to improve the computational time for multidimensional dose distributions. Motivated by the fact that the least searching time for finding a nearest neighbor can be an O(log N) operation with a k-d tree, where N is the total number of the dose points, the authors propose an algorithm based on the k-d tree for the {gamma} evaluation in this work. Results: In the experiment, the authors found that the average k-d tree construction time per reference point is O(log N), while the nearest neighbor searching time per evaluation point is proportional to O(N{sup 1/k}), where k is between 2 and 3 for two-dimensional and three-dimensional dose distributions, respectively. Conclusions: Comparing with other algorithms such as exhaustive search and sorted list O(N), the k-d tree algorithm for {gamma} evaluation is much more efficient.

Yuan Jiankui; Chen Weimin [ICT Radiotherapy, Livingston, New Jersey 07039 (United States) and Northeast Radiation Oncology Center, Dunmore, Pennsylvania 18509 (United States); ICT Radiotherapy, Livingston, New Jersey 07039 (United States)

2010-09-15

192

Use of new radiochromic devices for peripheral dose measurement: potential in-vivo dosimetry application  

PubMed Central

The authors have studied the feasibility of using three new high-sensitivity radiochromic devices in measuring the doses to peripheral points outside the primary megavoltage photon beams. The three devices were GAFCHROMIC® EBT film, prototype Low Dose (LD) Film, and prototype LD Card. The authors performed point dosimetry using these three devices in water-equivalent solid phantoms at x = 3,5,8,10, and 15 cm from the edge of 6 MV and 15 MV photon beams of 10x10 cm2, and at depths of 0, 0.5 cm, and depth of maximum dose. A full sheet of EBT film was exposed with 5000 MU. The prototype LD film pieces were 1.5x2 cm2 in size. Some LD films were provided in the form of a card in 1.8x5 cm2 holding an active film in 1.8x2 cm2. These are referred to as “LD dosimeter cards”. The small LD films and cards were exposed with 500 MU. For each scanned film, a 6 mm circular area centered at the measurement point was sampled and the mean pixel value was obtained. The calibration curves were established from the calibration data for each combination of film/cards and densitometer/scanner. The doses at the peripheral points determined from the films were compared with those obtained using ion chamber at respective locations in a water phantom and general agreements were found. It is feasible to accurately measure peripheral doses of megavoltage photon beams using the new high-sensitivity radiochromic devices. This near real-time and inexpensive method can be applied in a clinical setting for dose measurements to critical organs and sensitive patient implant devices. PMID:21610987

Chiu-Tsao, S-T; Chan, MF

2009-01-01

193

BGIM : Maximum Likelihood Estimation Primer  

NSDL National Science Digital Library

Created by Shaun Purcell of the Social, Genetic and Development Pyschiatry Research Centre, this set of pages is an introduction to the maximum likelihood estimation. It discusses the likelihood and log-likelihood functions and the process of optimizing. The author breaks the page down in this way: introduction, model-fitting, MLE in practice, likelihood ratio test, MLE analysis of twin data and MLE analysis of linkage data. The author offers further reading for extra study of this statistical method.

Purcell, Shaun

194

Reconstruction of organ dose for external radiotherapy patients in retrospective epidemiologic studies.  

PubMed

Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10?year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support retrospective epidemiological studies of late effects in radiotherapy patients. PMID:25715852

Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik

2015-03-21

195

Reconstruction of organ dose for external radiotherapy patients in retrospective epidemiologic studies  

NASA Astrophysics Data System (ADS)

Organ dose estimation for retrospective epidemiological studies of late effects in radiotherapy patients involves two challenges: radiological images to represent patient anatomy are not usually available for patient cohorts who were treated years ago, and efficient dose reconstruction methods for large-scale patient cohorts are not well established. In the current study, we developed methods to reconstruct organ doses for radiotherapy patients by using a series of computational human phantoms coupled with a commercial treatment planning system (TPS) and a radiotherapy-dedicated Monte Carlo transport code, and performed illustrative dose calculations. First, we developed methods to convert the anatomy and organ contours of the pediatric and adult hybrid computational phantom series to Digital Imaging and Communications in Medicine (DICOM)-image and DICOM-structure files, respectively. The resulting DICOM files were imported to a commercial TPS for simulating radiotherapy and dose calculation for in-field organs. The conversion process was validated by comparing electron densities relative to water and organ volumes between the hybrid phantoms and the DICOM files imported in TPS, which showed agreements within 0.1 and 2%, respectively. Second, we developed a procedure to transfer DICOM-RT files generated from the TPS directly to a Monte Carlo transport code, x-ray Voxel Monte Carlo (XVMC) for more accurate dose calculations. Third, to illustrate the performance of the established methods, we simulated a whole brain treatment for the 10?year-old male phantom and a prostate treatment for the adult male phantom. Radiation doses to selected organs were calculated using the TPS and XVMC, and compared to each other. Organ average doses from the two methods matched within 7%, whereas maximum and minimum point doses differed up to 45%. The dosimetry methods and procedures established in this study will be useful for the reconstruction of organ dose to support retrospective epidemiological studies of late effects in radiotherapy patients.

Lee, Choonik; Jung, Jae Won; Pelletier, Christopher; Pyakuryal, Anil; Lamart, Stephanie; Kim, Jong Oh; Lee, Choonsik

2015-03-01

196

Solar maximum: Solar array degradation  

NASA Technical Reports Server (NTRS)

The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

Miller, T.

1985-01-01

197

HADOC: a computer code for calculation of external and inhalation doses from acute radionuclide releases  

SciTech Connect

The computer code HADOC (Hanford Acute Dose Calculations) is described and instructions for its use are presented. The code calculates external dose from air submersion and inhalation doses following acute radionuclide releases. Atmospheric dispersion is calculated using the Hanford model with options to determine maximum conditions. Building wake effects and terrain variation may also be considered. Doses are calculated using dose conversion factor supplied in a data library. Doses are reported for one and fifty year dose commitment periods for the maximum individual and the regional population (within 50 miles). The fractional contribution to dose by radionuclide and exposure mode are also printed if requested.

Strenge, D.L.; Peloquin, R.A.

1981-04-01

198

Maximum life spur gear design  

NASA Technical Reports Server (NTRS)

Optimization procedures allow one to design a spur gear reduction for maximum life and other end use criteria. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial guess values. The optimization algorithm is described, and the models for gear life and performance are presented. The algorithm is compact and has been programmed for execution on a desk top computer. Two examples are presented to illustrate the method and its application.

Savage, M.; Mackulin, M. J.; Coe, H. H.; Coy, J. J.

1991-01-01

199

VEHICLE DYNAMICS MODEL FOR PREDICTING MAXIMUM TRUCK ACCELERATION LEVELS  

E-print Network

VEHICLE DYNAMICS MODEL FOR PREDICTING MAXIMUM TRUCK ACCELERATION LEVELS by Hesham Rakha1 , Member, Setti, and Van Aerde 2 ABSTRACT The paper presents a simple vehicle dynamics model for estimating and deceleration behavior contradicts basic vehicle dynamics. It is not clear at this point if this difference

Rakha, Hesham A.

200

On the Maximum Number of Constraints of an Orthogonal Array  

Microsoft Academic Search

R. C. Bose and K. A. Bush [1] showed how to make use of the maximum number of points, no three of which are collinear, in finite projective spaces for the construction of orthogonal arrays. In particular this enabled them to construct an orthogonal array (81, 10, 3, 3). They proved on the other hand that, in the case considered,

Esther Seiden

1955-01-01

201

A Comprehensive Analysis of Cardiac Dose in Balloon-Based High-Dose-Rate Brachytherapy for Left-Sided Breast Cancer  

SciTech Connect

Purpose: To investigate radiation dose to the heart in 60 patients with left-sided breast cancer who were treated with balloon-based high-dose-rate brachytherapy using MammoSite or Contura applicators. Methods and Materials: We studied 60 consecutive women with breast cancer who were treated with 34 Gy in 10 twice-daily fractions using MammoSite (n = 37) or Contura (n = 23) applicators. The whole heart and the left and right ventricles were retrospectively delineated, and dose-volume histograms were analyzed. Multiple dosimetrics were reported, such as mean dose (D{sub mean}); relative volume receiving 1.7, 5, 10, and 20 Gy (V1.7, V5, V10, and V20, respectively); dose to 1 cc (D{sub 1cc}); and maximum point dose (D{sub max}). Biologic metrics, biologically effective dose and generalized equivalent uniform dose were computed. The impact of lumpectomy cavity location on cardiac dose was investigated. Results: The average {+-} standard deviation of D{sub mean} was 2.45 {+-} 0.94 Gy (range, 0.56-4.68) and 3.29 {+-} 1.28 Gy (range, 0.77-6.35) for the heart and the ventricles, respectively. The average whole heart V5 and V10 values were 10.2% and 1.3%, respectively, and the heart D{sub max} was >20 Gy in 7 of 60 (11.7%) patients and >25 Gy in 3 of 60 (5%) patients. No cardiac tissue received {>=}30 Gy. The V1.7, V5, V10, V20, and D{sub mean} values were all higher for the ventricles than for the whole heart. For balloons located in the upper inner quadrant of the breast, the average whole heart D{sub mean} was highest. The D{sub mean}, biologically effective dose, and generalized equivalent uniform dose values for heart and ventricles decreased with increasing minimal distance from the surface of the balloon. Conclusions: On the basis of these comprehensive cardiac dosimetric data, we recommend that cardiac dose be routinely reported and kept as low as possible in balloon-based high-dose-rate brachytherapy treatment planning for patients with left-sided breast cancer so the correlation with future cardiac toxicity data can be investigated.

Valakh, Vladimir, E-mail: vladimir@valakh.com [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA (United States); Kim, Yongbok; Werts, E. Day; Trombetta, Mark G. [Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA (United States); Drexel University College of Medicine, Allegheny Campus, Pittsburgh, PA (United States)

2012-04-01

202

Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.  

PubMed

This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient. PMID:22298238

Satory, P R

2012-03-01

203

Estimation of external dose by car-borne survey in kerala, India.  

PubMed

A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 ?Gy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 ?Gy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y. PMID:25885680

Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi

2015-01-01

204

Estimation of External Dose by Car-Borne Survey in Kerala, India  

PubMed Central

A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 ?Gy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7–2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 ?Gy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y. PMID:25885680

Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi

2015-01-01

205

Dose rate assessment in complex geometries  

Microsoft Academic Search

A code developed for calculating dose rate maps in scenarios with complex geometries and gamma radiation sources is presented in this work. It is based on the point kernel method. The code computes photon flux and dose rate in preselected positions due to volumetric radioactive sources in the presence of other nonemitting materials acting as shielding. Buildup factors are considered

Óscar Vela; Eduardo de Burgos; José M. Pérez

2006-01-01

206

Dose rate assessment in complex geometries  

Microsoft Academic Search

A code developed for calculating dose rate maps in scenarios with complex geometries and gamma radiation sources is presented in this work. It is based on the point kernel method. The code computes photon flux and dose rate in pre-selected positions due to volumetric radioactive sources in the presence of other non-emitting materials acting as shielding. Buildup factors are considered

Óscar Vela; Eduardo de Burgos; José M. Pérez

2004-01-01

207

Neutron capture therapy: a comparison between dose enhancement of various agents, nanoparticles and chemotherapy drugs.  

PubMed

The aim of this study is to compare dose enhancement of various agents, nanoparticles and chemotherapy drugs for neutron capture therapy. A (252)Cf source was simulated to obtain its dosimetric parameters, including air kerma strength, dose rate constant, radial dose function and total dose rates. These results were compared with previously published data. Using (252)Cf as a neutron source, the in-tumour dose enhancements in the presence of atomic (10)B, (157)Gd and (33)S agents; (10)B, (157)Gd, (33)S nanoparticles; and Bortezomib and Amifostine chemotherapy drugs were calculated and compared in neutron capture therapy. Monte Carlo code MCNPX was used for simulation of the (252)Cf source, a soft tissue phantom, and a tumour containing each capture agent. Dose enhancement for 100, 200 and 500 ppm of the mentioned media was calculated. Calculated dosimetric parameters of the (252)Cf source were in agreement with previously published values. In comparison to other agents, maximum dose enhancement factor was obtained for 500 ppm of atomic (10)B agent and (10)B nanoparticles, equal to 1.06 and 1.08, respectively. Additionally, Bortezomib showed a considerable dose enhancement level. From a dose enhancement point of view, media containing (10)B are the best agents in neutron capture therapy. Bortezomib is a chemotherapy drug containing boron and can be proposed as an agent in boron neutron capture therapy. However, it should be noted that other physical, chemical and medical criteria should be considered in comparing the mentioned agents before their clinical use in neutron capture therapy. PMID:24961208

Khosroabadi, Mohsen; Ghorbani, Mahdi; Rahmani, Faezeh; Knaup, Courtney

2014-09-01

208

Peripheral dose measurements for 6 and 18 MV photon beams on a linear accelerator with multileaf collimator  

SciTech Connect

Peripheral dose (PD) to critical structures outside treatment volume is of clinical importance. The aim of the current study was to estimate PD on a linear accelerator equipped with multileaf collimator (MLC). Dose measurements were carried out using an ionization chamber embedded in a water phantom for 6 and 18 MV photon beams. PD values were acquired for field sizes from 5x5 to 20x20 cm{sup 2} in increments of 5 cm at distances up to 24 cm from the field edge. Dose data were obtained at two collimator orientations where the measurement points are shielded by MLC and jaws. The variation of PD with the source to skin distance (SSD), depth, and lateral displacement of the measurement point was evaluated. To examine the dependence of PD upon the tissue thickness at the entrance point of the beam, scattered dose was measured using thermoluminescent dosemeters placed on three anthropomorphic phantoms simulating 5- and 10-year-old children and an average adult patient. PD from 6 MV photons varied from 0.13% to 6.75% of the central-axis maximum dose depending upon the collimator orientation, extent of irradiated area, and distance from the treatment field. The corresponding dose range from 18 MV x rays was 0.09% to 5.61%. The variation of PD with depth and with lateral displacements up to 80% of the field dimension was very small. The scattered dose from both photon beams increased with the increase of SSD or tissue thickness along beam axis. The presented dosimetric data set allows the estimation of scattered dose outside the primary beam.

Mazonakis, Michalis; Zacharopoulou, Fotini; Varveris, Haralambos; Damilakis, John [Department of Medical Physics, University Hospital of Iraklion, 71110 Iraklion (Greece); Department of Radiotherapy, Faculty of Medicine, University of Crete, 71409 Iraklion (Greece); Department of Medical Physics, Faculty of Medicine, University of Crete, 71409 Iraklion (Greece)

2008-10-15

209

Maximum performance tests of speech production.  

PubMed

The maximum performance tests of speech production are those tests that examine the upper limits of performance for selected speech tasks. Among the most commonly used maximum performance tests are the following: maximum duration of phonation, maximum fricative duration, maximum phonation volume, maximum expiratory pressure, fundamental frequency range, maximum sound pressure level, maximum occluding force of the articulators, and diadochokinetic (maximum repetition) rate. Many clinicians use at least some of these tasks as part of an assessment protocol. These tests are analogous to strength, range, or speed tests in clinical neurology. Given the widespread use of these tests and a rather scattered literature on normative values obtained for them, a survey of the data base seemed in order. This paper summarizes the published normative data, discusses the adequacy of these data for clinical application, and recommends interpretive guidelines to enhance the usefulness of maximum performance tests. PMID:3312817

Kent, R D; Kent, J F; Rosenbek, J C

1987-11-01

210

System for Memorizing Maximum Values  

NASA Technical Reports Server (NTRS)

The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either liner or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

Bozeman, Richard J., Jr. (Inventor)

1996-01-01

211

Dose evaluation for skin and organ in hepatocellular carcinoma during angiographic procedure  

PubMed Central

Purpose The purpose of this study is to evaluate the radiation dose in patients undergoing liver angiographic procedure and verify the usefulness of different dose measurements to prevent deterministic effects. Gafchromic film, MicroMOSFET data and DIAMENTOR device of the X-ray system were used to characterize the examined interventional radiology (IR) procedure. Materials and methods A liver embolization procedure, the SIRT (Selective Internal Radiation Therapy), was investigated. The exposure parameters from the DIAMENTOR as well as patient and geometrical data were registered. Entrance skin dose map obtained using Gafchromic film (ESDGAF) in a standard phantom as well as in 12 patients were used to calculate the maximum skin dose (MSDGAF). MicroMOSFETs were used to assess ESD in relevant points/areas. Moreover, the maximum value of five MicroMOSFETs array, due to the extension of treated area and to the relative distance of 2–3 cm of two adjacent MicroMOSFETs, was useful to predict the MSD without interfering with the clinical practice. PCXMC vers.1.5 was used to calculate effective dose (E) and equivalent dose (H). Results The mean dose-area product (DAPDIAMENTOR) for SIRT procedures was 166 Gycm2, although a wide range was observed. The mean MSDGAF for SIRT procedures was 1090 mGy, although a wide range was experienced. A correlation was found between the MSDGAF measured on a patient and the DAPDIAMENTOR value for liver embolizations. MOSFET and Gafchromic data were in agreement within 5% in homogeneous area and within 20% in high dose gradient regions. The mean equivalent dose in critical organs was 89.8 mSv for kidneys, 22.9 mSv for pancreas, 20.2 mSv for small intestine and 21.0 mSv for spleen. Whereas the mean E was 3.7 mSv (range: 0.5-13.7). Conclusions Gafchromic films result useful to study patient exposure and determine localization and amplitude of high dose skin areas to better predict the skin injuries. Then, DAPDIAMENTOR or MOSFET data could offer real-time methods, as on-line dose alert, to avoid any side effects during liver embolization with prolonged duration. PMID:24423052

2013-01-01

212

Dew Point  

NSDL National Science Digital Library

Determine the dew point temperature for your classroom through a hands-on experiment. Use humidity and temperature probes to investigate the temperature at which it would rain in your classroom! Learn about water density and the conditions necessary to produce fog or rain.

2012-07-19

213

Dynamically accumulated dose and 4D accumulated dose for moving tumors  

SciTech Connect

Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove the principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference between the dynamic dose and 4D dose as a function of number of deliveries and/or total deliver time was also established.

Li Heng; Li Yupeng; Zhang Xiaodong; Li Xiaoqiang; Liu Wei; Gillin, Michael T.; Zhu, X. Ronald [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

2012-12-15

214

Failure-probability driven dose painting  

PubMed Central

Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed. Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy. Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%. Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity. PMID:23927314

Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Berthelsen, Anne K.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena; Bentzen, Søren M.

2013-01-01

215

Failure-probability driven dose painting  

SciTech Connect

Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). The total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.

Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.; Aznar, Marianne C.; Kristensen, Claus A.; Rasmussen, Jacob; Specht, Lena [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark)] [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark); Berthelsen, Anne K. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark)] [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen 2100 (Denmark); Bentzen, Søren M. [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Departments of Human Oncology and Medical Physics, University of Wisconsin, Madison, Wisconsin 53792 (United States)] [Department of Radiation Oncology, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark and Departments of Human Oncology and Medical Physics, University of Wisconsin, Madison, Wisconsin 53792 (United States)

2013-08-15

216

Technical basis for dose reconstruction  

SciTech Connect

The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.

Anspaugh, L.R.

1996-01-31

217

Maximum-likelihood density modification  

PubMed Central

A likelihood-based approach to density modification is developed that can be applied to a wide variety of cases where some information about the electron density at various points in the unit cell is available. The key to the approach consists of developing likelihood functions that represent the probability that a particular value of electron density is consistent with prior expectations for the electron density at that point in the unit cell. These likelihood functions are then combined with likelihood functions based on experimental observations and with others containing any prior knowledge about structure factors to form a combined likelihood function for each structure factor. A simple and general approach to maximizing the combined likelihood function is developed. It is found that this likelihood-based approach yields greater phase improvement in model and real test cases than either conventional solvent flattening and histogram matching or a recent reciprocal-space solvent-flattening procedure [Terwilliger (1999 ?), Acta Cryst. D55, 1863–1871]. PMID:10944333

Terwilliger, Thomas C.

2000-01-01

218

Maximum entropy production in daisyworld  

NASA Astrophysics Data System (ADS)

Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.

Maunu, Haley A.; Knuth, Kevin H.

2012-05-01

219

Graphing Points  

NSDL National Science Digital Library

Let's learn how to use the lines on graphs (the x & y axis) to plot information. Choose any of the activities below to test your knowledge of identifying the coordinates correctly. Meteoroid Coordinates Soccer Coordinates Donut Coordinates Graphing Points Save the Zogs!-Using Linear Equations Using your coordinate plane knowledge and linear equations help to rescue the Zogs! Can you find the axis for these problems too? What have you noticed about linear equations? What do the lines in linear equations look ...

Izzy

2012-02-07

220

Pivot point  

Microsoft Academic Search

The history of photovoltaics (PV's) is traced from 1958 and Vanguard I to the present with emphasis on cost factors modern developments, and practical applications. Overseas applications, particularly in developing countries without electrical distribution, are pointed out. The current situation in PV's is discussed. Companies involved and current technologies are reviewed. The average single-crystal PV module is cited at $9.50\\/watt

Best

1982-01-01

221

2011 Radioactive Materials Usage Survey for Unmonitored Point Sources  

SciTech Connect

This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

Sturgeon, Richard W. [Los Alamos National Laboratory

2012-06-27

222

Radiation Dose Chart  

NSDL National Science Digital Library

This is an illustration of the ionizing radiation dose a person can absorb from various sources. It provides a visual comparison of doses ranging from 0.1 microsieverts (from eating a banana) to a fatal dose of 8 sieverts.

Randall Munroe

223

Pharmacokinetics, efficacy, and safety of mycophenolate mofetil in combination with standard-dose or reduced-dose tacrolimus in liver transplant recipients.  

PubMed

The pharmacokinetics of mycophenolate mofetil (MMF) in liver transplant recipients may change because of pharmacokinetic interactions with coadministered immunosuppressants or because changes in the enterohepatic anatomy may affect biotransformation of MMF to mycophenolic acid (MPA) and enterohepatic recirculation of MPA through the hydrolysis of mycophenolate acid glucuronide to MPA in the gut. In the latter case, the choice of formulation (oral versus intravenous) could have important clinical implications. We randomized liver transplant patients (n = 60) to standard (10-15 ng/mL) or reduced (5-8 ng/mL) trough levels of tacrolimus plus intravenous MMF followed by oral MMF (1 g twice daily) with corticosteroids. Pharmacokinetic sampling was performed after the last intravenous MMF dose, after the first oral MMF dose, and at selected times over 52 weeks. The efficacy and safety of the 2 regimens were also assessed. Twenty-eight and 27 patients in the tacrolimus standard-dose and reduced-dose groups, respectively, were evaluated. No significant differences between the tacrolimus standard-dose and reduced-dose groups were seen in dose-normalized MPA values of the time to the maximum plasma concentration (1.25 versus 1.28 hours), the maximum plasma concentration (15.5 +/- 7.93 versus 13.6 +/- 7.03 microg/mL), or the area under the concentration-time curve from 0 to 12 hours (AUC(0-12); 53.0 +/- 20.6 versus 43.8 +/- 15.5 microg h/mL) at week 26 or at any other time point. No relationship was observed between the tacrolimus trough or AUC(0-12) and MPA AUC(0-12). Exposure to MPA after oral and intravenous administration was similar. Safety and efficacy were similar in the two treatment groups. In conclusion, exposure to MPA is not a function of exposure to tacrolimus. The similar safety and efficacy seen with MMF plus standard or reduced doses of tacrolimus suggest that MMF could be combined with reduced doses of tacrolimus. PMID:19177449

Nashan, Björn; Saliba, Faouzi; Durand, Francois; Barcéna, Rafael; Herrero, Jose Ignacio; Mentha, Gilles; Neuhaus, Peter; Bowles, Matthew; Patch, David; Bernardos, Angel; Klempnauer, Jürgen; Bouw, René; Ives, Jane; Mamelok, Richard; McKay, Diane; Truman, Matt; Marotta, Paul

2009-02-01

224

Radiological Dose Assessment 8 2003 SITE ENVIRONMENTAL REPORT8-1  

E-print Network

Radiological Dose Assessment 8 2003 SITE ENVIRONMENTAL REPORT8-1 Brookhaven National Laboratory routinely assesses its operations to ensure that any potential radiological dose to the public, BNL workers radiological dose to the public is calculated as the maximum dose to a hypothetical Maximally Exposed

Homes, Christopher C.

225

The impact of dose calculation algorithms on partial and whole breast radiation treatment plans  

PubMed Central

Background This paper compares the calculated dose to target and normal tissues when using pencil beam (PBC), superposition/convolution (AAA) and Monte Carlo (MC) algorithms for whole breast (WBI) and accelerated partial breast irradiation (APBI) treatment plans. Methods Plans for 10 patients who met all dosimetry constraints on a prospective APBI protocol when using PBC calculations were recomputed with AAA and MC, keeping the monitor units and beam angles fixed. Similar calculations were performed for WBI plans on the same patients. Doses to target and normal tissue volumes were tested for significance using the paired Student's t-test. Results For WBI plans the average dose to target volumes when using PBC calculations was not significantly different than AAA calculations, the average PBC dose to the ipsilateral breast was 10.5% higher than the AAA calculations and the average MC dose to the ipsilateral breast was 11.8% lower than the PBC calculations. For ABPI plans there were no differences in dose to the planning target volume, ipsilateral breast, heart, ipsilateral lung, or contra-lateral lung. Although not significant, the maximum PBC dose to the contra-lateral breast was 1.9% higher than AAA and the PBC dose to the clinical target volume was 2.1% higher than AAA. When WBI technique is switched to APBI, there was significant reduction in dose to the ipsilateral breast when using PBC, a significant reduction in dose to the ipsilateral lung when using AAA, and a significant reduction in dose to the ipsilateral breast and lung and contra-lateral lung when using MC. Conclusions There is very good agreement between PBC, AAA and MC for all target and most normal tissues when treating with APBI and WBI and most of the differences in doses to target and normal tissues are not clinically significant. However, a commonly used dosimetry constraint, as recommended by the ASTRO consensus document for APBI, that no point in the contra-lateral breast volume should receive >3% of the prescribed dose needs to be relaxed to >5%. PMID:21162739

2010-01-01

226

Maximum entropy principal for transportation  

SciTech Connect

In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

Bilich, F. [University of Brasilia (Brazil); Da Silva, R. [National Research Council (Brazil)

2008-11-06

227

Maximum Entropy Principle for Transportation  

NASA Astrophysics Data System (ADS)

In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

Bilich, F.; DaSilva, R.

2008-11-01

228

Analytical representation for Varian EDW factors at off-center points  

SciTech Connect

The purpose of this study is to describe and evaluate a new analytical model for Varian enhanced dynamic wedge factors at off-center points. The new model was verified by comparing measured and calculated wedge factors for the standard set of wedge angles (i.e., 15 deg., 30 deg., 45 deg. and 60 deg.), different symmetric and asymmetric fields, and two different photon energies. The maximum difference between calculated and measured wedge factors is less than 2%. The average absolute difference is within 1%. The obtained results indicate that the suggested model can be useful for independent dose calculation with enhanced dynamic wedges.

Kuperman, Vadim Y. [James A. Haley Veterans Hospital, Tampa, Florida 33612 (United States)

2005-05-01

229

Life-Stage-, Sex-, and Dose-Dependent Dietary Toxicokinetics and Relationship to Toxicity of 2,4-Dichlorophenoxyacetic Acid (2,4-D) in Rats: Implications for Toxicity Test Dose Selection, Design, and Interpretation  

PubMed Central

Life-stage-dependent toxicity and dose-dependent toxicokinetics (TK) were evaluated in Sprague Dawley rats following dietary exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D renal clearance is impacted by dose-dependent saturation of the renal organic anion transporter; thus, this study focused on identifying inflection points of onset of dietary nonlinear TK to inform dose selection decisions for toxicity studies. Male and female rats were fed 2,4-D-fortified diets at doses to 1600 ppm for 4-weeks premating, <2 weeks during mating, and to test day (TD) 71 to parental (P1) males and to P1 females through gestation/lactation to TD 96. F1 offspring were exposed via milk with continuing diet exposure until postnatal day (PND) 35. As assessed by plasma area under the curve for the time-course plasma concentration, nonlinear TK was observed ?1200 ppm (63mg/kg/day) for P1 males and between 200 and 400 ppm (14–27mg/kg/day) for P1 females. Dam milk and pup plasma levels were higher on lactation day (LD) 14 than LD 4. Relative to P1 adults, 2,4-D levels were higher in dams during late gestation/lactation and postweaning pups (PND 21–35) and coincided with elevated intake of diet/kg body weight. Using conventional maximum tolerated dose (MTD) criteria based on body weight changes for dose selection would have resulted in excessive top doses approximately 2-fold higher than those identified incorporating critical TK data. These data indicate that demonstration of nonlinear TK, if present at dose levels substantially above real-world human exposures, is a key dose selection consideration for improving the human relevance of toxicity studies compared with studies employing conventional MTD dose selection strategies. PMID:24105888

Marty, Mary S.

2013-01-01

230

Transport calculations of gamma ray flux density and dose rate about implantable californium-252 sources  

Microsoft Academic Search

Gamma flux density and dose rate distributions have been calculated about implantable californium-252 sources for an infinite tissue medium. Point source flux densities as a function of energy and position were obtained from a discrete-ordinates calculation, and the flux densities were multiplied by their corresponding kerma factors and added to obtain point source dose rates. The point dose rates were

A Shapiro; B I Lin; J P Windham; J G Kereiakes

1976-01-01

231

MILDOS - A Computer Program for Calculating Environmental Radiation Doses from Uranium Recovery Operations  

SciTech Connect

The MILDOS Computer Code estimates impacts from radioactive emissions from uranium milling facilities. These impacts are presented as dose commitments to individuals and the regional population within an 80 km radius of the facility. Only airborne releases of radioactive materials are considered: releases to surface water and to groundwater are not addressed in MILDOS. This code is multi-purposed and can be used to evaluate population doses for NEPA assessments, maximum individual doses for predictive 40 CFR 190 compliance evaluations, or maximum offsite air concentrations for predictive evaluations of 10 CFR 20 compliance. Emissions of radioactive materials from fixed point source locations and from area sources are modeled using a sector-averaged Gaussian plume dispersion model, which utilizes user-provided wind frequency data. Mechanisms such as deposition of particulates, resuspension. radioactive decay and ingrowth of daughter radionuclides are included in the transport model. Annual average air concentrations are computed, from which subsequent impacts to humans through various pathways are computed. Ground surface concentrations are estimated from deposition buildup and ingrowth of radioactive daughters. The surface concentrations are modified by radioactive decay, weathering and other environmental processes. The MILDOS Computer Code allows the user to vary the emission sources as a step function of time by adjustinq the emission rates. which includes shutting them off completely. Thus the results of a computer run can be made to reflect changing processes throughout the facility's operational lifetime. The pathways considered for individual dose commitments and for population impacts are: • Inhalation • External exposure from ground concentrations • External exposure from cloud immersion • Ingestioo of vegetables • Ingestion of meat • Ingestion of milk • Dose commitments are calculated using dose conversion factors, which are ultimately based on recommendations of the International Commission on Radiological Protection (ICRP). These factors are fixed internally in the code, and are not part of the input option. Dose commitments which are available from the code are as follows: • Individual dose commitments for use in predictive 40 CFR 190 compliance evaluations (Radon and short-lived daughters are excluded) • Total individual dose commitments (impacts from all available radionuclides are considered) • Annual population dose commitments (regional, extraregional, total and cummulative). This model is primarily designed for uranium mill facilities, and should not be used for operations with different radionuclides or processes.

Strange, D. L.; Bander, T. J.

1981-04-01

232

Quick Organ Diagnosis and Treatment according to Bi-Digital O-Ring Test Measurements of Current Maximum Potential Relative Function, Relative Amount of Telomere and Acetylcholine, and Circulatory Disturbance on Organ Representation Points: Comparison with Palpation Diagnosis of Pressure Pain  

Microsoft Academic Search

The study aimed to find the factors that could be measured with the Bi-Digital O-Ring Test on an internal organ representation point (ORP) that would integrate with the diagnosis of palpable reflexive pressure pain (PP) on the ORP and on other related locations on the body often used in some acupuncture (AP) systems. The basic BDORT of function and the

Richard Malter; Dip Shiatsu; Cert Dry Needling

233

20 CFR 229.48 - Family maximum.  

Code of Federal Regulations, 2014 CFR

...maximum. (a) Family maximum...limited amount is called the family...more than one child's benefit), be entitled to a child's annuity...of $0.10, it will be rounded...1.00, if it is not already a multiple of...maximum. If a child is eligible...

2014-04-01

234

20 CFR 229.48 - Family maximum.  

Code of Federal Regulations, 2013 CFR

...maximum. (a) Family maximum...limited amount is called the family...more than one child's benefit), be entitled to a child's annuity...of $0.10, it will be rounded...1.00, if it is not already a multiple of...maximum. If a child is eligible...

2013-04-01

235

20 CFR 229.48 - Family maximum.  

Code of Federal Regulations, 2011 CFR

...maximum. (a) Family maximum...limited amount is called the family...more than one child's benefit), be entitled to a child's annuity...of $0.10, it will be rounded...1.00, if it is not already a multiple of...maximum. If a child is eligible...

2011-04-01

236

20 CFR 229.48 - Family maximum.  

Code of Federal Regulations, 2010 CFR

...maximum. (a) Family maximum...limited amount is called the family...more than one child's benefit), be entitled to a child's annuity...of $0.10, it will be rounded...1.00, if it is not already a multiple of...maximum. If a child is eligible...

2010-04-01

237

20 CFR 229.48 - Family maximum.  

Code of Federal Regulations, 2012 CFR

...maximum. (a) Family maximum...limited amount is called the family...more than one child's benefit), be entitled to a child's annuity...of $0.10, it will be rounded...1.00, if it is not already a multiple of...maximum. If a child is eligible...

2012-04-01

238

Maximum Likelihood Estimation in Generalized Rasch Models.  

ERIC Educational Resources Information Center

Maximum likelihood procedures are presented for a general model to unify the various models and techniques that have been proposed for item analysis. Unconditional maximum likelihood estimation, proposed by Wright and Haberman, and conditional maximum likelihood estimation, proposed by Rasch and Andersen, are shown as important special cases. (JAZ)

de Leeuw, Jan; Verhelst, Norman

1986-01-01

239

Optimized point dose measurement for monitor unit verification in intensity modulated radiation therapy using 6 MV photons by three different methodologies with different detector-phantom combinations: A comparative study.  

PubMed

The study was aimed to compare accuracy of monitor unit verification in intensity modulated radiation therapy (IMRT) using 6 MV photons by three different methodologies with different detector phantom combinations. Sixty patients were randomly chosen. Zero degree couch and gantry angle plans were generated in a plastic universal IMRT verification phantom and 30×30×30 cc water phantom and measured using 0.125 cc and 0.6 cc chambers, respectively. Actual gantry and couch angle plans were also measured in water phantom using 0.6 cc chamber. A suitable point of measurement was chosen from the beam profile for each field. When the zero-degree gantry, couch angle plans and actual gantry, couch angle plans were measured by 0.6 cc chamber in water phantom, the percentage mean difference (MD) was 1.35%, 2.94 % and Standard Deviation (SD) was 2.99%, 5.22%, respectively. The plastic phantom measurements with 0.125 cc chamber Semiflex ionisation chamber (SIC) showed an MD=4.21% and SD=2.73 %, but when corrected for chamber-medium response, they showed an improvement, with MD=3.38 % and SD=2.59 %. It was found that measurements with water phantom and 0.6cc chamber at gantry angle zero degree showed better conformity than other measurements of medium-detector combinations. Correction in plastic phantom measurement improved the result only marginally, and actual gantry angle measurement in a flat- water phantom showed higher deviation. PMID:20927221

Sarkar, Biplab; Ghosh, Bhaswar; Sriramprasath; Mahendramohan, Sukumaran; Basu, Ayan; Goswami, Jyotirup; Ray, Amitabh

2010-07-01

240

Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose  

NASA Technical Reports Server (NTRS)

While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.

Welton, Andrew; Lee, Kerry

2010-01-01

241

Measurement verification of dose distributions in pulsed-dose rate brachytherapy in breast cancer  

PubMed Central

Aim The aim of the study was to verify the dose distribution optimisation method in pulsed brachytherapy. Background The pulsed-dose rate brachytherapy is a very important method of breast tumour treatment using a standard brachytheraphy equipment. The appropriate dose distribution round an implant is an important issue in treatment planning. Advanced computer systems of treatment planning are equipped with algorithms optimising dose distribution. Materials and methods The wax-paraffin phantom was constructed and seven applicators were placed within it. Two treatment plans (non-optimised, optimised) were prepared. The reference points were located at a distance of 5 mm from the applicators’ axis. Thermoluminescent detectors were placed in the phantom at suitable 35 chosen reference points. Results The dosimetry verification was carried out in 35 reference points for the plans before and after optimisation. Percentage difference for the plan without optimisation ranged from ?8.5% to 1.4% and after optimisation from ?8.3% to 0.01%. In 16 reference points, the calculated percentage difference was negative (from ?8.5% to 1.3% for the plan without optimisation and from ?8.3% to 0.8% for the optimised plan). In the remaining 19 points percentage difference was from 9.1% to 1.4% for the plan without optimisation and from 7.5% to 0.01% for the optimised plan. No statistically significant differences were found between calculated doses and doses measured at reference points in both dose distribution non-optimised treatment plans and optimised treatment plans. Conclusions No statistically significant differences were found in dose values at reference points between doses calculated by the treatment planning system and those measured by TLDs. This proves the consistency between the measurements and the calculations. PMID:24416545

Mantaj, Patrycja; Zwierzchowski, Grzegorz

2013-01-01

242

Statistical optimization for passive scalar transport: maximum entropy production vs. maximum Kolmogorov-Sinay entropy  

NASA Astrophysics Data System (ADS)

We derive rigorous results on the link between the principle of maximum entropy production and the principle of maximum Kolmogorov-Sinai entropy using a Markov model of the passive scalar diffusion called the Zero Range Process. We show analytically that both the entropy production and the Kolmogorov-Sinai entropy seen as functions of f admit a unique maximum denoted fmaxEP and fmaxKS. The behavior of these two maxima is explored as a function of the system disequilibrium and the system resolution N. The main result of this article is that fmaxEP and fmaxKS have the same Taylor expansion at first order in the deviation of equilibrium. We find that fmaxEP hardly depends on N whereas fmaxKS depends strongly on N. In particular, for a fixed difference of potential between the reservoirs, fmaxEP(N) tends towards a non-zero value, while fmaxKS(N) tends to 0 when N goes to infinity. For values of N typical of that adopted by Paltridge and climatologists (N ? 10 ~ 100), we show that fmaxEP and fmaxKS coincide even far from equilibrium. Finally, we show that one can find an optimal resolution N* such that fmaxEP and fmaxKS coincide, at least up to a second order parameter proportional to the non-equilibrium fluxes imposed to the boundaries. We find that the optimal resolution N* depends on the non equilibrium fluxes, so that deeper convection should be represented on finer grids. This result points to the inadequacy of using a single grid for representing convection in climate and weather models. Moreover, the application of this principle to passive scalar transport parametrization is therefore expected to provide both the value of the optimal flux, and of the optimal number of degrees of freedom (resolution) to describe the system.

Mihelich, M.; Faranda, D.; Dubrulle, B.; Paillard, D.

2014-11-01

243

Plaque Therapy and Scatter Dose Using {sup 252}Cf Sources  

SciTech Connect

As melanomas are radioresistant to conventional low-linear energy transfer (LET) radiations such as photons and electrons, {sup 252}Cf (high-LET due to neutrons) may offer more promising clinical results. Although {sup 252}Cf also emits photons and electrons, the majority of absorbed dose is imparted by the high-LET radiation. This study examines the impact of scattering material on the neutron dose distributions for {sup 252}Cf plaque therapy (used to treat surface lesions like melanoma). Neutrons were transported through a 10-cm-diam water phantom with a thickness of either 5 or 10 cm using the MCNP radiation transport code. The phantom was surrounded by vacuum; the {sup 252}Cf neutron energy spectrum was modeled as a Maxwellian distribution; and the source was a bare point positioned at 1.0, 0.5, or {epsilon} above or below the water/vacuum interface. These source positions were chosen to mimic the case where a plaque locates the source either above the skin's surface, e.g., 2{pi} scattering geometry, or if layers of tissue-equivalent bolus materials were placed atop the implant to provide radiation backscatter, 4{pi} geometry. Differences between the 2{pi} and 4{pi} geometries were maximized closest to the source and for source positions farthest from the water/vacuum interface. Therefore, the maximum radiation dose (closest to the {sup 252}Cf source) may be minimized by not including scattering material for plaque therapy. However, for nonrelativistic, elastic scattering for protons by neutrons, the proton range increases with neutron energy. This result was expected since the neutron energy spectrum degrades at increasing depth and the proportion of fast neutron dose to total dose is maximized closest to the source in the 2{pi} geometry. Future studies will examine this effect as a function of neutron energy, will consider synergy with the low-LET {sup 252}Cf dose component and include experimental measurements, and will assess this technique to possibly improve in vivo dose distributions.

Mark J. Rivard; Anita Mahajan

2000-11-12

244

Phase I Dose-Escalation Study of MEDI-573, a Bispecific, Antiligand Monoclonal Antibody against IGFI and IGFII, in Patients with Advanced Solid Tumors  

PubMed Central

Purpose This phase I, multicenter, open-label, single-arm, dose-escalation, and dose-expansion study evaluated the safety, tolerability, and antitumor activity of MEDI-573 in adults with advanced solid tumors refractory to standard therapy or for which no standard therapy exists. Experimental Design Patients received MEDI-573 in 1 of 5 cohorts (0.5, 1.5, 5, 10, or 15 mg/kg) dosed weekly or 1 of 2 cohorts (30 or 45 mg/kg) dosed every 3 weeks. Primary end points included the MEDI-573 safety profile, maximum tolerated dose (MTD), and optimal biologic dose (OBD). Secondary end points included MEDI-573 pharmacokinetics (PK), pharmacodynamics, immunogenicity, and antitumor activity. Results In total, 43 patients (20 with urothelial cancer) received MEDI-573. No dose-limiting toxicities were identified, and only 1 patient experienced hyperglycemia related to treatment. Elevations in levels of insulin and/or growth hormone were not observed. Adverse events observed in >10% of patients included fatigue, anorexia, nausea, diarrhea, and anemia. PK evaluation demonstrated that levels of MEDI-573 increased with dose at all dose levels tested. At doses >5 mg/kg, circulating levels of insulin-like growth factor (IGF)-I and IGFII were fully suppressed. Of 39 patients evaluable for response, none experienced partial or complete response and 13 had stable disease as best response. Conclusions The MTD of MEDI-573 was not reached. The OBD was 5 mg/kg weekly or 30 or 45 mg/kg every 3 weeks. MEDI-573 showed preliminary antitumor activity in a heavily pretreated population and had a favorable tolerability profile, with no notable perturbations in metabolic homeostasis. PMID:25024259

Haluska, Paul; Menefee, Michael; Plimack, Elizabeth R.; Rosenberg, Jonathan; Northfelt, Donald; LaVallee, Theresa; Shi, Li; Yu, Xiang-Qing; Burke, Patricia; Huang, Jaiqi; Viner, Jaye; McDevitt, Jennifer; LoRusso, Patricia

2015-01-01

245

APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)  

EPA Science Inventory

Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

246

APPLICATION AND USE OF DOSE ESTIMATING EXPOSURE MODEL (DEEM) FOR ROUTE TO ROUTE DOSE COMPARISONS AFTER EXPOSURE TO TRICHLOROETHYLENE (TCE)  

EPA Science Inventory

Route-to-route extrapolations are a crucial step in many risk assessments. Often the doses which result In toxicological end points in one route must be compared with doses resulting from typical environmental exposures by another route. In this case we used EPA's Dose Estimati...

247

Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events.  

NASA Astrophysics Data System (ADS)

The Langley heavy-ion/nucleon and the high-energy nucleon transport codes are used to predict the propagation of galactic cosmic rays (GCR's) and solar flare protons through the carbon dioxide atmosphere of Mars. Particle fluences and the resulting doses are estimated on the surface of Mars for GCR's during solar maximum conditions and the August, September, and October 1989 solar proton events. Surface doses are estimated with both a low-density and a high-density carbon dioxide model of the atmosphere for altitudes of 0, 4, 8, and 12 km above the surface. A solar modulation function is incorporated to estimate the GCR dose variation between solar minimum and maximum conditions over the 11-year solar cycle. By using current Mars mission scenarios, doses to the skin, eye, and blood-forming organs are predicted for short- and long-duration stay times on the Martian surface throughout the solar cycle.

Simonsen, L. C.; Nealy, J. E.

1993-02-01

248

Peripheral doses from pediatric IMRT  

SciTech Connect

Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 to 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged from 0.47-0.94) doses {approx}[0.4-1.8 cGy]/[0.9-2.9 cGy]/fraction, respectively. Prior phantom reports are for fields 10 cm or greater, while pediatric central nervous system fields range from 4 to 7 cm, and effectively much smaller for IMRT (2-6 cm). Peripheral dose in close proximity (<10 cm from the field edge) is dominated by internal scatter; therefore, field-size differences overwhelm phantom size affects and increased MU. Distant peripheral dose, dominated by head leakage, was higher than predicted, even when accounting for MUs ({approx}factor of 3) likely due to the pediatric phantom size. The ratio of the testes dose ranged from 3.3-5.3 for IMRT/conventional. PD to OAR for pediatric IMRT cannot be predicted from large-field full phantom studies. For regional OAR, doses are likely lower than predicted by existing ''large field'' data, while the distant PD is higher.

Klein, Eric E.; Maserang, Beth; Wood, Roy; Mansur, David [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 (United States)

2006-07-15

249

Treatment Planning Methods in High Dose Rate Interstitial Brachytherapy of Carcinoma Cervix: A Dosimetric and Radiobiological Analysis  

PubMed Central

Treatment planning is a trial and error process that determines optimal dwell times, dose distribution, and loading pattern for high dose rate brachytherapy. Planning systems offer a number of dose calculation methods to either normalize or optimize the radiation dose. Each method has its own characteristics for achieving therapeutic dose to mitigate cancer growth without harming contiguous normal tissues. Our aim is to propose the best suited method for planning interstitial brachytherapy. 40 cervical cancer patients were randomly selected and 5 planning methods were iterated. Graphical optimization was compared with implant geometry and dose point normalization/optimization techniques using dosimetrical and radiobiological plan quality indices retrospectively. Mean tumor control probability was similar in all the methods with no statistical significance. Mean normal tissue complication probability for bladder and rectum is 0.3252 and 0.3126 (P = 0.0001), respectively, in graphical optimized plans compared to other methods. There was no significant correlation found between Conformity Index and tumor control probability when the plans were ranked according to Pearson product moment method (r = ?0.120). Graphical optimization can result in maximum sparing of normal tissues. PMID:24587919

Anbumani, Surega; Anchineyan, Pichandi; Narayanasamy, ArunaiNambiraj; Palled, Siddanna R.; Sathisan, Sajitha; Jayaraman, Punitha; Selvi, Muthu; Bilimagga, Ramesh S.

2014-01-01

250

A study to investigate dose escalation of doxorubicin in ABVD chemotherapy for Hodgkin lymphoma incorporating biomarkers of response and toxicity  

PubMed Central

Background: Myelotoxicity during initial cycles of chemotherapy for Hodgkin lymphoma is associated with better outcome, supporting the concept of individualised dosing based on pharmacodynamic end points to optimise results. This study was performed to identify the maximum tolerated dose (MTD) of doxorubicin within cycles 1–3 ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine). Circulating biomarkers of response (nucleosomal DNA, nDNA) and epithelial toxicity (Cytokeratin 18, CK18) were also measured. Methods: Dose escalation of doxorubicin in cycles 1–3 ABVD supported by pegfilgrastim was performed on a six-patient cohort basis (35, 45 and 55?mg?m–2) with doxorubicin reduced to 25?mg?m–2 or omitted in cycles 4–6 to maintain cumulative exposure of 103–130% standard ABVD. BVD was given at standard doses throughout. Six additional subjects were recruited at the MTD. Results: Twenty-four subjects were recruited. Dose-limiting toxicities (DLTs) of grade 3 neuropathy, pneumonitis, palmar-plantar erythema and neutropenic infection were observed at 55?mg?m–2, so 45?mg?m–2 was declared the MTD. In patients who subsequently experienced DLT at any time, large increases in CK18 were seen on day 3 of cycle 1 ABVD. Conclusion: Escalated ABVD incorporating doxorubicin at 45?mg?m–2 in cycles 1–3 can be delivered safely with pegfilgrastim support. Circulating cell death biomarkers may assist in the development of future individualised dosing strategies. PMID:24136151

Gibb, A; Greystoke, A; Ranson, M; Linton, K; Neeson, S; Hampson, G; Illidge, T; Smith, E; Dive, C; Pettitt, A; Lister, A; Johnson, P; Radford, J

2013-01-01

251

A novel method to estimate the maximum power for a photovoltaic inverter system  

Microsoft Academic Search

This paper describes a novel method to approximate the maximum power for a photovoltaic inverter system for solar distributed generation. It is designed for power systems applications and utilities. The proposed method takes in consideration the interaction between solar panels, photovoltaic inverter, maximum power point tracking (MPPT) control, solar panel DC side dynamic model and the effective intensity of light

E. I. rtiz-Rivera; Fang Peng

2004-01-01

252

Maximum Power Transfer Tracking in a Solar USB Charger for Smartphones  

E-print Network

Maximum Power Transfer Tracking in a Solar USB Charger for Smartphones Abstract--Battery life of commercial chargers using solar power have been developed. They focus on correct functionality, but system chargers do not perform the maximum power point tracking [2], [3] of the solar panel. We exclude

Pedram, Massoud

253

An updated dose assessment for Rongelap Island  

SciTech Connect

We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

Robison, W.L.; Conrado, C.L.; Bogen, K.T.

1994-07-01

254

Consequences of removing the flattening filter from linear accelerators in generating high dose rate photon beams for clinical applications: A Monte Carlo study verified by measurement  

NASA Astrophysics Data System (ADS)

An Elekta SL-25 medical linear accelerator (Elekta Oncology Systems, Crawley, UK) has been modelled using Monte Carlo simulations with the photon flattening filter removed. It is hypothesized that intensity modulated radiation therapy (IMRT) treatments may be carried out after the removal of this component despite it's criticality to standard treatments. Measurements using a scanning water phantom were also performed after the flattening filter had been removed. Both simulated and measured beam profiles showed that dose on the central axis increased, with the Monte Carlo simulations showing an increase by a factor of 2.35 for 6 MV and 4.18 for 10 MV beams. A further consequence of removing the flattening filter was the softening of the photon energy spectrum leading to a steeper reduction in dose at depths greater than the depth of maximum dose. A comparison of the points at the field edge showed that dose was reduced at these points by as much as 5.8% for larger fields. In conclusion, the greater photon fluence is expected to result in shorter treatment times, while the reduction in dose outside of the treatment field is strongly suggestive of more accurate dose delivery to the target.

Ishmael Parsai, E.; Pearson, David; Kvale, Thomas

2007-08-01

255

External gamma dose responses from residual radioactive materials in soil  

Microsoft Academic Search

External gamma dose responses from radioactive soils have previously been calculated as air-absorbed doses in a point receptor above the ground. Such responses, however, are not accurate measures for estimating the effective dose equivalent (H{sub E}) for assessing radiological risks to humans, as defined by the International Commission on Radiological Protection (ICRP). The ambient dose equivalent H*(10), as defined by

S. Y. Chen; Y. C. Yuan

1989-01-01

256

Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy  

PubMed Central

Purpose The aim of this study is evaluation of the effect of diameter of 10B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). Material and methods MCNPX Monte Carlo code was used for simulation of a 252Cf source, a soft tissue phantom and a tumor containing 10B nanoparticles. Using 252Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of 10B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. Results There is not a linear relationship between the average MDEF value and nanoparticles’ diameter but the average MDEF grows with increased concentration of 10B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of 10B nanoparticles. Conclusions Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements.

Farhood, Bagher

2014-01-01

257

Determining the effects of microsphere and surrounding material composition on {sup 90}Y dose kernels using egsnrc and mcnp5  

SciTech Connect

Purpose: Recent advances in the imaging of {sup 90}Y using positron emission tomography (PET) and improved uncertainty in the branching ratio for the internal pair production component of {sup 90}Y decay allow for a more accurate determination of the activity distribution of {sup 90}Y microspheres within a patient. This improved activity distribution can be convolved with the dose kernel of {sup 90}Y to calculate the dose distribution within a patient. This work investigates the effects of microsphere and surrounding material composition on {sup 90}Y dose kernels using egsnrc and mcnp5 and compares the results of these two transport codes. Methods: Monte Carlo simulations were performed with egsnrc and mcnp5 to calculate the dose rate at multiple radial distances around various {sup 90}Y sources. Point source simulations were completed with mcnp5 to determine the optimal electron transport settings for this work. After determining the optimal settings, point source simulations were completed using egsnrc (user code edknrc) and mcnp5 in water and liver [as defined by the International Commission on Radiation Units and Measurements (ICRU) Report 44]. The results were compared to ICRU Report 72 reference data. Point source simulations were also completed in water with a density of 1.06 g{center_dot}cm{sup -3} to evaluate the effect of the density of the surrounding material. Glass and resin microsphere simulations were performed with average and maximum diameter and density values (based on values given in the literature) in water and in liver. The results were compared to point source simulation results using the same transport code and in the same surrounding material. All simulations had statistical uncertainties less than 1%. Results: The optimal transport settings in mcnp5 for this work included using the energy-and step-specific algorithm (DBCN 17J 2) and ESTEP set to 10. These settings were used for all subsequent simulations with mcnp5. The point source simulations in water for both egsnrc and mcnp5 were found to agree within 2% of the ICRU 72 reference data over the investigated range. Point source simulations in liver had large differences relative to ICRU 72, approaching -60% near the maximum range of {sup 90}Y. These differences are mostly attributed to the difference in density between water (1.0 g{center_dot}cm{sup -3}) and liver (1.06 g{center_dot}cm{sup -3}). Glass and resin microsphere simulations showed a slight decrease in the dose rate near the maximum range of {sup 90}Y relative to the point source simulations. The largest relative differences were approximately -4.2% and -2.8% for the glass and resin microspheres, respectively. Agreement between the egsnrc and mcnp5 simulations results was generally good. Conclusions: The presence of the microsphere material causes slight differences in the {sup 90}Y dose kernel compared to those calculated with point sources. Large differences were seen between simulations in water and those in liver. For the most accurate calculation of the dose distribution, the density of the patient's liver should be accounted for in the calculation of the dose kernel. Lastly, due to the need to determine the optimal transport settings with mcnp5, electron transport with this code should be used with caution.

Paxton, Adam B.; Davis, Stephen D.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 and McGill University Health Centre, Department of Medical Physics, Montreal, Quebec H3G 1A4 (Canada); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

2012-03-15

258

Multiple Test Procedures for Identifying the Maximum Ajit C. Tamhane, Charles W. Dunnett, John W. Green and Je rey D.  

E-print Network

Pont Agricultural Products Division. #12; Abstract We consider dose response studies for safety assessment of crop, toxicologists must weigh the evidence and come to an overall assessment of safe levels of product use. SimilarMultiple Test Procedures for Identifying the Maximum Safe Dose Ajit C. Tamhane, Charles W. Dunnett

Tamhane, Ajit C.

259

Optimisation of occupational radiological protection in image-guided interventions: potential impact of dose rate measurements.  

PubMed

The optimisation of occupational radiological protection is challenging and a variety of factors have to be considered. Physicians performing image-guided interventions are working in an environment with one of the highest radiation risk levels in healthcare. Appropriate knowledge about the radiation environment is a prerequisite for conducting the optimisation process. Information about the dose rate variation during the interventions could provide valuable input to this process. The overall purpose of this study was to explore the prerequisite and feasibility to measure dose rate in scattered radiation and to assess the usefulness of such data in the optimisation process.Using an active dosimeter system, the dose rate in the unshielded scattered radiation field was measured in a fixed point close to the patient undergoing an image-guided intervention. The measurements were performed with a time resolution of one second and the dose rate data was continuously timed in a data log. In two treatment rooms, data was collected during a 6?month time period, resulting in data from 380 image-guided interventions and vascular treatments in the abdomen, arms and legs. These procedures were categorised into eight types according to the purpose of the treatment and the anatomical region involved.The dose rate varied substantially between treatment types, both regarding the levels and the distribution during the procedure. The maximum dose rate for different types of interventions varied typically between 5 and 100?mSv?h(-1), but substantially higher and lower dose rates were also registered. The average dose rate during a complete procedure was however substantially lower and varied typically between 0.05 and 1?mSv?h(-1). An analysis of the distribution disclosed that for a large part of the treatment types, the major amount of the total accumulated dose for a procedure was delivered in less than 10% of the exposure time and in less than 1% of the total procedure time.The present study shows that systematic dose rate measurements are feasible. Such measurements can be used to give a general indication of the exposure level to the staff and could serve as a first risk assessment tool when introducing new treatment types or x-ray equipment in the clinic. For example, it could provide an indication for when detailed eye dose measurements are needed. It also gives input to risk management considerations and the development of efficient routines for other radiological protection measures. PMID:25517218

Almén, A; Sandblom, V; Båth, M; Lundh, C

2015-03-01

260

A study evaluating the dependence of the patient dose on the CT dose change in a SPECT/CT scan  

NASA Astrophysics Data System (ADS)

This study assessed ways of reducing the patient dose by examining the dependence of the patient dose on the CT (computed tomography) dose in a SPECT (single-photon emission computed tomography)/CT scan. To measure the patient dose, we used Precedence 16 SPECT/CT along with a phantom for the CT dose measurement (CT dose phantom kit for adult's head and body, Model 76-414-4150), a 100-mm ionization chamber (CT Ion Chamber) and an X-ray detector (Victoreen Model 4000M+). In addition, the patient dose was evaluated under conditions similar to those for an actual examination using an ImPACT (imaging performance assessment of CT scanners) dosimetry calculator in the Monte Carlo simulation method. The experimental method involved the use of a CT dose phantom to measure the patient dose under different CT conditions (kVp and mAs) to determine the CTDI (CT dose index) under each condition. An ImPACT dosimetry calculator was also used to measure CTDIw (CT dose index water ), CTDIv (CT dose index volume ), DLP (dose-length product), and effective dose. According to the patient dose measurements using the CT dose phantom, the CTDI showed an approximately 54 fold difference between when the maximum (140 kVp and 250 mAs) and the minimum dose (90 kVp and 25 mAs) was used. The CTDI showed a 4.2 fold difference between the conditions (120 kVp and 200 mAs) used mainly in a common CT scan and the conditions (120 kVp and 50 mAs) used mainly in a SPECT/CT scan. According to the measurement results using the dosimetry calculator, the effective dose showed an approximately 35 fold difference between the conditions for the maximum and the minimum doses, as in the case with the CT dose phantom. The effective dose showed a 4.1 fold difference between the conditions used mainly in a common CT scan and those used mainly in a SPECT/CT scan. This study examined the patient dose by reducing the CT dose in a SPECT/CT scan. As various examinations can be conducted due to the development of equipment, the patient faces increasing medical exposure. At this juncture, radiation workers and equipment manufacturers are required to make efforts to obtain as much medical information as possible while using the minimum radiation dose.

Kim, Woo-Hyun; Kim, Ho-Sung; Dong, Kyung-Rae; Chung, Woon-Kwan; Cho, Jae-Hwan; Shin, Jae-Woo

2012-07-01

261

Absorbed doses from temporomandibular joint radiography  

SciTech Connect

Thermoluminescent dosimeters were used in a tissue-equivalent phantom to measure doses of radiation absorbed by various structures in the head when the temporomandibular joint was examined by four different radiographic techniques--the transcranial, transorbital, and sigmoid notch (Parma) projections and the lateral tomograph. The highest doses of radiation occurred at the point of entry for the x-ray beam, ranging from 112 mrad for the transorbital view to 990 mrad for the sigmoid notch view. Only the transorbital projection a radiation dose to the lens of the eye. Of the four techniques evaluated, the lateral tomograph produced the highest doses to the pituitary gland and the bone marrow, while the sigmoid notch radiograph produced the highest doses to the parotid gland.

Brooks, S.L.; Lanzetta, M.L.

1985-06-01

262

Maximum Likelihood Estimates of Age Effects  

Microsoft Academic Search

The relative merits of maxinmm likeli- hood estimates of age factors were ex- amined with 24,636 lactations from regis- tered Holsteins in Iowa Dairy Herd Im- provement Association herds. A table con- taining maximum-likellhood estimates of age effects on milk and fat yield was pre- sented. Maximum likelihood (ML) factors were compared to gross and paired com- parison factors. Gross

R. H. Miller; W. R. Harvey; K. A. Tabler; B. T. McDaniel; E. L. Corley

1966-01-01

263

Maximum likelihood training of probabilistic neural networks  

Microsoft Academic Search

A maximum likelihood method is presented for training probabilistic neural networks (PNN's) using a Gaussian kernel, or Parzen window. The proposed training algorithm enables general nonlinear discrimination and is a generalization of Fisher's method for linear discrimination. Important features of maximum likelihood training for PNN's are: 1) it economizes the well known Parzen window estimator while preserving feedforward NN architecture,

Roy L. Streit; Tod E. Luginbuhl

1994-01-01

264

20 CFR 228.14 - Family maximum.  

Code of Federal Regulations, 2010 CFR

...Family maximum. (a) Family maximum...limited amount is called the family...attains age 62, has a period of disability...to more than one child's benefit), be entitled to a child's annuity on...attains age 62, has a period of disability...multiple of $0.10, it will be...

2010-04-01

265

49 CFR 107.329 - Maximum penalties.  

Code of Federal Regulations, 2013 CFR

...the maximum civil penalty is $175,000 if the violation results in death, serious illness...no minimum civil penalty, except for a minimum...the maximum civil penalty is $175,000 if the violation results in death, serious...

2013-10-01

266

49 CFR 107.329 - Maximum penalties.  

Code of Federal Regulations, 2011 CFR

...the maximum civil penalty is $110,000 if the violation results in death, serious illness...minimum $495 civil penalty applies to a violation...the maximum civil penalty is $110,000 if the violation results in death, serious...

2011-10-01

267

49 CFR 107.329 - Maximum penalties.  

Code of Federal Regulations, 2014 CFR

...the maximum civil penalty is $175,000 if the violation results in death, serious illness...no minimum civil penalty, except for a minimum...the maximum civil penalty is $175,000 if the violation results in death, serious...

2014-10-01

268

49 CFR 107.329 - Maximum penalties.  

Code of Federal Regulations, 2012 CFR

...the maximum civil penalty is $110,000 if the violation results in death, serious illness...minimum $495 civil penalty applies to a violation...the maximum civil penalty is $110,000 if the violation results in death, serious...

2012-10-01

269

49 CFR 107.329 - Maximum penalties.  

Code of Federal Regulations, 2010 CFR

...the maximum civil penalty is $110,000 if the violation results in death, serious illness...minimum $495 civil penalty applies to a violation...the maximum civil penalty is $110,000 if the violation results in death, serious...

2010-10-01

270

Maximum Margin Discriminant Analysis based Face Recognition  

E-print Network

Maximum Margin Discriminant Analysis based Face Recognition Korn´el Kov´acs1 , Andr´as Kocsor1 Institute of the Hungarian Academy of Sciences, Kende u. 13-17, 1111 Budapest, Hungary Abstract: Face ­ Maximum Margin Discriminant Analysis (MMDA) ­ to solve face recog- nition problems. MMDA is a feature

Szepesvari, Csaba

271

Preventing Portfolio Losses by Hedging Maximum Drawdown  

E-print Network

possible market timing, meaning buying the asset at its local maximum and selling it at a subsequent local Introduction Market drops are traditionally protected by buying put or lookback options. The payoff of a put asset increases, and thus it is desirable to buy them when the market reaches its maximum. This leads

Vecer, Jan

272

Preventing Portfolio Losses by Hedging Maximum Drawdown  

E-print Network

possible market timing, meaning buying the asset at its local maximum and selling it at a subsequent local Introduction Market drops are traditionally protected by buying put or lookback options. The payo# of a put asset increases, and thus it is desirable to buy them when the market reaches its maximum. This leads

Vecer, Jan

273

Estimating landscape carrying capacity through maximum clique analysis.  

PubMed

Habitat suitability (HS) maps are widely used tools in wildlife science and establish a link between wildlife populations and landscape pattern. Although HS maps spatially depict the distribution of optimal resources for a species, they do not reveal the population size a landscape is capable of supporting--information that is often crucial for decision makers and managers. We used a new approach, "maximum clique analysis," to demonstrate how HS maps for territorial species can be used to estimate the carrying capacity, N(k), of a given landscape. We estimated the N(k) of Ovenbirds (Seiurus aurocapillus) and bobcats (Lynx rufus) in an 1153-km2 study area in Vermont, USA. These two species were selected to highlight different approaches in building an HS map as well as computational challenges that can arise in a maximum clique analysis. We derived 30-m2 HS maps for each species via occupancy modeling (Ovenbird) and by resource utilization modeling (bobcats). For each species, we then identified all pixel locations on the map (points) that had sufficient resources in the surrounding area to maintain a home range (termed a "pseudo-home range"). These locations were converted to a mathematical graph, where any two points were linked if two pseudo-home ranges could exist on the landscape without violating territory boundaries. We used the program Cliquer to find the maximum clique of each graph. The resulting estimates of N(k) = 236 Ovenbirds and N(k) = 42 female bobcats were sensitive to different assumptions and model inputs. Estimates of N(k) via alternative, ad hoc methods were 1.4 to > 30 times greater than the maximum clique estimate, suggesting that the alternative results may be upwardly biased. The maximum clique analysis was computationally intensive but could handle problems with < 1500 total pseudo-home ranges (points). Given present computational constraints, it is best suited for species that occur in clustered distributions (where the problem can be broken into several, smaller problems), or for species with large home ranges relative to grid scale where resampling the points to a coarser resolution can reduce the problem to manageable proportions. PMID:23387124

Donovan, Therese M; Warrington, Gregory S; Schwenk, W Scott; Dinitz, Jeffrey H

2012-12-01

274

Principle of Maximum Entropy and Quantum Phase Transitions  

E-print Network

We discuss quantum phase transitions from an information-theoretic point of view, based on the information from local observable measurements. Two types of transitions naturally arise from our approach, for smooth changes of local Hamiltonians. One type can be detected by a non-smooth change of local observable measurements while the other type cannot. The discontinuity of the maximum entropy inference for local observable measurements signals the non-local type of transitions, indicating the existence of long-range irreducible many-body correlations. As commonly recognized, the topological phase transitions are non-local where the maximum entropy inference are indeed discontinuous at the transition points. We clarify that, however, the `symmetry-breaking' phase transitions, for instance the one in the transverse Ising model, are also non-local with discontinuity of the maximum entropy inference. We propose to detect the non-local type of transitions by the quantum conditional mutual information of two disconnect parts of the system. The local/non-local types have intimate relationships with the first-order/continuous types of quantum phase transitions.

Jianxin Chen; Zhengfeng Ji; Chi-Kwong Li; Yiu-Tung Poon; Yi Shen; Nengkun Yu; Bei Zeng; Duanlu Zhou

2014-06-19

275

Effective dose and organ doses due to gas bremsstrahlung from electron storage rings  

NASA Astrophysics Data System (ADS)

Bremsstrahlung on residual gas is an important source of beam losses in electron-positron storage rings. The bremsstrahlung photons are emitted in a narrow cone in the forward direction, which produces a "hot spot" of dose at the end of a straight section. Estimates of radiation hazard due to gas bremsstrahlung have so far been performed by calculating the maximum dose equivalent (MADE) or similar quantities. However, the use of quantities conceived for broad parallel beams in the case of very narrow beams significantly overestimates the organ doses and effective dose. In this paper a more sophisticated computational model was used to calculate the values of effective dose and absorbed doses in various organs due to gas bremsstrahlung X-rays generated by 0.1-10 GeV electrons. The bremsstrahlung photons generated by the interaction of a monoenergetic electron beam in a 1 m long air target were made to impinge on a selected organ of an hermaphrodite anthropomorphic mathematical model placed at 1 and 10 m distances from the end of the target. Organ dose and effective dose were calculated for five representative organs, namely right eye, ovaries, breast, testes and thyroid. Fits to the calculated values are given, as well as the dependence of photon fluence and dosimetric quantities on various parameters. The results are compared with previous estimates based on MADE and with values of ambient dose equivalent.

Pelliccioni, Maurizio; Silari, Marco; Ulrici, Luisa

2001-01-01

276

The DPP-4 inhibitor linagliptin does not prolong the QT interval at therapeutic and supratherapeutic doses  

PubMed Central

AIM To evaluate the potential effects of therapeutic and supratherapeutic doses of linagliptin (BI 1356) on the QT/QTc interval in healthy subjects. METHODS The study was a randomized, double-blind, placebo-controlled, four-period crossover study using single oral doses of linagliptin (5 mg and 100 mg), moxifloxacin (400 mg) and placebo. Electrocardiogram (ECG) profiles using triplicates of 12-lead 10-s ECGs were digitally recorded pre-dose and after drug administration. The mean change from baseline (MCfB) of the individually heart rate corrected QT interval (QTcI) between 1 and 4 h postdrug administration was the primary end point. Blood samples to measure plasma concentrations of linagliptin and its main metabolite were also obtained. RESULTS Forty-four Caucasian subjects (26 male) entered the study and 43 subjects completed the study as planned in the protocol. Linagliptin was not associated with an increase in the baseline-adjusted mean QTcI, at any time point. The placebo-corrected MCfB of QTcI was ?1.1 (90% CI ?2.7, 0.5) ms and ?2.5 (–4.1, –0.9) ms for linagliptin 5 mg and 100 mg, respectively, thus within the non-inferiority margin of 10 ms according to ICH E14. Linagliptin was well tolerated; the assessment of ECGs and other safety parameters gave no clinically relevant findings at either dose tested. Maximum plasma concentrations after administration of 100-mg linagliptin were ?24-fold higher than those observed previously for chronic treatment with the therapeutic 5-mg dose. Assay sensitivity was confirmed by a placebo-corrected MCfB of QTcI with moxifloxacin of 6.9 (90% CI 5.4, 8.5) ms. CONCLUSIONS Therapeutic and significantly supratherapeutic exposure to linagliptin is not associated with QT interval prolongation. PMID:21306414

Ring, Arne; Port, Andreas; Graefe-Mody, E Ulrike; Revollo, Ivette; Iovino, Mario; Dugi, Klaus A

2011-01-01

277

A simple method of independent treatment time verification in gamma knife radiosurgery using integral dose  

SciTech Connect

The purpose of this study is to develop a simple independent dose calculation method to verify treatment plans for Leksell Gamma Knife radiosurgery. Our approach uses the total integral dose within the skull as an end point for comparison. The total integral dose is computed using a spreadsheet and is compared to that obtained from Leksell GammaPlan registered . It is calculated as the sum of the integral doses of 201 beams, each passing through a cylindrical volume. The average length of the cylinders is estimated from the Skull-Scaler measurement data taken before treatment. Correction factors are applied to the length of the cylinder depending on the location of a shot in the skull. The radius of the cylinder corresponds to the collimator aperture of the helmet, with a correction factor for the beam penumbra and scattering. We have tested our simple spreadsheet program using treatment plans of 40 patients treated with Gamma Knife registered in our center. These patients differ in geometry, size, lesion locations, collimator helmet, and treatment complexities. Results show that differences between our calculations and treatment planning results are typically within {+-}3%, with a maximum difference of {+-}3.8%. We demonstrate that our spreadsheet program is a convenient and effective independent method to verify treatment planning irradiation times prior to implementation of Gamma Knife radiosurgery.

Jin Jianyue; Drzymala, Robert; Li Zuofeng [Department of Radiation Oncology, Siteman Cancer Center, Washington University Medical Center, St. Louis, Missouri 63110 (United States)

2004-12-01

278

A note on the classical weak and strong maximum principles for linear parabolic partial differential inequalities  

NASA Astrophysics Data System (ADS)

In this note, we highlight a difference in the conditions of the classical weak maximum principle and the classical strong maximum principle for linear parabolic partial differential inequalities. We demonstrate, by the careful construction of a specific function, that the condition in the classical strong maximum principle on the coefficient of the zeroth-order term in the linear parabolic partial differential inequality cannot be relaxed to the corresponding condition in the classical weak maximum principle. In addition, we demonstrate that results (often referred to as boundary point lemmas) which conclude positivity of the outward directional derivatives of nontrivial solutions to linear parabolic partial differential inequalities at certain points on the boundary where a maxima is obtained cannot be obtained under the same zeroth-order coefficient conditions as in the classical strong maximum principle.

Needham, David John; Meyer, John Christopher

2015-01-01

279

The Existence of Maximum Likelihood Estimates for the Logistic Regression Model  

Microsoft Academic Search

The existence of maximum likelihood estimates for the binary response logistic regression model depends on the configuration of the data points in your data set. There are three mutually exclusive and exhaustive categories for the configuration of data points in a data set: · Complete Separation · Quasi-Complete Separation · Overlap For this paper, a binary response logistic regression model

William F. McCarthy; Nan Guo

2009-01-01

280

Estimating the seasonal maximum light use efficiency  

NASA Astrophysics Data System (ADS)

Light use efficiency (LUE) is a key parameter in estimating gross primary production (GPP) based on global Earth-observation satellite data and model calculations. In current LUE-based GPP estimation models, the maximum LUE is treated as a constant for each biome type. However, the maximum LUE varies seasonally. In this study, seasonal maximum LUE values were estimated from the maximum incident LUE versus the incident photosynthetically active radiation (PAR) and the fraction of absorbed PAR. First, an algorithm to estimate maximum incident LUE was developed to estimate GPP capacity using a light response curve. One of the parameters required for the light response curve was estimated from the linear relationship of the chlorophyll index and the GPP capacity at a high PAR level of 2000 (µmolm-2s-1), and was referred to as" the maximum GPP capacity at 2000". The relationship was determined for six plant functional types: needleleaf deciduous trees, broadleaf deciduous trees, needleleaf evergreen trees, broadleaf evergreen trees, C3 grass, and crops. The maximum LUE values estimated in this study displayed seasonal variation, especially those for deciduous broadleaf forest, but also those for evergreen needleleaf forest.

Muramatsu, Kanako; Furumi, Shinobu; Soyama, Noriko; Daigo, Motomasa

2014-11-01

281

ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY  

SciTech Connect

A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.

Smith, F.; Phifer, M.

2014-04-10

282

Teaching for maximum learning: The Philippine experience  

NASA Astrophysics Data System (ADS)

The author tells about how the achievement level of Filipono grade school children is being improved through teaching for maximum learning. To promote teaching for maximum learning, it was imperative to identify minimum learning competencies in the new curriculum for each grade level, retrain teachers for teaching for maximum learning, develop appropriate instructional materials, improve the quality of supervision of instruction, install a multi-level (national to school) testing system and redress inequities in the distribution of human and material resources. This systematic approach to solving the problem of low quality of educational outcomes has resulted in a modest but steady improvement in the achievement levels of school children.

Sutaria, Minda C.

1990-06-01

283

Statistical modeling of the hormetic dose zone and the toxic potency completes the quantitative description of hormetic dose responses.  

PubMed

Quantifying the characteristics of hormesis provides valuable insights into this low-dose phenomenon and helps to display and capture its variability. A prerequisite to do so is a statistical procedure allowing quantification of general hormetic features, namely the maximum stimulatory response, the dose range of hormesis, and the distance from the maximum stimulation to the dose where hormesis disappears. Applying extensions of a hormetic dose-response model that is well-established in plant biology provides a direct estimation of several quantities, except the hormetic dose range. Another dose range that is difficult to model directly is the distance between the dose where hormesis disappears and the dose giving 50% inhibition, known as toxic potency. The present study presents 2 further model extensions allowing for a direct quantification of the hormetic dose range and the toxic potency. Based on this, a 4-step mathematical modeling approach is demonstrated to quantify various dose-response quantities, to compare these quantities among treatments, and to interrelate hormesis features. Practical challenges are exemplified, and possible remedies are identified. The software code to perform the analysis is provided as Supplemental Data to simplify adoption of the modeling procedure. Because numerous patterns of hormesis are observed in various sciences, it is clear that the proposed approach cannot cope with all patterns; however, it should be possible to analyze a great range of hormesis patterns. Environ Toxicol Chem 2015;34:1169-1177. © 2014 SETAC. PMID:25523646

Belz, Regina G; Piepho, Hans-Peter

2015-05-01

284

Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy.  

PubMed

Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload.In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures.The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations.The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow. PMID:25779992

Meier, G; Besson, R; Nanz, A; Safai, S; Lomax, A J

2015-04-01

285

Independent dose calculations for commissioning, quality assurance and dose reconstruction of PBS proton therapy  

NASA Astrophysics Data System (ADS)

Pencil beam scanning proton therapy allows the delivery of highly conformal dose distributions by delivering several thousand pencil beams. These beams have to be individually optimised and accurately delivered requiring a significant quality assurance workload. In this work we describe a toolkit for independent dose calculations developed at Paul Scherrer Institut which allows for dose reconstructions at several points in the treatment workflow. Quality assurance based on reconstructed dose distributions was shown to be favourable to pencil beam by pencil beam comparisons for the detection of delivery uncertainties and estimation of their effects. Furthermore the dose reconstructions were shown to have a sensitivity of the order of or higher than the measurements currently employed in the clinical verification procedures. The design of the independent dose calculation tool allows for a high modifiability of the dose calculation parameters (e.g. depth dose profiles, angular spatial distributions) allowing for a safe environment outside of the clinical treatment planning system for investigating the effect of such parameters on the resulting dose distributions and thus distinguishing between different contributions to measured dose deviations. The presented system could potentially reduce the amount of patient-specific quality assurance measurements which currently constitute a bottleneck in the clinical workflow.

Meier, G.; Besson, R.; Nanz, A.; Safai, S.; Lomax, A. J.

2015-04-01

286

The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning  

NASA Astrophysics Data System (ADS)

The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15° increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.

Jiang, Runqing; Barnett, Rob B.; Chow, James C. L.; Chen, Jeff Z. Y.

2007-03-01

287

Occupational radiation doses to the extremities and the eyes in interventional radiology and cardiology procedures  

PubMed Central

Objectives The aim of this study was to determine occupational dose levels in interventional radiology and cardiology procedures. Methods The study covered a sample of 25 procedures and monitored occupational dose for all laboratory personnel. Each individual wore eight thermoluminescent dosemeters next to the eyes, wrists, fingers and legs during each procedure. Radiation protection shields used in each procedure were recorded. Results The highest doses per procedure were recorded for interventionists at the left wrist (average 485 ?Sv, maximum 5239 ?Sv) and left finger (average 324 ?Sv, maximum 2877 ?Sv), whereas lower doses were recorded for the legs (average 124 ?Sv, maximum 1959 ?Sv) and the eyes (average 64 ?Sv, maximum 1129 ?Sv). Doses to the assisting nurses during the intervention were considerably lower; the highest doses were recorded at the wrists (average 26 ?Sv, maximum 41 ?Sv) and legs (average 18 ?Sv, maximum 22 ?Sv), whereas doses to the eyes were minimal (average 4 ?Sv, maximum 16 ?Sv). Occupational doses normalised to kerma area product (KAP) ranged from 11.9 to 117.3 ?Sv/1000 cGy cm2 and KAP was poorly correlated to the interventionists' extremity doses. Conclusion Calculation of the dose burden for interventionists considering the actual number of procedures performed annually revealed that dose limits for the extremities and the lenses of the eyes were not exceeded. However, there are cases in which high doses have been recorded and this can lead to exceeding the dose limits when bad practices are followed and the radiation protection tools are not properly used. PMID:21172967

Efstathopoulos, E P; Pantos, I; Andreou, M; Gkatzis, A; Carinou, E; Koukorava, C; Kelekis, N L; Brountzos, E

2011-01-01

288

The Maximum Size of Dynamic Data Structures  

E-print Network

This paper develops two probabilistic methods that allow the analysis of the maximum data structure size encountered during a sequence of insertions and deletions in data structures such as priority queues, dictionaries, ...

Kenyon-Mathieu, Claire M.; Vitter, Jeffrey Scott

1991-10-01

289

The Minimum Cannot Become the Maximum.  

ERIC Educational Resources Information Center

In this paper the author shares his concerns about minimal competency testing, fearing that the minimum may become the maximum. He discusses this fear based on examples from the English curriculum--Language, Writing, and Literature. (KC)

Bushman, John H.

1980-01-01

290

14 CFR 65.47 - Maximum hours.  

Code of Federal Regulations, 2014 CFR

...CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.47 Maximum hours. Except in an emergency, a certificated air traffic control tower operator must be relieved of all duties...

2014-01-01

291

14 CFR 65.47 - Maximum hours.  

Code of Federal Regulations, 2013 CFR

...CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.47 Maximum hours. Except in an emergency, a certificated air traffic control tower operator must be relieved of all duties...

2013-01-01

292

14 CFR 65.47 - Maximum hours.  

Code of Federal Regulations, 2011 CFR

...CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.47 Maximum hours. Except in an emergency, a certificated air traffic control tower operator must be relieved of all duties...

2011-01-01

293

14 CFR 65.47 - Maximum hours.  

Code of Federal Regulations, 2012 CFR

...CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Air Traffic Control Tower Operators § 65.47 Maximum hours. Except in an emergency, a certificated air traffic control tower operator must be relieved of all duties...

2012-01-01

294

Melting Point, Boiling Point, and Symmetry  

Microsoft Academic Search

The relationship between the melting point of a compound and its chemical structure remains poorly understood. The melting point of a compound can be related to certain of its other physical chemical properties. The boiling point of a compound can be determined from additive constitutive properties, but the melting point can be estimated only with the aid of nonadditive constitutive

Robert Abramowitz; Samuel H. Yalkowsky

1990-01-01

295

MPI Point-to-Point Communication  

NSDL National Science Digital Library

This module details and differentiates the various types of point-to-point communication available in MPI. Point-to-point communication involves transmission of a message between a pair of processes, as opposed to collective communication, which involves a group of processes.

296

Maximum forces and deflections from orthodontic appliances.  

PubMed

The maximum bending moment of an orthodontic wire is an important parameter in the design and use of an orthodontic appliance. It is the wire property that determines how much force an appliance can deliver. A bending test which allows direct measurement of the maximum bending moment was developed. Data produced from this test are independent of wire length and configuration. The maximum bending moment, percent recovery, and maximum springback were determined for round and rectangular cross sections of stainless steel, nickel-titanium, and beta-titanium wires. The data suggest the need for more specifically defining maximum moment and maximum springback. Three maximum bending moments are described: Me, My, and Mult. My and Mult are clinically the most significant. Appliances that are required to have no permanent deformation must operate below My. Appliances that exhibit marked permanent deformation may be used in some applications and, if so, higher bending moments can be produced. In order of magnitude, the maximum bending moment at yield is largest in stainless steel, beta-titanium, and nickel-titanium for a given cross section. Nickel-titanium and beta-titanium have significantly larger springback than stainless steel determined at the moment at yield. Nickel-titanium did not follow the theoretical ratio between ultimate bending moment and the bending moment at yield, exhibiting a very large ratio. The study supports the hypothesis that most orthodontic appliances are activated in a range where both plastic and elastic behavior occurs; therefore, the use of yield strengths for calculation of force magnitude can lead to a significant error in predicting the forces delivered. PMID:6576645

Burstone, C J; Goldberg, A J

1983-08-01

297

Maximum-Likelihood Parameter-Estimation Algorithm  

NASA Technical Reports Server (NTRS)

Efficient version of maximum-likelihood algorithm devised for calculating normal-mode frequencies and damping parameters of vibrating system from experimental data where both process noise and measurement noise present. Method applicable in vibration analysis of such complicated structures as vehicles, aircraft, and spacecraft. New algorithm simplification of existing maximum-likelihood formulation using Kalman filter that allows for both process and measurement noise.

Eldred, D. B.; Hamidi, M.; Rodriguez, G.

1986-01-01

298

Approximating Maximum Diameter-Bounded Subgraphs  

Microsoft Academic Search

\\u000a The paper studies the maximum diameter-bounded subgraph problem (MaxDBS for short) which is defined as follows: Given an n-vertex graph G and a fixed integer d???1, the goal is to find its largest subgraph of the diameter d. If d?=?1, the problem is identical to the maximum clique problem and thus it is NP{\\\\cal NP}-hard to approximate MaxDBS to within

Yuichi Asahiro; Eiji Miyano; Kazuaki Samizo

2010-01-01

299

Maximum, Minimum, and Current Temperature Protocol  

NSDL National Science Digital Library

The purpose of this activity is to measure air (and optionally soil) temperature within one hour of solar noon and the maximum and minimum air temperatures for the previous 24 hours. Intended outcomes are that students will learn to read minimum, maximum, and current temperatures using a U-shaped thermometer, understand diurnal and annual temperature variations, and recognize factors that influence atmospheric temperatures. Supporting background materials for both student and teacher are included.

The GLOBE Program, UCAR (University Corporation for Atmospheric Research)

2003-08-01

300

Ingestion of Nevada Test Site Fallout: Internal dose estimates  

SciTech Connect

This paper summarizes individual and collective dose estimates for the internal organs of hypothetical yet representative residents of selected communities that received measurable fallout from nuclear detonations at the Nevada Test Site. The doses, which resulted from ingestion of local and regional food products contaminated with over 20 radionuclides, were estimated with use of the PATHWAY food-chain-transport model to provide estimates of central tendency and uncertainty. The thyroid gland received much higher doses than other internal organs and tissues. In a avery few cases, infants might have received thyroid doses in excess of 1 Gy, depending on location, diet, and timing of fallout. {sup 131}I was the primary thyroid dose contributor, and fresh milk was the main exposure pathway. With the exception of the thyroid, organ doses from the ingestion pathway were much smaller (<3%) than those from external gamma exposure to deposited fallout. Doses to residents living closest to the Nevada Test Site were contributed mainly by a few fallout events; doses to more distantly located people were generally smaller, but a greater number of events provided measurable contributions. The effectiveness of different fallout events in producing internal organ doses through ingestion varied dramatically with seasonal timing of the test, with maximum dose per unit fallout occurring for early summer depositions when milk cows were on pasture and fresh, local vegetables were used. Within specific communities, internal doses differed by age, sex, and lifestyle. Collective internal dose estimates for specific geographic areas are provided.

Whicker, F.W.; Kirchner, T.B. [Colorado State Univ., Fort Collins, CO (United States); Anspaugh, L.R. [Lawrence Livermore National Laboratory, CA (United States)

1996-10-01

301

The measurement of maximum cylinder pressures  

NASA Technical Reports Server (NTRS)

The work presented in this report was undertaken at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics to determine a suitable method for measuring the maximum pressures occurring in aircraft engine cylinders. The study and development of instruments for the measurement of maximum cylinder pressures has been conducted in connection with carburetor and oil engine investigations on a single cylinder aircraft-type engine. Five maximum cylinder-pressure devices have been designed, and tested, in addition to the testing of three commercial indicators. Values of maximum cylinder pressures are given as obtained with various indicators for the same pressures and for various kinds and values of maximum cylinder pressures, produced chiefly by variation of the injection advance angle in high-speed oil engine. The investigations indicate that the greatest accuracy in determining maximum cylinder pressures can be obtained with an electric, balanced-pressure, diaphragm or disk-type indicator so constructed as to have a diaphragm or disk of relatively large area and minimum seat width and mass.

Hicks, Chester W

1929-01-01

302

FloatingPoint FloatingPoint  

E-print Network

Floating­Point for CS 267 February 8, 1996 11:50 am Slide 1 What can you learn about Floating for CS 267, ( Profs. J.W . Demmel of UCB & A. Edelman of MIT ) 8 Feb. 1996 #12; Floating­Point for CS 267 ... ) Integers Fixed­Point Floating­Point #12; Floating­Point for CS 267 February 8, 1996 11:50 am Slide 3

California at Berkeley, University of

303

Effect of Breathing Motion on Radiotherapy Dose Accumulation in the Abdomen Using Deformable Registration  

SciTech Connect

Purpose: To investigate the effect of breathing motion and dose accumulation on the planned radiotherapy dose to liver tumors and normal tissues using deformable image registration. Methods and Materials: Twenty-one free-breathing stereotactic liver cancer radiotherapy patients, planned on static exhale computed tomography (CT) for 27-60 Gy in six fractions, were included. A biomechanical model-based deformable image registration algorithm retrospectively deformed each exhale CT to inhale CT. This deformation map was combined with exhale and inhale dose grids from the treatment planning system to accumulate dose over the breathing cycle. Accumulation was also investigated using a simple rigid liver-to-liver registration. Changes to tumor and normal tissue dose were quantified. Results: Relative to static plans, mean dose change (range) after deformable dose accumulation (as % of prescription dose) was -1 (-14 to 8) to minimum tumor, -4 (-15 to 0) to maximum bowel, -4 (-25 to 1) to maximum duodenum, 2 (-1 to 9) to maximum esophagus, -2 (-13 to 4) to maximum stomach, 0 (-3 to 4) to mean liver, and -1 (-5 to 1) and -2 (-7 to 1) to mean left and right kidneys. Compared to deformable registration, rigid modeling had changes up to 8% to minimum tumor and 7% to maximum normal tissues. Conclusion: Deformable registration and dose accumulation revealed potentially significant dose changes to either a tumor or normal tissue in the majority of cases as a result of breathing motion. These changes may not be accurately accounted for with rigid motion.

Velec, Michael, E-mail: michael.velec@rmp.uhn.on.c [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto (Canada); Moseley, Joanne L. [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto (Canada); Eccles, Cynthia L.; Craig, Tim; Sharpe, Michael B.; Dawson, Laura A. [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Brock, Kristy K. [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto (Canada); Department of Radiation Oncology, University of Toronto, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

2011-05-01

304

Neutron dose equivalent meter  

DOEpatents

A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.

Olsher, Richard H. (Los Alamos, NM); Hsu, Hsiao-Hua (Los Alamos, NM); Casson, William H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM); Kleck, Jeffrey H. (Menlo Park, CA); Beverding, Anthony (Foster City, CA)

1996-01-01

305

The 1984 - 1987 Solar Maximum Mission event list  

NASA Technical Reports Server (NTRS)

Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1984-1987 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x-ray burst spectrometer; (3) flat crystal spectrometer; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronograph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.

Dennis, B. R.; Licata, J. P.; Nelson, J. J.; Tolbert, A. K.

1992-01-01

306

46 CFR 154.556 - Cargo hose: Maximum working pressure.  

Code of Federal Regulations, 2011 CFR

...2011-10-01 false Cargo hose: Maximum working pressure. 154.556 Section 154.556...Hose § 154.556 Cargo hose: Maximum working pressure. A cargo hose must have a maximum working pressure not less than the maximum...

2011-10-01

307

46 CFR 154.556 - Cargo hose: Maximum working pressure.  

Code of Federal Regulations, 2010 CFR

...2010-10-01 false Cargo hose: Maximum working pressure. 154.556 Section 154.556...Hose § 154.556 Cargo hose: Maximum working pressure. A cargo hose must have a maximum working pressure not less than the maximum...

2010-10-01

308

The pharmacokinetics, CNS pharmacodynamics and adverse event profile of brivaracetam after single increasing oral doses in healthy males  

PubMed Central

What is already known about this subject Brivaracetam is a new chemical entity structurally related to levetiracetam, displaying a markedly higher affinity for the binding site believed to be primarily involved in the antiepileptic effect of levetiracetam. Studies to evaluate the pharmacological profile of brivaracetam demonstrate an approximately 10-fold higher potency than levetiracetam as well as a higher efficacy in models of epilepsy. If translated into therapeutic effects in humans, this would mean a greater decrease in seizure frequency and a higher number of responders and seizure-free patients in refractory epileptic patients as seen with levetiracetam. What this study adds This article reports the results of the first in human study with brivaracetam. Its pharmacokinetics and adverse events profile after single administration are evaluated, together with the effect of food on the former. Aims The objective of the study was to evaluate the pharmacokinetics (and how they are affected by food), CNS pharmacodynamics and the adverse event profile of brivaracetam after single increasing doses. Methods Healthy males (n = 27, divided into three alternating panels of nine subjects) received two different single oral doses of brivaracetam (10–1400 mg) and one dose of placebo during three periods of a randomized, double-blind, placebo-controlled study. The effect of food on its pharmacokinetics was assessed using a standard two-way crossover design in a further eight subjects who received two single oral doses of brivaracetam (150 mg) in the fasting state and after a high fat meal. Results Adverse events, none of which were serious, were mostly CNS-related and included somnolence, dizziness, and decreased attention, alertness, and motor control. Their incidence, severity and duration were dose-related. The maximum tolerated dose was established to be 1000 mg. Severe somnolence lasting 1 day occurred in one subject following 1400 mg. Brivaracetam was rapidly absorbed under fasting conditions, with a median tmax of approximately 1 h. Cmax was dose-proportional from 10 to 1400 mg, whereas AUC deviated from dose linearity above 600 mg. A high-fat meal had no effect on AUC (point estimate 0.99, 90%CI: 0.92–1.07) but delayed tmax (3 h) and decreased Cmax (point estimate 0.72, 90%CI: 0.66–0.79). Conclusions Brivaracetam was well tolerated after increasing single doses that represent up to several times the expected therapeutic dose. Brivaracetam was found to have desirable pharmacokinetic properties. The most common adverse events were somnolence and dizziness. PMID:17223857

Sargentini-Maier, Maria Laura; Rolan, Paul; Connell, John; Tytgat, Dominique; Jacobs, Tom; Pigeolet, Etienne; Riethuisen, Jean-Michel; Stockis, Armel

2007-01-01

309

Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates  

NASA Technical Reports Server (NTRS)

We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

2011-01-01

310

Maximum magnitude earthquakes induced by fluid injection  

NASA Astrophysics Data System (ADS)

Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

McGarr, A.

2014-02-01

311

Cell development obeys maximum Fisher information  

E-print Network

Eukaryotic cell development has been optimized by natural selection to obey maximal intracellular flux of messenger proteins. This, in turn, implies maximum Fisher information on angular position about a target nuclear pore complex (NPR). The cell is simply modeled as spherical, with cell membrane (CM) diameter 10 micron and concentric nuclear membrane (NM) diameter 6 micron. The NM contains about 3000 nuclear pore complexes (NPCs). Development requires messenger ligands to travel from the CM-NPC-DNA target binding sites. Ligands acquire negative charge by phosphorylation, passing through the cytoplasm over Newtonian trajectories toward positively charged NPCs (utilizing positive nuclear localization sequences). The CM-NPC channel obeys maximized mean protein flux F and Fisher information I at the NPC, with first-order delta I = 0 and approximate 2nd-order delta I = 0 stability to environmental perturbations. Many of its predictions are confirmed, including the dominance of protein pathways of from 1-4 proteins, a 4nm size for the EGFR protein and the approximate flux value F =10^16 proteins/m2-s. After entering the nucleus, each protein ultimately delivers its ligand information to a DNA target site with maximum probability, i.e. maximum Kullback-Liebler entropy HKL. In a smoothness limit HKL approaches IDNA/2, so that the total CM-NPC-DNA channel obeys maximum Fisher I. Thus maximum information approaches non-equilibrium, one condition for life.

B. R. Frieden; R. A. Gatenby

2014-04-29

312

Cancer chemoprevention by dietary chlorophylls: a 12,000-animal dose-dose matrix biomarker and tumor study.  

PubMed

Recent pilot studies found natural chlorophyll (Chl) to inhibit carcinogen uptake and tumorigenesis in rodent and fish models, and to alter uptake and biodistribution of trace (14)C-aflatoxin B1 in human volunteers. The present study extends these promising findings, using a dose-dose matrix design to examine Chl-mediated effects on dibenzo(def,p)chrysene (DBC)-induced DNA adduct formation, tumor incidence, tumor multiplicity, and changes in gene regulation in the trout. The dose-dose matrix design employed an initial 12,360 rainbow trout, which were treated with 0-4000ppm dietary Chl along with 0-225ppm DBC for up to 4weeks. Dietary DBC was found to induce dose-responsive changes in gene expression that were abolished by Chl co-treatment, whereas Chl alone had no effect on the same genes. Chl co-treatment provided a dose-responsive reduction in total DBC-DNA adducts without altering relative adduct intensities along the chromatographic profile. In animals receiving DBC alone, liver tumor incidence (as logit) and tumor multiplicity were linear in DBC dose (as log) up to their maximum-effect dose, and declined thereafter. Chl co-treatment substantially inhibited incidence and multiplicity at DBC doses up to their maximum-effect dose. These results show that Chl concentrations encountered in Chl-rich green vegetables can provide substantial cancer chemoprotection, and suggest that they do so by reducing carcinogen bioavailability. However, at DBC doses above the optima, Chl co-treatments failed to inhibit tumor incidence and significantly enhanced multiplicity. This finding questions the human relevance of chemoprevention studies carried out at high carcinogen doses that are not proven to lie within a linear, or at least monotonic, endpoint dose-response range. PMID:22079312

McQuistan, Tammie J; Simonich, Michael T; Pratt, M Margaret; Pereira, Cliff B; Hendricks, Jerry D; Dashwood, Roderick H; Williams, David E; Bailey, George S

2012-02-01

313

Dose-Limiting Toxicity After Hypofractionated Dose-Escalated Radiotherapy in Non–Small-Cell Lung Cancer  

PubMed Central

Purpose Local failure rates after radiation therapy (RT) for locally advanced non–small-cell lung cancer (NSCLC) remain high. Consequently, RT dose intensification strategies continue to be explored, including hypofractionation, which allows for RT acceleration that could potentially improve outcomes. The maximum-tolerated dose (MTD) with dose-escalated hypofractionation has not been adequately defined. Patients and Methods Seventy-nine patients with NSCLC were enrolled on a prospective single-institution phase I trial of dose-escalated hypofractionated RT without concurrent chemotherapy. Escalation of dose per fraction was performed according to patients' stratified risk for radiation pneumonitis with total RT doses ranging from 57 to 85.5 Gy in 25 daily fractions over 5 weeks using intensity-modulated radiotherapy. The MTD was defined as the maximum dose with ? 20% risk of severe toxicity. Results No grade 3 pneumonitis was observed and an MTD for acute toxicity was not identified during patient accrual. However, with a longer follow-up period, grade 4 to 5 toxicity occurred in six patients and was correlated with total dose (P = .004). An MTD was identified at 63.25 Gy in 25 fractions. Late grade 4 to 5 toxicities were attributable to damage to central and perihilar structures and correlated with dose to the proximal bronchial tree. Conclusion Although this dose-escalation model limited the rates of clinically significant pneumonitis, dose-limiting toxicity occurred and was dominated by late radiation toxicity involving central and perihilar structures. The identified dose-response for damage to the proximal bronchial tree warrants caution in future dose-intensification protocols, especially when using hypofractionation. PMID:24145340

Cannon, Donald M.; Mehta, Minesh P.; Adkison, Jarrod B.; Khuntia, Deepak; Traynor, Anne M.; Tomé, Wolfgang A.; Chappell, Richard J.; Tolakanahalli, Ranjini; Mohindra, Pranshu; Bentzen, Søren M.; Cannon, George M.

2013-01-01

314

Maximum Aerodynamic Force on an Ascending Space Vehicle  

NASA Astrophysics Data System (ADS)

The March 2010 issue of The Physics Teacher includes a great article by Metz and Stinner on the kinematics and dynamics of a space shuttle launch. Within those pages is a brief mention of an event known in the language of the National Aeronautics and Space Administration (NASA) as "maximum dynamic pressure" (called simply "Max.AirPressure" in the article), where the combined effect of air density and the shuttles speed produce the greatest aerodynamic stress on the vehicle as it ascends through the atmosphere toward orbit. Official commentary during a launch2 refers to this point in the ascent with language such as "space shuttle main engines throttling back as vehicle enters area of maximum dynamic pressure" and occurs in a range between 45 and 60 s after launch. (In dealing with this stress, the space shuttles main engines reduce their thrust at approximately 45 s to reduce acceleration, and return to normal levels again some 15 s later as maximum dynamic pressure is traversed.) This paper presents an analysis, accessible to introductory-level students, that predicts the time of Max. AirPressure for a given ascending spacecraft.

Backman, Philip

2012-03-01

315

Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves' disease  

NASA Astrophysics Data System (ADS)

Calculation of the therapeutic activity of radioiodine 131I for individualized dosimetry in the treatment of Graves' disease requires an accurate estimate of the thyroid absorbed radiation dose based on a tracer activity administration of 131I. Common approaches (Marinelli-Quimby formula, MIRD algorithm) use, respectively, the effective half-life of radioiodine in the thyroid and the time-integrated activity. Many physicians perform one, two, or at most three tracer dose activity measurements at various times and calculate the required therapeutic activity by ad hoc methods. In this paper, we study the accuracy of estimates of four 'target variables': time-integrated activity coefficient, time of maximum activity, maximum activity, and effective half-life in the gland. Clinical data from 41 patients who underwent 131I therapy for Graves' disease at the University Hospital in Pisa, Italy, are used for analysis. The radioiodine kinetics are described using a nonlinear mixed-effects model. The distributions of the target variables in the patient population are characterized. Using minimum root mean squared error as the criterion, optimal 1-, 2-, and 3-point sampling schedules are determined for estimation of the target variables, and probabilistic bounds are given for the errors under the optimal times. An algorithm is developed for computing the optimal 1-, 2-, and 3-point sampling schedules for the target variables. This algorithm is implemented in a freely available software tool. Taking into consideration 131I effective half-life in the thyroid and measurement noise, the optimal 1-point time for time-integrated activity coefficient is a measurement 1 week following the tracer dose. Additional measurements give only a slight improvement in accuracy.

Merrill, S.; Horowitz, J.; Traino, A. C.; Chipkin, S. R.; Hollot, C. V.; Chait, Y.

2011-02-01

316

{sup 222}Rn alpha dose to organs other than lung  

SciTech Connect

The alpha dose to cells in tissues or organs other theft the lung has been calculated using the solubility coefficients for {sup 222} Rn measured in human tissue. The annual alpha dose equivalent f rom {sup 222} Rn and decay products in most tissues is a maximum of 30% of the annual average natural background dose equivalent (1 mSv) for external and internally deposited nuclides. The dose to the small population of lymphocytes located in or under the bronchial epithelium is a special case and their annual dose equivalent is essentially the same as that to basal cells in bronchial epithelium (200 mSv) for continuous exposure to 200 Bq M{sup {minus}3}. The significance of this dose is uncertain because the only excess cancer observed in follow up studies of underground miners with high {sup 222} Rn exposure is bronchogenic carcinoma.

Harley, N.H.; Robbins, E.S.

1991-12-31

317

[sup 222]Rn alpha dose to organs other than lung  

SciTech Connect

The alpha dose to cells in tissues or organs other theft the lung has been calculated using the solubility coefficients for [sup 222] Rn measured in human tissue. The annual alpha dose equivalent f rom [sup 222] Rn and decay products in most tissues is a maximum of 30% of the annual average natural background dose equivalent (1 mSv) for external and internally deposited nuclides. The dose to the small population of lymphocytes located in or under the bronchial epithelium is a special case and their annual dose equivalent is essentially the same as that to basal cells in bronchial epithelium (200 mSv) for continuous exposure to 200 Bq M[sup [minus]3]. The significance of this dose is uncertain because the only excess cancer observed in follow up studies of underground miners with high [sup 222] Rn exposure is bronchogenic carcinoma.

Harley, N.H.; Robbins, E.S.

1991-01-01

318

A chronic oral reference dose for hexavalent chromium-induced intestinal cancer†  

PubMed Central

High concentrations of hexavalent chromium [Cr(VI)] in drinking water induce villous cytotoxicity and compensatory crypt hyperplasia in the small intestines of mice (but not rats). Lifetime exposure to such cytotoxic concentrations increases intestinal neoplasms in mice, suggesting that the mode of action for Cr(VI)-induced intestinal tumors involves chronic wounding and compensatory cell proliferation of the intestine. Therefore, we developed a chronic oral reference dose (RfD) designed to be protective of intestinal damage and thus intestinal cancer. A physiologically based pharmacokinetic model for chromium in mice was used to estimate the amount of Cr(VI) entering each intestinal tissue section (duodenum, jejunum and ileum) from the lumen per day (normalized to intestinal tissue weight). These internal dose metrics, together with corresponding incidences for diffuse hyperplasia, were used to derive points of departure using benchmark dose modeling and constrained nonlinear regression. Both modeling techniques resulted in similar points of departure, which were subsequently converted to human equivalent doses using a human physiologically based pharmacokinetic model. Applying appropriate uncertainty factors, an RfD of 0.006?mg?kg–1?day–1 was derived for diffuse hyperplasia—an effect that precedes tumor formation. This RfD is protective of both noncancer and cancer effects in the small intestine and corresponds to a safe drinking water equivalent level of 210 µg l–1. This concentration is higher than the current federal maximum contaminant level for total Cr (100 µg l–1) and well above levels of Cr(VI) in US drinking water supplies (typically???5 µg l–1). © 2013 The Authors. Journal of Applied Toxicology published by John Wiley & Sons, Ltd. PMID:23943231

Thompson, Chad M; Kirman, Christopher R; Proctor, Deborah M; Haws, Laurie C; Suh, Mina; Hays, Sean M; Hixon, J Gregory; Harris, Mark A

2014-01-01

319

A chronic oral reference dose for hexavalent chromium-induced intestinal cancer.  

PubMed

High concentrations of hexavalent chromium [Cr(VI)] in drinking water induce villous cytotoxicity and compensatory crypt hyperplasia in the small intestines of mice (but not rats). Lifetime exposure to such cytotoxic concentrations increases intestinal neoplasms in mice, suggesting that the mode of action for Cr(VI)-induced intestinal tumors involves chronic wounding and compensatory cell proliferation of the intestine. Therefore, we developed a chronic oral reference dose (RfD) designed to be protective of intestinal damage and thus intestinal cancer. A physiologically based pharmacokinetic model for chromium in mice was used to estimate the amount of Cr(VI) entering each intestinal tissue section (duodenum, jejunum and ileum) from the lumen per day (normalized to intestinal tissue weight). These internal dose metrics, together with corresponding incidences for diffuse hyperplasia, were used to derive points of departure using benchmark dose modeling and constrained nonlinear regression. Both modeling techniques resulted in similar points of departure, which were subsequently converted to human equivalent doses using a human physiologically based pharmacokinetic model. Applying appropriate uncertainty factors, an RfD of 0.006 mg kg(-1) day(-1) was derived for diffuse hyperplasia-an effect that precedes tumor formation. This RfD is protective of both noncancer and cancer effects in the small intestine and corresponds to a safe drinking water equivalent level of 210 µg l(-1). This concentration is higher than the current federal maximum contaminant level for total Cr (100 µg l(-1)) and well above levels of Cr(VI) in US drinking water supplies (typically ? 5 µg l(-1)). PMID:23943231

Thompson, Chad M; Kirman, Christopher R; Proctor, Deborah M; Haws, Laurie C; Suh, Mina; Hays, Sean M; Hixon, J Gregory; Harris, Mark A

2014-05-01

320

BENCHMARK DOSE SOFTWARE (BMDS)  

EPA Science Inventory

EPA has announced the latest update to the Benchmark Dose Software (BMDS) tool which is used to facilitate the application of benchmark dose (BMD) methods to EPA hazardous pollutant risk assessments. This latest version (1.4.1b) contains seventeen (17) different models that ar...

321

Maximum predictive power and the superposition principle  

NASA Technical Reports Server (NTRS)

In quantum physics the direct observables are probabilities of events. We ask how observed probabilities must be combined to achieve what we call maximum predictive power. According to this concept the accuracy of a prediction must only depend on the number of runs whose data serve as input for the prediction. We transform each probability to an associated variable whose uncertainty interval depends only on the amount of data and strictly decreases with it. We find that for a probability which is a function of two other probabilities maximum predictive power is achieved when linearly summing their associated variables and transforming back to a probability. This recovers the quantum mechanical superposition principle.

Summhammer, Johann

1994-01-01

322

A Dose–Response Study for I-125 Prostate Implants  

Microsoft Academic Search

Purpose: No dose–response study has ever been performed for I-125 prostate implants using modern techniques of implant evaluation and modern treatment outcome end points. The amount of activity per volume implanted was increased over time based on review of postimplant dosimetry. This resulted in different delivered dose levels. This study explores the relationship between dose, biochemical failure, and biopsy results.Materials

Richard G Stock; Nelson N Stone; Andrea Tabert; Christopher Iannuzzi; J. Keith DeWyngaert

1998-01-01

323

Safety, tolerability, and pharmacokinetics of eliglustat tartrate (Genz-112638) after single doses, multiple doses, and food in healthy volunteers.  

PubMed

Three phase 1 studies of eliglustat tartrate (Genz-112638), an oral inhibitor of glucosylceramide synthase under development for treating Gaucher disease type 1 (GD1), evaluated the safety, tolerability, and pharmacokinetics in healthy volunteers after escalating single doses (n = 99), escalating multiple doses (n = 36), and food (n = 24). Eliglustat tartrate was well tolerated at single doses ? 20 mg/kg and multiple doses ? 200 mg bid, with 50 mg bid producing plasma concentrations in the predicted therapeutic range. No serious adverse events occurred. Mild to moderate events of nausea, dizziness, and vomiting increased in frequency with escalating single and multiple doses. Single doses ? 10 mg/kg caused mild increases in electrocardiogram PR, QRS, and QT/QTc intervals. Single-dose pharmacokinetics showed dose linearity but not proportionality. Maximum plasma concentrations occurred at ~2 hours, followed by a monophasic decline with a ~6-hour terminal half-life. Unchanged drug in 8-hour urine collections was <1.5% of administered doses. Food did not significantly affect the rate or extent of absorption. Multiple-dose pharmacokinetics was nonlinear, showing higher than expected plasma drug concentrations. Steady state was reached ~60 hours after bid dosing. Higher drug exposure occurred in slower CYP2D6 metabolizers. Based on favorable results in healthy participants, a phase 2 trial of eliglustat tartrate was initiated in GD1 patients. PMID:20864621

Peterschmitt, M Judith; Burke, Amy; Blankstein, Larry; Smith, Sharon E; Puga, Ana Cristina; Kramer, William G; Harris, James A; Mathews, David; Bonate, Peter L

2011-05-01

324

SU-E-J-113: The Influence of Optimizing Pediatric CT Simulator Protocols On the Treatment Dose Calculation in Radiotherapy  

SciTech Connect

Purpose: To investigate the possibility of applying optimized scanning protocols for pediatric CT simulation by quantifying the dosimetric inaccuracy introduced by using a fixed HU to density conversion. Methods: The images of a CIRS electron density reference phantom (Model 062) were acquired by a Siemens CT simulator (Sensation Open) using the following settings of tube voltage and beam current: 120 kV/190mA (the reference protocol used to calibrate CT for our treatment planning system (TPS)); Fixed 190mA combined with all available kV: 80, 100, and 140; fixed 120 kV and various current from 37 to 444 mA (scanner extremes) with interval of 30 mA. To avoid the HU uncertainty of point sampling in the various inserts of known electron densities, the mean CT numbers of the central cylindrical volume were calculated using DICOMan software. The doses per 100 MU to the reference point (SAD=100cm, Depth=10cm, Field=10X10cm, 6MV photon beam) in a virtual cubic phantom (30X30X30cm) were calculated using Eclipse TPS (calculation model: AcurosXB-11031) by assigning the CT numbers to HU of typical materials acquired by various protocols. Results: For the inserts of densities less than muscle, CT number fluctuations of all protocols were within the tolerance of 10 HU as accepted by AAPM-TG66. For more condensed materials, fixed kV yielded stable HU with any mA combination where largest disparities were found in 1750mg/cc insert: HU{sub reference}=1801(106.6cGy), HU{sub minimum}=1799 (106.6cGy, error{sub dose}=0.00%), HU{sub maximum}=1815 (106.8cGy, error{sub dose}=0.19%). Yet greater disagreements were observed with increasing density when kV was modified: HU{sub minimum}=1646 (104.5cGy, error{sub dose}=- 1.97%), HU{sub maximum}=2487 (116.4cGy, error{sub dose}=9.19%) in 1750mg/cc insert. Conclusion: Without affecting treatment dose calculation, personalized mA optimization of CT simulator can be conducted by fixing kV for a better cost-effectiveness of imaging dose and quality especially for children. Unless recalibrated, kV should be constant for all anatomical sites if diagnostic CT scanner is used as a simulator. This work was partially supported by Capital Medical Development Scientific Research Fund of China.

Zhang, Y; Zhang, J; Hu, Q; Tie, J; Wu, H [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiotherapy, Peking University Cancer Hospital ' Institute, Beijing (China); Deng, J [Department of Therapeutic Radiology, Yale University, New Haven, CT (United States)

2014-06-01

325

A Fuzzy-Based Maximum Power Point Tracker for Body Mounted Solar Panels in LEO Satellites  

Microsoft Academic Search

Solar panels are the power subsystem components which provide satellite electrical power. Solar panels characteristics depend on environmental conditions (insolation level, temperature and etc.). In this paper, design and simulation of fuzzy-based MPPT for the body mounted solar panel in a LEO satellite are presented. To show how good the proposed technique is; we applied it into a real system.

M. Taherbaneh; M. B. Menhaj

2007-01-01

326

Long Duration Balloon Maximum Power Point Tracking (MPPT) solar power system development  

Microsoft Academic Search

High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to 40 days. Longer missions, with durations of up to 100 days (Ultra Long),

Juan Perez

2008-01-01

327

A new maximum power point tracker of photovoltaic arrays using fuzzy controller  

Microsoft Academic Search

Studies on photovoltaic systems are increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the renewable energy system, it is

Chung-Yuen Won; Duk-Heon Kim; Sei-Chan Kim; Won-Sam Kim; Hack-Sung Kim

1994-01-01

328

THE MINIMUM AND MAXIMUM NUMBER OF RATIONAL POINTS ON JACOBIAN SURFACES OVER FINITE FIELDS  

E-print Network

numbers, the arithmetic- geometric mean states that n c1 . . . cn 1 n (c1 + · · · + cn) with equality the arithmetic-geometric mean, Serre [10] proved that g i=1 xi gm,(2) and so Proposition 1 implies that #A). Thus Tk 1.(3) On the other hand, using the arithmetic-geometric mean, we obtain T 1/(g k) k 1 g k {i1

Paris-Sud XI, Université de

329

APPLYING THE BOUNDARY POINT METHOD TO AN SDP RELAXATION OF THE MAXIMUM  

E-print Network

for providing both a critical and supportive voice and to Maxx Kureczko for too many things to list here Mexico Institute of Mining and Technology Socorro, New Mexico May, 2009 #12;ABSTRACT A common method and Technology thesis format was adapted from Gerald Arnold's modification of the LATEX macro package

Borchers, Brian

330

Low-Power Maximum Power Point Tracker with Digital Control for Thermophotovoltaic Generators  

E-print Network

This paper describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system. TPV system is based on a silicon micro-reactor design and ...

Pilawa, Robert

331

Use of mobile phones as microcontrollers for control applications such as maximum power point tracking (MPPT)  

Microsoft Academic Search

In this paper we propose the use of conventional mobile phones for a control application, which is usually carried out by microcontrollers. Different extension opportunities of mobile phones, which offer the opportunity to perform control capabilities in an easy way, are discussed. Hence, the microcontroller structure can be left out, as is normally needed. Mobile phones can manage then different

Christian Schuss; Timo Rahkonen

2012-01-01

332

New Power Conditioning System for Battery-free Satellite Buses with Maximum Power Point Tracking  

Microsoft Academic Search

The purpose of this paper is describe a new conception of Power Conditioning Unit (PCU) developed to fulfill the requirements of BepiColombo Electronic Propulsion module. This load bus has very tough specification especially regarding transient response during total load switch-off (\\

E. Maset; E. Sanchis-Kilders; J. B. Ejea; A. Ferreres; J. M. Blanes; A. Garrigos; J. A. Carrasco; A. H. Weinberg

2007-01-01

333

Multiple target tracking using maximum likelihood principle  

Microsoft Academic Search

Proposes a method (tracking algorithm (TAL)) based on the maximum likelihood (ML) principle for multiple target tracking in near-field using outputs from a large uniform linear array of passive sensors. The targets are assumed to be narrowband signals and modeled as sample functions of a Gaussian stochastic process. The phase delays of these signals are expressed as functions of both

A. Satish; Rangasami L. Kashyap

1995-01-01

334

Dynamic Programming, Maximum Principle and Vintage Capital  

Microsoft Academic Search

We present an application of the Dynamic Programming (DP) and of the Maximum Principle (MP) to solve an optimization over time when the production function is linear in the stock of capital (Ak model). Two views of capital are considered. In one, which is embraced by the great majority of macroeconomic models, capital is homogeneous and depreciates at a constant

Giorgio Fabbri; Maurizio Iacopetta

2007-01-01

335

Predicting Maximum Lake Depth from Surrounding Topography  

PubMed Central

Information about lake morphometry (e.g., depth, volume, size, etc.) aids understanding of the physical and ecological dynamics of lakes, yet is often not readily available. The data needed to calculate measures of lake morphometry, particularly lake depth, are usually collected on a lake-by-lake basis and are difficult to obtain across broad regions. To span the gap between studies of individual lakes where detailed data exist and regional studies where access to useful data on lake depth is unavailable, we developed a method to predict maximum lake depth from the slope of the topography surrounding a lake. We use the National Elevation Dataset and the National Hydrography Dataset – Plus to estimate the percent slope of surrounding lakes and use this information to predict maximum lake depth. We also use field measured maximum lake depths from the US EPA's National Lakes Assessment to empirically adjust and cross-validate our predictions. We were able to predict maximum depth for ?28,000 lakes in the Northeastern United States with an average cross-validated RMSE of 5.95 m and 5.09 m and average correlation of 0.82 and 0.69 for Hydrological Unit Code Regions 01 and 02, respectively. The depth predictions and the scripts are openly available as supplements to this manuscript. PMID:21984945

Hollister, Jeffrey W.; Milstead, W. Bryan; Urrutia, M. Andrea

2011-01-01

336

REDUCTION OF RESTRICTED MAXIMUM LIKELIHOOD FOR  

E-print Network

maximum likelihood (REML) estimator of the dispersion matrix for random coeÃ?cient models is rewritten) estimators are widely used to estimate the free parameters in the dispersion matrix for mixed models to be Gaussian random variables. Thus the kth individual, y k , is a Gaussian random variable with the block

337

REDUCTION OF RESTRICTED MAXIMUM LIKELIHOOD FOR  

E-print Network

maximum likelihood (REML) estimator of the dispersion matrix for random coefficient models is rewritten (REML) estimators are widely used to estimate the free parameters in the dispersion matrix for mixed , . . . T N ) and eT = (eT 1 , . . . eT N ). We also require y, and e to be Gaussian random variables. Thus

338

On Using Unsatisfiability for Solving Maximum Satisfiability  

Microsoft Academic Search

Maximum Satisfiability (M AXSAT) is a well-known optimization pro- blem, with several practical applications. The most widely known MAXSAT algo- rithms are ineffective at solving hard problems instances f rom practical applica- tion domains. Recent work proposed using efficient Boolean S atisfiability (SAT) solvers for solving the MAXSAT problem, based on identifying and eliminating unsatisfiable subformulas. However, these algorithms do

Joao Marques-Silva; Jordi Planes

2007-01-01

339

Weak Scale From the Maximum Entropy Principle  

E-print Network

The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana

2014-09-23

340

Weak Scale From the Maximum Entropy Principle  

E-print Network

The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

Yuta Hamada; Hikaru Kawai; Kiyoharu Kawana

2015-03-28

341

Hurricane Maximum Intensity: Past and Present  

Microsoft Academic Search

Hurricane intensity forecasting has lagged far behind the forecasting of hurricane track. In an effort to improve the understanding of the hurricane intensity dilemma, several attempts have been made to compute an upper bound on the intensity of tropical cyclones. This paper investigates the strides made into determining the maximum intensity of hurricanes. Concentrating on the most recent attempts to

J. Parks Camp; Michael T. Montgomery

2001-01-01

342

Maximum phonation time: variability and reliability.  

PubMed

The objective of the study was to determine maximum phonation time reliability as a function of the number of trials, days, and raters in dysphonic and control subjects. Two groups of adult subjects participated in this reliability study: a group of outpatients with functional or organic dysphonia versus a group of healthy control subjects matched by age and gender. Over a period of maximally 6 weeks, three video recordings were made of five subjects' maximum phonation time trials. A panel of five experts were responsible for all measurements, including a repeated measurement of the subjects' first recordings. Patients showed significantly shorter maximum phonation times compared with healthy controls (on average, 6.6 seconds shorter). The averaged interclass correlation coefficient (ICC) over all raters per trial for the first day was 0.998. The averaged reliability coefficient per rater and per trial for repeated measurements of the first day's data was 0.997, indicating high intrarater reliability. The mean reliability coefficient per day for one trial was 0.939. When using five trials, the reliability increased to 0.987. The reliability over five trials for a single day was 0.836; for 2 days, 0.911; and for 3 days, 0.935. To conclude, the maximum phonation time has proven to be a highly reliable measure in voice assessment. A single rater is sufficient to provide highly reliable measurements. PMID:19111437

Speyer, Renée; Bogaardt, Hans C A; Passos, Valéria Lima; Roodenburg, Nel P H D; Zumach, Anne; Heijnen, Mariëlle A M; Baijens, Laura W J; Fleskens, Stijn J H M; Brunings, Jan W

2010-05-01

343

Muscle coordination of maximum-speed pedaling  

Microsoft Academic Search

A simulation based on a forward dynamical musculoskeletal model was computed from an optimal control algorithm to understand uni- and bi-articular muscle coordination of maximum-speed startup pedaling. The muscle excitations, pedal reaction forces, and crank and pedal kinematics of the simulation agreed with measurements from subjects. Over the crank cycle, uniarticular hip and knee extensor muscles provide 55% of the

Christine C. Raasch; Felix E. Zajac; Baoming Ma; William S. Levine

1997-01-01

344

Comparing maximum pressures in internal combustion engines  

NASA Technical Reports Server (NTRS)

Thin metal diaphragms form a satisfactory means for comparing maximum pressures in internal combustion engines. The diaphragm is clamped between two metal washers in a spark plug shell and its thickness is chosen such that, when subjected to explosion pressure, the exposed portion will be sheared from the rim in a short time.

Sparrow, Stanwood W; Lee, Stephen M

1922-01-01

345

Weak scale from the maximum entropy principle  

NASA Astrophysics Data System (ADS)

The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.

Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

2015-03-01

346

Maximum entropy analysis of hydraulic pipe networks  

NASA Astrophysics Data System (ADS)

A Maximum Entropy (MaxEnt) method is developed to infer mean external and internal flow rates and mean pressure gradients (potential differences) in hydraulic pipe networks, without or with sufficient constraints to render the system deterministic. The proposed method substantially extends existing methods for the analysis of flow networks (e.g. Hardy-Cross), applicable only to deterministic networks.

Waldrip, Steven H.; Niven, Robert K.; Abel, Markus; Schlegel, Michael

2014-12-01

347

Maximum entropy models for speech confidence estimation  

Microsoft Academic Search

In this work we implement a confidence estimation system based on a Naive Bayes classifier, by using the maximum entropy paradigm. The model takes information from various sources including a set of scores which have proved to be useful in confidence estimation tasks. Two different approaches are modeled. First a basic model which takes advantages of smoothing techniques used in

Claudio Estienne; Alberto Sanchís; Alfons Juan; Enrique Vidal

2008-01-01

348

Maximum Possible Transverse Velocity in Special Relativity.  

ERIC Educational Resources Information Center

Using a physical picture, an expression for the maximum possible transverse velocity and orientation required for that by a linear emitter in special theory of relativity has been derived. A differential calculus method is also used to derive the expression. (Author/KR)

Medhekar, Sarang

1991-01-01

349

: runout specimen max : maximum fatigue stress  

E-print Network

: runout specimen max : maximum fatigue stress fe,i : elastic limit strength of each specimen 750 uniaxial tensile fatigue stress. Interests in tensile fatigue strength and behaviour come from the fact.g. cantilever of bridge deck slab). Tensile Fatigue behaviour of UHPFRC Doctoral student: Tohru Makita

350

Maximum rotation frequency of strange stars  

SciTech Connect

Using the MIT bag model of strange-quark matter, we calculate the maximum angular frequency of the uniform rotation of strange stars. After studying a broad range of the MIT bag-model parameters, we obtain an upper bound of 12.3 kHz.

Zdunik, J.L.; Haensel, P. (Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, PL-00-716 Warsaw (Poland))

1990-07-15

351

Maximum Frictional Charge Generation on Polymer Surfaces  

Microsoft Academic Search

The maximum amount of charge that a given surface area can hold is limited by the surrounding environmental conditions such as the atmospheric composition, pressure, humidity, and temperature. Above this charge density limit, the surface will discharge to the atmosphere or to a nearby conductive surface that is at a different electric potential. We have performed experiments using the MECA

Carlos Calle; Ellen Groop; James Mantovani; Martin Buehler

2001-01-01

352

Different Dose Rate Radiation Effects on Linear CCDs  

Microsoft Academic Search

Charge coupled devices (CCD) have been tested at widely differing dose rates to examine the radiation tolerance dependence on the dose rates. The test results show a maximum tolerance of CCDs at 10.2 rad(Si)\\/sec, a slight reduction in tolerance at 34.8 rad(Si)\\/sec and a quite precipitous roll off when moving down to 1 rad(Si)\\/sec and 0.1 rad(Si)\\/sec. The degradation of

Wang Zujun; Tang Benqi; Xiao Zhigang; Liu Minbo; Zhang Yong; Huang Shaoyan; Chen Wei; Liu Yinong

2010-01-01

353

Calculation of total effective dose equivalent and collective dose in the event of a LOCA in Bushehr Nuclear Power Plant.  

PubMed

In this research, total effective dose equivalent (TEDE) and collective dose (CD) are calculated for the most adverse potential accident in Bushehr Nuclear Power Plant from the viewpoint of radionuclides release to the environment. Calculations are performed using a Gaussian diffusion model and a slightly modified version of AIREM computer code to adopt for conditions in Bushehr. The results are comparable with the final safety analysis report which used DOZAM code. Results of our calculations show no excessive dose in populated regions. Maximum TEDE is determined to be in the WSW direction. CD in the area around the nuclear power plant by a distance of 30 km (138 man Sv) is far below the accepted limits. Thyroid equivalent dose is also calculated for the WSW direction (maximum 25.6 mSv) and is below the limits at various distances from the reactor stack. PMID:16785243

Raisali, G; Davilu, H; Haghighishad, A; Khodadadi, R; Sabet, M

2006-01-01

354

Pharmacokinetics of a single subcutaneous dose of sustained release buprenorphine in northern elephant seals (Mirounga angustirostris).  

PubMed

Information regarding analgesics in pinnipeds is limited. This study aimed to establish the pharmacokinetic parameters of a single subcutaneous dose of sustained release buprenorphine (Buprenorphine SR) in juvenile northern elephant seals (Mirounga angustirostris) with regard to its potential to provide long-lasting analgesia that requires infrequent dosing. Seals (n=26) were administered a single dose of sustained release buprenorphine at 0.12 mg/kg s.c. Blood samples were collected from the extradural intervertebral vein at 0 hr and at three or four of the following time points: 0.5, 1, 2, 6, 12, 24, 36, 48, 60, 96, 120, and 144 hr. Seals were examined daily for systemic and local adverse reactions. Plasma was analyzed by liquid chromatography tandem-mass spectrometry for buprenorphine and norbuprenorphine concentrations. A noncompartmental analysis for pharmacokinetic parameters was calculated using standard methods and equations. An average maximum concentration of 1.21 ng/ml (0.3-2.9 ng/ml) was detected 12 hr postadministration. Concentrations were quantifiable up to 144 hr postadministration but were below those expected to provide analgesia in some other species. No systemic adverse effects were noted in healthy seals receiving sustained release buprenorphine. Cellulitis or abscesses at the injection site were observed in 6/26 (23%) seals between 24 and 168 hr postadministration. Adverse local effects suggest that this drug should be used with caution in northern elephant seals. PMID:25831576

Molter, Christine M; Barbosa, Lorraine; Johnson, Shawn; Knych, Heather K; Chinnadurai, Sathya K; Wack, Raymund F

2015-03-01

355

Comparison of organ dose and dose equivalent for human phantoms of CAM vs. MAX  

NASA Astrophysics Data System (ADS)

For the evaluation of organ dose and dose equivalent of astronauts on space shuttle and the International Space Station (ISS) missions, the CAMERA models of CAM (Computerized Anatomical Male) and CAF (Computerized Anatomical Female) of human tissue shielding have been implemented and used in radiation transport model calculations at NASA. One of new human geometry models to meet the “reference person” of International Commission on Radiological Protection (ICRP) is based on detailed Voxel (volumetric and pixel) phantom models denoted for male and female as MAX (Male Adult voXel) and FAX (Female Adult voXel), respectively. We compared the CAM model predictions of organ doses to those of MAX model, since the MAX model represents the male adult body with much higher fidelity than the CAM model currently used at NASA. Directional body-shielding mass was evaluated for over 1500 target points of MAX for specified organs considered to be sensitive to the induction of stochastic effects. Radiation exposures to solar particle event (SPE), trapped protons, and galactic cosmic ray (GCR) were assessed at the specific sites in the MAX phantom by coupling space radiation transport models with the relevant body-shielding mass. The development of multiple-point body-shielding distributions at each organ made it possible to estimate the mean and variance of organ doses at the specific organ. For the estimate of doses to the blood forming organs (BFOs), data on active marrow distributions in adult were used to weight the bone marrow sites over the human body. The discrete number of target points of MAX organs resulted in a reduced organ dose and dose equivalent compared to the results of CAM organs especially for SPE, and should be further investigated. Differences of effective doses between the two approaches were found to be small (<5%) for GCR.

Kim, Myung-Hee Y.; Qualls, Garry D.; Slaba, Tony C.; Cucinotta, Francis A.

2010-04-01

356

Cervix cancer brachytherapy: high dose rate.  

PubMed

Cervical cancer, although less common in industrialized countries, is the fourth most common cancer affecting women worldwide and the fourth leading cause of cancer death. In developing countries, these cancers are often discovered at a later stage in the form of locally advanced tumour with a poor prognosis. Depending on the stage of the disease, treatment is mainly based on a chemoradiotherapy followed by uterovaginal brachytherapy ending by a potential remaining tumour surgery or in principle for some teams. The role of irradiation is crucial to ensure a better local control. It has been shown that the more the delivered dose is important, the better the local results are. In order to preserve the maximum of organs at risk and to allow this dose escalation, brachytherapy (intracavitary and/or interstitial) has been progressively introduced. Its evolution and its progressive improvement have led to the development of high dose rate brachytherapy, the advantages of which are especially based on the possibility of outpatient treatment while maintaining the effectiveness of other brachytherapy forms (i.e., low dose rate or pulsed dose rate). Numerous innovations have also been completed in the field of imaging, leading to a progress in treatment planning systems by switching from two-dimensional form to a three-dimensional one. Image-guided brachytherapy allows more precise target volume delineation as well as an optimized dosimetry permitting a better coverage of target volumes. PMID:25151650

Miglierini, P; Malhaire, J-P; Goasduff, G; Miranda, O; Pradier, O

2014-10-01

357

Modelling lateral beam quality variations in pencil kernel based photon dose calculations  

NASA Astrophysics Data System (ADS)

Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error was reduced to 1% when the off-axis softening was accounted for in the calculations.

Nyholm, T.; Olofsson, J.; Ahnesjö, A.; Karlsson, M.

2006-08-01

358

A real time dose monitoring and dose reconstruction tool for patient specific VMAT QA and delivery  

SciTech Connect

Purpose: To develop a real time dose monitoring and dose reconstruction tool to identify and quantify sources of errors during patient specific volumetric modulated arc therapy (VMAT) delivery and quality assurance. Methods: The authors develop a VMAT delivery monitor tool called linac data monitor that connects to the linac in clinical mode and records, displays, and compares real time machine parameters with the planned parameters. A new measure, called integral error, keeps a running total of leaf overshoot and undershoot errors in each leaf pair, multiplied by leaf width, and the amount of time during which the error exists in monitor unit delivery. Another tool reconstructs Pinnacle{sup 3} Trade-Mark-Sign format delivered plan based on the saved machine logfile and recalculates actual delivered dose in patient anatomy. Delivery characteristics of various standard fractionation and stereotactic body radiation therapy (SBRT) VMAT plans delivered on Elekta Axesse and Synergy linacs were quantified. Results: The MLC and gantry errors for all the treatment sites were 0.00 {+-} 0.59 mm and 0.05 {+-} 0.31 Degree-Sign , indicating a good MLC gain calibration. Standard fractionation plans had a larger gantry error than SBRT plans due to frequent dose rate changes. On average, the MLC errors were negligible but larger errors of up to 6 mm and 2.5 Degree-Sign were seen when dose rate varied frequently. Large gantry errors occurred during the acceleration and deceleration process, and correlated well with MLC errors (r= 0.858, p= 0.0004). PTV mean, minimum, and maximum dose discrepancies were 0.87 {+-} 0.21%, 0.99 {+-} 0.59%, and 1.18 {+-} 0.52%, respectively. The organs at risk (OAR) doses were within 2.5%, except some OARs that showed up to 5.6% discrepancy in maximum dose. Real time displayed normalized total positive integral error (normalized to the total monitor units) correlated linearly with MLC (r= 0.9279, p < 0.001) and gantry errors (r= 0.742, p= 0.005). There is a strong correlation between total integral error and PTV mean (r= 0.683, p= 0.015), minimum (r= 0.6147, p= 0.033), and maximum dose (r= 0.6038, p= 0.0376). Conclusions: Errors may exist during complex VMAT planning and delivery. Linac data monitor is capable of detecting and quantifying mechanical and dosimetric errors at various stages of planning and delivery.

Tyagi, Neelam; Yang Kai; Gersten, David; Yan Di [Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073 (United States)

2012-12-15

359

Megavoltage bremsstrahlung end point voltage diagnostic.  

PubMed

In a material, a beam of x rays is accompanied by various kinds of secondary radiation, including Compton electrons from collisions between the x rays and the material's electrons. For megavoltage bremsstrahlung in air, many of these Compton electrons are forward-directed and fast enough to be deflected outside the beam's edge by a magnetic field perpendicular to the beam. At the beam's edge, the dose from the deflected Compton electrons has a pattern that depends on the radiation's end point energy. Dose patterns measured with radiochromic film on a nominally 1 and 2 MV linear accelerator agree reasonably well with the corresponding Monte Carlo computations. With further development, the dose pattern produced outside the beam by such a sweeper magnet could become a noninvasive way to monitor megavoltage bremsstrahlung, when the end point energies are difficult to determine with other methods. PMID:19334938

Feroli, T; Litz, M S; Merkel, G; Smith, T; Pereira, N R; Carroll, J J

2009-03-01

360

Megavoltage bremsstrahlung end point voltage diagnostic  

SciTech Connect

In a material, a beam of x rays is accompanied by various kinds of secondary radiation, including Compton electrons from collisions between the x rays and the material's electrons. For megavoltage bremsstrahlung in air, many of these Compton electrons are forward-directed and fast enough to be deflected outside the beam's edge by a magnetic field perpendicular to the beam. At the beam's edge, the dose from the deflected Compton electrons has a pattern that depends on the radiation's end point energy. Dose patterns measured with radiochromic film on a nominally 1 and 2 MV linear accelerator agree reasonably well with the corresponding Monte Carlo computations. With further development, the dose pattern produced outside the beam by such a sweeper magnet could become a noninvasive way to monitor megavoltage bremsstrahlung, when the end point energies are difficult to determine with other methods.

Feroli, T.; Litz, M. S.; Merkel, G.; Smith, T. [Army Research Laboratory, 2800 Powder Mill Rd., Adelphi, Maryland 20873 (United States); Pereira, N. R. [Ecopulse, Inc., P.O. Box 528, Springfield, Virginia 22150 (United States); Carroll, J. J. [Youngstown State University, Youngstown, Ohio 44555 (United States)

2009-03-15

361

On the definition of absorbed dose  

NASA Astrophysics Data System (ADS)

Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

Grusell, Erik

2015-02-01

362

Toward Dose Optimization for Fractionated Stereotactic Radiotherapy for Acoustic Neuromas: Comparison of Two Dose Cohorts  

SciTech Connect

Purpose: To describe our initial experience of fractionated stereotactic radiotherapy dose reduction comparing two dose cohorts with examination of tumor control rates and serviceable hearing preservation rates. Methods and Materials: After institutional review board approval, we initiated a retrospective chart review to study the hearing outcomes and tumor control rates. All data were entered into a JMP, version 7.01, statistical spreadsheet for analysis. Results: A total of 89 patients with serviceable hearing had complete serial audiometric data available for analysis. The higher dose cohort included 43 patients treated to 50.4 Gy with a median follow-up (latest audiogram) of 53 weeks and the lower dose cohort included 46 patients treated to 46.8 Gy with a median follow-up of 65 weeks. The tumor control rate was 100% in both cohorts, and the pure tone average was significantly improved in the low-dose cohort (33 dB vs. 40 dB, p = 0.023, chi-square). When the patient data were analyzed at comparable follow-up points, the actuarial hearing preservation rate was significantly longer for the low-dose cohort than for the high-dose cohort (165 weeks vs. 79 weeks, p = .0318, log-rank). Multivariate analysis revealed the dose cohort (p = 0.0282) and pretreatment Gardner-Robertson class (p = 0.0215) to be highly significant variables affecting the hearing outcome. Conclusion: A lower total dose at 46.8 Gy was associated with a 100% local control tumor rate and a greater hearing preservation rate. An additional dose reduction is justified to achieve the optimal dose that will yield the greatest hearing preservation rate without compromising tumor control for these patients.

Andrews, David W. [Department of Neurologic Surgery, Thomas Jefferson University (United States)], E-mail: david.andrews@jefferson.edu; Werner-Wasik, Maria; Den, Robert B. [Department of Radiation Oncology, Thomas Jefferson University (United States); Paek, Sun Ha [Department of Neurosurgery, Seoul National University (Korea, Republic of); Downes-Phillips, Beverly [Department of Neurologic Surgery, Thomas Jefferson University (United States); Willcox, Thomas O. [Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University (United States); Bednarz, Greg; Maltenfort, Mitchel; Evans, James J. [Department of Neurologic Surgery, Thomas Jefferson University (United States); Curran, Walter J. [Department of Radiation Oncology, Thomas Jefferson University (United States)

2009-06-01

363

Ibuprofen dosing for children  

MedlinePLUS

Taking ibuprofen can help children feel better when they have colds or minor injuries. As with all drugs, it is important to give children the correct dose. Ibuprofen is safe when taken as directed. But taking ...

364

Calculate Your Radiation Dose  

MedlinePLUS

... Ionizing & Non-Ionizing Radiation Understanding Radiation: Calculate Your Radiation Dose Health Effects Main Page Exposure Pathways Calculate ... of the US do you live in? Internal radiation (in your body): From food and water, (e. ...

365

Disposition of firocoxib in equine plasma after an oral loading dose and a multiple dose regimen.  

PubMed

The objective of this study was to determine if a single loading dose (LD), 3× the label dose of firocoxib oral paste, followed by nine maintenance doses at the current label dose achieves and maintains near steady state concentrations. Six healthy, adult mares were administered 0.3mg/kg of firocoxib on Day 0, and 0.1 mg/kg 24 h later on Day 1, and at 24 h intervals from Day 2 to Day 9, for a total of 10 doses. Blood samples were collected throughout the study. The mean firocoxib maximum plasma concentration and standard deviation was 199±97 ng/mL, 175±44 ng/mL and 183±50 ng/mL after the LD, and first and last maintenance doses, respectively. The minimum mean concentration (C(min)) increased from 100±23 ng/mL after the LD to 132±38 ng/mL at Day 7. Then, the C(min) remained constant until Day 9. The average concentration at steady state (C(avg)) was 150±45 ng/mL, which compares well to the C(avg) (130±36 ng/mL) reported after multiple daily doses at 0.1 mg/kg. The administration of the single LD allowed achievement of the average steady state drug concentrations faster than a multi-dose regimen without a loading dose. After the LD, firocoxib at 0.1 mg/kg every 24 h was able to maintain a relatively constant average drug concentration which should produce less variability in onset of action and efficacy. PMID:24076125

Cox, S; Villarino, N; Sommardahl, C; Kvaternick, V; Zarabadipour, C; Siger, L; Yarbrough, J; Amicucci, A; Reed, K; Breeding, D; Doherty, T

2013-11-01

366

Detailed Comparison of Observed Dose-Time Profile of October 19-20, 1989 SPE on Mir with Model Calculations  

NASA Technical Reports Server (NTRS)

The dose rate dynamics of the October 19-20,1989 solar energetic particle (SPE) event as observed by the Liulin instrument onboard the Mir orbital station was analyzed in light of new calculations of the geomagnetic cutoff and improved estimates of the less than 100 MeV energy spectra from the GOES satellite instrument. The new calculations were performed using the as-flown Mir orbital trajectory and includes time variations of the cutoff rigidity due to changes in the kappa (sub p) index. Although the agreement of total event integrated calculated dose to the measured dose is good, it results from some measured dose-time profile been higher and some lower than model calculations. They point to the need to include the diurnal variation of the geomagnetic cutoff and modifications of the cutoffs to variations in kappa (sub p) in model calculations. Understanding of such events in light of the upcoming construction of the International Space Station during the period of maximum solar activity needs to be vigorously pursued.

Badhwar, Gautam D.; Atwell, William

1999-01-01

367

FIS/ANFIS Based Optimal Control for Maximum Power Extraction in Variable-speed Wind Energy Conversion System  

NASA Astrophysics Data System (ADS)

An optimal control for maximizing extraction of power in variable-speed wind energy conversion system is presented. Intelligent gradient detection by fuzzy inference system (FIS) in maximum power point tracking control is proposed to achieve power curve operating near optimal point. Speed rotor reference can be adjusted by maximum power point tracking fuzzy controller (MPPTFC) such that the turbine operates around maximum power. Power curve model can be modelled by using adaptive neuro fuzzy inference system (ANFIS). It is required to simply well estimate just a few number of maximum power points corresponding to optimum generator rotor speed under varying wind speed, implying its training can be done with less effort. Using the trained fuzzy model, some estimated maximum power points as well as their corresponding generator rotor speed and wind speed are determined, from which a linear wind speed feedback controller (LWSFC) capable of producing optimum generator speed can be obtained. Applied to a squirrel-cage induction generator based wind energy conversion system, MPPTFC and LWSFC could maximize extraction of the wind energy, verified by a power coefficient stay at its maximum almost all the time and an actual power line close to a maximum power efficiency line reference.

Nadhir, Ahmad; Naba, Agus; Hiyama, Takashi

368

Evaluation of approximate methods to estimate maximum inelastic displacement demands  

Microsoft Academic Search

SUMMARY Six approximate methods to estimate the maximum inelastic displacement demand of single-degree-of- freedom systems are evaluated. In all methods, the maximum displacement demand of inelastic systems is estimated from the maximum displacement demand of linear elastic systems. Of the methods evalu- ated herein, four are based on equivalent linearization in which the maximum deformation is estimated as the maximum

Eduardo Miranda

2002-01-01

369

Maximum-entropy description of animal movement  

NASA Astrophysics Data System (ADS)

We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

Fleming, Chris H.; Suba??, Yi?it; Calabrese, Justin M.

2015-03-01

370

Finding maximum colorful subtrees in practice.  

PubMed

In metabolomics and other fields dealing with small compounds, mass spectrometry is applied as a sensitive high-throughput technique. Recently, fragmentation trees have been proposed to automatically analyze the fragmentation mass spectra recorded by such instruments. Computationally, this leads to the problem of finding a maximum weight subtree in an edge-weighted and vertex-colored graph, such that every color appears, at most once in the solution. We introduce new heuristics and an exact algorithm for this Maximum Colorful Subtree problem and evaluate them against existing algorithms on real-world and artificial datasets. Our tree completion heuristic consistently scores better than other heuristics, while the integer programming-based algorithm produces optimal trees with modest running times. Our fast and accurate heuristic can help determine molecular formulas based on fragmentation trees. On the other hand, optimal trees from the integer linear program are useful if structure is relevant, for example for tree alignments. PMID:23509858

Rauf, Imran; Rasche, Florian; Nicolas, François; Böcker, Sebastian

2013-04-01

371

Pareto versus lognormal: A maximum entropy test  

NASA Astrophysics Data System (ADS)

It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano

2011-08-01

372

Maximum speed of dewetting on a fiber  

NASA Astrophysics Data System (ADS)

A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. We theoretically investigate this forced wetting transition for axisymmetric menisci on fibers of varying radii. First, we use a matched asymptotic expansion and derive the maximum speed of dewetting. For all radii, we find the maximum speed occurs at vanishing apparent contact angle. To further investigate the transition, we numerically determine the bifurcation diagram for steady menisci. It is found that the meniscus profiles on thick fibers are smooth, even when there is a film deposited between the bath and the contact line, while profiles on thin fibers exhibit strong oscillations. We discuss how this could lead to different experimental scenarios of film deposition.

Shing Chan, Tak; Gueudré, Thomas; Snoeijer, Jacco H.

2011-11-01

373

Zipf's law, power laws, and maximum entropy  

E-print Network

Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines - from astronomy to demographics to economics to linguistics to zoology, and even warfare. A recent model of random group formation [RGF] attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present article I argue that the cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.

Visser, Matt

2012-01-01

374

Zipf's law, power laws, and maximum entropy  

E-print Network

Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines - from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation [RGF] attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present article I argue that the cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.

Matt Visser

2013-04-07

375

MAXIMUM LIKELIHOOD ESTIMATION FOR SOCIAL NETWORK DYNAMICS  

PubMed Central

A model for network panel data is discussed, based on the assumption that the observed data are discrete observations of a continuous-time Markov process on the space of all directed graphs on a given node set, in which changes in tie variables are independent conditional on the current graph. The model for tie changes is parametric and designed for applications to social network analysis, where the network dynamics can be interpreted as being generated by choices made by the social actors represented by the nodes of the graph. An algorithm for calculating the Maximum Likelihood estimator is presented, based on data augmentation and stochastic approximation. An application to an evolving friendship network is given and a small simulation study is presented which suggests that for small data sets the Maximum Likelihood estimator is more efficient than the earlier proposed Method of Moments estimator. PMID:25419259

Snijders, Tom A.B.; Koskinen, Johan; Schweinberger, Michael

2014-01-01

376

Effets pathogènes d'un faible débit de dose : la relation « dose effet »  

NASA Astrophysics Data System (ADS)

There is no evidence of pathogenic effects in human groups exposed to less than 100 mSv at low dose-rate. The attributed effects are therefore the result of extrapolations from higher doses. The validity of such extrapolations is discussed from the point of view of epidemiology as well as cellular and molecular biology. The Chernobyl accident resulted in large excess of thyroid cancers in children; it also raised the point that some actual sanitary effects among distressed populations might be a direct consequence of low doses. Studies under the control of UN have not confirmed this point identifying no dose-effect relationship and " severe socio-economic and psychological pressures… poverty, poor diet and living conditions, and lifestyle factors" as the main cause for depressed health. Some hypothesis are considered for explaining the dose-dependence and high prevalence of non-cancer causes of death among human groups exposed to more than 300 mSv. To cite this article: R. Masse, C. R. Physique 3 (2002) 1049-1058.

Masse, Roland

2002-10-01

377

PowerPoint Presentation  

Cancer.gov

36.8 33.8 43.9 32.7 16.1 23.6 23.8 25.5 0 5 10 15 20 25 30 35 40 45 50 Bx in Degassed Buffer Flash-frozen Bx Pre-Dose Deep Pre-Dose Shallow Post-Dose Shallow Validation and Fitness Testing of a Quantitative Immunoassay for HIF1? in Biopsy Specimens

378

Maximum entropy production and the fluctuation theorem  

Microsoft Academic Search

Recently the author used an information theoretical formulation of non-equilibrium statistical mechanics (MaxEnt) to derive the fluctuation theorem (FT) concerning the probability of second law violating phase-space paths. A less rigorous argument leading to the variational principle of maximum entropy production (MEP) was also given. Here a more rigorous and general mathematical derivation of MEP from MaxEnt is presented, and

R C Dewar

2005-01-01

379

Maximum likelihood estimation in pooled sample tests  

NASA Astrophysics Data System (ADS)

Pooled sample tests, firstly used on the classification problem (identifying all individuals with some characteristic), may also be applied to estimate the prevalence rate. Moreover, the pooled sample methods may attain greater efficiency when applied to estimate some prevalence rate, since it is no longer necessary to perform any individual test. We develop a maximum likelihood computational algorithm for the prevalence rate estimation, and we analyze its performance.

Martins, João Paulo; Felgueiras, Miguel; Santos, Rui

2014-10-01

380

Maximum A Posteriori Estimation of Time Delay  

Microsoft Academic Search

Time-delay estimation (TDE) is an important topic of array signal processing for applications such as source localization and beam-forming. With a pair of sensors, the generalized cross correlation (GCC) method is widely used for TDE and the maximum-likelihood (ML) estimation can be considered as a GCC prefilter. Unfortunately, the ML estimation suffers from performance degradation due to the limitation of

Bowon Lee; T. Kalker

2007-01-01

381

Maximum entropy and Bayesian methods. Proceedings.  

NASA Astrophysics Data System (ADS)

This volume contains a selection of papers presented at the Tenth Annual Workshop on Maximum Entropy and Bayesian Methods. The thirty-six papers included cover a wide range of applications in areas such as economics and econometrics, astronomy and astrophysics, general physics, complex systems, image reconstruction, and probability and mathematics. Together they give an excellent state-of-the-art overview of fundamental methods of data analysis.

Grandy, W. T., Jr.; Schick, L. H.

382

Random graph processes with maximum degree $2$  

Microsoft Academic Search

Suppose that a process begins with n isolated vertices, to which\\u000aedges are added randomly one by one so that the maximum degree of the induced\\u000agraph is always at most 2. In a previous article, the authors showed that as $n\\u000a\\\\to \\\\infty$, with probability tending to 1, the result of this process is a\\u000agraph with n edges.

A. Ruci?ski; N. C. Wormald

1997-01-01

383

An ESS maximum principle for matrix games.  

PubMed

Previous work has demonstrated that for games defined by differential or difference equations with a continuum of strategies, there exists a G-function, related to individual fitness, that must take on a maximum with respect to a virtual variable v whenever v is one of the vectors in the coalition of vectors which make up the evolutionarily stable strategy (ESS). This result, called the ESS maximum principle, is quite useful in determining candidates for an ESS. This principle is reformulated here, so that it may be conveniently applied to matrix games. In particular, we define a matrix game to be one in which fitness is expressed in terms of strategy frequencies and a matrix of expected payoffs. It is shown that the G-function in the matrix game setting must again take on a maximum value at all the strategies which make up the ESS coalition vector. The reformulated maximum principle is applicable to both bilinear and nonlinear matrix games. One advantage in employing this principle to solve the traditional bilinear matrix game is that the same G-function is used to find both pure and mixed strategy solutions by simply specifying an appropriate strategy space. Furthermore we show how the theory may be used to solve matrix games which are not in the usual bilinear form. We examine in detail two nonlinear matrix games: the game between relatives and the sex ratio game. In both of these games an ESS solution is determined. These examples not only illustrate the usefulness of this approach to finding solutions to an expanded class of matrix games, but aids in understanding the nature of the ESS as well. PMID:11120647

Vincent, T L; Cressman, R

2000-11-01

384

Maximum concentration for ideal asymmetrical radiation concentrators  

Microsoft Academic Search

A new relation between the maximum geometric concentration factor C and the angular acceptance interval for asymmetrical ideal non-imaging concentrators is proposed. A generalization of the well-known relation for the two-dimensional case, sin?c=1\\/C where ?c is the acceptance half-angle, results in the proposed relation sin?2?sin?1=2\\/C, where ?1 and ?2 are the angles of the acceptance interval limits relative to the

S. Nordlander

2005-01-01

385

The maximum mass of a neutron star.  

NASA Astrophysics Data System (ADS)

The concept of neutron star maximum mass is revisited. In particular we show that when the dynamical processes occuring in the first few seconds after the neutron star birth are considered, the concept of neutron star maximum mass, as introduced by Oppenheimer and Volkoff, is partially inadequate. We show that both the maximum mass concept and the final stages of the evolution of massive stars depend on the composition of the neutron star material. In particular, we find two different scenarios depending on the absence or presence of negatively charged hadrons among the constituents. In the first scenario, we show that the Oppenheimer Volkoff mass M_OV_ does not represent the boundary between the value of the masses of neutron stars and black holes. In fact, we find a mass range in which both a neutron star and a black hole may exist. In the second scenario we show that, contrary to the standard view, it is possible to have a supernova explosion (accompained by nucleosynthesis and neutrino emission) followed by the delayed formation of a black hole. The latter mechamism could explain the lack of any observational evidence for a neutron star in the remnant of the supernova 1987A.

Bombaci, I.

1996-01-01

386

Automatic maximum entropy spectral reconstruction in NMR.  

PubMed

Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system. PMID:17701276

Mobli, Mehdi; Maciejewski, Mark W; Gryk, Michael R; Hoch, Jeffrey C

2007-10-01

387

"SPURS" in the North Atlantic Salinity Maximum  

NASA Astrophysics Data System (ADS)

The North Atlantic Salinity Maximum is the world's saltiest open ocean salinity maximum and was the focus of the recent Salinity Processes Upper-ocean Regional Study (SPURS) program. SPURS was a joint venture between US, French, Irish, and Spanish investigators. Three US and two EU cruises were involved from August, 1012 - October, 2013 as well as surface moorings, glider, drifter and float deployments. Shipboard operations included underway meteorological and oceanic data, hydrographic surveys and turbulence profiling. The goal is to improve our understanding of how the salinity maximum is maintained and how it may be changing. It is formed by an excess of evaporation over precipitation and the wind-driven convergence of the subtropical gyre. Such salty areas are getting saltier with global warming (a record high SSS was observed in SPURS) and it is imperative to determine the relative roles of surface water fluxes and oceanic processes in such trends. The combination of accurate surface flux estimates with new assessments of vertical and horizontal mixing in the ocean will help elucidate the utility of ocean salinity in quantifying the changing global water cycle.

Schmitt, Raymond

2014-05-01

388

The maximum rate of mammal evolution.  

PubMed

How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. PMID:22308461

Evans, Alistair R; Jones, David; Boyer, Alison G; Brown, James H; Costa, Daniel P; Ernest, S K Morgan; Fitzgerald, Erich M G; Fortelius, Mikael; Gittleman, John L; Hamilton, Marcus J; Harding, Larisa E; Lintulaakso, Kari; Lyons, S Kathleen; Okie, Jordan G; Saarinen, Juha J; Sibly, Richard M; Smith, Felisa A; Stephens, Patrick R; Theodor, Jessica M; Uhen, Mark D

2012-03-13

389

The estimation of galactic cosmic ray penetration and dose rates  

NASA Technical Reports Server (NTRS)

This study is concerned with approximation methods that can be readily applied to estimate the absorbed dose rate from cosmic rays in rads - tissue or rems inside simple geometries of aluminum. The present work is limited to finding the dose rate at the center of spherical shells or behind plane slabs. The dose rate is calculated at tissue-point detectors or for thin layers of tissue. This study considers cosmic-rays dose rates for both free-space and earth-orbiting missions.

Burrell, M. O.; Wright, J. J.

1972-01-01

390

REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.  

SciTech Connect

We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

UMEDA, T.; MATSUFURU, H.

2005-07-25

391

Collaborative double robust targeted maximum likelihood estimation.  

PubMed

Collaborative double robust targeted maximum likelihood estimators represent a fundamental further advance over standard targeted maximum likelihood estimators of a pathwise differentiable parameter of a data generating distribution in a semiparametric model, introduced in van der Laan, Rubin (2006). The targeted maximum likelihood approach involves fluctuating an initial estimate of a relevant factor (Q) of the density of the observed data, in order to make a bias/variance tradeoff targeted towards the parameter of interest. The fluctuation involves estimation of a nuisance parameter portion of the likelihood, g. TMLE has been shown to be consistent and asymptotically normally distributed (CAN) under regularity conditions, when either one of these two factors of the likelihood of the data is correctly specified, and it is semiparametric efficient if both are correctly specified. In this article we provide a template for applying collaborative targeted maximum likelihood estimation (C-TMLE) to the estimation of pathwise differentiable parameters in semi-parametric models. The procedure creates a sequence of candidate targeted maximum likelihood estimators based on an initial estimate for Q coupled with a succession of increasingly non-parametric estimates for g. In a departure from current state of the art nuisance parameter estimation, C-TMLE estimates of g are constructed based on a loss function for the targeted maximum likelihood estimator of the relevant factor Q that uses the nuisance parameter to carry out the fluctuation, instead of a loss function for the nuisance parameter itself. Likelihood-based cross-validation is used to select the best estimator among all candidate TMLE estimators of Q(0) in this sequence. A penalized-likelihood loss function for Q is suggested when the parameter of interest is borderline-identifiable. We present theoretical results for "collaborative double robustness," demonstrating that the collaborative targeted maximum likelihood estimator is CAN even when Q and g are both mis-specified, providing that g solves a specified score equation implied by the difference between the Q and the true Q(0). This marks an improvement over the current definition of double robustness in the estimating equation literature. We also establish an asymptotic linearity theorem for the C-DR-TMLE of the target parameter, showing that the C-DR-TMLE is more adaptive to the truth, and, as a consequence, can even be super efficient if the first stage density estimator does an excellent job itself with respect to the target parameter. This research provides a template for targeted efficient and robust loss-based learning of a particular target feature of the probability distribution of the data within large (infinite dimensional) semi-parametric models, while still providing statistical inference in terms of confidence intervals and p-values. This research also breaks with a taboo (e.g., in the propensity score literature in the field of causal inference) on using the relevant part of likelihood to fine-tune the fitting of the nuisance parameter/censoring mechanism/treatment mechanism. PMID:20628637

van der Laan, Mark J; Gruber, Susan

2010-01-01

392

14 CFR 375.23 - Maximum allowable weights.  

Code of Federal Regulations, 2010 CFR

...false Maximum allowable weights. 375.23 Section 375...23 Maximum allowable weights. Foreign civil aircraft...on maximum certificated weights prescribed or authorized for the particular variation of the aircraft type,...

2010-01-01

393

49 CFR 230.24 - Maximum allowable stress.  

Code of Federal Regulations, 2011 CFR

... 2011-10-01 false Maximum allowable stress. 230.24 Section 230.24 Transportation...STANDARDS Boilers and Appurtenances Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value....

2011-10-01

394

49 CFR 230.24 - Maximum allowable stress.  

Code of Federal Regulations, 2010 CFR

... 2010-10-01 false Maximum allowable stress. 230.24 Section 230.24 Transportation...STANDARDS Boilers and Appurtenances Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value....

2010-10-01

395

16 CFR 1505.7 - Maximum acceptable surface temperatures.  

Code of Federal Regulations, 2014 CFR

... false Maximum acceptable surface temperatures. 1505.7 Section 1505.7 Commercial...1505.7 Maximum acceptable surface temperatures. The maximum acceptable surface temperatures for electrically operated toys...

2014-01-01

396

16 CFR 1505.7 - Maximum acceptable surface temperatures.  

Code of Federal Regulations, 2013 CFR

... false Maximum acceptable surface temperatures. 1505.7 Section 1505.7 Commercial...1505.7 Maximum acceptable surface temperatures. The maximum acceptable surface temperatures for electrically operated toys...

2013-01-01

397

16 CFR 1505.7 - Maximum acceptable surface temperatures.  

Code of Federal Regulations, 2012 CFR

... false Maximum acceptable surface temperatures. 1505.7 Section 1505.7 Commercial...1505.7 Maximum acceptable surface temperatures. The maximum acceptable surface temperatures for electrically operated toys...

2012-01-01

398

16 CFR 1505.7 - Maximum acceptable surface temperatures.  

Code of Federal Regulations, 2011 CFR

... false Maximum acceptable surface temperatures. 1505.7 Section 1505.7 Commercial...1505.7 Maximum acceptable surface temperatures. The maximum acceptable surface temperatures for electrically operated toys...

2011-01-01

399

40 CFR 141.13 - Maximum contaminant levels for turbidity.  

Code of Federal Regulations, 2011 CFR

... false Maximum contaminant levels for turbidity. 141.13 Section 141.13 Protection...141.13 Maximum contaminant levels for turbidity. The maximum contaminant levels for turbidity are applicable to both community...

2011-07-01

400

40 CFR 141.13 - Maximum contaminant levels for turbidity.  

Code of Federal Regulations, 2013 CFR

... false Maximum contaminant levels for turbidity. 141.13 Section 141.13 Protection...141.13 Maximum contaminant levels for turbidity. The maximum contaminant levels for turbidity are applicable to both community...

2013-07-01

401

40 CFR 141.13 - Maximum contaminant levels for turbidity.  

Code of Federal Regulations, 2014 CFR

... false Maximum contaminant levels for turbidity. 141.13 Section 141.13 Protection...141.13 Maximum contaminant levels for turbidity. The maximum contaminant levels for turbidity are applicable to both community...

2014-07-01

402

40 CFR 141.13 - Maximum contaminant levels for turbidity.  

Code of Federal Regulations, 2010 CFR

... false Maximum contaminant levels for turbidity. 141.13 Section 141.13 Protection...141.13 Maximum contaminant levels for turbidity. The maximum contaminant levels for turbidity are applicable to both community...

2010-07-01

403

40 CFR 141.13 - Maximum contaminant levels for turbidity.  

Code of Federal Regulations, 2012 CFR

... false Maximum contaminant levels for turbidity. 141.13 Section 141.13 Protection...141.13 Maximum contaminant levels for turbidity. The maximum contaminant levels for turbidity are applicable to both community...

2012-07-01

404

46 CFR 151.03-37 - Maximum allowable working pressure.  

Code of Federal Regulations, 2011 CFR

... 2011-10-01 false Maximum allowable working pressure. 151.03-37 Section 151...Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working pressure shall be as defined in section...

2011-10-01

405

46 CFR 151.03-37 - Maximum allowable working pressure.  

Code of Federal Regulations, 2010 CFR

... 2010-10-01 false Maximum allowable working pressure. 151.03-37 Section 151...Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working pressure shall be as defined in section...

2010-10-01

406

49 CFR 230.24 - Maximum allowable stress.  

Code of Federal Regulations, 2012 CFR

... 2012-10-01 false Maximum allowable stress. 230.24 Section 230.24 Transportation...STANDARDS Boilers and Appurtenances Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value....

2012-10-01

407

49 CFR 230.24 - Maximum allowable stress.  

Code of Federal Regulations, 2014 CFR

... 2014-10-01 false Maximum allowable stress. 230.24 Section 230.24 Transportation...STANDARDS Boilers and Appurtenances Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value....

2014-10-01

408

49 CFR 230.24 - Maximum allowable stress.  

Code of Federal Regulations, 2013 CFR

... 2013-10-01 false Maximum allowable stress. 230.24 Section 230.24 Transportation...STANDARDS Boilers and Appurtenances Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value....

2013-10-01

409

High dose chloral hydrate sedation for children undergoing CT.  

PubMed

Chloral hydrate is commonly used to sedate children before CT. However, no prospective study has been published of the safety and efficacy of chloral hydrate at high dose levels for children undergoing CT. We define high dose levels of oral chloral hydrate to be 80-100 mg/kg, with a maximum total dose of 2 g. High dose chloral hydrate sedation was administered orally to 295 children for 326 CT examinations. Adverse reactions occurred in 7% of the children, with vomiting being the most common (4.3% of children). Hyperactivity and respiratory symptoms each occurred in less than 2% of children. Prolonged sedation ( greater than 2 h) was not encountered in our series. Sedation was successful in producing motion free CT examinations, so that in 303 (93%) of the cases, no repeat CT scans were needed. We conclude that high dose oral chloral hydrate provides safe and effective sedation for children undergoing CT. PMID:2026812

Greenberg, S B; Faerber, E N; Aspinall, C L

1991-01-01

410

Three-dose-cohort designs in cancer phase I trials.  

PubMed

Traditional designs for phase I clinical trials assign the same dose to patients in the same cohort. In this paper, we present a new class of designs for cancer phase I trials which initially rapidly escalate by allowing multiple doses (usually 3) to be assigned to each cohort of patients. The class of designs, called the LMH-CRM (an extension of the continual reassessment method (CRM) by administering different percentiles of the maximum tolerated dose (MTD), denoted 'low', 'medium', 'high'), is proven to be consistent and coherent (a commonsense property of phase I trials for dose escalation and de-escalation). Three designs (slow, moderate and fast) are derived based on different dose-escalation restrictions. Simulation results show that moderate and fast LMH-CRM combine the advantages of the CRM with one patient per cohort and three patients per cohort: it accurately estimates the MTD; controls overall toxicity rates; and is time efficient. PMID:17764082

Huang, Bo; Chappell, Rick

2008-05-30

411

Energy and maximum norm estimates for nonlinear conservation laws  

NASA Technical Reports Server (NTRS)

We have devised a technique that makes it possible to obtain energy estimates for initial-boundary value problems for nonlinear conservation laws. The two major tools to achieve the energy estimates are a certain splitting of the flux vector derivative f(u)(sub x), and a structural hypothesis, referred to as a cone condition, on the flux vector f(u). These hypotheses are fulfilled for many equations that occur in practice, such as the Euler equations of gas dynamics. It should be noted that the energy estimates are obtained without any assumptions on the gradient of the solution u. The results extend to weak solutions that are obtained as point wise limits of vanishing viscosity solutions. As a byproduct we obtain explicit expressions for the entropy function and the entropy flux of symmetrizable systems of conservation laws. Under certain circumstances the proposed technique can be applied repeatedly so as to yield estimates in the maximum norm.

Olsson, Pelle; Oliger, Joseph

1994-01-01

412

Tensor distance based multilinear locality-preserved maximum information embedding.  

PubMed

This brief paper presents a unified framework for tensor-based dimensionality reduction (DR) with a new tensor distance (TD) metric and a novel multilinear locality-preserved maximum information embedding (MLPMIE) algorithm. Different from traditional Euclidean distance, which is constrained by the orthogonality assumption, TD measures the distance between data points by considering the relationships among different coordinates. To preserve the natural tensor structure in low-dimensional space, MLPMIE directly works on the high-order form of input data and iteratively learns the transformation matrices. In order to preserve the local geometry and to maximize the global discrimination simultaneously, MLPMIE keeps both local and global structures in a manifold model. By integrating TD into tensor embedding, TD-MLPMIE performs tensor-based DR through the whole learning procedure, and achieves stable performance improvement on various standard datasets. PMID:20876016

Liu, Yang; Liu, Yan; Chan, Keith C C

2010-11-01

413

Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries  

SciTech Connect

Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT MLC sequences. For all phantoms and plans, time-resolved (10 Hz) ion chamber dose was collected. In addition, coronal (XY) films were exposed in the cube phantom to a VMAT beam with two different starting phases, and compared to the reconstructed motion-perturbed dose planes. Results: For the X or Y motions with the moving strip and geometrical phantoms, the maximum difference between perturbation-reconstructed and ion chamber doses did not exceed 1.9%, and the average for any motion pattern/starting phase did not exceed 1.3%. For the VMAT plans on the cubic and thoracic phantoms, one point exhibited a 3.5% error, while the remaining five were all within 1.1%. Across all the measurements (N = 22), the average disagreement was 0.5 {+-} 1.3% (1 SD). The films exhibited {gamma}(3%/3 mm) passing rates {>=}90%. Conclusions: The dose to an arbitrary moving voxel in a patient can be estimated with acceptable accuracy for a VMAT delivery, by performing a single QA measurement with a cylindrical phantom and applying two consecutive perturbations to the TPS-calculated patient dose. The first one accounts for the differences between the planned and delivered static doses, while the second one corrects for the motion.

Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States); Stambaugh, Cassandra [Department of Physics, University of South Florida, Tampa, Florida 33612 (United States); Wolf, Theresa K. [Live Oak Technologies LLC, Kirkwood, Missouri 63122 (United States); Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States)

2013-02-15

414

Comparison of 2D and 3D Imaging and Treatment Planning for Postoperative Vaginal Apex High-Dose Rate Brachytherapy for Endometrial Cancer  

SciTech Connect

Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address this issue.

Russo, James K. [Department of Radiation Oncology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina (United States); Armeson, Kent E. [Division of Biostatistics and Epidemiology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina (United States); Richardson, Susan, E-mail: srichardson@radonc.wustl.edu [Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri (United States)

2012-05-01

415

Forward Intensity-Modulated Radiotherapy Planning in Breast Cancer to Improve Dose Homogeneity: Feasibility of Class Solutions  

SciTech Connect

Purpose: To explore forward planning methods for breast cancer treatment to obtain homogeneous dose distributions (using International Commission on Radiation Units and Measurements criteria) within normal tissue constraints and to determine the feasibility of class solutions. Methods and Materials: Treatment plans were optimized in a stepwise procedure for 60 patients referred for postlumpectomy irradiation using strict dose constraints: planning target volume (PTV){sub 95%} of >99%; V{sub 107%} of <1.8 cc; heart V{sub 5Gy} of <10% and V{sub 10Gy} of <5%; and mean lung dose of <7 Gy. Treatment planning started with classic tangential beams. Optimization was done by adding a maximum of four segments before adding beams, in a second step. A breath-hold technique was used for heart sparing if necessary. Results: Dose constraints were met for all 60 patients. The classic tangential beam setup was not sufficient for any of the patients; in one-third of patients, additional segments were required (<3), and in two-thirds of patients, additional beams (<2) were required. Logistic regression analyses revealed central breast diameter (CD) and central lung distance as independent predictors for transition from additional segments to additional beams, with a CD cut-off point at 23.6 cm. Conclusions: Treatment plans fulfilling strict dose homogeneity criteria and normal tissue constraints could be obtained for all patients by stepwise dose intensity modification using limited numbers of segments and additional beams. In patients with a CD of >23.6 cm, additional beams were always required.

Peulen, Heike, E-mail: h.peulen@nki.nl [Department of Radiation Oncology, MAASTRO Clinic, Maastricht (Netherlands); Hanbeukers, Bianca; Boersma, Liesbeth; Baardwijk, Angela van; Ende, Piet van den; Houben, Ruud; Jager, Jos; Murrer, Lars; Borger, Jacques [Department of Radiation Oncology, MAASTRO Clinic, Maastricht (Netherlands)

2012-01-01

416

Thermodynamics of Maximum Transition Entropy for Quantum Assemblies  

E-print Network

This work presents a general unifying theoretical framework for quantum non-equilibrium systems. It is based on a re-statement of the dynamical problem as one of inferring the distribution of collision events that move a system toward thermal equilibrium from an arbitrary starting distribution. Using a form based on maximum entropy for this transition distribution leads to a statistical description of open quantum systems with strong parallels to the conventional, maximum-entropy, equilibrium thermostatics. A precise form of the second law of thermodynamics can be stated for this dynamics at every time-point in a trajectory. Numerical results are presented for low-dimensional systems interacting with cavity fields. The dynamics and stationary state are compared to a reference model of a weakly coupled oscillator plus cavity supersystem thermostatted by periodic partial measurements. Despite the absence of an explicit cavity in the present model of open quantum dynamics, both the relaxation rates and stationary state properties closely match the reference. Additionally, the time-course of energy exchange and entropy increase is given throughout an entire measurement process for a single spin system. The results show the process to be capable of initially absorbing heat when starting from a superposition state, but not from an isotropic distribution. Based on these results, it is argued that logical inference in the presence of environmental noise is sufficient to resolve the paradox of wavefunction collapse.

David M. Rogers

2015-03-27

417

Magnetic field dependence of the maximum magnetic entropy change  

NASA Astrophysics Data System (ADS)

The maximum isothermal entropy change in a magnetic refrigerant with a second-order phase transition is shown to depend on applied magnetic field H as follows: (-?S)max = A(H + H0)2/3 - AH02/3 + BH4/3. Here A and B are intrinsic parameters of the cooling material and H0 is an extrinsic parameter determined by the purity and homogeneity of the sample. This theoretical prediction is confirmed by measurements on variously pure poly- and single-crystalline samples of Gd. The Curie point of pure Gd is found to be 295(1) K; however, the maximum of -?SM is attained at a lower temperature: The higher the quality of the sample, the closer the peak position to 295 K. Further tests are reported for a series of melt-spun LaFe13-xSix alloys. These are found to follow the same field dependence, despite the fact that for certain compositions (x < 1.8) they experience a phase transition of first, rather than second, order.

Lyubina, Julia; Kuz'Min, Michael D.; Nenkov, Konstantin; Gutfleisch, Oliver; Richter, Manuel; Schlagel, Devo L.; Lograsso, Thomas A.; Gschneidner, Karl A., Jr.

2011-01-01

418

Testing the Maximum Magnetic Shear Model with OpenGGCM  

NASA Astrophysics Data System (ADS)

Magnetic reconnection at Earth's magnetopause can occur as antiparallel or component reconnection depending on the geometry of the magnetic field, and has important implications for plasma entry into the magnetosphere. The maximum magnetic shear model proposed by Trattner et al. [J. Geophys. Res., 112, 2007] is an empirical model for determining the location and type of reconnection based on the solar wind clock angle during times of southward IMF. This model has been tested against reconnection inferred from magnetopause crossings of both the Cluster and THEMIS missions. The observations agree with the model that component reconnection dominates when the IMF points within 60 degrees of the east-west direction; however, observations are limited since the spacecraft must cross the magnetopause near the X-line, and data only exists for a relatively small region of the magnetopause. Numerical simulations can give a view of the global dynamics and geometry of reconnection. We use OpenGGCM, a 3D global MHD code, to test the maximum magnetic shear model using both synthetic solar wind conditions and solar wind observations of some of the events observed by Cluster and THEMIS. In addition, we examine the dynamics of the magnetopause when IMF Bx is greater than 70% of |B|, where observations suggest that antiparallel reconnection usually dominates regardless of clock angle.

Maynard, K.; Germaschewski, K.; Lin, L.; Raeder, J.

2012-12-01

419

DNS of Viscoelastic Turbulent Channel Flow at Maximum Drag Reduction  

NASA Astrophysics Data System (ADS)

Maximum Drag Reduction (MDR) by dilute polymer solutions is investigated in a turbulent channel flow by DNS. The simulations were performed using a semi-Lagrangian scheme employing pseudo-spectral methods for the solvent and a Backward tracking Lagrangian Particle Method (BLPM) with a multimode (FENE-LSMR) constitutive model for the polymer. The polymer and flow parameters (Re_? ˜ 225, b=45000, nk_BT/? u^2_?=1.15× 10-3) were selected to replicate one of the experimental data points of Virk (1975). Simulations were performed for We_? ranging from 35 to 200, and resulted in drag reductions of 30-70% (MDR). The computed turbulence statistics agree with the experimental data of Warholic et al.(1999) for comparable drag reduction. All simulations with We_? ? 100 result in maximum drag reduction and a mean velocity profile in agreement with Virk's asymptote. However, the condition of zero Reynolds shear stress is achieved only for We_? ? 150. The physics of drag reduction at MDR is currently under study and will be discussed.

Zhou, Qiang; Liu, Jin; Akhavan, Rayhaneh

2003-11-01

420

Thermodynamics of Maximum Transition Entropy for Quantum Assemblies  

E-print Network

This work presents a general unifying theoretical framework for quantum non-equilibrium systems. It is based on a re-statement of the dynamical problem as one of inferring the distribution of collision events that move a system toward thermal equilibrium from an arbitrary starting distribution. Using a form based on maximum entropy for this transition distribution leads to a statistical description of open quantum systems with strong parallels to the conventional, maximum-entropy, equilibrium thermostatics. A precise form of the second law of thermodynamics can be stated for this dynamics at every time-point in a trajectory. Numerical results are presented for low-dimensional systems interacting with cavity fields. The dynamics and stationary state are compared to a reference model of a weakly coupled oscillator plus cavity supersystem thermostatted by periodic partial measurements. Despite the absence of an explicit cavity in the present model of open quantum dynamics, both the relaxation rates and stationary state properties closely match the reference. Additionally, the time-course of energy exchange and entropy increase is given throughout an entire measurement process for a single spin system. The results show the process to be capable of initially absorbing heat when starting from a superposition state, but not from an isotropic distribution. Based on these results, it is argued that logical inference in the presence of environmental noise is sufficient to resolve the paradox of wavefunction collapse.

David M. Rogers

2015-03-04