Sample records for maximum wavelength shift

  1. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms.

    PubMed

    Tahara, Tatsuki; Mori, Ryota; Kikunaga, Shuhei; Arai, Yasuhiko; Takaki, Yasuhiro

    2015-06-15

    Dual-wavelength phase-shifting digital holography that selectively extracts wavelength information from five wavelength-multiplexed holograms is presented. Specific phase shifts for respective wavelengths are introduced to remove the crosstalk components and extract only the object wave at the desired wavelength from the holograms. Object waves in multiple wavelengths are selectively extracted by utilizing 2π ambiguity and the subtraction procedures based on phase-shifting interferometry. Numerical results show the validity of the proposed technique. The proposed technique is also experimentally demonstrated.

  2. Photothermal effects in phase shifted FBG with varied light wavelength and intensity.

    PubMed

    Ding, Meng; Chen, Dijun; Fang, Zujie; Wang, Di; Zhang, Xi; Wei, Fang; Yang, Fei; Ying, Kang; Cai, Haiwen

    2016-10-31

    The intensity enhancement effect of a phase-shifted fiber Bragg grating (PSFBG) is investigated theoretically and experimentally in this paper. Due to the effect, both of the FBG reflection bands and the transmission peak show red-shift with the increase of pump light wavelength from the shorter side to the longer side of the Bragg wavelength. The transmission peak shifts in pace with the pump's wavelength, which is much faster than the reflection band. The maximum shift increases with the pump power. In contrast, the red-shift is very small when the pump light deceases from the longer side of the Bragg wavelength. Such asymmetric behavior is checked dynamically by using a frequency modulated laser in a serrated wave, showing push-pull behavior. The effect of the characteristics of thermal dissipation conditions is also measured. The fiber loss coefficient of FBG being tested is estimated from the measured data to be about 0.001 mm-1, which may be attributed to the H2-loading and UV exposure in FBG fabrication. The observed phenomena are believed of importance in application where PSFBG is utilized as a narrow linewidth filter.

  3. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2009-12-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  4. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2010-03-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  5. Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts.

    PubMed

    Tahara, Tatsuki; Otani, Reo; Omae, Kaito; Gotohda, Takuya; Arai, Yasuhiko; Takaki, Yasuhiro

    2017-05-15

    We propose multiwavelength in-line digital holography with wavelength-multiplexed phase-shifted holograms and arbitrary symmetric phase shifts. We use phase-shifting interferometry selectively extracting wavelength information to reconstruct multiwavelength object waves separately from wavelength-multiplexed monochromatic images. The proposed technique obtains systems of equations for real and imaginary parts of multiwavelength object waves from the holograms by introducing arbitrary symmetric phase shifts. Then, the technique derives each complex amplitude distribution of each object wave selectively and analytically by solving the two systems of equations. We formulate the algorithm in the case of an arbitrary number of wavelengths and confirm its validity numerically and experimentally in the cases where the number of wavelengths is two and three.

  6. Wavelength shift in vertical cavity laser arrays on a patterned substrate

    NASA Astrophysics Data System (ADS)

    Eng, L. E.; Bacher, K.; Yuen, W.; Larson, M.; Ding, G.; Harris, J. S., Jr.; Chang-Hasnain, C. J.

    1995-03-01

    The authors demonstrate a spatially chirped emission wavelength in vertical cavity surface emitting laser (VCSEL) arrays grown by molecular beam epitaxy. The wavelength shift is due to a lateral thickness variation in the Al(0.2)Ga(0.8)As cavity, which is induced by a substrate temperature profile during growth. A 20 nm shift in lasing wavelength is obtained in a VCSEL array.

  7. Quantitative phase imaging using four interferograms with special phase shifts by dual-wavelength in-line phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming; Han, Hao

    2018-05-01

    A new approach of quantitative phase imaging using four interferograms with special phase shifts in dual-wavelength in-line phase-shifting interferometry is presented. In this method, positive negative 2π phase shifts are employed to easily separate the incoherent addition of two single-wavelength interferograms by combining the phase-shifting technique with the subtraction procedure, then the quantitative phase at one of both wavelengths can be achieved based on two intensities without the corresponding dc terms by the use of the character of the trigonometric function. The quantitative phase of the other wavelength can be retrieved from two dc-term suppressed intensities obtained by employing the two-step phase-shifting technique or the filtering technique in the frequency domain. The proposed method is illustrated with theory, and its effectiveness is demonstrated by simulation experiments of the spherical cap and the HeLa cell, respectively.

  8. Peak wavelength shifts and opponent color theory

    NASA Astrophysics Data System (ADS)

    Ashdown, Ian; Salsbury, Marc

    2007-09-01

    We adapt the tenets of Hering's opponent color theory to the processing of data obtained from a tristimulus colorimeter to independently determine the intensity and possible peak wavelength shift of a narrowband LED. This information may then be used for example in an optical feedback loop to maintain constant intensity and chromaticity for a light source consisting of two LEDs with different peak wavelengths. This approach is particularly useful for LED backlighting of LCD display panels using red, green, and blue LEDs, wherein a tristimulus colorimeter can be used to maintain primary chromaticities to within broadcast standard limits in real time.

  9. Dopants concentration effects on the wavelength shift of long-period fiber gratings used as liquid level detectors

    NASA Astrophysics Data System (ADS)

    Mao, Barerem-Melgueba; Zhou, Bin

    2011-12-01

    Two liquid level sensors based on different long-period fiber gratings are proposed and compared. The long-period gratings have the same characteristics (length, grating period) but are fabricated in different optical fibers (photosensitive B-Ge codoped optical fibers with different dopants concentrations). The principle of this type of sensor is based on the refractive index sensitivity of long-period fiber gratings. By monitoring the resonant wavelength shifts of a given attenuation band, one can measure the immersed lengths of long-period fiber gratings and then the liquid level. The levels of two different solutions are measured. The maximum shift (7.69 nm) of the investigated resonance wavelength was observed in LPG1 (fabricated in Fibercore PS1250/1500). By controlling the fiber dopants concentrations one can improve the readouts of a fiber-optic liquid level sensor based on long-period fiber gratings.

  10. Wavelength Shifting in InP based Ultra-thin Quantum Well Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Sengupta, D. K.; Gunapala, S. D.; Bandara, S. V.; Pool, F.; Liu, J. K.; McKelvy, M.

    1998-01-01

    We have demonstrated red-shifting of the wavelength response of a bound-to-continuum p-type ultra-thin InGaAs/Inp quantum well infrared photodetector after growth via rapid thermal annealing. Compared to the as-grown detector, the peak spectral response of the annealed detector was shifted to longer wavelength without any major degradation in responsivity characteristics.

  11. A novel phase retrieval method from three-wavelength in-line phase-shifting interferograms based on positive negative 2π phase shifts

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Wang, Yawei; Ji, Ying; Xu, Yuanyuan; Xie, Ming

    2018-01-01

    A new method to extract quantitative phases for each wavelength from three-wavelength in-line phase-shifting interferograms is proposed. Firstly, seven interferograms with positive negative 2π phase shifts are sequentially captured by using the phase-shifting technique. Secondly, six dc-term suppressed intensities can be achieved by the use of the algebraic algorithm. Finally, the wrapped phases at the three wavelengths can be acquired simultaneously from these six interferograms add-subtracting by employing the trigonometric function method. The surface morphology with increased ambiguity-free range at synthetic beat wavelength can be obtained, while maintaining the low noise precision of the single wavelength measurement, by combining this method with three-wavelength phase unwrapping method. We illustrate the principle of this algorithm, and the simulated experiments of the spherical cap and the HeLa cell are conducted to prove our proposed method, respectively.

  12. Phase retrieval from the phase-shift moiré fringe patterns in simultaneous dual-wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Cheng, Jinlong; Gao, Zhishan; Bie, Shuyou; Dou, Yimeng; Ni, Ruihu; Yuan, Qun

    2018-02-01

    Simultaneous dual-wavelength interferometry (SDWI) could extend the measured range of each single-wavelength interferometry. The moiré fringe generated in SDWI indirectly represents the information of the measured long synthetic-wavelength ({λ }{{S}}) phase, thus the phase demodulation is rather arduous. To address this issue, we present a method to convert the moiré fringe pattern into a synthetic-wavelength interferogram (moiré to synthetic-wavelength, MTS). After the square of the moiré fringe pattern in the MTS method, the additive moiré pattern is turned into a multiplicative one. And the synthetic-wavelength interferogram could be obtained by a low-pass filtering in spectrum of the multiplicative moiré fringe pattern. Therefore, when the dual-wavelength interferometer is implemented with the π/2 phase shift at {λ }{{S}}, a sequence of synthetic-wavelength phase-shift interferograms with π/2 phase shift could be obtained after the MTS method processing on the captured moiré fringe patterns. And then the synthetic-wavelength phase could be retrieved by the conventional phase-shift algorithm. Compared with other methods in SDWI, the proposed MTS approach could reduce the restriction of the phase shift and frame numbers for the adoption of the conventional phase-shift algorithm. Following, numerical simulations are executed to evaluate the performance of the MTS method in processing time, frames of interferograms and the phase shift error compensation. And the necessary linear carrier for MTS method is less than 0.11 times of the traditional dual-wavelength spatial-domain Fourier transform method. Finally, the deviations for MTS method in experiment are 0.97% for a step with the height of 7.8 μm and 1.11% for a Fresnel lens with the step height of 6.2328 μm.

  13. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, William A.

    1997-01-01

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions.

  14. Optimal specific wavelength for maximum thrust production in undulatory propulsion

    PubMed Central

    Nangia, Nishant; Bale, Rahul; Chen, Nelson; Hanna, Yohanna; Patankar, Neelesh A.

    2017-01-01

    What wavelengths do undulatory swimmers use during propulsion? In this work we find that a wide range of body/caudal fin (BCF) swimmers, from larval zebrafish and herring to fully–grown eels, use specific wavelength (ratio of wavelength to tail amplitude of undulation) values that fall within a relatively narrow range. The possible emergence of this constraint is interrogated using numerical simulations of fluid–structure interaction. Based on these, it was found that there is an optimal specific wavelength (OSW) that maximizes the swimming speed and thrust generated by an undulatory swimmer. The observed values of specific wavelength for BCF animals are relatively close to this OSW. The mechanisms underlying the maximum propulsive thrust for BCF swimmers are quantified and are found to be consistent with the mechanisms hypothesized in prior work. The adherence to an optimal value of specific wavelength in most natural hydrodynamic propulsors gives rise to empirical design criteria for man–made propulsors. PMID:28654649

  15. Three dimensional imaging detector employing wavelength-shifting optical fibers

    DOEpatents

    Worstell, W.A.

    1997-02-04

    A novel detector element structure and method for its use is provided. In a preferred embodiment, one or more inorganic scintillating crystals are coupled through wavelength shifting optical fibers (WLSFs) to position sensitive photomultipliers (PS-PMTs). The superior detector configuration in accordance with this invention is designed for an array of applications in high spatial resolution gamma ray sensing with particular application to SPECT, PET and PVI imaging systems. The design provides better position resolution than prior art devices at a lower total cost. By employing wavelength shifting fibers (WLSFs), the sensor configuration of this invention can operate with a significant reduction in the number of photomultipliers and electronics channels, while potentially improving the resolution of the system by allowing three dimensional reconstruction of energy deposition positions. 11 figs.

  16. Wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion.

    PubMed

    Ivanov, Oleg V; Wang, Lon A

    2003-05-01

    A finite deformation theory of elasticity and a theory of nonlinear photoelasticity are applied to describe the wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion. The deformation of fiber is found by use of the Murnaghan model of a solid elastic body. The quadratic photoelastic effect that is proportional to the second-order displacement gradient is investigated and compared with the classical photoelastic effect. The electromagnetic field in the twisted corrugated structure is presented as a superposition of circularly polarized modes of the etched fiber section. The wavelength shift is found to be proportional to the square of the twist angle. As predicted by our theory, a wavelength shift of the same nature has been found in a conventionally photoinduced long-period fiber grating.

  17. CBET Experiments with Wavelength Shifting at the Nike Laser

    NASA Astrophysics Data System (ADS)

    Weaver, James; McKenty, P.; Bates, J.; Myatt, J.; Shaw, J.; Obenschain, K.; Oh, J.; Kehne, D.; Obenschain, S.; Lehmberg, R. H.; Tsung, F.; Schmitt, A. J.; Serlin, V.

    2016-10-01

    Studies conducted at NRL during 2015 searched for cross-beam energy transport (CBET) in small-scale plastic targets with strong gradients in planar, cylindrical, and spherical geometries. The targets were irradiated by two widely separated beam arrays in a geometry similar to polar direct drive. Data from these shots will be presented that show a lack of a clear CBET signature even with wavelength shifting of one set of beams. This poster will discuss the next campaign being planned, in part, with modelling codes developed at LLE. The next experiments will use a target configuration optimized to create stronger SBS growth. The primary path under consideration is to increase scale lengths 5-10x over the previous study by using exploding foils or low density foams. In addition to simulations, the presentation will also discuss improvements to the diagnostic suite and laser operations; for example, a new set of etalons will be available for the next campaign that should double the range of wavelength shifting between the two beam arrays. Work supported by DoE/NNSA.

  18. Can short-wavelength depleted bright light during single simulated night shifts prevent circadian phase shifts?

    PubMed

    Regente, J; de Zeeuw, J; Bes, F; Nowozin, C; Appelhoff, S; Wahnschaffe, A; Münch, M; Kunz, D

    2017-05-01

    In single night shifts, extending habitual wake episodes leads to sleep deprivation induced decrements of performance during the shift and re-adaptation effects the next day. We investigated whether short-wavelength depleted (=filtered) bright light (FBL) during a simulated night shift would counteract such effects. Twenty-four participants underwent a simulated night shift in dim light (DL) and in FBL. Reaction times, subjective sleepiness and salivary melatonin concentrations were assessed during both nights. Daytime sleep was recorded after both simulated night shifts. During FBL, we found no melatonin suppression compared to DL, but slightly faster reaction times in the second half of the night. Daytime sleep was not statistically different between both lighting conditions (n = 24) and there was no significant phase shift after FBL (n = 11). To conclude, our results showed positive effects from FBL during simulated single night shifts which need to be further tested with larger groups, in more applied studies and compared to standard lighting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. ``Ultimate'' information content in solar and stellar spectra. Photospheric line asymmetries and wavelength shifts

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis

    2008-12-01

    Context: Spectral-line asymmetries (displayed as bisectors) and wavelength shifts are signatures of the hydrodynamics in solar and stellar atmospheres. Theory may precisely predict idealized lines, but accuracies in real observed spectra are limited by blends, few suitable lines, imprecise laboratory wavelengths, and instrumental imperfections. Aims: We extract bisectors and shifts until the “ultimate” accuracy limits in highest-quality solar and stellar spectra, so as to understand the various limits set by (i) stellar physics (number of relevant spectral lines, effects of blends, rotational line broadening); by (ii) observational techniques (spectral resolution, photometric noise); and by (iii) limitations in laboratory data. Methods: Several spectral atlases of the Sun and bright solar-type stars were examined for those thousands of “unblended” lines with the most accurate laboratory wavelengths, yielding bisectors and shifts as averages over groups of similar lines. Representative data were obtained as averages over groups of similar lines, thus minimizing the effects of photometric noise and of random blends. Results: For the solar-disk center and integrated sunlight, the bisector shapes and shifts were extracted for previously little-studied species (Fe II, Ti I, Ti II, Cr II, Ca I, C I), using recently determined and very accurate laboratory wavelengths. In Procyon and other F-type stars, a sharp blueward bend in the bisector near the spectral continuum is confirmed, revealing line saturation and damping wings in upward-moving photospheric granules. Accuracy limits are discussed: “astrophysical” noise due to few measurable lines, finite instrumental resolution, superposed telluric absorption, inaccurate laboratory wavelengths, and calibration noise in spectrometers, together limiting absolute lineshift studies to ≈50-100 m s-1. Conclusions: Spectroscopy with resolutions λ/Δλ ≈ 300 000 and accurate wavelength calibration will enable

  20. Performance improvements of wavelength-shifting-fiber neutron detectors using high-resolution positioning algorithms

    DOE PAGES

    Wang, C. L.

    2016-05-17

    On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less

  1. Measurement of Cerenkov radiation induced by the gamma-rays of Co-60 therapy units using wavelength shifting fiber.

    PubMed

    Jang, Kyoung Won; Shin, Sang Hun; Kim, Seon Geun; Kim, Jae Seok; Yoo, Wook Jae; Ji, Young Hoon; Lee, Bongsoo

    2014-04-21

    In this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.2 times higher than that of the plastic optical fiber. Also, electron fluxes and total energy depositions of gamma-ray beams generated from a Co-60 therapy unit were calculated according to water depths using the Monte Carlo N-particle transport code. The relationship between the fluxes of electrons over the Cerenkov threshold energy and the energy depositions of gamma-ray beams from the Co-60 unit is a near-identity function. Finally, percentage depth doses for the gamma-ray beams were obtained using the fiber-optic Cerenkov radiation sensor, and the results were compared with those obtained by an ionization chamber. The average dose difference between the results of the fiber-optic Cerenkov radiation sensor and those of the ionization chamber was about 2.09%.

  2. Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion

    NASA Astrophysics Data System (ADS)

    Dias, Eduardo; Miranda, Jose

    2013-11-01

    As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.

  3. Correction of phase-shifting error in wavelength scanning digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-05-01

    Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.

  4. Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Dong, Xinyong; Lee, Ju Han; Lee, Sang Bae

    2006-12-01

    We propose and experimentally demonstrate a simple and flexible scheme for a wavelength-spacing-tunable multichannel filter exploiting a sampled chirped fiber Bragg grating based on a symmetrical modification of the chirp ratio. Symmetrical bending along a sampled chirped fiber Bragg grating attached to a flexible cantilever beam induces a variation of the chirp ratio and a reflection chirp bandwidth of the grating without a center wavelength shift. Accordingly, the wavelength spacing of a sampled chirped fiber Bragg grating is continuously controlled by the reflection chirp bandwidth variation of the grating corresponding to the bending direction, which allows for realization of an effective wavelength-spacing-tunable multichannel filter. Based on the proposed technique, we achieve the continuous tunability of the wavelength spacing in a range from 1.51 to 6.11 nm, depending on the bending direction of the cantilever beam.

  5. Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides

    NASA Astrophysics Data System (ADS)

    Howard, B.

    2018-02-01

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.

  6. Maximum imaging depth comparison in porcine vocal folds using 776-nm vs. 1552-nm excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Yildirim, Murat; Ferhanoglu, Onur; Kobler, James B.; Zeitels, Steven M.; Ben-Yakar, Adela

    2013-02-01

    Vocal fold scarring is one of the major causes of voice disorders and may arise from overuse or post-surgical wound healing. One promising treatment utilizes the injection of soft biomaterials aimed at restoring viscoelasticity of the outermost vibratory layer of the vocal fold, superficial lamina propria (SLP). However, the density of the tissue and the required injection pressure impair proper localization of the injected biomaterial in SLP. To enhance treatment effectiveness, we are investigating a technique to image and ablate sub-epithelial planar voids in vocal folds using ultrafast laser pulses to better localize the injected biomaterial. It is challenging to optimize the excitation wavelength to perform imaging and ablation at depths suitable for clinical use. Here, we compare maximum imaging depth using two photon autofluorescence and second harmonic generation with third-harmonic generation imaging modalities for healthy porcine vocal folds. We used a home-built inverted nonlinear scanning microscope together with a high repetition rate (2 MHz) ultrafast fiber laser (Raydiance Inc.). We acquired both two-photon autofluorescence and second harmonic generation signals using 776 nm wavelength and third harmonic generation signals using 1552 nm excitation wavelength. We observed that maximum imaging depth with 776 nm wavelength is significantly improved from 114 μm to 205 μm when third harmonic generation is employed using 1552 nm wavelength, without any observable damage in the tissue.

  7. Liquid Argon Scintillation Detection Utilizing Wavelength-Shifting Plates and Light Guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, B.

    In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this lightmore » and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.« less

  8. Wavelength shifting of intra-cavity photons: Adiabatic wavelength tuning in rapidly wavelength-swept lasers

    PubMed Central

    Jirauschek, Christian; Huber, Robert

    2015-01-01

    We analyze the physics behind the newest generation of rapidly wavelength tunable sources for optical coherence tomography (OCT), retaining a single longitudinal cavity mode during operation without repeated build up of lasing. In this context, we theoretically investigate the currently existing concepts of rapidly wavelength-swept lasers based on tuning of the cavity length or refractive index, leading to an altered optical path length inside the resonator. Specifically, we consider vertical-cavity surface-emitting lasers (VCSELs) with microelectromechanical system (MEMS) mirrors as well as Fourier domain mode-locked (FDML) and Vernier-tuned distributed Bragg reflector (VT-DBR) lasers. Based on heuristic arguments and exact analytical solutions of Maxwell’s equations for a fundamental laser resonator model, we show that adiabatic wavelength tuning is achieved, i.e., hopping between cavity modes associated with a repeated build up of lasing is avoided, and the photon number is conserved. As a consequence, no fundamental limit exists for the wavelength tuning speed, in principle enabling wide-range wavelength sweeps at arbitrary tuning speeds with narrow instantaneous linewidth. PMID:26203373

  9. Dynamical resonance shift and unification of resonances in short-pulse laser-cluster interaction

    NASA Astrophysics Data System (ADS)

    Mahalik, S. S.; Kundu, M.

    2018-06-01

    Pronounced maximum absorption of laser light irradiating a rare-gas or metal cluster is widely expected during the linear resonance (LR) when Mie-plasma wavelength λM of electrons equals the laser wavelength λ . On the contrary, by performing molecular dynamics (MD) simulations of an argon cluster irradiated by short 5-fs (FWHM) laser pulses it is revealed that, for a given laser pulse energy and a cluster, at each peak intensity there exists a λ —shifted from the expected λM—that corresponds to a unified dynamical LR at which evolution of the cluster happens through very efficient unification of possible resonances in various stages, including (i) the LR in the initial time of plasma creation, (ii) the LR in the Coulomb expanding phase in the later time, and (iii) anharmonic resonance in the marginally overdense regime for a relatively longer pulse duration, leading to maximum laser absorption accompanied by maximum removal of electrons from cluster and also maximum allowed average charge states for the argon cluster. Increasing the laser intensity, the absorption maxima is found to shift to a higher wavelength in the band of λ ≈(1 -1.5 ) λM than permanently staying at the expected λM. A naive rigid sphere model also corroborates the wavelength shift of the absorption peak as found in MD and unequivocally proves that maximum laser absorption in a cluster happens at a shifted λ in the marginally overdense regime of λ ≈(1 -1.5 ) λM instead of λM of LR. The present study is important for guiding an optimal condition laser-cluster interaction experiment in the short-pulse regime.

  10. Optical modulation of quantum cascade laser with optimized excitation wavelength.

    PubMed

    Yang, Tao; Chen, Gang; Tian, Chao; Martini, Rainer

    2013-04-15

    The excitation wavelength for all-optical modulation of a 10.6 μm mid-infrared (MIR) quantum cascade laser (QCL) was varied in order to obtain maximum modulation depth. Both amplitude and wavelength modulation experiments were conducted at 820 nm and 1550 nm excitation respectively, whereby the latter matches the interband transition in the QCL active region. Experimental results show that for continuous-wave mode-operated QCL, the efficiency of free carrier generation is doubled under 1550 nm excitation compared with 820 nm excitation, resulting in an increase of the amplitude modulation index from 19% to 36%. At the same time, the maximum wavelength shift is more than doubled from 1.05 nm to 2.80 nm. Furthermore, for the first time to our knowledge, we demonstrated the optical switching of a QCL operated in pulse mode by simple variation of the excitation wavelength.

  11. Artificial light pollution: Shifting spectral wavelengths to mitigate physiological and health consequences in a nocturnal marsupial mammal.

    PubMed

    Dimovski, Alicia M; Robert, Kylie A

    2018-05-02

    The focus of sustainable lighting tends to be on reduced CO 2 emissions and cost savings, but not on the wider environmental effects. Ironically, the introduction of energy-efficient lighting, such as light emitting diodes (LEDs), may be having a great impact on the health of wildlife. These white LEDs are generated with a high content of short-wavelength 'blue' light. While light of any kind can suppress melatonin and the physiological processes it regulates, these short wavelengths are potent suppressors of melatonin. Here, we manipulated the spectral composition of LED lights and tested their capacity to mitigate the physiological and health consequences associated with their use. We experimentally investigated the impact of white LEDs (peak wavelength 448 nm; mean irradiance 2.87 W/m 2 ), long-wavelength shifted amber LEDs (peak wavelength 605 nm; mean irradiance 2.00 W/m 2 ), and no lighting (irradiance from sky glow < 0.37 × 10 -3 W/m 2 ), on melatonin production, lipid peroxidation, and circulating antioxidant capacity in the tammar wallaby (Macropus eugenii). Night-time melatonin and oxidative status were determined at baseline and again following 10 weeks exposure to light treatments. White LED exposed wallabies had significantly suppressed nocturnal melatonin compared to no light and amber LED exposed wallabies, while there was no difference in lipid peroxidation. Antioxidant capacity declined from baseline to week 10 under all treatments. These results provide further evidence that short-wavelength light at night is a potent suppressor of nocturnal melatonin. Importantly, we also illustrate that shifting the spectral output to longer wavelengths could mitigate these negative physiological impacts. © 2018 Wiley Periodicals, Inc.

  12. Quality Control Studies of Wavelength Shifting Fibers for a Scintillator-Based Tail Catcher Muon Tracker for Linear Collider Prototype Detector

    NASA Astrophysics Data System (ADS)

    Dyshkant, A.; Beznosko, D.; Blazey, G.; Fisk, E.; Hahn, E.; Rykalin, V.; Wayne, M.; Zutshi, V.

    2006-12-01

    Detailed measurements of the wavelength shifting fiber response to a stable and reliable light source are presented. Particulars about materials, a double reference method, and measurement technique are included. The fibers studied were several hundred Kuraray, Y-11, multiclad, 1.2-mm outer diameter wavelength shifting fibers, each cut from a reel to about one meter length. The fibers were polished, mirrored, and the mirrors were UV epoxy protected. Each fiber passed quality control requirements before installation. About 94% of the fibers tested have a response within 1% of the overall mean

  13. Analysis of a multi-wavelength multi-camera phase-shifting profilometric system for real-time operation

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena; Gotchev, Atanas; Sainov, Ventseslav

    2011-01-01

    Real-time accomplishment of a phase-shifting profilometry through simultaneous projection and recording of fringe patterns requires a reliable phase retrieval procedure. In the present work we consider a four-wavelength multi-camera system with four sinusoidal phase gratings for pattern projection that implements a four-step algorithm. Successful operation of the system depends on overcoming two challenges which stem out from the inherent limitations of the phase-shifting algorithm, namely the demand for a sinusoidal fringe profile and the necessity to ensure equal background and contrast of fringes in the recorded fringe patterns. As a first task, we analyze the systematic errors due to the combined influence of the higher harmonics and multi-wavelength illumination in the Fresnel diffraction zone considering the case when the modulation parameters of the four gratings are different. As a second task we simulate the system performance to evaluate the degrading effect of the speckle noise and the spatially varying fringe modulation at non-uniform illumination on the overall accuracy of the profilometric measurement. We consider the case of non-correlated speckle realizations in the recorded fringe patterns due to four-wavelength illumination. Finally, we apply a phase retrieval procedure which includes normalization, background removal and denoising of the recorded fringe patterns to both simulated and measured data obtained for a dome surface.

  14. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  15. Multi-object investigation using two-wavelength phase-shift interferometry guided by an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Ibrahim, Dahi Ghareab Abdelsalam; Yasui, Takeshi

    2018-04-01

    Two-wavelength phase-shift interferometry guided by optical frequency combs is presented. We demonstrate the operation of the setup with a large step sample simultaneously with a resolution test target with a negative pattern. The technique can investigate multi-objects simultaneously with high precision. Using this technique, several important applications in metrology that require high speed and precision are demonstrated.

  16. Radiation detector based on a matrix of crossed wavelength-shifting fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kross, Brian J.; Weisenberger, Andrew; Zorn, Carl

    A radiation detection system comprising a detection grid of wavelength shifting fibers with a volume of scintillating material at the intersecting points of the fibers. Light detectors, preferably Silicon Photomultipliers, are positioned at the ends of the fibers. The position of radiation is determined from data obtained from the detection grid. The system is easily scalable, customizable, and also suitable for use in soil and underground applications. An alternate embodiment employs a fiber grid sheet or layer which is comprised of multiple fibers secured to one another within the same plane. This embodiment further includes shielding in order to preventmore » radiation cross-talk within the grid layer.« less

  17. Inner filter effect and the onset of concentration dependent red shift of synchronous fluorescence spectra.

    PubMed

    Tarai, Madhumita; Mishra, Ashok Kumar

    2016-10-12

    The phenomenon of concentration dependent red shift, often observed in synchronous fluorescence spectra (SFS) of monofluorophoric as well as multifluorophoric systems at high chromophore concentrations, is known to have good analytical advantages. This was previously understood in terms of large inner filter effect (IFE) through the introduction of a derived absorption spectral profile that closely corresponds to the SFS profile. Using representative monofluorophoric and multifluorophoric systems, it is now explained how the SF spectral maximum changes with concentration of the fluorophore. For dilute solutions of monofluorophores the maximum is unchanged as expected. It is shown here that the onset of red shift of SFS maximum of both the mono as well as the multifluorophoric systems must occur at the derived absorption spectral parameter value of 0.32 that corresponds to the absorbance value of 0.87. This value is unique irrespective of the nature of the fluorophore under study. For monofluorophoric systems, the wavelength of derived absorption spectral maximum and the wavelength of synchronous fluorescence spectral maximum closely correspond with each other in the entire concentration range. In contrast, for multifluorophoric systems like diesel and aqueous humic acid, large deviations were noted that could be explained as to be due to the presence of non-fluorescing chromophores in the system. This work bridges the entire fluorophore concentration range over which the red shift of SFS maximum sets in; and in the process it establishes the importance of the derived absorption spectral parameter in understanding the phenomenon of concentration dependent red shift of SFS maximum. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Multi-bit wavelength coding phase-shift-keying optical steganography based on amplified spontaneous emission noise

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Wang, Hongxiang; Ji, Yuefeng

    2018-01-01

    In this paper, a multi-bit wavelength coding phase-shift-keying (PSK) optical steganography method is proposed based on amplified spontaneous emission noise and wavelength selection switch. In this scheme, the assignment codes and the delay length differences provide a large two-dimensional key space. A 2-bit wavelength coding PSK system is simulated to show the efficiency of our proposed method. The simulated results demonstrate that the stealth signal after encoded and modulated is well-hidden in both time and spectral domains, under the public channel and noise existing in the system. Besides, even the principle of this scheme and the existence of stealth channel are known to the eavesdropper, the probability of recovering the stealth data is less than 0.02 if the key is unknown. Thus it can protect the security of stealth channel more effectively. Furthermore, the stealth channel will results in 0.48 dB power penalty to the public channel at 1 × 10-9 bit error rate, and the public channel will have no influence on the receiving of the stealth channel.

  19. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy.

    PubMed

    Xi, Tianqi; Kim, Dae Geun; Roh, Seong Woon; Choi, Jong-Soon; Choi, Yoon-E

    2016-07-01

    Haematococcus pluvialis is a green microalga of particular interest, since it is considered the best potential natural source of astaxanthin, which is widely used as an additive for natural pigmentation. In addition, astaxanthin has recently garnered commercial interest as a nutraceutical, cosmetic, and pharmaceutical. However, producing astaxanthin from H. pluvialis necessitates separation with distinctive culture conditions, dividing between the microalgae growth and the astaxanthin production stages. Light-emitting diodes (LEDs) have emerged as a replacement for traditional light sources, and LED applications are now rapidly expanding to multiple areas in fields such as biotechnology. However, further detail application into microalgae biotechnology remains limited. In this study, we have attempted to establish new protocols based on the specific wavelength of LEDs for the cultivation and production of astaxanthin using H. pluvialis. Specifically, we applied red LEDs for microalgae cell growth and then switched to blue LEDs to induce astaxanthin biosynthesis. The result showed that astaxanthin productions based on a wavelength shift from red to blue were significantly increased, compared to those with continuous illumination using red LEDs. Furthermore, additional increase of astaxanthin production was achieved with simultaneous application of exogenous carbon with blue LED illumination. Our approach based on the proper manipulation of LED wavelengths upon H. pluvialis cell stages will enable the improvement of biomass and enhance astaxanthin production using H. pluvialis.

  20. Experimental investigation of polarization insensitivity and cascadability with semiconductor optical amplifier-based differential phase-shift keyed wavelength converter

    NASA Astrophysics Data System (ADS)

    Mao, Yaya; Wu, Chongqing; Liu, Bo; Ullah, Rahat; Tian, Feng

    2017-12-01

    We experimentally investigate the polarization insensitivity and cascadability of an all-optical wavelength converter for differential phase-shift keyed (DPSK) signals for the first time. The proposed wavelength converter is composed of a one-bit delay interferometer demodulation stage followed by a single semiconductor optical amplifier. The impact of input DPSK signal polarization fluctuation on receiver sensitivity for the converted signal is carried out. It is found that this scheme is almost insensitive to the state of polarization of the input DPSK signal. Furthermore, the cascadability of the converter is demonstrated in a two-path recirculating loop. Error-free transmission is achieved with 20 stage cascaded wavelength conversions over 2800 km, where the power penalty is <3.4 dB at bit error rate of 10-9.

  1. Maximum Likelihood Shift Estimation Using High Resolution Polarimetric SAR Clutter Model

    NASA Astrophysics Data System (ADS)

    Harant, Olivier; Bombrun, Lionel; Vasile, Gabriel; Ferro-Famil, Laurent; Gay, Michel

    2011-03-01

    This paper deals with a Maximum Likelihood (ML) shift estimation method in the context of High Resolution (HR) Polarimetric SAR (PolSAR) clutter. Texture modeling is exposed and the generalized ML texture tracking method is extended to the merging of various sensors. Some results on displacement estimation on the Argentiere glacier in the Mont Blanc massif using dual-pol TerraSAR-X (TSX) and quad-pol RADARSAT-2 (RS2) sensors are finally discussed.

  2. A 12 GHz wavelength spacing multi-wavelength laser source for wireless communication systems

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Shiu, R. K.; Bitew, M. A.; Chang, T. L.; Lai, C. H.; Junior, J. I.

    2017-08-01

    This paper presents a multi-wavelength laser source with 12 GHz wavelength spacing based on a single distributed feedback laser. A light wave generated from the distributed feedback laser is fed into a frequency shifter loop consisting of 50:50 coupler, dual-parallel Mach-Zehnder modulator, optical amplifier, optical filter, and polarization controller. The frequency of the input wavelength is shifted and then re-injected into the frequency shifter loop. By re-injecting the shifted wavelengths multiple times, we have generated 84 optical carriers with 12 GHz wavelength spacing and stable output power. For each channel, two wavelengths are modulated by a wireless data using the phase modulator and transmitted through a 25 km single mode fiber. In contrast to previously developed schemes, the proposed laser source does not incur DC bias drift problem. Moreover, it is a good candidate for radio-over-fiber systems to support multiple users using a single distributed feedback laser.

  3. A novel fast phase correlation algorithm for peak wavelength detection of Fiber Bragg Grating sensors.

    PubMed

    Lamberti, A; Vanlanduit, S; De Pauw, B; Berghmans, F

    2014-03-24

    Fiber Bragg Gratings (FBGs) can be used as sensors for strain, temperature and pressure measurements. For this purpose, the ability to determine the Bragg peak wavelength with adequate wavelength resolution and accuracy is essential. However, conventional peak detection techniques, such as the maximum detection algorithm, can yield inaccurate and imprecise results, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. Other techniques, such as the cross-correlation demodulation algorithm are more precise and accurate but require a considerable higher computational effort. To overcome these problems, we developed a novel fast phase correlation (FPC) peak detection algorithm, which computes the wavelength shift in the reflected spectrum of a FBG sensor. This paper analyzes the performance of the FPC algorithm for different values of the SNR and wavelength resolution. Using simulations and experiments, we compared the FPC with the maximum detection and cross-correlation algorithms. The FPC method demonstrated a detection precision and accuracy comparable with those of cross-correlation demodulation and considerably higher than those obtained with the maximum detection technique. Additionally, FPC showed to be about 50 times faster than the cross-correlation. It is therefore a promising tool for future implementation in real-time systems or in embedded hardware intended for FBG sensor interrogation.

  4. The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast

    PubMed Central

    Rucker, F. J.; Osorio, D.

    2009-01-01

    Longitudinal chromatic aberration is a well-known imperfection of visual optics, but the consequences in natural conditions, and for the evolution of receptor spectral sensitivities are less well understood. This paper examines how chromatic aberration affects image quality in the middle-wavelength sensitive (M-) cones, viewing broad-band spectra, over a range of spatial frequencies and focal planes. We also model the effects on M-cone contrast of moving the M-cone fundamental relative to the long- and middle-wavelength (L- and M-cone) fundamentals, while the eye is accommodated at different focal planes or at a focal plane that maximizes luminance contrast. When the focal plane shifts towards longer (650 nm) or shorter wavelengths (420 nm) the effects on M-cone contrast are large: longitudinal chromatic aberration causes total loss of M-cone contrast above 10 to 20 c/d. In comparison, the shift of the M-cone fundamental causes smaller effects on M-cone contrast. At 10 c/d a shift in the peak of the M-cone spectrum from 560 nm to 460 nm decreases M-cone contrast by 30%, while a 10 nm blue-shift causes only a minor loss of contrast. However, a noticeable loss of contrast may be seen if the eye is focused at focal planes other than that which maximizes luminance contrast. The presence of separate long- and middle-wavelength sensitive cones therefore has a small, but not insignificant cost to the retinal image via longitudinal chromatic aberration. This aberration may therefore be a factor limiting evolution of visual pigments and trichromatic color vision. PMID:18639571

  5. Effects of heat induced by two-photon absorption and free-carrier absorption in silicon-on-insulator nanowaveguides operating as all-optical wavelength converters.

    PubMed

    Abdollahi, Siamak; Moravvej-Farshi, Mohammad Kazem

    2009-05-01

    We propose a new numerical model to analyze heat induced by two-photon absorption and free-carrier absorption, while high intensity optical pulses propagate along silicon-on-insulator (SOI) nanowaveguides (NWGs). Using this model, we demonstrate that such induced heat causes a shift in the amount of wavelength conversion and hence deteriorates the converter output characteristics for pulses in the picosecond regime. The wavelength shift induced by a pulse with maximum input intensity and full width at half-maximum of I(max)=1.5x10(10) W x cm(-2) and T(FWHM)=30 ps, propagating along a SOI NWG with an effective cross-sectional area of a(eff)=0.15 microm(2), is shown to be Delta lambda(s) approximately 8 pm. We also demonstrate that such a shift can be compensated by tuning the pump intensity down by approximately 6.33%.

  6. 1300 nm wavelength InAs quantum dot photodetector grown on silicon.

    PubMed

    Sandall, Ian; Ng, Jo Shien; David, John P R; Tan, Chee Hing; Wang, Ting; Liu, Huiyun

    2012-05-07

    The optical and electrical properties of InAs quantum dots epitaxially grown on a silicon substrate have been investigated to evaluate their potential as both photodiodes and avalanche photodiodes (APDs) operating at a wavelength of 1300 nm. A peak responsivity of 5 mA/W was observed at 1280 nm, with an absorption tail extending beyond 1300 nm, while the dark currents were two orders of magnitude lower than those reported for Ge on Si photodiodes. The diodes exhibited avalanche breakdown at 22 V reverse bias which is probably dominated by impact ionisation occurring in the GaAs and AlGaAs barrier layers. A red shift in the absorption peak of 61.2 meV was measured when the reverse bias was increased from 0 to 22 V, which we attributed to the quantum confined stark effect. This shift also leads to an increase in the responsivity at a fixed wavelength as the bias is increased, yielding a maximum increase in responsivity by a factor of 140 at the wavelength of 1365 nm, illustrating the potential for such a structure to be used as an optical modulator.

  7. Modeling the focusing efficiency of lobster-eye optics for image shifting depending on the soft x-ray wavelength.

    PubMed

    Su, Luning; Li, Wei; Wu, Mingxuan; Su, Yun; Guo, Chongling; Ruan, Ningjuan; Yang, Bingxin; Yan, Feng

    2017-08-01

    Lobster-eye optics is widely applied to space x-ray detection missions and x-ray security checks for its wide field of view and low weight. This paper presents a theoretical model to obtain spatial distribution of focusing efficiency based on lobster-eye optics in a soft x-ray wavelength. The calculations reveal the competition mechanism of contributions to the focusing efficiency between the geometrical parameters of lobster-eye optics and the reflectivity of the iridium film. In addition, the focusing efficiency image depending on x-ray wavelengths further explains the influence of different geometrical parameters of lobster-eye optics and different soft x-ray wavelengths on focusing efficiency. These results could be beneficial to optimize parameters of lobster-eye optics in order to realize maximum focusing efficiency.

  8. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    DOE PAGES

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; ...

    2018-02-14

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  9. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  10. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  11. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  12. Wavelength stabilized multi-kW diode laser systems

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Unger, Andreas; Kindervater, Tobias; Drovs, Simon; Wolf, Paul; Hubrich, Ralf; Beczkowiak, Anna; Auch, Stefan; Müntz, Holger; Biesenbach, Jens

    2015-03-01

    We report on wavelength stabilized high-power diode laser systems with enhanced spectral brightness by means of Volume Holographic Gratings. High-power diode laser modules typically have a relatively broad spectral width of about 3 to 6 nm. In addition the center wavelength shifts by changing the temperature and the driving current, which is obstructive for pumping applications with small absorption bandwidths. Wavelength stabilization of high-power diode laser systems is an important method to increase the efficiency of diode pumped solid-state lasers. It also enables power scaling by dense wavelength multiplexing. To ensure a wide locking range and efficient wavelength stabilization the parameters of the Volume Holographic Grating and the parameters of the diode laser bar have to be adapted carefully. Important parameters are the reflectivity of the Volume Holographic Grating, the reflectivity of the diode laser bar as well as its angular and spectral emission characteristics. In this paper we present detailed data on wavelength stabilized diode laser systems with and without fiber coupling in the spectral range from 634 nm up to 1533 nm. The maximum output power of 2.7 kW was measured for a fiber coupled system (1000 μm, NA 0.22), which was stabilized at a wavelength of 969 nm with a spectral width of only 0.6 nm (90% value). Another example is a narrow line-width diode laser stack, which was stabilized at a wavelength of 1533 nm with a spectral bandwidth below 1 nm and an output power of 835 W.

  13. Multi-wavelength picosecond BaWO4 Raman laser with long and short Raman shifts and 12-fold pulse shortening down to 3 ps at 1227 nm

    NASA Astrophysics Data System (ADS)

    Frank, M.; Jelínek, M., Jr.; Vyhlídal, D.; Kubeček, V.; Ivleva, L. I.; Zverev, P. G.; Smetanin, S. N.

    2018-02-01

    In this paper, we demonstrate the generation of three (1179, 1227, and 1323 nm) Stokes components of stimulated Raman scattering with long (925 cm-1 ) and short (332 cm-1 ) Raman shifts in an all-solid-state, synchronously pumped, extra-cavity Raman laser based on a BaWO4 crystal excited by a quasi-continuous, 36 ps, diode side-pumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. We achieved the strongest 12-fold pulse shortening down to 3 ps at the 925 cm-1   +  332 cm-1 shifted 1227 nm wavelength due to a shorter dephasing time (wider linewidth) of the short-shift 332 cm-1 Raman line, resulting in a peak power of 2.5 kW.

  14. Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension

    NASA Astrophysics Data System (ADS)

    Rinehart, Benjamin S.; Cao, Caroline G. L.

    2016-08-01

    Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.

  15. The Effect of Reducing Maximum Shift Lengths to 16 Hours on Internal Medicine Interns’ Educational Opportunities

    PubMed Central

    Theobald, Cecelia N.; Stover, Daniel G.; Choma, Neesha N.; Hathaway, Jacob; Green, Jennifer K.; Peterson, Neeraja B.; Sponsler, Kelly C.; Vasilevskis, Eduard E.; Kripalani, Sunil; Sergent, John; Brown, Nancy J.; Denny, Joshua C.

    2013-01-01

    Purpose To evaluate educational experiences of internal medicine interns before and after maximum shift lengths were decreased from 30 hours to 16 hours. Method The authors compared educational experiences of internal medicine interns at Vanderbilt University Medical Center before (2010, 47 interns) and after (2011, 50 interns) duty hour restrictions were implemented in July 2011. The authors compared number of inpatient encounters, breadth of concepts in notes, exposure to five common presenting problems, procedural experience, and attendance at teaching conferences. Results Following the duty hour restrictions, interns cared for more unique patients (mean 118 versus 140 patients per intern, P = .005) and wrote more history and physicals (mean 73 versus 88, P = .005). Documentation included more total concepts after the 16-hour maximum shift implementation, with a 14% increase for history and physicals (338 versus 387, P < .001) and a 10% increase for progress notes (316 versus 349, P < .001). There was no difference in the median number of selected procedures performed (6 versus 6, P = .94). Attendance was higher at the weekly chief resident conference (60% versus 68% of expected attendees, P < .001) but unchanged at morning report conferences (79% versus 78%, P = .49). Conclusions Intern clinical exposure did not decrease after implementation of the 16-hour shift length restriction. In fact, interns saw more patients, produced more detailed notes, and attended more conferences following duty hour restrictions. PMID:23425987

  16. GaAsSb/GaAs strained structures with quantum wells for lasers with emission wavelength near 1.3 {mu}m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadofyev, Yu. G.; Samal, N.; Andreev, B. A., E-mail: Boris@ipm.sci-nnov.ru

    Optimum conditions for the growth of the GaAs{sub 1-x}Sb{sub x}/GaAs heterostructures by the method of molecular-bean epitaxy are determined; it is shown that effective long-wavelength photoluminescence at T = 300 K can be obtained at wavelengths as long as {lambda} = 1.3 {mu}m by increasing the antimony incorporation. As the excitation power is increased, the appearance of a short-wavelength line (in addition to a shift of a photoluminescence maximum to shorter wavelengths characteristic of the type II heterojunctions) related to direct optical transitions in the real space takes place; this relation is confirmed by the results of studying the photoluminescencemore » spectra with subpicosecond and nanosecond time resolution in the case of pulsed excitation.« less

  17. Measurement of steep aspheric surfaces using improved two-wavelength phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiong; Wang, Shaopu; Hu, Yao; Hao, Qun

    2017-10-01

    Optical components with aspheric surfaces can improve the imaging quality of optical systems, and also provide extra advantages such as lighter weight, smaller volume and simper structure. In order to satisfy these performance requirements, the surface error of aspheric surfaces, especially high departure aspheric surfaces must be measured accurately and conveniently. The major obstacle of traditional null-interferometry for aspheric surface under test is that specific and complex null optics need to be designed to fully compensate for the normal aberration of the aspheric surface under test. However, non-null interferometry partially compensating for the aspheric normal aberration can test aspheric surfaces without specific null optics. In this work, a novel non-null test approach of measuring the deviation between aspheric surfaces and the best reference sphere by using improved two-wavelength phase shifting interferometer is described. With the help of the calibration based on reverse iteration optimization, we can effectively remove the retrace error and thus improve the accuracy. Simulation results demonstrate that this method can measure the aspheric surface with the departure of over tens of microns from the best reference sphere, which introduces approximately 500λ of wavefront aberration at the detector.

  18. Sulfur speciation in hydrous experimental glasses of varying oxidation state - Results from measured wavelength shifts of sulfur X-rays

    NASA Technical Reports Server (NTRS)

    Carroll, Michael R.; Rutherford, Malcolm J.

    1988-01-01

    The focusing geometry of an electron microprobe has been used to measure the wavelength shifts of sulfur X-rays from hydrous experimental melts synthesized at oxygen fugacities that range from near the iron-wustite buffer to the magnetite-hermatite buffer. It is found that the proportion of dissolved sulfur which is present as sulfate increases with increasing oxygen fugacity. It is noted that in natural melts that have equilibrated at or below fayalite-magnetite-quartz values of +1, sulfur is probably present mainly as S(2-).

  19. Light detection and the wavelength shifter deposition in DEAP-3600

    NASA Astrophysics Data System (ADS)

    Broerman, B.; Retière, F.

    2016-02-01

    The Dark matter Experiment using Argon Pulse-shape discrimination (DEAP) uses liquid argon as a target medium to perform a direct-detection dark matter search. The 3600 kg liquid argon target volume is housed in a spherical acrylic vessel and viewed by a surrounding array of photomultiplier tubes. Ionizing particles in the argon volume produce scintillation light which must be wavelength shifted to be detected by the photomultiplier tubes. Argon scintillation and wavelength shifting, along with details on the application of the wavelength shifter to the inner surface of the acrylic vessel are presented.

  20. Analysis of reflection-peak wavelengths of sampled fiber Bragg gratings with large chirp.

    PubMed

    Zou, Xihua; Pan, Wei; Luo, Bin

    2008-09-10

    The reflection-peak wavelengths (RPWs) in the spectra of sampled fiber Bragg gratings with large chirp (SFBGs-LC) are theoretically investigated. Such RPWs are divided into two parts, the RPWs of equivalent uniform SFBGs (U-SFBGs) and the wavelength shift caused by the large chirp in the grating period (CGP). We propose a quasi-equivalent transform to deal with the CGP. That is, the CGP is transferred into quasi-equivalent phase shifts to directly derive the Fourier transform of the refractive index modulation. Then, in the case of both the direct and the inverse Talbot effect, the wavelength shift is obtained from the Fourier transform. Finally, the RPWs of SFBGs-LC can be achieved by combining the wavelength shift and the RPWs of equivalent U-SFBGs. Several simulations are shown to numerically confirm these predicted RPWs of SFBGs-LC.

  1. Bichromophoric dyes for wavelength shifting of dye-protein fluoromodules.

    PubMed

    Pham, Ha H; Szent-Gyorgyi, Christopher; Brotherton, Wendy L; Schmidt, Brigitte F; Zanotti, Kimberly J; Waggoner, Alan S; Armitage, Bruce A

    2015-03-28

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields.

  2. Bichromophoric Dyes for Wavelength Shifting of Dye-Protein Fluoromodules

    PubMed Central

    Pham, Ha H.; Szent-Gyorgyi, Christopher; Brotherton, Wendy L.; Schmidt, Brigitte F.; Zanotti, Kimberly J.; Waggoner, Alan S.

    2015-01-01

    Dye-protein fluoromodules consist of fluorogenic dyes and single chain antibody fragments that form brightly fluorescent noncovalent complexes. This report describes two new bichromophoric dyes that extend the range of wavelengths of excitation or emission of existing fluoromodules. In one case, a fluorogenic thiazole orange (TO) was attached to an energy acceptor dye, Cy5. Upon binding to a protein that recognizes TO, red emission due to efficient energy transfer from TO to Cy5 replaces the green emission observed for monochromophoric TO bound to the same protein. Separately, TO was attached to a coumarin that serves as an energy donor. The same green emission is observed for coumarin-TO and TO bound to a protein, but efficient energy transfer allows violet excitation of coumarin-TO, versus longer wavelength, blue excitation of monochromophoric TO. Both bichromophores exhibit low nanomolar KD values for their respective proteins, >95% energy transfer efficiency and high fluorescence quantum yields. PMID:25679477

  3. Short wavelength ion waves upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Gurnett, D. A.

    1984-01-01

    The identification and explanation of short wavelength antenna interference effects observed in spacecraft plasma wave data have provided an important new method of determining limits on the wavelength, direction of propagation, and Doppler shift of short wavelength electrostatic waves. Using the ISEE-1 wideband electric field data, antenna interference effects have been identified in the ion waves upstream of the earth's bow shock. This identification implies that wavelengths of the upstream ion waves are shorter than the antenna length. The interference effects also provide new measurements of the direction of propagation of the ion waves. The new measurements show that the wave vectors of the ion waves are not parallel to the interplanetary magnetic field (IMF) as previously reported. The direction of propagation does not appear to be controlled by the IMF. In addition, analysis of the Doppler shift of the short wavelength ion waves has provided a measurement of the dispersion relation. The upper limit of the rest frame frequency was found to be on the order of the ion plasma frequency. At this frequency, the wavelength is on the order of a few times the Debye length. The results of this study now provide strong evidence that the ion waves in the upstream region are Doppler-shifted ion acoustic waves. Previously announced in STAR as N83-36328

  4. Identification of modal strains using sub-microstrain FBG data and a novel wavelength-shift detection algorithm

    NASA Astrophysics Data System (ADS)

    Anastasopoulos, Dimitrios; Moretti, Patrizia; Geernaert, Thomas; De Pauw, Ben; Nawrot, Urszula; De Roeck, Guido; Berghmans, Francis; Reynders, Edwin

    2017-03-01

    The presence of damage in a civil structure alters its stiffness and consequently its modal characteristics. The identification of these changes can provide engineers with useful information about the condition of a structure and constitutes the basic principle of the vibration-based structural health monitoring. While eigenfrequencies and mode shapes are the most commonly monitored modal characteristics, their sensitivity to structural damage may be low relative to their sensitivity to environmental influences. Modal strains or curvatures could offer an attractive alternative but current measurement techniques encounter difficulties in capturing the very small strain (sub-microstrain) levels occurring during ambient, or operational excitation, with sufficient accuracy. This paper investigates the ability to obtain sub-microstrain accuracy with standard fiber-optic Bragg gratings using a novel optical signal processing algorithm that identifies the wavelength shift with high accuracy and precision. The novel technique is validated in an extensive experimental modal analysis test on a steel I-beam which is instrumented with FBG sensors at its top and bottom flange. The raw wavelength FBG data are processed into strain values using both a novel correlation-based processing technique and a conventional peak tracking technique. Subsequently, the strain time series are used for identifying the beam's modal characteristics. Finally, the accuracy of both algorithms in identification of modal characteristics is extensively investigated.

  5. Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.

    PubMed

    Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G

    2014-10-15

    We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10  pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1  mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated.

  6. Sub-wavelength plasmon laser

    DOEpatents

    Bora, Mihail; Bond, Tiziana C.

    2016-04-19

    A plasmonic laser device has resonant nanocavities filled with a gain medium containing an organic dye. The resonant plasmon frequencies of the nanocavities are tuned to align with both the absorption and emission spectra of the dye. Variables in the system include the nature of the dye and the wavelength of its absorption and emission, the wavelength of the pumping radiation, and the resonance frequencies of the nanocavities. In addition the pumping frequency of the dye is selected to be close to the absorption maximum.

  7. Tracking Extra Tropical Cyclones to Explore how the Jet Stream Shifted During The Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Garrett, H.

    2016-12-01

    The behavior of the jet stream during the last glacial maximum (LGM 21ka) has been the focus of multiple studies but remains highly debated. Proxy data shows that during this time in the United States, the northwest was drier than modern conditions and the southwest was wetter than modern conditions. To explain this there are two competing hypothesis, one which suggests that the jet stream shifted uniformly south and the other which suggests a stronger jet that split shifting both north and south. For this study we used TECA, to reanalyze model out-put, looking at the frequency and patterns of Extra Tropical Cyclones (ETC's), which have been found to be steered by the jet stream. We used the CCSM4 model based on its agreement with proxy data, and compared data from both the LGM and pre-industrial time periods. Initial results show a dramatic shift of ETC's north by about 10º-15º degrees and a decrease in frequency compared to pre-industrial conditions, coupled with a less pronounced southward shift of 5º-10º degrees.This evidence supports the idea that the jet stream split during the LGM. A stronger understanding of jet stream behavior will help to improve future models and prediction capabilities to prepare for hydro-climate change in drought sensitive areas.

  8. Raman-shifted alexandrite laser for soft tissue ablation in the 6- to 7-µm wavelength range

    PubMed Central

    Kozub, John; Ivanov, Borislav; Jayasinghe, Aroshan; Prasad, Ratna; Shen, Jin; Klosner, Marc; Heller, Donald; Mendenhall, Marcus; Piston, David W.; Joos, Karen; Hutson, M. Shane

    2011-01-01

    Prior work with free-electron lasers (FELs) showed that wavelengths in the 6- to 7-µm range could ablate soft tissues efficiently with little collateral damage; however, FELs proved too costly and too complex for widespread surgical use. Several alternative 6- to 7-µm laser systems have demonstrated the ability to cut soft tissues cleanly, but at rates that were much too low for surgical applications. Here, we present initial results with a Raman-shifted, pulsed alexandrite laser that is tunable from 6 to 7 µm and cuts soft tissues cleanly—approximately 15 µm of thermal damage surrounding ablation craters in cornea—and does so with volumetric ablation rates of 2–5 × 10−3 mm3/s. These rates are comparable to those attained in prior successful surgical trials using the FEL for optic nerve sheath fenestration. PMID:21559139

  9. Power-ratio tunable dual-wavelength laser using linearly variable Fabry-Perot filter as output coupler.

    PubMed

    Wang, Xiaozhong; Wang, Zhongfa; Bu, Yikun; Chen, Lujian; Cai, Guoxiong; Huang, Wencai; Cai, Zhiping; Chen, Nan

    2016-02-01

    For a linearly variable Fabry-Perot filter, the peak transmission wavelengths change linearly with the transverse position shift of the substrate. Such a Fabry-Perot filter is designed and fabricated and used as an output coupler of a c-cut Nd:YVO4 laser experimentally in this paper to obtain a 1062 and 1083 nm dual-wavelength laser. The peak transmission wavelengths are gradually shifted from 1040.8 to 1070.8 nm. The peak transmission wavelength of the Fabry-Perot filter used as the output coupler for the dual-wavelength laser is 1068 nm and resides between 1062 and 1083 nm, which makes the transmissions of the desired dual wavelengths change in opposite slopes with the transverse shift of the filter. Consequently, powers of the two wavelengths change in opposite directions. A branch power, oppositely tunable 1062 and 1083 nm dual-wavelength laser is successfully demonstrated. Design principles of the linear variable Fabry-Perot filter used as an output coupler are discussed. Advantages of the method are summarized.

  10. Shot noise-limited Cramér-Rao bound and algorithmic sensitivity for wavelength shifting interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Shichao; Zhu, Yizheng

    2017-02-01

    Sensitivity is a critical index to measure the temporal fluctuation of the retrieved optical pathlength in quantitative phase imaging system. However, an accurate and comprehensive analysis for sensitivity evaluation is still lacking in current literature. In particular, previous theoretical studies for fundamental sensitivity based on Gaussian noise models are not applicable to modern cameras and detectors, which are dominated by shot noise. In this paper, we derive two shot noiselimited theoretical sensitivities, Cramér-Rao bound and algorithmic sensitivity for wavelength shifting interferometry, which is a major category of on-axis interferometry techniques in quantitative phase imaging. Based on the derivations, we show that the shot noise-limited model permits accurate estimation of theoretical sensitivities directly from measured data. These results can provide important insights into fundamental constraints in system performance and can be used to guide system design and optimization. The same concepts can be generalized to other quantitative phase imaging techniques as well.

  11. Flattop wideband wavelength converters based on cascaded sum and difference-frequency generation using step-chirped gratings

    NASA Astrophysics Data System (ADS)

    Tehranchi, Amirhossein; Kashyap, Raman

    2011-03-01

    We investigate the role of step-chirped gratings (SCG) for flattening of conversion efficiency response and enhancing the pump bandwidth in cascaded sum and difference frequency generation (SFG + DFG) with a large pump wavelength difference. To obtain a flat response with maximum efficiency, using SCG instead of uniform grating with the same length, the appropriate critical period shifts are presented for the reasonable number of sections and chirp steps feasible for fabrication. Furthermore, it is shown that adding the section numbers for SCG structure increases the pump bandwidth.

  12. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts.

    PubMed

    Good, Stephen P; Moore, Georgianne W; Miralles, Diego G

    2017-12-01

    Biome function is largely governed by how efficiently available resources can be used and yet for water, the ratio of direct biological resource use (transpiration, E T ) to total supply (annual precipitation, P) at ecosystem scales remains poorly characterized. Here, we synthesize field, remote sensing and ecohydrological modelling estimates to show that the biological water use fraction (E T /P) reaches a maximum under mesic conditions; that is, when evaporative demand (potential evapotranspiration, E P ) slightly exceeds supplied precipitation. We estimate that this mesic maximum in E T /P occurs at an aridity index (defined as E P /P) between 1.3 and 1.9. The observed global average aridity of 1.8 falls within this range, suggesting that the biosphere is, on average, configured to transpire the largest possible fraction of global precipitation for the current climate. A unimodal E T /P distribution indicates that both dry regions subjected to increasing aridity and humid regions subjected to decreasing aridity will suffer declines in the fraction of precipitation that plants transpire for growth and metabolism. Given the uncertainties in the prediction of future biogeography, this framework provides a clear and concise determination of ecosystems' sensitivity to climatic shifts, as well as expected patterns in the amount of precipitation that ecosystems can effectively use.

  13. The influence of thermal and free carrier dispersion effects on all-optical wavelength conversion in a silicon racetrack-shaped microring resonator

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolu; Liu, Hongjun; Sun, Qibing; Huang, Nan; Li, Shaopeng; Han, Jing

    2016-07-01

    We experimentally demonstrate ultra-low pump power wavelength conversion based on four-wave mixing in a silicon racetrack-shaped microring resonator. When the pump and signal are located at the resonance wavelengths, wavelength conversion with a pump power of only 1 mW can be realized in this microring resonator because of the resonant enhancement of the device. However, saturation of the conversion efficiency occurs because of the shift of the resonance peak, which is caused by the change of the effective refractive index induced by a combination of thermal and free carrier dispersion effects, and it is demonstrated that the thermal effect is the leading-order factor for the change of the refractive index. The maximum conversion efficiency of  -21 dB is obtained when the pump power is less than 12 mW. This ultra-low-power on-chip wavelength convertor based on a silicon microring resonator can find important potential applications in highly integrated optical circuits for all-optical signal processing.

  14. Passive cavity surface-emitting lasers: option of temperature-insensitive lasing wavelength for uncooled dense wavelength division multiplexing systems

    NASA Astrophysics Data System (ADS)

    Shchukin, V. A.; Ledentsov, N. N.; Slight, T.; Meredith, W.; Gordeev, N. Y.; Nadtochy, A. M.; Payusov, A. S.; Maximov, M. V.; Blokhin, S. A.; Blokhin, A. A.; Zadiranov, Yu. M.; Maleev, N. A.; Ustinov, V. M.; Choquette, K. D.

    2016-03-01

    A concept of passive cavity surface-emitting laser is proposed aimed to control the temperature shift of the lasing wavelength. The device contains an all-semiconductor bottom distributed Bragg reflector (DBR), in which the active medium is placed, a dielectric resonant cavity and a dielectric top DBR, wherein at least one of the dielectric materials has a negative temperature coefficient of the refractive index, dn/dT < 0. This is shown to be the case for commonly used dielectric systems SiO2/TiO2 and SiO2/Ta2O5. Two SiO2/TiO2 resonant structures having a cavity either of SiO2 or TiO2 were deposited on a substrate, their optical power reflectance spectra were measured at various temperatures, and refractive index temperature coefficients were extracted, dn/dT = 0.0021 K-1 for SiO2 and dn/dT = -0.0092 K-1 for TiO2. Using such dielectric materials allows designing passive cavity surface-emitting lasers having on purpose either positive, or zero, or negative temperature shift of the lasing wavelength dλ/dT. A design for temperature-insensitive lasing wavelength (dλ/dT = 0) is proposed. Employing devices with temperature-insensitive lasing wavelength in wavelength division multiplexing systems may allow significant reducing of the spectral separation between transmission channels and an increase in number of channels for a defined spectral interval enabling low cost energy efficient uncooled devices.

  15. Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres

    NASA Astrophysics Data System (ADS)

    Li, Joanne; Dobrucki, Lawrence W.; Marjanovic, Marina; Chaney, Eric J.; Suslick, Kenneth S.; Boppart, Stephen A.

    2015-01-01

    Cerenkov luminescence (CL) imaging is a new molecular imaging modality that utilizes the photons emitted during radioactive decay when charged particles travel faster than the phase velocity of light in a dielectric medium. Here we present a novel agent to convert and increase CL emission at longer wavelengths using multimodal protein microspheres (MSs). The 64Cu-labeled protein microspheres contain quantum dots (QDs) encapsulated within a high-refractive-index-oil core. Dark box imaging of the MSs was conducted to demonstrate the improvement in CL emission at longer wavelengths. To illustrate the versatile design of these MSs and the potential of CL in disease diagnosis, these MSs were utilized for in vitro cell targeting and ex vivo CL-excited QD fluorescence (CL-FL) imaging of atherosclerotic plaques in rats. It was shown that by utilizing both QDs and MSs with a high-refractive-index-oil core, the CL emission increases by four-fold at longer wavelengths. Furthermore, we demonstrate that these MSs generate both an in vivo and ex vivo contrast signal. The design concept of utilizing QDs and high-index core MSs may contribute to future developments of in vivo CL imaging.

  16. Wavelength converter placement for different RWA algorithms in wavelength-routed all-optical networks

    NASA Astrophysics Data System (ADS)

    Chu, Xiaowen; Li, Bo; Chlamtac, Imrich

    2002-07-01

    Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength

  17. Long-wavelength VCSELs: Power-efficient answer

    NASA Astrophysics Data System (ADS)

    Kapon, Eli; Sirbu, Alexei

    2009-01-01

    The commercialization of long-wavelength vertical-cavity surface-emitting lasers (VCSELs) is gaining new momentum as the telecoms market shifts from long-haul applications to local and access networks. These small, power-efficient devices offer several advantages over traditional edge-emitters.

  18. Simultaneous wavelength conversion of ASK and DPSK signals based on four-wave-mixing in dispersion engineered silicon waveguides.

    PubMed

    Xu, Lin; Ophir, Noam; Menard, Michael; Lau, Ryan Kin Wah; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren

    2011-06-20

    We experimentally demonstrate four-wave-mixing (FWM)-based continuous wavelength conversion of optical differential-phase-shift-keyed (DPSK) signals with large wavelength conversion ranges as well as simultaneous wavelength conversion of dual-wavelength channels with mixed modulation formats in 1.1-cm-long dispersion-engineered silicon waveguides. We first validate up to 100-nm wavelength conversion range for 10-Gb/s DPSK signals, showcasing the capability to perform phase-preserving operations at high bit rates in chip-scale devices over wide conversion ranges. We further validate the wavelength conversion of dual-wavelength channels modulated with 10-Gb/s packetized phase-shift-keyed (PSK) and amplitude-shift-keyed (ASK) signals; demonstrate simultaneous operation on multiple channels with mixed formats in chip-scale devices. For both configurations, we measure the spectral and temporal responses and evaluate the performances using bit-error-rate (BER) measurements.

  19. Switchable and tunable dual-wavelength Er-doped fiber ring laser with single-frequency lasing wavelengths

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwei; Shi, Wei; Bai, Xiaolei; Sheng, Quan; Xue, Lifang; Yao, Jianquan

    2018-02-01

    We obtain a switchable and tunable dual-wavelength single-frequency Er-doped ring fiber laser. In order to realize single-longitudinal output, two saturable-absorber-based tracking narrow-band filters are formed in 3- meter-long unpumped Er-doped fiber to narrow the linewidth via using the PM-FBG as a reflection filter. The maximum output power is 2.11 mW centered at 1550.16 nm and 1550.54 nm when the fiber laser operates in dual-wavelength mode. The corresponding linewidths of those two wavelengths are measured to be 769 Hz and 673 Hz, respectively. When the temperature around the PM-FBG is changed from 15 °C to 55 °C, the dual-wavelength single-frequency fiber laser can be tuned from 1550.12 nm to 1550.52 nm and from 1550.49 nm to 1550.82 nm, respectively.

  20. Multi-wavelength Yb:YAG/Nd3+:YVO4 continuous-wave microchip Raman laser.

    PubMed

    Wang, Xiao-Lei; Dong, Jun; Wang, Xiao-Jie; Xu, Jie; Ueda, Ken-Ichi; Kaminskii, Alexander A

    2016-08-01

    Multi-wavelength continuous-wave (CW) Raman lasers in a laser diode pumped Yb:YAG/Nd3+:YVO4 microchip Raman laser have been demonstrated for the first time to our best knowledge. The multi-wavelength laser of the first Stokes radiation around 1.08 μm has been achieved with a Raman shift of 261  cm-1 for a-cut Nd:YVO4 crystal corresponding to the fundamental wavelength at 1.05 μm. Multi-wavelength laser operation simultaneously around 1.05 and 1.08 μm has been achieved under the incident pump power between 1.5 and 1.7 W. Multi-wavelength Raman laser with frequency separation of 1 THz around 1.08 μm has been obtained when the incident pump power is higher than 1.7 W. The maximum Raman laser output power of 260 mW at 1.08 μm is obtained and the corresponding optical-to-optical conversion efficiency is 4.2%. Elliptically polarized fundamental laser and linearly polarized Raman laser were observed in an Yb:YAG/Nd:YVO4 CW microchip Raman laser. The experimental results of linearly polarized, multi-wavelength Yb:YAG/Nd:YVO4 CW microchip Raman laser with adjustable frequency separation provide a novel approach for developing potential compact laser sources for Terahertz generation.

  1. A fiber-laser-pumped four-wavelength continuous-wave mid-infrared optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Shang, Yaping; Li, Xiao; Xu, Xiaojun

    2017-10-01

    In this paper, a four-wavelength continuous-wave mid-infrared optical parametric oscillator was demonstrated for the first time. The pump source was a home-built linearly polarized Yb-doped fiber laser and the maximum output power was 72.5 W. The pump source had three central wavelengths locating at 1060 nm, 1065 nm and 1080 nm. Four idler emissions with different wavelengths were generated which were 3132 nm, 3171 nm, 3310 nm and 3349 nm under the maximum pump power. The maximum idler output reached 8.7 W, indicating a 15% pump-to-idler slope efficiency. The signal wave generated in the experiment had two wavelengths which were 1595 nm and 1603 nm under the maximum pump power. It was analyzed that four nonlinear progresses occurred in the experiment, two of them being optical parametric oscillation and the rest two being intracavity difference frequency generation.

  2. On the bathochromic shift of the absorption by astaxanthin in crustacyanin: a quantum chemical study

    NASA Astrophysics Data System (ADS)

    Durbeej, Bo; Eriksson, Leif A.

    2003-06-01

    The structural origin of the bathochromic shift assumed by the electronic absorption spectrum of protein-bound astaxanthin, the carotenoid that upon binding to crustacyanin is responsible for the blue colouration of lobster shell, is investigated by means of quantum chemical methods. The calculations suggest that the bathochromic shift is largely due to one of the astaxanthin C4 keto groups being hydrogen-bonded to a histidine residue of the surrounding protein, and that the effect of this histidine is directly dependent on its protonation state. Out of the different methodologies (CIS, TD-DFT, and ZINDO/S) employed to calculate wavelengths of maximum absorption, the best agreement with experimental data is obtained using the semiempirical ZINDO/S method.

  3. Label-free pathological evaluation of grade 3 cancer using Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Sordillo, Peter P.; Alfano, R. R.

    2016-03-01

    In this study, Stokes shift spectroscopy (S3) is used for measuring the aggressiveness of malignant tumors. S3 is an optical tool which utilizes the difference between the emission wavelength (λem) and the absorption wavelength (λabs) (the Stokes shift) to give a fixed wavelength shift (Δλs).Our analysis of tumor samples using S3 shows grade 3 (high grade) cancers consistently have increased relative tryptophan content compared to grade 1 or 2 tumors. This technique may be a useful tool in the evaluation of a patient's cancer.

  4. Wavelength-tunable, sub-picosecond pulses from a passively Q-switched microchip laser system.

    PubMed

    Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A

    2013-07-15

    We present a novel concept to generate sub-picosecond pulses from a passively Q-switched Nd:YVO4 microchip laser system with an adjustable wavelength shift up to a few tens of nanometers around the original emission wavelength of 1064 nm. This concept comprises two stages: one that carries out a nonlinear compression of fiber-amplified microchip pulses and a subsequent stage in which the compressed pulses are coupled into a further waveguide structure followed by a bandpass filter. In a proof-of-principle experiment, pedestal-free 0.62 ps long pulses have been demonstrated with a wavelength shift to 1045 nm.

  5. Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Abrigo, Gerald; Chen, Pei-Hsuan; Chien, Fan-Ching

    2017-02-01

    Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore-labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 lines/mm. TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0±0.7 μm and the shifting distance of the temporal focal plane was less than 0.95 μm within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.

  6. Sensitivity of heterointerfaces on emission wavelength of quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Wang, C. A.; Schwarz, B.; Siriani, D. F.; Connors, M. K.; Missaggia, L. J.; Calawa, D. R.; McNulty, D.; Akey, A.; Zheng, M. C.; Donnelly, J. P.; Mansuripur, T. S.; Capasso, F.

    2017-04-01

    The measured emission wavelengths of AlInAs/GaInAs/InP quantum cascade lasers (QCLs) grown by metal organic vapor phase epitaxy (MOVPE) have been reported to be 0.5-1 μm longer than the designed QCL wavelength. This work clarifies the origin of the red-shifted wavelength. It was found that AlInAs/GaInAs heterointerfaces are compositionally graded over 2.5-4.5 nm, and indium accumulates at the AlInAs-to-GaInAs interface. Thus, the as-grown QCLs are far from the ideal abrupt interfaces used in QCL modeling. When graded layers are incorporated in QCL band structure and wavefunction calculations, the emission wavelengths are red shifted. Furthermore, we demonstrate that QCLs with graded interfaces can be designed without compromising performance and show greatly improved correlation between designed and measured emission wavelength. QCLs were designed for emission between 7.5 and 8.5 μm. These structures were grown and wet-etched ridge devices were fabricated. The QCLs exhibit room temperature peak powers exceeding 900 mW and pulsed efficiencies of 8 to 10%.

  7. Raman Shifting a Tunable ArF Excimer Laser to Wavelengths of 190 to 240 nm With a Forced Convection Raman Cell

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Tunable radiation, at ultraviolet wavelengths, is produced by Raman shifting a modified 285-mJ ArF excimer laser. Multiple Stokes outputs are observed in H2, CH4, D2, N2, SF6, and CF4 (20, 22, 53, 21, 2.1, and 0.35 percent, respectively). Numbers in parentheses are the first Stokes energy conversion efficiencies. We can access 70 percent of the frequency range 42000-52000 cm (exp -1) (190-240 nm) with Stokes energies that vary from 0.2 microJoule to 58 mJ inside the Raman cell. By using 110 mJ of pump energy and D 2 , the tunable first Stokes energy varies over the 29-58 mJ range as the wavelength is tuned over the 204-206 nm range. Dependence on input energy, gas pressure, He mixture fraction, and circulation of the gas in the forced convection Raman cell is discussed; Stokes conversion is also discussed for laser repetition rates from 1 to 100 Hz. An empirical equation is given to determine whether forced convection can improve outputs for a given repetition rate.

  8. Geometrically tunable Fabry-Perot filters based on reflection phase shift of high contrast gratings

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shi, Zhendong; Cheng, Xin; Peng, Xiang; Zhang, Hui

    2016-03-01

    We propose tunable Fabry-Perot filters constituted by double high contrast gratings (HCGs) arrays with different periods acting as reflectors separated by a fixed short cavity, based on high reflectivity and the variety reflection phase shift of HCG array which realize dynamic regulation of the filtering condition. Single optimized HCG obtains the reflectivity of higher than 99% in a grating period ranging from 0.68μm to 0.8μm across a bandwidth of 30nm near the 1.55μm wavelength. The filters can achieve the full width at half maximum (FWHM) of spectral line of less than 0.15nm, and the linear relationship of peak wavelengths and grating periods is established. The simulation results indicate a potential new approach to design a tunable narrowband transmission filter.

  9. Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS).

    PubMed

    Guo, Shuxia; Chernavskaia, Olga; Popp, Jürgen; Bocklitz, Thomas

    2018-08-15

    Fluorescence emission is one of the major obstacles to apply Raman spectroscopy in biological investigations. It is usually several orders more intense than Raman scattering and hampers further analysis. In cases where the fluorescence emission is too intense to be efficiently removed via routine mathematical baseline correction algorithms, an alternative approach is needed. One alternative approach is shifted-excitation Raman difference spectroscopy (SERDS), where two Raman spectra are recorded with two slightly different excitation wavelengths. Ideally, the fluorescence emission at the two excitations does not change while the Raman spectrum shifts according to the excitation wavelength. Hence the fluorescence is removed in the difference of the two recorded Raman spectra. For better interpretability a spectral reconstruction procedure is necessary to recover the fluorescence-free Raman spectrum. This is challenging due to the intensity variations between the two recorded Raman spectra caused by unavoidable experimental changes as well as the presence of noise. Existent approaches suffer from drawbacks like spectral resolution loss, fluorescence residual, and artefacts. In this contribution, we proposed a reconstruction method based on non-negative least squares (NNLS), where the intensity variations between the two measurements are utilized in the reconstruction model. The method achieved fluorescence-free reconstruction on three real-world SERDS datasets without significant information loss. Thereafter, we quantified the performance of the reconstruction based on artificial datasets from four aspects: reconstructed spectral resolution, precision of reconstruction, signal-to-noise-ratio (SNR), and fluorescence residual. The artificial datasets were constructed with varied Raman to fluorescence intensity ratio (RFIR), SNR, full-width at half-maximum (FWHM), excitation wavelength shift, and fluorescence variation between the two spectra. It was demonstrated that

  10. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo

    2016-11-14

    We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.

  11. Approximate description of Stokes shifts in ICT fluorescence emission

    NASA Astrophysics Data System (ADS)

    Saielli, Giacomo; Braun, David; Polimeno, Antonino; Nordio, Pier Luigi

    1996-07-01

    The time-resolved emission spectrum of a dual fluorescent prototype system like DMABN is associated with an intramolecular adiabatic charge-transfer reaction and the simultaneous relaxation of the polarization coordinate describing the dynamic behaviour of the polar solvent. The dynamic Stokes shift of the frequency maximum of the long-wavelength emission band related to the charge-transfer (CT) state towards the red region is interpreted as a consequence of a kinetic pathway which deviates from steepest descent to the CT state, the rate-determining step being the solvent relaxation. The present stochastic treatment is based on the assumption that internal and solvent coordinates could be described separately, neglecting coupling elements in the case of slow solvent relaxation.

  12. FBG wavelength demodulation based on a radio frequency optical true time delay method.

    PubMed

    Wang, Jin; Zhu, Wanshan; Ma, Chenyuan; Xu, Tong

    2018-06-01

    A new fiber Bragg grating (FBG) wavelength shift demodulation method based on optical true time delay microwave phase detection is proposed. We used a microwave photonic link (MPL) to transport a radio frequency (RF) signal over a dispersion compensation fiber (DCF). The wavelength shift of the FBG will cause the time delay change of the optical carrier that propagates in an optical fiber with chromatic dispersion, which will result in the variation of the RF signal phase. A long DCF was adopted to enlarge the RF signal phase variation. An IQ mixer was used to measure the RF phase variation of the RF signal propagating in the MPL, and the wavelength shift of the FBG can be obtained by the measured RF signal phase variation. The experimental results showed that the wavelength shift measurement resolution is 2 pm when the group velocity dispersion of the DCF is 79.5 ps/nm and the frequency of the RF signal is 18 GHz. The demodulation time is as short as 0.1 ms. The measurement resolution can be improved simply by using a higher frequency of the RF signal and a longer DCF or larger chromatic dispersion value of the DCF.

  13. Active Region Moss: Doppler Shifts from Hinode/EIS Observations

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-01-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) onboard Hinode on 12-Dec- 2007 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low density cut-off as derived by Tripathi et al. (2010). We have carried out a very careful analysis of the EIS wavelength calibration based on the method described in Young, O Dwyer and Mason (2012). For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km/s with an estimated error of 4 km/s. The width of the distribution decreases with temperature. The mean of the distribution shows a blue shift which increases with increasing temperature and the distribution also shows asymmetries towards blue-shift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. Further observational constraints are needed to distinguish between these two heating scenarios.

  14. THE TWO-WAVELENGTH METHOD OF MICROSPECTROPHOTOMETRY

    PubMed Central

    Mendelsohn, Mortimer L.

    1961-01-01

    In connection with the potential development of automatic two-wavelength microspectrophotometry, a new version of the two-wavelength method has been formulated. Unlike its predecessors, the Ornstein and Patau versions, the new method varies the area of the photometric field seeking to maximize a relationship between distributional errors at the two wavelengths. Stating this distributional error relationship in conventional photometric terms, the conditions at the maximum are defined by taking the first derivative with respect to field size and setting it equal to zero. This operation supplies two equations; one relates the transmittances at the two wavelengths, and a second states the relative amount of chromophore in the field in terms of transmittance at one wavelength. With the first equation to drive a servomechanism which sets the appropriate field size, the desired answer can then be obtained directly and continuously from the second equation. The result is identical in theory with those of the earlier methods, but the technique is more suitable for electronic computing. PMID:14472536

  15. Effects of Filtering Visual Short Wavelengths During Nocturnal Shiftwork on Sleep and Performance

    PubMed Central

    Rahman, Shadab A.; Shapiro, Colin M.; Wang, Flora; Ainlay, Hailey; Kazmi, Syeda; Brown, Theodore J.

    2013-01-01

    Circadian phase resetting is sensitive to visual short wavelengths (450–480 nm). Selectively filtering this range of wavelengths may reduce circadian misalignment and sleep impairment during irregular light-dark schedules associated with shiftwork. We examined the effects of filtering short wavelengths (<480 nm) during night shifts on sleep and performance in nine nurses (five females and four males; mean age ± SD: 31.3 ± 4.6 yrs). Participants were randomized to receive filtered light (intervention) or standard indoor light (baseline) on night shifts. Nighttime sleep after two night shifts and daytime sleep in between two night shifts was assessed by polysomnography (PSG). In addition, salivary melatonin levels and alertness were assessed every 2 h on the first night shift of each study period and on the middle night of a run of three night shifts in each study period. Sleep and performance under baseline and intervention conditions were compared with daytime performance on the seventh day shift, and nighttime sleep following the seventh daytime shift (comparator). On the baseline night PSG, total sleep time (TST) (p < 0.01) and sleep efficiency (p = 0.01) were significantly decreased and intervening wake times (wake after sleep onset [WASO]) (p = 0.04) were significantly increased in relation to the comparator night sleep. In contrast, under intervention, TST was increased by a mean of 40 min compared with baseline, WASO was reduced and sleep efficiency was increased to levels similar to the comparator night. Daytime sleep was significantly impaired under both baseline and intervention conditions. Salivary melatonin levels were significantly higher on the first (p < 0.05) and middle (p < 0.01) night shifts under intervention compared with baseline. Subjective sleepiness increased throughout the night under both conditions (p < 0.01). However, reaction time and throughput on vigilance tests were similar to daytime

  16. Optimizing ZnS/6LiF scintillators for wavelength-shifting-fiber neutron detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crow, Lowell; Funk, Loren L; Hannan, Bruce W

    2016-01-01

    In this paper we compare the performance of grooved and flat ZnS/6LiF scintillators in a wavelength shifting-fiber (WLSF) detector. Flat ZnS/6LiF scintillators with the thickness L=0.2-0.8 mm were characterized using photon counting and pulse-height analysis and compared to a grooved scintillator of approximately 0.8 mm thick. While a grooved scintillator considerably increases the apparent thickness of the scintillator to neutrons for a given coating thickness, we find that the flat scintillators perform better than the grooved scintillators in terms of both light yield and neutron detection efficiency. The flat 0.8-mm-thick scintillator has the highest light output, and it is 52%more » higher compared with a grooved scintillator of same thickness. The lower light output of the grooved scintillator as compared to the flat scintillator is consistent with the greater scintillator-WLSF separation and the much larger average emission angle of the grooved scintillator. We also find that the average light cone width, or photon travel-length as measured using time-of-flight powder diffraction of diamond and vanadium, decreases with increasing L in the range of L=0.6-0.8 mm. This result contrasts with the traditional Swank diffusion model for micro-composite scintillators, and could be explained by a decrease in photon diffusion-coefficient or an increase in micro-particle content in the flat scintillator matrix for the thicker scintillators.« less

  17. Continuous 1052, 1064 nm dual-wavelength Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, Xiaozhong; Yuan, Haiyang; Wang, Mingshan; Huang, Wencai

    2016-10-01

    Dual-wavelength lasers are usually obtained through balancing the net gain of the two oscillating lines. Competition between transitions 1052 nm, 1061 nm and 1064 nm is utilized to realize a continuous wave 1052 and 1064 nm dual-wavelength Nd:YAG laser firstly in this paper. A specially designed Fabry-Perot band-pass filter is exploited as output coupler to control the thresholds of the oscillating wavelengths. The maximum power of the dual-wavelength laser is 1.6 W and the slope efficiency is about 10%. The power instability of the output dual-wavelength laser is smaller than ±4% in half an hour. The mechanism presented in this paper may provide a new way to obtain dual-wavelength lasers.

  18. Phase demodulation of Fabry-Perot interferometer-based acoustic sensor utilizing tunable filter with two quadrature wavelengths

    NASA Astrophysics Data System (ADS)

    Liao, Hao; Lu, Ping; Liu, Li; Liu, Deming; Zhang, Jiangshan

    2017-02-01

    A phase demodulation method for short-cavity extrinsic Fabry-Perot interferometer (EFPI) based on two orthogonal wavelengths via a tunable optical filter is proposed in this paper. A broadband light is launched into the EFPI sensor and two monochromatic beams with 3dB bandwidth of 0.2nm are selected out from the reflected light of the EFPI sensor. A phase bias is induced between the two interferential signals due to the wavelength difference of the two beams. The wavelength difference will have an affect on the sensitivity of demodulated signal, which has been theoretically and experimentally demonstrated. The maximum sensitivity can be obtained when the phase bias is 0.5π corresponding to the wavelength difference of 1/4 FSR of the EFPI spectrum. The acoustic wave induced phase variation can be interrogated through an optimized differential cross multiplication (DCM) method. A normalization process is induced into the traditional DCM method to eliminate the influence of ambient temperature and pressure fluctuation induced spectrum shift on output signal. This means that, once the wavelength difference is fixed, the wavelength variation of each individual beam will have little influence on the amplitude of demodulated signal. The EFPI sensing head is formed by a 3μm-thick aluminum diaphragm, which has a SNR of more than 53dB. Through the proposed demodulation scheme, a large dynamic range and good linearity is acquired and Q-point drift problem of traditional EFPI sensor can be solved. The demodulation scheme can be applied to other kinds of short-cavity EFPI based acoustic sensors.

  19. Noise tolerance in wavelength-selective switching of optical differential quadrature-phase-shift-keying pulse train by collinear acousto-optic devices.

    PubMed

    Goto, Nobuo; Miyazaki, Yasumitsu

    2014-06-01

    Optical switching of high-bit-rate quadrature-phase-shift-keying (QPSK) pulse trains using collinear acousto-optic (AO) devices is theoretically discussed. Since the collinear AO devices have wavelength selectivity, the switched optical pulse trains suffer from distortion when the bandwidth of the pulse train is comparable to the pass bandwidth of the AO device. As the AO device, a sidelobe-suppressed device with a tapered surface-acoustic-wave (SAW) waveguide and a Butterworth-type filter device with a lossy SAW directional coupler are considered. Phase distortion of optical pulse trains at 40 to 100  Gsymbols/s in QPSK format is numerically analyzed. Bit-error-rate performance with additive Gaussian noise is also evaluated by the Monte Carlo method.

  20. Multi-wavelength Praseodymium fiber laser using stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Aidit, S. N.; Tiu, Z. C.

    2018-02-01

    A multi-wavelength Brillouin Praseodymium fiber laser (MWBPFL) operating at 1300 nm region is demonstrated based on the hybrid scheme by utilizing Brillouin gain medium and Praseodymium-doped fluoride fiber as linear gain medium. A 15 μm air gap is incorporated into the cavity to allow the switching of Brillouin frequency spacing from double to single spacing. Under the Brillouin pump of 8 dBm and the 1020 nm pump power of 567.2 mW, 36 Stokes lines with a wavelength spacing of 0.16 nm and 24 Stokes lines with a wavelength spacing of 0.08 nm are achieved. The wavelength tunability of 8 nm is realized for both MWBPFLs by shifting the Brillouin pump wavelength. The MWBPFLs exhibit an excellent stability in the number of generated Stokes and power level over one-hour period.

  1. Long-wavelength Instability of Trailing Vortices Behind a Delta Wing

    NASA Astrophysics Data System (ADS)

    Miller, G. D.; Williamson, C. H. K.

    1996-11-01

    The long-wavelength instability of a vortex pair is studied in the wake of a delta wing. While many previous studies of the instability exist, almost none are accompanied by accurate measurements of the vortex core parameters upon which the theoretical predictions depend. The present measurements of wavelength and maximum growth rate from visualization images are accompanied by extensive DPIV measurements of the distributions of vorticity and axial velocity. Axial velocity was found to be wake-like, with a velocity deficit. The vorticity distribution in the cores is well modeled by an Oseen vortex, as is the downstream growth of the core. The naturally occuring wavelength was measured to be 4.5 times the inter-vortex spacing, which compares very well with the wavelength of maximum growth rate predicted by theory using measured core parameters. Also, the measured value of the growth rate and the lower stability limit correspond well with theory. The response of the wake to forcing is also examined, and reveals that the wake is receptive to forcing at wavelengths near the natural wavelength. We demonstrate control over the rate at which the wake decays by hastening the action of the instabilty with initial forcing. Supported by NDSEG Fellowship for first author.

  2. Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance

    Treesearch

    Robert J. Warren; Lacy Chick

    2013-01-01

    Rapid climate change may prompt species distribution shifts upward and poleward, but species movement in itself is not sufficient to establish climate causation. Other dynamics, such as disturbance history, may prompt species distribution shifts resembling those expected from rapid climate change. Links between species distributions, regional climate trends and...

  3. High Precision Wavelength Monitor for Tunable Laser Systems

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor); Childers, Brooks A. (Inventor)

    2002-01-01

    A solid-state apparatus for tracking the wavelength of a laser emission has a power splitter that divides the laser emission into at least three equal components. Differing phase shifts are detected and processed to track variations of the laser emission.

  4. Emission wavelength red-shift by using ;semi-bulk; InGaN buffer layer in InGaN/InGaN multiple-quantum-well

    NASA Astrophysics Data System (ADS)

    Alam, Saiful; Sundaram, Suresh; Li, Xin; El Gmili, Youssef; Elouneg-Jamroz, Miryam; Robin, Ivan Christophe; Patriarche, Gilles; Salvestrini, Jean-Paul; Voss, Paul L.; Ougazzaden, Abdallah

    2017-12-01

    We report an elongation of emission wavelength by inserting a ∼70 nm thick high quality semi-bulk (SB) InyGa1-yN buffer layer underneath the InxGa1-xN/InyGa1-yN (x > y) multi-quantum-well (MQW).While the MQW structure without the InGaN SB buffer is fully strained on the n-GaN template, the MQW structure with the buffer has ∼15% relaxation. This small relaxation along with slight compositional pulling induced well thickness increase of MQW is believed to be the reason for the red-shift of emission wavelength. In addition, the SB InGaN buffer acts as an electron reservoir and also helps to reduce the Quantum Confined Stark Effect (QCSE) and thus increase the emission intensity. In this way, by avoiding fully relaxed buffer induced material degradation, a longer emission wavelength can be achieved by just using InGaN SB buffer while keeping all other growth conditions the same as the reference structure. Thus, a reasonably thick fully strained or very little relaxed InGaN buffer, which is realized by ;semi-bulk; approach to maintain good InGaN material quality, can be beneficial for realizing LEDs, grown on top of this buffer, emitting in the blue to cyan to green regime without using excess indium (In).

  5. Simultaneous dual-wavelength lasing at 1047 and 1053 nm and wavelength tuning to 1072 nm in a diode-pumped a-cut Nd : LiYF4 laser

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Xu, Huiying; Cai, Zhiping

    2015-12-01

    We report on diode-end-pumped a-cut Nd:YLF laser on F→I transition. In a free-running regime, using an output coupler with a radius of curvature of 1000 mm, we obtain dual-wavelength laser operation at both π-polarized 1047 nm and σ-polarized 1053 nm with maximum output power of about 1.25 W and the highest slope efficiency of about 50.9% at pump power of 5.77 W at room temperature, for the first time to our knowledge. Furthermore, using a 0.1-mm glass plate as a wavelength selector, a dual-wavelength laser at 1047 and 1072 nm can also be yielded with the maximum output power of 0.34 W, which has not been reported before.

  6. A new approach for white organic light-emitting diodes of single emitting layer using large stokes shift.

    PubMed

    Kim, Beomjin; Park, Youngil; Kim, Seungho; Lee, Younggu; Park, Jongwook

    2014-08-01

    DPPZ showed UV-Vis. and PL maximum values of 412 and 638 nm, meaning the large stokes shift. Blue host compound, TAT was synthesized and used for co-mixed white emission. TAT exhibited UV-Vis. and PL maximum values of 403 nm and 445 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TAT to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 449 and 631 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 457 and 634 nm peaks and two separate EL peaks, respectively. As the operation voltage is increased from 7 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.29 cd/A, 0.14 lm/W, and CIE (0.325, 0.195) at 7 V.

  7. Experimental and CFD modeling of fluid mixing in sinusoidal microchannels with different phase shift between side walls

    NASA Astrophysics Data System (ADS)

    Khosravi Parsa, Mohsen; Hormozi, Faramarz

    2014-06-01

    In the present work, a passive model of a micromixer with sinusoidal side walls, a convergent-divergent cross section and a T-shape entrance was experimentally fabricated and modeled. The main aim of this modeling was to conduct a study on the Dean and separation vortices created inside the sinusoidal microchannels with a convergent-divergent cross section. To fabricate the microchannels, CO2 laser micromachining was utilized and the fluid mixing pattern is observed using a digital microscope imaging system. Also, computational fluid dynamics was applied with the finite element method to solve Navier-Stokes equations and the diffusion-convection mode in inlet Reynolds numbers of 0.2-75. Numerically obtained results were in reasonable agreement with experimental data. According to the previous studies, phase shift and wavelength of side walls are important parameters in designing sinusoidal microchannels. An increase of phase shift between side walls of microchannels leads the cross section being convergent-divergent. Results also show that at an inlet Reynolds number of <20 the molecular diffusion is the dominant mixing factor and the mixing index extent is nearly identical in all designs. For higher inlet Reynolds numbers (>20), secondary flow is the main factor of mixing. Noticeably, mixing index drastically depends on phase shift (ϕ) and wavelength of side walls (λ) such that the best mixing can be observed in ϕ = 3π/4 and at a wavelength to amplitude ratio of 3.3. Likewise, the maximum pressure drop is reported at ϕ = π. Therefore, the sinusoidal microchannel with phase shifts between π/2 and 3π/4 is the best microchannel for biological and chemical analysis, for which a mixing index value higher than 90% and a pressure drop less than 12 kPa is reported.

  8. Parametric models to compute tryptophan fluorescence wavelengths from classical protein simulations.

    PubMed

    Lopez, Alvaro J; Martínez, Leandro

    2018-02-26

    Fluorescence spectroscopy is an important method to study protein conformational dynamics and solvation structures. Tryptophan (Trp) residues are the most important and practical intrinsic probes for protein fluorescence due to the variability of their fluorescence wavelengths: Trp residues emit in wavelengths ranging from 308 to 360 nm depending on the local molecular environment. Fluorescence involves electronic transitions, thus its computational modeling is a challenging task. We show that it is possible to predict the wavelength of emission of a Trp residue from classical molecular dynamics simulations by computing the solvent-accessible surface area or the electrostatic interaction between the indole group and the rest of the system. Linear parametric models are obtained to predict the maximum emission wavelengths with standard errors of the order 5 nm. In a set of 19 proteins with emission wavelengths ranging from 308 to 352 nm, the best model predicts the maximum wavelength of emission with a standard error of 4.89 nm and a quadratic Pearson correlation coefficient of 0.81. These models can be used for the interpretation of fluorescence spectra of proteins with multiple Trp residues, or for which local Trp environmental variability exists and can be probed by classical molecular dynamics simulations. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  9. Watt-level tunable 1.5  μm narrow linewidth fiber ring laser based on a temperature tuning π-phase-shifted fiber Bragg grating.

    PubMed

    Sun, Junjie; Wang, Zefeng; Wang, Meng; Zhou, Zhiyue; Tang, Ni; Chen, Jinbao; Gu, Xijia

    2017-11-10

    A watt-level tunable 1.5 μm narrow linewidth fiber ring laser using a temperature tuning π-phase-shifted fiber Bragg grating (π-PSFBG) is demonstrated here, to the best of our knowledge, for the first time. The π-PSFBG is employed as both a narrow band filter and a wavelength tuning component, and its central wavelength is thermally tuned by a thermo-electric cooler. The maximum laser power is about 1.1 W with a linewidth of ∼318  MHz (∼2.57  pm) and a power fluctuation of less than 3%. The wavelength tuning range of the laser is about 1.29 nm with a sensitivity of ∼14.33  pm/°C, and the wavelength fluctuation is about 0.2 pm. This work provides important reference for tunable fiber lasers with both high power and narrow linewidth.

  10. Multi-Wavelength Photomagnetic Imaging for Oral Cancer

    NASA Astrophysics Data System (ADS)

    Marks, Michael

    In this study, a multi-wavelength Photomagnetic Imaging (PMI) system is developed and evaluated with experimental studies.. PMI measures temperature increases in samples illuminated by near-infrared light sources using magnetic resonance thermometry. A multiphysics solver combining light and heat transfer models the spatiotemporal distribution of the temperature change. The PMI system develop in this work uses three lasers of varying wavelength (785 nm, 808 nm, 860 nm) to heat the sample. By using multiple wavelengths, we enable the PMI system to quantify the relative concentrations of optical contrast in turbid media and monitor their distribution, at a higher resolution than conventional diffuse optical imaging. The data collected from agarose phantoms with multiple embedded contrast agents designed to simulate the optical properties of oxy- and deoxy-hemoglobin is presented. The reconstructed images demonstrate that multi-wavelength PMI can resolve this complex inclusion structure with high resolution and recover the concentration of each contrast agent with high quantitative accuracy. The modified multi-wavelength PMI system operates under the maximum skin exposure limits defined by the American National Standards Institute, to enable future clinical applications.

  11. In-line digital holography with phase-shifting Greek-ladder sieves

    NASA Astrophysics Data System (ADS)

    Xie, Jing; Zhang, Junyong; Zhang, Yanli; Zhou, Shenlei; Zhu, Jianqiang

    2018-04-01

    Phase shifting is the key technique in in-line digital holography, but traditional phase shifters have their own limitations in short wavelength regions. Here, phase-shifting Greek-ladder sieves with amplitude-only modulation are introduced into in-line digital holography, which are essentially a kind of diffraction lens with three-dimensional array diffraction-limited foci. In the in-line digital holographic experiment, we design two kinds of sieves by lithography and verify the validity of their phase-shifting function by measuring a 1951 U.S. Air Force resolution test target and three-dimensional array foci. With advantages of high resolving power, low cost, and no limitations at shorter wavelengths, phase-shifting Greek-ladder sieves have great potential in X-ray holography or biochemical microscopy for the next generation of synchrotron light sources.

  12. Optimal wavelength band clustering for multispectral iris recognition.

    PubMed

    Gong, Yazhuo; Zhang, David; Shi, Pengfei; Yan, Jingqi

    2012-07-01

    This work explores the possibility of clustering spectral wavelengths based on the maximum dissimilarity of iris textures. The eventual goal is to determine how many bands of spectral wavelengths will be enough for iris multispectral fusion and to find these bands that will provide higher performance of iris multispectral recognition. A multispectral acquisition system was first designed for imaging the iris at narrow spectral bands in the range of 420 to 940 nm. Next, a set of 60 human iris images that correspond to the right and left eyes of 30 different subjects were acquired for an analysis. Finally, we determined that 3 clusters were enough to represent the 10 feature bands of spectral wavelengths using the agglomerative clustering based on two-dimensional principal component analysis. The experimental results suggest (1) the number, center, and composition of clusters of spectral wavelengths and (2) the higher performance of iris multispectral recognition based on a three wavelengths-bands fusion.

  13. Simple approach to three-color two-photon microscopy by a fiber-optic wavelength convertor.

    PubMed

    Li, Kuen-Che; Huang, Lynn L H; Liang, Jhih-Hao; Chan, Ming-Che

    2016-11-01

    A simple approach to multi-color two-photon microscopy of the red, green, and blue fluorescent indicators was reported based on an ultra-compact 1.03-μm femtosecond laser and a nonlinear fiber. Inside the nonlinear fiber, the 1.03-μm laser pulses were simultaneously blue-shifted to 0.6~0.8 μm and red-shifted to 1.2~1.4 μm region by the Cherenkov radiation and fiber Raman gain effects. The wavelength-shifted 0.6~0.8 μm and 1.2~1.4 μm radiations were co-propagated with the residual non-converted 1.03-μm pulses inside the same nonlinear fiber to form a fiber-output three-color femtosecond source. The application of the multi-wavelength sources on multi-color two-photon fluorescence microscopy were also demonstrated. Overall, due to simple system configuration, convenient wavelength conversion, easy wavelength tunability within the entire 0.7~1.35 μm bio-penetration window and less requirement for high power and bulky light sources, the simple approach to multi-color two-photon microscopy could be widely applicable as an easily implemented and excellent research tool for future biomedical and possibly even clinical applications.

  14. Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces

    PubMed Central

    Yallapragada, Venkata Jayasurya; Ravishankar, Ajith P.; Mulay, Gajendra L.; Agarwal, Girish S.; Achanta, Venu Gopal

    2016-01-01

    Metasurfaces with sub-wavelength features are useful in modulating the phase, amplitude or polarization of electromagnetic fields. While several applications are reported for light manipulation and control, the sharp phase changes would be useful in enhancing the beam shifts at reflection from a metasurface. In designed periodic patterns on metal film, at surface plasmon resonance, we demonstrate Goos-Hanchen shift of the order of 70 times the incident wavelength and the angular shifts of several hundred microradians. We have designed the patterns using rigorous coupled wave analysis (RCWA) together with S-matrices and have used a complete vector theory to calculate the shifts as well as demonstrate a versatile experimental setup to directly measure the shifts. The giant shifts demonstrated could prove to be useful in enhancing the sensitivity of experiments ranging from atomic force microscopy to gravitational wave detection. PMID:26758471

  15. Design of multi-wavelength tunable filter based on Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun

    2018-05-01

    A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.

  16. Interrogation of weak Bragg grating sensors based on dual-wavelength differential detection.

    PubMed

    Cheng, Rui; Xia, Li

    2016-11-15

    It is shown that for weak Bragg gratings the logarithmic ratio of reflected intensities at any two wavelengths within the spectrum follows a linear relationship with the Bragg wavelength shift, with a slope proportional to their wavelength spacing. This finding is exploited to develop a flexible, efficient, and cheap interrogation solution of weak fiber Bragg grating (FBGs), especially ultra-short FBGs, in distributed sensing based on dual-wavelength differential detection. The concept is experimentally studied in both single and distributed sensing systems with ultra-short FBG sensors. The work may form the basis of new and promising FBG interrogation techniques based on detecting discrete rather than continuous spectra.

  17. PAWS locker: a passively aligned internal wavelength locker for telecommunications lasers

    NASA Astrophysics Data System (ADS)

    Boye, Robert R.; Te Kolste, Robert; Kathman, Alan D.; Cruz-Cabrera, Alvaro; Knight, Douglas; Hammond, J. Barney

    2003-11-01

    This paper presents the passively aligned Wavesetter (PAWS) locker: a micro-optic subassembly for use as an internal wavelength locker. As the wavelength spacing in dense wavelength division multiplexing (WDM) decreases, the performance demands placed upon source lasers increase. The required wavelength stability has led to the use of external wavelength lockers utilizing air-spaced, thermally stabilized etalons. However, package constraints are forcing the integration of the wavelength locker directly into the laser module. These etalons require active tuning be done during installation of the wavelength locker as well as active temperature control (air-spaced etalons are typically too large for laser packages). A unique locking technique will be introduced that does not require an active alignment or active temperature compensation. Using the principles of phase shifting interferometry, a locking signal is derived without the inherent inflection points present in the signal of an etalon. The theoretical background of PAWS locker will be discussed as well as practical considerations for its implementation. Empirical results will be presented including wavelength accuracy, alignment sensitivity and thermal performance.

  18. Mitigation of cross-beam energy transfer in symmetric implosions on OMEGA using wavelength detuning

    DOE PAGES

    Edgell, D. H.; Follett, R. K.; Igumenshchev, I. V.; ...

    2017-06-13

    The effects of frequency detuning laser beams in direct-drive symmetric implosions were investigated with a 3-D cross-beam energy transfer (CBET) model. Our model shows that interactions between beams with relative angles between 45° and 90° are most significant for CBET in OMEGA direct-drive implosions. There is no net exchange in power between beams but there is significant redistribution of power from the ingoing central portion of the beam profile to the outgoing edge as it is exiting the plasma, reducing the total absorbed power. Furthermore, redistribution of laser power because of CBET increases the root-mean-square (rms) absorption nonuniformity by anmore » order of magnitude. CBET mitigation by shifting relative wavelengths of three groups of laser beams fed by each of the different beamlines was modeled. At an on-target wavelength shift of Δλ ~ 10 Å, the total laser absorption was maximized, and the rms absorption nonuniformity was near minimum. In order to completely decouple the three groups of beams from each other requires wavelength shifts Δλ > 30 Å.« less

  19. Mitigation of cross-beam energy transfer in symmetric implosions on OMEGA using wavelength detuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgell, D. H.; Follett, R. K.; Igumenshchev, I. V.

    The effects of frequency detuning laser beams in direct-drive symmetric implosions were investigated with a 3-D cross-beam energy transfer (CBET) model. Our model shows that interactions between beams with relative angles between 45° and 90° are most significant for CBET in OMEGA direct-drive implosions. There is no net exchange in power between beams but there is significant redistribution of power from the ingoing central portion of the beam profile to the outgoing edge as it is exiting the plasma, reducing the total absorbed power. Furthermore, redistribution of laser power because of CBET increases the root-mean-square (rms) absorption nonuniformity by anmore » order of magnitude. CBET mitigation by shifting relative wavelengths of three groups of laser beams fed by each of the different beamlines was modeled. At an on-target wavelength shift of Δλ ~ 10 Å, the total laser absorption was maximized, and the rms absorption nonuniformity was near minimum. In order to completely decouple the three groups of beams from each other requires wavelength shifts Δλ > 30 Å.« less

  20. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Shi, Nuannuan; Hao, Tengfei; Li, Wei; Zhu, Ninghua; Li, Ming

    2018-01-01

    We propose a photonic scheme to realize a reconfigurable microwave photonic filter (MPF) with flexible tunability using a multi-wavelength laser (MWL) and a multi-channel phase-shifted fiber Bragg grating (PS-FBG). The proposed MPF is capable of performing reconfigurability including single bandpass filter, two independently bandpass filter and a flat-top bandpass filter. The performance such as the central frequency and the bandwidth of passband is tuned by controlling the wavelengths of the MWL. In the MPF, The light waves from a MWL are sent to a phase modulator (PM) to generate the phase-modulated optical signals. By applying a multi-channel PS-FBG, which has a series of narrow notches in the reflection spectrum with the free spectral range (FSR) of 0.8 nm, the +1st sidebands are removed in the notches and the phased-modulated signals are converted to the intensity-modulated signals without beating signals generation between each two optical carriers. The proposed MPF is also experimentally verified. The 3-dB bandwidth of the MPF is broadened from 35 MHz to 135 MHz and the magnitude deviation of the top from the MPF is less than 0.2 dB within the frequency tunable range from 1 GHz to 5 GHz.

  1. Cross-phase modulation bandwidth in ultrafast fiber wavelength converters

    NASA Astrophysics Data System (ADS)

    Luís, Ruben S.; Monteiro, Paulo; Teixeira, António

    2006-12-01

    We propose a novel analytical model for the characterization of fiber cross-phase modulation (XPM) in ultrafast all-optical fiber wavelength converters, operating at modulation frequencies higher than 1THz. The model is used to compare the XPM frequency limitations of a conventional and a highly nonlinear dispersion shifted fiber (HN-DSF) and a bismuth oxide-based fiber, introducing the XPM bandwidth as a design parameter. It is shown that the HN-DSF presents the highest XPM bandwidth, above 1THz, making it the most appropriate for ultrafast wavelength conversion.

  2. Resonance-modulated wavelength scaling of high-order-harmonic generation from H2+

    NASA Astrophysics Data System (ADS)

    Wang, Baoning; He, Lixin; Wang, Feng; Yuan, Hua; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang

    2018-01-01

    Wavelength scaling of high-order harmonic generation (HHG) in a non-Born-Oppenheimer treatment of H2+ is investigated by numerical simulations of the time-dependent Schrödinger equation. The results show that the decrease in the wavelength-dependent HHG yield is reduced compared to that in the fixed-nucleus approximation. This slower wavelength scaling is related to the charge-resonance-enhanced ionization effect, which considerably increases the ionization rate at longer driving laser wavelengths due to the relatively larger nuclear separation. In addition, we find an oscillation structure in the wavelength scaling of HHG from H2+. Upon decreasing the laser intensity or increasing the nuclear mass, the oscillation structure will shift towards a longer wavelength of the laser pulse. These results permit the generation of an efficient harmonic spectrum in the midinfrared regime by manipulating the nuclear dynamics of molecules.

  3. High-Speed Stark Wavelength Tuning of MidIR Interband Cascade Lasers

    DTIC Science & Technology

    2007-03-15

    STARK WAVELENGTH TUNING OF MidIR ICLs 361 Fig. 2. Lasing spectra of the tunable ICL at different bias currents. injection region at before tunneling ...the energy separation between and (and hence the emission wavelength) undergoes a linear Stark shift that depends on the bias current which controls...response Fig. 3. Lasing spectra of the tunable ICL at different bias modulation frequen- cies. Fig. 4. Dependence of the intensity of the Line 2 on bias

  4. Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Göröcs, Zoltan; Zhang, Yibo; Feizi, Alborz; Greenbaum, Alon; Ozcan, Aydogan

    2016-03-01

    Lensfree holographic on-chip imaging is a potent solution for high-resolution and field-portable bright-field imaging over a wide field-of-view. Previous lensfree imaging approaches utilize a pixel super-resolution technique, which relies on sub-pixel lateral displacements between the lensfree diffraction patterns and the image sensor's pixel-array, to achieve sub-micron resolution under unit magnification using state-of-the-art CMOS imager chips, commonly used in e.g., mobile-phones. Here we report, for the first time, a wavelength scanning based pixel super-resolution technique in lensfree holographic imaging. We developed an iterative super-resolution algorithm, which generates high-resolution reconstructions of the specimen from low-resolution (i.e., under-sampled) diffraction patterns recorded at multiple wavelengths within a narrow spectral range (e.g., 10-30 nm). Compared with lateral shift-based pixel super-resolution, this wavelength scanning approach does not require any physical shifts in the imaging setup, and the resolution improvement is uniform in all directions across the sensor-array. Our wavelength scanning super-resolution approach can also be integrated with multi-height and/or multi-angle on-chip imaging techniques to obtain even higher resolution reconstructions. For example, using wavelength scanning together with multi-angle illumination, we achieved a halfpitch resolution of 250 nm, corresponding to a numerical aperture of 1. In addition to pixel super-resolution, the small scanning steps in wavelength also enable us to robustly unwrap phase, revealing the specimen's optical path length in our reconstructed images. We believe that this new wavelength scanning based pixel super-resolution approach can provide competitive microscopy solutions for high-resolution and field-portable imaging needs, potentially impacting tele-pathology applications in resource-limited-settings.

  5. Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Phillips, N. B.; Beloy, K.; McGrew, W. F.; Schioppo, M.; Fasano, R. J.; Milani, G.; Zhang, X.; Hinkley, N.; Leopardi, H.; Yoon, T. H.; Nicolodi, D.; Fortier, T. M.; Ludlow, A. D.

    2017-12-01

    Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an 171Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10-18 level and beyond.

  6. Dual-wavelength digital holographic imaging with phase background subtraction

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander; Matz, Rebecca L.; Jasensky, Joshua; Seeley, Emily; Holl, Mark M. Banaszak; Chen, Zhan

    2012-05-01

    Three-dimensional digital holographic microscopic phase imaging of objects that are thicker than the wavelength of the imaging light is ambiguous and results in phase wrapping. In recent years, several unwrapping methods that employed two or more wavelengths were introduced. These methods compare the phase information obtained from each of the wavelengths and extend the range of unambiguous height measurements. A straightforward dual-wavelength phase imaging method is presented which allows for a flexible tradeoff between the maximum height of the sample and the amount of noise the method can tolerate. For highly accurate phase measurements, phase unwrapping of objects with heights higher than the beat (synthetic) wavelength (i.e. the product of the original two wavelengths divided by their difference), can be achieved. Consequently, three-dimensional measurements of a wide variety of biological systems and microstructures become technically feasible. Additionally, an effective method of removing phase background curvature based on slowly varying polynomial fitting is proposed. This method allows accurate volume measurements of several small objects with the same image frame.

  7. Wavelength dependence of laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Lund, David J.; Edsall, Peter; Stuck, Bruce E.

    2005-04-01

    The threshold for laser-induced retinal damage is dependent primarily upon the laser wavelength and the exposure duration. The study of the wavelength dependence of the retinal damage threshold has been greatly enhanced by the availability of tunable lasers. The Optical Parametric Oscillator (OPO), capable of providing useful pulse energy throughout a tuning range from 400 nm to 2200 nm, made it possible to determine the wavelength dependence of laser-induced retinal damage thresholds for q-switched pulses throughout the visible and NIR spectrum. Studies using the a tunable TI:Saph laser and several fixed-wavelength lasers yielded threshold values for 0.1 s exposures from 440 nm to 1060 nm. Laser-induced retinal damage for these exposure durations results from thermal conversion of the incident laser irradiation and an action spectrum for thermal retinal damage was developed based on the wavelength dependent transmission and absorption of ocular tissue and chromatic aberration of the eye optics. Long (1-1000s) duration exposures to visible laser demonstrated the existence of non-thermal laser-induced retinal damage mechanisms having a different action spectrum. This paper will present the available data for the wavelength dependence of laser-induced thermal retinal damage and compare this data to the maximum permissible exposure levels (MPEs) provided by the current guidelines for the safe use of lasers.

  8. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: Statistical distribution and height-dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias

    The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.

  9. A new approach way for white organic light-emitting diodes based on single emitting layer and large stokes shift.

    PubMed

    Kim, Beomjin; Park, Youngil; Shin, Yunseop; Lee, Jiwon; Shin, Hwangyu; Park, Jongwook

    2014-07-01

    New red dopant, DPPZ based on porphyrin moiety was synthesized. DPPZ showed UV-Vis and PL maximum values of 412 and 638 nm, indicating the large stokes shift. New blue host compound, TATa was also synthesized and used for co-mixed white emission. TATa exhibited UV-Vis. and PL maximum values of 403 nm and 463 nm in film state. Thus, when two compounds are used as co-mixed emitter in OLED device, there is no energy transfer from blue emission of TATa to DPPZ due to large stokes shift of DPPZ. Based on the PL result, it is available to realize two-colored white in PL and EL spectra. As a result of this, two-mixed compounds showed vivid their own PL emission peaks of 466 and 638 nm in film state. Also, white OLED device using two-mixed compounds system was fabricated. EL spectrum shows 481 and 646 nm peaks and two separate EL peaks. As the operation voltage is increased from 8 to 11 V, EL spectrum does not change the peak shape and maximum wavelength values. EL performance of white device showed 0.041 cd/A, 0.018 Im/W, and CIE (0.457, 0.331) at 8 V.

  10. Discrete multi-wavelength tuning of a continuous wave diode-pumped Nd:GdVO4 laser

    NASA Astrophysics Data System (ADS)

    Nadimi, Mohammad; Waritanant, Tanant; Major, Arkady

    2018-05-01

    Discrete multi-wavelength operation of a diode-pumped Nd:GdVO4 laser at four different wavelengths was demonstrated using a single birefringent filter plate. The laser achieved maximum output powers of 5.92 W, 5.66 W, 5.56 W and 3.98 W at 1063.2 nm, 1070.8 nm, 1082.5 nm and 1086.2 nm wavelengths, respectively. To the best of our knowledge, apart from achieving the maximum output powers at ~1071 nm and ~1086 nm and best efficiencies at ~1071 nm, ~1083 nm and ~1086 nm wavelengths for a Nd:GdVO4 laser, this is also the largest number of wavelengths from the 4F3/2  →  4I11/2 transition that was ever obtained in a controlled manner from a single laser setup based on any of the Nd-doped laser crystals.

  11. Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel

    NASA Astrophysics Data System (ADS)

    Sun, Chunran; Dong, Yue; Wang, Muguang; Jian, Shuisheng

    2018-03-01

    The detection of liquid level and temperature based on a fiber ring cavity laser sensing configuration is presented and demonstrated experimentally. The sensing head contains a fiber Bragg grating (FBG) and a single-mode-cladding-less-single-mode multimode interferometer, which also functions as wavelength-selective components of the fiber laser. When the liquid level or temperature is applied on the sensing head, the pass-band peaks of both multimode interference (MMI) filter and FBG filter vary and the two output wavelengths of the laser shift correspondingly. In the experiment, the corresponding sensitivities of the liquid level with four different refractive indices (RI) in the deep range from 0 mm to 40 mm are obtained and the sensitivity enhances with the RI of the liquid being measured. The maximum sensitivity of interferometer is 106.3 pm/mm with the RI of 1.391. For the temperature measurement, a sensitivity of 10.3 pm/°C and 13.8 pm/°C are achieved with the temperature ranging from 0 °C to 90 °C corresponding to the two lasing wavelengths selective by the MMI filter and FBG, respectively. In addition, the average RI sensitivity of 155.77 pm/mm/RIU is also obtained in the RI range of 1.333-1.391.

  12. Bragg-scattering conversion at telecom wavelengths towards the photon counting regime.

    PubMed

    Krupa, Katarzyna; Tonello, Alessandro; Kozlov, Victor V; Couderc, Vincent; Di Bin, Philippe; Wabnitz, Stefan; Barthélémy, Alain; Labonté, Laurent; Tanzilli, Sébastien

    2012-11-19

    We experimentally study Bragg-scattering four-wave mixing in a highly nonlinear fiber at telecom wavelengths using photon counters. We explore the polarization dependence of this process with a continuous wave signal in the macroscopic and attenuated regime, with a wavelength shift of 23 nm. Our measurements of mean photon numbers per second under various pump polarization configurations agree well with the theoretical and numerical predictions based on classical models. We discuss the impact of noise under these different polarization configurations.

  13. High power pumped MID-IR wavelength devices using nonlinear frequency mixing (NFM)

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    2001-01-01

    Laser diode pumped mid-IR wavelength sources include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  14. Differential Shift Estimation in the Absence of Coherence: Performance Analysis and Benefits of Polarimetry

    NASA Astrophysics Data System (ADS)

    Villano, Michelangelo; Papathanassiou, Konstantinos P.

    2011-03-01

    The estimation of the local differential shift between synthetic aperture radar (SAR) images has proven to be an effective technique for monitoring glacier surface motion. As images acquired over glaciers by short wavelength SAR systems, such as TerraSAR-X, often suffer from a lack of coherence, image features have to be exploited for the shift estimation (feature-tracking).The present paper addresses feature-tracking with special attention to the feasibility requirements and the achievable accuracy of the shift estimation. In particular, the dependence of the performance on image characteristics, such as texture parameters, signal-to-noise ratio (SNR) and resolution, as well as on processing techniques (despeckling, normalised cross-correlation versus maximum likelihood estimation) is analysed by means of Monte-Carlo simulations. TerraSAR-X data acquired over the Helheim glacier, Greenland, and the Aletsch glacier, Switzerland, have been processed to validate the simulation results.Feature-tracking can benefit of the availability of fully-polarimetric data. As some image characteristics, in fact, are polarisation-dependent, the selection of an optimum polarisation leads to improved performance. Furthermore, fully-polarimetric SAR images can be despeckled without degrading the resolution, so that additional (smaller-scale) features can be exploited.

  15. Variations in the short wavelength cut-off of the solar UV spectra.

    PubMed

    Parisi, A V; Turner, J

    2006-03-01

    Cloud and solar zenith angle (SZA) are two major factors that influence the magnitude of the biologically damaging UV (UVBD) irradiances for humans. However, the effect on the short wavelength cut-off due to SZA and due to clouds has not been investigated for biologically damaging UV for cataracts. This research aims to investigate the influence of cloud and SZA on the short wavelength cut-off of the spectral UVBD for cataracts. The spectral biologically damaging UV for cataracts on a horizontal plane was calculated by weighting the spectral UV measured with a spectroradiometer with the action spectrum for the induction of cataracts in a porcine lens. The UV spectra were obtained on an unshaded plane at a latitude of 29.5 degrees S. The cut-off wavelength (lambdac) was defined as the wavelength at which the biologically damaging spectral irradiance was 0.1% of the maximum biologically damaging irradiance for that scan. For the all sky conditions, the short wavelength cut-off ranged by 12 nm for the SZA range of 5 to 80 degrees and the maximum in the spectral UVBD ranged by 15 nm. Similarly, for the cloud free cases, the short wavelength cut-off ranged by 9 nm for the same SZA range. Although, cloud has a large influence on the magnitude of the biologically damaging UV for cataracts, the influence of cloud on the short wavelength cut-off for the biologically damaging UV for cataracts is less than the influence of the solar zenith angle.

  16. Highly coherent red-shifted dispersive wave generation around 1.3 μm for efficient wavelength conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xia; Bi, Wanjun; University of Chinese Academy of Sciences, Beijing 100039

    2015-03-14

    This research investigates the mechanism of the optical dispersive wave (DW) and proposes a scheme that can realize an efficient wavelength conversion. In an elaborately designed photonic crystal fiber, a readily available ytterbium laser operating at ∼1 μm can be transferred to the valuable 1.3 μm wavelength range. A low-order soliton is produced to concentrate the energy of the DW into the target wavelength range and improve the degree of coherence. The input chirp is demonstrated to be a factor that enhances the wavelength conversion efficiency. With a positive initial chirp, 76.6% of the pump energy in the fiber can be transferredmore » into a spectral range between 1.24 and 1.4 μm. With the use of a grating compressor, it is possible to compress the generated coherent DW of several picoseconds into less than 90 fs.« less

  17. Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2016-01-01

    We report on a diode-end-pumped simultaneous multiple wavelength Nd:YVO4 laser. Dual-wavelength laser is achieved at a π-polarized 1064 nm emission line and a σ-polarized 1066 nm emission line with total maximum output power of 1.38 W. Moreover, tri-wavelength laser emission at the π-polarized 1064 nm emission line and σ-polarized 1062 and 1066 nm emission lines can also be obtained with total maximum output power of about 1.23 W, for the first time to our knowledge. The operation of such simultaneous dual- and tri-wavelength lasers is only realized by employing a simple glass etalon to modulate the intracavity losses for these potential lasing wavelengths inside of an intracavity polarizer, which therefore makes a very compact two-mirror linear cavity and simultaneous orthogonal lasing possible. Such orthogonal linearly polarized multi-wavelength laser sources could be especially promising in THz wave generation and in efficient nonlinear frequency conversion to visible lasers.

  18. Wavelength tunable ultrafast fiber laser via reflective mirror with taper structure.

    PubMed

    Fang, Li; Huang, Chuyun; Liu, Ting; Gogneau, Noelle; Bourhis, Eric; Gierak, Jacques; Oudar, Jean-Louis

    2016-12-20

    Laser sources with a controllable flexible wavelength have found widespread applications in optical fiber communication, optical sensing, and microscopy. Here, we report a tunable mode-locked fiber laser using a graphene-based saturable absorber and a tapered mirror as an end mirror in the cavity. The phase layer in the mirror is precisely etched by focused ion beam (FIB) milling technology, and the resonant wavelength of the mirror shifts correspond to the different etch depths. By scanning the tapered mirror mechanically, the center wavelength of a mode-locked fiber laser can be continuously tuned from 1562 to 1532 nm, with a pulse width in the sub-ps level and repetition rate of 27 MHz.

  19. Extended Stokes shift in fluorescent proteins: chromophore-protein interactions in a near-infrared TagRFP675 variant.

    PubMed

    Piatkevich, Kiryl D; Malashkevich, Vladimir N; Morozova, Kateryna S; Nemkovich, Nicolai A; Almo, Steven C; Verkhusha, Vladislav V

    2013-01-01

    Most GFP-like fluorescent proteins exhibit small Stokes shifts (10-45 nm) due to rigidity of the chromophore environment that excludes non-fluorescent relaxation to a ground state. An unusual near-infrared derivative of the red fluorescent protein mKate, named TagRFP675, exhibits the Stokes shift, which is 30 nm extended comparing to that of the parental protein. In physiological conditions, TagRFP675 absorbs at 598 nm and emits at 675 nm that makes it the most red-shifted protein of the GFP-like protein family. In addition, its emission maximum strongly depends on the excitation wavelength. Structures of TagRFP675 revealed the common DsRed-like chromophore, which, however, interacts with the protein matrix via an extensive network of hydrogen bonds capable of large flexibility. Based on the spectroscopic, biochemical, and structural analysis we suggest that the rearrangement of the hydrogen bond interactions between the chromophore and the protein matrix is responsible for the TagRFP675 spectral properties.

  20. Wavelength calibration of an imaging spectrometer based on Savart interferometer

    NASA Astrophysics Data System (ADS)

    Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Quan, Naicheng; Wei, Yutong; Tong, Cuncun

    2017-09-01

    The basic principle of Fourier-transform imaging spectrometer (FTIS) based on Savart interferometer is outlined. The un-identical distribution of the optical path difference which leads to the wavelength drift of each row of the interferogram is analyzed. Two typical methods for wavelength calibration of the presented system are described. The first method unifies different spectral intervals and maximum spectral frequencies of each row by a reference monochromatic light with known wavelength, and the dispersion compensation of Savart interferometer is also involved. The second approach is based on the least square fitting which builds the functional relation between recovered wavelength, row number and calibrated wavelength by concise equations. The effectiveness of the two methods is experimentally demonstrated with monochromatic lights and mixed light source across the detecting band of the system, and the results indicate that the first method has higher precision and the mean root-mean-square error of the recovered wavelengths is significantly reduced from 19.896 nm to 1.353 nm, while the second method is more convenient to implement and also has good precision of 2.709 nm.

  1. Raman Shifted Nd:YAG Class I Eye-Safe Laser Development 21 January 1986

    NASA Astrophysics Data System (ADS)

    Nichols, R. W.; Ng, W. K.

    1986-07-01

    Hughes Aircraft has been developing a hand-held eye-safe laser rangefinder fo1r the Army utilizing Stimulated Raman Scattering technology. The device uses the 2915 cm-1 vibrational mode of methane (CH4) to wavelength shift the Nd:YAG pump laser's 1.064 micron to an eye-safe 1.543 micron. The result is a lightweight BRH Class I eye-safe tactical device. A brief description of Raman wavelength shifting basics is followed by description of the Hughes system.

  2. Free-space wavelength-multiplexed optical scanner demonstration.

    PubMed

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  3. Output characteristics of SASE-driven short wavelength FEL`s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawley, W.M.

    This paper investigates various properties of the ``microspikes`` associated with self-amplified spontaneous emission (SASE) in a short wavelength free-electron laser (FEL). Using results from the 2-D numerical simulation code GINGER, we confirm theoretical predictions such as the convective group velocity in the exponential gain regime. In the saturated gain regime beyond the initial saturation, we find that the average radiation power continues to grow with an approximately linearly dependence upon undulator length. Moreover, the spectrum significantly broadens and shifts in wavelength to the redward direction, with{ital P(w)} approaching a constant, asymptotic value. This is in marked contrast to the exponentialmore » gain regime where the spectrum steadily narrows, {ital P(w)} grows, and the central wavelength remains constant with {ital z}. Via use of a spectrogram diagnostic {ital S(w,t)}, it appears that the radiation pattern in the saturated gain regime is composed of an ensemble of distinct ``sinews`` whose widths AA remain approximately constant but whose central wavelengths can ``chirp`` by varying a small extent with {ital t}.« less

  4. Temperature effects on wavelength calibration of the optical spectrum analyzer

    NASA Astrophysics Data System (ADS)

    Mongkonsatit, Kittiphong; Ranusawud, Monludee; Srikham, Sitthichai; Bhatranand, Apichai; Jiraraksopakun, Yuttapong

    2018-03-01

    This paper presents the investigation of the temperature effects on wavelength calibration of an optical spectrum analyzer or OSA. The characteristics of wavelength dependence on temperatures are described and demonstrated under the guidance of the IEC 62129-1:2006, the international standard for the Calibration of wavelength/optical frequency measurement instruments - Part 1: Optical spectrum analyzer. Three distributed-feedback lasers emit lights with wavelengths of 1310 nm, 1550 nm, and 1600 nm were used as light sources in this work. Each light was split by a 1 x 2 fiber splitter whereas one end was connected to a standard wavelength meter and the other to an under-test OSA. Two Experiment setups were arranged for the analysis of the wavelength reading deviations between a standard wavelength meter and an OSA under a variety of circumstances of different temperatures and humidity conditions. The experimental results showed that, for wavelengths of 1550 nm and 1600 nm, the wavelength deviations were proportional to the value of temperature with the minimum and maximum of -0.015 and 0.030 nm, respectively. While the deviations of 1310 nm wavelength did not change much with the temperature as they were in the range of -0.003 nm to 0.010 nm. The measurement uncertainty was also evaluated according to the IEC 62129-1:2006. The main contribution of measurement uncertainty was caused by the wavelength deviation. The uncertainty of measurement in this study is 0.023 nm with coverage factor, k = 2.

  5. Terrain Classification Using Multi-Wavelength Lidar Data

    DTIC Science & Technology

    2015-09-01

    Figure 9. Pseudo- NDVI of three layers within the vertical structure of the forest. (Top) First return from the LiDAR instrument, including the ground...in NDVI throughout the vertical canopy. ........................................................17 Figure 10. Optech Titan operating wavelengths...and Ranging LMS LiDAR Mapping Suite ML Maximum Likelihood NIR Near Infrared N-D VIS n-Dimensional Visualizer NDVI Normalized Difference

  6. Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale

    USGS Publications Warehouse

    Cruikshank, D.P.; Meyer, A.W.; Brown, R.H.; Clark, R.N.; Jaumann, R.; Stephan, K.; Hibbitts, C.A.; Sandford, S.A.; Mastrapa, R.M.E.; Filacchione, G.; Ore, C.M.D.; Nicholson, P.D.; Buratti, B.J.; McCord, T.B.; Nelson, R.M.; Dalton, J.B.; Baines, K.H.; Matson, D.L.

    2010-01-01

    response profiles with a deep atmospheric CO2 absorption profile, producing distorted detector profile shapes and shifted central positions. In a laboratory blackbody spectrum used for radiance calibration, close examination of the CO2 absorption profile shows a similar deviation from that expected from a model. These modeled effects appear to be sufficient to explain the distortion in the existing wavelength calibration now in use. A modification to the wavelength calibration for 13 adjacent bands is provided. The affected channels span about 0.2 ??m centered on 4.28 ??m. The maximum wavelength change is about 10 nm toward longer wavelength. This adjustment has implications for interpretation of some of the spectral features observed in the affected wavelength interval, such as from CO2, as discussed in this paper.

  7. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices

    NASA Technical Reports Server (NTRS)

    Sanders, Steven (Inventor); Lang, Robert J. (Inventor); Waarts, Robert G. (Inventor)

    1999-01-01

    Laser diode pumped mid-IR wavelength systems include at least one high power, near-IR wavelength, injection and/or sources wherein one or both of such sources may be tunable providing a pump wave output beam to a quasi-phase matched (QPM) nonlinear frequency mixing (NFM) device. The NFM device may be a difference frequency mixing (DFM) device or an optical parametric oscillation (OPO) device. Wavelength tuning of at least one of the sources advantageously provides the ability for optimizing pump or injection wavelengths to match the QPM properties of the NFM device enabling a broad range of mid-IR wavelength selectivity. Also, pump powers are gain enhanced by the addition of a rare earth amplifier or oscillator, or a Raman/Brillouin amplifier or oscillator between the high power source and the NFM device. Further, polarization conversion using Raman or Brillouin wavelength shifting is provided to optimize frequency conversion efficiency in the NFM device.

  8. Multi-wavelength approach towards on-product overlay accuracy and robustness

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kaustuve; Noot, Marc; Chang, Hammer; Liao, Sax; Chang, Ken; Gosali, Benny; Su, Eason; Wang, Cathy; den Boef, Arie; Fouquet, Christophe; Huang, Guo-Tsai; Chen, Kai-Hsiung; Cheng, Kevin; Lin, John

    2018-03-01

    Success of diffraction-based overlay (DBO) technique1,4,5 in the industry is not just for its good precision and low toolinduced shift, but also for the measurement accuracy2 and robustness that DBO can provide. Significant efforts are put in to capitalize on the potential that DBO has to address measurement accuracy and robustness. Introduction of many measurement wavelength choices (continuous wavelength) in DBO is one of the key new capabilities in this area. Along with the continuous choice of wavelengths, the algorithms (fueled by swing-curve physics) on how to use these wavelengths are of high importance for a robust recipe setup that can avoid the impact from process stack variations (symmetric as well as asymmetric). All these are discussed. Moreover, another aspect of boosting measurement accuracy and robustness is discussed that deploys the capability to combine overlay measurement data from multiple wavelength measurements. The goal is to provide a method to make overlay measurements immune from process stack variations and also to report health KPIs for every measurement. By combining measurements from multiple wavelengths, a final overlay measurement is generated. The results show a significant benefit in accuracy and robustness against process stack variation. These results are supported by both measurement data as well as simulation from many product stacks.

  9. High channel count and high precision channel spacing multi-wavelength laser array for future PICs.

    PubMed

    Shi, Yuechun; Li, Simin; Chen, Xiangfei; Li, Lianyan; Li, Jingsi; Zhang, Tingting; Zheng, Jilin; Zhang, Yunshan; Tang, Song; Hou, Lianping; Marsh, John H; Qiu, Bocang

    2014-12-09

    Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard μm-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of ±0.20 nm, corresponding to a tolerance of ±0.032 nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%.

  10. Wavelength dependence of ocular damage thresholds in the near-ir to far-ir transition region: proposed revisions to MPES.

    PubMed

    Zuclich, Joseph A; Lund, David J; Stuck, Bruce E

    2007-01-01

    This report summarizes the results of a series of infrared (IR) laser-induced ocular damage studies conducted over the past decade. The studies examined retinal, lens, and corneal effects of laser exposures in the near-IR to far-IR transition region (wavelengths from 1.3-1.4 mum with exposure durations ranging from Q-switched to continuous wave). The corneal and retinal damage thresholds are tabulated for all pulsewidth regimes, and the wavelength dependence of the IR thresholds is discussed and contrasted to laser safety standard maximum permissible exposure limits. The analysis suggests that the current maximum permissible exposure limits could be beneficially revised to (1) relax the IR limits over wavelength ranges where unusually high safety margins may unintentionally hinder applications of recently developed military and telecommunications laser systems; (2) replace step-function discontinuities in the IR limits by continuously varying analytical functions of wavelength and pulsewidth which more closely follow the trends of the experimental retinal (for point-source laser exposures) and corneal ED50 threshold data; and (3) result in an overall simplification of the permissible exposure limits over the wavelength range from 1.2-2.6 mum. A specific proposal for amending the IR maximum permissible exposure limits over this wavelength range is presented.

  11. A fiber laser pumped dual-wavelength mid-infrared laser based on optical parametric oscillation and intracavity difference frequency generation

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Shang, Yaping; Li, Xiao; Shen, Meili; Xu, Xiaojun

    2017-02-01

    We report a dual-wavelength mid-infrared laser based on intracavity difference frequency generation (DFG) in an MgO-doped periodically poled LiNbO3, which was pumped by a dual-wavelength fiber MOPA consisting of two parts: a dual-wavelength seed and a power amplifier. The maximum pump power was 74.1 W and the wavelengths were 1060 nm and 1090 nm. The wavelengths of the mid-infrared output were 3.1 µm and 3.4 µm under maximum pump power with a total idler power of 6.57 W. The corresponding pump-to-idler slope efficiency reached 12%. The contrast for the peak intensity of the emissions for the two idlers was 0.6. A power preamplifier was added in a further experiment to enhance the contrast. The idler output reached 4.45 W under the maximum pump power of 70 W, which was lower than before. However, the contrast for the idler emission peak intensity was increased to 1.18. The signal wave generated in the experiment only had a single wavelength around 1.6 µm, indicating that two kinds of nonlinear processes occurred in the experiment, namely optical parametric oscillation and intracavity DFG.

  12. Measurement of thin films using very long acoustic wavelengths

    NASA Astrophysics Data System (ADS)

    Clement, G. T.; Nomura, H.; Adachi, H.; Kamakura, T.

    2013-12-01

    A procedure for measuring material thickness by means of necessarily long acoustic wavelengths is examined. The approach utilizes a temporal phase lag caused by the impulse time of wave momentum transferred through a thin layer that is much denser than its surrounding medium. In air, it is predicted that solid or liquid layers below approximately 1/2000 of the acoustic wavelength will exhibit a phase shift with an arctangent functional dependence on thickness and layer density. The effect is verified for thin films on the scale of 10 μm using audible frequency sound (7 kHz). Soap films as thin as 100 nm are then measured using 40 kHz air ultrasound. The method's potential for imaging applications is demonstrated by combining the approach with near-field holography, resulting in reconstructions with sub-wavelength resolution in both the depth and lateral directions. Potential implications at very high and very low acoustic frequencies are discussed.

  13. Shifting Plasma

    NASA Image and Video Library

    2017-05-09

    Strands of plasma at the sun edge shifted and twisted back and forth over a 22-hour period, May 2-3, 2017. In this close-up from NASA Solar Dynamics Observatory, the strands are being manipulated by strong magnetic forces associated with active region. This kind of activity is not at all uncommon, but best viewed in profile. The images were taken in a wavelength of extreme ultraviolet light. To give a sense of scale, the strands hover above the sun more than several times the size of Earth. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21632

  14. Acute effects of different light spectra on simulated night-shift work without circadian alignment.

    PubMed

    Canazei, Markus; Pohl, Wilfried; Bliem, Harald R; Weiss, Elisabeth M

    2017-01-01

    Short-wavelength and short-wavelength-enhanced light have a strong impact on night-time working performance, subjective feelings of alertness and circadian physiology. In the present study, we investigated acute effects of white light sources with varied reduced portions of short wavelengths on cognitive and visual performance, mood and cardiac output.Thirty-one healthy subjects were investigated in a balanced cross-over design under three light spectra in a simulated night-shift paradigm without circadian adaptation.Exposure to the light spectrum with the largest attenuation of short wavelengths reduced heart rate and increased vagal cardiac parameters during the night compared to the other two light spectra without deleterious effects on sustained attention, working memory and subjective alertness. In addition, colour discrimination capability was significantly decreased under this light source.To our knowledge, the present study for the first time demonstrates that polychromatic white light with reduced short wavelengths, fulfilling current lighting standards for indoor illumination, may have a positive impact on cardiac physiology of night-shift workers without detrimental consequences for cognitive performance and alertness.

  15. Hydrological and vegetation shifts in the Wallacean region of central Indonesia since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Wicaksono, Satrio A.; Russell, James M.; Holbourn, Ann; Kuhnt, Wolfgang

    2017-02-01

    Precipitation is the most important variable of Indonesian climate, yet there are substantial uncertainties about past and future hydroclimate dynamics over the region. This study explores vegetation and rainfall and associated changes in atmospheric circulation during the past 26,000 years in Wallacea, a biogeographical area in central Indonesia, wedged between the Sunda and Sahul shelves and known for its exceptionally high rainforest biodiversity. We use terrestrial plant biomarkers from sediment cores retrieved from Mandar Bay, off west Sulawesi, to reconstruct changes in Wallacean vegetation and climate since the Last Glacial Maximum (LGM). Enriched leaf wax carbon isotope (δ13Cwax) values recorded in Mandar Bay during the LGM, together with other regional vegetation records, document grassland expansion, implying a regionally dry, and possibly more seasonal, glacial climate. Depleted leaf wax deuterium isotope (δDwax) values in Mandar Bay during the LGM, and low reconstructed precipitation isotope compositions from nearby sites, reveal an intensified Austral-Asian summer monsoon circulation and a southward shift of the mean position of the Intertropical Convergence Zone, likely due to strong southern hemisphere summer insolation and the presence of large northern hemisphere ice sheets. Mandar Bay δ13Cwax was anti-correlated with δDwax during the LGM and the last deglaciation, but was positively correlated during most of the Holocene, indicating time-varying controls on the isotopic composition of rainfall in this region. The inundation event of the Sunda Shelf and in particular the opening of the Java Sea and Karimata Strait between 9.4 and 11.1 thousand years ago might have provided new moisture sources for regional convection and/or influenced moisture source trajectories, providing the trigger for shifts in atmospheric circulation and the controls on precipitation isotope compositions from the LGM to the Holocene.

  16. Continuous Faraday measurement of spin precession without light shifts

    NASA Astrophysics Data System (ADS)

    Jasperse, M.; Kewming, M. Â. J.; Fischer, S. Â. N.; Pakkiam, P.; Anderson, R. Â. P.; Turner, L. Â. D.

    2017-12-01

    We describe a dispersive Faraday optical probe of atomic spin which performs a weak measurement of spin projection of a quantum gas continuously for more than one second. To date, focusing bright far-off-resonance probes onto quantum gases has proved invasive due to strong scalar and vector light shifts exerting dipole and Stern-Gerlach forces. We show that tuning the probe near the magic-zero wavelength at 790 nm between the fine-structure doublet of 87Rb cancels the scalar light shift, and careful control of polarization eliminates the vector light shift. Faraday rotations due to each fine-structure line reinforce at this wavelength, enhancing the signal-to-noise ratio for a fixed rate of probe-induced decoherence. Using this minimally invasive spin probe, we perform microscale atomic magnetometry at high temporal resolution. Spectrogram analysis of the Larmor precession signal of a single spinor Bose-Einstein condensate measures a time-varying magnetic field strength with 1 μ G accuracy every 5 ms; or, equivalently, makes more than 200 successive measurements each at 10 pT /√{Hz } sensitivity.

  17. Wavelength calibration of imaging spectrometer using atmospheric absorption features

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Chen, Yuheng; Chen, Xinhua; Ji, Yiqun; Shen, Weimin

    2012-11-01

    Imaging spectrometer is a promising remote sensing instrument widely used in many filed, such as hazard forecasting, environmental monitoring and so on. The reliability of the spectral data is the determination to the scientific communities. The wavelength position at the focal plane of the imaging spectrometer will change as the pressure and temperature vary, or the mechanical vibration. It is difficult for the onboard calibration instrument itself to keep the spectrum reference accuracy and it also occupies weight and the volume of the remote sensing platform. Because the spectral images suffer from the atmospheric effects, the carbon oxide, water vapor, oxygen and solar Fraunhofer line, the onboard wavelength calibration can be processed by the spectral images themselves. In this paper, wavelength calibration is based on the modeled and measured atmospheric absorption spectra. The modeled spectra constructed by the atmospheric radiative transfer code. The spectral angle is used to determine the best spectral similarity between the modeled spectra and measured spectra and estimates the wavelength position. The smile shape can be obtained when the matching process across all columns of the data. The present method is successful applied on the Hyperion data. The value of the wavelength shift is obtained by shape matching of oxygen absorption feature and the characteristics are comparable to that of the prelaunch measurements.

  18. All optical wavelength broadcast based on simultaneous Type I QPM broadband SFG and SHG in MgO:PPLN.

    PubMed

    Gong, Mingjun; Chen, Yuping; Lu, Feng; Chen, Xianfeng

    2010-08-15

    We experimentally demonstrate wavelength broadcast based on simultaneous Type I quasi-phase-matched (QPM) broadband sum-frequency generation (SFG) and second-harmonic generation (SHG) in 5 mol.% MgO-doped periodically poled lithium niobate (MgO:PPLN). One signal has been synchronously converted into seven different wavelengths using two pumps at a 1.5 microm band via quadratic cascaded nonlinear wavelength conversion. By selecting different pump regions, i.e., selecting different cascaded chi((2)):chi((2)) interactions, the flexible wavelength conversions with shifting from one signal to single, double, and triple channels were also demonstrated.

  19. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  20. Dual-wavelength mid-infrared CW and Q-switched laser in diode end-pumped Tm,Ho:GdYTaO4 crystal

    NASA Astrophysics Data System (ADS)

    Wang, Beibei; Gao, Congcong; Dou, Renqin; Nie, Hongkun; Sun, Guihua; Liu, Wenpeng; Yu, Haijuan; Wang, Guoju; Zhang, Qingli; Lin, Xuechun; He, Jingliang; Wang, Wenjun; Zhang, Bingyuan

    2018-02-01

    Dual-wavelength continuous-wave and Q-switched lasers are demonstrated in a Tm,Ho:GdYTaO4 crystal under 790 nm laser diode end pumping for the first time to the best of our knowledge. The laser operates with a dual wavelength at 1949.677 nm and 2070 nm for continuous-wave with a spacing of about 120 nm. The maximum output power is 0.332 W with a pump power of 3 W. By using graphene as the saturable absorber, a passively Q-switched operation is performed with a dual-wavelength at 1950.323 nm and 2068.064 nm with a wavelength interval of about 118 nm. The maximum average output power of the Q-switched laser goes up to 200 mW with a minimum pulse duration of 1.2 µs and a maximum repetition rate of 34.72 kHz.

  1. Proteorhodopsin in living color: diversity of spectral properties within living bacterial cells.

    PubMed

    Kelemen, Bradley R; Du, Mai; Jensen, Rasmus B

    2003-12-03

    Proteorhodopsin is a family of over 50 proteins that provide phototrophic capability to marine bacteria by acting as light-powered proton pumps. The potential importance of proteorhodopsin to global ocean ecosystems and the possible applications of proteorhodopsin in optical data storage and optical signal processing have spurred diverse research in this new family of proteins. We show that proteorhodopsin expressed in Escherichia coli is functional and properly inserted in the membrane. At high expression levels, it appears to self-associate. We present a method for determining spectral properties of proteorhodopsin in intact E. coli cells that matches results obtained with detergent-solubilized, purified proteins. Using this method, we observe distinctly different spectra for protonated and deprotonated forms of 21 natural proteorhodopsin proteins in intact E. coli cells. Upon protonation, the wavelength maxima red shifts between 13 and 53 nm. We find that pKa values between 7.1 and 8.5 describe the pH-dependent spectral shift for all of the 21 natural variants of proteorhodopsin. The wavelength maxima of the deprotonated forms of the 21 natural proteorhodopsins cluster in two sequence-related groups: blue proteorhodopsins (B-PR) and green proteorhodopsins (G-PR). The site-directed substitution Leu105Gln in Bac31A8 proteorhodopsin shifts this G-PR's wavelength maximum to a wavelength maximum the same as that of the B-PR Hot75m1 proteorhodopsin. The site-directed substitution Gln107Leu in Hot75m1 proteorhodopsin shifts this B-PR's wavelength maximum to a wavelength maximum as that of Bac31A8 proteorhodopsin.

  2. Measuring of the pitch variation of cholesteric liquid crystals under electric field using wavelength-swept laser

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Jeon, Min Yong

    2017-04-01

    We measure the pitch variation of cholesteric liquid crystals (CLCs) according to the applied electric field using a wavelength-swept laser. While the electric field is applied to the CLC, the pitch of the CLC is elongated normal to the direction of electric field. Therefore, the reflection band is shifted to the longer wavelength. When the applied electric field to the CLC cell was over 1.52 V/μm, the reflection band was changed to the longer wavelength of about 75.1 nm. We believe that the dynamic behavior of the CLC can be analyzed if a high-speed wavelength-swept laser is used as an optical source.

  3. Diode-end-pumped solid-state lasers with dual gain media for multi-wavelength emission

    NASA Astrophysics Data System (ADS)

    Cho, C. Y.; Chang, C. C.; Chen, Y. F.

    2015-01-01

    We develop a theoretical model for designing a compact efficient multi-wavelength laser with dual gain media in a shared resonator. The developed model can be used to analyze the optimal output reflectivity for each wavelength to achieve maximum output power for multi-wavelength emission. We further demonstrate a dual-wavelength laser at 946 nm and 1064 nm with Nd:YAG and Nd:YVO4 crystals to confirm the numerical analysis. Under optimum conditions and at incident pump power of 17 W, output power at 946 nm and 1064 nm was up to 2.51 W and 2.81 W, respectively.

  4. Mandibular kinematic changes after unilateral cross-bite with lateral shift correction.

    PubMed

    Venancio, F; Alarcon, J A; Lenguas, L; Kassem, M; Martin, C

    2014-10-01

    The aim of this randomised prospective study was to evaluate the effects of slow maxillary expansion with expansion plates and Hyrax expanders on the kinematics of the mandible after cross-bite correction. Thirty children (15 boys and 15 girls), aged 7·1-11·8, with unilateral cross-bite and functional shift were divided into two groups: expansion plate (n = 15) and Hyrax expander (n = 15). Thirty children with normal occlusion (14 boys and 16 girls, aged 7·3-11·6) served as control group. The maximum vertical opening, lateral mandibular shift (from maximum vertical opening to maximum intercuspation, from rest position to maximum intercuspation and from maximum vertical opening to rest position) and lateral excursions were recorded before and 4 months after treatment. After treatment, the expansion plate group showed a greater lateral shift from rest position to maximum intercuspation than did the control group. The expansion plate patients also presented greater left/contralateral excursion than did the control group. Comparisons of changes after treatment in the cross-bite groups showed significant decreases in the lateral shift from the maximum vertical opening to maximum intercuspation and from the maximum vertical opening to rest position, a significant increase in the homolateral excursion and a significant decrease in the contralateral excursion in the Hyrax expander group, whereas no significant differences were found in the expansion plate group. In conclusion, the Hyrax expander showed better results than did the expansion plate. The Hyrax expander with acrylic occlusal covering significantly improved the mandibular lateral shift and normalised the range of lateral excursion. © 2014 John Wiley & Sons Ltd.

  5. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.

    PubMed

    Cleary, Ciaran S; Power, Mark J; Schneider, Simon; Webb, Roderick P; Manning, Robert J

    2010-12-06

    We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch.

  6. Noise-figure limit of fiber-optical parametric amplifiers and wavelength converters: experimental investigation

    NASA Astrophysics Data System (ADS)

    Tang, Renyong; Voss, Paul L.; Lasri, Jacob; Devgan, Preetpaul; Kumar, Prem

    2004-10-01

    Recent theoretical work predicts that the quantum-limited noise figure of a chi(3)-based fiber-optical parametric amplifier operating as a phase-insensitive in-line amplifier or as a wavelength converter exceeds the standard 3-dB limit at high gain. The degradation of the noise figure is caused by the excess noise added by the unavoidable Raman gain and loss occurring at the signal and the converted wavelengths. We present detailed experimental evidence in support of this theory through measurements of the gain and noise-figure spectra for phase-insensitive parametric amplification and wavelength conversion in a continuous-wave amplifier made from 4.4 km of dispersion-shifted fiber. The theory is also extended to include the effect of distributed linear loss on the noise figure of such a long-length parametric amplifier and wavelength converter.

  7. Gas sensing using wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Viveiros, D.; Ribeiro, J.; Flores, D.; Ferreira, J.; Frazao, O.; Santos, J. L.; Baptista, J. M.

    2014-08-01

    An experimental setup has been developed for different gas species sensing based on the Wavelength Modulation Spectroscopy (WMS) principle. The target is the measurement of ammonia, carbon dioxide and methane concentrations. The WMS is a rather sensitive technique for detecting atomic/molecular species presenting the advantage that it can be used in the near-infrared region using optical telecommunications technology. In this technique, the laser wavelength and intensity are modulated applying a sine wave signal through the injection current, which allows the shift of the detection bandwidth to higher frequencies where laser intensity noise is reduced. The wavelength modulated laser light is tuned to the absorption line of the target gas and the absorption information can be retrieved by means of synchronous detection using a lock-in amplifier, where the amplitude of the second harmonic of the laser modulation frequency is proportional to the gas concentration. The amplitude of the second harmonic is normalised by the average laser intensity and detector gain through a LabVIEW® application, where the main advantage of normalising is that the effects of laser output power fluctuations and any variations in laser transmission, or optical-electrical detector gain are eliminated. Two types of sensing heads based on free space light propagation with different optical path length were used, permitting redundancy operation and technology validation.

  8. Tunable triple-wavelength mode-locked fiber laser with topological insulator Bi2Se3 solution

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Yao, Yong

    2016-08-01

    We experimentally demonstrated a tunable triple-wavelength mode-locked erbium-doped fiber laser with few-layer topological insulator: Bi2Se3/polyvinyl alcohol solution. By properly adjusting the pump power and the polarization state, the single-, dual-, and triple-wavelength mode-locking operation could be stably initiated with a wavelength-tunable range (˜1 nm) and a variable wavelength spacing (1.7 or 2 nm). Meanwhile, it exhibits the maximum output power of 10 mW and pulse energy of 1.12 nJ at the pump power of 175 mW. The simple, low-cost triple-wavelength mode-locked fiber laser might be applied in various potential fields, such as optical communication, biomedical research, and sensing system.

  9. Measurement of wavelengths and lamb shifts for inner-shell transitions in Fe XVIII-XXIV. [from solar flare X-ray spectra

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Feldman, U.; Safronova, U. I.

    1986-01-01

    The wavelengths of inner-shell 1s-2p transitions in the ions Fe XVIII-XXIV have been measured in solar flare spectra recorded by the Naval Research Laboratory crystal spectrometer (SOLFLEX) on the Air Force P78-1 spacecraft. The measurements are compared with previous measurements and with recently calculated wavelengths. It is found that the measured wavelengths are systematically larger than the wavelengths calculated using the Z-expansion method by up to 0.65 mA. For the more highly charged ions, these differences can be attributed to the QED contributions to the transition energies that are not included in the Z-expansion calculations.

  10. Midline shift and lateral guidance angle in adults with unilateral posterior crossbite.

    PubMed

    Rilo, Benito; da Silva, José Luis; Mora, María Jesús; Cadarso-Suárez, Carmen; Santana, Urbano

    2008-06-01

    Unilateral posterior crossbite is a malocclusion that, if not corrected during infancy, typically causes permanent asymmetry. Our aims in this study were to evaluate various occlusal parameters in a group of adults with uncorrected unilateral posterior crossbite and to compare findings with those obtained in a group of normal subjects. Midline shift at maximum intercuspation, midline shift at maximum aperture, and lateral guidance angle in the frontal plane were assessed in 25 adults (ages, 17-26 years; mean, 19.6 years) with crossbites. Midline shift at maximum intercuspation was zero (ie, centric midline) in 36% of the crossbite subjects; the remaining subjects had a shift toward the crossbite side. Midline shift at maximum aperture had no association with crossbite side. Lateral guidance angle was lower on the crossbite side than on the noncrossbite side. No parameter studied showed significant differences with respect to the normal subjects. Adults with unilateral posterior crossbite have adaptations that compensate for the crossbite and maintain normal function.

  11. Shift and rotation invariant photorefractive crystal-based associative memory

    NASA Astrophysics Data System (ADS)

    Uang, Chii-Maw; Lin, Wei-Feng; Lu, Ming-Huei; Lu, Guowen; Lu, Mingzhe

    1995-08-01

    A shift and rotation invariant photorefractive (PR) crystal based associative memory is addressed. The proposed associative memory has three layers: the feature extraction, inner- product, and output mapping layers. The feature extraction is performed by expanding an input object into a set of circular harmonic expansions (CHE) in the Fourier domain to acquire both the shift and rotation invariant properties. The inner product operation is performed by taking the advantage of Bragg diffraction of the bulky PR-crystal. The output mapping is achieved by using the massive storage capacity of the PR-crystal. In the training process, memories are stored in another PR-crystal by using the wavelength multiplexing technique. During the recall process, the output from the winner-take-all processor decides which wavelength should be used to read out the memory from the PR-crystal.

  12. Comparison of different wavelength pump sources for Tm subnanosecond amplifier

    NASA Astrophysics Data System (ADS)

    Cserteg, Andras; Guillemet, Sébastien; Hernandez, Yves; Giannone, Domenico

    2012-06-01

    We report here a comparison of different pumping wavelengths for short pulse Thulium fibre amplifiers. We compare the results in terms of efficiency and required fibre length. As we operate the laser in the sub-nanosecond regime, the fibre length is a critical parameter regarding non linear effects. With 793 nm clad-pumping, a 4 m long active fibre was necessary, leading to strong spectral deformation through Self Phase Modulation (SPM). Core-pumping scheme was then more in-depth investigated with several wavelengths tested. Good results with Erbium and Raman shifted pumping sources were obtained, with very short fibre length, aiming to reach a few micro-joules per pulse without (or with limited) SPM.

  13. Flexible wavelength de-multiplexer for elastic optical networking.

    PubMed

    Zhou, Rui; Gutierrez Pascual, M Deseada; Anandarajah, Prince M; Shao, Tong; Smyth, Frank; Barry, Liam P

    2016-05-15

    We report an injection locked flexible wavelength de-multiplexer (de-mux) that shows 24-h frequency stability of 1 kHz for optical comb-based elastic optical networking applications. We demonstrate 50 GHz, 87.5 GHz equal spacing and 6.25G-25G-50 GHz, 75G-50G-100 GHz unequal spacing for the de-multiplexer outputs. We also implement an unequally spaced (75G-50G-100 GHz), mixed symbol rate (12.5 GBaud and 40 GBaud) and modulation format (polarization division multiplexed quadrature phase shift keying and on-off keying) wavelength division multiplexed transmission system using the de-multiplexer outputs. The results show 0.6 dB receiver sensitivity penalty, at 7% hard decision forward error correction coding limit, of the 100 km transmitted de-mux outputs when compared to comb source seeding laser back-to-back.

  14. Effects of time-shifted data on flight determined stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Steers, S. T.; Iliff, K. W.

    1975-01-01

    Flight data were shifted in time by various increments to assess the effects of time shifts on estimates of stability and control derivatives produced by a maximum likelihood estimation method. Derivatives could be extracted from flight data with the maximum likelihood estimation method even if there was a considerable time shift in the data. Time shifts degraded the estimates of the derivatives, but the degradation was in a consistent rather than a random pattern. Time shifts in the control variables caused the most degradation, and the lateral-directional rotary derivatives were affected the most by time shifts in any variable.

  15. Wavelength stabilized high pulse power laser diodes for automotive LiDAR

    NASA Astrophysics Data System (ADS)

    Knigge, A.; Klehr, A.; Wenzel, H.; Zeghuzi, A.; Fricke, J.; Maaßdorf, A.; Liero, A.; Tränkle, G.

    2018-03-01

    Diode lasers generating optical pulses with high peak power and lengths in the nanosecond range are key components of systems for free-space communication, metrology, material processing, spectroscopy, and light detection and ranging (LiDAR) as needed for object detection and autonomous driving. Automotive LiDAR systems demand additionally a good beam quality and low wavelength shift with temperature due to the wide operating temperature span. We present here internally wavelength stabilized lasers emitting ns optical pulses from an emission aperture between 30 μm and 100 μm with peak powers of tens of Watts at wavelengths around 905 nm. The vertical structure based on AlGaAs (confinement and cladding layers) and InGaAs (active quantum well) is especially optimized for pulsed operation with respect to the implementation of a surface Bragg grating with a high reflectivity. The fabricated 6 mm long distributed Bragg reflector (DBR) broad area (BA) lasers are electrically driven by an in-house developed high-speed unit generating 3 to 10 ns long nearly rectangular shaped current pulses with amplitudes of up to 250 A. Such lasers emit optical pulses with a peak power of more than 30 W at 95 A pulse current up to a temperature of 85°C with a wavelength shift as low as 65 pm/K and a lateral beam propagation factor less than 10. The influence of the lateral aperture width and the pulse length on the beam quality will be shown. A monolithic integration of 3 DBR BA lasers on a single chip whose emission can be combined into a single beam raises the output power to more than 100 W.

  16. Choice of the laser wavelength for a herpetic keratitis treatment

    NASA Astrophysics Data System (ADS)

    Razhev, Alexander M.; Bagayev, Sergei N.; Chernikh, Valery V.; Kargapoltsev, Evgeny S.; Trunov, Alexander; Zhupikov, Andrey A.

    2002-06-01

    For the first time the effect of the UV laser radiation to human eye cornea with herpetic keratitis was experimentally investigated. In experiments the UV radiation of ArF (193 nm), KrCl (223 nm), KrF (248 nm) excimer lasers were used. Optimal laser radiation parameters for the treatment of the herpetic keratitis were determined. The immuno-biochemical investigations were carried out and the results of clinical trials are presented. The maximum ablation rate was obtained for the 248 nm radiation wavelength. The process of healing was successful but in some cases the haze on the surface of the cornea was observed. When used the 193 nm radiation wavelength the corneal surface was clear without any hazes but the epithelization process was slower than for 248 nm wavelength and in some cases the relapse was occurred. The best results for herpetic keratitis treatment have been achieved by utilizing the 223 nm radiation wavelength of the KrCl excimer laser. The use of the 223 nm radiation wavelength allows treating the herpetic keratitis with low traumatic process of ablation and provides high quality of corneal surface.

  17. Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths.

    PubMed

    Pospori, A; Marques, C A F; Sagias, G; Lamela-Rivera, H; Webb, D J

    2018-01-22

    The Bragg wavelength of a polymer optical fiber Bragg grating can be permanently shifted by utilizing the thermal annealing method. In all the reported fiber annealing cases, the authors were able to tune the Bragg wavelength only to shorter wavelengths, since the polymer fiber shrinks in length during the annealing process. This article demonstrates a novel thermal annealing methodology for permanently tuning polymer optical fiber Bragg gratings to any desirable spectral position, including longer wavelengths. Stretching the polymer optical fiber during the annealing process, the period of Bragg grating, which is directly related with the Bragg wavelength, can become permanently longer. The methodology presented in this article can be used to multiplex polymer optical fiber Bragg gratings at any desirable spectral position utilizing only one phase-mask for their photo-inscription, reducing thus their fabrication cost in an industrial setting.

  18. Influence of multiple light-scattering on TiO2 nanoparticles imbedded into stratum corneum on light transmittance in UV and visible wavelength regions

    NASA Astrophysics Data System (ADS)

    Popov, Alexey P.; Priezzhev, Alexander V.; Lademann, Jürgen; Myllylä, Risto

    2007-05-01

    This paper focuses on the simulation of propagation of radiation in UV and visible wavelength regions within a superficial skin layer (stratum corneum, SC) partially filled with titanium dioxide (TiO II) nanoparticles. Volume concentrations of the particles (0.67% - 2.25%) correspond to the maximal concentrations of the considered particles in the frames of independent scattering. Transmittance of 307-, 400-, and 500-nm light through a 20-μm thick SC is calculated. The effect of the TiO II nanoparticles on the contribution of photons undergone different numbers of scattering acts into transmittance is considered. It is shown that administration of the nanoparticles results in the broadening of the distribution of transmitted photons over undergone scattering acts. It also results in the shift of the maximum location of this distribution to larger number of scattering acts for the wavelengths of 400 and 500 nm being the latter the most pronounced. The increase of undergone scattering acts leads to the elongation of photon trajectories within the medium and results in the increase of the diffuse reflected light and the transmittance decrease.

  19. Comparing Wavelengths

    NASA Image and Video Library

    2015-12-12

    This side-by-side rendering of the Sun at the same time in two different wavelengths of extreme ultraviolet light helps to visualize the differing features visible in each wavelength (Dec. 10-11, 2015). Most prominently, we can see much finer strands of plasma looping above the surface in the 171 Angstrom wavelength (gold) than in the 304 Angstrom wavelength (red), which captures cooler plasma closer to the Sun's surface. SDO observes the Sun in 10 different wavelengths with each one capturing somewhat different features at various temperatures and elevations above the Sun. http://photojournal.jpl.nasa.gov/catalog/PIA20214

  20. Soliton self-frequency shift controlled by a weak seed laser in tellurite photonic crystal fibers.

    PubMed

    Liu, Lai; Meng, Xiangwei; Yin, Feixiang; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2013-08-01

    We report the first demonstration of soliton self-frequency shift (SSFS) controlled by a weak continuous-wave (CW) laser, from a tellurite photonic crystal fiber pumped by a 1560 nm femtosecond fiber laser. The control of SSFS is performed by the cross-gain modulation of the 1560 nm femtosecond laser. By varying the input power of the weak CW laser (1560 nm) from 0 to 1.17 mW, the soliton generated in the tellurite photonic crystal fiber blue shifts from 1935 to 1591 nm. The dependence of the soliton wavelength on the operation wavelength of the weak CW laser is also measured. The results show the CW laser with a wavelength tunable range of 1530-1592 nm can be used to control the SSFS generation.

  1. Reduction of reabsorption effects in scintillators by employing solutes with large Stokes shifts

    DOEpatents

    Harrah, Larry A.; Renschler, Clifford L.

    1986-01-01

    In a radiation or high energy particle responsive system useful as a scintillator, and comprising, a first component which interacts with said radiation or high energy particle to emit photons in a certain first wavelength range; and at least one additional solute component which absorbs the photons in said first wavelength range and thereupon emits photons in another wavelength range higher than said first range; an improvement is provided wherein at least one of said components absorbs substantially no photons in said wavelength range in which it emits photons, due to a large Stokes shift caused by an excited state intramolecular rearrangement.

  2. Reduction of reabsorption effects in scintillators by employing solutes with large Stokes shifts

    DOEpatents

    Harrah, L.A.; Renschler, C.L.

    1984-08-01

    A radiation or high energy particle responsive system useful as a scintillator comprises, a first component which interacts with radiation or high energy particles to emit photons in a certain first wavelength range, and at least one additional solute component which absorbs the photons in said first wavelength range and thereupon emits photons in another wavelength range higher than said first range. An improvement is provided wherein at least one of said components absorbs substantially no photons in the wavelength range in which it emits photons, due to a large Stokes shift caused by an excited state intramolecular rearrangement.

  3. Alignment and absolute wavelength calibration of imaging Bragg spectrometers.

    PubMed

    Bertschinger, G; Marchuk, O; Barnsley, R

    2016-11-01

    In the present and the next generation of fusion devices, imaging Bragg spectrometers are key diagnostics to measure plasma parameters in the hot core, especially ion temperature and plasma rotation. The latter quantities are routinely obtained using the Doppler-width and -shift of the emitted spectral lines, respectively. Line shift measurements require absolute accuracies Δλ/λ of about 10 ppm, where λ-is the observed wavelength. For ITER and the present fusion devices, spectral lines of He-and H-like argon, iron, and krypton as well as Ne-like tungsten are foreseen for the measurements. For these lines, Kα lines can be found, some in higher order, which fit into the narrow energy window of the spectrometers. For arbitrary wavelength settings, Kα lines are also used to measure the miscut of the spherical crystals; afterwards the spectrometers can be set according to the geometrical imaging properties using coordinate measurement machines. For the spectrometers measuring Lyα lines of H-like ions, fluorescence targets can provide in situ localized calibration lines on the spectra. The fluorescence targets are used best in transmission and are excited by the thermal x-ray radiation of the plasma. An analytic theory of fluorescence is worked out.

  4. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control.

    PubMed

    Zheng, Xuezhe; Chang, Eric; Amberg, Philip; Shubin, Ivan; Lexau, Jon; Liu, Frankie; Thacker, Hiren; Djordjevic, Stevan S; Lin, Shiyun; Luo, Ying; Yao, Jin; Lee, Jin-Hyoung; Raj, Kannan; Ho, Ron; Cunningham, John E; Krishnamoorthy, Ashok V

    2014-05-19

    We report the first complete 10G silicon photonic ring modulator with integrated ultra-efficient CMOS driver and closed-loop wavelength control. A selective substrate removal technique was used to improve the ring tuning efficiency. Limited by the thermal tuner driver output power, a maximum open-loop tuning range of about 4.5nm was measured with about 14mW of total tuning power including the heater driver circuit power consumption. Stable wavelength locking was achieved with a low-power mixed-signal closed-loop wavelength controller. An active wavelength tracking range of > 500GHz was demonstrated with controller energy cost of only 20fJ/bit.

  5. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect.

    PubMed

    Liu, Xinfeng; Zhang, Qing; Yip, Jing Ngei; Xiong, Qihua; Sum, Tze Chien

    2013-01-01

    Wavelength tunable semiconductor nanowire (NW) lasers are promising for multifunctional applications ranging from optical communication to spectroscopy analysis. Here, we present a demonstration of utilizing the surface plasmon polariton (SPP) enhanced Burstein-Moss (BM) effect to tune the lasing wavelength of a single semiconductor NW. The photonic lasing mode of the CdS NW (with length ~10 μm and diameter ~220 nm) significantly blue shifts from 504 to 483 nm at room temperature when the NW is in close proximity to the Au film. Systematic steady state power dependent photoluminescence (PL) and time-resolved PL studies validate that the BM effect in the hybrid CdS NW devices is greatly enhanced as a consequence of the strong coupling between the SPP and CdS excitons. With decreasing dielectric layer thickness h from 100 to 5 nm, the enhancement of the BM effect becomes stronger, leading to a larger blue shift of the lasing wavelength. Measurements of enhanced exciton emission intensities and recombination rates in the presence of Au film further support the strong interaction between SPP and excitons, which is consistent with the simulation results.

  6. Wavelength tunability of laser based on Yb-doped YGAG ceramics

    NASA Astrophysics Data System (ADS)

    Šulc, Jan; Jelínková, Helena; Jambunathan, Venkatesan; Miura, Taisuke; Endo, Akira; Lucianetti, Antonio; Mocek, TomáÅ.¡

    2015-02-01

    The wavelength tunability of diode pumped laser based on Yb-doped mixed garnet Y3Ga2Al3O12 (Yb:YGAG) ceramics was investigated. The tested Yb:YGAG sample (10% Yb/Y) was in the form of 2mm thick plane-parallel face-polished plate (without AR coatings). A fiber (core diameter 100 μm, NA= 0.22) coupled laser diode (LIMO, LIMO35-F100-DL980-FG-E) with emission at wavelength 969 nm, was used for longitudinal Yb:YGAG pumping. The laser diode was operating in the pulsed regime (2 ms pulse length, 10 Hz repetition rate). The duty-cycle 2% ensured a low thermal load even under the maximum diode pumping power amplitude 20W (ceramics sample was only air-cooled). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ˜ 97% @ 1.01 - 1.09 μm. Wavelength tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The laser was continuously tunable over ˜ 58nm (from 1022nm to 1080 nm) and the tuning band was mostly limited by the free spectral range of used birefringent filter. The maximum output power amplitude 3W was obtained at wavelength 1046nm for absorbed pump power amplitude 10.6W. The laser slope efficiency was 34%.

  7. Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film.

    PubMed

    Senoo, Y; Nishizawa, N; Sakakibara, Y; Sumimura, K; Itoga, E; Kataura, H; Itoh, K

    2009-10-26

    A high-energy, wavelength-tunable, all-polarization-maintaining Er-doped ultrashort fiber laser was demonstrated using a polyimide film dispersed with single-wall carbon nanotubes. A variable output coupler and wavelength filter were used in the cavity configuration, and high-power operation was demonstrated. The maximum average power was 12.6 mW and pulse energy was 585 pJ for stable single-pulse operation with an output coupling ratio as high as 98.3%. Wide wavelength-tunable operation at 1532-1562 nm was also demonstrated by controlling the wavelength filter. The RF amplitude noise characteristics were examined in terms of their dependence on output coupling ratio and oscillation wavelength.

  8. Long period grating refractive-index sensor: optimal design for single wavelength interrogation.

    PubMed

    Kapoor, Amita; Sharma, Enakshi K

    2009-11-01

    We report the design criteria for the use of long period gratings (LPGs) as refractive-index sensors with output power at a single interrogating wavelength as the measurement parameter. The design gives maximum sensitivity in a given refractive-index range when the interrogating wavelength is fixed. Use of the design criteria is illustrated by the design of refractive-index sensors for specific application to refractive-index variation of a sugar solution with a concentration and detection of mole fraction of xylene in heptane (paraffin).

  9. EFFECT OF LONGITUDE-DEPENDENT CLOUD COVERAGE ON EXOPLANET VISIBLE WAVELENGTH REFLECTED-LIGHT PHASE CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webber, Matthew W.; Lewis, Nikole K.; Cahoy, Kerri

    2015-05-10

    We use a planetary albedo model to investigate variations in visible wavelength phase curves of exoplanets. Thermal and cloud properties for these exoplanets are derived using one-dimensional radiative-convective and cloud simulations. The presence of clouds on these exoplanets significantly alters their planetary albedo spectra. We confirm that non-uniform cloud coverage on the dayside of tidally locked exoplanets will manifest as changes to the magnitude and shift of the phase curve. In this work, we first investigate a test case of our model using a Jupiter-like planet, at temperatures consistent to 2.0 AU insolation from a solar type star, to considermore » the effect of H{sub 2}O clouds. We then extend our application of the model to the exoplanet Kepler-7b and consider the effect of varying cloud species, sedimentation efficiency, particle size, and cloud altitude. We show that, depending on the observational filter, the largest possible shift of the phase curve maximum will be ∼2°–10° for a Jupiter-like planet, and up to ∼30° (∼0.08 in fractional orbital phase) for hot-Jupiter exoplanets at visible wavelengths as a function of dayside cloud distribution with a uniformly averaged thermal profile. The models presented in this work can be adapted for a variety of planetary cases at visible wavelengths to include variations in planet–star separation, gravity, metallicity, and source-observer geometry. Finally, we tailor our model for comparison with, and confirmation of, the recent optical phase-curve observations of Kepler-7b with the Kepler space telescope. The average planetary albedo can vary between 0.1 and 0.6 for the 1300 cloud scenarios that were compared to the observations. Many of these cases cannot produce a high enough albedo to match the observations. We observe that smaller particle size and increasing cloud altitude have a strong effect on increasing albedo. In particular, we show that a set of models where Kepler-7b has roughly

  10. Long Wavelength Ripples in the Nearshore

    NASA Astrophysics Data System (ADS)

    Alcinov, T.; Hay, A. E.

    2008-12-01

    Sediment bedforms are ubiquitous in the nearshore environment, and their characteristics and evolution have a direct effect on the hydrodynamics and the rate of sediment transport. The focus of this study is long wavelength ripples (LWR) observed at two locations in the nearshore at roughly 3m water depth under combined current and wave conditions in Duck, North Carolina. LWR are straight-crested bedforms with wavelengths in the range of 20-200cm, and steepness of about 0.1. They occur in the build up and decay of storms, in a broader range of values of the flow parameters compared to other ripple types. The main goal of the study is to test the maximum gross bedform-normal transport (mGBNT) hypothesis, which states that the orientation of ripples in directionally varying flows is such that the gross sediment transport normal to the ripple crest is maximized. Ripple wavelengths and orientation are measured from rotary fanbeam images and current and wave conditions are obtained from electromagnetic (EM) flowmeters and an offshore pressure gauge array. Preliminary tests in which transport direction is estimated from the combined flow velocity vectors indicate that the mGBNT is not a good predictor of LWR orientation. Results from tests of the mGBNT hypothesis using a sediment transport model will be presented.

  11. Wavelength-conserving grating router for intermediate wavelength density

    DOEpatents

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  12. Utilization of wavelength-shifting fibers coupled to ZnS(Ag) and plastic scintillator for simultaneous detection of alpha/beta particles

    NASA Astrophysics Data System (ADS)

    Ifergan, Y.; Dadon, S.; Israelashvili, I.; Osovizky, A.; Gonen, E.; Yehuda-Zada, Y.; Smadja, D.; Knafo, Y.; Ginzburg, D.; Kadmon, Y.; Cohen, Y.; Mazor, T.

    2015-06-01

    Low level radioactive surface contamination measurements require lightweight, large area and high efficiency detector. In most existing scintillation detectors there is a tradeoff between effective area and scintillation light collection. By using wavelength shifting (WLS) fibers the scintillation light may be collected efficiently also in a large area detector. In this study, WLS fibers were coupled to a beta sensitive plastic scintillator layer and to a alpha sensitive silver-activated zinc sulfide ZnS(Ag) layer for detecting both alpha and beta particles. The WLS fibers collect the scintillation light from the whole detector and transfer it to a single PMT. This first prototype unique configuration enables monitoring radioactive contaminated surfaces by both sides of the detector and provides high gamma rejection. In this paper, the detector structure, as well as the detector's measured linear response, will be described. The measured detection efficiency of 238Pu alpha particles (5.5 MeV) is 63%. The measured detection efficiency for beta particles is 89% for 90Sr-90Y (average energy of 195.8 keV, 934.8 keV), 50% for 36Cl (average energy of 251.3 keV), and 35% for 137Cs (average energy of 156.8 keV).

  13. Shift measurements of the stark-broadened ionized helium lines at 1640 and 1215 angstrom. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Vanzandt, J. R.

    1976-01-01

    Time-resolved measurements were made of the shifts of the ionized helium lines at 1,640 A (n = 3 approaches 2) and 1,215 A (n = 4 approaches 2), and of the Stark profile of the 1,215 A wavelength line. An electromagnetic shock tube was used as a light source. The plasma conditions corresponded to electron temperatures of approximately 3.5 eV and electron densities of 0.8 to 1.8 x 10 to the 17th power/cubic cm. The measured shifts fell between two previous estimates of plasma polarization shifts. The measured Stark width of the 1,215 A wavelength line was up to 30% greater than the theoretical width.

  14. Isolating long-wavelength fluctuation from structural relaxation in two-dimensional glass: cage-relative displacement

    NASA Astrophysics Data System (ADS)

    Shiba, Hayato; Keim, Peter; Kawasaki, Takeshi

    2018-03-01

    It has recently been revealed that long-wavelength fluctuation exists in two-dimensional (2D) glassy systems, having the same origin as that given by the Mermin-Wagner theorem for 2D crystalline solids. In this paper, we discuss how to characterise quantitatively the long-wavelength fluctuation in a molecular dynamics simulation of a lightly supercooled liquid. We employ the cage-relative mean-square displacement (MSD), defined on relative displacement to its cage, to quantitatively separate the long-wavelength fluctuation from the original MSD. For increasing system size the amplitude of acoustic long wavelength fluctuations not only increases but shifts to later times causing a crossover with structural relaxation of caging particles. We further analyse the dynamic correlation length using the cage-relative quantities. It grows as the structural relaxation becomes slower with decreasing temperature, uncovering an overestimation by the four-point correlation function due to the long-wavelength fluctuation. These findings motivate the usage of cage-relative MSD as a starting point for analysis of 2D glassy dynamics.

  15. Effects of thermal loading and hydrostatic pressure on reflecting wavelengths of double-coated fiber Bragg grating with different coating-layer thickness

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Toutian, Golnoush

    2017-10-01

    Fiber Bragg grating (FBG) of different configurations used as sensing devices are vulnerable to environmental factors, such as static pressures and thermal loading, which cause their characteristic Bragg reflecting wavelengths to up/down-shift. In this paper, by considering double-coated FBG with different primary and secondary coating materials, the effects of thermal loading and hydrostatic pressure on FBG with different coating-layer thicknesses are analyzed to find design criteria for controlling the Bragg wavelength shift. The obtained results of the analysis may be employed as criteria to design pressure and temperature sensors when using double-coated FBGs.

  16. Diode-pumped Alexandrite laser with passive SESAM Q-switching and wavelength tunability

    NASA Astrophysics Data System (ADS)

    Parali, Ufuk; Sheng, Xin; Minassian, Ara; Tawy, Goronwy; Sathian, Juna; Thomas, Gabrielle M.; Damzen, Michael J.

    2018-03-01

    We report the first experimental demonstration of a wavelength tunable passively Q-switched red-diode-end pumped Alexandrite laser using a semiconductor saturable absorber mirror (SESAM). We present the results of the study of passive SESAM Q-switching and wavelength-tuning in continuous diode-pumped Alexandrite lasers in both linear cavity and X-cavity configurations. In the linear cavity configuration, pulsed operation up to 27 kHz repetition rate in fundamental TEM00 mode was achieved and maximum average power was 41 mW. The shortest pulse generated was 550 ns (FWHM) and the Q-switched wavelength tuning band spanned was between 740 nm and 755 nm. In the X-cavity configuration, a higher average power up to 73 mW, and obtained with higher pulse energy 6 . 5 μJ at 11.2 kHz repetition rate, in fundamental TEM00 mode with excellent spatial quality M2 < 1 . 1. The Q-switched wavelength tuning band spanned was between 775 nm and 781 nm.

  17. A 100 mW-level single-mode switchable dual-wavelength erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Cheng, Jianqun; Zhang, Liaolin; Sharafudeen, Kaniyarakkal; Qiu, Jianrong

    2013-10-01

    A switchable dual-wavelength CW erbium-doped fiber laser with two cascaded fiber Bragg gratings has been proposed and demonstrated experimentally at room temperature. The laser uses a linear resonant cavity configuration incorporating a Sagnac loop with a polarization controller (PC) and can switch flexibly to output a single wavelength or dual wavelengths based on the polarization hole burning (PHB) effect. The slope efficiency and maximum output power can reach 23% and 96 mW, respectively. The two lasing peaks of the laser, with a narrow linewidth output and an optical signal-to-noise ratio of more than 50 dB, are located in the C and L bands of the optical communication window, respectively. The laser shows good stability with respect to the wavelength and output power.

  18. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kita, Tomohiro, E-mail: tkita@ecei.tohoku.ac.jp; Tang, Rui; Yamada, Hirohito

    2015-03-16

    We present a wavelength-tunable laser diode with a 99-nm-wide wavelength tuning range. It has a compact wavelength-tunable filter with high wavelength selectivity fabricated using silicon photonics technology. The silicon photonic wavelength-tunable filter with wide wavelength tuning range was realized using two ring resonators and an asymmetric Mach-Zehnder interferometer. The wavelength-tunable laser diode fabricated by butt-joining a silicon photonic filter and semiconductor optical amplifier shows stable single-mode operation over a wide wavelength range.

  19. Raman shifting of KrF laser radiation for tropospheric ozone measurements

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Ismail, Syed

    1991-01-01

    The differential absorption lidar (DIAL) measurement of tropospheric ozone requires use of high average power UV lasers operating at two appropriate DIAL wavelengths. Laboratory experiments have demonstrated that a KrF excimer laser can be used to generate several wavelengths with good energy conversion efficiencies by stimulated Raman shifting using hydrogen (H2) and deuterium (D2). Computer simulations for an airborne lidar have shown that these laser emissions can be used for the less than 5 percent random error, high resolution measuremment of ozone across the troposphere using the DIAL technique. In the region of strong ozone absorption, laser wavelengths of 277.0 and 291.7 nm were generated using H2 and D2, respectively. In addition, a laser wavelength at 302.0 nm was generated using two cells in series, with the first containing D2 and the second containing H2. The energy conversion efficiency for each wavelength was between 14 and 27 percent.

  20. Wavelength independent interferometer

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Page, Norman A. (Inventor)

    1991-01-01

    A polychromatic interferometer utilizing a plurality of parabolic reflective surfaces to properly preserve the fidelity of light wavefronts irrespective of their wavelengths as they pass through the instrument is disclosed. A preferred embodiment of the invention utilizes an optical train which comprises three off-axis parabolas arranged in conjunction with a beam-splitter and a reference mirror to form a Twyman-Green interferometer. An illumination subsystem is provided and comprises a pair of lasers at different preselected wavelengths in the visible spectrum. The output light of the two lasers is coaxially combined by means of a plurality of reflectors and a grating beam combiner to form a single light source at the focal point of the first parabolic reflection surface which acts as a beam collimator for the rest of the optical train. By using visible light having two distinct wavelengths, the present invention provides a long equivalent wavelength interferogram which operates at visible light wherein the effective wavelength is equal to the product of the wavelengths of the two laser sources divided by their difference in wavelength. As a result, the invention provides the advantages of what amounts to long wavelength interferometry but without incurring the disadvantage of the negligible reflection coefficient of the human eye to long wavelength frequencies which would otherwise defeat any attempt to form an interferogram at that low frequency using only one light source.

  1. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibrationmore » based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.« less

  2. Development of multi-wavelength Kretschmann setup for the efficient excitation of surface plasmons

    NASA Astrophysics Data System (ADS)

    Priya, Sugandh; Laha, Ranjit; Dantham, Venkata R.

    2018-05-01

    Recently, surface plasmon resonance biosensors have become popular devices for studying biomolecular interactions, chemical detection and immunoassays. However, these biosensors have the lower figure of merit (FOM) when the sample concentration is in the order of nanoMolar or lower. To improve the FOM of these devices, (i) the dependence of full width at half maximum (FWHM) of the resonance on excitation wavelength, thickness and electric permittivity of a metal thin film has been systematically studied and (ii) multi-wavelength Kretschmann setup has been developed and tested with a few metal thin films.

  3. Precision tuning of InAs quantum dot emission wavelength by iterative laser annealing

    NASA Astrophysics Data System (ADS)

    Dubowski, Jan J.; Stanowski, Radoslaw; Dalacu, Dan; Poole, Philip J.

    2018-07-01

    Controlling the emission wavelength of quantum dots (QDs) over large surface area wafers is challenging to achieve directly through epitaxial growth methods. We have investigated an innovative post growth laser-based tuning procedure of the emission of self-assembled InAs QDs grown epitaxially on InP (001). A targeted blue shift of the emission is achieved with a series of iterative steps, with photoluminescence diagnostics employed between the steps to monitor the result of intermixing. We demonstrate tuning of the emission wavelength of ensembles of QDs to within approximately ±1 nm, while potentially better precision should be achievable for tuning the emission of individual QDs.

  4. A theoretical examination of the performances of wavelength multiplexers utilizing planar optical waveguides

    NASA Astrophysics Data System (ADS)

    Gomaa, M. L.; Chartier, G.

    1985-04-01

    The performances of distributed coupling wavelength multiplexer-demultiplexer devices for optical telecommunications applications, i.e., data transfer, are assessed theoretically. The values used for the refraction indices and waveguide dimensions are based on the ionic exchange between the glass layer and a base salt bath. Gradients in the indices are also considered. A shift of indices is assumed to be present between parallel waveguides of different thicknesses separated by a liquid bath. The behavior of the two waveguides is then the variations of the coupling and energy exchanged as functions of the wavelength transmitted. Attention is also given to the case of identical coupled waveguides.

  5. Wavelength dependence of the Brillouin spectral width of boron doped germanosilicate optical fibers.

    PubMed

    Law, Pi-Cheng; Dragic, Peter D

    2010-08-30

    Boron co-doped germanosilicate fibers are investigated via the Brillouin light scattering technique using two wavelengths, 1534 nm and 1064 nm. Several fibers are investigated, including four drawn from the same preform but at different draw temperatures. The Stokes' shifts and the Brillouin spectral widths are found to increase with increasing fiber draw temperature. A frequency-squared law has adequately described the wavelength dependence of the Brillouin spectral width of conventional Ge-doped fibers. However, it is found that unlike conventional Ge-doped fibers these fibers do not follow the frequency-squared law. This is explained through a frequency-dependent dynamic viscosity that modifies this law.

  6. Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination.

    PubMed

    Sirisuk, Phunlap; Ra, Chae-Hun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2018-04-01

    Blue and red light-emitting diodes (LEDs) were used to study the effects of wavelength mixing ratios, photoperiod regimes, and green wavelength stress on Nannochloropsis salina, Isochrysis galbana, and Phaeodactylum tricornutum cell biomass and lipid production. The maximum specific growth rates of I. galbana and P. tricornutum were obtained under a 50:50 mixing ratio of blue and red wavelength LEDs; that of N. salina was obtained under red LED. Maximum cell biomass for N. salina and P. tricornutum was 0.75 and 1.07 g dcw/L, respectively, obtained under a 24:0 h light/dark cycle. However, the maximum I. galbana biomass was 0.89 g dcw/L under an 18:6 h light/dark cycle. The maximum lipid contents for N. salina, I. galbana, and P. tricornutum were 49.4, 63.3 and 62.0% (w/w), respectively, after exposure to green LED. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were obtained 1% in P. tricornutum and 2% in I. galbana. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 laser.

    PubMed

    Feng, T; Yang, K; Zhao, S; Zhao, J; Qiao, W; Li, T; Zheng, L; Xu, J

    2014-09-20

    A broadly wavelength tunable acousto-optically Q-switched Tm:Lu2SiO5 (Tm:LSO) laser is presented for the first time, to our best knowledge. The emission wavelength was tuned in a broad spectral region over 111 nm ranging from 1959 to 2070 nm. A shortest pulse duration of 345 ns with beam quality of M(2)≤1.65 was obtained at pulse repetition frequency (PRF) of 1 kHz, corresponding to a maximum single pulse energy of 0.26 mJ and peak power of 0.75 kW. The experimental results indicated that Tm:LSO crystal has outstanding potential for obtaining broadly wavelength tunable and low-PRF laser pulses at 2 μm.

  8. Bloch-Siegert shift in an interacting Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Zhang, Jinyi; Eigen, Christoph; Lopes, Raphael; Garratt, Sam; Rousso, David; Smith, Robert P.; Hadzibabic, Zoran; Navon, Nir

    2017-04-01

    The Bloch-Siegert shift (BSS) is a paradigmatic frequency shift that arises from the nonlinear response of a two-level system (TLS) subjected to strong driving fields. When a TLS is driven by a linearly polarized field, the co-rotating-wave component leads to the famous Rabi oscillations. By contrast the co-rotating-wave component, whose role is usually neglected in a weak driving, leads to a frequency shift of the TLS resonance frequency. This phenomenon is encountered in various areas, from quantum optics to nuclear magnetic resonance.Here, we investigate the BSS in a box-trapped 87 Rb Bose-Einstein condensate (BEC) driven by a strong oscillating magnetic field gradient. By tuning the chemical potential of the gas, we investigate how the BSS evolves from the ideal shift of the two lowest energy levels of a single particle in a box to the unexplored shift of long-wavelength collective excitations of the interacting BEC.

  9. Intersubband absorption in GaN nanowire heterostructures at mid-infrared wavelengths.

    PubMed

    Ajay, Akhil; Blasco, Rodrigo; Polaczynski, Jakub; Spies, Maria; den Hertog, Martien; Monroy, Eva

    2018-06-27

    In this paper, we study intersubband characteristics of GaN/AlN and GaN/Al0.4Ga0.6N heterostructures in GaN nanowires structurally designed to absorb in the mid-infrared wavelength region. Increasing the GaN well width from 1.5 to 5.7 nm leads to a red shift of the intersubband absorption from 1.4 to 3.4 µm. The red shift in larger quantum wells is amplified by the fact that one of the GaN/AlN heterointerfaces (corresponding to the growth of GaN on AlN) is not sharp but rather a graded alloy extending around 1.5-2 nm. Using AlGaN instead of AlN for the same barrier dimensions, we observe the effects of reduced polarization, which blue shifts the band-to-band transitions and red shifts the intersubband transitions. In heavily doped GaN/AlGaN nanowires, a broad absorption band is observed in the 4.5-6.4 µm spectral region. © 2018 IOP Publishing Ltd.

  10. An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing

    NASA Astrophysics Data System (ADS)

    Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei

    2017-01-01

    In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm  -  1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.

  11. Low-complexity approximations to maximum likelihood MPSK modulation classification

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2004-01-01

    We present a new approximation to the maximum likelihood classifier to discriminate between M-ary and M'-ary phase-shift-keying transmitted on an additive white Gaussian noise (AWGN) channel and received noncoherentl, partially coherently, or coherently.

  12. Optically guided atom interferometer tuned to magic wavelength

    NASA Astrophysics Data System (ADS)

    Akatsuka, Tomoya; Takahashi, Tadahiro; Katori, Hidetoshi

    2017-11-01

    We demonstrate an atom interferometer operating on the 1S0-3P0 clock transition of 87Sr atoms in a “magic” optical guide, where the light shift perturbations of the guiding potential are canceled. As a proof-of-principle demonstration, a Mach-Zehnder interferometer is set horizontally to map the acceleration introduced by the focused optical guide. This magic guide interferometer on the clock transition is applicable to atomic elements where magic wavelengths can be found. Possible applications of the magic guide interferometer, including a hollow-core fiber interferometer and gradiometer, are discussed.

  13. High power multiple wavelength diode laser stack for DPSSL application without temperature control

    NASA Astrophysics Data System (ADS)

    Hou, Dong; Yin, Xia; Wang, Jingwei; Chen, Shi; Zhan, Yun; Li, Xiaoning; Fan, Yingmin; Liu, Xingsheng

    2018-02-01

    High power diode laser stack is widely used in pumping solid-state laser for years. Normally an integrated temperature control module is required for stabilizing the output power of solid-state laser, as the output power of the solid-state laser highly depends on the emission wavelength and the wavelength shift of diode lasers according to the temperature changes. However the temperature control module is inconvenient for this application, due to its large dimension, high electric power consumption and extra adding a complicated controlling system. Furthermore, it takes dozens of seconds to stabilize the output power when the laser system is turned on. In this work, a compact hard soldered high power conduction cooled diode laser stack with multiple wavelengths is developed for stabilizing the output power of solid-state laser in a certain temperature range. The stack consists of 5 laser bars with the pitch of 0.43mm. The peak output power of each bar in the diode laser stack reaches as much as 557W and the combined lasing wavelength spectrum profile spans 15nm. The solidstate laser, structured with multiple wavelength diode laser stacks, allows the ambient temperature change of 65°C without suddenly degrading the optical performance.

  14. Dual-wavelength external cavity laser device for fluorescence suppression in Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xuting; Cai, Zhijian; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been widely used in the detection of drugs, pesticides, explosives, food additives and environmental pollutants, for its characteristics of fast measurement, easy sample preparation, and molecular structure analyzing capability. However, fluorescence disturbance brings a big trouble to these applications, with strong fluorescence background covering up the weak Raman signals. Recently shifted excitation Raman difference spectroscopy (SERDS) not only can completely remove the fluorescence background, but also can be easily integrated into portable Raman spectrometers. Usually, SERDS uses two lasers with small wavelength gap to excite the sample, then acquires two spectra, and subtracts one to the other to get the difference spectrum, where the fluorescence background will be rejected. So, one key aspects of successfully applying SERDS method is to obtain a dual-wavelength laser source. In this paper, a dual-wavelength laser device design based on the principles of external cavity diode laser (ECDL) is proposed, which is low-cost and compact. In addition, it has good mechanical stability because of no moving parts. These features make it an ideal laser source for SERDS technique. The experiment results showed that the device can emit narrow-spectral-width lasers of two wavelengths, with the gap smaller than 2 nanometers. The laser power corresponding to each wavelength can be up to 100mW.

  15. Enhancing Surface Sensing Sensitivity of Metallic Nanostructures using Blue-Shifted Surface Plasmon Mode and Fano Resonance.

    PubMed

    Lee, Kuang-Li; Chang, Chia-Chun; You, Meng-Lin; Pan, Ming-Yang; Wei, Pei-Kuen

    2018-06-27

    Improving surface sensitivities of nanostructure-based plasmonic sensors is an important issue to be addressed. Among the SPR measurements, the wavelength interrogation is commonly utilized. We proposed using blue-shifted surface plasmon mode and Fano resonance, caused by the coupling of a cavity mode (angle-independent) and the surface plasmon mode (angle-dependent) in a long-periodicity silver nanoslit array, to increase surface (wavelength) sensitivities of metallic nanostructures. It results in an improvement by at least a factor of 4 in the spectral shift as compared to sensors operated under normal incidence. The improved surface sensitivity was attributed to a high refractive index sensitivity and the decrease of plasmonic evanescent field caused by two effects, the Fano coupling and the blue-shifted resonance. These concepts can enhance the sensing capability and be applicable to various metallic nanostructures with periodicities.

  16. Phase-Shifting Zernike Interferometer Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Rao, Shanti; Jensen-Clemb, Rebecca M.; Serabyn, Gene

    2011-01-01

    The canonical Zernike phase-contrast technique1,2,3,4 transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/D) of the PSF which is intermediate between the input and output planes. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective. Second, the phase shift in the central core of the PSF is dynamic and or arbitrary size. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument

  17. Phase-Shifting Zernike Interferometer Wavefront Sensor

    NASA Technical Reports Server (NTRS)

    Wallace, J. Kent; Rao, Shanti; Jensen-Clem, Rebecca M.

    2011-01-01

    The canonical Zernike phase-contrast technique transforms a phase object in one plane into an intensity object in the conjugate plane. This is done by applying a static pi/2 phase shift to the central core (approx. lambda/diameter) of the PSF which is intermediate between the input and output plane. Here we present a new architecture for this sensor. First, the optical system is simple and all reflective, and second the phase shift in the central core of the PSF is dynamic and can be made arbitrarily large. This common-path, all-reflective design makes it minimally sensitive to vibration, polarization and wavelength. We review the theory of operation, describe the optical system, summarize numerical simulations and sensitivities and review results from a laboratory demonstration of this novel instrument.

  18. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    NASA Astrophysics Data System (ADS)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  19. Understanding and controlling chromaticity shift in LED devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Lynn; Mills, Karmann; Lamvik, Michael

    Chromaticity shift in light-emitting diode (LED) devices arises from multiple mechanisms, and at least five different chromaticity shift modes (CSMs) have been identified to date. This paper focuses on the impacts of irreversible phosphor degradation as a cause of chromaticity shifts in LED devices. The nitride phosphors used to produce warm white LEDs are especially vulnerable to degradation due to thermal and chemical effects such as reactions with oxygen and water. As a result, LED devices utilizing these phosphors were found to undergo either a green shift or, less commonly, a red shift depending on the phosphor mix in themore » LED devices. These types of chromaticity shifts are classified as CSM-2 (green shift) and CSM-5 (red shift). This paper provides an overview of the kinetic processes responsible for green and red chromaticity shifts along with examples from accelerated stress testing of 6” downlights. Both CSMs appear to proceed through analogous mechanisms that are initiated at the surface of the phosphor. A green shift is produced by the surface oxidation of the nitride phosphor that changes the emission profile to lower wavelengths. As the surface oxidation reaction proceeds, reactant limitations slow the rate and bulk oxidation processes become more prevalent. We found that a red chromaticity shift arises from quenching of the green phosphor, also possibly due to surface reactions of oxygen, which shift the emission chromaticity in the red direction. In conclusion, we discuss the implications of these findings on projecting chromaticity.« less

  20. Theoretical study of the effect of pump wavelength drift on mode instability in a high-power fiber amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Yakun; Tao, Rumao; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Zhou, Pu; Si, Lei

    2018-04-01

    This paper presents an investigation of the effect of pump wavelength drift on the threshold of mode instability (MI) in high-power ytterbium-doped fiber lasers. By using a semi-analytical model, we study the effects of pump wavelength drift with a central pump wavelength around 976 nm and 915 nm, respectively. The influences of the pump absorption coefficient and total pump absorption are considered simultaneously. The results indicate that the effect of pump wavelength drift around 976 nm is stronger than that around 915 nm. For more efficient suppression of MI by shifting the pump wavelength, efficient absorption of pump power is required. The MI thresholds for fibers with different total pump absorptions and cladding diameters are compared. When the total pump absorption is increased, the gain saturation is enhanced, which results in the MI being mitigated more effectively and being more sensitive to pump wavelength drift. The MI threshold in gain fibers with larger inner cladding diameter is higher but more dependent upon pump wavelength. The results of this work can help in optimizing the pump wavelength and fiber parameters and suppressing MI in high-power fiber lasers.

  1. Cavity Attenuated Phase Shift (CAPS) Monitor Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek, Arthur J.

    2016-04-01

    The CAPS PMex monitor is a cavity attenuated phase shift extinction instrument. It operates as an optical extinction spectrometer, using a visible-light-emitting diode (LED) as the light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector. Its efficacy is based on the fact that aerosols are broadband scatterers and absorbers of light.

  2. A Review of Tunable Wavelength Selectivity of Metamaterials in Near-Field and Far-Field Radiative Thermal Transport

    PubMed Central

    Tian, Yanpei; Ricci, Matt; Hyde, Mikhail; Gregory, Otto; Zheng, Yi

    2018-01-01

    Radiative thermal transport of metamaterials has begun to play a significant role in thermal science and has great engineering applications. When the key features of structures become comparable to the thermal wavelength at a particular temperature, a narrowband or wideband of wavelengths can be created or shifted in both the emission and reflection spectrum of nanoscale metamaterials. Due to the near-field effect, the phenomena of radiative wavelength selectivity become significant. These effects show strong promise for applications in thermophotovoltaic energy harvesting, nanoscale biosensing, and increased energy efficiency through radiative cooling in the near future. This review paper summarizes the recent progress and outlook of both near-field and far-field radiative heat transfer, different design structures of metamaterials, applications of unique thermal and optical properties, and focuses especially on exploration of the tunable radiative wavelength selectivity of nano-metamaterials. PMID:29786650

  3. Broadband and high efficiency all-dielectric metasurfaces for wavefront steering with easily obtained phase shift

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Deng, Yan

    2017-12-01

    All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.

  4. Wavelength properties of DCG holograms under the conditions of different temperature and humidity

    NASA Astrophysics Data System (ADS)

    Liu, Yujie; Li, Wenqiang; Ding, Quanxin; Yan, Zhanjun

    2014-12-01

    Holograms recorded in dichromated gelatin (DCG) are usually sealed with a glass plate cemented with an epoxy glue to protect the holograms from moisture in the environment. An investigation of the wavelength properties of sealed DCG holograms had been carried out paying attention to holograms which were exposed to different temperature and humidity environment in this work. The investigation had revealed that (a) exposing the sealed DCG holograms to high relative humidity (RH=98%) environment or immersing them in room-temperature water for 20 hours can not affect the holograms; (b) the sealed DCG holograms can be used at temperature below 50°C without showing undue detrimental effects regarding their optical properties; (c) the peak wavelength of sealed DCG holograms can cause blue shift of several nanometers at 70°C~85°C and the velocity of blue shift is proportional to the environmental temperature; (d) the holograms can be destroyed at 100° or above. The experimental results above will be analyzed and discussed in this paper. A method to improve the stability of sealed DCG holograms is proposed: baking the sealed DCG holograms at proper temperature (e.g., 85°C in this study).

  5. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  6. Dimits shift in realistic gyrokinetic plasma-turbulence simulations.

    PubMed

    Mikkelsen, D R; Dorland, W

    2008-09-26

    In simulations of turbulent plasma transport due to long wavelength (k perpendicular rhoi < or = 1) electrostatic drift-type instabilities, we find a persistent nonlinear up-shift of the effective threshold. Next-generation tokamaks will likely benefit from the higher effective threshold for turbulent transport, and transport models should incorporate suitable corrections to linear thresholds. The gyrokinetic simulations reported here are more realistic than previous reports of a Dimits shift because they include nonadiabatic electron dynamics, strong collisional damping of zonal flows, and finite electron and ion collisionality together with realistic shaped magnetic geometry. Reversing previously reported results based on idealized adiabatic electrons, we find that increasing collisionality reduces the heat flux because collisionality reduces the nonadiabatic electron microinstability drive.

  7. Brain cancer probed by native fluorescence and stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2012-12-01

    Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).

  8. A New Thiosemicarbazone-Based Fluorescence "Turn-on" Sensor for Zn(2+) Recognition with a Large Stokes Shift and its Application in Live Cell Imaging.

    PubMed

    Tang, Lijun; Huang, Zhenlong; Zheng, Zhuxuan; Zhong, Keli; Bian, Yanjiang

    2016-09-01

    Selective fluorescence turn on Zn(2+) sensor with long-wavelength emission and a large Stokes shift is highly desirable in Zn(2+) sensing area. We reported herein the synthesis and Zn(2+) recognition properties of a new thiosemicarbazone-based fluorescent sensor L. L displays high selectivity and sensitivity toward Zn(2+) over other metal ions in DMSO-H2O (1:1, v/v, HEPES 10 mM, pH = 7.4) solution with a long-wavelength emission at 572 nm and a large Stokes shift of 222 nm. Confocal fluorescence microscopy experiments demonstrate that L is cell-permeable and capable of monitoring intracellular Zn(2+). Graphical Abstract We report a new thiosemicarbazone-based fluorescent sensor (L) for selective recognition of Zn(2+) with a long wavelength emission and a large Stokes shift.

  9. Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion.

    PubMed

    Xing, Sida; Grassani, Davide; Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie

    2016-05-02

    We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of -25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW.

  10. Wide range operation of regenerative optical parametric wavelength converter using ASE-degraded 43-Gb/s RZ-DPSK signals.

    PubMed

    Gao, Mingyi; Kurumida, Junya; Namiki, Shu

    2011-11-07

    For sustainable growth of the Internet, wavelength-tunable optical regeneration is the key to scaling up high energy-efficiency dynamic optical path networks while keeping the flexibility of the network. Wavelength-tunable optical parametric regenerator (T-OPR) based on the gain saturation effect of parametric amplification in a highly nonlinear fiber is promising for noise reduction in phase-shift keying signals. In this paper, we experimentally evaluated the T-OPR performance for ASE-degraded 43-Gb/s RZ-DPSK signals over a 20-nm input wavelength range between 1527 nm and 1547 nm. As a result, we achieved improved power penalty performance for the regenerated idler with a proper pump power range.

  11. A diode-pumped Nd:YAlO3 dual-wavelength yellow light source

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Fu, Xihong; Zhai, Pei; Xia, Jing; Li, Shutao

    2013-11-01

    We present what is, to the best of our knowledge, the first diode-pumped Nd:YAlO3 (Nd:YAP) continuous-wave (cw) dual-wavelength yellow laser at 593 nm and 598 nm, based on sum-frequency generation between 1064 and 1339 nm in a-axis polarization using LBO crystal and between 1079 and 1341 nm in c-axis polarization using PPKTP crystal, respectively. At an incident pump power of 17.3 W, the maximum output power obtained at 593 nm and 598 nm is 0.18 W and 1.86 W, respectively. The laser experiment shows that Nd:YAP crystal can be used for an efficient diode-pumped dual-wavelength yellow laser system.

  12. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    DOEpatents

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  13. Switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin

    2018-05-01

    In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.

  14. Multiple-wavelength vertical cavity laser arrays with wide wavelength span and high uniformity

    NASA Astrophysics Data System (ADS)

    Yuen, Wupen; Li, Gabriel S.; Chang-Hasnain, Connie J.

    1996-12-01

    Vertical-cavity surface-emitting lasers (VCSELs) are promising for numerous applications. In particular, due to their inherent single Fabry-Perot mode operation, VCSELs can be very useful for wavelength division multiplexing (WDM) systems allowing high bandwidth and high functionalities.1, 2 Multiple wavelength VCSEL arrays with wide channel spacings (>10 nm) provide an inexpensive solution to increasing the capacity of local area networks without using active wavelength controls.1 The lasing wavelength of a VCSEL is determined by the equivalent laser cavity thickness which can be varied by changing the thickness of either the l-spacer or the distributed Bragg reflector (DBR) layers. To make monolithic multiple-wavelength VCSEL arrays, the lasing wavelength, and therefore the cavity thickness, has to be varied at reasonable physical distances. For all practical applications, it is imperative for the fabrication technology to be controllable, cost-effective, and wafer-scale. Recently, we demonstrated a patterned-substrate molecular beam epitaxy (MBE) growth technique with in-situ laser reflectometry monitoring for fabricating multiple wavelength VCSEL arrays.3, 4 With this method, VCSEL arrays with very large and highly controllable lasing wavelength spans and excellent lasing characteristics have been achieved.

  15. [Analysis of visible extinction spectrum of particle system and selection of optimal wavelength].

    PubMed

    Sun, Xiao-gang; Tang, Hong; Yuan, Gui-bin

    2008-09-01

    In the total light scattering particle sizing technique, the extinction spectrum of particle system contains some information about the particle size and refractive index. The visible extinction spectra of the common monomodal and biomodal R-R particle size distribution were computed, and the variation in the visible extinction spectrum with the particle size and refractive index was analyzed. The corresponding wavelengths were selected as the measurement wavelengths at which the second order differential extinction spectrum was discontinuous. Furthermore, the minimum and the maximum wavelengths in the visible region were also selected as the measurement wavelengths. The genetic algorithm was used as the inversion method under the dependent model The computer simulation and experiments illustrate that it is feasible to make an analysis of the extinction spectrum and use this selection method of the optimal wavelength in the total light scattering particle sizing. The rough contour of the particle size distribution can be determined after the analysis of visible extinction spectrum, so the search range of the particle size parameter is reduced in the optimal algorithm, and then a more accurate inversion result can be obtained using the selection method. The inversion results of monomodal and biomodal distribution are all still satisfactory when 1% stochastic noise is put in the transmission extinction measurement values.

  16. Effects on skylight at South Pole Station, Antarctica, by ice crystal precipitation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Fitch, B. W.; Coulson, K. L.

    1983-01-01

    Measurements of the radiance and polarization of the skylight at South Pole Station, Antarctica, were made for clear cloud-free skies and cloudless skies with ice crystal precipitation. The measurements were made at six narrowband wavelengths from 321 to 872 nm in the principal plane. The data show that scattering by ice crystals increases the radiance in the backscatter plane, decreases it in the solar plane, and shifts the radiance minimum to a point closer to the sun. The crystals decrease the maximum value of linear polarization and shift the position of the maximum away from the sun. The influence of ice crystal scattering is greatest at the longer wavelengths.

  17. Effects on skylight at South Pole Station, Antarctica, by ice crystal precipitation in the atmosphere.

    PubMed

    Fitch, B W; Coulson, K L

    1983-01-01

    Measurements of the radiance and polarization of the skylight at South Pole Station, Antarctica, were made for clear cloud-free skies and cloudless skies with ice crystal precipitation. The measurements were made at six narrowband wavelengths from 321 to 872 nm in the principal plane. The data show that scattering by ice crystals increases the radiance in the backscatter plane, decreases it in the solar plane, and shifts the radiance minimum to a point closer to the sun. The crystals decrease the maximum value of linear polarization and shift the position of the maximum away from the sun. The influence of ice crystal scattering is greatest at the longer wavelengths.

  18. Soliton self-frequency shift and third-harmonic generation in a four-hole As₂S₅ microstructured optical fiber.

    PubMed

    Cheng, Tonglei; Usaki, Ryo; Duan, Zhongchao; Gao, Weiqing; Deng, Dinghuan; Liao, Meisong; Kanou, Yasuhire; Matsumoto, Morio; Misumi, Takashi; Suzuki, Takenobu; Ohishi, Yasutake

    2014-02-24

    Soliton self-frequency shift (SSFS) and third-harmonic generation (THG) are observed in a four-hole As2S5 chalcogenide microstructured optical fiber (MOF). The As2S5 MOF is tapered to offer an ideal environment for SSFS. After tapering, the zero-dispersion wavelength (ZDW) shifts from 2.02 to 1.61 μm, and the rate of SSFS can be enhanced by increasing the energy density of the pulse. By varying the average input power from 220 to 340 mW, SSFS of a soliton central wavelength from 2.206 to 2.600 μm in the mid-infrared is observed in the tapered segment, and THG at 632 nm is observed in the untapered segment.

  19. Dynamic spectral shifts of molecular anions in organic glasses. [Pulse radiolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huddleston, R.K.; Miller, J.R.

    1982-06-24

    Time-dependent spectra of the radical anions of pyromellitic dianhydride and p-dinitrobenzene have been observed after formation by pulse radiolysis in frozen 2-methyltetrahydrofuran and triacetin glasses. At temperatures near the glass transition, the spectra shift toward the blue over the entire observed time range 100 ns to 100 s), while at temperatures well below the glass transition, the spectral shifts can be stopped or greatly slowed. The magnitudes of the shifts are not large (typically approx. = to 10 nm), but because they are larger than the vibrational line widths, dramatic kinetics may be observed: the absorbance grows or decays bymore » more than a factor of five at some wavelengths. The observations are consistent with a solvent molecule reorientation mechanism for spectral shifts of molecular ions in low-temperature organic glasses. 6 figures.« less

  20. Substantial Intramolecular Charge Transfer Induces Long Emission Wavelengths and Mega Stokes Shifts in 6-Aminocoumarins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaogang; Cole, Jacqueline M.; Xu, Zhaochao

    Coumarins are deployed in numerous bioimaging and biosensing applications. Among various coumarin derivatives, 6-aminocoumarins attract increasing attention for their red-shifted emissions, mega Stokes shifts, and significant solvatochromism. These spectral characteristics together with weak emission intensities have historically been ascribed to the formation of the twisted intramolecular charge transfer (TICT) state in 6-aminocoumarins. In this work, we demonstrate that it is actually substantial intramolecular charge transfer (ICT) that is responsible for these fluorescent properties. Based on this new understanding, we reanalyzed the sensing mechanism of a 6-aminocouarmin based fluorescent probe and obtained close agreement with experimental data. Lastly, our results leadmore » to a deeper understanding of the photophysics of 6-aminocoumarins and will inspire the rational development of novel fluorescent probes.« less

  1. Substantial Intramolecular Charge Transfer Induces Long Emission Wavelengths and Mega Stokes Shifts in 6-Aminocoumarins

    DOE PAGES

    Liu, Xiaogang; Cole, Jacqueline M.; Xu, Zhaochao

    2017-06-01

    Coumarins are deployed in numerous bioimaging and biosensing applications. Among various coumarin derivatives, 6-aminocoumarins attract increasing attention for their red-shifted emissions, mega Stokes shifts, and significant solvatochromism. These spectral characteristics together with weak emission intensities have historically been ascribed to the formation of the twisted intramolecular charge transfer (TICT) state in 6-aminocoumarins. In this work, we demonstrate that it is actually substantial intramolecular charge transfer (ICT) that is responsible for these fluorescent properties. Based on this new understanding, we reanalyzed the sensing mechanism of a 6-aminocouarmin based fluorescent probe and obtained close agreement with experimental data. Lastly, our results leadmore » to a deeper understanding of the photophysics of 6-aminocoumarins and will inspire the rational development of novel fluorescent probes.« less

  2. Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser.

    PubMed

    Zhao, Gang; Tan, Wei; Hou, Jiajia; Qiu, Xiaodong; Ma, Weiguang; Li, Zhixin; Dong, Lei; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Axner, Ove; Jia, Suotang

    2016-01-25

    A methodology for calibration-free wavelength modulation spectroscopy (CF-WMS) that is based upon an extensive empirical description of the wavelength-modulation frequency response (WMFR) of DFB laser is presented. An assessment of the WMFR of a DFB laser by the use of an etalon confirms that it consists of two parts: a 1st harmonic component with an amplitude that is linear with the sweep and a nonlinear 2nd harmonic component with a constant amplitude. Simulations show that, among the various factors that affect the line shape of a background-subtracted peak-normalized 2f signal, such as concentration, phase shifts between intensity modulation and frequency modulation, and WMFR, only the last factor has a decisive impact. Based on this and to avoid the impractical use of an etalon, a novel method to pre-determine the parameters of the WMFR by fitting to a background-subtracted peak-normalized 2f signal has been developed. The accuracy of the new scheme to determine the WMFR is demonstrated and compared with that of conventional methods in CF-WMS by detection of trace acetylene. The results show that the new method provides a four times smaller fitting error than the conventional methods and retrieves concentration more accurately.

  3. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  4. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  5. Tuning the pH-shift protein-isolation method for maximum hemoglobin-removal from blood rich fish muscle.

    PubMed

    Abdollahi, Mehdi; Marmon, Sofia; Chaijan, Manat; Undeland, Ingrid

    2016-12-01

    A main challenge preventing optimal use of protein isolated from unconventional raw materials (e.g., small pelagic fish and fish by-products) using the pH-shift method is the difficulty to remove enough heme-pigments. Here, the distribution of hemoglobin (Hb) in the different fractions formed during pH-shift processing was studied using Hb-fortified cod mince. Process modifications, additives and prewashing were then investigated to further facilitate Hb-removal. The alkaline pH-shift process version could remove considerably more Hb (77%) compared to the acidic version (37%) when proteins were precipitated at pH 5.5; most Hb was removed during dewatering. Protein precipitation at pH 6.5 improved total Hb removal up to 91% and 74% during alkaline and acid processing, respectively. Adding phytic acid to the first supernatant of the alkaline process version yielded 93% Hb removal. Combining one prewash with phytic acid at pH 5.5 followed by alkaline/acid pH-shift processing increased Hb removal up to 96/92%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Reliable Wide-Area Wavelength Division Multiplexing Passive Optical Network Accommodating Gigabit Ethernet and 10-Gb Ethernet Services

    NASA Astrophysics Data System (ADS)

    Nakamura, Hirotaka; Suzuki, Hiro; Kani, Jun-Ichi; Iwatsuki, Katsumi

    2006-05-01

    This paper proposes and demonstrates a reliable wide-area wavelength-division-multiplexing passive optical network (WDM-PON) with a wavelength-shifted protection scheme. This protection scheme utilizes the cyclic property of 2 × N athermal arrayed-waveguide grating and two kinds of wavelength allocations, each of which is assigned for working and protection, respectively. Compared with conventional protection schemes, this scheme does not need a 3-dB optical coupler, thus leading to ensure the large loss budget that is suited for wide-area WDM-PONs. It also features a passive access node and does not have a protection function in the optical network unit (ONU). The feasibility of the proposed scheme is experimentally confirmed by the carrier-distributed WDM-PON with gigabit Ethernet interface (GbE-IF) and 10-GbE-IF, in which the ONU does not employ a light source, and all wavelengths for upstream signals are centralized and distributed from the central office.

  7. Wavelength-stepped, actively mode-locked fiber laser based on wavelength-division-multiplexed optical delay lines

    NASA Astrophysics Data System (ADS)

    Lee, Eunjoo; Kim, Byoung Yoon

    2017-12-01

    We propose a new scheme for an actively mode-locked wavelength-swept fiber laser that produces a train of discretely wavelength-stepped pulses from a short fiber cavity. Pulses with different wavelengths are split and combined by standard wavelength division multiplexers with fiber delay lines. As a proof of concept, we demonstrate a laser using an erbium doped fiber amplifier and commercially available wavelength-division multiplexers with wavelength spacing of 0.8 nm. The results show simultaneous mode-locking at three different wavelengths. Laser output parameters in time domain, optical and radio frequency spectral domain, and the noise characteristics are presented. Suggestions for the improved design are discussed.

  8. MBE growth of nitride-arsenides for long wavelength opto-electronics

    NASA Astrophysics Data System (ADS)

    Spruytte, Sylvia Gabrielle

    2001-07-01

    Until recently, the operating wavelength of opto-electronic devices on GaAs has been limited to below 1 mum due to the lack of III-V materials with close lattice match to GaAs that have a bandgap below 1.24 eV. To enable devices operating at 1.3 mum on GaAs, MBE growth of a new III-V material formed by adding small amounts of nitrogen to InGaAs was developed. The growth of group III-nitride-arsenides (GaInNAs) is complicated by the divergent properties of the alloy constituents and the difficulty of generating a reactive nitrogen species. Nitride-arsenide materials are grown by molecular beam epitaxy (MBE) using a radio frequency (rf) nitrogen plasma source. The plasma conditions that maximize the amount of atomic nitrogen versus molecular nitrogen are determined using the emission spectrum of the plasma. To avoid phase segregation, nitride-arsenides must be grown at relatively low temperatures and high arsenic overpressures. It is shown that the group III growth rate controls the nitrogen concentration in the film. Absorption measurements allow the establishment of a range of GaInNAs alloys yielding 1.3 mum emission. The optical properties of GaInNAs and GaNAs quantum wells (QWs) are investigated with photoluminescence (PL) measurements. The peak PL intensity increases and peak wavelength shifts to shorter wavelengths when annealing. The increase in luminescence efficiency results from a decrease in non-radiative recombination centers. As the impurity concentration in the GaInNAs films is low, crystal defects associated with nitrogen incorporation were investigated and improvements in crystal quality after anneal were observed. Nuclear reaction channeling measurements show that as-grown nitride-arsenides contain a considerable amount of interstitial nitrogen and that a substantial fraction of the non-substitutional nitrogen disappears during anneal. Secondary ion mass spectroscopy depth profiling on GaInNAs quantum wells shows that during anneal, the nitrogen

  9. Stresses and Temperature Stability of Dense Wavelength Division Multiplexing Filters Prepared by Reactive Ion-Assisted E-Gun Evaporation

    NASA Astrophysics Data System (ADS)

    Wei, Chao-Tsang; Shieh, Han-Ping D.

    2005-10-01

    In this paper, we report the in situ measurement of the temperature stability of narrow-band-pass filters on different types of substrate, for dense wavelength division multiplexing (DWDM) filters in optical-fiber transmission systems. The DWDM filters were designed as all-dielectric Fabry-Perot filters and fabricated by reactive ion-assisted deposition. Ta2O5 and SiO2 were used as high- and low-refractive-index layers, respectively, for constructing the DWDM filters. The accuracy and stability of the coating process were evaluated for fabricating the DWDM filters for the temperature stability of the center wavelength. The center wavelength shift was determined to be greatly dependent on the coefficient of thermal expansion of the substrate on which the filter is deposited.

  10. Triple-wavelength passively Q-switched ytterbium-doped fibre laser using zinc oxide nanoparticles film as a saturable absorber

    NASA Astrophysics Data System (ADS)

    Mohsin Al-Hayali, Sarah Kadhim; Hadi Al-Janabi, Abdul

    2018-07-01

    We report on the generation of a triple-wavelength passively Q-switched ytterbium-doped fibre laser using a saturable absorber (SA) based on zinc oxide nanoparticles (ZnO NPs) film. The SA was fabricated by embedding ZnO NPs powder into a polyvinyl alcohol as a host polymer. By properly adjusting the pump power and the polarization state, single-, dual- and triple-wavelength Q-switching are stably generated without additional components (such as optical filter, or fibre grating). For the triple wavelength operation, the fibre laser generates a maximum pulse repetition of 87.9 kHz with the shortest pulse duration of 2.7 μs. To the best of authors' knowledge, it's the first demonstration of triple-wavelength passively Q-switching fibre laser using ZnO NPs as a SA. Our results suggest that ZnO is a promising SA for multi-wavelength laser operation.

  11. Wavelength Comparison

    NASA Image and Video Library

    2016-10-27

    The difference in features that are visible in different wavelengths of extreme ultraviolet light can be stunning as we see when we compare very large coronal holes, easily seen in the AIA 171 image (colorized bronze) yet hardly perceptible in the AIA 304 image (colorized red). Both were taken at just about the same time (Oct. 27, 2016). Coronal holes are areas of open magnetic field that carry solar wind out into space. In fact, these holes are currently causing a lot of geomagnetic activity here on Earth. The bronze image wavelength captures material that is much hotter and further up in the corona than the red image. The comparison dramatizes the value of observing the sun in multiple wavelengths of light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA15377

  12. Effect of algae and water on water color shift

    NASA Astrophysics Data System (ADS)

    Yang, Shengguang; Xia, Daying; Yang, Xiaolong; Zhao, Jun

    1991-03-01

    This study showed that the combined effect of absorption of planktonic algae and water on water color shift can be simulated approximately by the exponential function: Log( E {100cm/ W }+ E {100cm/ Xch1})=0.002λ-2.5 where E {100/cm W }, E {100cm/ Xchl} are, respectively, extinction coefficients of seawater and chlorophyll—a (concentration is equal to X mg/m3), and λ (nm) is wavelength. This empirical regression equation is very useful for forecasting the relation between water color and biomass in water not affected by terrigenous material. The main factor affecting water color shift in the ocean should be the absorption of blue light by planktonic algae.

  13. Differential Fe I Line Shifts as Convective Signatures in R = 40000 Échelle Spectra

    NASA Astrophysics Data System (ADS)

    Gullberg, D.

    Stellar surface convection causes spectral lines to become asymmetric and wavelength shifted. At moderate spectral resolution, some convective signatures remain visible, in particular wavelength shifts between different classes of spectral lines. Spectra obtained from the Moon, the Hyades and Ursa Major open-cluster stars, several IAU radial-velocity standards and some other stars were observed during 1997. The observations were made at the Observatoire de Haute-Provence using the echelle spectrograph Elodie (R=40,000). Even if the resolution and noise would prevent measurements of asymmetries in the lines, the shift of the entire line is measurable. In solar-type stars, deep FeI lines have less convective shift than shallow ones. To search for such signatures, synthetic correlation masks with FeI lines were created for only deep and only shallow lines respectively, where the line-depth breakpoint was set at 60% of the continuum. The line wavelengths were taken from the best empirical FeI linelist available. 287 largely unblended lines were selected, divided as 137 deep and 150 shallow ones. The spectra were correlated with the synthetic FeI templates, yielding separate velocities for the deep and shallow line groups. The results show a distinct inversion in the convective signature for F stars, as well as for one G0 supergiant, as compared to the Sun. This is compatible with bisector analyses found elsewhere in the literature. The granulation boundary for main-sequence stars is believed to lie around F0, although we see a convective signature inversion beginning already for late F stars. Future work will include incrementing the number of lines used, using also FeII and other species. Selection of line subsets will be based on atomic parameters, e.g. the lower excitation level and log gf. With a careful selection of lines, even extraction of bisector shapes might become possible from modest-resolution spectra.

  14. Simultaneous three-wavelength continuous wave laser at 946 nm, 1319 nm and 1064 nm in Nd:YAG

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Zhao, Lianshui; Zhai, Pei; Xia, Jing; Fu, Xihong; Li, Shutao

    2013-01-01

    A continuous-wave (cw) diode-end-pumped Nd:YAG laser that generates simultaneous laser at the wavelengths 946 nm, 1319 nm and 1064 nm is demonstrated. The optimum oscillation condition for the simultaneous three-wavelength operation has been derived. Using the separation of the three output couplers, we obtained the maximum output powers of 0.24 W at 946 nm, 1.07 W at 1319 nm and 1.88 W at 1064 nm at the absorbed pump power of 11.2 W. A total output power of 3.19 W for the three-wavelength was achieved at the absorbed pump power of 11.2 W with optical conversion efficiency of 28.5%.

  15. Defect-mediated resonance shift of silicon-on-insulator racetrack resonators.

    PubMed

    Ackert, J J; Doylend, J K; Logan, D F; Jessop, P E; Vafaei, R; Chrostowski, L; Knights, A P

    2011-06-20

    We present a study on the effects of inert ion implantation of Silicon-On-Insulator (SOI) racetrack resonators. Selective ion implantation was used to create deep-level defects within a portion of the resonator. The resonant wavelength and round-trip loss were deduced for a range of sequential post-implantation annealing temperatures from 100 to 300 °C. As the devices were annealed there was a concomitant change in the resonance wavelength, consistent with an increase in refractive index following implantation and recovery toward the pre-implanted value. A total shift in resonance wavelength of ~2.9 nm was achieved, equivalent to a 0.02 increase in refractive index. The excess loss upon implantation increased to 301 dB/cm and was reduced to 35 dB/cm following thermal annealing. In addition to providing valuable data for those incorporating defects within resonant structures, we suggest that these results present a method for permanent tuning (or trimming) of ring resonator characteristics.

  16. Multi-Wavelength Q-Switched Ytterbium-Doped Fiber Laser with Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Al-Masoodi, A. H. H.; Ahmed, M. H. M.; Arof, H.; Harun, S. W.

    2018-03-01

    We demonstrate a passively multi-wavelength Q-switched Ytterbium-doped fiber laser (YDFL) based on a multi-wall carbon nanotubes embedded in polyethylene oxide film as saturable absorber. The YDFL generates a stable multi-wavelength with spacing of 1.9 nm as the 980 nm pump power is fixed within 62. 4 mW and 78.0 mW. The repetition rate of the laser is tunable from 10.41 to 29.04 kHz by increasing the pump power from the threshold power of 62.4 mW to 78 mW. At 78 mW pump power, the maximum pulse energy of 38 nJ and the shortest pulse width of 8.87 µs are obtained.

  17. Monolithically integrated distributed feedback laser array wavelength-selectable light sources for WDM-PON application

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhao, Jianyi; Zhou, Ning; Huang, Xiaodong; Cao, Mingde; Wang, Lei; Liu, Wen

    2015-01-01

    The monolithic integration of 1.5-μm four channels phase shift distributed feedback lasers array (DFB-LD array) with 4×1 multi-mode interference (MMI) optical combiner is demonstrated. A home developed process mainly consists of butt-joint regrowth (BJR) and simultaneous thermal and ultraviolet nanoimprint lithography (STU-NIL) is implemented to fabricate gratings and integrated devices. The threshold currents of the lasers are less than 10 mA and the side mode suppression ratios (SMSR) are better than 40 dB for all channels. Quasi-continuous tuning is realized over 7.5 nm wavelength region with the 30 °C temperature variation. The results indicate that the integration device we proposed can be used in wavelength division multiplexing passive optical networks (WDM-PON).

  18. Self-referenced silicon nitride array microring biosensor for toxin detection using glycans at visible wavelength

    NASA Astrophysics Data System (ADS)

    Ghasemi, Farshid; Eftekhar, Ali A.; Gottfried, David S.; Song, Xuezheng; Cummings, Richard D.; Adibi, Ali

    2013-02-01

    We report on application of on-chip referencing to improve the limit-of-detection (LOD) in compact silicon nitride (SiN) microring arrays. Microring resonators, fabricated by e-beam lithography and fluorine-based etching, are designed for visible wavelengths (656nm) and have a footprint of 20 x 20 μm. GM1 ganglioside is used as the specific ligand for recognition of Cholera Toxin Subunit B (CTB), with Ricinus Communis Agglutinin I (RCA I) as a negative control. Using micro-cantilever based printing less than 10 pL of glycan solution is consumed per microring. Real-time data on analyte binding is extracted from the shifts in resonance wavelengths of the microrings.

  19. Dual-wavelength laser operation in a-cut Nd:MgO:LiNbO3

    NASA Astrophysics Data System (ADS)

    Fan, M. Q.; Li, T.; Zhao, S. Z.; Li, G. Q.; Li, D. C.; Yang, K. J.; Qiao, W. C.; Li, S. X.

    2016-03-01

    Diode-pumped dual-wavelength a-cut Nd:MgO:LiNbO3 lasers near 1085 and 1093 nm were experimentally and theoretically investigated. The simultaneous dual-wavelength emitting was mainly attributed to the Boltzmann distribution of the occupation in the Stark-split energy-levels in manifold 4I11/2. Under an absorbed pump power of 7.45 W, a maximum continuous wave (CW) output power of 1.23 W was obtained, giving a slope efficiency of 21.2%. Using Cr:YAG as saturable absorber, the shortest pulse duration of 28 ns was obtained with a repetition rate of 24 kHz, resulting in a peak power of 729 W.

  20. Contribution of X/Ka VLBI to Multi-Wavelength Celestial Frame Studies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Sotuela, I.

    2011-01-01

    This paper is an update of Sotuela et al. (2011) which improves their simulated Gaia frame tie precision by approximately 10% by adding three additional VLBI observing sessions. Astrometry at X/Ka-band (8.4/32 GHz) using NASAs Deep Space Network has detected 466 quasars with accuracies of 200-300 micro-arc seconds. A program is underway to reduce errors by a factor of 2-3. From our sample, 245 sources have optical magnitudes V less than 20 and should also be detectable by Gaia. A covariance study using existing X/Ka data and simulated Gaia uncertainties for the 345 objects yields a frame tie precision of 10-15 micro-arc seconds (1 - sigma). The characterization of wavelength dependent systematic from extended source morphology and core shift should benefit greatly from adding X/Ka-band measurements to S/X-band (2.3/8.4 GHz) measurements thus helping to constrain astrophysical models of the wavelength dependence of positions.

  1. Wavelength-switchable C-band erbium-doped fibre laser incorporating all-fibre Fabry-Perot interferometer fabricated by chemical etching

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    A switchable and stable triple-wavelength, ring-cavity, erbium-doped fibre laser incorporating an all-fibre Fabry-Perot interferometer (FPI) is designed and experimentally demonstrated. In the proposed fibre laser, the all-fibre FPI is fabricated using the chemical etching method and is used to generate the filter effect. The laser threshold is 88 mW. Switchable single-wavelength lasing at 1529.9, 1545.1 and 1560.2 nm can be realized with a power fluctuation less than 0.64 dB under 20 min of scanning time at room temperature. In addition, the wavelength-switchable dual-wavelength lasers can be tuned by changing the polarization state in the experiment, and the maximum power fluctuations for the 1545.1 and 1560.2 nm lasers are less than 1.19 and 1.57 dB at 26 °C, respectively. Furthermore, a triple-wavelength laser is obtained by adjusting the polarization controller. The results demonstrate that switchable single-, dual-, or triple-wavelength lasers can be generated through the proposed fibre laser.

  2. Two-wavelength LIDAR Thomson scattering for ITER core plasma

    NASA Astrophysics Data System (ADS)

    Nielsen, P.; Gowers, C.; Salzmann, H.

    2017-07-01

    Our proposal for a LIDAR Thomson scattering system to measure Te and ne profiles in the ITER core plasma, is based on experience with the LIDAR system on JET, which is still operational after 30 years. The design uses currently available technology and complies with the measurement requirements given by ITER. In addition, it offers the following advantages over the conventional imaging approach currently being adopted by ITER: 1) No gas fill of the vessel required for absolute calibration. 2) Easier alignment. 3) Measurements over almost the complete plasma diameter. 4) Two mirrors only as front optics. For a given laser wavelength the dynamic range of the Te measurements is mainly limited by the collection optics' transmission roll-off in the blue and the range of spectral sensitivity of the required fast photomultipliers. With the originally proposed Ti:Sapphire laser, measurements of the envisaged maximum temperature of 40 keV are marginally possible. Here we present encouraging simulation results on the use of other laser systems and on the use of two lasers with different wavelength. Alternating two wavelengths was proposed already in 1997 as a method for calibrating the transmission of the collection system. In the present analysis, the two laser pulses are injected simultaneously. We find that the use of Nd:YAG lasers operated at fundamental and second harmonic, respectively, yields excellent results and preserves the spectral recalibration feature.

  3. Effects of morphology and wavelength on the measurement accuracy of soot volume fraction by laser extinction

    NASA Astrophysics Data System (ADS)

    Wang, Ya-fei; Huang, Qun-xing; Wang, Fei; Chi, Yong; Yan, Jian-hua

    2018-01-01

    A novel method to evaluate the quantitative effects of soot morphology and incident wavelength on the measurement accuracy of soot volume fraction, by the laser extinction (LE) technique is proposed in this paper. The results indicate that the traditional LE technique would overestimate soot volume fraction if the effects of morphology and wavelength are not considered. Before the agglomeration of isolated soot primary particles, the overestimation of the LE technique is in the range of 2-20%, and rises with increasing primary particle diameter and with decreasing incident wavelength. When isolated primary particles are agglomerated into fractal soot aggregates, the overestimation would exceed 30%, and rise with increasing primary particle number per soot aggregate, fractal dimension and fractal prefactor and with decreasing incident wavelength to a maximum value of 55%. Finally, based on these results above, the existing formula of the LE technique gets modified, and the modification factor is 0.65-0.77.

  4. Shifting Plasma

    NASA Image and Video Library

    2017-12-08

    Strands of solar material at the sun's edge shifted and twisted back and forth over a 22-hour period in this footage captured May 2-3, 2017, by NASA’s Solar Dynamics Observatory. In this close-up, the strands are being manipulated by strong magnetic forces associated with active regions. To give a sense of scale, the strands that hover above the sun are more than several times the size of Earth. These images were taken in a wavelength of extreme ultraviolet light, which is typically invisible to our eyes, but was colorized here in red. go.nasa.gov/2qJzPD2 Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Interband emission energy in a dilute nitride quaternary semiconductor quantum dot for longer wavelength applications

    NASA Astrophysics Data System (ADS)

    Mageshwari, P. Uma; Peter, A. John; Lee, Chang Woo; Duque, C. A.

    2016-07-01

    Excitonic properties are studied in a strained Ga1-xInxNyAs1-y/GaAs cylindrical quantum dot. The optimum condition for the desired band alignment for emitting wavelength 1.55 μm is investigated using band anticrossing model and the model solid theory. The band gap and the band discontinuities of a Ga1-xInxNyAs1-y/GaAs quantum dot on GaAs are computed with the geometrical confinement effect. The binding energy of the exciton, the oscillator strength and its radiative life time for the optimum condition are found taking into account the spatial confinement effect. The effects of geometrical confinement and the nitrogen incorporation on the interband emission energy are brought out. The result shows that the desired band alignment for emitting wavelength 1.55 μm is achieved for the inclusion of alloy contents, y=0.0554% and x=0.339% in Ga1-xInxNyAs1-y/GaAs quantum dot. And the incorporation of nitrogen and indium shows the red-shift and the geometrical confinement shows the blue-shift. And it can be applied for fibre optical communication networks.

  6. Two-Color Laser Speckle Shift Strain Measurement System

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret L.; Krasowski, Michael J.; Oberle, Lawrence G.; Greer, Lawrence C., III; Spina, Daniel; Barranger, John

    1996-01-01

    A two color laser speckle shift strain measurement system based on the technique of Yamaguchi was designed. The dual wavelength light output from an Argon Ion laser was coupled into two separate single-mode optical fibers (patchcords). The output of the patchcords is incident on the test specimen (here a structural fiber). Strain on the fiber, in one direction, is produced using an Instron 4502. Shifting interference patterns or speckle patterns will be detected at real-time rates using 2 CCD cameras with image processing performed by a hardware correlator. Strain detected in fibers with diameters from 21 microns to 143 microns is expected to be resolved to 15 mu epsilon. This system was designed to be compact and robust and does not require surface preparation of the structural fibers.

  7. High sensitivity long-period grating-based temperature monitoring using a wide wavelength range to 2.2 μm

    NASA Astrophysics Data System (ADS)

    Venugopalan, Thillainathan; Yeo, Teck L.; Sun, Tong; Grattan, Kenneth T. V.

    2006-12-01

    Temperature effects on the various cladding modes of a long-period grating (LPG) fabricated in B-Ge co-doped fibre have been investigated to create a high sensitivity measurement device. The temperature sensitivities of the attenuation bands of the LPG over the wavelength region 1.2-2.2 μm, for a grating with a 330 μm period, were obtained by monitoring the wavelength shift of each attenuation band, with a temperature increment of 20 °C, over the range from 23 °C to 140 °C. The attenuation band appearing over the 1.8-2.0 μm wavelength range has shown a nearly five times higher temperature sensitivity than that of lower order modes, and thus it shows significant promise for fibre optic temperature sensor applications.

  8. Maximum-likelihood block detection of noncoherent continuous phase modulation

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1993-01-01

    This paper examines maximum-likelihood block detection of uncoded full response CPM over an additive white Gaussian noise (AWGN) channel. Both the maximum-likelihood metrics and the bit error probability performances of the associated detection algorithms are considered. The special and popular case of minimum-shift-keying (MSK) corresponding to h = 0.5 and constant amplitude frequency pulse is treated separately. The many new receiver structures that result from this investigation can be compared to the traditional ones that have been used in the past both from the standpoint of simplicity of implementation and optimality of performance.

  9. Modeling the role of mid-wavelength cones in circadian responses to light

    PubMed Central

    Dkhissi-Benyahya, Ouria; Gronfier, Claude; De Vanssay, Wena; Flamant, Frédéric; Cooper, Howard M.

    2007-01-01

    Summary Non-visual responses to light, such as photic entrainment of the circadian clock, involve intrinsically light sensitive melanopsin-expressing ganglion cells as well as rod and cone photoreceptors. However, previous studies have been unable to demonstrate a specific contribution of cones in the photic control of circadian responses to light. Using a mouse model that specifically lacks mid-wavelength (MW) cones we show that these photoreceptors play a significant role in light entrainment and in phase shifting of the circadian oscillator. The contribution of MW cones is mainly observed for light exposures of short duration and towards the longer wavelength region of the spectrum, consistent with the known properties of this opsin. Modelling the contributions of the various photoreceptors stresses the importance of considering the particular spectral, temporal and irradiance response domains of the photopigments when assessing their role and contribution in circadian responses to light. PMID:17329208

  10. Coherent ultra dense wavelength division multiplexing passive optical networks

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Ferreira, Ricardo; Ribeiro, Vitor; Sousa, Artur; Ziaie, Somayeh; Tavares, Ana; Vujicic, Zoran; Guiomar, Fernando P.; Reis, Jacklyn D.; Pinto, Armando N.; Teixeira, António

    2015-12-01

    In this paper, we firstly review the progress in ultra-dense wavelength division multiplexing passive optical network (UDWDM-PON), by making use of the key attributes of this technology in the context of optical access and metro networks. Besides the inherit properties of coherent technology, we explore different modulation formats and pulse shaping. The performance is experimentally demonstrated through a 12 × 10 Gb/s bidirectional UDWDM-PON over hybrid 80 km standard single mode fiber (SSMF) and optical wireless link. High density, 6.25 GHz grid, Nyquist shaped 16-ary quadrature amplitude modulation (16QAM) and digital frequency shifting are some of the properties exploited together in the tests. Also, bidirectional transmission in fiber, relevant in the context, is analyzed in terms of nonlinear and back-reflection effects on receiver sensitivity. In addition, as a basis for the discussion on market readiness, we experimentally demonstrate real-time detection of a Nyquist-shaped quaternary phase-shift keying (QPSK) signal using simple 8-bit digital signal processing (DSP) on a field-programmable gate array (FPGA).

  11. Software for imaging phase-shift interference microscope

    NASA Astrophysics Data System (ADS)

    Malinovski, I.; França, R. S.; Couceiro, I. B.

    2018-03-01

    In recent years absolute interference microscope was created at National Metrology Institute of Brazil (INMETRO). The instrument by principle of operation is imaging phase-shifting interferometer (PSI) equipped with two stabilized lasers of different colour as traceable reference wavelength sources. We report here some progress in development of the software for this instrument. The status of undergoing internal validation and verification of the software is also reported. In contrast with standard PSI method, different methodology of phase evaluation is applied. Therefore, instrument specific procedures for software validation and verification are adapted and discussed.

  12. Coelenterazine-v ligated to Ca2+-triggered coelenterazine-binding protein is a stable and efficient substrate of the red-shifted mutant of Renilla muelleri luciferase.

    PubMed

    Stepanyuk, Galina A; Unch, James; Malikova, Natalia P; Markova, Svetlana V; Lee, John; Vysotski, Eugene S

    2010-10-01

    It has been shown that the coelenterazine analog, coelenterazine-v, is an efficient substrate for a reaction catalyzed by Renilla luciferase. The resulting bioluminescence emission maximum is shifted to a longer wavelength up to 40 nm, which allows the use of some "yellow" Renilla luciferase mutants for in vivo imaging. However, the utility of coelenterazine-v in small-animal imaging has been hampered by its instability in solution and in biological tissues. To overcome this drawback, we ligated coelenterazine-v to Ca(2+)-triggered coelenterazine-binding protein from Renilla muelleri, which apparently functions in the organism for stabilizing and protecting coelenterazine from oxidation. The coelenterazine-v bound within coelenterazine-binding protein has revealed a greater long-term stability at both 4 and 37 °C. In addition, the coelenterazine-binding protein ligated by coelenterazine-v yields twice the total light over free coelenterazine-v as a substrate for the red-shifted R. muelleri luciferase. These findings suggest the possibility for effective application of coelenterazine-v in various in vitro assays.

  13. Accurate determination of black-body radiation shift, magic and tune-out wavelengths for the 6S1/2 \\rightarrow 5D3/2 clock transition in Yb+

    NASA Astrophysics Data System (ADS)

    Roy, A.; De, S.; Arora, Bindiya; Sahoo, B. K.

    2017-10-01

    We present precise values of the dipole polarizabilities (α) of the ground [4{{{f}}}146{{s}}]{}2{{{S}}}1/2 and metastable [4{{{f}}}145{{d}}]{}2{{{D}}}3/2 states of Yb+, that are important in reducing systematics in the clock frequency of the [4{{{f}}}146{{s}}]{}2{{{S}}}1/2\\to [4{{{f}}}145{{d}}]{}2{{{D}}}3/2 transition. The static values of α for the ground and [4{{{f}}}145{{d}}]{}2{{{D}}}3/2 states are estimated to be 9.8(1)× {10}-40 {{{J}}{{m}}}2 {{{V}}}-2 and 17.6(5) × {10}-40 {{J}} {{{m}}}2 {{{V}}}-2, respectively, while the tensor contribution to the [4{{{f}}}145{{d}}]{}2{{{D}}}3/2 state as -12.3(3)× {10}-40 {{{J}}{{m}}}2 {{{V}}}-2 compared to the experimental value -13.6(22)× {10}-40 {{J}} {{{m}}}2 {{{V}}}-2. This corresponds to the differential scalar polarizability value of the above transition as -7.8(5) × {10}-40 {{{J}}{{m}}}2 {{{V}}}-2 in contrast to the available experimental value -6.9(1.4) × {10}-40 J m2 V-2 . This results in the black-body radiation shift of the clock transition as -0.44(3) Hz at the room temperature, which is large as compared to the previously estimated values. Using the dynamic α values, we report the tune-out and magic wavelengths that could be of interest to subdue systematics due to the Stark shifts and for constructing lattice optical clock using Yb+.

  14. Experimental demonstration of wavelength domain rogue-free ONU based on wavelength-pairing for TDM/WDM optical access networks.

    PubMed

    Lee, Jie Hyun; Park, Heuk; Kang, Sae-Kyoung; Lee, Joon Ki; Chung, Hwan Seok

    2015-11-30

    In this study, we propose and experimentally demonstrate a wavelength domain rogue-free ONU based on wavelength-pairing of downstream and upstream signals for time/wavelength division-multiplexed optical access networks. The wavelength-pairing tunable filter is aligned to the upstream wavelength channel by aligning it to one of the downstream wavelength channels. Wavelength-pairing is implemented with a compact and cyclic Si-AWG integrated with a Ge-PD. The pairing filter covered four 100 GHz-spaced wavelength channels. The feasibility of the wavelength domain rogue-free operation is investigated by emulating malfunction of the misaligned laser. The wavelength-pairing tunable filter based on the Si-AWG blocks the upstream signal in the non-assigned wavelength channel before data collision with other ONUs.

  15. 250W continuous-tunable all-fiberized single-frequency polarization-maintained amplifiers with wavelength spanning from 1065 nm to 1090 nm

    NASA Astrophysics Data System (ADS)

    Liu, Yakun; Su, Rongtao; Wang, Xiaolin; Ma, Pengfei; Zhang, Hanwei; Si, Lei

    2017-10-01

    In this manuscript, we demonstrate an all-fiberized, single-frequency and polarization-maintained (PM) amplifiers with wavelength tuned from 1065 nm to 1090 nm. The ASE is suppressed by a signal to noise ratio of higher than 27 dB, and each wavelengths can be amplified to be 250 W output power. The stimulated Brillouin scattering (SBS) effect in such high power amplifiers is suppressed by employing a high dopant fiber (10 dB/m). The polarization extinction ratio (PER) of the amplifier is over 20 dB at the maximum output power. It should be noted that although the experiments are conducted at the wavelength from 1065 nm to 1090 nm with a step of 5 nm, the wavelength can also be continuously tuned.

  16. Time-dependent variation of POF Bragg grating reflectivity and wavelength submerged in different liquids

    NASA Astrophysics Data System (ADS)

    Marques, C. A. F.; Pospori, A.; Webb, D. J.

    2017-09-01

    In this work, we investigate the time-dependent variation of both the reflectivity and resonance wavelength of microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors embedded in silicone rubber and polyurethane resin diaphragms in contact with water and aircraft fuel, respectively. The array sensors were inscribed using two different phase masks with pitches of 557.5 and 580 nm and the thermal annealing of the inscribed fiber was used to change the Bragg wavelengths. Both the reflection and the resonance wavelength shift were monitored over 90 days submerged in liquid and two studies were investigated. In the first study, in addition to the mPOFBGs coated with the diaphragm, also the rest of the fiber is totally protected between the sensors with the same material used for diaphragms. On the other hand, in the second study, the fiber between sensors is unprotected - in direct contact with liquid. PMMA and TOPAS fibers were used and this study suggests that TOPAS fiber should be a good option for long-term liquid monitoring applications.

  17. Influence of fiber bending on wavelength demodulation of fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Hou, Weilin; Han, Ming

    2016-11-14

    In practical applications of fiber optic sensors based on Fabry-Perot interferometers (FPIs), the lead-in optical fiber often experiences dynamic or static bending due to environmental perturbations or limited installation space. Bending introduces wavelength-dependent losses to the sensors, which can cause erroneous readings for sensors based on wavelength demodulation interrogation. Here, we investigate the bending-induced wavelength shift (BIWS) to sensors based on FPIs. Partially explicit expressions of BIWSs for the reflection fringe peaks and valleys have been derived for sensors based on low-finesse FPI. The theoretical model predicts these findings: 1) provided that a fringe peak experiences the same modulation slope by bending losses with a fringe valley, BIWSs for the peak and valley have opposite signs and the BIWS for the valley has a smaller absolute value; 2) BIWS is a linear function of the length of the bending section; 3) a FPI with higher visibility and longer optical path length is more resistant to the influence of bending. Experiments have been carried out and the results agree well with the theoretical predictions.

  18. Shifting wavelengths of ultraweak photon emissions from dying melanoma cells: their chemical enhancement and blocking are predicted by Cosic's theory of resonant recognition model for macromolecules.

    PubMed

    Dotta, Blake T; Murugan, Nirosha J; Karbowski, Lukasz M; Lafrenie, Robert M; Persinger, Michael A

    2014-02-01

    During the first 24 h after removal from incubation, melanoma cells in culture displayed reliable increases in emissions of photons of specific wavelengths during discrete portions of this interval. Applications of specific filters revealed marked and protracted increases in infrared (950 nm) photons about 7 h after removal followed 3 h later by marked and protracted increases in near ultraviolet (370 nm) photon emissions. Specific wavelengths within the visible (400 to 800 nm) peaked 12 to 24 h later. Specific activators or inhibitors for specific wavelengths based upon Cosic's resonant recognition model elicited either enhancement or diminishment of photons at the specific wavelength as predicted. Inhibitors or activators predicted for other wavelengths, even within 10 nm, were less or not effective. There is now evidence for quantitative coupling between the wavelength of photon emissions and intrinsic cellular chemistry. The results are consistent with initial activation of signaling molecules associated with infrared followed about 3 h later by growth and protein-structural factors associated with ultraviolet. The greater-than-expected photon counts compared with raw measures through the various filters, which also function as reflective material to other photons, suggest that photons of different wavelengths might be self-stimulatory and could play a significant role in cell-to-cell communication.

  19. Miniaturized optical wavelength sensors

    NASA Astrophysics Data System (ADS)

    Kung, Helen Ling-Ning

    Recently semiconductor processing technology has been applied to the miniaturization of optical wavelength sensors. Compact sensors enable new applications such as integrated diode-laser wavelength monitors and frequency lockers, portable chemical and biological detection, and portable and adaptive hyperspectral imaging arrays. Small sensing systems have trade-offs between resolution, operating range, throughput, multiplexing and complexity. We have developed a new wavelength sensing architecture that balances these parameters for applications involving hyperspectral imaging spectrometer arrays. In this thesis we discuss and demonstrate two new wavelength-sensing architectures whose single-pixel designs can easily be extended into spectrometer arrays. The first class of devices is based on sampling a standing wave. These devices are based on measuring the wavelength-dependent period of optical standing waves formed by the interference of forward and reflected waves at a mirror. We fabricated two different devices based on this principle. The first device is a wavelength monitor, which measures the wavelength and power of a monochromatic source. The second device is a spectrometer that can also act as a selective spectral coherence sensor. The spectrometer contains a large displacement piston-motion MEMS mirror and a thin GaAs photodiode flip-chip bonded to a quartz substrate. The performance of this spectrometer is similar to that of a Michelson in resolution, operating range, throughput and multiplexing but with the added advantages of fewer components and one-dimensional architecture. The second class of devices is based on the Talbot self-imaging effect. The Talbot effect occurs when a periodic object is illuminated with a spatially coherent wave. Periodically spaced self-images are formed behind the object. The spacing of the self-images is proportional to wavelength of the incident light. We discuss and demonstrate how this effect can be used for spectroscopy

  20. Human phase response curve to a single 6.5 h pulse of short-wavelength light

    PubMed Central

    Rüger, Melanie; St Hilaire, Melissa A; Brainard, George C; Khalsa, Sat-Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W

    2013-01-01

    The photic resetting response of the human circadian pacemaker depends on the timing of exposure, and the direction and magnitude of the resulting shift is described by a phase response curve (PRC). Previous PRCs in humans have utilized high-intensity polychromatic white light. Given that the circadian photoreception system is maximally sensitive to short-wavelength visible light, the aim of the current study was to construct a PRC to blue (480 nm) light and compare it to a 10,000 lux white light PRC constructed previously using a similar protocol. Eighteen young healthy participants (18–30 years) were studied for 9–10 days in a time-free environment. The protocol included three baseline days followed by a constant routine (CR) to assess initial circadian phase. Following this CR, participants were exposed to a 6.5 h 480 nm light exposure (11.8 μW cm−2, 11.2 lux) following mydriasis via a modified Ganzfeld dome. A second CR was conducted following the light exposure to re-assess circadian phase. Phase shifts were calculated from the difference in dim light melatonin onset (DLMO) between CRs. Exposure to 6.5 h of 480 nm light resets the circadian pacemaker according to a conventional type 1 PRC with fitted maximum delays and advances of −2.6 h and 1.3 h, respectively. The 480 nm PRC induced ∼75% of the response of the 10,000 lux white light PRC. These results may contribute to a re-evaluation of dosing guidelines for clinical light therapy and the use of light as a fatigue countermeasure. PMID:23090946

  1. Shifted excitation Raman difference spectroscopy for authentication of cheese and cheese analogues

    NASA Astrophysics Data System (ADS)

    Sowoidnich, Kay; Kronfeldt, Heinz-Detlef

    2016-04-01

    Food authentication and the detection of adulterated products are recent major issues in the food industry as these topics are of global importance for quality control and food safety. To effectively address this challenge requires fast, reliable and non-destructive analytical techniques. Shifted Excitation Raman Difference Spectroscopy (SERDS) is well suited for identification purposes as it combines the chemically specific information obtained by Raman spectroscopy with the ability for efficient fluorescence rejection. The two slightly shifted excitation wavelengths necessary for SERDS are realized by specially designed microsystem diode lasers. At 671 nm the laser (optical power: 50 mW, spectral shift: 0.7 nm) is based on an external cavity configuration whereas an emission at 783 nm (optical power: 110 mW, spectral shift: 0.5 nm) is achieved by a distributed feedback laser. To investigate the feasibility of SERDS for rapid and nondestructive authentication purposes four types of cheese and three different cheese analogues were selected. Each sample was probed at 8 different positions using integration times of 3-10 seconds and 10 spectra were recorded at each spot. Principal components analysis was applied to the SERDS spectra revealing variations in fat and protein signals as primary distinction criterion between cheese and cheese analogues for both excitation wavelengths. Furthermore, to some extent, minor compositional differences could be identified to discriminate between individual species of cheese and cheese analogues. These findings highlight the potential of SERDS for rapid food authentication potentially paving the way for future applications of portable SERDS systems for non-invasive in situ analysis.

  2. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser

    PubMed Central

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-01-01

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900–2000 nm. PMID:27416893

  3. High-power ultralong-wavelength Tm-doped silica fiber laser cladding-pumped with a random distributed feedback fiber laser.

    PubMed

    Jin, Xiaoxi; Du, Xueyuan; Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Wang, Xiaolin; Liu, Zejin

    2016-07-15

    We demonstrated a high-power ultralong-wavelength Tm-doped silica fiber laser operating at 2153 nm with the output power exceeding 18 W and the slope efficiency of 25.5%. A random distributed feedback fiber laser with the center wavelength of 1173 nm was employed as pump source of Tm-doped fiber laser for the first time. No amplified spontaneous emissions or parasitic oscillations were observed when the maximum output power reached, which indicates that employing 1173 nm random distributed feedback fiber laser as pump laser is a feasible and promising scheme to achieve high-power emission of long-wavelength Tm-doped fiber laser. The output power of this Tm-doped fiber laser could be further improved by optimizing the length of active fiber, reflectivity of FBGs, increasing optical efficiency of pump laser and using better temperature management. We also compared the operation of 2153 nm Tm-doped fiber lasers pumped with 793 nm laser diodes, and the maximum output powers were limited to ~2 W by strong amplified spontaneous emission and parasitic oscillation in the range of 1900-2000 nm.

  4. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Zulkifli, M Z; Hassan, N A

    2013-10-31

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum withmore » a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)« less

  5. Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators

    NASA Astrophysics Data System (ADS)

    Asgari, Somayyeh; Ghattan Kashani, Zahra; Granpayeh, Nosrat

    2018-04-01

    The performances of three optical devices including a refractive index sensor, a power splitter, and a 4-channel multi/demultiplexer based on graphene cylindrical resonators are proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. The proposed sensor operates on the principle of the shift in resonance wavelength with a change in the refractive index of dielectric materials. The sensor sensitivity has been numerically derived. In addition, the performances of the power splitter and the multi/demultiplexer based on the variation of the resonance wavelengths of cylindrical resonator have been thoroughly investigated. The simulation results are in good agreement with the theoretical ones. Our studies demonstrate that the graphene based ultra-compact, nano-scale devices can be improved to be used as photonic integrated devices, optical switching, and logic gates.

  6. Method and apparatus for generating high power laser pulses in the two to six micron wavelength range

    DOEpatents

    MacPherson, David C.; Nelson, Loren D.; O'Brien, Martin J.

    1996-01-01

    Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength.

  7. Method and apparatus for generating high power laser pulses in the two to six micron wavelength range

    DOEpatents

    MacPherson, D.C.; Nelson, L.D.; O`Brien, M.J.

    1996-12-10

    Apparatus performs a method of generating one or more output laser pulses in a range of 2 to 6 microns. When a plurality of the output laser pulses are generated, a first output pulse has any selected wavelength within the range and a second output pulse is temporally closely spaced relative to the first output pulse and has a chosen wavelength differing from the selected wavelength. An oscillator laser cavity is provided with a tunable oscillator rod capable of generating initial laser pulses within a range of from 750 to 1000 nm, and a tuning element is coupled to the rod. A flashlamp is operable to pump the rod. For two pulse operation, the flashlamp has a given duration. A Q-switch provides the initial laser pulses upon operation of the tuning element and the flashlamp. A Raman device coupled to the rod shifts the wavelength of such initial laser pulse into the range of from 2 to 6 microns to form the output laser pulse having a wavelength within the range. For multiple pulses, a controller causes the Q-switch to provide first and second ones of the initial laser pulses, spaced by a time interval less than the given duration. Also, a selector coupled to the tuning element is operable within such duration to successively select the wavelength of the first output pulse and the chosen wavelength of the second initial pulse. The Raman device is responsive to each of the initial light pulses to generate radiation at first and second Stokes wavelengths, each of said the output laser pulses being radiation at the second Stokes wavelength. 30 figs.

  8. Excitation wavelength selection for quantitative analysis of carotenoids in tomatoes using Raman spectroscopy.

    PubMed

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-08-30

    The difference in Raman spectra for different excitation wavelengths (532 nm, 785 nm, and 1064 nm) was investigated to identify an appropriate wavelength for the quantitative analysis of carotenoids in tomatoes. For the 532 nm-excited Raman spectra, the intensity of the peak assigned to the carotenoid has no correlation with carotenoid concentration, and the peak shift reflects carotenoid composition changing from lycopene to β-carotene and lutein. Thus, 532 nm-excited Raman spectra are useful for the qualitative analysis of carotenoids. For the 785 nm- and 1064 nm-excited Raman spectra, the peak intensity of the carotenoid showed good correlation with carotenoid concentration; thus, regression models for carotenoid concentration were developed using these Raman spectra and partial least squares regression. A regression model designed using the 785 nm-excited Raman spectra showed a better result than the 532 nm- and 1064 nm-excited Raman spectra. Therefore, it can be concluded that 785 nm is the most suitable excitation wavelength for the quantitative analysis of carotenoid concentration in tomatoes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. 160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide.

    PubMed

    Lu, Guo-Wei; Shinada, Satoshi; Furukawa, Hideaki; Wada, Naoya; Miyazaki, Tetsuya; Ito, Hiromasa

    2010-03-15

    We experimentally demonstrated ultra-fast phase-transparent wavelength conversion using cascaded sum- and difference-frequency generation (cSFG-DFG) in linear-chirped periodically poled lithium niobate (PPLN). Error-free wavelength conversion of a 160-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) signal was successfully achieved. Thanks to the enhanced conversion bandwidth in the PPLN with linear-chirped periods, no optical equalizer was required to compensate the spectrum distortion after conversion, unlike a previous demonstration of 160-Gb/s RZ on-off keying (OOK) using fixed-period PPLN.

  10. Is the Lamb shift chemically significant?

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Bauschlicher, Charles W., Jr.; Schwenke, David W.; Pyykko, Pekka; Arnold, James (Technical Monitor)

    2001-01-01

    The contribution of the Lamb shift to the atomization energies of some prototype molecules, BF3, AlF3, and GaF3, is estimated by a perturbation procedure. It is found to be in the range of 3-5% of the one-electron scalar relativistic contribution to the atomization energy. The maximum absolute value is 0.2 kcal/mol for GaF3. These sample calculations indicate that the Lamb shift is probably small enough to be neglected for energetics of molecules containing light atoms if the target accuracy is 1 kcal/mol, but for higher accuracy calculations and for molecules containing heavy elements it must be considered.

  11. Reversal of orbital angular momentum arising from an extreme Doppler shift

    PubMed Central

    Toninelli, Ermes; Horsley, Simon A. R.; Hendry, Euan; Phillips, David B.; Padgett, Miles J.

    2018-01-01

    The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes “negative.” In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at ≈100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the “negative frequency” regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. PMID:29581257

  12. Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok

    2011-07-01

    The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.

  13. High power, widely tunable dual-wavelength 2 μm laser based on intracavity KTP optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Yan, Dexian; Wang, Yuye; Xu, Degang; Shi, Wei; Zhong, Kai; Liu, Pengxiang; Yan, Chao; Mei, Jialin; Shi, Jia; Yao, Jianquan

    2017-01-01

    We presented a high power, widely tunable narrowband 2 μm dual-wavelength source employing intracavity optical parametric oscillator with potassium titanium oxide phosphate (KTP) crystal. Two identical KTP crystals were oriented oppositely in the OPO cavity to compensate the walk-off effect. The output average power of dual-wavelength 2 μm laser was up to 18.18 W at 10 kHz with the peak power of 165 kW. The two wavelengths can be tuned in the range of 2070.7 nm to 2191.1 nm for ordinary light while in the range of 2190.7 nm to 2065.9 nm for extraordinary light with the full width at half maximum (FWHM) about 0.8 nm. The pulse width of the tunable laser was as narrow as 11 ns. The beam quality factor M 2 was less than 4 during wavelength tuning.

  14. Noninvasive diagnosis of oral cancer by Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Ebenezar, Jeyasingh; Ganesan, Singaravelu; Aruna, Prakasrao; Muralinaidu, Radhakrishnan

    2014-03-01

    The objective of this study is to evaluate the diagnostic potential of stokes shift (SS) spectroscopy (S3) for normal, precancer and cancerous oral lesions in vivo. The SS spectra were recorded in the 250 - 650 nm spectral range by simultaneously scanning both the excitation and emission wavelengths while keeping a fixed wavelength interval Δλ=20 nm between them. Characteristic, highly resolved peaks and significant spectral differences between normal and different pathological oral lesions observed around 300, 355, 395, and 420 nm which are attributed to tryptophan, collagen, and NADH respectively. Using S3 technique one can obtain the key fluorophores in a single scan and hence they can be targeted as a tumor markers in this study. In order to quantify the altered spectral differences between normal and different pathological oral lesions are verified by different ratio parameters.

  15. Characterization of photoluminescence spectra from poly allyl diglycol carbonate (CR-39) upon excitation with the ultraviolet radiation of various wavelengths

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Al-Thomali, Talal A.

    2013-04-01

    The induced photoluminescence (PL) from the π-conjugated polymer poly allyl diglycol carbonate (PADC) (CR-39) upon excitation with the ultraviolet radiation of different wavelengths was investigated. The absorption and attenuation coefficients of PADC (CR-39) were recorded using a UV-visible spectrometer. It was found that the absorption and attenuation coefficients of the PADC (CR-39) exhibit a strong dependence on the wavelength of ultraviolet radiation. The PL spectra were measured with a Flormax-4 spectrofluorometer (Horiba). PADC (CR-39) samples were excited by ultraviolet radiation with wavelengths in the range from 260 to 420 nm and the corresponding PL emission bands were recorded. The obtained results show a strong correlation between the PL and the excitation wavelength of ultraviolet radiation. The position of the fluorescence emission band peak was red shifted starting from 300 nm, which was increased with the increase in the excitation wavelength. The PL yield and its band peak height were increased with the increase in the excitation wavelength till 290 nm, thereafter they decreased exponentially with the increase in the ultraviolet radiation wavelength. These new findings should be considered carefully during the use of the PADC (CR-39) in the scientific applications and in using PADC (CR-39) in eyeglasses.

  16. The 1989 Solar Maximum Mission event list

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Licata, J. P.; Tolbert, A. K.

    1992-01-01

    This document contains information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1989 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Flat Crystal Spectrometer, (4) Bent Crystal Spectrometer, (5) Ultraviolet Spectrometer Polarimeter, and (6) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Satellite (GOES) X-ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.

  17. The 1988 Solar Maximum Mission event list

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Licata, J. P.; Tolbert, A. K.

    1992-01-01

    Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1988 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x ray burst spectrometer; (3) flat crystal spectrometers; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronagraph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts, or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observation. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.

  18. Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, S. V.; Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Antonov, A. V.

    2014-02-17

    Photoluminescence (PL) and photoconductivity (PC) studies of Hg{sub 1−x}Cd{sub x}Te (0.19 ≤ x ≤ 0.23) epitaxial films are presented. Interband PL is observed at wavelengths from 26 to 6 μm and in the temperature range 18 K–200 K. The PL line full width at half maximum is about 6 meV (4kT) at 18 K and approaches its theoretical limit of 1.8kT at higher temperatures. Carrier recombination process is also investigated by time resolved studies of PL and PC at pulsed excitation. Radiative transitions are shown to be the dominating mechanism of carrier recombination at high excitation levels.

  19. Multifunctional switching unit for add/drop, wavelength conversion, format conversion, and WDM multicast based on bidirectional LCoS and SOA-loop architecture.

    PubMed

    Wang, Danshi; Zhang, Min; Qin, Jun; Lu, Guo-Wei; Wang, Hongxiang; Huang, Shanguo

    2014-09-08

    We propose a multifunctional optical switching unit based on the bidirectional liquid crystal on silicon (LCoS) and semiconductor optical amplifier (SOA) architecture. Add/drop, wavelength conversion, format conversion, and WDM multicast are experimentally demonstrated. Due to the bidirectional characteristic, the LCoS device cannot only multiplex the input signals, but also de-multiplex the converted signals. Dual-channel wavelength conversion and format conversion from 2 × 25Gbps differential quadrature phase-shift-keying (DQPSK) to 2 × 12.5Gbps differential phase-shift-keying (DPSK) based on four-wave mixing (FWM) in SOA is obtained with only one pump. One-to-six WDM multicast of 25Gbps DQPSK signals with two pumps is also achieved. All of the multicast channels are with a power penalty less than 1.1 dB at FEC threshold of 3.8 × 10⁻³.

  20. Coherent control of the Goos-Hänchen shift via Fano interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shaopeng; Yang, Wen-Xing, E-mail: wenxingyang@seu.edu.cn; Zhu, Zhonghu

    2016-04-14

    A scheme of enhanced Goos-Hänchen (GH) shifts in reflected and transmitted light beams is exploited in a cavity, where an asymmetric double AlGaAs/GaAs quantum well structure with resonant tunneling to a common continuum is employed as the intracavity medium. With the help of Fano-type interference induced by resonant tunneling, the generated GH shifts that contain a negative lateral shift in reflected light beam and a positive lateral shift in transmitted light beam are found to be significantly enhanced. More interestingly, these GH shifts in reflected and transmitted light beams are modulated by means of a control beam and external biasmore » voltage, in which maximum negative shift of 1.86 mm and positive shift of 0.37 mm are achievable.« less

  1. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    NASA Astrophysics Data System (ADS)

    McConnell, Gail; Riis, Erling

    2004-10-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM.

  2. Phase shifting interferometer

    DOEpatents

    Sommargren, Gary E.

    1999-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  3. Simultaneous tri-wavelength laser operation at 916, 1086, and 1089 nm of diode-pumped Nd:LuVO4 crystal

    NASA Astrophysics Data System (ADS)

    Shen, Bingjun; Jin, Lihong; Zhang, Jiajia; Tian, Jian

    2016-09-01

    We report a diode-pumped continuous-wave tri-wavelength Nd:LuVO4 laser operating at 916, 1086, and 1089 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous tri-wavelength laser operation. Using a T-shaped cavity, we realized efficient tri-wavelength operation at 4F3/2  →  4I9/2 and 4F3/2  →  4I11/2 transitions for Nd:LuVO4 crystal, simultaneously. The maximum output power was 2.8 W, which included 916, 1086, and 1089 nm, and the optical conversion efficiency was 15.1%. To our knowledge, this is the first work that realizes simultaneous tri-wavelength Nd:LuVO4 laser operation.

  4. Red-shifted Renilla reniformis luciferase variants for imaging in living subjects.

    PubMed

    Loening, Andreas Markus; Wu, Anna M; Gambhir, Sanjiv Sam

    2007-08-01

    The use of R. reniformis luciferase (RLuc) as a reporter gene in small-animal imaging has been hampered by its 481 nm peaked emission spectrum, as blue wavelengths are strongly attenuated in biological tissues. To overcome this, we generated variants of RLuc with bathochromic (red) shifts of up to 66 nm (547 nm peak) that also had greater stability and higher light emission than native RLuc.

  5. Shift-bonded resonance-domain diffraction gratings.

    PubMed

    Axelrod, Ramon; Shacham-Diamand, Yosi; Golub, Michael

    2016-10-20

    Resonance-domain-transmission diffractive optics with grating periods comparable to those of the illumination wavelength offers large angles of light deflection and nearly 100% Bragg diffraction efficiency. Optical design preferences for nearly normal incidence can be met by proper choice for the slant of the diffraction grooves relative to the substrate. However, straightforward fabrication of the slanted submicron high-aspect-ratio grooves is challenging. In this paper, optical performance comparable to that of the slanted grooves was achieved by an alternative solution of bonding two half-height symmetrical gratings with a lateral shift and an optional small longitudinal spacing. Results of design, nanofabrication, and optical testing are presented.

  6. Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity

    NASA Astrophysics Data System (ADS)

    Sreekanth, Kandammathe Valiyaveedu; Ouyang, Qingling; Han, Song; Yong, Ken-Tye; Singh, Ranjan

    2018-04-01

    In this letter, we experimentally demonstrate thirtyfold enhancement in Goos-Hänchen shift at the Brewster angle of a nanophotonic cavity that operates at the wavelength of 632.8 nm. In particular, the point-of-darkness and the singular phase are achieved using a four-layered metal-dielectric-dielectric-metal asymmetric Fabry-Perot cavity. A highly absorbing ultra-thin layer of germanium in the stack gives rise to the singular phase and the enhanced Goos-Hänchen shift at the point-of-darkness. The obtained giant Goos-Hänchen shift in the lithography-free nanophotonic cavity could enable many intriguing applications including cost-effective label-free biosensors.

  7. Wavelength Comparisons

    NASA Image and Video Library

    2018-04-02

    NASA's Solar Dynamics Observatory ran together three sequences of the sun taken in three different extreme ultraviolet wavelengths to better illustrate how different features that appear in one sequence are difficult if not impossible to see in the others (Mar. 20-21, 2018). In the red sequence (304 Angstroms), we can see very small spicules and some small prominences at the sun's edge, which are not easy to see in the other two sequences. In the second clip (193 Angstroms), we can readily observe the large and dark coronal hole, though it is difficult to make out in the others. In the third clip (171 wavelengths), we can see strands of plasma waving above the surface, especially above the one small, but bright, active region near the right edge. And these are just three of the 10 extreme ultraviolet wavelengths in which SDO images the sun every 12 seconds every day. That's a lot of data and a lot of science. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22360

  8. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    NASA Astrophysics Data System (ADS)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest

  9. Plasmon Geometric Phase and Plasmon Hall Shift

    NASA Astrophysics Data System (ADS)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  10. Spectral Sensitivity Change May Precede Habitat Shift in the Developing Retina of the Atlantic Tarpon (Megalops atlanticus).

    PubMed

    Schweikert, Lorian E; Grace, Michael S

    Fish that undergo ontogenetic migrations between habitats often encounter new light environments that require changes in the spectral sensitivity of the retina. For many fish, sensitivity of the retina changes to match the environmental spectrum, but the timing of retinal change relative to habitat shift remains unknown. Does retinal change in fish precede habitat shift, or is it a response to encountered changes in environmental light? Spectral sensitivity changes were examined over the development of the Atlantic tarpon (Megalops atlanticus) retina relative to ontogenetic shifts in habitat light. Opsin gene isoform expression and inferred chromophore use of visual pigments were examined over the course of M. atlanticus development. Spectral sensitivity of the retina was then determined by electroretinography and compared to the spectroradiometric measurements of habitat light encountered by M. atlanticus from juveniles to adults. These data, along with previously known microspectrophotometric measurements of sensitivity in M. atlanticus, indicate retinal spectral sensitivity that matches the dominant wavelengths of environmental light for juvenile and adult fish. For the intervening subadult stage, however, spectral sensitivity does not match the dominant wavelength of light it occupies but better matches the dominant wavelengths of light in the habitat of its forthcoming migration. These results first indicate that the relationship between environmental light spectrum and spectral sensitivity of the retina changes during M. atlanticus development and then suggest that such changes may be programmed to support visual anticipation of new photic environments.

  11. Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting

    PubMed Central

    Yun, S. H.; Tearney, G. J.; de Boer, J. F.; Bouma, B. E.

    2009-01-01

    A novel technique using an acousto-optic frequency shifter in optical frequency domain imaging (OFDI) is presented. The frequency shift eliminates the ambiguity between positive and negative differential delays, effectively doubling the interferometric ranging depth while avoiding image cross-talk. A signal processing algorithm is demonstrated to accommodate nonlinearity in the tuning slope of the wavelength-swept OFDI laser source. PMID:19484034

  12. Design and fabrication of a diffractive beam splitter for dual-wavelength and concurrent irradiation of process points.

    PubMed

    Amako, Jun; Shinozaki, Yu

    2016-07-11

    We report on a dual-wavelength diffractive beam splitter designed for use in parallel laser processing. This novel optical element generates two beam arrays of different wavelengths and allows their overlap at the process points on a workpiece. To design the deep surface-relief profile of a splitter using a simulated annealing algorithm, we introduce a heuristic but practical scheme to determine the maximum depth and the number of quantization levels. The designed corrugations were fabricated in a photoresist by maskless grayscale exposure using a high-resolution spatial light modulator. We characterized the photoresist splitter, thereby validating the proposed beam-splitting concept.

  13. All-optical wavelength conversion for mode division multiplexed superchannels.

    PubMed

    Gong, Jiaxin; Xu, Jing; Luo, Ming; Li, Xiang; Qiu, Ying; Yang, Qi; Zhang, Xinliang; Yu, Shaohua

    2016-04-18

    We report in this work the first all-optical wavelength conversion (AOWC) of a mode division multiplexed (MDM) superchannel consisting of 2N modes by dividing the superchannel into N single-mode (SM) tributaries, wavelength converting N SM signals using well developed SM-AOWC techniques, and finally combining the N SM tributaries back to an MDM superchannel at the converted wavelength, inspired by the idea of using SM filtering techniques to filter multimode signals in astronomy. The conversions between multimode and SM are realized by 3D laser-writing photonic lanterns and SM-AOWCs are realized based on polarization insensitive four wave mixing (FWM) configuration in N semiconductor optical amplifiers (SOAs). As a proof of concept demonstration, the conversion of a 6-mode MDM superchannel with each mode modulated with orthogonal frequency division multiplexed (OFDM) quadrature phase-shift keying (QPSK)/16 quadrature amplitude modulation (QAM) signals is demonstrated in this work, indicating that the scheme is transparent to data format, polarization and compatible with multi-carrier signals. Data integrity of the converted superchannel has been verified by using coherent detection and digital signal processing (DSP). Bit error rates (BERs) below the forward error correction (FEC) hard limit (3.8 × 10-3) have been obtained for QPSK modulation at a net bitrate of 104.2 Gbit/s and BERs below the soft decision FEC threshold (1.98 × 10-2) have been achieved for 16-QAM format, giving a total aggregate bit rate of 185.8 Gbit/s when taking 20% coding overhead into account. Add and drop functionalities that usually come along with wavelength conversion in flexible network nodes have also been demonstrated. The working conditions of the SOAs, especially the pump and signal power levels, are critical for the quality of the converted signal and have been thoroughly discussed. The impact of imbalanced FWM conversion efficiency among different SM

  14. Experimental observation of the shift and width of the aluminium K absorption edge in laser shock-compressed plasmas

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Al-Kuzee, J.; Benuzzi, A.; Koenig, M.; Krishnan, J.; Grandjouan, N.; Batani, D.; Bossi, S.; Nicolella, S.

    1998-03-01

    Experimental measurements of the shift and width of the aluminium K-absorption edge in laser shock-compressed plasma is presented. The spectrometer used in these experiments allows an accurate wavelength calibration and fiduciary and hence provides precise measurements of both the shift and the width of the absorption edge. Results have been obtained for compressions up to approximately ×2 and temperatures up to about 1.5 eV. The values of shift and width are compared with a new model with which there is very good agreement.

  15. Quantum dots as contrast agents for endoscopy: mathematical modeling and experimental validation of the optimal excitation wavelength

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu; DaCosta, Ralph S.; Weersink, Robert; Netchev, George; Davidson, Sean R. H.; Chan, Warren; Wilson, Brian C.

    2007-02-01

    Our group is investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). Our studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. This work quantitatively evaluates the effect of the excitation wavelength on the SBR, using both experimental measurements and mathematical modeling. Experimental SBR measurements were done by imaging QD solutions placed onto (surface) or embedded in (sub-surface) ex vivo murine tissue samples (brain, kidney, liver, lung), using a polymethylmethacrylate (PMMA) microchannel phantom. The results suggest that the maximum contrast is reached when the excitation wavelength is set at 400+/-20 μm for the surface configuration. For the sub-surface configuration, the optimal excitation wavelength varies with the tissue type and QD emission wavelengths. Our mathematical model, based on an approximation to the diffusion equation, successfully predicts the optimal excitation wavelength for the surface configuration, but needs further modifications to be accurate in the sub-surface configuration.

  16. Low-Light-Shift Cesium Fountain without Mechanical Shutters

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna

    2008-01-01

    A new technique for reducing errors in a laser-cooled cesium fountain frequency standard provides for strong suppression of the light shift without need for mechanical shutters. Because mechanical shutters are typically susceptible to failure after operating times of the order of months, the elimination of mechanical shutters could contribute significantly to the reliability of frequency standards that are required to function continuously for longer time intervals. With respect to the operation of an atomic-fountain frequency standard, the term "light shift" denotes an undesired relative shift in the two energy levels of the atoms (in this case, cesium atoms) in the atomic fountain during interrogation by microwaves. The shift in energy levels translates to a frequency shift that reduces the precision and possibly accuracy of the frequency standard. For reasons too complex to describe within the space available for this article, the light shift is caused by any laser light that reaches the atoms during the microwave- interrogation period, but is strongest for near-resonance light. In the absence of any mitigating design feature, the light shift, expressed as a fraction of the standard fs frequency, could be as large as approx. 2 x 10(exp -11), the largest error in the standard. In a typical prior design, to suppress light shift, the intensity of laser light is reduced during the interrogation period by using a single-pass acoustooptic modulator to deflect the majority of light away from the main optical path. Mechanical shutters are used to block the remaining undeflected light to ensure complete attenuation. Without shutters, this remaining undeflected light could cause a light shift of as much as .10.15, which is unacceptably large in some applications. The new technique implemented here involves additionally shifting the laser wavelength off resonance by a relatively large amount (typically of the order of nanometers) during microwave interrogation. In this

  17. Development of As-Se tapered suspended-core fibers for ultra-broadband mid-IR wavelength conversion

    NASA Astrophysics Data System (ADS)

    Anashkina, E. A.; Shiryaev, V. S.; Koptev, M. Y.; Stepanov, B. S.; Muravyev, S. V.

    2018-01-01

    We designed and developed tapered suspended-core fibers of high-purity As39Se61 glass for supercontinuum generation in the mid-IR with a standard fiber laser pump source at 2 ${\\mu}$m. It was shown that microstructuring allows shifting a zero dispersion wavelength to the range shorter than 2 ${\\mu}$m in the fiber waist with a core diameter of about 1 ${\\mu}$m. In this case, supercontinuum generation in the 1-10 ${\\mu}$m range was obtained numerically with 150-fs 100-pJ pump pulses at 2 ${\\mu}$m. We also performed experiments on wavelength conversion of ultrashort optical pulses at 1.57 ${\\mu}$m from Er: fiber laser system in the manufactured As-Se tapered fibers. The measured broadening spectra were in a good agreement with the ones simulated numerically.

  18. Precision measurement of transition matrix elements via light shift cancellation.

    PubMed

    Herold, C D; Vaidya, V D; Li, X; Rolston, S L; Porto, J V; Safronova, M S

    2012-12-14

    We present a method for accurate determination of atomic transition matrix elements at the 10(-3) level. Measurements of the ac Stark (light) shift around "magic-zero" wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s - 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea(0) and 0.5230(8)ea(0) for the 5s - 6p(1/2) and 5s - 6p(3/2) elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information.

  19. Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors.

    PubMed

    Zhou, Jiaao; Xia, Li; Cheng, Rui; Wen, Yongqiang; Rohollahnejad, Jalal

    2016-01-15

    The optical unbalanced Mach-Zehnder interferometer (UMZI) has attracted significant interests for interrogation of FBG sensors owing to its excellent advantages in sensitivity, resolution, and demodulation speed. But this method is still limited to dynamic measurements due to its poor stability and reliability when used for quasi-static detections. Here, we propose for the first time, to the best of our knowledge, a radio-frequency unbalanced M-Z interferometer (RF-UMZI) for interrogation of FBG sensors, which, owing to its operation in an incoherent rather than a coherent regime, provides an ideal solution for the existing stability problem of the conventional UMZI, with remarkable features of adjustable resolution and potentially extremely high sensitivity. A dispersion compensation fiber (DCF) and single-mode fiber (SMF) with a small length difference are served as the two unbalanced arms of the RF interferometer. The induced differential chromatic dispersion transfers the wavelength shift of the FBG to the change of the RF phase difference between the two interferometric carriers, which ultimately leads to the variation of the RF signal intensity. An interrogation of a strain-turned FBG was accomplished and a maximum sensitivity of 0.00835  a.u./με was obtained, which can easily be further improved by more than two orders of magnitude through various fiber dispersion components. Finally, the stability of the interrogation was tested.

  20. Broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity

    NASA Astrophysics Data System (ADS)

    Li, Q.; Jia, Z. X.; Weng, H. Z.; Li, Z. R.; Yang, Y. D.; Xiao, J. L.; Chen, S. W.; Huang, Y. Z.; Qin, W. P.; Qin, G. S.

    2018-05-01

    We demonstrate broadband multi-wavelength Brillouin lasers with an operating wavelength range of 1500–1600 nm and a frequency separation of ~9.28 GHz generated by four-wave mixing in a dual wavelength Brillouin fiber laser cavity. By using one continuous-wave laser as the pump source, multi-wavelength Brillouin lasers with an operating wavelength range of 1554–1574 nm were generated via cascaded Brillouin scattering and four-wave mixing. Interestingly, when pumped by two continuous-wave lasers with an appropriate frequency separation, the operating wavelength range of the multi-wavelength Brillouin lasers was increased to 1500–1600 nm due to cavity-enhanced cascaded four-wave mixing among the frequency components generated by two pump lasers in the dual wavelength Brillouin laser cavity.

  1. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator.

    PubMed

    Yang, Yong; Jiang, Xuefeng; Kasumie, Sho; Zhao, Guangming; Xu, Linhua; Ward, Jonathan M; Yang, Lan; Chormaic, Síle Nic

    2016-11-15

    Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the anomalous regime. In this Letter, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO2 laser beam technique. By decreasing the wall thickness of the MBR to 1.4 μm, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical Q-factor of the MBR modes being greater than 107, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.

  2. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    NASA Astrophysics Data System (ADS)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  3. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach.

    PubMed

    Liu, Wei; Li, Chen; Zhang, Zhigang; Kärtner, Franz X; Chang, Guoqing

    2016-07-11

    We propose and demonstrate a new approach to implement a wavelength-tunable ultrafast fiber laser source suitable for multiphoton microscopy. We employ fiber-optic nonlinearities to broaden a narrowband optical spectrum generated by an Yb-fiber laser system and then use optical bandpass filters to select the leftmost or rightmost spectral lobes from the broadened spectrum. Detailed numerical modeling shows that self-phase modulation dominates the spectral broadening, self-steepening tends to blue shift the broadened spectrum, and stimulated Raman scattering is minimal. We also find that optical wave breaking caused by fiber dispersion slows down the shift of the leftmost/rightmost spectral lobes and therefore limits the wavelength tuning range of the filtered spectra. We show both numerically and experimentally that shortening the fiber used for spectral broadening while increasing the input pulse energy can overcome this dispersion-induced limitation; as a result, the filtered spectral lobes have higher power, constituting a powerful and practical approach for energy scaling the resulting femtosecond sources. We use two commercially available photonic crystal fibers to verify the simulation results. More specific, use of 20-mm fiber NL-1050-ZERO-2 enables us to implement an Yb-fiber laser based ultrafast source, delivering femtosecond (70-120 fs) pulses tunable from 825 nm to 1210 nm with >1 nJ pulse energy.

  4. Reversal of orbital angular momentum arising from an extreme Doppler shift.

    PubMed

    Gibson, Graham M; Toninelli, Ermes; Horsley, Simon A R; Spalding, Gabriel C; Hendry, Euan; Phillips, David B; Padgett, Miles J

    2018-04-10

    The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes "negative." In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at [Formula: see text]100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the "negative frequency" regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. Copyright © 2018 the Author(s). Published by PNAS.

  5. Research on a novel composite structure Er³⁺-doped DBR fiber laser with a π-phase shifted FBG.

    PubMed

    Zhao, Yanjie; Chang, Jun; Wang, Qingpu; Ni, Jiasheng; Song, Zhiqiang; Qi, Haifeng; Wang, Chang; Wang, Pengpeng; Gao, Liang; Sun, Zhihui; Lv, Guangping; Liu, Tongyu; Peng, Gangding

    2013-09-23

    A simple composite cavity structure Er³⁺-doped fiber laser was proposed and demonstrated experimentally. The resonant cavity consists of a pair of uniform fiber Bragg gratings (FBGs) and a π-phase shifted FBG. By introducing the π-phase shifted FBG into the cavity as the selective wavelength component, it can increase the effective length of the laser cavity and suppress the multi-longitudinal modes simultaneously. The narrow linewidth of 900 Hz and low RIN of -95 dB/Hz were obtained. And the lasing wavelength was rather stable with the pump power changing. The SMRS was more than 67 dB. The results show that the proposed fiber laser has a good performance and considerable potential application for fiber sensor and optical communication.

  6. [The application of Doppler broadening and Doppler shift to spectral analysis].

    PubMed

    Xu, Wei; Fang, Zi-shen

    2002-08-01

    The distinction between Doppler broadening and Doppler shift has analyzed, Doppler broadening locally results from the distribution of velocities of the emitting particles, the line width gives the information on temperature of emitting particles. Doppler shift results when the emitting particles have a bulk non random flow velocity in a particular direction, the drift of central wavelength gives the information on flow velocity of emitting particles, and the Doppler shift only drifts the profile of line without changing the width. The difference between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. The distribution of H alpha spectral line shape has been derived from the surface of limiter in HT-6M Tokamak with optical spectroscope multichannel analysis (OSMA), the result by double Gaussian fitting shows that the line shape make up of two port, the emitting of reflect particles with higher energy and the release particle from the limiter surface. Ion temperature and recycling particle flow velocity have been obtained from Doppler broadening and Doppler shift.

  7. Visible blue-shifted dispersive wave generation in the second-order mode of photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Yan, Binbin; Yuan, Jinhui; Sang, Xinzhu; Wang, Kuiru; Yu, Chongxiu

    2016-04-01

    We experimentally demonstrated the generation of dispersive waves (DWs) at the visible wavelength by coupling femtosecond pulses into the anomalous dispersion region of the second-order mode of a homemade photonic crystal fiber. When center wavelengths of the pump pulses are located at 800 and 850 nm and input average powers Pav are increased from 300, to 400, and to 500 mW, the blue-shifted DWs can be generated during the soliton dynamics and are tunable within the wavelength range of 614 to 561 nm. Moreover, the conversion efficiency ηDW of DWs is enhanced from 5% to 21%, and the corresponding bandwidth BDW is broadened from 17 to 30 nm. It is believed that the DWs can be used as the ultrashort pulse source for visible photonics and spectroscopy.

  8. The 1980 solar maximum mission event listing

    NASA Technical Reports Server (NTRS)

    Speich, D. M.; Nelson, J. J.; Licata, J. P.; Tolbert, A. K.

    1991-01-01

    Information is contained on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1980 pointed observations. Data from the following SMM experiments are included: (1) Gamma Ray Spectrometer, (2) Hard X-Ray Burst Spectrometer, (3) Hard X-Ray Imaging Spectrometer, (4) Flat Crystal Spectrometer, (5) Bent Crystal Spectrometer, (6) Ultraviolet Spectrometer and Polarimeter, and (7) Coronagraph/Polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from Sun center are also included.

  9. Millimeter wavelength propagation studies

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1974-01-01

    The investigations conducted for the Millimeter Wavelength Propagation Studies during the period December, 1966, to June 1974 are reported. These efforts included the preparation for the ATS-5 Millimeter Wavelength Propagation Experiment and the subsequent data acquisition and data analysis. The emphasis of the OSU participation in this experiment was placed on the determination of reliability improvement resulting from the use of space diversity on a millimeter wavelength earth-space communication link. Related measurements included the determination of the correlation between radiometric temperature and attenuation along the earth-space propagation path. Along with this experimental effort a theoretical model was developed for the prediction of attenuation statistics on single and spatially separated earth space propagation paths. A High Resolution Radar/Radiometer System and Low Resolution Radar System were developed and implemented for the study of intense rain cells in preparation for the ATS-6 Millimeter Wavelength Propagation Experiment.

  10. Phase shifting interferometer

    DOEpatents

    Sommargren, G.E.

    1999-08-03

    An interferometer is disclosed which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. Whereas current interferometers illuminate the optic to be tested with an aberrated wavefront which also limits the accuracy of the measurement, this interferometer uses an essentially perfect spherical measurement wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 11 figs.

  11. Synthesis and Characterization of Water-Soluble Polythiophene Derivatives for Cell Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fengyan; Li, Meng; Wang, Bing; Zhang, Jiangyan; Cheng, Yongqiang; Liu, Libing; Lv, Fengting; Wang, Shu

    2015-01-01

    In this work, four water-soluble polythiophene derivatives (PT, PT-DDA, PT-ADA, and PT-ADA-PPR) with different pendant moieties were synthesized via oxidative copolymerization by FeCl3. By increasing the hydrophobic ability of side chain moieties, there is a gradually blue shift for the maximum absorption wavelength and red shift for the maximum emission wavelength, a reducing trend for fluorescence quantum yields, a growing trend for Stokes shift, and an increasing trend for the mean sizes in the order of PT, PT-ADA, and PT-DDA. All the synthesized polymers show low toxicity and good photostability and accumulate in the lysosomes of A549 cells. Furthermore, the introduction of porphyrin group to PT-ADA side chain (PT-ADA-PPR) broadens the absorption and emission ranges of PT-ADA. PT-ADA-PPR could be excited at two different excitation wavelengths (488 nm and 559 nm) and exhibits two emission pathways, and dual-color fluorescence images (orange and red) of PT-ADA-PPR accumulated in A549 cells are observed. Thus, PT-ADA-PPR could be used as an excellent dual-color fluorescent and lysosome-specific imaging material.

  12. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser

    PubMed Central

    Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin

    2017-01-01

    We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively. PMID:28181571

  13. High-power dual-wavelength Ho-doped fiber laser at >2 μm tandem pumped by a 1.15 μm fiber laser

    NASA Astrophysics Data System (ADS)

    Jin, Xiaoxi; Lou, Zhaokai; Chen, Yizhu; Zhou, Pu; Zhang, Hanwei; Xiao, Hu; Liu, Zejin

    2017-02-01

    We demonstrated a high-power continuous-wave (CW) dual-wavelength Ho-doped fiber laser (HDFL) at 2049 nm and 2153 nm with a simple coupled-cavity configuration. A ~100 W laser diode-pumped fiber laser at 1150 nm served as the pump source. The maximum output power reached ~22.3 W and the slope efficiency was 23%. By altering the incident pump power, the power ratio of two signal wavelengths could be tuned in a large range due to gain competition. As far as we know, this is the first CW dual-wavelength HDFL with the power exceeding ten-watt-level, and the first dual-wavelength HDFL with the central wavelengths exceeding 2.0 μm and 2.15 μm respectively.

  14. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Pöhlker, Christopher; Massabò, Dario; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditas, Florian; Hrabě de Angelis, Isabella; Morán-Zuloaga, Daniel; Pöhlker, Mira L.; Rizzo, Luciana V.; Walter, David; Wang, Qiaoqiao; Artaxo, Paulo; Prati, Paolo; Andreae, Meinrat O.

    2017-08-01

    Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June-September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm-1, with a maximum of 15.9 Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.

  15. Effect of Sequential Exposition to Short- and Long-Wavelength Radiation on the Optical Absorption in the Bismuth Titanium Oxide Crystal Doped by Aluminum

    NASA Astrophysics Data System (ADS)

    Dyu, V. G.; Kisteneva, M. G.; Shandarov, S. M.; Khudyakova, E. S.; Smirnov, S. V.; Kargin, Yu. F.

    Changes in the spectral dependences of the optical absorption induced in the bismuth titanium oxide crystal doped by aluminum as a result of sequential exposition to cw laser radiation first with the wavelength λi = 532 nm and then with the longer wavelength λn = 633, 655, 663, 780, 871, or 1064 nm are investigated. Our experiments show that after the short-wavelength exposition to radiation with λi = 532 nm, the optical absorption in the crystal increases, and in the range 470-1000 nm, yields the spectrum whose form is independent of the initial crystal state. The subsequent exposition to longer-wavelength radiation leads to enhanced transmittance of the crystal in the examined spectral range. A maximum decrease of the optical absorption in the crystal is observed upon exposure to radiation with the wavelength λn = 663 nm.

  16. Quantitative phase imaging of human red blood cells using phase-shifting white light interference microscopy with colour fringe analysis

    NASA Astrophysics Data System (ADS)

    Singh Mehta, Dalip; Srivastava, Vishal

    2012-11-01

    We report quantitative phase imaging of human red blood cells (RBCs) using phase-shifting interference microscopy. Five phase-shifted white light interferograms are recorded using colour charge coupled device camera. White light interferograms were decomposed into red, green, and blue colour components. The phase-shifted interferograms of each colour were then processed by phase-shifting analysis and phase maps for red, green, and blue colours were reconstructed. Wavelength dependent refractive index profiles of RBCs were computed from the single set of white light interferogram. The present technique has great potential for non-invasive determination of refractive index variation and morphological features of cells and tissues.

  17. Stokes shift spectroscopy for the early diagnosis of epithelial precancers in DMBA treated mouse skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Jeyasingh, Ebenezar; Singaravelu, Ganesan; Prakasarao, Aruna

    2018-02-01

    In this study, we aim to characterize the tissue transformation in dimethylbenz(a)anthracene (DMBA) treated mouse skin tumor model using stokes shift spectroscopy (SSS) technique for early detection of the neoplastic changes. Stokes shift (SS) spectra measured by scanning both excitation and emission wavelength simultaneously with a fixed wavelength of interval (Δλ=20 nm) in vivo from 33 DMBA treated animals and 6 control animals. The SS spectra of normal (n=6), hyperplasia (n=10), dysplasia (n=10), and WDSCC (n=13) of mice skin shows the distinct peaks around 300, 350, and 386 nm may be attributed to tryptophan, collagen, and NADH respectively. From the observed spectral differences and the ratio variables that resulted in better classification between groups, it is concluded that tryptophan, collagen, and NADH are the key fluorophores that undergo changes during tissue transformation process and hence they can be targeted as tumor markers for early neoplastic changes.

  18. Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342.

    PubMed

    Petersen, Timothy W; Ibrahim, Sherrif F; Diercks, Alan H; van den Engh, Ger

    2004-08-01

    Many methods in flow cytometry rely on staining DNA with a fluorescent dye to gauge DNA content. From the relative intensity of the fluorescence signature, one can then infer position in cell cycle, amount of DNA (i.e., for sperm selection), or, as in the case of flow karyotyping, to distinguish individual chromosomes. This work examines the staining of murine thymocytes with a common DNA dye, Hoechst 33342, to investigate nonlinearities in the florescence intensity as well as chromatic shifts. Murine thymocytes were stained with Hoechst 33342 and measured in a flow cytometer at two fluorescence emission bands. In other measurements, cells were stained at different dye concentrations, and then centrifuged. The supernatant was then used for a second round of staining to test the amount of dye uptake. Finally, to test for resonant energy transfer, we measured fluorescence anisotropy at two different wavelengths. The fluorescence of cells stained with Hoechst 33342 is a nonlinear process that shows an overall decrease in intensity with increased dye uptake, and spectral shift to the red. Along with the spectral shift of the fluorescence to the longer wavelengths, we document decreases in the fluorescence anisotropy that may indicate resonant energy transfer. At low concentrations, Hoechst 33342 binds to the minor groove of DNA and shows an increase in fluorescence and a blue shift upon binding. At higher concentrations, at which the dye molecules can no longer bind without overlapping, the blue fluorescence decreases and the red fluorescence increases until there is approximately one dye molecule per DNA base pair. The ratio of the blue fluorescence to the red fluorescence is an accurate indicator of the cellular dye concentration.

  19. Strong Solar Control of Infrared Aurora on Jupiter: Correlation Since the Last Solar Maximum

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Livengood, T. A.; Hewagama, T.

    2009-01-01

    Polar aurorae in Jupiter's atmosphere radiate throughout the electromagnetic spectrum from X ray through mid-infrared (mid-IR, 5 - 20 micron wavelength). Voyager IRIS data and ground-based spectroscopic measurements of Jupiter's northern mid-IR aurora, acquired since 1982, reveal a correlation between auroral brightness and solar activity that has not been observed in Jovian aurora at other wavelengths. Over nearly three solar cycles, Jupiter auroral ethane emission brightness and solar 10.7 cm radio flux and sunspot number are positively correlated with high confidence. Ethane line emission intensity varies over tenfold between low and high solar activity periods. Detailed measurements have been made using the GSFC HIPWAC spectrometer at the NASA IRTF since the last solar maximum, following the mid-IR emission through the declining phase toward solar minimum. An even more convincing correlation with solar activity is evident in these data. Current analyses of these results will be described, including planned measurements on polar ethane line emission scheduled through the rise of the next solar maximum beginning in 2009, with a steep gradient to a maximum in 2012. This work is relevant to the Juno mission and to the development of the Europa Jupiter System Mission. Results of observations at the Infrared Telescope Facility (IRTF) operated by the University of Hawaii under Cooperative Agreement no. NCC5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. This work was supported by the NASA Planetary Astronomy Program.

  20. The 1984 - 1987 Solar Maximum Mission event list

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Licata, J. P.; Nelson, J. J.; Tolbert, A. K.

    1992-01-01

    Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1984-1987 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x-ray burst spectrometer; (3) flat crystal spectrometer; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronograph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included.

  1. Dual-wavelength and efficient continuous-wave operation of a Yb:CaGd0.1Y0.9AlO4 laser

    NASA Astrophysics Data System (ADS)

    Di, J. Q.; Sai, Q. L.; Sun, X. H.; Xu, X. D.; Kong, L. C.; Xie, G. Q.; Liu, Y. L.; Teng, F.; Zhu, L.

    2018-05-01

    The spectra and laser properties of single crystalline Yb:CaGd0.1Y0.9AlO4 were investigated for the first time. The peak absorption cross-sections of 4.01 cm2 and 1.39  ×  10‑20 cm2 with full width at half maximum of 17 and 32 nm, and the maximum emission cross-sections of 2.11 and 1.53  ×  10‑20 cm2 were obtained for π and σ polarizations, respectively. The fluorescence decay time was 638 µs. The maximum continuous-wave laser achieved was 1.60 W with a slope efficiency of 23.4% for an a-cut Yb:CaGd0.1Y0.9AlO4 crystal. Dual-wavelength lasers at 1041.7 and 1044.9 nm were also demonstrated. The results show that Yb:CaGd0.1Y0.9AlO4 crystal is a promising ultra-short and dual-wavelength laser medium.

  2. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber

    NASA Astrophysics Data System (ADS)

    Yan, Bei; Wang, Anran; Liu, Exian; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun

    2018-04-01

    A novel polarization filter based on a sunflower-type photonic quasi-crystal fiber (PQF) is proposed in this paper. We also discuss different methods to tune the filter wavelength. The proposed filter can efficiently produce polarized light with visible wavelengths by using the resonance between the second-order surface plasmon polariton mode and the core mode of the PQF. The filtered wavelength can be tuned between 0.55 µm and 0.68 µm by adjusting the thickness of the gold film. When the thickness of the gold film is 25.3 nm, the resonance loss in the y-polarized direction reaches 11707 dB m‑1 for a wavelength of 0.6326 µm, and the full width at half maximum is only 5 nm. Due to the flexible design and absence of both polarization coupling and polarization dispersion, this polarization filter can be used in devices that require narrow-band filtering.

  3. Development of the One-Sided Nonlinear Adaptive Doppler Shift Estimation

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Singh, Upendra N.; Kavaya, Michael J.; Serror, Judith A.

    2009-01-01

    The new development of a one-sided nonlinear adaptive shift estimation technique (NADSET) is introduced. The background of the algorithm and a brief overview of NADSET are presented. The new technique is applied to the wind parameter estimates from a 2-micron wavelength coherent Doppler lidar system called VALIDAR located in NASA Langley Research Center in Virginia. The new technique enhances wind parameters such as Doppler shift and power estimates in low Signal-To-Noise-Ratio (SNR) regimes using the estimates in high SNR regimes as the algorithm scans the range bins from low to high altitude. The original NADSET utilizes the statistics in both the lower and the higher range bins to refine the wind parameter estimates in between. The results of the two different approaches of NADSET are compared.

  4. Multiple-wavelength tunable laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2010-01-01

    A tunable laser includes dispersion optics for separating generated laser pulses into first and second wavelength pulses directed along first and second optical paths. First and second reflective mirrors are disposed in the first and second optical paths, respectively. The laser's output mirror is partially reflective and partially transmissive with respect to the first wavelength and the second wavelength in accordance with provided criteria. A first resonator length is defined between the output mirror and the first mirror, while a second resonator length is defined between the output mirror and the second mirror. The second resonator length is a function of the first resonator length.

  5. Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength Lidar measurements

    NASA Technical Reports Server (NTRS)

    Sasano, Y.; Browell, E. V.

    1986-01-01

    Aerosols are often classified into several general types according to their origins and composition, such as maritime, continental, and stratospheric aerosols, and these aerosol types generally have different characteristics in chemical and physical properties. The present study aims at demonstrating the potential for distinguishing these aerosol types by the wavelength dependence of their backscatter coefficients obtained from quantitative analyses of multiple wavelength lidar signals. Data from the NASA Airborne Differential Abosrption lidar (DIAL) S ystems, which can measure aerosol backscatter profiles at wavelenghts of 300, 600, and 1064 nm and ozone profiles of backscatter coefficients for these three wavelength were derived from the observations of aerosols of different types. Observations were performed over the Atlantic Ocean, the Southwestern United States, and French Guyana.

  6. Wide-range tuning of polymer microring resonators by the photobleaching of CLD-1 chromophores

    NASA Astrophysics Data System (ADS)

    Poon, Joyce K. S.; Huang, Yanyi; Paloczi, George T.; Yariv, Amnon; Zhang, Cheng; Dalton, Larry R.

    2004-11-01

    We present a simple and effective method for the postfabrication trimming of optical microresonators. We photobleach CLD-1 chromophores to tune the resonance wavelengths of polymer microring resonator optical notch filters. A maximum wavelength shift of -8.73 nm is observed. The resonators are fabricated with a soft-lithography molding technique and have an intrinsic Q value of 2.6×10^4 and a finesse of 9.3. The maximum extinction ratio of the resonator filters is -34 dB, indicating that the critical coupling condition has been satisfied.

  7. Excitation-resolved wide-field fluorescence imaging of indocyanine green visualizes the microenvironment properties in vivo via solvatochromic shift (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cho, Jaedu; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    Near-infrared fluorescence imaging (NIRF) is a powerful wide-field optical imaging tool that has a potential to visualize molecular-specific exogenous fluorescence agents, such as FDA approved Indocyanine Green (ICG), in thick tissue. Indeed, ICG is sensitive to biochemical environment such that it can be used to detect micro- or macroscopic environmental changes in tissue by solvatochromic shift that is defined by the dependence of absorption and emission spectra with the solvent polarity. For example, dimethyl sulfoxide (DMSO) is a very powerful drug carrier that can penetrate biological barriers such as the skin, the membranes, and the blood-brain-barrier. In presence of DMSO, ICG in tissue shows the excitation blue shift. However, NIRF imaging of microenvironment dependent changes of ICG has been challenging for the following reasons. First, the Stoke's shift of ICG is too small to separate the excitation and emission spectra easily. Second, the solvatochromic shift of ICG is too small to be detected by conventional NIRF techniques. Last but not least, the multiple scattering in tissue degrades not only the spatial information but also the spectral contents by the red-shift. We developed a wavelength-swept laser-based NIRF system that can resolve the excitation shift of ICG in tissue such that DMSO can be indirectly visualized. We plan to conduct an in-vivo lymph-node drug-delivery study in a mouse model to show feasibility of the indirect imaging of the drug-carrier with the wavelength-swept-laser based NIRF system.

  8. Towards short wavelengths FELs workshop

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, I.; Winick, H.

    1993-11-01

    This workshop was caged because of the growing perception in the FEL source community that recent advances have made it possible to extend FEL operation to wavelengths about two orders of magnitude shorter than the 240 nm that has been achieved to date. In addition short wavelength FEL's offer the possibilities of extremely high peak power (several gigawatts) and very short pulses (of the order of 100 fs). Several groups in the USA are developing plans for such short wavelength FEL facilities. However, reviewers of these plans have pointed out that it would be highly desirable to first carry out proof-of-principle experiments at longer wavelengths to increase confidence that the shorter wavelength devices will indeed perform as calculated. The need for such experiments has now been broadly accepted by the FEL community. Such experiments were the main focus of this workshop as described in the following objectives distributed to attendees: (1) Define measurements needed to gain confidence that short wavelength FEL's will perform as calculated. (2) List possible hardware that could be used to carry out these measurements in the near term. (3) Define a prioritized FEL physics experimental program and suggested timetable. (4) Form collaborative teams to carry out this program.

  9. Fast registration and reconstruction of aliased low-resolution frames by use of a modified maximum-likelihood approach.

    PubMed

    Alam, M S; Bognar, J G; Cain, S; Yasuda, B J

    1998-03-10

    During the process of microscanning a controlled vibrating mirror typically is used to produce subpixel shifts in a sequence of forward-looking infrared (FLIR) images. If the FLIR is mounted on a moving platform, such as an aircraft, uncontrolled random vibrations associated with the platform can be used to generate the shifts. Iterative techniques such as the expectation-maximization (EM) approach by means of the maximum-likelihood algorithm can be used to generate high-resolution images from multiple randomly shifted aliased frames. In the maximum-likelihood approach the data are considered to be Poisson random variables and an EM algorithm is developed that iteratively estimates an unaliased image that is compensated for known imager-system blur while it simultaneously estimates the translational shifts. Although this algorithm yields high-resolution images from a sequence of randomly shifted frames, it requires significant computation time and cannot be implemented for real-time applications that use the currently available high-performance processors. The new image shifts are iteratively calculated by evaluation of a cost function that compares the shifted and interlaced data frames with the corresponding values in the algorithm's latest estimate of the high-resolution image. We present a registration algorithm that estimates the shifts in one step. The shift parameters provided by the new algorithm are accurate enough to eliminate the need for iterative recalculation of translational shifts. Using this shift information, we apply a simplified version of the EM algorithm to estimate a high-resolution image from a given sequence of video frames. The proposed modified EM algorithm has been found to reduce significantly the computational burden when compared with the original EM algorithm, thus making it more attractive for practical implementation. Both simulation and experimental results are presented to verify the effectiveness of the proposed technique.

  10. Assessing the ability of plants to respond to climatic change through distribution shifts

    Treesearch

    Mark W. Schwartz

    1996-01-01

    Predictions of future global warming suggest northward shifts of up to 800 km in the equilibrium distributions of plant species. Historical data estimating the maximum rate of tree distribution shifts (migration) suggest that most species will not keep pace with future rates of human-induced climatic change. Previous plant migrations have occurred at rates typically...

  11. Nd:(Gd0.3Y0.7)2SiO5 crystal: A novel efficient dual-wavelength continuous-wave medium

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Di, Juqing; Zhang, Jian; Tang, Dingyuan; Xu, Jun

    2016-05-01

    Efficient dual-wavelength continuous-wave (CW) and passively Q-switched laser operation of Nd:(Gd0.3Y0.7)2SiO5 crystal were investigated for the first time to our knowledge. Maximum CW output power of 2.3 W was obtained under the absorbed pump power of 4.6 W, corresponding to the slope efficiency of 55%. Dual-wavelength CW laser with respective wavelengths around 1074 nm and 1078 nm were achieved. With Cr4+:YAG as the saturable absorber, passive Q-switched performance was obtained. The slope efficiency of passively Q-switched operation was 45%. The shortest pulse width, the corresponding pulse energy and peak power were calculated to be 13.1 ns, 50.2 μJ and 3.8 kW, respectively.

  12. Stabilized soliton self-frequency shift and 0.1- PHz sideband generation in a photonic-crystal fiber with an air-hole-modified core.

    PubMed

    Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M

    2008-09-15

    Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.

  13. Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+ distributed-feedback waveguide laser.

    PubMed

    Bernhardi, E H; Khan, M R H; Roeloffzen, C G H; van Wolferen, H A G M; Wörhoff, K; de Ridder, R M; Pollnau, M

    2012-01-15

    We report the fabrication and characterization of a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminum oxide. Operation of the device is based on the optical resonances that are induced by two local phase shifts in the distributed-feedback structure. A stable microwave signal at ~15 GHz with a -3 dB width of 9 kHz was subsequently created via the heterodyne photodetection of the two laser wavelengths. The long-term frequency stability of the microwave signal produced by the free-running laser is better than ±2.5 MHz, while the power of the microwave signal is stable within ±0.35 dB.

  14. White light phase shifting interferometry and color fringe analysis for the detection of contaminants in water

    NASA Astrophysics Data System (ADS)

    Dubey, Vishesh; Singh, Veena; Ahmad, Azeem; Singh, Gyanendra; Mehta, Dalip Singh

    2016-03-01

    We report white light phase shifting interferometry in conjunction with color fringe analysis for the detection of contaminants in water such as Escherichia coli (E.coli), Campylobacter coli and Bacillus cereus. The experimental setup is based on a common path interferometer using Mirau interferometric objective lens. White light interferograms are recorded using a 3-chip color CCD camera based on prism technology. The 3-chip color camera have lesser color cross talk and better spatial resolution in comparison to single chip CCD camera. A piezo-electric transducer (PZT) phase shifter is fixed with the Mirau objective and they are attached with a conventional microscope. Five phase shifted white light interferograms are recorded by the 3-chip color CCD camera and each phase shifted interferogram is decomposed into the red, green and blue constituent colors, thus making three sets of five phase shifted intererograms for three different colors from a single set of white light interferogram. This makes the system less time consuming and have lesser effect due to surrounding environment. Initially 3D phase maps of the bacteria are reconstructed for red, green and blue wavelengths from these interferograms using MATLAB, from these phase maps we determines the refractive index (RI) of the bacteria. Experimental results of 3D shape measurement and RI at multiple wavelengths will be presented. These results might find applications for detection of contaminants in water without using any chemical processing and fluorescent dyes.

  15. Peripheral detection and resolution with mid-/long-wavelength and short-wavelength sensitive cone systems.

    PubMed

    Zhu, Hai-Feng; Zele, Andrew J; Suheimat, Marwan; Lambert, Andrew J; Atchison, David A

    2016-08-01

    This study compared neural resolution and detection limits of the human mid-/long-wavelength and short-wavelength cone systems with anatomical estimates of photoreceptor and retinal ganglion cell spacings and sizes. Detection and resolution limits were measured from central fixation out to 35° eccentricity across the horizontal visual field using a modified Lotmar interferometer. The mid-/long-wavelength cone system was studied using a green (550 nm) test stimulus to which S-cones have low sensitivity. To bias resolution and detection to the short-wavelength cone system, a blue (450 nm) test stimulus was presented against a bright yellow background that desensitized the M- and L-cones. Participants were three trichromatic males with normal visual functions. With green stimuli, resolution showed a steep central-peripheral gradient that was similar between participants, whereas the detection gradient was shallower and patterns were different between participants. Detection and resolution with blue stimuli were poorer than for green stimuli. The detection of blue stimuli was superior to resolution across the horizontal visual field and the patterns were different between participants. The mid-/long-wavelength cone system's resolution is limited by midget ganglion cell spacing and its detection is limited by the size of the M- and L-cone photoreceptors, consistent with previous observations. We found that no such simple relationships occur for the short-wavelength cone system between resolution and the bistratified ganglion cell spacing, nor between detection and the S-cone photoreceptor sizes.

  16. Wavelength selection beyond turing

    NASA Astrophysics Data System (ADS)

    Zelnik, Yuval R.; Tzuk, Omer

    2017-06-01

    Spatial patterns arising spontaneously due to internal processes are ubiquitous in nature, varying from periodic patterns of dryland vegetation to complex structures of bacterial colonies. Many of these patterns can be explained in the context of a Turing instability, where patterns emerge due to two locally interacting components that diffuse with different speeds in the medium. Turing patterns are multistable, meaning that many different patterns with different wavelengths are possible for the same set of parameters. Nevertheless, in a given region typically only one such wavelength is dominant. In the Turing instability region, random initial conditions will mostly lead to a wavelength that is similar to that of the leading eigenvector that arises from the linear stability analysis, but when venturing beyond, little is known about the pattern that will emerge. Using dryland vegetation as a case study, we use different models of drylands ecosystems to study the wavelength pattern that is selected in various scenarios beyond the Turing instability region, focusing on the phenomena of localized states and repeated local disturbances.

  17. Making Displaced Holograms At Two Wavelengths

    NASA Technical Reports Server (NTRS)

    Witherow, William K.; Ecker, Andreas

    1989-01-01

    Two-wavelength holographic system augmented with pair of prisms to introduce small separation between holograms formed simultaneously at two wavelengths on holographic plate. Principal use in study of flows. Gradients in index of refraction of fluid caused by variations in temperature, concentration, or both. Holography at one wavelength cannot be used to distinguish between two types of variations. Difference between spacings of fringes in photographs reconstructed from holograms taken simultaneously at two different wavelengths manipulated mathematically to determine type of variation.

  18. Wavelength-doubling optical parametric oscillator

    DOEpatents

    Armstrong, Darrell J [Albuquerque, NM; Smith, Arlee V [Albuquerque, NM

    2007-07-24

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  19. SALT spectroscopic classification of SN 2017erp as a type-Ia supernova well before maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Camacho, Y.; Dettman, K.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Skelton, R.

    2017-06-01

    We obtained SALT (+RSS) spectroscopy of SN 2017erp (discovered by K. Itagaki) on 2017 Jun 13.9 UT, covering the wavelength range 350-940 nm. Cross-correlation of the supernova spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows SN 2017erp is a type-Ia supernova before maximum light.

  20. Optical signal inverter of erbium-doped yttrium aluminum garnet with red shift of laser diodes.

    PubMed

    Maeda, Y

    1994-08-10

    An optical signal inverter was demonstrated in a simple structure that combined a laser diode with Er-doped YAG crystal. The optical signal inversion occurred at a response time of 7 ns and was caused by the decrease of transmission of Er:YAG against the red shift of the wavelength of the laser diode.

  1. Ultra-short wavelength operation in Thulium-doped silica fiber laser with bidirectional pumping

    NASA Astrophysics Data System (ADS)

    Xiao, Xusheng; Guo, Haitao; Yan, Zhijun; Wang, Hushan; Xu, Yantao; Lu, Min; Wang, Yishan; Peng, Bo

    2017-02-01

    An ultra-short wavelength operation of Tm-doped all fiber laser based on fiber Bragg gratings (FBGs) was developed. A bi-directional pump configuration for the ultra-short wavelength operation was designed and investigated for the first time. the laser yielded 3.15W of continuous-wave output at 1706.75nm with a narrow-linewidth of 50pm and a maximum slope efficiency of 42.1%. The dependencies of the slope efficiencies and pump threshold of the laser versus the length of active fiber and reflectivity of the output mirror (FBG) were investigated in detail. An experimental comparative study between two Thulium-doped fiber lasers (TDFLs) with two different pumping configuration(forward unidirectional pumping and bidirectional pumping) was presented. It is indisputable that the development of 1.7μm silicate fiber lasers with Watt-level output power open up a number of heart-stirring and tempting application windows.

  2. Dispersion-optimized optical fiber for high-speed long-haul dense wavelength division multiplexing transmission

    NASA Astrophysics Data System (ADS)

    Wu, Jindong; Chen, Liuhua; Li, Qingguo; Wu, Wenwen; Sun, Keyuan; Wu, Xingkun

    2011-07-01

    Four non-zero-dispersion-shifted fibers with almost the same large effective area (Aeff) and optimized dispersion properties are realized by novel index profile designing and modified vapor axial deposition and modified chemical vapor deposition processes. An Aeff of greater than 71 μm2 is obtained for the designed fibers. Three of the developed fibers with positive dispersion are improved by reducing the 1550nm dispersion slope from 0.072ps/nm2/km to 0.063ps/nm2/km or 0.05ps/nm2/km, increasing the 1550nm dispersion from 4.972ps/nm/km to 5.679ps/nm/km or 7.776ps/nm/km, and shifting the zero-dispersion wavelength from 1500nm to 1450nm. One of these fibers is in good agreement with G655D and G.656 fibers simultaneously, and another one with G655E and G.656 fibers; both fibers are beneficial to high-bit long-haul dense wavelength division multiplexing systems over S-, C-, and L-bands. The fourth developed fiber with negative dispersion is also improved by reducing the 1550nm dispersion slope from 0.12ps/nm2/km to 0.085ps/nm2/km, increasing the 1550nm dispersion from -4ps/nm/km to -6.016ps/nm/km, providing facilities for a submarine transmission system. Experimental measurements indicate that the developed fibers all have excellent optical transmission and good macrobending and splice performances.

  3. Continuously wavelength-tunable passband-flattened fiber comb filter based on polarization-diversified loop structure.

    PubMed

    Jung, Jaehoon; Lee, Yong Wook

    2017-08-16

    Continuous wavelength tuning of optical comb filters, which is an essential functionality for flexible signal processing in reconfigurable optical systems, has been challenging in high order filter structures with two birefringent elements (BEs) or more due to cumbersomeness in finding a combination of waveplates and BEs and complexity in determining their individual azimuthal orientations. Here, we propose a continuously tunable polarization-independent passband-flattened fiber comb filter with two BEs using a polarization-diversified loop structure for the first time. The proposed filter consists of a polarization beam splitter and two groups of a half-wave plate, quarter-wave plate, and polarization-maintaining fiber (PMF). The azimuthal orientation of PMF in the second group is fixed as 22.5°. Orientation angle sets of the four waveplates, which can induce an arbitrary phase shift from 0 to 2π in the passband-flattened transmittance function, are found from the filter transmittance derived using Jones matrix formulation. From theoretical spectral analysis, it is confirmed that passband-flattened comb spectra can be continuously tuned. Theoretical prediction is verified by experimental demonstration. Moreover, the wavelength-dependent evolution of the output state of polarization (SOP) of each PMF is investigated on the Poincare sphere, and the relationship between wavelength tuning and SOP evolution is also discussed.

  4. GHRS Cycle 5 Echelle Wavelength Monitor

    NASA Astrophysics Data System (ADS)

    Soderblom, David

    1995-07-01

    This proposal defines the spectral lamp test for Echelle A. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. This proposal defines the spectral lamp test for Echelle B. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. It will be run every 4 months. The wavelengths may be out of range according to PEPSI or TRANS. Please ignore the errors.

  5. Dual-wavelength waveguide lasers at 1064 and 1079 nm in Nd:YAP crystal by direct femtosecond laser writing.

    PubMed

    Nie, Weijie; Cheng, Chen; Jia, Yuechen; Romero, Carolina; Vázquez de Aldana, Javier R; Chen, Feng

    2015-05-15

    Low-loss depressed cladding waveguides have been produced in Nd:YAP laser crystal by using direct femtosecond laser writing. Under optical pump at 812 nm at room temperature, continuous-wave simultaneous dual-wavelength laser oscillations at 1064 and 1079 nm, both along TM polarization, have been realized in the waveguiding structures. It has been found that, with the variation of pump polarization, the intensity ratio of 1064 and 1079 nm emissions varies periodically, while the polarization of output dual-wavelength laser remains unchanged. The maximum output power achieved for the Nd:YAP waveguide lasers is ∼200  mW with a slope efficiency of 33.4%.

  6. Diversity dynamics in Nymphalidae butterflies: effect of phylogenetic uncertainty on diversification rate shift estimates.

    PubMed

    Peña, Carlos; Espeland, Marianne

    2015-01-01

    The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution.

  7. Electronic tunability of zero dispersion wavelengths in a spiral photonic crystal fiber for supercontinuum generation in the communication window

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Nazmul; Alam, M. Shah; Mohsin, K. M.; Hasan, Dihan Md. Nuruddin

    2011-08-01

    A liquid crystal infiltrated spiral photonic crystal fiber (LCSPCF) is presented here for electrical tuning of two zero dispersion wavelengths (ZDWs) in the present communication window. The proposed LCSPCF shows tunability of the ZDWs from 1433 nm to 2136 nm due to the rotation of the infiltrated LC mesogen induced by the external electric field. Therefore, the ZDW can easily be shifted towards the available pump wavelength for effective supercontinuum generation (SCG) over a broad wavelength region. By tuning the bandwidth (BW) in between the two ZDWs the extension of the generated supercontinuum (SC) spectrum can also be electrically controlled. This will help the SCG in our desired band with optimum power budget. Moreover, the index guiding mechanism of the proposed soft glass LCSPCF shows improvement over the narrow operational bandwidth and the low nonlinearity of the band-gap guided silica LCPCF. Additionally, the solid core of the proposed LCSPCF is less lossy than the previously proposed liquid crystal core PCF.

  8. An excitation wavelength-scanning spectral imaging system for preclinical imaging

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Rajwa, Bartek; Robinson, J. Paul

    2008-02-01

    Small-animal fluorescence imaging is a rapidly growing field, driven by applications in cancer detection and pharmaceutical therapies. However, the practical use of this imaging technology is limited by image-quality issues related to autofluorescence background from animal tissues, as well as attenuation of the fluorescence signal due to scatter and absorption. To combat these problems, spectral imaging and analysis techniques are being employed to separate the fluorescence signal from background autofluorescence. To date, these technologies have focused on detecting the fluorescence emission spectrum at a fixed excitation wavelength. We present an alternative to this technique, an imaging spectrometer that detects the fluorescence excitation spectrum at a fixed emission wavelength. The advantages of this approach include increased available information for discrimination of fluorescent dyes, decreased optical radiation dose to the animal, and ability to scan a continuous wavelength range instead of discrete wavelength sampling. This excitation-scanning imager utilizes an acousto-optic tunable filter (AOTF), with supporting optics, to scan the excitation spectrum. Advanced image acquisition and analysis software has also been developed for classification and unmixing of the spectral image sets. Filtering has been implemented in a single-pass configuration with a bandwidth (full width at half maximum) of 16nm at 550nm central diffracted wavelength. We have characterized AOTF filtering over a wide range of incident light angles, much wider than has been previously reported in the literature, and we show how changes in incident light angle can be used to attenuate AOTF side lobes and alter bandwidth. A new parameter, in-band to out-of-band ratio, was defined to assess the quality of the filtered excitation light. Additional parameters were measured to allow objective characterization of the AOTF and the imager as a whole. This is necessary for comparing the

  9. Implications of solar p-mode frequency shifts

    NASA Technical Reports Server (NTRS)

    Goldreich, Peter; Murray, Norman; Willette, Gregory; Kumar, Pawan

    1991-01-01

    An expression is derived that relates solar p-mode frequency shifts to changes in the entropy and magnetic field of the sun. The frequency variations result from changes in path length and propagation speed. Path length changes dominate for entropy perturbations, and propagation speed changes dominate for most types of magnetic field peturbations. The p-mode frequencies increased along with solar activity between 1986 and 1989; these frequency shifts exhibited a rapid rise with increasing frequency followed by a precipitous drop. The positive component of the shifts can be accounted for by variations of the mean square magnetic field strength in the vicinity of the photosphere. The magnetic stress perturbation decays above the top of the convection zone on a length scale comparable to the pressure scale height and grows gradually with depth below. The presence of a resonance in the chromospheric cavity means that the transition layer maintains enough coherence to partially reflect acoustic waves even near cycle maximum.

  10. Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths.

    PubMed

    García-Meca, C; Ortuño, R; Salvador, R; Martínez, A; Martí, J

    2007-07-23

    We present a structure exhibiting a negative index of refraction at visible or near infrared frequencies using a single metal layer. This contrasts with recently developed structures based on metal-dielectric-metal composites. The proposed metamaterial consists of periodically arranged thick stripes interacting with each other to give rise to a negative permeability. Improved designs that allow for a negative index for both polarizations are also presented. The structures are numerically analyzed and it is shown that the dimensions can be engineered to shift the negative index band within a region ranging from telecommunication wavelengths down to blue light.

  11. Multiple wavelength light collimator and monitor

    NASA Technical Reports Server (NTRS)

    Gore, Warren J. (Inventor)

    2011-01-01

    An optical system for receiving and collimating light and for transporting and processing light received in each of N wavelength ranges, including near-ultraviolet, visible, near-infrared and mid-infrared wavelengths, to determine a fraction of light received, and associated dark current, in each wavelength range in each of a sequence of time intervals.

  12. Porosity localizing instability in a compacting porous layer in a pure shear flow and the evolution of porosity band wavelength

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2010-09-01

    A porosity localizing instability occurs in compacting porous media that are subjected to shear if the viscosity of the solid matrix decreases with porosity ( Stevenson, 1989). This instability may have significant consequences for melt transport in regions of partial melt in the mantle and may significantly modify the effective viscosity of the asthenosphere ( Kohlstedt and Holtzman, 2009). Most analyses of this instability have been carried out assuming an imposed simple shear flow (e.g., Spiegelman, 2003; Katz et al., 2006; Butler, 2009). Pure shear can be realized in laboratory experiments and studying the instability in a pure shear flow allows us to test the generality of some of the results derived for simple shear and the flow pattern for pure shear more easily separates the effects of deformation from rotation. Pure shear flows may approximate flows near the tops of mantle plumes near earth's surface and in magma chambers. In this study, we present linear theory and nonlinear numerical model results for a porosity and strain-rate weakening compacting porous layer subjected to pure shear and we investigate the effects of buoyancy-induced oscillations. The linear theory and numerical model will be shown to be in excellent agreement. We will show that melt bands grow at the same angles to the direction of maximum compression as in simple shear and that buoyancy-induced oscillations do not significantly inhibit the porosity localizing instability. In a pure shear flow, bands parallel to the direction of maximum compression increase exponentially in wavelength with time. However, buoyancy-induced oscillations are shown to inhibit this increase in wavelength. In a simple shear flow, bands increase in wavelength when they are in the orientation for growth of the porosity localizing instability. Because the amplitude spectrum is always dominated by bands in this orientation, band wavelengths increase with time throughout simple shear simulations until the

  13. Application of concentrating plasmonic luminescent down-shifting layers for photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Rafiee, M.; Chandra, S.; Sethi, A.; McCormack, S. J.

    2017-02-01

    In this paper, concentrating structures of plasmonic luminescent downshifting composite layers (c-pLDS) containing lumogen yellow dye and silver nanoparticles (Ag NPs) to increase the efficiency of Photovoltaic (PV) devices were investigated. The c-pLDS structures allowed for a wider absorption range of both wavelength shifting and light concentration with a strong energy transfer that red shifts photons to wavelengths which gives greater spectral response of solar cells. The optimum dye concentration in a poly(methyl,methacrylate) polymer of a thin layer 10μm spin coated on glass substrate was established. Subsequently, plasmonic coupling with Ag NPs was introduced for the c-pLDS composite structures. Plasmonic coupling has been observed to produce fluorescence emission enhancement of up to 20% for the dye c-pLDS layer. The c-pLDS layer was modelled for CdTe mini modules (15x15 cm) and compared with a blank PMMA/GLASS and dye c-LDS structure. It has been demonstrated that the addition of c-pLDS layers containing lumogen yellow dye increases the optical efficiency and the Short circuit current (Jsc) of CdTe solar cells. An increase of 7.3% in the optical efficiency has been achieved and a 30% in the Jsc was obtained when a c-pLDS composite layer is used.

  14. The characterization of GH shifts of surface plasmon resonance in a waveguide using the FDTD method.

    PubMed

    Oh, Geum-Yoon; Kim, Doo Gun; Choi, Young-Wan

    2009-11-09

    We have explicated the Goos-Hänchen (GH) shift in a mum-order Kretchmann-Raether configuration embedded in an optical waveguide structure by using the finite-difference time-domain method. For optical waveguide-type surface plasmon resonance (SPR) devices, the precise derivation of the GH shift has become critical. Artmann's equation, which is accurate enough for bulk optics, is difficult to apply to waveguide-type SPR devices. This is because Artmann's equation, based on the differentiation of the phase shift, is inaccurate at the critical and resonance angles where drastic phase changes occur. In this study, we accurately identified both the positive and the negative GH shifts around the incidence angle of resonance. In a waveguide-type Kretchmann-Raether configuration with an Au thin film of 50 nm, positive and negative lateral shifts of -0.75 and + 1.0 microm are obtained on the SPR with the incident angles of 44.4 degrees and 47.5 degrees, respectively, at a wavelength of 632.8 nm.

  15. Phase shifting interferometry based on a vibration sensor - feasibility study on elimination of the depth degeneracy

    NASA Astrophysics Data System (ADS)

    Lee, Seung Seok; Kim, Ju Ha; Choi, Eun Seo

    2017-04-01

    We proposed novel phase-shifting interferometry using a fiber-optic vibration sensor. The Doppler shift in the coiled fiber caused by vibrations can be used to detect the vibrations by using a fiber-optic interferometer. The principle can be applied to induce phase shifts. While applying vibrations to the coiled fiber at various vibration frequencies, we recorded the variations in the interference fringes. The interference fringe moved to longer wavelengths when a vibration frequency was increased from 38.00 to 38.40 kHz. Phase variations of 3.59 rad/kHz were obtained. The ability to accurately control the phase by using the vibrations in the coiled fiber was demonstrated by the elimination of the depth degeneracy using the complex signal generated by the phase-shifted interference fringes. Using vibrations to control phase shifting can be an acceptable alternative to conventional methods and can be applied to resolve the depth ambiguity in Fourier domain optical coherence tomography.

  16. Wavelength-versatile optical vortex lasers

    NASA Astrophysics Data System (ADS)

    Omatsu, Takashige; Miyamoto, Katsuhiko; Lee, Andrew J.

    2017-12-01

    The unique properties of optical vortex beams, in particular their spiral wavefront, have resulted in the emergence of a wide range of unique applications for this type of laser output. These applications include optical tweezing, free space optical communications, microfabrication, environmental optics, and astrophysics. However, much like the laser in its infancy, the adaptation of this type of laser output requires a diversity of wavelengths. We report on recent progress on development of optical vortex laser sources and in particular, focus on their wavelength extension, where nonlinear optical processes have been used to generate vortex laser beams with wavelengths which span the ultraviolet to infrared. We show that nonlinear optical conversion can be used to not only diversify the output wavelength of these sources, but can be used to uniquely engineer the wavefront and spatial properties of the laser output.

  17. Study of field shifts of Ramsey resonances on ultracold atoms and ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabatchikova, K. S., E-mail: k.tabatchikova@gmail.com; Taichenachev, A. V.; Dmitriev, A. K.

    2015-02-15

    The effect of the finite laser radiation line width and spontaneous relaxation of levels on the efficiency of the suppression of the field shift of the central resonance for the generalized Ramsey scheme with pulses of different lengths and with a phase jump in the second pulse has been considered. The optimal parameters of the scheme corresponding to the minimum frequency shift and maximum amplitude of the resonance have been determined.

  18. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.

    2017-10-01

    We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.

  19. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana I.; Bhowmich, Aklant K.; Dell, Zachary R.; Pandian, Arun; Stanic, Milos; Stellingwerf, Robert F.; Swisher, Nora C.

    2017-11-01

    We focus on classical problem of dependence on the initial conditions of the initial growth-rate of strong shocks driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics (SPH) simulations to describe the simulations data with statistical confidence in a broad parameter regime. For given values of the shock strength, fluids' density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio, and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data. National Science Foundation, USA.

  20. Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength

    NASA Astrophysics Data System (ADS)

    Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.

    2014-05-01

    Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.

  1. Mid-depth temperature maximum in an estuarine lake

    NASA Astrophysics Data System (ADS)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~< 2 m), transparent water, daytime maximum of wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  2. Moiré phase-shifted fiber Bragg gratings in polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Min, Rui; Marques, Carlos; Bang, Ole; Ortega, Beatriz

    2018-03-01

    We demonstrate a simple way to fabricate phase-shifted fiber Bragg grating in polymer optical fibers as a narrowband transmission filter for a variety of applications at telecom wavelengths. The filters have been fabricated by overlapping two uniform fiber Bragg gratings with slightly different periods to create a Moiré grating with only two pulses (one pulse is 15 ns) of UV power. Experimental characterization of the filter is provided under different conditions where the strain and temperature sensitivities were measured.

  3. Wavelength-switchable and stable-ring-cavity, erbium-doped fiber laser based on Mach-Zehnder interferometer and tunable filter

    NASA Astrophysics Data System (ADS)

    He, Wei; Zhu, Lianqing; Dong, Mingli; Lou, Xiaoping; Luo, Fei

    2018-04-01

    This paper proposes and tests a ring cavity-based, erbium-doped fiber laser that incorporates a Mach-Zehnder interferometer and tunable filter. A four-m-long erbium-doped fiber was selected as the gain medium. The all-fiber Mach-Zehnder interferometer was composed of two 2  ×  2 optical couplers, and the tunable filter was used as wavelength reflector. A lasing threshold of 103 mW was used in the experiment, and the tunable laser with stable single and dual wavelengths was implemented by adjusting the tunable filter. The channel spacing was 0.6 nm within the range 1539.4-1561.6 nm, where the power difference between the lines was less than 0.4 dB. The side-mode suppression ratio was higher than 36 dB and the 3 dB linewidth was 0.02 nm. When a single-wavelength laser was implemented at 1557.4 nm, the power fluctuations were lower than 0.34 dB within 20 min of scan time. When lasers at wavelengths of 1558.6 nm and 1559.2 nm were simultaneously applied, the power shifts were lower than 0.29 dB and 0.43 dB, respectively, at room temperature.

  4. Changes in the optical absorption induced by sequential exposition to short- and long-wavelength radiation in the BTO:Al crystal

    NASA Astrophysics Data System (ADS)

    Shandarov, S. M.; Dyu, V. G.; Kisteneva, M. G.; Khudyakova, E. S.; Smirnov, S. V.; Akrestina, A. S.; Kargin, Yu F.

    2017-02-01

    Modifications of the spectral dependences of the optical absorption induced in the Bi12TiO20:Al crystal as a result of sequential exposition to cw laser radiation first with the wavelength λ g = 532 nm and then with the longer wavelength λ l,n = 588, 633, 655, 658, 663, 700, 780, 871, or 1064 nm are investigated. We revealed that after the short-wavelength exposition to radiation with λg = 532 nm, the optical absorption in the crystal increases, and in the range 470-1000 nm, yields the spectrum whose form is independent of a prehistory. The subsequent exposition to longer-wavelength radiation leads to bleaching of the crystal in the examined spectral range. A maximum diminishing of the optical absorption in the crystal is observed upon exposure to radiation with the wavelength λ l,5 = 663 nm. To describe the experimentally observed reversible changes in the optical absorption spectrum in the Bi12TiO20:Al we use the impurity absorption model that takes into account the photoinduced transitions between two metastable states of a deep defect center leading to the change of its position in the crystal lattice under conditions of strong lattice relaxation.

  5. Path length dependent neutron diffraction peak shifts observed during residual strain measurements in U–8 wt% Mo castings

    DOE PAGES

    Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...

    2017-05-16

    This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less

  6. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.

    PubMed

    Kim, Dae Geun; Lee, Changsu; Park, Seung-Moon; Choi, Yoon-E

    2014-05-01

    LEDs light offer several advantages over the conventional lamps, thereby being considered as the optimal light sources for microalgal cultivation. In this study, various light-emitting diodes (LEDs) especially red and blue color with different light wavelengths were employed to explore the effects of light source on phototrophic cultivation of Chlorella vulgaris. Blue light illumination led to significantly increased cell size, whereas red light resulted in small-sized cell with active divisions. Based on the discovery of the effect of light wavelengths on microalgal biology, we then applied appropriate wavelength at different growth stages; blue light was illuminated first and then shifted to red light. By doing so, biomass and lipid productivity of C. vulgaris could be significantly increased, compared to that in the control. These results will shed light on a novel approach using LED light for microalgal biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A modeling approach to investigate the sensitivity of plankton phenology to global change since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Kretschmer, K.; Kucera, M.; Schulz, M.

    2016-02-01

    Plankton phenology is a key aspect of ecosystem dynamics. Up to now, it is not known how sensitive this parameter is to environmental perturbations and what magnitude of change is conceivable under extreme climate change scenarios. For example, one could argue that the phenology of the dominant Arctic planktonic foraminifera species Neogloboquadrina pachyderma will only shift slightly recording the more or less delayed onset of spring ocean warming. This assumption can be tested by examining the likely phenology of this species in the fossil record. Although phenology is difficult to derive directly from proxies, it can be estimated for past periods by models. Here we use an ecosystem modeling approach to investigate seasonal variations of N. pachyderma since the Last Glacial Maximum (LGM) in the North Atlantic. The model implies that the phenology of N. pachyderma during the LGM and the ensuing Heinrich Event 1 shifted by several months from the modern situation with a maximum seasonal production occurring later in the year (i.e. boreal summer). In comparison with the fossil records our model performs well in reproducing the observed abundance patterns and range shifts in the studied species during the last glacial period. Hence, the predicted large (and partly no-analog) shifts in the phenology of N. pachyderma are a plausible scenario. For instance, its maximum growth during Heinrich Event 1 in a region northeast of Newfoundland occurred during a part of the season where this species never peaks anywhere in the North Atlantic at present. Understanding the drivers of this change and knowing the potential adaptive space of phenology shifts are essential in predictions of plankton response to future global change scenarios.

  8. 50 Gb/s NRZ and 4-PAM data transmission over OM5 fiber in the SWDM wavelength range

    NASA Astrophysics Data System (ADS)

    Agustin, M.; Ledentsov, N.; Kropp, J.-R.; Shchukin, V. A.; Kalosha, V. P.; Chi, K. L.; Khan, Z.; Shi, J. W.; Ledentsov, N. N.

    2018-02-01

    The development of advanced OM5 wideband multimode fiber (WBMMF) allowing high modal bandwidth in the spectral range 840-950 nm motivates research in vertical-cavity-surface-emitting-lasers (VCSELs) at wavelengths beyond the previously accepted for short reach communications. Thus, short wavelength division multiplexing (SWDM) solutions can be implemented as a strategy to satisfy the increasing demand of data rate in datacenter environments. As an alternative solution to 850 nm parallel links, four wavelengths with 30 nm separation between 850 nm and 940 nm can be multiplexed on a single OM5-MMF, so the number of fibers deployed is reduced by a factor of four. In this paper high speed transmission is studied for VCSELs in the 850 nm - 950 nm range. The devices had a modulating bandwidth of 26-28 GHz. 50 Gb/s non-return-to-zero (NRZ) operation is demonstrated at each wavelength without preemphasis and equalization, with bit-error-rate (BER) below 7% forward error correction (FEC) threshold. Furthermore, the use of single-mode VCSELs (SM-VCSELs) as a way to mitigate the effects of chromatic dispersions in order to extend the maximum transmission distance over OM5 is explored. Analysis of loss as a function of wavelength in OM5 fiber is also performed. Significant decrease is observed, from 2.2 dB/km to less than 1.7 dB/km at 910 nm wavelength of the VCSEL.

  9. Impact of the wetting layer thickness on the emission wavelength of direct band gap GeSn/Ge quantum dots

    NASA Astrophysics Data System (ADS)

    Ilahi, Bouraoui; Al-Saigh, Reem; Salem, Bassem

    2017-07-01

    The effects of the wetting layer thickness (t WL) on the electronic properties of direct band gap type-I strained dome shaped Ge(1-x)Sn x quantum dot (QD) embedded in Ge matrix is numerically studied. The emission wavelength and the energy difference between S and P electron levels have been evaluated as a function of t WL for different QD size and composition with constant height to diameter ratio. The emission wavelength is found to be red shifted by increasing the wetting layer thickness, with smaller size QD being more sensitive to the variation of t WL. Furthermore, the minimum Sn composition required to fit the directness criteria is found to reduce by increasing the wetting layer thickness.

  10. AWG Filter for Wavelength Interrogator

    NASA Technical Reports Server (NTRS)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor); Faridian, Fereydoun (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  11. Heterochronic opsin expression due to early light deprivation results in drastically shifted visual sensitivity in a cichlid fish: Possible role of thyroid hormone signaling.

    PubMed

    Karagic, Nidal; Härer, Andreas; Meyer, Axel; Torres-Dowdall, Julián

    2018-06-14

    During early ontogeny, visual opsin gene expression in cichlids is influenced by prevailing light regimen. Red light, for example, leads to an early switch from the expression of short-wavelength sensitive to long-wavelength sensitive opsins. Here, we address the influence of light deprivation on opsin expression. Individuals reared in constant darkness during the first 14 days post-hatching (dph) showed a general developmental delay compared with fish reared under a 12:12 hr light-dark cycle (control group). Several characters including pigmentation patterns and eye development, appeared later in dark-reared individuals. Quantitative real-time PCR and fluorescent in situ hybridization at six time points during the 14 days period revealed that fish from the control group expressed opsin genes from 5 dph on and maintained a short-wavelength sensitive phenotype (sws1, rh2b, and rh2a). Onset of opsin expression in dark-reared Midas cichlids was delayed by 4 days and visual sensitivity rapidly progressed toward a long-wavelength sensitive phenotype (sws2b, rh2a, and lws). Shifts in visual sensitivities toward longer wavelengths are mediated by thyroid hormone (TH) in many vertebrates. Compared to control fish, dark-reared individuals showed elevated dio3 expression levels - a validated proxy for TH concentration - suggesting higher circulating TH levels. Despite decelerated overall development, ontogeny of opsin gene expression was accelerated, resulting in retinae with long-wavelength shifted predicted sensitivities compared to light-reared individuals. Indirect evidence suggests that this was due to altered TH metabolism. © 2018 Wiley Periodicals, Inc.

  12. Diversity Dynamics in Nymphalidae Butterflies: Effect of Phylogenetic Uncertainty on Diversification Rate Shift Estimates

    PubMed Central

    Peña, Carlos; Espeland, Marianne

    2015-01-01

    The species rich butterfly family Nymphalidae has been used to study evolutionary interactions between plants and insects. Theories of insect-hostplant dynamics predict accelerated diversification due to key innovations. In evolutionary biology, analysis of maximum credibility trees in the software MEDUSA (modelling evolutionary diversity using stepwise AIC) is a popular method for estimation of shifts in diversification rates. We investigated whether phylogenetic uncertainty can produce different results by extending the method across a random sample of trees from the posterior distribution of a Bayesian run. Using the MultiMEDUSA approach, we found that phylogenetic uncertainty greatly affects diversification rate estimates. Different trees produced diversification rates ranging from high values to almost zero for the same clade, and both significant rate increase and decrease in some clades. Only four out of 18 significant shifts found on the maximum clade credibility tree were consistent across most of the sampled trees. Among these, we found accelerated diversification for Ithomiini butterflies. We used the binary speciation and extinction model (BiSSE) and found that a hostplant shift to Solanaceae is correlated with increased net diversification rates in Ithomiini, congruent with the diffuse cospeciation hypothesis. Our results show that taking phylogenetic uncertainty into account when estimating net diversification rate shifts is of great importance, as very different results can be obtained when using the maximum clade credibility tree and other trees from the posterior distribution. PMID:25830910

  13. Spontaneous and stimulated emission spectroscopy of a Nd(3+)-doped phosphate glass under wavelength selective pumping.

    PubMed

    Iparraguirre, I; Azkargorta, J; Balda, R; Venkata Krishnaiah, K; Jayasankar, C K; Al-Saleh, M; Fernández, J

    2011-09-26

    The influence of the host matrix on the spectroscopic and laser properties of Nd(3+) in a K-Ba-Al phosphate glass has been investigated as a function of rare-earth concentration. Site-selective time resolved laser spectroscopy and stimulated emission experiments under selective wavelength laser pumping show the existence of a very complex crystal field site distribution of Nd(3+) ions in this glass. The peak of the broad stimulated (4)F(3/2)→(4)I(11/2) emission shifts in a non monotonous way up to 3 nm as a function of the excitation wavelength. This behavior can be explained by the relatively moderate inter-site energy transfer among Nd(3+) ions found in this system and measured by using fluorescence line narrowing spectroscopy. The best slope efficiency obtained for the laser emission was 40%. © 2011 Optical Society of America

  14. Improved wavelengths for Fe V and Ni V for analysis of spectra of white dwarf stellar stars

    NASA Astrophysics Data System (ADS)

    Ward, Jacob; Nave, Gillian

    2015-08-01

    A recent paper by J.C. Berengut et al. tests for a potential variation in the fine-structure constant, α, in the presence of a high gravitational field through spectral analysis of white-dwarf stars. The spectrum of G191-B2B has prominent Fe V and Ni V lines in the vacuum ultraviolet (VUV) region that were used to determine any variation in α via observed shifts in their wavelengths. Although no strong evidence for a variation was found, the authors did find a difference between values obtained for Fe V and Ni V that were indicative of a problem with the laboratory wavelengths. The laboratory wavelengths dominate the uncertainty of the measured variation, so improved values would tighten the constraints on the variation of α.We have re-measured the spectra of Fe V and Ni V spectra in the VUV in order to reduce the wavelength uncertainties and put the two spectra on a consistent wavelength scale. The spectra were produced by a sliding spark light source with electrodes made of invar, an iron nickel alloy. Spectra of Fe V and Ni V were obtained using peak currents of 750-2000 A. The spectra were recorded using the NIST Normal Incidence Vacuum Spectrograph with phosphor image plates and photographic plates as detectors. Wavelengths from 1100 Å to 1800 Å were covered in a single exposure. A spectrum of a Pt/Ne hollow cathode lamp was also recorded for wavelength calibration.The spectra recorded on photographic plates are better resolved than the phosphor image plate spectra and are being measured in two ways. The first measures the positions of the spectral lines on a comparator, traditionally used to measure many archival spectra at NIST. The second uses a commercial image scanner to obtain a digital image of the plate that can be analyzed using line fitting software. Preliminary analysis of these spectra indicates that the literature values of the Fe V and Ni V wavelengths are not on the same scale and differ from our new measurements by up to 0.02 Å in some

  15. Computer simulation of position and maximum of linear polarization of asteroids

    NASA Astrophysics Data System (ADS)

    Petrov, Dmitry; Kiselev, Nikolai

    2018-01-01

    The ground-based observations of near-Earth asteroids at large phase angles have shown some feature: the linear polarization maximum position of the high-albedo E-type asteroids shifted markedly towards smaller phase angles (αmax ≈ 70°) with respect to that for the moderate-albedo S-type asteroids (αmax ≈ 110°), weakly depending on the wavelength. To study this phenomenon, the theoretical approach and the modified T-matrix method (the so-called Sh-matrices method) were used. Theoretical approach was devoted to finding the values of αmax, corresponding to maximal values of positive polarization Pmax. Computer simulations were performed for an ensemble of random Gaussian particles, whose scattering properties were averaged over with different particle orientations and size parameters in the range X = 2.0 ... 21.0, with the power law distribution X - k, where k = 3.6. The real parts of the refractive index mr were 1.5, 1.6 and 1.7. Imaginary part of refractive index varied from mi = 0.0 to mi = 0.5. Both theoretical approach and computer simulation showed that the value of αmax strongly depends on the refractive index. The increase of mi leads to increased αmax and Pmax. In addition, computer simulation shows that the increase of the real part of the refractive index reduces Pmax. Whereas E-type high-albedo asteroids have smaller values of mi, than S -type asteroids, we can conclude, that value of αmax of E-type asteroids should be smaller than for S -type ones. This is in qualitative agreement with the observed effect in asteroids.

  16. Phase-Shifted Laser Feedback Interferometry

    NASA Technical Reports Server (NTRS)

    Ovryn, Benjie

    1999-01-01

    Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.

  17. Wavelength-Division Multiplexing Of Bipolar Digital Signals

    NASA Technical Reports Server (NTRS)

    Gibbons, Ronnie D.; Ubele, John L., II

    1994-01-01

    In system, bipolar digital data transmitted by use of wavelength-division multiplexing on single optical fiber. Two different wavelengths used to transmit pulses signifying "positive" or "negative" bipolar digital data. Simultaneous absence of pulses at both wavelengths signifies digital "zero."

  18. A programmable optical few wavelength source for flexgrid optical networks

    NASA Astrophysics Data System (ADS)

    Imran, M.; Fresi, F.; Meloni, G.; Bhowmik, B. B.; Sambo, N.; Potì, L.

    2016-07-01

    Multi-wavelength (MW) sources will probably replace discrete lasers or laser arrays in next generation multi-carrier transponders (e.g., 1 Tb/s), currently called multi-flow transponders or sliceable bandwidth variable transponders (SBVTs). We present design and experimental demonstration of a few wavelength (FW) source suitable for SBVTs in a flexgrid scenario. We refer to FW instead of MW since for an SBVT just few subcarriers are required (e.g., eight). The proposed FW source does not require optical filtering for subcarrier modulation. The design exploits frequency shifting in IQ modulators by using single side band suppressed carrier modulation. A reasonable number of lines can be provided depending on the chosen architecture, tunable in the whole C-band. The scheme is also capable of providing symmetric (equally spaced) and asymmetric subcarrier spacing arbitrarily tunable from 6.25 GHz to 37.5 GHz. The control on the number of subcarriers (increase/decrease depending on line rate) provides flexibility to the SBVT, being the spacing dependent on transmission parameters such as line rate or modulation format. Transmission performance has been tested and compared with an array of standard lasers considering a 480 Gb/s transmission for different carrier spacing. Additionally, an integrable solution based on complementary frequency shifter is also presented to improve scalability and costs. The impact on transceiver techno-economics and network performance is also discussed.

  19. Analysis of Fe V and Ni V Wavelength Standards in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Ward, Jacob Wolfgang; Nave, Gillian

    2015-01-01

    The recent publication[1] by J.C. Berengut et al. tests for a potential variation in the fine-structure constant in the presence of high gravitational potentials through spectral analysis of white-dwarf stars.The spectrum of the white-dwarf star studied in the paper, G191-B2B, has prominent Fe V and Ni V lines, which were used to determine any variation in the fine-structure constant via observed shifts in the wavelengths of Fe V and Ni V in the vacuum ultraviolet region. The results of the paper indicate no such variation, but suggest that refined laboratory values for the observed wavelengths could greatly reduce the uncertainty associated with the paper's findings.An investigation of Fe V and Ni V spectra in the vacuum ultraviolet region has been conducted to reduce wavelength uncertainties currently limiting modern astrophysical studies of this nature. The analyzed spectra were produced by a sliding spark light source with electrodes made of invar, an iron nickel alloy, at peak currents of 750-2000 A. The use of invar ensures that systematic errors in the calibration are common to both species. The spectra were recorded with the NIST Normal Incidence Vacuum Spectrograph on phosphor image plate and photographic plate detectors. Calibration was done with a Pt II spectrum produced by a Platinum Neon Hollow Cathode lamp.[1] J. C. Berengut, V. V. Flambaum, A. Ong, et al Phys. Rev. Lett. 111, 010801 (2013)

  20. Packaging of wavelength stabilized 976nm 100W 105µm 0.15 NA fiber coupled diode lasers

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaochen; Liu, Rui; Gao, Yanyan; Zhang, Tujia; He, Xiaoguang; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Zhang, Cuipeng

    2016-03-01

    Fiber coupled diode lasers are widely used in many fields now especially as pumps in fiber laser systems. In many fiber laser applications, high brightness pumps are essential to achieve high brightness fiber lasers. Furthermore, 976nm wavelength absorption band is narrow with Yb3+ doped fiber lasers which is more challenging for controlling wavelength stabilized in diode laser modules. This study designed and implemented commercial available high brightness and narrow wavelength width lasers to be able to use in previous mentioned applications. Base on multiple single emitters using spatial and polarization beam combining as well as fiber coupling techniques, we report a wavelength stabilized, 105μm NA 0.15 fiber coupled diode laser package with 100W of optical output power at 976 nm, which are 14 emitters inside each multiple single emitter module. The emitting aperture of the combined lasers output are designed and optimized for coupling light into a 105μm core NA 0.15 fiber. Volume Bragg grating technology has been used to improve spectral characteristics of high-power diode lasers. Mechanical modular design and thermal simulation are carried out to optimize the package. The spectral width is roughly 0.5 nm (FWHM) and the wavelength shift per °C < 0.02nm. The output spectrum is narrowed and wavelength is stabilized using Volume Bragg gratings (VBGs). The high brightness package has an electrical to optical efficiency better than 45% and power enclosure more than 90% within NA 0.12. Qualification tests have been included on this kind of package. Mechanical shock, vibration and accelerated aging tests show that the package is reliability and the MTTF is calculated to be more than 100k hours at 25°C.

  1. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.

    PubMed

    Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2017-09-01

    Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO 2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO 2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dual-wavelengths photoacoustic temperature measurement

    NASA Astrophysics Data System (ADS)

    Liao, Yu; Jian, Xiaohua; Dong, Fenglin; Cui, Yaoyao

    2017-02-01

    Thermal therapy is an approach applied in cancer treatment by heating local tissue to kill the tumor cells, which requires a high sensitivity of temperature monitoring during therapy. Current clinical methods like fMRI near infrared or ultrasound for temperature measurement still have limitations on penetration depth or sensitivity. Photoacoustic temperature sensing is a newly developed temperature sensing method that has a potential to be applied in thermal therapy, which usually employs a single wavelength laser for signal generating and temperature detecting. Because of the system disturbances including laser intensity, ambient temperature and complexity of target, the accidental errors of measurement is unavoidable. For solving these problems, we proposed a new method of photoacoustic temperature sensing by using two wavelengths to reduce random error and increase the measurement accuracy in this paper. Firstly a brief theoretical analysis was deduced. Then in the experiment, a temperature measurement resolution of about 1° in the range of 23-48° in ex vivo pig blood was achieved, and an obvious decrease of absolute error was observed with averagely 1.7° in single wavelength pattern while nearly 1° in dual-wavelengths pattern. The obtained results indicates that dual-wavelengths photoacoustic sensing of temperature is able to reduce random error and improve accuracy of measuring, which could be a more efficient method for photoacoustic temperature sensing in thermal therapy of tumor.

  3. Tunable optical filter based on Sagnac phase-shift using single optical ring resonator

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Asghari, Fatemeh

    2010-02-01

    In this paper, a single optical ring resonator connected to a Sagnac loop is used to demonstrate theoretically a novel narrow band optical filter response that is based on Sagnac phase-shift Δ φ. The given filter structure permits the Sagnac rotation to control the filter response. It is shown that by changing the Sagnac rotation rate, we can tune the filter response for desired bandwidths. To increase the wavelength selectivity of the filter, the Sagnac phase-shift should be as small as possible that is limited by the loop length. For Δ φ=0.1 rad, the obtained FWHM is 2.63 MHz for tuning loop length of 2 m. The simulation response agrees fairly with the recently reported experimental result.

  4. Evaluation of Wavelength Detuning to Mitigate Cross-Beam Energy Transfer Using the Nike Laser

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Marozas, J. A.; Weaver, J.; Obenschain, S. P.; Schmitt, A. J.

    2015-11-01

    Cross-beam energy transfer (CBET) has become a serious threat to the overall success of direct-drive experiments, and especially for polar-direct-drive (PDD) ignition experiments. CBET redirects incident laser light before it can be absorbed into the target, thereby degrading overall target performance. CBET is particularly detrimental over the equator of the target, which is hydrodynamically very sensitive to such losses in the PDD configuration. A promising solution uses laser wavelength detuning between beams to shift the resonance, thereby reducing the interaction cross section between them. Testing this process for direct drive is now underway at the Nike laser at the Naval Research Laboratory. Calculations evaluating the effect CBET has on the scattered-light signals indicate such an experiment will demonstrate the benefits of wavelength detuning for direct-drive implosions. Two-dimensional simulation results will be presented, predicting the effect for both spherical and cylindrical experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths.

    PubMed

    Porcel, Marco A G; Schepers, Florian; Epping, Jörn P; Hellwig, Tim; Hoekman, Marcel; Heideman, René G; van der Slot, Peter J M; Lee, Chris J; Schmidt, Robert; Bratschitsch, Rudolf; Fallnich, Carsten; Boller, Klaus-J

    2017-01-23

    We demonstrate supercontinuum generation in stoichiometric silicon nitride (Si3N4 in SiO2) integrated optical waveguides, pumped at telecommunication wavelengths. The pump laser is a mode-locked erbium fiber laser at a wavelength of 1.56 µm with a pulse duration of 120 fs. With a waveguide-internal pulse energy of 1.4 nJ and a waveguide with 1.0 µm × 0.9 µm cross section, designed for anomalous dispersion across the 1500 nm telecommunication range, the output spectrum extends from the visible, at around 526 nm, up to the mid-infrared, at least to 2.6 µm, the instrumental limit of our detection. This output spans more than 2.2 octaves (454 THz at the -30 dB level). The measured output spectra agree well with theoretical modeling based on the generalized nonlinear Schrödinger equation. The infrared part of the supercontinuum spectra shifts progressively towards the mid-infrared, well beyond 2.6 µm, by increasing the width of the waveguides.

  6. Near-field spectral shift of a zero-order Bessel beam scattered from a spherical particle

    NASA Astrophysics Data System (ADS)

    Chen, Feinan; Li, Jia; Belafhal, Abdelmajid; Chafiq, Abdelghani; Sun, Xiaobing

    2018-06-01

    Within the accuracy of the first-order Born approximation, expressions are derived for the near-zone spectrum of a zero-order Bessel beam scattered from a spherical particle whose correlation function satisfies a Gaussian distribution. The dependence of the spectral shift and spectral switch of the scattered field on the effective size of the scattering potential (ESSP) are determined by numerical simulations. It is shown that the spectral shift of the scattered field does not occur along the longitudinal propagation direction. Furthermore, when the medium’s ESSP is comparable with the central wavelength of the beam, the spectrum of the scattered field loses the Gaussian distribution and exhibits a blue shift as the reference point sufficiently far away from central origin. These results may have prospective applications in guiding tiny particles when the near-zone spectrums of scattered beams are captured and analyzed.

  7. Probabilistic classification method on multi wavelength chromatographic data for photosynthetic pigments identification

    NASA Astrophysics Data System (ADS)

    Prilianti, K. R.; Setiawan, Y.; Indriatmoko, Adhiwibawa, M. A. S.; Limantara, L.; Brotosudarmo, T. H. P.

    2014-02-01

    Environmental and health problem caused by artificial colorant encourages the increasing usage of natural colorant nowadays. Natural colorant refers to the colorant that is derivate from living organism or minerals. Extensive research topic has been done to exploit these colorant, but recent data shows that only 0.5% of the wide range of plant pigments in the earth has been exhaustively used. Hence development of the pigment characterization technique is an important consideration. High-performance liquid chromatography (HPLC) is a widely used technique to separate pigments in a mixture and identify it. In former HPLC fingerprinting, pigment characterization was based on a single chromatogram from a fixed wavelength (one dimensional) and discard the information contained at other wavelength. Therefore, two dimensional fingerprints have been proposed to use more chromatographic information. Unfortunately this method leads to the data processing problem due to the size of its data matrix. The other common problem in the chromatogram analysis is the subjectivity of the researcher in recognizing the chromatogram pattern. In this research an automated analysis method of the multi wavelength chromatographic data was proposed. Principal component analysis (PCA) was used to compress the data matrix and Maximum Likelihood (ML) classification was applied to identify the chromatogram pattern of the existing pigments in a mixture. Three photosynthetic pigments were selected to show the proposed method. Those pigments are β-carotene, fucoxanthin and zeaxanthin. The result suggests that the method could well inform the existence of the pigments in a particular mixture. A simple computer application was also developed to facilitate real time analysis. Input of the application is multi wavelength chromatographic data matrix and the output is information about the existence of the three pigments.

  8. Modal interactions between a large-wavelength inclined interface and small-wavelength multimode perturbations in a Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob A.; Reilly, David; Black, Wolfgang; Greenough, Jeffrey A.; Ranjan, Devesh

    2015-07-01

    The interaction of a small-wavelength multimodal perturbation with a large-wavelength inclined interface perturbation is investigated for the reshocked Richtmyer-Meshkov instability using three-dimensional simulations. The ares code, developed at Lawrence Livermore National Laboratory, was used for these simulations and a detailed comparison of simulation results and experiments performed at the Georgia Tech Shock Tube facility is presented first for code validation. Simulation results are presented for four cases that vary in large-wavelength perturbation amplitude and the presence of secondary small-wavelength multimode perturbations. Previously developed measures of mixing and turbulence quantities are presented that highlight the large variation in perturbation length scales created by the inclined interface and the multimode complex perturbation. Measures are developed for entrainment, and turbulence anisotropy that help to identify the effects of and competition between each perturbations type. It is shown through multiple measures that before reshock the flow processes a distinct memory of the initial conditions that is present in both large-scale-driven entrainment measures and small-scale-driven mixing measures. After reshock the flow develops to a turbulentlike state that retains a memory of high-amplitude but not low-amplitude large-wavelength perturbations. It is also shown that the high-amplitude large-wavelength perturbation is capable of producing small-scale mixing and turbulent features similar to the small-wavelength multimode perturbations.

  9. Vibrio azureus emits blue-shifted light via an accessory blue fluorescent protein.

    PubMed

    Yoshizawa, Susumu; Karatani, Hajime; Wada, Minoru; Kogure, Kazuhiro

    2012-04-01

    Luminous marine bacteria usually emit bluish-green light with a peak emission wavelength (λ(max) ) at about 490 nm. Some species belonging to the genus Photobacterium are exceptions, producing an accessory blue fluorescent protein (lumazine protein: LumP) that causes a blue shift, from λ(max)  ≈ 490 to λ(max)  ≈ 476 nm. However, the incidence of blue-shifted light emission or the presence of accessory fluorescent proteins in bacteria of the genus Vibrio has never been reported. From our spectral analysis of light emitted by 16 luminous strains of the genus Vibrio, it was revealed that most strains of Vibrio azureus emit a blue-shifted light with a peak at approximately 472 nm, whereas other Vibrio strains emit light with a peak at around 482 nm. Therefore, we investigated the mechanism underlying this blue shift in V. azureus NBRC 104587(T) . Here, we describe the blue-shifted light emission spectra and the isolation of a blue fluorescent protein. Intracellular protein analyses showed that this strain had a blue fluorescent protein (that we termed VA-BFP), the fluorescent spectrum of which was almost identical to that of the in vivo light emission spectrum of the strain. This result strongly suggested that VA-BFP was responsible for the blue-shifted light emission of V. azureus. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. A fluorescent 3,7-bis-(naphthalen-1-ylethynylated)-2'-deoxyadenosine analogue reports thymidine in complementary DNA by a large emission Stokes shift.

    PubMed

    Yanagi, Masaki; Suzuki, Azusa; Hudson, Robert H E; Saito, Yoshio

    2018-02-28

    The new environmentally responsive fluorescent nucleosides, 3,7-bis-(naphthalen-1-ylethynyl)-8-aza-3,7-dideaza-2'-deoxyadenosine (3n7nzA, 1) and 7-(naphthalen-1-ylethynyl)-8-aza-3,7-dideaza-2'-deoxyadenosine (37nzA, 2), have been synthesized. Both 3n7nzA (1) and 37nzA (2) possess large π-conjugated systems which extend into both the minor and major grooves or the major groove alone, respectively. The nucleosides exhibited large solvatochromic shifts (3n7nzA: Δλ = 45 nm, 37nzA: Δλ = 78 nm) and were examined for their ability to fluorimetrically report hybridization events. When incorporated into ODN probes, the bis-substituted 3n7nzA (1) selectively recognized thymidine on target strands which was reported by a distinct change in its emission wavelength in the long wavelength region, whereas 37nzA (2) showed a preference for pairing to cytidine and a smaller wavelength shift. Thus, 3n7nzA (1) has the potential for use as a fluorescent probe for structural studies of DNAs/RNAs including the detection of single-base alterations in target DNA sequences.

  11. Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust

    NASA Astrophysics Data System (ADS)

    Reissl, Stefan; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Pellegrini, Eric W.

    2018-03-01

    Aim. We aim to test the hypothesis that radiation pressure from young star clusters acting on dust is the dominant feedback agent disrupting the largest star-forming molecular clouds and thus regulating the star-formation process. Methods: We performed multi-frequency, 3D, radiative transfer calculations including both scattering and absorption and re-emission to longer wavelengths for model clouds with masses of 104-107 M⊙, containing embedded clusters with star formation efficiencies of 0.009-91%, and varying maximum grain sizes up to 200 μm. We calculated the ratio between radiative and gravitational forces to determine whether radiation pressure can disrupt clouds. Results: We find that radiation pressure acting on dust almost never disrupts star-forming clouds. Ultraviolet and optical photons from young stars to which the cloud is optically thick do not scatter much. Instead, they quickly get absorbed and re-emitted by the dust at thermal wavelengths. As the cloud is typically optically thin to far-infrared radiation, it promptly escapes, depositing little momentum in the cloud. The resulting spectrum is more narrowly peaked than the corresponding Planck function, and exhibits an extended tail at longer wavelengths. As the opacity drops significantly across the sub-mm and mm wavelength regime, the resulting radiative force is even smaller than for the corresponding single-temperature blackbody. We find that the force from radiation pressure falls below the strength of gravitational attraction by an order of magnitude or more for either Milky Way or moderate starbust conditions. Only for unrealistically large maximum grain sizes, and star formation efficiencies far exceeding 50% do we find that the strength of radiation pressure can exceed gravity. Conclusions: We conclude that radiation pressure acting on dust does not disrupt star-forming molecular clouds in any Local Group galaxies. Radiation pressure thus appears unlikely to regulate the star

  12. A fuzzy gear shifting strategy for manual transmissions

    NASA Astrophysics Data System (ADS)

    Mashadi, B.; Kazemkhani, A.

    2005-12-01

    Governing parameters in decision making for gear changing of an automated manual transmission are discussed based on two different criteria, namely engine working conditions and driver's intention. By taking into consideration the effects of these parameters, gear shifting strategy is designed with the application of Fuzzy control method. The controller structure is formed in two layers. In the first layer two fuzzy inference modules are used to determine necessary outputs. In second layer a fuzzy inference module makes the decision of shifting by up-shift, downshift or maintain commands. The quality of Fuzzy controller behavior is examined by making use of ADVISOR software. It is shown that at different driving conditions the controller makes correct decisions for gear shifting accounting for dynamical requirements of vehicle. It is also shown that the controller based on both engine state and driver's intention eliminates unnecessary shiftings that are present when the intention is ignored. A micro-trip is designed in which a required speed in the form of a step function is demanded for the vehicle. Starting from rest both strategies change the gear to reach maximum speed more or less in a similar fashion. In deceleration phase, however, large differences are observed between the two strategies. The engine-state strategy is less sensitive to downshift, taking even unnecessary up shift decisions. The state-intention strategy, however, correctly interprets the driver's intention for decreasing speed and utilizes engine brake torque to reduce vehicle speed in a shorter time.

  13. Tunable terahertz waves from 4-dimethylamino-N‧-methyl-4‧-stibazolium tosylate pumped with dual-wavelength injection-seeded optical parametric generation

    NASA Astrophysics Data System (ADS)

    Tokizane, Yu; Nawata, Kouji; Han, Zhengli; Koyama, Mio; Notake, Takashi; Takida, Yuma; Minamide, Hiroaki

    2017-02-01

    We developed a widely tunable terahertz (THz)-wave source covering the sub-THz frequency by difference frequency generation using a 4-dimethylamino-N‧-methyl-4‧-stibazolium tosylate (DAST) crystal. Near-infrared waves generated by dual-wavelength injection-seeded β-BaB2O4 optical parametric generation (is-BBO-OPG) were used for pumping the DAST crystal, which had separated wavelengths in the spectrum with a difference frequency of sub-THz. Furthermore, the non-collinear phase-matching condition was designed to compensate the walk-off effect of the BBO crystal. Consequently, tunable THz-waves from 0.3 to 4 THz were generated by tuning the wavelength of one of the seeding beams. The generated sub-THz-waves were monochromatic (dν < 33 GHz) with a maximum energy of 80 pJ at 0.65 THz.

  14. Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors

    NASA Astrophysics Data System (ADS)

    Balaji, K. A.; Prabu, K.

    2018-03-01

    There is an immense demand for high bandwidth and high data rate systems, which is fulfilled by wireless optical communication or free space optics (FSO). Hence FSO gained a pivotal role in research which has a added advantage of both cost-effective and licence free huge bandwidth. Unfortunately the optical signal in free space suffers from irradiance and phase fluctuations due to atmospheric turbulence and pointing errors which deteriorates the signal and degrades the performance of communication system over longer distance which is undesirable. In this paper, we have considered polarization shift keying (POLSK) system applied with wavelength and time diversity technique over Malaga(M)distribution to mitigate turbulence induced fading. We derived closed form mathematical expressions for estimating the systems outage probability and average bit error rate (BER). Ultimately from the results we can infer that wavelength and time diversity schemes enhances these systems performance.

  15. Enhancing the blue shift of SHG signal in GaSe:B/Ce crystal

    NASA Astrophysics Data System (ADS)

    Karatay, Ahmet; Yuksek, Mustafa; Ertap, Hüseyin; Elmali, Ayhan; Karabulut, Mevlut

    2018-02-01

    The influence of Ce3+ on the wavelength of second harmonic generation (SHG) signal in boron doped GaSe crystals have been investigated. We found that by substitution of Ce3+ with B3+, SHG signal shifted to lower wavelength. In addition, the nonlinear absorption (NA) properties and ultrafast dynamics of pure, 1 at.% B3+ and 0.5 at.% B3++ 0.5 at.% Ce3+ doped GaSe crystals have been studied by open aperture Z-scan and ultrafast pump probe spectroscopy techniques. From the open aperture Z-scan experiments we observed that all of the crystals showed nonlinear absorption (NA). However, pump-probe experiments revealed that when GaSe crystal is doped, the NA signal turns into a bleaching signal with different lifetimes depending on the type and concentration of the dopant atoms.

  16. A new method for detecting velocity shifts and distortions between optical spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Tyler M.; Murphy, Michael T., E-mail: tevans@astro.swin.edu.au

    2013-12-01

    Recent quasar spectroscopy from the Very Large Telescope (VLT) and Keck suggests that fundamental constants may not actually be constant. To better confirm or refute this result, systematic errors between telescopes must be minimized. We present a new method to directly compare spectra of the same object and measure any velocity shifts between them. This method allows for the discovery of wavelength-dependent velocity shifts between spectra, i.e., velocity distortions, that could produce spurious detections of cosmological variations in fundamental constants. This 'direct comparison' method has several advantages over alternative techniques: it is model-independent (cf. line-fitting approaches), blind, in that spectralmore » features do not need to be identified beforehand, and it produces meaningful uncertainty estimates for the velocity shift measurements. In particular, we demonstrate that, when comparing echelle-resolution spectra with unresolved absorption features, the uncertainty estimates are reliable for signal-to-noise ratios ≳7 per pixel. We apply this method to spectra of quasar J2123–0050 observed with Keck and the VLT and find no significant distortions over long wavelength ranges (∼1050 Å) greater than ≈180 m s{sup –1}. We also find no evidence for systematic velocity distortions within echelle orders greater than 500 m s{sup –1}. Moreover, previous constraints on cosmological variations in the proton-electron mass ratio should not have been affected by velocity distortions in these spectra by more than 4.0 ± 4.2 parts per million. This technique may also find application in measuring stellar radial velocities in search of extra-solar planets and attempts to directly observe the expansion history of the universe using quasar absorption spectra.« less

  17. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  18. Multimode fiber optic wavelength division multiplexing

    NASA Technical Reports Server (NTRS)

    Spencer, J. L.

    1982-01-01

    Optical wavelength division multiplexing (WDM) systems, with signals transmitted on different wavelengths through a single optical fiber, can have increased bandwidth and fault isolation properties over single wavelength optical systems. Two WDM system designs that might be used with multimode fibers are considered and a general description of the components which could be used to implement the system are given. The components described are sources, multiplexers, demultiplexers, and detectors. Emphasis is given to the demultiplexer technique which is the major developmental component in the WDM system.

  19. Impulsive Raman spectroscopy via precision measurement of frequency shift with low energy excitation.

    PubMed

    Raanan, Dekel; Ren, Liqing; Oron, Dan; Silberberg, Yaron

    2018-02-01

    Stimulated Raman scattering (SRS) has recently become useful for chemically selective bioimaging. It is usually measured via modulation transfer from the pump beam to the Stokes beam. Impulsive stimulated Raman spectroscopy, on the other hand, relies on the spectral shift of ultrashort pulses as they propagate in a Raman active sample. This method was considered impractical with low energy pulses since the observed shifts are very small compared to the excitation pulse bandwidth, spanning many terahertz. Here we present a new apparatus, using tools borrowed from the field of precision measurement, for the detection of low-frequency Raman lines via stimulated-Raman-scattering-induced spectral shifts. This method does not require any spectral filtration and is therefore an excellent candidate to resolve low-lying Raman lines (<200  cm -1 ), which are commonly masked by the strong Rayleigh scattering peak. Having the advantage of the high repetition rate of the ultrafast oscillator, we reduce the noise level by implementing a lock-in detection scheme with a wavelength shift sensitivity well below 100 fm. This is demonstrated by the measurement of low-frequency Raman lines of various liquid samples.

  20. Short-wavelength infrared laser activates the auditory neurons: comparing the effect of 980 vs. 810 nm wavelength.

    PubMed

    Tian, Lan; Wang, Jingxuan; Wei, Ying; Lu, Jianren; Xu, Anting; Xia, Ming

    2017-02-01

    Research on auditory neural triggering by optical stimulus has been developed as an emerging technique to elicit the auditory neural response, which may provide an alternative method to the cochlear implants. However, most previous studies have been focused on using longer-wavelength near-infrared (>1800 nm) laser. The effect comparison of different laser wavelengths in short-wavelength infrared (SWIR) range on the auditory neural stimulation has not been previously explored. In this study, the pulsed 980- and 810-nm SWIR lasers were applied as optical stimuli to irradiate the auditory neurons in the cochlea of five deafened guinea pigs and the neural response under the two laser wavelengths was compared by recording the evoked optical auditory brainstem responses (OABRs). In addition, the effect of radiant exposure, laser pulse width, and threshold with the two laser wavelengths was further investigated and compared. The one-way analysis of variance (ANOVA) was used to analyze those data. Results showed that the OABR amplitude with the 980-nm laser is higher than the amplitude with the 810-nm laser under the same radiant exposure from 10 to 102 mJ/cm 2 . And the laser stimulation of 980 nm wavelength has lower threshold radiant exposure than the 810 nm wavelength at varied pulse duration in 20-500 μs range. Moreover, the 810-nm laser has a wider optimized pulse duration range than the 980-nm laser for the auditory neural stimulation.

  1. The Shifting Climate Portfolio of the Greater Yellowstone Area

    PubMed Central

    Sepulveda, Adam J.; Tercek, Michael T.; Al-Chokhachy, Robert; Ray, Andrew M.; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann W.; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change. PMID:26674185

  2. The shifting climate portfolio of the Greater Yellowstone Area

    USGS Publications Warehouse

    Sepulveda, Adam; Tercek, Mike T; Al-Chokhachy, Robert K.; Ray, Andrew; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change.

  3. A Limitation of the Applicability of Interval Shift Analysis to Program Evaluation

    ERIC Educational Resources Information Center

    Hardy, Roy

    1975-01-01

    Interval Shift Analysis (ISA) is an adaptation of the linear programming model used to determine maximum benefits or minimal losses in quantifiable economics problems. ISA is applied to pre and posttest score distributions for 43 classes of second graders. (RC)

  4. An Extrinsic Fabry-Perot Interferometric Sensor using Intermodal Phase Shifting and Demultiplexing of the Propagating Modes in a Few-Mode Fiber

    NASA Astrophysics Data System (ADS)

    Chatterjee, Julius

    This dissertation demonstrates a fiber-optic phase shifted Fabry-Perot interferometer (PS-FPI) as a sensor using modal demultiplexing. Single wavelength Fabry-Perot interferometers suffer from fringe ambiguity and loss of sensitivity at fringe extremes. These hindrances cause it to be a secondary choice when being selected for a measurement task at hand, and more often than not, white light based sensors are selected in favor of the single wavelength Fabry-Perot sensors. This work aims to introduce a technique involving the demultiplexing of the propagating linearly polarized (LP) modes in few mode fibers to obtain two fringe systems from the same sensing cavity. This results in a few-mode interferometer that effectively has two to three orders of magnitude higher perturbation sensitivity than a conventional few mode interferometer for the same sensing region. In this work, two different modal demultiplexing techniques (MD) are used to demodulate the propagating modes and to obtain two fringe sets. These output fringe sets are shifted in phase with respect to each other by a phase shift due to the propagation of the modes in the fiber-optic layout. A method of controlling this phase shift by straining a length of a two mode fiber located separate from the PS-FPI cavity is demonstrated and corresponding changes in phase shifts are shown. The results show a controllable phase shift for both the MD techniques, which is useful in sensing by permitting quadrature demodulation of interferometric fringes and also results in a novel few-mode sensing system having more than two orders of magnitude sensitivity than conventional few-mode devices.

  5. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Onck, Patrick R.

    2017-08-01

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015)., 10.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  6. Multiple wavelength tunable surface-emitting laser arrays

    NASA Astrophysics Data System (ADS)

    Chang-Hasnain, Connie J.; Harbison, J. P.; Zah, Chung-En; Maeda, M. W.; Florez, L. T.; Stoffel, N. G.; Lee, Tien-Pei

    1991-06-01

    Techniques to achieve wavelength multiplexing and tuning capabilities in vertical-cavity surface-emitting lasers (VCSELs) are described, and experimental results are given. The authors obtained 140 unique, uniformly separated, single-mode wavelength emissions from a 7 x 20 VCSEL array. Large total wavelength span (about 430 A) and small wavelength separation (about 3 A) are obtained simultaneously with uncompromised laser performance. All 140 lasers have nearly the same threshold currents, voltages, and resistances. Wavelength tuning is obtained by using a three-mirror coupled-cavity configuration. The three-mirror laser is a two-terminal device and requires only one top contact. Discrete tuning with a range as large as 61 A is achieved with a small change in drive current of only 10.5 mA. The VCSEL output power variation is within 5 dB throughout the entire tuning range.

  7. Valence-band-edge shift due to doping in p + GaAs

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-05-01

    Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.

  8. Compactly packaged monolithic four-wavelength VCSEL array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport.

    PubMed

    Lee, Eun-Gu; Mun, Sil-Gu; Lee, Sang Soo; Lee, Jyung Chan; Lee, Jong Hyun

    2015-01-12

    We report a cost-effective transmitter optical sub-assembly using a monolithic four-wavelength vertical-cavity surface-emitting laser (VCSEL) array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport using the data rate of common public radio interface option 6. The wavelength spacing is achieved using selectively etched cavity control layers and fine current adjustment. The differences in operating current and output power for maintaining the wavelength spacing of four VCSELs are <1.4 mA and <1 dB, respectively. Stable operation performance without mode hopping is observed, and error-free transmission under direct modulation is demonstrated over a 20-km single-mode fiber without any dispersion-compensation techniques.

  9. Multi-wavelength studies of wind driving cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Witherick, Dugan Kenneth

    This thesis presents several case studies of disc winds from high-state cataclysmic variable stars, based on multi-wavelength time-series spectroscopy. The research presented here primarily focuses on three low-inclination, nova-like systems: RW Sextansis, V592 Cassiopeiae and BZ Camelopardalis. The aim was to derive and compare key spectral line diagnostics of the outflows, spanning a wide range of ionisation and excitation using (new) FUSE, HST, IUE and optical data. Analysis of the far-UV time-series of RW Sex reveals the wind to be highly variable but generally confined to between ~ -1000 and ~ 0 km/s for all ionisation states; no evidence of the wind at red-shifted velocities is found. This wind is modulated on the orbital period of the system and it is argued that the observed variability is due to changes in the blue-shifted absorption rather than a variable velocity emission. The Balmer profiles observed in the optical time-series of V592 Cas were found to be characterised by three components: a broad, shallow absorption trough, a narrow central emission and a blue-shifted absorption from the disc wind. The wind is also found to be modulated on the systems orbital period, although this modulation is slightly out of phase with the Balmer emission radial velocities. The wind of BZ Cam was found to behave very differently to that of RW Sex and V592 Cas. At times, it was seen (in the Balmer lines and some of the He I lines) to be extremely strong and variable but at other times is was seemingly not present; there was no evidence to suggest that it is modulated on the orbital or any other period. This study is an immense source of data on CV disc winds and importantly tries to parameterise three nova-like CVs to understand the similarities and differences between them and their winds.

  10. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence.

    PubMed

    Berhanu, Tesfaye A; Meusinger, Carl; Erbland, Joseph; Jost, Rémy; Bhattacharya, S K; Johnson, Matthew S; Savarino, Joël

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. ["Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ((15)N, (17)O, and (18)O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ(15)N, δ(18)O, and Δ(17)O). From these measurements an average photolytic isotopic fractionation of (15)ɛ = (-15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of (15)ɛ = (-47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from -40 to -74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of (14)NO3 (-) and (15)NO3 (-) in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the

  11. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    NASA Astrophysics Data System (ADS)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph; Jost, Rémy; Bhattacharya, S. K.; Johnson, Matthew S.; Savarino, Joël

    2014-06-01

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. ["Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ15N, δ18O, and Δ17O). From these measurements an average photolytic isotopic fractionation of 15ɛ = (-15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of 15ɛ = (-47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from -40 to -74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of 14NO3- and 15NO3- in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the shift in width and center well

  12. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    NASA Astrophysics Data System (ADS)

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-06-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering-based applications including photonic devices and (bio)imaging/sensing.

  13. Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design

    PubMed Central

    Shiraki, Tomohiro; Shiraishi, Tomonari; Juhász, Gergely; Nakashima, Naotoshi

    2016-01-01

    Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E112*) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250 nm with over ~270 nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering–based applications including photonic devices and (bio)imaging/sensing. PMID:27345862

  14. Energy-dependent angular shifts in the photoelectron momentum distribution for atoms in elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Xie, Hui; Li, Min; Luo, Siqiang; Li, Yang; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2017-12-01

    We measure the photoelectron momentum distributions from atoms ionized by strong elliptically polarized laser fields at the wavelengths of 400 and 800 nm, respectively. The momentum distributions show distinct angular shifts, which sensitively depend on the electron energy. We find that the deflection angle with respect to the major axis of the laser ellipse decreases with the increase of the electron energy for large ellipticities. This energy-dependent angular shift is well reproduced by both numerical solutions of the time-dependent Schrödinger equation and the classical-trajectory Monte Carlo model. We show that the ionization time delays among the electrons with different energies are responsible for the energy-dependent angular shifts. On the other hand, for small ellipticities, we find the deflection angle increases with increasing the electron energy, which might be caused by electron rescattering in the elliptically polarized fields.

  15. Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths.

    PubMed

    Yan, Changchun; Zhang, Dao Hua; Zhang, Yuan; Li, Dongdong; Fiddy, M A

    2010-07-05

    We report beam splitting in a metamaterial composed of a silver-alumina composite covered by a layer of chromium containing one slit. By simulating distributions of energy flow in the metamaterial for H-polarized waves, we find that the beam splitting occurs when the width of the slit is shorter than the wavelength, which is conducive to making a beam splitter in sub-wavelength photonic devices. We also find that the metamaterial possesses deep sub-wavelength resolution capabilities in the far field when there are two slits and the central silver layer is at least 36 nm in thickness, which has potential applications in superresolution imaging.

  16. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    PubMed Central

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-01-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W. PMID:27811994

  17. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals.

    PubMed

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-04

    The spectral properties and laser performance of Er:SrF 2 single crystals were investigated and compared with Er:CaF 2 . Er:SrF 2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er 3+ : 4 I 11/2 level) than those of Er:CaF 2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF 2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF 2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  18. Highly efficient dual-wavelength mid-infrared CW Laser in diode end-pumped Er:SrF2 single crystals

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Qian, Xiaobo; Wang, Jingya; Liu, Jingjing; Fan, Xiuwei; Liu, Jie; Su, Liangbi; Xu, Jun

    2016-11-01

    The spectral properties and laser performance of Er:SrF2 single crystals were investigated and compared with Er:CaF2. Er:SrF2 crystals have larger absorption cross-sections at the pumping wavelength, larger mid-infrared stimulated emission cross-sections and much longer fluorescence lifetimes of the upper laser level (Er3+:4I11/2 level) than those of Er:CaF2 crystals. Dual-wavelength continuous-wave (CW) lasers around 2.8 μm were demonstrated in both 4at.% and 10at.% Er:SrF2 single crystals under 972 nm laser diode (LD) end pumping. The laser wavelengths are 2789.3 nm and 2791.8 nm in the former, and 2786.4 nm and 2790.7 nm in the latter, respectively. The best laser performance has been demonstrated in lightly doped 4at.% Er:SrF2 with a low threshold of 0.100 W, a high slope efficiency of 22.0%, an maximum output power of 0.483 W.

  19. True Color Holography with Three Wavelengths

    NASA Astrophysics Data System (ADS)

    Swearingen, Jeremy R.

    2006-12-01

    Single wavelength holography provides a three-dimensional snapshot of an object?s size, shape, and position relative to the holographic medium. However, single wavelength holography is limited because it does not preserve the integrity of the original object?s color. When the hologram is played back, the object in the hologram will appear to be the color of the wavelength used to record the hologram. This can be remedied by employing multiple wavelengths, namely three: red, blue, and green as to create a ?pseudo white? laser beam. To achieve this pseudo white beam, the red, blue, and green lasers must be merged with the appropriate dichroic filters and passed through the same spatial filter to expose the hologram as if the light was all coming from the same source. I will discuss the setup used to record these ?true color? holograms and the difficulties in developing them.

  20. Remote sensing of dust in the Solar system and beyond using wavelength dependence of polarization

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.

    2011-12-01

    For a long time, the main polarimetric tool to study dust in the Solar system has been the dependence of polarization on phase (scattering) angle. Surprisingly, a variety of cosmic dusts (interplanetary and cometary dust, dust on the surfaces of asteroids and in debris disks) possesses a very similar phase dependence of polarization with a negative bowl-shaped part at small phase angles and a positive bell-shaped region with maximum polarization around 95-105 deg. Numerous laboratory and theoretical simulations showed that a polarimetric phase curve of this shape is typical for fluffy materials, e.g., porous, aggregated particles. By contrast, the wavelength dependence of polarization is different for different types of dust. In the visual, polarization decreases with wavelength (negative gradient) for asteroids and interplanetary dust, but usually increases with wavelength (positive gradient) for cometary dust. In debris disks both signs of the spectral gradient of polarization have been found. Moreover, it was found that a cometary positive spectral gradient can change to a negative one as observations move to longer (near-infrared) wavelengths (Kelley et al. AJ, 127, 2398, 2004) and some comets(Kiselev et al. JQSRT, 109, 1384, 2008) have negative gradient even in the visible. The diversity of the spectral dependence of polarization therefore gives us hope that it can be used for characterization of the aggregates that represent different types of cosmic dust. To accomplish this, the physics behind the spectral dependence of polarization need to be revealed. Our recent study shows that the spectral dependence of polarization depends on the strength of electromagnetic interaction between the monomers in aggregates. The strength of the interaction mainly depends on how many monomers the electromagnetic wave covers on the light path equal to one wavelength. Since the electromagnetic interaction depolarizes the light, the more particles a single wavelength covers the

  1. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization

    NASA Astrophysics Data System (ADS)

    Al-Hayali, S. K. M.; Al-Janabi, A. H.

    2018-03-01

    We have experimentally demonstrated the operation of a dual-wavelength passively Q-switched ytterbium-doped fiber laser by using a saturable absorber (SA) based on Fe3O4 nanoparticles in a magnetic fluid. The SA was fabricated by depositing magnetic fluid at the end of an optical fiber ferrule. By performing adjustments to the pump power and polarization controller state in the cavity, a stable dual-wavelength lasing operation was generated without intracavity spectral filters or modulation elements. The Q-switched laser output was achieved at a pump threshold of 80 mW with a maximum output pulse energy of 38.8 nJ, a repetition rate of 73.4 kHz and a minimum pulse width of 3.4 µs. To the best of the authors’ knowledge, this is the first demonstration of a dual-wavelength passively Q-switched fiber laser using Fe3O4 nanoparticles as the SA in the 1.0 µm operation region.

  2. Passively Q-switched dual-wavelength thulium-doped fiber laser based on a multimode interference filter and a semiconductor saturable absorber

    NASA Astrophysics Data System (ADS)

    Wang, M.; Huang, Y. J.; Ruan, S. C.

    2018-04-01

    In this paper, we have demonstrated a theta cavity passively Q-switched dual-wavelength fiber laser based on a multimode interference filter and a semiconductor saturable absorber. Relying on the properties of the fiber theta cavity, the laser can operate unidirectionally without an optical isolator. A semiconductor saturable absorber played the role of passive Q-switch while a section of single-mode-multimode-single-mode fiber structure served as an multimode interference filter and was used for selecting the lasing wavelengths. By suitably manipulating the polarization controller, stable dual-wavelength Q-switched operation was obtained at ~1946.8 nm and ~1983.8 nm with maximum output power and minimum pulse duration of ~47 mW and ~762.5 ns, respectively. The pulse repetition rate can be tuned from ~20.2 kHz to ~79.7 kHz by increasing the pump power from ~2.12 W to ~5.4 W.

  3. Wavelength references for interferometry in air

    NASA Astrophysics Data System (ADS)

    Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.; Hollberg, Leo

    2005-12-01

    Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of ±2×10-8 (3σ), with the wavelength accuracy limited to ±4×10-8 by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than Δ ν/ν˜3×10-9, limited by temperature correction residuals.

  4. Free-space wavelength-multiplexed optical scanner.

    PubMed

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  5. Wavelength references for interferometry in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Richard W.; Washburn, Brian R.; Newbury, Nathan R.

    2005-12-20

    Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of {+-}2x10-8(3{sigma}), with the wavelength accuracy limited to {+-}4x10-8by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than {delta} {nu}/{nu}{approx}3x10-9, limited by temperature correction residuals.

  6. Wavelength references for interferometry in air.

    PubMed

    Fox, Richard W; Washburn, Brian R; Newbury, Nathan R; Hollberg, Leo

    2005-12-20

    Cavity-mode wavelengths in air are determined by measuring a laser's frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of +/- 2 x 10(-8) (3sigma), with the wavelength accuracy limited to +/- 4 x 10(-8) by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than deltav/v approximately 3 x 10(-9), limited by temperature correction residuals.

  7. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  8. Dim-light photoreceptor of chub mackerel Scomber japonicus and the photoresponse upon illumination with LEDs of different wavelengths.

    PubMed

    Jang, Jun-Chul; Choi, Mi-Jin; Yang, Yong-Soo; Lee, Hyung-Been; Yu, Young-Moon; Kim, Jong-Myoung

    2016-06-01

    To study the absorption characteristics of rhodopsin, a dim-light photoreceptor, in chub mackerel (Scomber japonicus) and the relationship between light wavelengths on the photoresponse, the rod opsin gene was cloned into an expression vector, pMT4. Recombinant opsin was transiently expressed in COS-1 cells and reconstituted with 11-cis-retinal. Cells containing the regenerated rhodopsin were solubilized and subjected to UV/Vis spectroscopic analysis in the dark and upon illumination. Difference spectra from the lysates indicated an absorption maximum of mackerel rhodopsin around 500 nm. Four types of light-emitting diode (LED) modules with different wavelengths (red, peak 627 nm; cyan, 505 nm; blue, 442 nm; white, 447 + 560 nm) were constructed to examine their effects on the photoresponse in chub mackerel. Behavioral responses of the mackerels, including speed and frequencies acclimated in the dark and upon LED illumination, were analyzed using an underwater acoustic camera. Compared to an average speed of 22.25 ± 1.57 cm/s of mackerel movement in the dark, speed increased to 22.97 ± 0.29, 24.66 ± 1.06, 26.28 ± 2.28, and 25.19 ± 1.91 cm/s upon exposure to red, blue, cyan, and white LEDs, respectively. There were increases of 103.48 ± 1.58, 109.37 ± 5.29, 118.48 ± 10.82, and 109.43 ± 3.92 %, respectively, in the relative speed of the fishes upon illumination with red, blue, cyan, and white LEDs compared with that in the dark (set at 100 %). Similar rate of wavelength-dependent responses was observed in a frequency analysis. These results indicate that an LED emitting a peak wavelength close to an absorption maximum of rhodopsin is more effective at eliciting a response to light.

  9. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  10. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter

    PubMed Central

    Kwon, Yong Seok; Ko, Myeong Ock; Jung, Mi Sun; Park, Ik Gon; Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Park, Kyung Hyun; Jeon, Min Yong

    2013-01-01

    We report a high-speed (∼2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement. PMID:23899934

  11. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    NASA Astrophysics Data System (ADS)

    Wang, Da-Wei; Li, Zheng-Hong; Zheng, Hang; Zhu, Shi-Yao

    2010-04-01

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  12. The experience of being a shift-leader in a hospital ward.

    PubMed

    Goldblatt, Hadass; Granot, Michal; Admi, Hanna; Drach-Zahavy, Anat

    2008-07-01

    This paper is a report of a study to explore the experience of being a shift-leader, and how these nurses view the management of their shift. Professional demands on skilled and capable shift-leaders, who competently handle multi-disciplinary staff and patients, as well as operations and information, call for the development of efficient nursing leadership roles. Nevertheless, knowledge of shift-leaders' perspectives concerning their task management and leadership styles is relatively limited. Twenty-eight Registered Nurses working in an Israeli medical centre participated in this qualitative study. Data were gathered through in-depth interviews conducted in two phases between February and October 2005: three focus group interviews (phase 1) followed by seven individual interviews (phase 2). Content analysis revealed two major themes which constitute the essence of being a shift-leader: (1) a burden of responsibility, where the shift-leader moves between positions of maximum control and delegating some responsibility to other nurses; (2) the role's temporal dimension, expressed as a strong desire to reach the end of the shift safely, and taking managerial perspectives beyond the boundaries of the specific shift. The core of the shift-leader's position is an immense sense of responsibility. However, this managerial role is transient and therefore lacks an established authority. A two-dimensional taxonomy of these themes reveals four types of potential and actual coping among shift-leaders, indicating the need to train them in leadership skills and systemic thinking. Interventions to limit the potential stress hazards should be focused simultaneously on shift-leaders themselves and on job restructuring.

  13. Leaf morphology shift linked to climate change.

    PubMed

    Guerin, Greg R; Wen, Haixia; Lowe, Andrew J

    2012-10-23

    Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.

  14. Wavelength-dependent optical enhancement of superconducting interlayer coupling in La 1.885Ba 0.115CuO 4

    DOE PAGES

    Casandruc, E.; Nicoletti, D.; Rajasekaran, S.; ...

    2015-05-05

    We analyze the pump wavelength dependence for the photo-induced enhancement of interlayer coupling in La 1.885Ba 0.115CuO 4, which is promoted by optical melting of the stripe order. In the equilibrium superconducting state (T < TC = 13 K), in which stripes and superconductivity coexist, time-domain THz spectroscopy reveals a photo-induced blue-shift of the Josephson Plasma Resonance after excitation with optical pulses polarized perpendicular to the CuO2 planes. In the striped, non-superconducting state (TC < T < TSO ≃ 40 K) a transient plasma resonance similar to that seen below TC appears from a featureless equilibrium reflectivity. Most strikingly, bothmore » these effects become stronger upon tuning of the pump wavelength from the mid-infrared to the visible, underscoring an unconventional competition between stripe order and superconductivity, which occurs on energy scales far above the ordering temperature.« less

  15. Observations of Venus at 1-meter wavelength

    NASA Astrophysics Data System (ADS)

    Butler, Bryan J.

    2014-11-01

    Radio wavelength observations of Venus (including from the Magellan spacecraft) have been a powerful method of probing its surface and atmosphere since the 1950's. The emission is generally understood to come from a combination of emission and absorption in the subsurface, surface, and atmosphere at cm and shorter wavelengths [1]. There is, however, a long-standing mystery regarding the long wavelength emission from Venus. First discovered at wavelengths of 50 cm and greater [2], the effect was later confirmed to extend to wavelengths as short as 13 cm [1,3]. The brightness temperatures are depressed significantly 50 K around 10-20 cm, increasing to as much as 200 K around 1 m) from what one would expect from a "normal" surface (e.g., similar to the Moon or Earth) [1-3].No simple surface and subsurface model of Venus can reproduce these large depressions in the long wavelength emission [1-3]. Simple atmospheric and ionospheric models fail similarly. In an attempt to constrain the brightness temperature spectrum more fully, new observations have been made at wavelengths that cover the range 60 cm to 1.3 m at the Very Large Array, using the newly available low-band receiving systems there [4]. The new observations were made over a very wide wavelength range and at several Venus phases, with that wide parameter space coverage potentially allowing us to pinpoint the cause of the phenomenon. The observations and potential interpretations will be presented and discussed.[1] Butler et al. 2001, Icarus, 154, 226. [2] Schloerb et al. 1976, Icarus, 29, 329; Muhleman et al. 1973, ApJ, 183, 1081; Condon et al. 1973, ApJ, 183, 1075; Kuzmin 1965, Radiophysics. [3] Butler & Sault 2003, IAUSS, 1E, 17B. [4] Intema et al. 2014, BASI, 1.

  16. Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier.

    PubMed

    Qin, Jun; Lu, Guo-Wei; Sakamoto, Takahide; Akahane, Kouichi; Yamamoto, Naokatsu; Wang, Danshi; Wang, Cheng; Wang, Hongxiang; Zhang, Min; Kawanishi, Tetsuya; Ji, Yuefeng

    2014-12-01

    In this paper, we experimentally demonstrate simultaneous multichannel wavelength multicasting (MWM) and exclusive-OR logic gate multicasting (XOR-LGM) for three 10Gbps non-return-to-zero differential phase-shift-keying (NRZ-DPSK) signals in quantum-dot semiconductor optical amplifier (QD-SOA) by exploiting the four-wave mixing (FWM) process. No additional pump is needed in the scheme. Through the interaction of the input three 10Gbps DPSK signal lights in QD-SOA, each channel is successfully multicasted to three wavelengths (1-to-3 for each), totally 3-to-9 MWM, and at the same time, three-output XOR-LGM is obtained at three different wavelengths. All the new generated channels are with a power penalty less than 1.2dB at a BER of 10(-9). Degenerate and non-degenerate FWM components are fully used in the experiment for data and logic multicasting.

  17. Wavelength-multiplexing surface plasmon holographic microscopy.

    PubMed

    Zhang, Jiwei; Dai, Siqing; Zhong, Jinzhan; Xi, Teli; Ma, Chaojie; Li, Ying; Di, Jianglei; Zhao, Jianlin

    2018-05-14

    Surface plasmon holographic microscopy (SPHM), which combines surface plasmon microscopy with digital holographic microscopy, can be applied for amplitude- and phase-contrast surface plasmon resonance (SPR) imaging. In this paper, we propose an improved SPHM with the wavelength multiplexing technique based on two laser sources and a common-path hologram recording configuration. Through recording and reconstructing the SPR images at two wavelengths simultaneously employing the improved SPHM, tiny variation of dielectric refractive index in near field is quantitatively monitored with an extended measurement range while maintaining the high sensitivity. Moreover, imaging onion tissues is performed to demonstrate that the detection sensitivities of two wavelengths can compensate for each other in SPR imaging. The proposed wavelength-multiplexing SPHM presents simple structure, high temporal stability and inherent capability of phase curvature compensation, as well as shows great potentials for further applications in monitoring diverse dynamic processes related with refractive index variations and imaging biological tissues with low-contrast refractive index distributions in the near field.

  18. Device for wavelength-selective imaging

    DOEpatents

    Frangioni, John V.

    2010-09-14

    An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.

  19. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.

    PubMed

    Yao, Tingfeng; Zhu, Dan; Ben, De; Pan, Shilong

    2015-04-15

    A distributed multiple-input multiple-output chaotic radar based on wavelength-division multiplexing technology (WDM) is proposed and demonstrated. The wideband quasi-orthogonal chaotic signals generated by different optoelectronic oscillators (OEOs) are emitted by separated antennas to gain spatial diversity against the fluctuation of a target's radar cross section and enhance the detection capability. The received signals collected by the receive antennas and the reference signals from the OEOs are delivered to the central station for joint processing by exploiting WDM technology. The centralized signal processing avoids precise time synchronization of the distributed system and greatly simplifies the remote units, which improves the localization accuracy of the entire system. A proof-of-concept experiment for two-dimensional localization of a metal target is demonstrated. The maximum position error is less than 6.5 cm.

  20. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Raju, Gajula; Ram Reddy, A.

    2016-02-01

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.

  1. [INVITED] Nanofabrication of phase-shifted Bragg gratings on the end facet of multimode fiber towards development of optical filters and sensors

    NASA Astrophysics Data System (ADS)

    Gallego, E. E.; Ascorbe, J.; Del Villar, I.; Corres, J. M.; Matias, I. R.

    2018-05-01

    This work describes the process of nanofabrication of phase-shifted Bragg gratings on the end facet of a multimode optical fiber with a pulsed DC sputtering system based on a single target. Several structures have been explored as a function of parameters such as the number of layers or the phase-shift. The experimental results, corroborated with simulations based on plane-wave propagation in a stack of homogeneous layers, indicate that the phase-shift can be controlled with a high degree of accuracy. The device could be used both in communications, as a filter, or in the sensors domain. As an example of application, a humidity sensor with wavelength shifts of 12 nm in the range of 30 to 90% relative humidity (200 pm/% relative humidity) is presented.

  2. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  3. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, Richard P.; Paris, Robert D.; Feldman, Mark

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  4. Smoke optical depths - Magnitude, variability, and wavelength dependence

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.

    1988-01-01

    An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.

  5. Research of mesa type extended wavelength 64x64 In0.83Ga0.17As detector

    NASA Astrophysics Data System (ADS)

    Deng, Shuangyan; Li, Ping; Li, Tao; Li, Xue; Shao, Xiumei; Tang, Hengjing; Gong, Haimei

    2015-10-01

    InxGa1-xAs ternary compound is suitable for detection in the shortwave infrared (1-3μm) band. The alloy In0.53Ga0.47As is lattice-matched to InP substrate and has a wavelength response between 0.9μm to 1.7μm at room temperature. The increase of indium composition can extend the wavelength response to longer infrared wave. With the Indium content 0.83, the cutoff wavelength can be extended to 2.6μm. In this paper, we reported the performance of 64x64 pixels mesa-type back-illuminated extended wavelength InGaAs detector arrays. The mesa type detectors were fabricated by ICP etching, side-wall and surface passivation by ICPCVD (inductively coupled plasma chemical vapor deposition) based on the MBE-grown p-i-n In0.83Al0.17As/In0.83Ga0.17As/InxAl1-xAs/InP epitaxial materials. The I-V characteristics and electro-optical performances of these detectors at different temperatures were measured, and the properties such as dark current, response spectra, responsivity, detectivity were analyzed. The results indicate that the dark current of In0.83Ga0.17As photodiodes decreases with decreasing temperature, varying from 4×10-4A/cm2 at 290K to 1.7×10-8A/cm2 at 180K. The spectral response showed slightly blue shift while the detectors were cooling down, and the cut-off wavelength is 2.57μm at room temperature and 2.43μm at 200K, respectively. The dark current density is 115nA/cm2 at 200K and -10mV bias voltage. The peak detectivity is 6.08E11cmHz1/2W-1.

  6. GHRS Ech-B Wavelength Monitor -- Cycle 4

    NASA Astrophysics Data System (ADS)

    Soderblom, David

    1994-01-01

    This proposal defines the spectral lamp test for Echelle B. It is an internal test which makes measurements of the wavelength lamp SC2. It calibrates the carrousel function, Y deflections, resolving power, sensitivity, and scattered light. The wavelength calibration dispersion constants will be updated in the PODPS calibration data base. It will be run every 4 months. The wavelengths may be out of range according to PEPSI or TRANS. Please ignore the errors.

  7. Study of ocean red tide multi-parameter monitoring technology based on double-wavelength airborne lidar system

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Wang, Xinming; Liang, Kun

    2010-10-01

    For monitoring and forecasting of the ocean red tide in real time, a marine environment monitoring technology based on the double-wavelength airborne lidar system is proposed. An airborne lidar is father more efficient than the traditional measure technology by the boat. At the same time, this technology can detect multi-parameter about the ocean red tide by using the double-wavelength lidar.It not only can use the infrared laser to detect the scattering signal under the water and gain the information about the red tise's density and size, but also can use the blue-green laser to detect the Brillouin scattering signal and deduce the temperature and salinity of the seawater.The red tide's density detecting model is firstly established by introducing the concept about the red tide scattering coefficient based on the Mie scattering theory. From the Brillouin scattering theory, the relationship about the blue-green laser's Brillouin scattering frequency shift value and power value with the seawater temperature and salinity is found. Then, the detecting mode1 of the saewater temperature and salinity can be established. The value of the red tide infrared scattering signal is evaluated by the simulation, and therefore the red tide particles' density can be known. At the same time, the blue-green laser's Brillouin scattering frequency shift value and power value are evaluated by simulating, and the temperature and salinity of the seawater can be known. Baed on the multi-parameters, the ocean red tide's growth can be monitored and forecasted.

  8. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  9. Determining optimum wavelength of ultraviolet rays to pre-exposure of non-uniformity error correction in Gafchromic EBT2 films

    NASA Astrophysics Data System (ADS)

    Katsuda, Toshizo; Gotanda, Rumi; Gotanda, Tatsuhiro; Akagawa, Takuya; Tanki, Nobuyoshi; Kuwano, Tadao; Noguchi, Atsushi; Yabunaka, Kouichi

    2018-03-01

    Gafchromic films have been used to measure X-ray doses in diagnostic radiology such as computed tomography. The double-exposure technique is used to correct non-uniformity error of Gafchromic EBT2 films. Because of the heel effect of diagnostic x-rays, ultraviolet A (UV-A) is intended to be used as a substitute for x-rays. When using a UV-A light-emitting diode (LED), it is necessary to determine the effective optimal UV wavelength for the active layer of Gafchromic EBT2 films. This study evaluated the relation between the increase in color density of Gafchromic EBT2 films and the UV wavelengths. First, to correct non-uniformity, a Gafchromic EBT2 film was pre-irradiated using uniform UV-A radiation for 60 min from a 72-cm distance. Second, the film was irradiated using a UV-LED with a wavelength of 353-410 nm for 60 min from a 5.3-cm distance. The maximum, minimum, and mean ± standard deviation (SD) of pixel values of the subtraction images were evaluated using 0.5 inches of a circular region of interest (ROI). The highest mean ± SD (8915.25 ± 608.86) of the pixel value was obtained at a wavelength of 375 nm. The results indicated that 375 nm is the most effective and sensitive wavelength of UV-A for Gafchromic EBT2 films and that UV-A can be used as a substitute for x-rays in the double-exposure technique.

  10. Multi-wavelength Observations of Neptune’s Atmosphere

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Fletcher, L.; Luszcz-Cook, S.; deBoer, D.; Butler, B.; Orton, G.; Sitko, M.; Hammel, H.

    2013-10-01

    We conducted a multi-wavelength observing campaign on Neptune between June and October, 2003. We used the 10-m Keck telescope at near- and mid-infrared wavelengths and the VLA at radio wavelengths. Near infrared images were taken in October 2003 in broad- and narrow-band filters between 1 and 2.5 micron, using the infrared camera NIRC2 coupled to the Keck Adaptive Optics system. At these wavelengths we detect sunlight reflected off clouds in the upper troposphere and lower stratosphere. As shown by various authors before, bright bands of discrete cloud features are visible between 20°S and 50°S and near 30°N, as well as several distinct bright cloud features near 70°S, and the south polar “dot”. Mid-infrared images were taken on September 5 and 6 (2003) using the Keck LWS system in atmospheric windows at 8, 8.9, 10.7, 11.7, 12.5, 17.65, 18.75 and 22 micron. At these wavelengths we detect thermal emission from Neptune’s stratosphere due to the presence of hydrocarbons, and from near the tropopause due to collision induced opacity by hydrogen. At all wavelengths the South polar region stands out as a bright spot. At 17 - 22 micron also the equatorial region is slightly enhanced in intensity. These characteristics are consistent with later imaging at similar wavelengths (Hammel et al. 2007; Orton et al. 2007). Microwave images were constructed from NRAO VLA data between 0.7 and 6.0 cm. At these wavelengths depths of several up to >50 bar are probed. An increase in brightness indicates decreased opacity of absorbers (e.g., NH3, H2S), since under such circumstances deep, and hence warm levels (adiabatic temperature-pressure profile), will be probed. The multi-wavelength observing campaign in 2003 was focused on obtaining images that probe different altitudes in Neptune’s atmosphere. Indeed, this set of data probes altitudes from about 0.1 mbar down to ~50 bar, and hence can be used to constrain the global atmospheric circulation in Neptune’s atmosphere. At

  11. Ultrawide Spectral Response of CIGS Solar Cells Integrated with Luminescent Down-Shifting Quantum Dots.

    PubMed

    Jeong, Ho-Jung; Kim, Ye-Chan; Lee, Soo Kyung; Jeong, Yonkil; Song, Jin-Won; Yun, Ju-Hyung; Jang, Jae-Hyung

    2017-08-02

    Conventional Cu(In 1-x ,Ga x )Se 2 (CIGS) solar cells exhibit poor spectral response due to parasitic light absorption in the window and buffer layers at the short wavelength range between 300 and 520 nm. In this study, the CdSe/CdZnS core/shell quantum dots (QDs) acting as a luminescent down-shifting (LDS) layer were inserted between the MgF 2 antireflection coating and the window layer of the CIGS solar cell to improve light harvesting in the short wavelength range. The LDS layer absorbs photons in the short wavelength range and re-emits photons in the 609 nm range, which are transmitted through the window and buffer layer and absorbed in the CIGS layer. The average external quantum efficiency in the parasitic light absorption region (300-520 nm) was enhanced by 51%. The resulting short circuit current density of 34.04 mA/cm 2 and power conversion efficiency of 14.29% of the CIGS solar cell with the CdSe/CdZnS QDs were improved by 4.35 and 3.85%, respectively, compared with those of the conventional solar cells without QDs.

  12. On the equivalence of the dual-wavelength and polarimetric equations for estimation of the raindrop size distribution

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Liao, Liang

    2006-01-01

    In writing the integral equations for the median mass diameter and particle concentration, or comparable parameters of the raindrop size distribution, it is apparent that when attenuation effects are included, the forms of the equations for polarimetric and dual wavelength radars are identical. In both sets of equations, differences in the backscattering and extinction cross sections appear: in the polarimetric equations, the differences are taken with respect polarization at a fixed frequency while for the dual wavelength equations, the differences are taken with respect to wavelength at a fixed polarization. Because the forms of the equations are the same, the ways in which they can be solved are similar as well. To avoid instabilities in the forward recursion procedure, the equations can be expressed in the form of a final-value. Solving the equations in this way traditionally has required estimates of the path attenuations to the final gate: either the attenuations at horizontal and vertical polarizations at the same frequency or attenuations at two frequencies with the same polarization. This has been done for dual-frequency (air/spaceborne case) and polarimetric radars by the respective use of the surface reference technique and the differential phase shift. An alternative to solving the constrained version of the equations is an iterative procedure recently proposed in which independent estimates of path attenuation are not required. Although the procedure has limitations, it appears to be quite useful. Simulations of the retrievals help clarify the relationship between the constrained and unconstrained approaches and their application to the polarimetric and dual-wavelength equations.

  13. Modeling Multi-wavelength Stellar Astrometry. III. Determination of the Absolute Masses of Exoplanets and Their Host Stars

    NASA Astrophysics Data System (ADS)

    Coughlin, J. L.; López-Morales, Mercedes

    2012-05-01

    Astrometric measurements of stellar systems are becoming significantly more precise and common, with many ground- and space-based instruments and missions approaching 1 μas precision. We examine the multi-wavelength astrometric orbits of exoplanetary systems via both analytical formulae and numerical modeling. Exoplanets have a combination of reflected and thermally emitted light that causes the photocenter of the system to shift increasingly farther away from the host star with increasing wavelength. We find that, if observed at long enough wavelengths, the planet can dominate the astrometric motion of the system, and thus it is possible to directly measure the orbits of both the planet and star, and thus directly determine the physical masses of the star and planet, using multi-wavelength astrometry. In general, this technique works best for, though is certainly not limited to, systems that have large, high-mass stars and large, low-mass planets, which is a unique parameter space not covered by other exoplanet characterization techniques. Exoplanets that happen to transit their host star present unique cases where the physical radii of the planet and star can be directly determined via astrometry alone. Planetary albedos and day-night contrast ratios may also be probed via this technique due to the unique signature they impart on the observed astrometric orbits. We develop a tool to examine the prospects for near-term detection of this effect, and give examples of some exoplanets that appear to be good targets for detection in the K to N infrared observing bands, if the required precision can be achieved.

  14. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.

    PubMed

    Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor

    2013-08-01

    The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.

  15. An approach for the regularization of a power flow solution around the maximum loading point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Y.

    1992-08-01

    In the conventional power flow solution, the boundary conditions are directly specified by active power and reactive power at each node, so that the singular point coincided with the maximum loading point. For this reason, the computations are often disturbed by ill-condition. This paper proposes a new method for getting the wide-range regularity by giving some modifications to the conventional power flow solution method, thereby eliminating the singular point or shifting it to the region with the voltage lower than that of the maximum loading point. Then, the continuous execution of V-P curves including maximum loading point is realized. Themore » efficiency and effectiveness of the method are tested in practical 598-nodes system in comparison with the conventional method.« less

  16. How to Structure University/Industry Cooperation for Maximum Mutual Benefit

    NASA Astrophysics Data System (ADS)

    Sommer, Klaus H.

    2000-03-01

    Research in the technical industries has changed dramatically in the past twenty years. As part of the change, many companies have shifted their long-term research from within company labs to university labs using a variety of mechanisms for such "cooperations." This talk focuses on how Bayer Corporation uses contract research, unrestricted funds, consortia, and government contracts to supplement in-house research programs. The talk emphasizes the importance of careful tailoring of these mechanisms in order to achieve maximum success for both the company and its university partners.

  17. A high accuracy ultrasonic distance measurement system using binary frequency shift-keyed signal and phase detection

    NASA Astrophysics Data System (ADS)

    Huang, S. S.; Huang, C. F.; Huang, K. N.; Young, M. S.

    2002-10-01

    A highly accurate binary frequency shift-keyed (BFSK) ultrasonic distance measurement system (UDMS) for use in isothermal air is described. This article presents an efficient algorithm which combines both the time-of-flight (TOF) method and the phase-shift method. The proposed method can obtain larger range measurement than the phase-shift method and also get higher accuracy compared with the TOF method. A single-chip microcomputer-based BFSK signal generator and phase detector was designed to record and compute the TOF, two phase shifts, and the resulting distance, which were then sent to either an LCD to display or a PC to calibrate. Experiments were done in air using BFSK with the frequencies of 40 and 41 kHz. Distance resolution of 0.05% of the wavelength corresponding to the frequency of 40 kHz was obtained. The range accuracy was found to be within ±0.05 mm at a range of over 6000 mm. The main advantages of this UDMS system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  18. North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Mitchell, Jonathan L.; Risi, Camille; Tripati, Aradhna E.

    2017-01-01

    Southwestern North America was wetter than present during the Last Glacial Maximum. The causes of increased water availability have been recently debated, and quantitative precipitation reconstructions have been underutilized in model-data comparisons. We investigate the climatological response of North Pacific atmospheric rivers to the glacial climate using model simulations and paleoclimate reconstructions. Atmospheric moisture transport due to these features shifted toward the southeast relative to modern. Enhanced southwesterly moisture delivery between Hawaii and California increased precipitation in the southwest while decreasing it in the Pacific Northwest, in agreement with reconstructions. Coupled climate models that are best able to reproduce reconstructed precipitation changes simulate decreases in sea level pressure across the eastern North Pacific and show the strongest southeastward shifts of moisture transport relative to a modern climate. Precipitation increases of ˜1 mm d-1, due largely to atmospheric rivers, are of the right magnitude to account for reconstructed pluvial conditions in parts of southwestern North America during the Last Glacial Maximum.

  19. Systematic wavelength selection for improved multivariate spectral analysis

    DOEpatents

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  20. Toxic wavelength of blue light changes as insects grow.

    PubMed

    Shibuya, Kazuki; Onodera, Shun; Hori, Masatoshi

    2018-01-01

    Short-wavelength visible light (blue light: 400-500 nm) has lethal effects on various insects, such as fruit flies, mosquitoes, and flour beetles. However, the most toxic wavelengths of blue light might differ across developmental stages. Here, we investigate how the toxicity of blue light changes with the developmental stages of an insect by irradiating Drosophila melanogaster with different wavelengths of blue light. Specifically, the lethal effect on eggs increased at shorter light wavelengths (i.e., toward 405 nm). In contrast, wavelengths from 405 to 466 nm had similar lethal effects on larvae. A wavelength of 466 nm had the strongest lethal effect on pupae; however, mortality declined as pupae grew. A wavelength of 417 nm was the most harmful to adults at low photon flux density, while 466 nm was the most harmful to adults at high photon flux density. These findings suggest that, as the morphology of D. melanogaster changes with growth, the most harmful wavelength also changes. In addition, our results indicated that reactive oxygen species influence the lethal effect of blue light. Our findings show that blue light irradiation could be used as an effective pest control method by adjusting the wavelength to target specific developmental stages.

  1. Shifting Distributions of Adult Atlantic Sturgeon Amidst Post-Industrialization and Future Impacts in the Delaware River: a Maximum Entropy Approach

    PubMed Central

    Breece, Matthew W.; Oliver, Matthew J.; Cimino, Megan A.; Fox, Dewayne A.

    2013-01-01

    Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19th century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19th century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960’s. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species. PMID:24260570

  2. Shifting distributions of adult Atlantic sturgeon amidst post-industrialization and future impacts in the Delaware River: a maximum entropy approach.

    PubMed

    Breece, Matthew W; Oliver, Matthew J; Cimino, Megan A; Fox, Dewayne A

    2013-01-01

    Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19(th) century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19(th) century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960's. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species.

  3. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model.

    PubMed

    Liu, Ling; Onck, Patrick R

    2017-08-04

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015).NCAOBW2041-172310.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  4. Wavelength-Agile External-Cavity Diode Laser for DWDM

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  5. Adaptive gain, equalization, and wavelength stabilization techniques for silicon photonic microring resonator-based optical receivers

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex

    2016-03-01

    Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.

  6. Experimental study of separator effect and shift angle on crossflow wind turbine performance

    NASA Astrophysics Data System (ADS)

    Fahrudin, Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    This paper present experimental test results of separator and shift angle influence on Crossflow vertical axis wind turbine. Modification by using a separator and shift angle is expected to improve the thrust on the blade so as to improve the efficiency. The design of the wind turbine is tested at different wind speeds. There are 2 variations of crossflow turbine design which will be analyzed using an experimental test scheme that is, 3 stage crossflow and 2 stage crossflow with the shift angle. Maximum power coefficient obtained as Cpmax = 0.13 at wind speed 4.05 m/s for 1 separator and Cpmax = 0.12 for 12° shear angle of wind speed 4.05 m/s. In this study, power characteristics of the crossflow rotor with separator and shift angle have been tested. The experimental data was collected by variation of 2 separator and shift angle 0°, 6°, 12° and wind speed 3.01 - 4.85 m/s.

  7. Effects of Long-Wavelength Lighting on Refractive Development in Infant Rhesus Monkeys

    PubMed Central

    Smith, Earl L.; Hung, Li-Fang; Arumugam, Baskar; Holden, Brien A.; Neitz, Maureen; Neitz, Jay

    2015-01-01

    Purpose Differences in the spectral composition of lighting between indoor and outdoor scenes may contribute to the higher prevalence of myopia in children who spend low amounts of time outdoors. Our goal was to determine whether environments dominated by long-wavelength light promote the development of myopia. Methods Beginning at 25 ± 2 days of age, infant monkeys were reared with long-wavelength-pass (red) filters in front of one (MRL, n = 6) or both eyes (BRL, n = 7). The filters were worn continuously until 146 ± 7 days of age. Refractive development, corneal power, and vitreous chamber depth were assessed by retinoscopy, keratometry, and ultrasonography, respectively. Control data were obtained from 6 monkeys reared with binocular neutral density (ND) filters and 33 normal monkeys reared with unrestricted vision under typical indoor lighting. Results At the end of the filter-rearing period, the median refractive error for the BRL monkeys (+4.25 diopters [D]) was significantly more hyperopic than that for the ND (+2.22 D; P = 0.003) and normal monkeys (+2.38 D; P = 0.0001). Similarly, the MRL monkeys exhibited hyperopic anisometropias that were larger than those in normal monkeys (+1.70 ± 1.55 vs. −0.013 ± 0.33 D, P < 0.0001). The relative hyperopia in the treated eyes was associated with shorter vitreous chambers. Following filter removal, the filter-reared monkeys recovered from the induced hyperopic errors. Conclusions The observed hyperopic shifts indicate that emmetropization does not necessarily target the focal plane that maximizes luminance contrast and that reducing potential chromatic cues can interfere with emmetropization. There was no evidence that environments dominated by long wavelengths necessarily promote myopia development. PMID:26447984

  8. New long-wavelength Nd:YAG laser at 1.44 micron: effect on brain.

    PubMed

    Martiniuk, R; Bauer, J A; McKean, J D; Tulip, J; Mielke, B W

    1989-02-01

    A wavelength-shifted Nd:YAG laser, tuned to coincide with the infrared absorption peak of water at 1.44 microns, was used to make lesions in normal rabbit brain. A total of 48 lesions were made with power up to 20 W, with energy up to 40 joules, and with two different spot sizes. These lesions were compared to lesions made with 1.06 microns radiation from an Nd:YAG laser under identical operating conditions. Measurements of blood-brain barrier damage and width, depth, and volume of tissue affected were obtained 30 minutes after placement of the lesions. It was found that 1.44-microns lesions produced photoevaporative tissue loss at the highest intensities used. The layer of coagulated tissue remaining after photovaporization had a mean thickness of 0.6 mm irrespective of the volume of tissue removed. There was no photovaporization in the 1.06-microns lesions. In addition, the amount of peripheral edema per unit volume of tissue coagulated was approximately half at the 1.44-microns wavelength. These findings suggest that the 1.44-microns Nd:YAG laser may be a useful surgical instrument since it combines the photoevaporative effect of the CO2 laser while maintaining the advantages of the conventional Nd:YAG laser (quartz fiber delivery and effective hemostasis).

  9. Long wavelength gravity and topography anomalies

    NASA Technical Reports Server (NTRS)

    Watts, A. B.; Daly, S. F.

    1981-01-01

    It is shown that gravity and topography anomalies on the earth's surface may provide new information about deep processes occurring in the earth, such as those associated with mantle convection. Two main reasons are cited for this. The first is the steady improvement that has occurred in the resolution of the long wavelength gravity field, particularly in the wavelength range of a few hundred to a few thousand km, mainly due to increased coverage of terrestrial gravity measurements and the development of radar altimeters in orbiting satellites. The second reason is the large number of numerical and laboratory experiments of convection in the earth, including some with deformable upper and lower boundaries and temperature-dependent viscosity. The oceans are thought to hold the most promise for determining long wavelength gravity and topography anomalies, since their evolution has been relatively simple in comparison with that of the continents. It is also shown that good correlation between long wavelength gravity and topography anomalies exists over some portions of the ocean floor

  10. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  11. A new experimental apparatus for emissivity measurements of steel and the application of multi-wavelength thermometry to continuous casting billets

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Hu, Zhenwei; Xie, Zhi; Yan, Ming

    2018-05-01

    An experimental apparatus has been designed for measuring the emissivity of a steel surface in both vacuum and oxidation atmosphere. The sample is heated with the method of electromagnetic induction in order to ensure the temperature uniformity. The radiance emitted from a sample is measured using a fiber-optic Fourier transform infrared spectrometer. Using this unique apparatus, we investigated the spectral (2-6 μm) and directional (0°-86°) emissivity of stainless steel 304 with different degrees of surface oxidation at temperatures ranging from 800 to 1100 °C. The experimental results show that the emissivity increases slightly with increasing temperature, which accords with the Hagen-Rubens relation. The emissivity increases rapidly at the initial stage of oxidation, but gradually reaches to a constant value after 20 min. In addition, the directional emissivity has a maximum value at the measuring angle of about 75°. The maximum uncertainty of emissivity is only 3.0% over all the measuring ranges, indicating that this experimental apparatus has a high reliability. In order to measure the surface temperature of casting billets based on multi-wavelength thermometry, the bivariate emissivity function with the two variables, wavelength and temperature, is determined. Temperature measurement results based on our technique are compared with those from common dual-wavelength radiation thermometry. Our approach reduces the measured temperature fluctuation from ±20.7 °C to ±2.8 °C and reflects the temperature variation with the changes of production parameters in real time.

  12. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Rieker, Gregory B.; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2006-02-01

    Tunable diode laser absorption measurements at high pressures by use of wavelength-modulation spectroscopy (WMS) require large modulation depths for optimum detection of molecular absorption spectra blended by collisional broadening or dense spacing of the rovibrational transitions. Diode lasers have a large and nonlinear intensity modulation when the wavelength is modulated over a large range by injection-current tuning. In addition to this intensity modulation, other laser performance parameters are measured, including the phase shift between the frequency modulation and the intensity modulation. Following published theory, these parameters are incorporated into an improved model of the WMS signal. The influence of these nonideal laser effects is investigated by means of wavelength-scanned WMS measurements as a function of bath gas pressure on rovibrational transitions of water vapor near 1388 nm. Lock-in detection of the magnitude of the 2f signal is performed to remove the dependence on detection phase. We find good agreement between measurements and the improved model developed for the 2f component of the WMS signal. The effects of the nonideal performance parameters of commercial diode lasers are especially important away from the line center of discrete spectra, and these contributions become more pronounced for 2f signals with the large modulation depths needed for WMS at elevated pressures.

  13. [INVITED] Magnetic field vector sensor by a nonadiabatic tapered Hi-Bi fiber and ferrofluid nanoparticles

    NASA Astrophysics Data System (ADS)

    Layeghi, Azam; Latifi, Hamid

    2018-06-01

    A magnetic field vector sensor based on super-paramagnetic fluid and tapered Hi-Bi fiber (THB) in fiber loop mirror (FLM) is proposed. A two-dimensional detection of external magnetic field (EMF) is experimentally demonstrated and theoretically simulated by Jones matrix to analyze the physical operation in detail. A birefringence is obtained due to magnetic fluid (MF) in applied EMF. By surrounding the THB with MF, a tunable birefringence of MF affect the transmission of the sensor. Slow and fast axes of this obtained birefringence are determined by the direction of applied EMF. In this way, the transmission response of the sensor is depended on the angle between the EMF orientation and the main axes of polarization maintaining fiber (PMF) in FLM. The wavelength shift and intensity shift versus EMF orientation show a sinusoidal behavior, while the applied EMF is constant. Also, the changes in the intensity of EMF in a certain direction results in wavelength shift in the sensor spectrum. The maximum wavelength sensitivity of 214 pm/mT is observed.

  14. In-situ wavelength calibration and temperature control for the C-Mod high-resolution x-ray crystal imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, Luis F.; Podpaly, Y.; Reinke, M. L.; Gao, C.; Rice, J.; Scott, S.; Bitter, M.; Hill, K.; Beiersdorfer, P.; Johnson, D.; Wilson, J. R.

    2010-11-01

    An x-ray crystal imaging spectrometer with high spectral and spatial resolution is currently being used on Alcator C-Mod to infer time histories of temperature and velocity profiles. An in-situ wavelength calibration using a 1 μm palladium filter in between the crystal and the detectors of choice is being proposed as a natural wavelength-marker using the transmission changes across the L-II and L-III edges at 3722.9 mA and 3907.1 mA, respectively. Recent results also indicate that the crystal temperature should be kept constant within a fraction of a degree since the thermal expansion of the quartz crystal will change the interplanar (2d) spacing and introduce fictitious velocity measurements of several km/s. A detailed temperature scan indicates a thermal expansion coefficient (α) of 13.5x10-6 /^oC and thus a false Doppler shift of 4.05.δT[^oC] km/s.

  15. Application of the shifted excitation Raman difference spectroscopy (SERDS) to the analysis of trace amounts of methanol in red wines

    NASA Astrophysics Data System (ADS)

    Volodin, Boris; Dolgy, Sergei; Ban, Vladimir S.; Gracin, Davor; Juraić, Krunoslav; Gracin, Leo

    2014-03-01

    Shifted Excitation Raman Difference Spectroscopy (SERDS) has proven an effective method for performing Raman analysis of fluorescent samples. This technique allows achieving excellent signal to noise performance with shorter excitation wavelengths, thus taking full advantage of the superior signal strength afforded by shorter excitation wavelengths and the superior performance, also combined with lower cost, delivered by silicon CCDs. The technique is enabled by use of two closely space fixed-wavelength laser diode sources stabilized with the Volume Bragg gratings (VBGs). A side by side comparison reveals that SERDS technique delivers superior signal to noise ratio and better detection limits in most situations, even when a longer excitation wavelength is employed for the purpose of elimination of the fluorescence. We have applied the SERDS technique to the quantitative analysis of the presence of trace amounts of methanol in red wines, which is an important task in quality control operations within wine industry and is currently difficult to perform in the field. So far conventional Raman spectroscopy analysis of red wines has been impractical due to the high degree of fluorescence.

  16. Quadruple multi-wavelength conversion for access network scalability based on cross-phase modulation in an SOA-MZI

    NASA Astrophysics Data System (ADS)

    Ab-Rahman, Mohammad Syuhaimi; Swedan, Abdulhameed Almabrok

    2017-12-01

    The emergence of new services and data exchange applications has increased the demand for bandwidth among individuals and commercial business users at the access area. Thus, vendors of optical access networks should achieve a high-capacity system. This study demonstrates the performance of an integrated configuration of one to four multi-wavelength conversions at 10 Gb/s based on cross-phase modulation using semiconductor optical amplifier integrated with Mach-Zehnder interferometer. The Opti System simulation tool is used to simulate and demonstrate one to four wavelength conversions using one modulated wavelength and four probes of continuous wave sources. The wavelength converter processes are confirmed through investigation of the input and output characteristics, optical signal-to-noise ratio, conversion efficiency, and extinction ratio of new modulated channels after separation by demultiplexing. The outcomes of the proposed system using single channel indicate that the capacity can increase from 10 Gb/s to 50 Gb/s with a maximum number of access points increasing from 64 to 320 (each point with 156.25 Mb/s bandwidth). The splitting ratio of 1:16 provides each client with 625 Mb/s for the total number of 80 users. The Q-factor and bit error rate curves are investigated to confirm and validate the modified scheme and prove the system performance of the full topology of 25 km with 1/64 splitter. The outcomes are within the acceptable range to provide the system scalability.

  17. Simultaneous observations of changes in coronal bright point emission at the 20 cm radio and He Lambda 10830 wavelengths

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Harvey, Karen L.

    1986-01-01

    Preliminary results of observations of solar coronal bright points acquired simultaneously from ground based observatories at the radio wavelength of 20 cm and in the He I wavelength 10830 line on September 8, 1985, are reported. The impetus for obtaining simultaneous radio and optical data is to identify correlations, if any, in changes of the low transition-coronal signatures of bright points with the evolution of the magnetic field, and to distinguish between intermittent heating and changes in the magnetic field topology. Although simultaneous observations of H alpha emission and the photospheric magnetic field at Big Bear were also made, as well as radio observations from Owen Valley Radio Interferometer and Solar Maximum Mission (SSM) (O VIII line), only the comparison between He 10830 and the Very Large Array (VLA) radio data are presented.

  18. Optical amplification at the 1.31 wavelength

    DOEpatents

    Cockroft, Nigel J.

    1994-01-01

    An optical amplifier operating at the 1.31 .mu.m wavelength for use in such applications as telecommunications, cable television, and computer systems. An optical fiber or other waveguide device is doped with both Tm.sup.3+ and Pr.sup.3+ ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm.sup.3+ ions to the Pr.sup.3+ ions, causing the Pr.sup.3+ ions to amplify at a wavelength of 1.31

  19. Color matters--material ejection and ion yields in UV-MALDI mass spectrometry as a function of laser wavelength and laser fluence.

    PubMed

    Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-10-01

    The success of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) as a widely employed analytical tool in the biomolecular sciences builds strongly on an effective laser-material interaction that is resulting in a soft co-desorption and ionization of matrix and imbedded biomolecules. To obtain a maximized ion yield for the analyte(s) of interest, in general both wavelength and fluence need to be tuned to match the specific optical absorption profile of the used matrix. However, commonly only lasers with fixed emission wavelengths of either 337 or 355 nm are used for MALDI-MS. Here, we employed a wavelength-tunable dye laser and recorded both the neutral material ejection and the MS ion data in a wide wavelength and fluence range between 280 and 377.5 nm. α-Cyano-4-hydroxycinnamic acid (HCCA), 4-chloro-α-cyanocinnamic acid (ClCCA), α-cyano-2,4-difluorocinnamic acid (DiFCCA), and 2,5-dihydroxybenzoic acid (DHB) were investigated as matrices, and several peptides as analytes. Recording of the material ejection was achieved by adopting a photoacoustic approach. Relative ion yields were derived by division of photoacoustic and ion signals. In this way, distinct wavelength/fluence regions can be identified for which maximum ion yields were obtained. For the tested matrices, optimal results were achieved for wavelengths corresponding to areas of high optical absorption of the respective matrix and at fluences about a factor of 2-3 above the matrix- and wavelength-dependent ion detection threshold fluences. The material ejection as probed by the photoacoustic method is excellently fitted by the quasithermal model, while a sigmoidal function allows for an empirical description of the ion signal-fluence relationship.

  20. Multi-wavelength laser emission in dye-doped photonic liquid crystals.

    PubMed

    Wang, Chun-Ta; Lin, Tsung-Hsien

    2008-10-27

    Multi-wavelength lasing in a dye-doped cholesteric liquid crystal (CLC) cell is demonstrated. By adding oversaturated chiral dopant, the multi-photonic band CLC structure can be obtained with non-uniform chiral solubility. Under appropriate excitation, multi-wavelength lasing can be achieved with a multi-photonic band edge CLC structure. The number of lasing wavelengths can be controlled under various temperature processes. Nine wavelength CLC lasings were observed simultaneously. The wavelength range covers around 600-675nm. Furthermore, reversible tuning of multi-wavelength lasing was achieved by controlling CLC device temperature.