Science.gov

Sample records for mcmurdo ice shelf

  1. McMurdo Ice Shelf Sounding and Radar Statistical Reconnaissance at 60-MHz: Brine Infiltration Extent and Surface Properties

    NASA Astrophysics Data System (ADS)

    Grima, C.; Rosales, A.; Blankenship, D. D.; Young, D. A.

    2014-12-01

    McMurdo Ice Shelf, Antarctica, is characterized by two particular geophysical processes. (1) Marine ice accretion supplies most of the ice shelf material rather than meteoric ice from glacier outflow and snow-falls. (2) A brine layer infiltrates the ice shelf laterally up to 20-km inward. The infiltration mainly initiates at the ice-front from sea water percolation when the firn/snow transition is below sea-level. A better characterization of the McMurdo ice shelf could constrain our knowledges of these mechanisms and assess the stability of the region that hosts numerous human activities from the close McMurdo station (USA) and Scott base (New-Zealand). McMurdo ice shelf is also an analog for the Jovian icy moon Europa where brine pockets are supposed to reside in the ice crust and accretion to occur at the 10-30-km deep ice-ocean interface.The University of Texas Institute for Geophysics (UTIG) acquired two radar survey grids over the McMurdo Ice Shelf during southern summers 2011-2012 and 2012-2013 with the High Capability Radar Sounder (HiCARS) on-board a Basler DC-3 aircraft. HiCARS transmits a chirped signal at 60-MHz central frequency and 15-MHz bandwidth. The corresponding vertical resolution in ice is 5-10 m. An important design goal of the radar was to maintain sufficient dynamic range to correctly measure echo intensities.Here we present the brine infiltration extent and bathymetry derived from its dielectric horizon well distinguishable on the HiCARS radargram. We complement the ice-shelf characterization by classifying its surface thanks to the novel Radar Statistical Reconnaissance (RSR) methodology. The RSR observable is the statistical distribution of the surface echo amplitudes from successive areas defined along-track. The distributions are best-fitted with a theoretical stochastic envelop parameterized with the signal reflectance and scattering. Once those two components are deduced from the fit, they are used in a backscattering model to invert

  2. Seismic Stratigraphy Of The Ross Island Flexural Moat Under Western Mcmurdo-Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Horgan, H.; Naish, T.; Bannister, S.; Balfour, N.; Wilson, G.; Finnemore, F.

    2003-04-01

    Ross Island is a volcanic complex that began forming with the emplacement Mount Bird around 5 million years ago, though it has developed most significantly within the last 1 million years with the emplacement of the c. 4km high Mount Erebus. Throughout this time, loading of the lithosphere by this volcanic complex has warped the underlying crust into a subcircular submarine depression that has been accumulating sediment in series of flexural moat basins around the periphery of the island. Due to the depth of the floor of the depression (800-1000 m below sea level today), the sediment fill has largely escaped subsequent erosion by grounded ice of the McMurdo and Ross Ice Shelves (MRIS) and Ross Ice Sheet. Our interest is in the 1.5 km-thick sedimentary record that now lies beneath the deepest part of the depression and is covered by the MRIS. The sediments here have the potential to provide a continuous and high resolution (10^2-10^3 year) record back to 5 million years of the past behaviour of the MRIS and its influence on bottom water production in Ross Sea. The flexural moat basin-fill between the volcanic complexes of Ross and White Islands, which because of its remoteness is only now being investigated for the first time, is in a key location beneath the north western corner of the Ross Ice Shelf (RIS) where it flows into the McMurdo Ice Shelf (MIS). This site forms one of the 4 objectives of the ANDRILL Programme and is scheduled for drilling in 2005. Here we present new multi-channel seismic reflection data from over-ice shelf surveys conducted between 2001-2003, that elucidate the geometry and stratigraphy of the flexural-moat basin-fill and its relationship to the adjacent volcanics. We illustrate the proposed drill sites and make an initial prognosis of the sedimentary fill. The uppermost c. 500 m of the sedimentary succession is expected to be fine-grained muds with occasional glacigene sediment and layers of volcanic ash. Underlying strata may become

  3. Reconstructing Holocene conditions under the McMurdo Ice Shelf using Antarctic barnacle shells

    NASA Astrophysics Data System (ADS)

    Burgess, S. N.; Henderson, G. M.; Hall, B. L.

    2010-10-01

    This study evaluates the potential of barnacles for paleoceanographic reconstruction and, in particular, of the Antarctic species Bathylasma corolliforme to reconstruct past conditions under ice shelves. Like other barnacle species, this Antarctic barnacle secretes a robust low-Mg calcite shell with distinct growth increments on the external surface indicating growth over a number of years (30-50 in samples studied here). The Bathylasma samples used in this study grew in the Ross Sea and became entrained at the grounding line of a coastal ice shelf in McMurdo Sound, offering potential as an archive of changing conditions in this difficult to access environment under the McMurdo ice shelf. Nine barnacle shells were subsampled at high resolution (60 μm) for δ 18O and δ 13C analysis. These samples were dated with 14C and U-Th techniques, although the later did not yield useful age information due to open-system behaviour of barnacle calcite. Measured δ 18O values indicate that Bathylasma calcifies close to equilibrium with ambient seawater. One older sample (≈ 200 ka) has similar δ 18O and δ 13C values as the eight Holocene samples, suggesting that barnacle calcite is not prone to significant diagenesis in this setting. Apparent isotope equilibrium and lack of diagenesis make barnacles a promising archive for reconstruction of past ocean conditions. Cycles of δ 18O observed within each sample sometimes correlate with the external growth ridges, but not always, and have amplitudes of typically 0.6‰. This magnitude of variation suggests shell growth during a significant portion of the year, although it remains unclear whether growth continues throughout the year. However, the prominent growth bands suggest at least a signficant seasonal slowing in growth rate. Variations in barnacle δ 18O within each plate and between plates are too large to be caused by temperature, and instead reflect changes in δ 18O of the seawater, allowing some assessment of seawater

  4. Extension of an Ice Shelf Water plume model beneath sea ice with application in McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Hughes, K. G.; Langhorne, P. J.; Leonard, G. H.; Stevens, C. L.

    2014-12-01

    A one-dimensional, frazil-laden plume model predicts the properties of Ice Shelf Water (ISW) as it evolves beneath sea ice beyond the ice shelf edge. An idealized background ocean circulation, which moves parallel to the plume, imitates forcings other than the plume's own buoyancy. The size distribution and concentration of the plume's suspended frazil ice crystals are affected by the background circulation velocity, the root-mean square tidal velocity, the drag coefficient, and the efficiency of secondary nucleation. Consequently, these variables are the key physical controls on the survival of supercooled water with distance from the ice shelf, which is predicted using several realistic parameter choices. Starting at 65 m thick, the in situ supercooled layer thins to 11 ± 5 and 4 ± 3 m at distances of 50 and 100 km, respectively. We apply the extended model in McMurdo Sound, Antarctica, along the expected path of the coldest water. Three late-winter oceanographic stations along this path, in conjunction with historical data, provide initial conditions and evaluation of the simulations. Near the ice shelf in the western Sound, the water column consisted entirely of ISW, and the subice platelet layer thickness exceeded 5 m with platelet crystals dominating the sea ice structure suggesting that ISW persisted throughout winter. Presuming a constant ISW flux, the model predicts that the plume increases thermodynamic growth of sea ice by approximately 0.1 m yr-1 (˜5% of the average growth rate) even as far as 100 km beyond the ice shelf edge.

  5. Cenozoic basin evolution beneath the southern McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Johnston, Lisa; Wilson, Gary S.; Gorman, Andrew R.; Henrys, Stuart A.; Horgan, Huw; Clark, Roger; Naish, Tim R.

    2008-05-01

    Fifty-two kilometres of multi-channel seismic reflection data were acquired from the southern McMurdo Ice Shelf (SMIS) during potential drill site investigations for the Antarctic Drilling (ANDRILL) program. The survey was acquired atop 110 to 220 m of floating ice and extended across ablation and accumulation zones of the ice shelf. Seismic processing was tailored to the ice shelf environment, including: datum static corrections to account for changes in the thickness and average velocity of the near-surface firn layer, and changes in the surface elevation across the survey area; residual static corrections to account for near-surface ice shelf irregularities; and two-step predictive deconvolution to suppress ice and firn layer multiples. A model for the ice shelf thickness was also incorporated in the interval velocity model during depth conversion to ensure that the ice shelf structure did not impose non-static shifts on the seismic section. The depth converted CMP stacked sections reveal several N to NE trending normal faults, that offset reflective horizons by up to 150 m within the lower part of the section and form a broad east-dipping, half-graben structure. The seafloor possesses trough and arch morphology in parallel with the half-graben structure. These features are interpreted as the southern extension of the Terror Rift. The rift succession comprises a dislocated (?)early-Miocene synrift package and a relatively undeformed (?)late-Miocene post-rift package separated by an erosional unconformity. The post-rift package infills and onlaps the rift topography, and drapes over the graben system, reaching a maximum thickness of 400 m. Throughout the post-rift phase, the basin was also influenced by Neogene volcanism, evidenced by three small volcanic features within the seismic profiles, and associated successions of inferred volcanic material. An angular unconformity within the post-rift succession is interpreted as a flexural horizon related to the load of

  6. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica.

    PubMed

    Jungblut, Anne-Dorothee; Hawes, Ian; Mountfort, Doug; Hitzfeld, Bettina; Dietrich, Daniel R; Burns, Brendan P; Neilan, Brett A

    2005-04-01

    This study investigated the diversity of cyanobacterial mat communities of three meltwater ponds--Fresh, Orange and Salt Ponds, south of Bratina Island, McMurdo Ice Shelf, Antarctica. A combined morphological and genetic approach using clone libraries was used to investigate the influence of salinity on cyanobacterial diversity within these ecosystems without prior cultivation or isolation of cyanobacteria. We were able to identify 22 phylotypes belonging to Phormidium sp., Oscillatoria sp. and Lyngbya sp. In addition, we identified Antarctic Nostoc sp., Nodularia sp. and Anabaena sp. from the clone libraries. Fresh (17 phylotypes) and Orange (nine phylotypes) Ponds showed a similar diversity in contrast to that of the hypersaline Salt Pond (five phylotypes), where the diversity within cyanobacterial mats was reduced. Using the comparison of identified phylotypes with existing Antarctic sequence data, it was possible to gain further insight into the different levels of distribution of phylotypes identified in the investigated cyanobacterial mat communities of McMurdo Ice Shelf. PMID:15816929

  7. Downhole measurements in the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica

    USGS Publications Warehouse

    Morin, R.; Williams, T.; Henrys, S.; Crosby, T.; Hansaraj, D.

    2007-01-01

    A comprehensive set of downhole measurements was collected in the AND-1B drillhole as part of the on-ice scientific programme defined for the McMurdo Ice Shelf (MIS) Project. Geophysical logs were recorded over two operation phases and consisted of calliper, temperature, fluid conductivity, induction resistivity, magnetic susceptibility, natural gamma activity, acoustic televiewer, borehole deviation, and dipmeter. In addition, two standard vertical seismic profiles (VSP) and one walk-away VSP were obtained. Radioactive logs (porosity and density) were not run because of unstable borehole conditions. Although the total depth of the hole is 1285 metres below seafloor (mbsf), the depth range for in situ measurements was limited by the length of the wireline (1018 mbsf) and by the nullification of some geophysical logs due to the presence of steel casing. A depth correction was derived to account for systematic discrepancies in depth between downhole measurements and cores; consequently, log responses can be directly compared to core properties. The resulting data are amenable to studies of cyclicity and climate, heat flux and fluid flow, and stricture and stress. When integrated with physical properties and fractures measured on the core, this information should play a significant role in addressing many of the scientific objectives of the ANDRILL programme.

  8. Toxin production in cyanobacterial mats from ponds on the McMurdo ice shelf, Antarctica.

    PubMed

    Hitzfeld, B C; Lampert, C S; Spaeth, N; Mountfort, D; Kaspar, H; Dietrich, D R

    2000-12-01

    Cyanobacteria are known to produce hepatotoxic substances, the functional and ecological role of these toxins, however, remains largely unclear. Toxic properties of cyanobacteria collected in Antarctica were investigated to determine whether toxin-producing species can also be found under these environmental conditions. Samples were collected from meltwater ponds on the McMurdo Ice Shelf, Antarctica in the summers of 1997 to 1999. These ponds are colonized by benthic algae and cyanobacterial mats. Oscillatoriales, Nodularia sp., and Nostoc sp. constituted the major taxa in freshwater ponds, while Nostoc sp. was missing from brackish and saline ponds. Samples were taken from either floating, submerged or benthic mats, and extracted for in vitro toxicity testing. The presence of toxins was determined by the phosphatase-inhibition assay and by high performance liquid chromatography. The cytotoxic properties of the extracts were investigated in hepatocytes determining 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide metabolism and trypan blue dye exclusion. The results show that all cyanobacterial extracts display phosphatase-inhibiting activity, of which approximately half had significantly greater than 50% inhibiting activity. The presence of nodularin and microcystin-LR was established by high performance liquid chromatography. Cytotoxic properties, independent of the phosphatase inhibiting activity, were also detected. Toxic strains of cyanobacteria can therefore also be found in Antarctica and this finding may lead to further insight into potential ecological roles of cyanobacterial phosphatase inhibiting toxins. PMID:10858513

  9. Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica.

    PubMed

    de Los Ríos, Asunción; Ascaso, Carmen; Wierzchos, Jacek; Fernández-Valiente, Eduardo; Quesada, Antonio

    2004-01-01

    The three-dimensional structures of two types of cyanobacterium-dominated microbial mats from meltwater ponds on the McMurdo Ice Shelf were as determined by using a broad suite of complementary techniques, including optical and fluorescence microscopy, confocal scanning laser microscopy, scanning electron microscopy with back-scattered electron-imaging mode, low-temperature scanning electron microscopy, and microanalyitical X-ray energy dispersive spectroscopy. By using a combination of the different in situ microscopic techniques, the Antarctic microbial mats were found to be structures with vertical stratification of groups of cyanobacteria and mineral sediments, high contents of extracellular polymeric substances, and large void spaces occupied by water. In cyanobacterium-rich layers, heterocystous nostocalean and nonheterocystous oscillatorialean taxa were the most abundant taxa and appeared to be intermixed with fine-size deposits of epicellular silica and calcium carbonate. Most of the cyanobacterial filaments had similar orientations in zones without sediment particles, but thin filaments were tangled among thicker filaments. The combination of the microscopic techniques used showed the relative positions of biological and mineral entities within the microbial mats and enabled some speculation about their interactions. PMID:14711689

  10. N2-Fixation in Cyanobacterial Mats from Ponds on the McMurdo Ice Shelf, Antarctica.

    PubMed

    Fernández-Valiente, E.; Quesada, A.; Howard-Williams, C.; Hawes, I.

    2001-10-01

    We have investigated the ecological importance of N2-fixation in cyanobacterial mats, dominated by oscillatorean species, in ponds of the Bratina Island area of the McMurdo Ice Shelf, Antarctica (78 degrees S, 166 degrees E). Nitrogenase activity, estimated as acetylene reducing activity (ARA), was found in all the mats investigated (n = 16). The average ARA was 75.9 mmol ethylene m-2 h-1, ranging from 6 to 201 mmol ethylene m-2 h-1. Nitrogenase activity was positively correlated with dissolved reactive phosphorus concentration in pondwater and the C/N ratio of the mat, and was negatively correlated with pondwater NH4+-N concentrations and natural abundance of 15N in the mats. ARA was restricted to the upper, oxic layer of the mats. Experiments conducted to ascribe ARA to different groups of prokaryotes suggested that ARA was mainly conducted by heterocystous cyanobacteria, since no activity was found in the dark and the activity was inhibited by the photosystem II inhibitor DCMU (3-[3,4-dichlorophenyl]-1,1-dimethyl urea). In spite of 24 h of daylight, nitrogenase activity showed a diel cycle with maximum activity at midday (10-18 h) and minimal activity at early morning (6-10 h) when pond temperatures were at their minima. Light dependency of nitrogenase activity for three cyanobacterial communities showed that the irradiance required for saturating ARA was low, in every case lower than 100 mmol photon m-2s-1. Irradiance rarely fell below 100 mmol photon m-2s-1 during Antarctic summer days and ARA was likely to be light saturated for much of the time. We estimate that N2 fixation represented on average a N input into the ponds of over 1 g m-2y-1. This value appears to be the highest N input to this Antarctic ecosystem. PMID:12024259

  11. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (< 30 m in places) to allow observable viscoelastic responses to relatively small loads, and it is close to a center of logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  12. Mapping of saltwater intrusions into the McMurdo Ice Shelf, Antarctica, using electromagnetic induction sounding and ground penetrating radar measurements

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Haas, Christian; Krützmann, Nikolai

    2010-05-01

    Ice Shelves, interacting with both the ocean and the atmosphere, are a sensitive indicator of a changing environment. The repeated observation of ice shelf thickness as a result of surface and bottom mass balance and ice shelf dynamics yields insight into this sensitive balance. Ice shelf thickness is normally measured by radar, or derived from freeboard height using knowledge about ice density and sea level height. Seismic methods may also be used but are usually limited to smaller areas. In general, melting at the underside of the ice shelf is expected to be highest near the grounding line, and the rise and outflow of diluted undercooled water may result in bottom freezing. In the presence of saline ice at the ice shelf bottom the use of radar for ice thickness measurements is limited, as the radar energy is effectively absorbed. This is also the case near the ice shelf edge where saltwater intrusions may be observed. In November 2009 we conducted helicopter-borne electromagnetic induction measurements in the McMurdo Sound to measure sea ice and ice shelf thickness within a validation experiment for the CryoSat-2 satellite. The instrument used was an "EM bird", which is more frequently operated in the Arctic to map sea ice thickness. The thickness of the ice shelf could be detected for values less than about 50 m, with a strong gradient perpendicular to the ice shelf front and significant undulations parallel to the ice shelf front. At the same time, we used a ground penetrating radar system in order to detect the transition depth between fresh water and saline ice. In this contribution we present the results of this combined airborne and ground based method, which could be further developed to a fully airborne or ground based technology detecting larger ice shelf thickness and ice shelf morphology in the presence of marine ice.

  13. Radar detection of the brine extent at McMurdo Ice Shelf, Antarctica, and its control by snow accumulation

    NASA Astrophysics Data System (ADS)

    Grima, Cyril; Greenbaum, Jamin S.; Lopez Garcia, Erika J.; Soderlund, Krista M.; Rosales, Arami; Blankenship, Donald D.; Young, Duncan A.

    2016-07-01

    We derive the surface density and brine infiltration depth/extent at McMurdo Ice Shelf, Antarctica, from combined analysis of radar profiles and radar statistical reconnaissance of the surface from 2011 to 2012 austral summer airborne observations. Most of the brine boundaries appear controlled, directly or indirectly, by the snow accumulation pattern. The infiltration is bounded westward by an ablation area and resides just above the pore close-off depth over most of its extent. The eastern brine limit matches a light-snow corridor, suggesting a reversed pressure gradient at depth that might sharply slow down the infiltration. Brine into ice is confirmed at the deepest locations north and east of Williams Field. The ice-ocean interface is undetected west of the infiltrated zone, except in localized patches. We hypothesize this echo-free zone to be due to high scattering below the surface, possibly from a network of accreted ice and/or ice platelets at the ice-ocean interface.

  14. Heat Flow and Hydrologic Characteristics at the AND-1B borehole, ANDRILL McMurdo Ice Shelf Project, Antarctica

    USGS Publications Warehouse

    Morin, Roger H.; Williams, Trevor; Henry, Stuart; Diana Magens and Frank Niessen; Hansaraj, Dhiresh

    2010-01-01

    The Antarctic Drilling Program (ANDRILL) successfully drilled and cored a borehole, AND-1B, beneath the McMurdo Ice Shelf and into a flexural moat basin that surrounds Ross Island. Total drilling depth reached 1285 m below seafloor (mbsf) with 98 percent core recovery for the detailed study of glacier dynamics. With the goal of obtaining complementary information regarding heat flow and permeability, which is vital to understanding the nature of marine hydrogeologic systems, a succession of three temperature logs was recorded over a five-day span to monitor the gradual thermal recovery toward equilibrium conditions. These data were extrapolated to true, undisturbed temperatures, and they define a linear geothermal gradient of 76.7 K/km from the seafloor to 647 mbsf. Bulk thermal conductivities of the sedimentary rocks were derived from empirical mixing models and density measurements performed on core, and an average value of 1.5 W/mK ± 10 percent was determined. The corresponding estimate of heat flow at this site is 115 mW/m2. This value is relatively high but is consistent with other elevated heat-flow data associated with the Erebus Volcanic Province. Information regarding the origin and frequency of pathways for subsurface fluid flow is gleaned from drillers' records, complementary geophysical logs, and core descriptions. Only two prominent permeable zones are identified and these correspond to two markedly different features within the rift basin; one is a distinct lithostratigraphic subunit consisting of a thin lava flow and the other is a heavily fractured interval within a single thick subunit.

  15. Brittle fractures in AND-1B core, McMurdo Ice Shelf, Antarctica: A record of Neogene rifting or glaciotectonic deformation?

    NASA Astrophysics Data System (ADS)

    Wilson, T.; Paulsen, T.; Millan, C.; Lauefer, A.; McKay, R.; Team, A. S.

    2008-12-01

    The ANDRILL geological drilling program retrieved a 1285-m-long core (AND1B) from beneath the McMurdo Ice Shelf, Antarctica, in 2006-07. The drillsite is inferred to lie within the Terror Rift, a regional Neogene rift basin in the western Ross Sea, hence normal faulting and related tectonic deformation is expected to be present in the core. Sequence stratigraphic analysis has identified ~60 unconformity-bounded cycles in the core, with each base interpreted to mark erosion and subglacial deposition by an advancing Ross Ice Sheet, hence glaciotectonic deformation is also expected in the core. Systematic fracture logging of the AND-1B core identified 1,475 'natural fractures', i.e. pre-existing fractures in the rock intersected by coring. The most abundant natural fractures are normal faults and calcite veins; reverse faults, brecciated zones, and sedimentary intrusions are also present. Here we compare fracture distribution, density, type and orientation (where known) to the positions of glacial erosion surfaces in the core, together with initial information on the conditions of deformation from microstructural analysis, to discriminate rift-related from glaciotectonic formation of natural fractures in AND-1B core.

  16. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica.

    PubMed

    Mountfort, D O; Kaspar, H F; Downes, M; Asher, R A

    1999-12-01

    A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5 degrees C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-(14)C]acetate to sediment samples resulted in the passage of label mainly to CO(2). Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm(-3) h(-1) compared to 2.5 to 6 nmol cm(-3) h(-1)), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H(2) (2.4-fold), and H(2) uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H(2) release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, approximately 0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H(2) and CO(2) where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20 degrees C. PMID:10584008

  17. Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica

    SciTech Connect

    Mountfort, D.O.; Kaspar, H.F.; Downes, M.; Asher, R.A.

    1999-12-01

    A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-{sup 14}C]acetate to sediment samples resulted in the passage of label mainly to CO{sub 2}. Acetate addition (0 to 27 mM) had little effect on methanogenesis, and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm{sup {minus}3}h{sup {minus}1} compared to 2.5 to 6 nmol cm{sup {minus}3}h{sup {minus}1}), the portion of methane production attributed to acetate cleavage was {le}2%. Substantial increases in the methane production rate were observed with H{sub 2}, and H{sub 2} uptake was totally accounted for by methane production under physiological conditions. Format also stimulated methane production, presumably through H{sub 2} release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride. No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H{sub 2} and CO{sub 2} where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20 C.

  18. Diverse small circular single-stranded DNA viruses identified in a freshwater pond on the McMurdo Ice Shelf (Antarctica).

    PubMed

    Zawar-Reza, Peyman; Argüello-Astorga, Gerardo R; Kraberger, Simona; Julian, Laurel; Stainton, Daisy; Broady, Paul A; Varsani, Arvind

    2014-08-01

    Antarctica has some of the harshest environmental conditions for existence of life on Earth. In this pilot study we recovered eight diverse circular single-stranded DNA (ssDNA) viral genome sequences (1904-3120 nts) from benthic mats dominated by filamentous cyanobacteria in a freshwater pond on the McMurdo Ice Shelf sampled in 1988. All genomes contain two to three major open reading frames (ORFs) that are uni- or bi-directionally transcribed and all have an ORF encoding a replication-associated protein (Rep). In one genome, the second ORF has similarity to a capsid protein (CP) of Nepavirus which is most closely related to geminiviruses. Additionally, all genomes have two intergenic regions that contain putative stem loop structures, six genomes have NANTATTAC as the nonanucleotide motif, while one has CCTTATTAC, and another has a non-canonical stem loop. In the large intergenic region, we identified iterative sequences flanking the putative stem-loop elements which are a hallmark of most circular ssDNA viruses encoding rolling circle replication (RCR) initiators of the HUH endonuclease superfamily. The Reps encoded by ssDNA viral genomes recovered in this study shared <38% pairwise identity to all other Reps of known ssDNA viruses. A previous study on Lake Limnopolar (Livingston Island, South Shetland Islands), using next-generation sequencing identified circular ssDNA viruses and their putative Reps share <35% pairwise identity to those from the viral genomes removed in this study. It is evident from our pilot study that the global diversity of ssDNA viruses is grossly underestimated and there is limited knowledge on ssDNA viruses in Antarctica. PMID:24859088

  19. Clostridium vincentii sp. nov., a new obligately anaerobic, saccharolytic, psychrophilic bacterium isolated from low-salinity pond sediment of the McMurdo Ice Shelf, Antarctica.

    PubMed

    Mountfort, D O; Rainey, F A; Burghardt, J; Kaspar, H F; Stackebrandt, E

    1997-01-01

    A gram-positive, motile, rod-shaped, strictly anaerobic bacterium was isolated from an enrichment initiated with sediment taken from below the cyanobacterial mat of a low-salinity pond on the McMurdo Ice Shelf, Antarctica. The organism grew optimally at 12 degrees C, at pH 6.5, and at an NaCl concentration of< 0.5% (w/v). It survived freeze-thawing at low salt concentrations,but not exposure to temperatures over 25 degrees C for more than 20 h or short-term exposure to temperatures> 50 degrees C. Out of a variety of polysaccharides tested as growth substrates, only xylan supported growth. The organism also grew on a variety of mono- and disaccharides including the cyanobacterial cell wall constituent, N-acetyl glucosamine. Fermentation products on a mol product per 100 mol of hexose monomer fermented basis were: acetate, 72; formate, 72; butyrate, 55; hydrogen, 114; and CO2, 100. Not detectable in the culture medium(< 2 mol per 100 mol of monomer) were lactate, propionate, ethanol,n-propanol, n-butanol, and succinate. The G+C content of the DNA from the bacterium was 33 mol%, and a phylogenetic analysis indicated that it grouped closely with members of the RNA-DNA homology group 1 of the genus Clostridium. It differed from other species of this genus with regard to growth temperature optimum, substrate range, and fermentation pattern, and is therefore designated as a new species of Clostridium for which the name Clostridium vincentii is proposed. The type strain is lac-1 (DSM 10228). PMID:9000342

  20. Psychromonas antarcticus gen. nov., sp. nov., A new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo ice shelf, antarctica

    PubMed

    Mountfort; Rainey; Burghardt; Kaspar; Stackebrandt

    1998-03-01

    A gram-negative, rod- to oval-shaped, aerotolerant anaerobic bacterium was isolated from an anaerobic enrichment inoculated with sediment taken from below the cyanobacterial mat of a high-salinity pond near Bratina Island on the McMurdo Ice Shelf, Antarctica. The organism was positive for terminal oxidase and catalase and was motile by means of a polar flagellum. Optimal growth of anaerobic cultures occurred at 12 degrees C, at pH 6.5, and at an NaCl concentration of 3% (w/v). Of a variety of polysaccharides tested, only starch and glycogen supported growth. No growth was observed on cellulosic substrates and xylan, and the organism was unable to attack esculin. Monosaccharides and disaccharides, including the cyanobacterial cell-wall constituent N-acetyl glucosamine, were fermented. Per 100 mol of hexose, the following products (in mol) were formed: acetate, 60; formate, 130; ethanol, 56; lactate, 73; CO2, 15; and butyrate, 2. Propionate, ethanol, n-propanol, n-butanol and succinate were not detectable in the culture medium (< 1 mol per 100 mol of monomer). Hydrogen was not detected in the head space (detection limit < 10(-5) atm). Growth yields in aerobic static liquid cultures were slightly higher than those in anaerobic culture, and fermentation favoured acetate at the expense of electron sink products. Growth was inhibited in aerobic shaking cultures, and the organism did not utilize nitrate or sulfate as electron acceptors. The G+C content of the DNA from the bacterium was 42.8 mol%. A phylogenetic analysis indicated that the organism is a member of the gamma-subgroup of Proteobacteria, but that it is distinct from other members of this group based on the sequence of its 16S rRNA gene, mol% G+C, morphology, and physiological and biochemical characteristics. It is designated as a new genus and species; the type strain is star-1 (DSM 10704). PMID:9477258

  1. Platelet ice distribution in Antarctic sea ice and its implications for ocean - ice shelf interaction

    NASA Astrophysics Data System (ADS)

    Langhorne, P.; Hughes, K. G.; Gough, A. J.; Smith, I.; Williams, M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mohoney, A. R.; Haas, C.; Haskell, T. G.

    2015-12-01

    Ice shelf basal melting freshens and cools the fluid in the ice shelf-ocean boundary layer, producing Ice Shelf Water (ISW). The potential temperature of ISW is below the surface freezing point. Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. We have synthesized platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. Where suitable observations exist, oceanic heat fluxes are derived from sub-ice platelet layer measurements and these are shown in the figure. They demonstrate that in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of approximately -30 Wm-2 that persists for several months during winter. This heat flux from the sea ice to the ocean significantly increases the sea ice thickness close to an ice shelf. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. The most extensive dataset, which includes our new results, dates back to 1902 and extends north of the combined Ross and McMurdo Ice Shelf front in the southern Ross Sea. Here the surface water is held just below its freezing point as it enters McMurdo Sound from beneath the McMurdo Ice Shelf. Despite a more recent decrease in ocean salinity consistent with observations in the south-western Ross Sea, there has been no detectable change in the volume or temperature of this supercooled ISW under sea ice since the early twentieth century. The inclusion of platelet ice into first year sea ice is an annual process. Hence it will respond immediately to changes in the sub-ice shelf circulation pattern and its export of supercooled water, emphasizing the urgent need for careful, Antarctic-wide monitoring.

  2. Amery Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    article title:  Amery Ice Shelf's "Loose Tooth" Gets Looser     View Larger Image The Amery Ice Shelf is an important dynamic system responsible for draining about 16% of ... glaciers. Mass loss from the system occurs through basal melting and iceberg calving. These images from the Multi-angle Imaging ...

  3. Airborne and ground based measurements in McMurdo Sound, Antarctica, for the validation of satellite derived ice thickness

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Haas, Christian; Langhorne, Pat; Leonard, Greg; Price, Dan; Barnsdale, Kelvin; Soltanzadeh, Iman

    2014-05-01

    Melting and freezing processes in the ice shelf cavities of the Ross and McMurdo Ice Shelves significantly influence the sea ice formation in McMurdo Sound. Between 2009 and 2013 we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure thickness and freeboard profiles across the ice shelf and the landfast sea ice, which was accompanied by extensive field validation, and coordinated with satellite altimeter overpasses. Using freeboard and thickness, the bulk density of all ice types was calculated assuming hydrostatic equilibrium. Significant density steps were detected between first-year and multi-year sea ice, with higher values for the younger sea ice. Values are overestimated in areas with abundance of sub-ice platelets because of overestimation in both ice thickness and freeboard. On the ice shelf, bulk ice densities were sometimes higher than that of pure ice, which can be explained by both the accretion of marine ice and glacial sediments. For thin ice, the freeboard to thickness conversion critically depends on the knowledge of snow properties. Our measurements allow tuning and validation of snow cover simulations using the Weather Research Forecasting (WRF) model. The simulated snowcover is used to calculate ice thickness from satellite derived freeboard. The results of our measurements, which are supported by the New Zealand Antarctic programme, draw a picture of how oceanographic processes influence the ice shelf morphology and sea ice formation in McMurdo Sound, and how satellite derived freeboard of ICESat and CryoSat together with information on snow cover can potentially capture the signature of these processes.

  4. Selection and stability of quantitative stratigraphic age models: Plio-Pleistocene glaciomarine sediments in the ANDRILL 1B drillcore, McMurdo Ice Shelf

    NASA Astrophysics Data System (ADS)

    Cody, Rosemary; Levy, Richard; Crampton, James; Naish, Timothy; Wilson, Gary; Harwood, David

    2012-10-01

    Interpretation of glacimarine sedimentary records from Antarctic shelf drillholes has been hampered by the ambiguous age of strata where erosional unconformities and coarse diamictite deposits truncate or omit the magnetostratigraphic and biostratigraphic units used for correlation. However, new quantitative biostratigraphic techniques enable the correlation of sparse, incomplete, and often reworked Plio-Pleistocene records of Ross Sea fossil diatom flora with the more extensively documented but potentially diachronous offshore history of species' first and last appearance datums (FADs and LADs). The approach uses comprehensive regional databases of fossil records and computer-automated search algorithms to find the multidimensional line of correlation (LOC) that best fits local observations, and to identify regionally isochronous biostratigraphic markers. Different model configurations can be used to produce LOCs that represent alternative working hypotheses regarding reworking and other sources of misfit in the biostratigraphic record, and that together provide an envelope of uncertainty for age interpretation. An integrated, quantitative chronostratigraphic model for the ANDRILL-1B drillcore was developed iteratively: an initial age model was constructed solely from preliminary on-ice observations of fossil diatom highest and lowest occurrences (HOs and LOs) and their correlation with a database of other local event records from 24 DVDP, CIROS, and IODP drillcore sections. The model was subsequently updated as off-ice work yielded additional biostratigraphic marker events and revised event horizons, Ar/Ar ages for volcanic material, better-constrained magnetostratigraphic interpretation, and refinements to computational/analytical methodology. The current quantitative biostratigraphic age model for the AND-1B hole integrates the local ranges of 29 diatom taxa, five dated volcanic samples, and independently constrained ages of five paleomagnetic reversals. During

  5. Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica.

    PubMed

    Mountfort, Douglas O; Kaspar, Heinrich F; Asher, Rodney A; Sutherland, Donna

    2003-01-01

    The effects of freeze-thaw, freezing and sediment geochemistry on terminal anaerobic processes occurring in sediments taken from below cyanobacterial mats in meltwater ponds of the McMurdo Ice Shelf in Antarctica were investigated. Depending on the geochemical and physical status of the sediments (i.e., frozen or thawed), as well as passage of sediment through a freeze-thaw cycle, terminal carbon and electron flow shifted in which the proportions of hydrogen and acetate utilized for methanogenesis and sulfate reduction changed. Thus, in low-sulfate (or chloride) sediment which was thawed and incubated at 4 degrees C, total carbon and electron flow were mediated by acetate-driven sulfate reduction and H(2)-driven methanogenesis. When the same sediments were incubated frozen, both methanogenesis and sulfate reduction decreased. However, under these conditions methanogenesis was favored over sulfate reduction, and carbon flow from acetate to methane increased relative to sulfate reduction; >70% of methane was contributed by acetate, and more than 80% of acetate was oxidized by pathways not coupled to sulfate reduction. In high-sulfate pond sediments, sulfate reduction was a major process mediating terminal carbon and electron flow in both unfrozen and frozen incubations. However, as with low-sulfate sediments, acetate oxidation became uncoupled from sulfate reduction with freezing. Geochemical and temperature effects could be expressed by linear models in which the log (methanogenesis to sulfate reduction) was negative log linear with respect to either temperature or the log of the sulfate (or chloride) concentration. From these relationships it was possible to predict the ratio for a given temperature (low-sulfate sediments) or sulfate (chloride) concentration. Small transitory changes, such as elevated sulfate reduction coupled to increased acetate turnover, resulted from application of a freeze-thaw cycle to low-salinity pond sediments. The results demonstrate how

  6. Ross Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... funded by the National Science Foundation, several penguin colonies near the Ross Ice Shelf, Antarctica have not been able to ... affected include one of Antarctica's most populous Adelie penguin colonies, as well as a small colony of Emperor penguins. These ...

  7. Larsen B Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... ice shelf and the rough crevasses of glaciers appear orange. In contrast to the spectral composite, which provides information on ... surfaces appear brighter on their illuminated faces, the orange color in the multi-angle composite suggests a macroscopically rough ice ...

  8. Larsen Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Warmer surface temperatures over just a few months in the Antarctic can splinter an ice shelf and prime it for a major collapse, NASA and university scientists report in the latest issue of the Journal of Glaciology. Using satellite images of tell-tale melt water on the ice surface and a sophisticated computer simulation of the motions and forces within an ice shelf, the scientists demonstrated that added pressure from surface water filling crevasses can crack the ice entirely through. The process can be expected to become more widespread if Antarctic summer temperatures increase. This true-color image from Landsat 7, acquired on February 21, 2000, shows pools of melt water on the surface of the Larsen Ice Shelf, and drifting icebergs that have split from the shelf. The upper image is an overview of the shelf's edge, while the lower image is displayed at full resolution of 30 meters (98 feet) per pixel. The labeled pond in the lower image measures roughly 1.6 by 1.6 km (1.0 x 1.0 miles). Full text of Press Release More Images and Animations Image courtesy Landsat 7 Science Team and NASA GSFC

  9. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  10. Kinematics of the Neogene Terror Rift: Constraints from calcite twinning strain in AND-1B core, McMurdo Ice Shelf

    NASA Astrophysics Data System (ADS)

    Paulsen, T.; Wilson, T. J.; Demosthenous, C.; Millan, C.; Jarrard, R. D.; Laufer, A.

    2013-12-01

    Strain analyses of mechanically twinned calcite in veins and faults hosted by Neogene (13.6 Ma to 4.3 Ma) sedimentary and volcanic rocks recovered within the ANDRILL AND-1B drill core from the Terror Rift in the southern Ross Sea, Antarctica, yield prolate and oblate ellipsoids with principal shortening and extension strains ranging from 0.1% to 8.5%. The majority of samples show homogeneous coaxial strain predominantly characterized by subvertical shortening, which we attribute to lithostatic loading in an Andersonian normal faulting stress regime during sedimentary and ice sheet burial of the stratigraphic sequence. The overall paucity of a non-coaxial layer-parallel shortening signal in the AND-1B twin populations suggests that horizontal compressive stresses predicted by Neogene transtensional kinematic models for the rift system have been absent or of insufficient magnitude to cause a widespread noncoaxial strain overprint. Limited numbers of oriented samples yield a possible average ESE extension direction for the rift that is subparallel to other indicators of Neogene extension. The lack of horizontal shortening in the twin data suggests the Neogene Terror Rift system either lacks a strong longitudinal strike-slip component, or that spatial partitioning of strain controls the maximum shortening axes seen in rocks of this age.

  11. Ross ice shelf vibrations

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Diez, A.; Gerstoft, P.; Stephen, R. A.; Bolmer, T.; Wiens, D. A.; Aster, R. C.; Nyblade, A.

    2015-09-01

    Broadband seismic stations were deployed across the Ross Ice Shelf (RIS) in November 2014 to study ocean gravity wave-induced vibrations. Initial data from three stations 100 km from the RIS front and within 10 km of each other show both dispersed infragravity (IG) wave and ocean swell-generated signals resulting from waves that originate in the North Pacific. Spectral levels from 0.001 to 10 Hz have the highest accelerations in the IG band (0.0025-0.03 Hz). Polarization analyses indicate complex frequency-dependent particle motions, with energy in several frequency bands having distinctly different propagation characteristics. The dominant IG band signals exhibit predominantly horizontal propagation from the north. Particle motion analyses indicate retrograde elliptical particle motions in the IG band, consistent with these signals propagating as Rayleigh-Lamb (flexural) waves in the ice shelf/water cavity system that are excited by ocean wave interactions nearer the shelf front.

  12. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  13. Movement of fuel spills in the Ross Ice Shelf

    SciTech Connect

    Tumeo, M.A.; Larson, M.K.

    1994-12-31

    Williams Field provides logistical support to McMurdo Station in Antarctica and managers large amounts of fuel for their cargo planes. Numerous spills have occurred at this site with little recovery or remediation of the spilled fuel. From 1980 to 1989, approximately 380,000 liters (L) leaked during documented fuel spills-197,600 L of that total came from one spill alone, in October of 1989, when fuel leaked onto the ice at Williams Field. An additional 20 spills of unknown quantities have also occurred at McMurdo Station and Williams Field. Although recent improvements in equipment and procedures in Antarctica have significantly reduced the accidental release of fuel and all but eliminated the risk of a large fuel spill, the potential for small releases still exists. To track the movement of fuel spills on the ice shelf more accurately and to established the basis for remediation methods NSF funded a 3-year study. This article discusses information obtained about the movement of fuel from a small oil spill from a flexible pipeline between McMurdo Station and Williams Field on the Ross Ice Shelf. 1 fig., 1 tab.

  14. Mezozooplankton Beneath the Summer Sea Ice in McMurdo Sound, Antarctica: Abundance, Species Composition, and DMSP content

    EPA Science Inventory

    The Ross Sea Phaeocystis antarctica bloom contributes to a summer increase in under-ice planton biomass in McMurdo Sound, Antarctica. Due to difficulties of under-ice sampling, information on the mesozooplankton in McMurdo Sound is limited. We measured the abundance of mesooopl...

  15. An ice shelf breakup

    SciTech Connect

    Fahnestock, M.

    1996-02-09

    Glaciers and ice sheets are controlled by the climate and must change if the conditions that led to their current configurations are changing. These ice masses exist at the interface between the atmosphere, which provides sustaining snowfall and thermal regulation, and the land, which provides a stable base and in many cases the elevation required to reach suitably cold conditions. Ice sheets and glaciers are distributed around the globe and can serve as potential indicators of past climate variability and current climatic trends. 9 refs.

  16. Evolution of a supercooled Ice Shelf Water plume with an actively growing subice platelet matrix

    NASA Astrophysics Data System (ADS)

    Robinson, Natalie J.; Williams, Michael J. M.; Stevens, Craig L.; Langhorne, Patricia J.; Haskell, Timothy G.

    2014-06-01

    We use new observations in Western McMurdo Sound, combined with longitudinal hydrographic transects of the sound, to identify a northward-flowing Ice Shelf Water (ISW) plume exiting the cavity of the McMurdo-Ross Ice Shelf. We estimate the plume's net northward transport at 0.4 ± 0.1 Sv, carving out a corridor approximately 35 km wide aligned with the Victoria Land Coast. Basal topography of the McMurdo Ice Shelf is such that the plume is delivered to the surface without mixing with overlying warmer water, and is therefore able to remain below the surface freezing temperature at the point of observation beneath first-year ice. Thus, the upper ocean was supercooled, by up to 50 mK at the surface, due to pressure relief from recent rapid ascent of the steep basal slope. The 70 m thick supercooled layer supports the growth and maintenance of a thick, semirigid, and porous matrix of platelet ice, which is trapped by buoyancy at the ice-ocean interface. Continued growth of individual platelets in supercooled water creates significant brine rejection at the top of the water column which resulted in convection over the upper 200 m thick, homogeneous layer. By examining the diffusive nature of the intermediate water between layers of ISW and High Salinity Shelf Water, we conclude that the ISW plume must have originated beneath the Ross Ice Shelf and demonstrate that it is likely to expand eastward across McMurdo Sound with the progression of winter.

  17. Modelling Glacier Retreat after Ice Shelf Collapse

    NASA Astrophysics Data System (ADS)

    De Rydt, J.; Gudmundsson, G. H.; Rott, H.; Bamber, J. L.

    2014-12-01

    Satellite measurements have shown the consistent and ongoing speed-up and retreat of glaciers that were once buttressed by the collapsed Larsen B ice shelf. Understanding the response of grounded ice to ice shelf collapse is a prerequisite to future predictions of sea level rise as other ice shelfs such as Scar Inlet or the Larsen Ice Shelf further weaken due to changing atmospheric and ocean conditions.We present model results for a number of sensitivity experiments that aim to simulate the response of glaciers to the collapse of Larsen B. For this purpose we use a state of the art shallow shelf model with grounding line resolving capabilities. The model is initialized to observed pre-2002 conditions with the ice shelf in place, and transient runs are done that study the response to a weakening and removal of the ice shelf. Results are compared to a novel dataset of observed ice velocities, which provides the most comprehensive overview of dynamical changes after the collapse to-date. In addition, we investigate glacier response to the future collapse of Scar Inlet, a remnant of the Larsen B ice shelf which has been suggested to show signs of weakening in recent years. Results will also be used to inform a future Antartic Peninsula-wide modelling study.

  18. Iceberg B-15, Ross Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Iceberg B-15 broke from the Ross Ice Shelf in Antarctica in late March. Among the largest ever observed, the new iceberg is approximately 170 miles long x 25 miles wide. Its 4,250 square-mile area is nearly as large as the state of Connecticut. The iceberg was formed from glacial ice moving off the Antarctic continent and calved along pre-existing cracks in the Ross Ice Shelf near Roosevelt Island. The calving of the iceberg essentially moves the northern boundary of the ice shelf about 25 miles to the south, a loss that would normally take the ice shelf as long as 50-100 years to replace. This infrared image was acquired by the DMSP (Defense Meteorological Satellite Program) F-13 satellite on April 13, 2000. For more images see Antarctic Meteorological Research Center Image courtesy of the University of Wisconsin - Madison, Space Science and Engineering Center, Antarctic Meteorological Research Center

  19. Ice-shelf - ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Price, M. R.; Heywood, K. J.; Nicholls, K. W.

    2008-03-01

    Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue, Trolltunga, that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW) layer below the base of the ice shelf at 150-200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O) to the upper 100-150 m of the water column in the southeast Weddell Sea.

  20. Ice-shelf - ocean interactions at Fimbul Ice Shelf, Antarctica from oxygen isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Price, M. R.; Heywood, K. J.; Nicholls, K. W.

    2007-09-01

    Melt water from the floating ice shelves at the margins of the southeastern Weddell Sea makes a significant contribution to the fresh water budget of the region. In February 2005 a multi-institution team conducted an oceanographic campaign at Fimbul Ice Shelf on the Greenwich Meridian as part of the Autosub Under Ice programme. This included a mission of the autonomous submarine Autosub 25 km into the cavity beneath Fimbul Ice Shelf, and a number of ship-based hydrographic sections on the continental shelf and adjacent to the ice shelf front. The measurements reveal two significant sources of glacial melt water at Fimbul Ice Shelf: the main cavity under the ice shelf and an ice tongue that protrudes from the main ice front and out over the continental slope into deep water. Glacial melt water is concentrated in a 200 m thick Ice Shelf Water (ISW) layer below the base of the ice shelf at 150-200 m, with a maximum glacial melt concentration of up to 1.16%. Some glacial melt is found throughout the water column, and much of this is from sources other than Fimbul Ice Shelf. However, at least 0.2% of the water in the ISW layer cannot be accounted for by other processes and must have been contributed by the ice shelf. Just downstream of Fimbul Ice Shelf we observe locally created ISW mixing out across the continental slope. The ISW formed here is much less dense than that formed in the southwest Weddell Sea, and will ultimately contribute a freshening (and reduction in δ18O) to the upper 100-150 m of the water column in the southeast Weddell Sea.

  1. Glacier surge after ice shelf collapse.

    PubMed

    De Angelis, Hernán; Skvarca, Pedro

    2003-03-01

    The possibility that the West Antarctic Ice Sheet will collapse as a consequence of ice shelf disintegration has been debated for many years. This matter is of concern because such an event would imply a sudden increase in sea level. Evidence is presented here showing drastic dynamic perturbations on former tributary glaciers that fed sections of the Larsen Ice Shelf on the Antarctic Peninsula before its collapse in 1995. Satellite images and airborne surveys allowed unambiguous identification of active surging phases of Boydell, Sjögren, Edgeworth, Bombardier, and Drygalski glaciers. This discovery calls for a reconsideration of former hypotheses about the stabilizing role of ice shelves. PMID:12624263

  2. Larsen ice shelf has progressively thinned.

    PubMed

    Shepherd, Andrew; Wingham, Duncan; Payne, Tony; Skvarca, Pedro

    2003-10-31

    The retreat and collapse of Antarctic Peninsula ice shelves in tandem with a regional atmospheric warming has fueled speculation as to how these events may be related. Satellite radar altimeter measurements show that between 1992 and 2001 the Larsen Ice Shelf lowered by up to 0.27 +/- 0.11 meters per year. The lowering is explained by increased summer melt-water and the loss of basal ice through melting. Enhanced ocean-driven melting may provide a simple link between regional climate warming and the successive disintegration of sections of the Larsen Ice Shelf. PMID:14593176

  3. Tidal Modulation of Ice-shelf Flow: a Viscous Model of the Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; MacAyeal, Douglas R.

    2014-01-01

    Three stations near the calving front of the Ross Ice Shelf, Antarctica, recorded GPS data through a full spring-neap tidal cycle in November 2005. The data revealed a diurnal horizontal motion that varied both along and transverse to the long-term average velocity direction, similar to tidal signals observed in other ice shelves and ice streams. Based on its periodicity, it was hypothesized that the signal represents a flow response of the Ross Ice Shelf to the diurnal tides of the Ross Sea. To assess the influence of the tide on the ice-shelf motion, two hypotheses were developed. The first addressed the direct response of the ice shelf to tidal forcing, such as forces due to sea-surface slopes or forces due to sub-ice-shelf currents. The second involved the indirect response of ice-shelf flow to the tidal signals observed in the ice streams that source the ice shelf. A finite-element model, based on viscous creep flow, was developed to test these hypotheses, but succeeded only in falsifying both hypotheses, i.e. showing that direct tidal effects produce too small a response, and indirect tidal effects produce a response that is not smooth in time. This nullification suggests that a combination of viscous and elastic deformation is required to explain the observations.

  4. Climate science: A great Arctic ice shelf

    NASA Astrophysics Data System (ADS)

    Domack, Eugene

    2016-02-01

    Newly mapped features on the floor of the Arctic Ocean suggest that the Arctic basin was once covered by a one-kilometre-thick, flowing ice shelf derived from large ice sheets in eastern Siberia, Arctic Canada and the Barents Sea.

  5. Ice-shelf melting around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.

    2008-12-01

    The traditional view on the mass balance of Antarctic ice shelves is that they loose mass principally from iceberg calving with bottom melting a much lower contributing factor. Because ice shelves are now known to play a fundamental role in ice sheet evolution, it is important to re-evaluate their wastage processes from a circumpolar perspective using a combination of remote sensing techniques. We present area average rates deduced from grounding line discharge, snow accumulation, firn depth correction and ice shelf topography. We find that ice shelf melting accounts for roughly half of ice-shelf ablation, with a total melt water production of 1027 Gt/yr. The attrition fraction due to in-situ melting varies from 9 to 90 percent around Antarctica. High melt producers include the Ronne, Ross, Getz, Totten, Amery, George VI, Pine Island, Abbot, Dotson/Crosson, Shackleton, Thwaites and Moscow University Ice Shelves. Low producers include the Larsen C, Princess Astrid and Ragnhild coast, Fimbul, Brunt and Filchner. Correlation between melt water production and grounding line discharge is low (R2 = 0.65). Correlation with thermal ocean forcing from the ocean are highest in the northern parts of West Antarctica where regressions yield R2 of 0.93-0.97. Melt rates in the Amundsen Sea exhibit a quadratic sensitivity to thermal ocean forcing. We conclude that ice shelf melting plays a dominant role in ice shelf mass balance, with a potential to change rapidly in response to altered ocean heat transport onto the Antarctic continental shelf.

  6. Ice-shelf melting around Antarctica.

    PubMed

    Rignot, E; Jacobs, S; Mouginot, J; Scheuchl, B

    2013-07-19

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines. PMID:23765278

  7. Ice-Shelf Melting Around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.

    2013-07-01

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.

  8. Crevasses, Fractures and Folds within Firn and Marine Ice of the McMurdo Shear Zone, Antarctica interpreted from GPR Profiles acquired with an Unmanned Rover

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.; Lever, J.; Ray, L.

    2015-12-01

    The firn of the McMurdo shear zone within the Ross Ice Shelf, Antarctica is intensively crevassed, and may also contain crevasses within its meteoric and marine ice. However, the surface crevassing prevents ordinary vehicle access to investigate its structure geophysically. We used a lightweight robotic vehicle to tow 200 and 400 MHz ground-penetrating radar antennas simultaneously along 100 evenly spaced transects over a 28 km2 grid spanning the shear zone width. Transects were mainly orthogonal to ice flow. Total firn and meteoric ice thickness was about 160 m. Firn crevasses profiled at 400 MHz were up to 16 m wide, under snow bridges up to 10 m thick, and with strikes near 50-55° to general flow direction. From top down, 200-MHz profiles reveal firn diffractions originating to about 40 m depth, no discernible structure within the meteoric ice, a discontinuous transitional horizon, and at least 20 m of disturbed and stratified marine ice. Freeboard ranging from 28-31 m shows more marine ice exists. We interpret the transitional horizon to be a thin saline layer, and marine ice hyperbolic diffractions and reflections to be responses to localized fractures and to crevasses of various widths, filled with unstratified marine ice, and at strikes mainly between 41-63°. We interpret off-nadir, marine ice horizons to be responses to linear and folded faults, the structure and orientation of which are similar to some in firn. The coinciding and synchronously folded areas of fractured firn and marine ice suggest the visibly unstructured meteoric ice is also fractured, but either never crevassed, or crevassed and sutured without sea water penetration, and that any bottom crevasses that occurred near grounding lines have been thermally eroded. Consequently any fractures in the meteoric ice beneath our grid are likely to have formed far from any grounding area, but it is unclear why there is no evidence of sea water penetration given the fractured and crevassed marine ice.

  9. Ice Shelf Microbial Ecosystems in the High Arctic and Implications for Life on Snowball Earth

    NASA Astrophysics Data System (ADS)

    Vincent, W. F.; Gibson, J. A. E.; Pienitz, R.; Villeneuve, V.; Broady, P. A.; Hamilton, P. B.; Howard-Williams, C.

    The Ward Hunt Ice Shelf (83°N, 74°W) is the largest remaining section of thick (>10m) landfast sea ice along the northern coastline of Ellesmere Island, Canada. Extensive meltwater lakes and streams occur on the surface of the ice and are colonized by photosynthetic microbial mat communities. This High Arctic cryo-ecosystem is similar in several of its physical, biological and geochemical features to the McMurdo Ice Shelf in Antarctica. The ice-mats in both polar regions are dominated by filamentous cyanobacteria but also contain diatoms, chlorophytes, flagellates, ciliates, nematodes, tardigrades and rotifers. The luxuriant Ward Hunt consortia also contain high concentrations (107-108cm-2) of viruses and heterotrophic bacteria. During periods of extensive ice cover, such as glaciations during the Proterozoic, cryotolerant mats of the type now found in these polar ice shelf ecosystems would have provided refugia for the survival, growth and evolution of a variety of organisms, including multicellular eukaryotes.

  10. Ice shelf microbial ecosystems in the high arctic and implications for life on snowball earth.

    PubMed

    Vincent, W F; Gibson, J A; Pienitz, R; Villeneuve, V; Broady, P A; Hamilton, P B; Howard-Williams, C

    2000-03-01

    The Ward Hunt Ice Shelf (83 degrees N, 74 degrees W) is the largest remaining section of thick (> 10 m) land-fast sea ice along the northern coastline of Ellesmere Island, Canada. Extensive meltwater lakes and streams occur on the surface of the ice and are colonized by photosynthetic microbial mat communities. This High Arctic cryo-ecosystem is similar in several of its physical, biological and geochemical features to the McMurdo Ice Shelf in Antarctica. The ice-mats in both polar regions are dominated by filamentous cyanobacteria but also contain diatoms, chlorophytes, flagellates, ciliates, nematodes, tardigrades and rotifers. The luxuriant Ward Hunt consortia also contain high concentrations (10(7)-10(8) cm-2) of viruses and heterotrophic bacteria. During periods of extensive ice cover, such as glaciations during the Proterozoic, cryotolerant mats of the type now found in these polar ice shelf ecosystems would have provided refugia for the survival, growth and evolution of a variety of organisms, including multicellular eukaryotes. PMID:10798200

  11. Breakup of the Larsen Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Recent Moderate-resolution Imaging Spectroradiometer (MODIS) satellite imagery analyzed at the University of Colorado's National Snow and Ice Data Center revealed that the northern section of the Larsen B ice shelf, a large floating ice mass on the eastern side of the Antarctic Peninsula, has shattered and separated from the continent. This particular image was taken on March 5, 2002. The shattered ice formed a plume of thousands of icebergs adrift in the Weddell Sea. A total of about 3,250 square kilometers of shelf area disintegrated in a 35-day period beginning on January 31, 2002. Over the last five years, the shelf has lost a total of 5,700 square kilometers and is now about 40 percent the size of its previous minimum stable extent. Ice shelves are thick plates of ice, fed by glaciers, that float on the ocean around much of Antarctica. The Larsen B shelf was about 220 meters thick. Based on studies of ice flow and sediment thickness beneath the ice shelf, scientists believe that it existed for at least 400 years prior to this event and likely existed since the end of the last major glaciation 12,000 years ago. For reference, the area lost in this most recent event dwarfs Rhode Island (2,717 square kilometers) in size. In terms of volume, the amount of ice released in this short time is 720 billion tons--enough ice for about 12 trillion 10-kilogram bags. This is the largest single event in a series of retreats by ice shelves along the peninsula over the last 30 years. The retreats are attributed to a strong climate warming in the region. The rate of warming is approximately 0.5 degrees Celsius per decade, and the trend has been present since at least the late 1940s. Overall in the peninsula, the extent of seven ice shelves has declined by a total of about 13,500 square kilometers since 1974. This value excludes areas that would be expected to calve under stable conditions. Ted Scambos, a researcher with the National Snow and Ice Data Center (NSIDC) at

  12. Sub-ice shelf circulation and basal melting of the Fimbul Ice Shelf

    NASA Astrophysics Data System (ADS)

    Nost, Ole Anders

    2010-05-01

    The Fimbul Ice Shelf is the largest of the ice shelves in Dronning Maud Land. Due to a narrow and some places non-existent continental shelf, the ice shelves in Dronning Maud Land are situated close to the Warm Deep Water. The Antarctic Slope Front separates the Warm Deep Water from the ice shelves and complicated exchange processes working across this front controls the melting of the Fimbul Ice Shelf and the other ice shelves in Dronning Maud Land. Here we will present analysis of unique data from the Dronning Maud Land coastal zone, as well as preliminary results from the 2009/2010 field work on the Fimbul Ice Shelf. In 2008 eight elephant seals equipped with CTD data loggers collected hydrographic data in the Dronning Maud Land coastal zone from February through October. Analysis of these data shows that overturning of the Antarctic Slope Front is the main process exchanging heat into the ice shelf cavities. This overturning together with an onshore surface Ekman flow leads to a seasonal cycle in the salinity of the coastal water masses, while glacial melting sea ice formation has little influence. During the 2009/2010 field season on the Fimbul Ice Shelf glaciological and oceanographic data were collected. We will show preliminary results of ice flow, ice thickness and basal melting measured using stake nets and phase sensitive radar. Oceanographic data were collected through three hot water drilled access holes in the ice shelf. These data show a water column with temperatures close to the surface freezing point over most of the water column. Relatively warmer water was observed near the bottom on one of the CTD stations. Maximum observed temperature is -1.57 °C. We compare the sub iceshelf hydrography with the hydrography observed by the elephant seals near the ice front in an attempt to reveal the sub ice shelf circulation. We also compare estimated melt rates from the oceanographic data with melt rates estimated with the phase sensitive radar and stake

  13. Neogene ice sheet, paleoclimatic and geological history of the McMurdo Sound region, Victoria Land Basin, Antarctica: overview of ANDRILL's first two drilling projects

    NASA Astrophysics Data System (ADS)

    Powell, R.; Naish, T.; Harwood, D.; Florindo, F.; Levy, R.; Teams, M. S.

    2008-12-01

    The ANtarctic geological DRILLing Program (ANDRILL), an international collaboration within IPY, has recovered 2 cores: from under the Ross Ice Shelf (McMurdo Ice Shelf Project (MIS) - AND-1B), and from the land-fast sea-ice of McMurdo Sound (Southern McMurdo Sound Project (SMS) - AND-2A). Drill cores reached respective total depths of 1285mbsf in c. 850m of water (MIS) and 1138.54mbsf in c. 380m of water (SMS). Repetitive facies successions in AND-1B core imply at least 60 fluctuations, of probable Milankovitch- duration, between subglacial, ice proximal and ice distal open marine environments. These are grouped into 3 types of facies cycles corresponding to glacial-interglacial variability during climatically distinct periods of Late Neogene: (1) cold-polar climate and ice (late Miocene and Pleistocene); (2) relatively warmer climate, polythermal ice and interglacials dominated by pelagic diatomite (Pliocene); (3) warmer climate, polythermal ice with interglacials dominated by hemipelagites (early late Miocene). A c. 80m-thick interval of diatomite of mid to late Pliocene age shows no apparent glacial cyclicity and represents an extended period of ice-free conditions indicating reduced or absent WAIS. Late Pliocene glacial-interglacial cycles characterized by abrupt alternations between subglacial/ice-proximal facies and open marine diatomite units imply significant WAIS dynamism, and contribution to global ice volume changes coeval with the initiation of Northern Hemisphere glaciations. A c. 4m-thick interval of diatomaceous mudstone in the mid-Pleistocene also represents warm-interglacial ice-free conditions. Intriguingly, glacial deposits interrupted by periodic, small- scale grounding-line retreats dominate the last 1m.y. Inter-hemispheric ice sheet coupling was probably controlled by Northern Hemispheric insolation and consequent glacial eustasy to account for much of the orbital-scale WAIS variability since 2.5Ma. A further expansion of WAIS occurred across

  14. Circulation and melting beneath the ross ice shelf.

    PubMed

    Jacobs, S S; Gordon, A L; Ardai, J L

    1979-02-01

    Thermohaline observations in the water column beneath the Ross Ice Shelf and along its terminal face show significant vertical stratification, active horizontal circulation, and net melting at the ice shelf base. Heat is supplied by seawater that moves southward beneath the ice shelf from a central warm core and from a western region of high salinity. The near-freezing Ice Shelf Water produced flows northward into the Ross Sea. PMID:17734137

  15. The Tweeting Ice Shelf: geophysics and outreach

    NASA Astrophysics Data System (ADS)

    Van Liefferinge, Brice; Berger, Sophie; Drews, Reinhard; Pattyn, Frank

    2015-04-01

    Over the last decade the Antarctic and Greenland ice sheets have contributed about one third of the annual sea level rise (Hanna et al., 2013). However, it remains difficult to reconcile global mass balance estimates obtained from different satellite-based methods. A typical approach is to balance the mass input from atmospheric modelling with the outgoing mass flux at the ice-sheet boundary (Shepherd et al., 2012). The flux calculations at the boundary rely on satellite-derived surface velocities, which are currently only available as snapshots in time, and which need ground truth for validation. Here, we report on continuous, year-round measurements that aim at improving the input-output method in several aspects and carefully map the flow speed allowing for detecting seasonal variability. For this purpose, we set up in December 2014 three stand-alone single-frequency GPSes on the Roi Baudouin ice shelf (East Antarctica). The GPSes are installed across a surface depression (typical for large ice-shelf channels), where subglacial melting is expected. This setup allows us to investigate how these channels behave, i.e., if they become wider, whether or not they enhance the ice flow, and, in combination with an installed phase-sensitive radar, what amount of melting occurs below the channels in contact with the ocean. The GPS data are transmitted on a daily basis. Ice-shelf velocity is derived from the raw hourly location following the methods described in den Ouden et al. (2010), Dunse et al. (2012), and Ahlstrøm et al. (2013). However, a reference station has not been used for the correction. Basic processing involves outliers removal, smoothing, time-series analysis and comparison with tidal models. The project comes alongside an outreach event: on a weekly basis, the ice shelf 'tweets' its position, motion and relays other information with respect to the project. The GPS systems can be followed on Twitter via @TweetinIceShelf as well as the Tweeting Ice Shelf

  16. A case study of a Ross Ice Shelf Airstream event using high resolution observational data captured by SNOWWEB

    NASA Astrophysics Data System (ADS)

    Jolly, Ben; McDonald, Adrian

    2015-04-01

    The Ross Ice Shelf Airstream (RAS) is the dominant weather pattern over the Ross Ice Shelf in Antarctica. Characterised by a strong southerly flow over the ice shelf, the RAS plays a significant role in the northward transport of cold air from the interior of the continent out into the Ross Sea. As it passes by Ross Island - home to McMurdo Station and Scott Base - and out over the edge of the ice shelf, the RAS also helps to create and maintain the Ross Sea Polynya, the single largest contributor to sea ice growth in the Ross Sea region. Our area of interest is the McMurdo Ice Shelf, situated directly south of Ross Island and adjoining the north-western tip of the much larger Ross Ice Shelf. The terrain of this region is complex, with large mountains, islands, and cliffs dominating local flow. Additionally, severe weather - often experienced during a RAS event - can greatly impact human activity. These two factors make this region particularly interesting to study. During the 2013/14 austral summer season we deployed 14 weather stations on the McMurdo Ice Shelf, creating a dense spatial observational network. In combination with existing automatic weather stations and high resolution model output from the Antarctic Mesoscale Prediction System (AMPS), we present a case study of a three day RAS event observed in November 2013. We find that AMPS represents the RAS well in general, however at the local scale there are some large discrepancies between observed and forecast winds. Predominantly these are a result of errors in timing, with AMPS incorrectly forecasting 'lulls' in the RAS when none were observed and vice-versa. There also appear to be some differences between AMPS and observations regarding the split of the southerly RAS flow around Ross Island. The representation within AMPS of both Hut Point Peninsula - a small yet important orographic feature running south-west from Ross Island that blocks relatively weak flows - and the Windless Bight high pressure

  17. Evolution of ice-shelf channels in Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Drews, R.

    2015-03-01

    Ice shelves buttress the continental ice flux and mediate ice-ocean interactions. They are often traversed by channels in which basal melting is enhanced, impacting ice-shelf stability. Here, channel evolution is investigated using a transient, three-dimensional full Stokes model and geophysical data collected on Roi Baudouin Ice Shelf (RBIS), Antarctica. The modeling confirms basal melting as a feasible mechanism for channel creation, although channels may also advect without melting for many tens of kilometers. Channels can be out of hydrostatic equilibrium depending on their width and the upstream melt history. Inverting surface elevation for ice thickness in those areas is erroneous and corresponding observational evidence is presented at RBIS by comparing the hydrostatically inverted ice thickness with radar measurements. The model shows that channelized melting imprints the flowfield characteristically, which can result in enhanced horizontal shearing across channels. This is exemplified for a channel at RBIS using observed surface velocities and opens up the possibility to classify channelized melting from space, an important step towards incorporating these effects in ice-ocean models.

  18. Evolution of ice-shelf channels in Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Drews, R.

    2015-06-01

    Ice shelves buttress the continental ice flux and mediate ice-ocean interactions. They are often traversed by channels in which basal melting is enhanced, impacting ice-shelf stability. Here, channel evolution is investigated using a transient, three-dimensional full Stokes model and geophysical data collected on the Roi Baudouin Ice Shelf (RBIS), Antarctica. The modeling confirms basal melting as a feasible mechanism for channel creation, although channels may also advect without melting for many tens of kilometers. Channels can be out of hydrostatic equilibrium depending on their width and the upstream melt history. Inverting surface elevation for ice thickness using hydrostatic equilibrium in those areas is erroneous, and corresponding observational evidence is presented at RBIS by comparing the hydrostatically inverted ice thickness with radar measurements. The model shows that channelized melting imprints the flow field characteristically, which can result in enhanced horizontal shearing across channels. This is exemplified for a channel at RBIS using observed surface velocities and opens up the possibility to classify channelized melting from space, an important step towards incorporating these effects in ice-ocean models.

  19. Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R.; Cai, C.; Nyblade, A.; Wiens, D. A.

    2016-02-01

    An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2-2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column, and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves gives different shear-wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modeling the observed Rayleigh wave dispersion curves using representative firn, ice, water, sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modeling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness, and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.

  20. Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D. A.

    2016-05-01

    An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ˜150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn-air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.

  1. Amery Ice Shelf's 'Loose Tooth' Gets Looser

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Amery Ice Shelf is an important dynamic system responsible for draining about 16% of the grounded East Antarctic ice sheet through only 2% of its coastline. Most of the mass input to the system occurs from the Lambert and several other glaciers. Mass loss from the system occurs through basal melting and iceberg calving. These images from the Multi-angle Imaging SpectroRadiometer (MISR) portray the ice shelf front on October 6, 2001 (top) and September 29, 2002 (bottom), and illustrate changes that took place over the year elapsed between the two views.

    Two longitudinal rifts, oriented roughly parallel to the direction of ice flow and measuring about 25 and 15 kilometers in length, are apparent near the seaward edge of the ice shelf. Between them, a transverse fracture extends eastward from the base of the western rift. This rift system is colloquially named the Amery 'loose tooth.' Over the course of the one-year interval between these two MISR images, the ice front has advanced approximately 1.6 - 1.7 kilometers, and the transverse fracture and a three-way fissure at the juncture of the rifts have widened. When the transverse fracture eventually reaches the eastern rift, a large iceberg (25 kilometers x 25 kilometers) will be released.

    These false-color multi-angle composites combine red-band data from MISR's 60o forward, nadir, and 60o aftward viewing cameras, displayed as red, green and blue, respectively. Different colors represent angular reflectance variations. Since generally smooth surfaces predominantly forward-scatter sunlight, these appear in shades of blue. Rough surfaces tend to backward-scatter sunlight, and these appear in shades of red or orange. Low clouds appear bright purple, since they exhibit both forward and backward-scattering. Using this technique, textural variations among ice types are revealed, and clouds can be easily distinguished from ice. Illumination conditions on the two dates are nearly identical.

    Understanding the

  2. Ice-shelf channel evolution in Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Drews, Reinhard; Berger, Sophie; Favier, Lionel; Pattyn, Frank

    2015-04-01

    Ice shelves buttress the continental ice flux and facilitate ice--ocean interactions. They are often intersected by longitudinally elongated channels in which basal melting is significantly enhanced. Recent studies highlighted that this type of channelized melting impacts the buttressing strength of ice shelves and hence imprints the mass flux from the Antarctic continent. Here, the channel evolution is investigated from a glaciological perspective, using a full Stokes model and geophysical data from three consecutive field seasons on Roi Baudouin Ice Shelf (RBIS), Antarctica. The RBIS contains numerous channels, incising the ice shelf by more than half the ice thickness. The modeling confirms (1) that basal melting as a feasible mechanism for the channel creation, albeit channels may also advect without melting for many tens of kilometers. The mere existence of channels is not a sufficient criteria to infer channelized melting at that location; (2) channels can be out of hydrostatic equilibrium depending on their width and the upstream melt history. This implies that inverting surface elevation for ice thickness in those areas is erroneous. Corresponding observational evidence for the channels at RBIS is presented by comparing the hydrostatic-ice thickness from GPS measurements with the ice thickness measured by ground-penetrating radar; (3) the simulations show that channelized melting imprints the flowfield characteristically, and can cause enhanced horizontal shearing across channels. This is exemplified for a channel at RBIS where the velocity anomaly is found in different sets of satellite-derived surface velocities, as well as in ground-based GPS measurements. This opens up the possibility to classify channelized melting from space, an important step towards incorporating these effects in ice--ocean models.

  3. Seismicity within a propagating ice shelf rift: The relationship between icequake locations and ice shelf structure

    NASA Astrophysics Data System (ADS)

    Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

    2014-04-01

    Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the austral summers of 2004-2007. We apply a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show ice shelf rifting is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of 1 to 3 h. Even during periods of quiescence, we find significant deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (Mw > -2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50 m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with the propagating ice shelf rifts.

  4. Victoria Land, Ross Sea, and Ross Ice Shelf, Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On December 19, 2001, MODIS acquired data that produced this image of Antarctica's Victoria Land, Ross Ice Shelf, and the Ross Sea. The coastline that runs up and down along the left side of the image denotes where Victoria Land (left) meets the Ross Ice Shelf (right). The Ross Ice Shelf is the world's largest floating body of ice, approximately the same size as France. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  5. Calibration and Validation of Airborne LiDAR at McMurdo Station, Antarctica for Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Sonntag, J. G.

    2014-12-01

    Airborne LiDAR flight operations based at McMurdo Station, Antarctica, present unusual challenges for calibrating and validating the sensor measurements at the level of a few centimeters. NASA's Airborne Topographic Mapper (ATM) team prefers to perform regular, near-daily calibrations of range and angular biases of our sensor for the lengthy field deployments typical for Operation IceBridge (OIB). For the fall 2013 OIB deployment to McMurdo, we had to adapt our usual technique of regular overflights of an independently-surveyed airport parking ramp to deal with the fact that the McMurdo airfield was located on tidally-influenced sea ice, and that very few nearby durable surfaces were free of variable-depth snow during the OIB deployment. We detail our approach for dealing with these challenges, which included multiple GPS/vehicle surveys of the sea ice runway to quantify surface changes due to grooming operations, combined with GPS tide-gauge measurements of the runway's tidal motion. We also conducted a remote GPS/vehicle survey of a mostly snow-free road on Black Island, and included both sites during near-daily overflights with the ATM. We discuss the quantitative results of these surveys and the associated ATM overflights, and present conclusions for future deployments. Finally we discuss a related validation effort in which we compare ATM results from overflights of snow-free areas in the Dry Valleys with ATM surveys of the same area from a 2001 effort there.

  6. Unique Views of a Shattered Ice Shelf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Both single and multi-angle views of the breakup of the northern section of the Larsen B ice shelf are shown in this image pair from the Multi-angle Imaging SpectroRadiometer. The Larsen B ice shelf collapsed and broke away from the Antarctic Peninsula during February and March, 2002 -- a progression observed by Terra's Moderate-resolution Imaging SpectroRadiometer (MODIS) and analyzed at the University of Colorado's National Snow and Ice Data Center. The collapse is thought to have been accelerated by warm summer temperatures which caused meltwater to fill crevasses along the landward side of the Larsen shelf, leading to intensified pressures within the sheet structure.

    In the left-hand view, spectral variations across the scene are highlighted by using near-infrared, red and blue data from MISR's nadir (vertical-viewing) camera. Here, the ice within the disintegrating ice shelf appears vibrant blue. Water has an intrinsic blue color due to the selective absorption of longer wavelengths such as red and infrared, and the translucent properties of ice within the collapsing shelf enables this absorption to be observed. The use of the near-infrared band within this false-color composite accentuates the effect. Light brownish streaks across the splintering sheet can also be discerned, and probably indicate regions where rocks and morainal debris were exposed from the interior of the shelf.

    On the right, data from three different view angles and only one color channel were combined to create a multi-angle composite. This image displays red-band data from MISR's 46-degree forward, nadir, and 46-degree backward-viewing cameras as red, green and blue, respectively. Here, the disintegrating ice shelf and the rough crevasses of glaciers appear orange. In contrast to the spectral composite, which provides information on the chemical composition of water ice, the colors in the right-hand image represent properties related to its physical nature. Because vertical

  7. Modern shelf ice, equatorial Aeolis Quadrangle, Mars

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.

    1993-01-01

    As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.

  8. Ice shelf flexure at Antarctic grounding lines observed by high resolution satellite and ground measurements

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Wild, Christian; Ryan, Michelle; Marsh, Oliver; McDonald, Adrian; King, Matt; Floricioiu, Dana; Wiesmann, Andreas; Price, Daniel

    2015-04-01

    Climate change is expected to impact Antarctic ice sheets primarily through changes in the oceans. This will be felt most strongly near the grounding line, where the ice sheet first comes into contact with ocean water and becomes an ice shelf. The primary objective of this work is to make use of satellite techniques for better monitoring and interpretation of the link between floating ice shelves and grounded ice. By measuring the flexure of ice due to tides we can obtain critical data to derive information on ice properties. Satellites can measure tidal bending over discrete time intervals and over large areas, whereas ground stations monitor ice dynamics continuously at discrete points. By the combination of the two we derive a complete picture of vertical ice displacement by tides for different grounding line geometries. Our field site is the Southern McMurdo Ice Shelf in the western Ross Sea region at which horizontal ice dynamics can be neglected which simplifies corresponding satellite data analysis. During a field survey in 2014/15, we acquired data of tidal flexure along a straight line perpendicular to the grounding line using 8 ground stations equipped with differential GPS receivers and high precision tiltmeters. The most landward station was located close to the grounding line, and the last station was placed 5 km away at a point which was assumed to be freely floating. Additional data acquired for the flexure analysis are ice thickness, snow and ice stratigraphy and basal ice properties using ground radar systems; as well as information of snow morphology from snow pits and ice cores. During the same period a series of TerraSAR-X 11-day repeat pass satellite data have been acquired to map tidal displacement using differential SAR interferometry (DInSAR). Before the onset of the melting season in December all interferograms show generally high coherence and are suitable for tidal flexure analysis. The ice shelf in the area is around 200m thick, and

  9. Seismicity within a propagating ice shelf rift: the relationship between icequake locations and ice shelf structure

    USGS Publications Warehouse

    Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

    2014-01-01

    Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important known process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice-shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the Austral summers of 2004-2007. We investigated seismicity associated with fracture propagation using a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show that seismicity is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of one to three hours. However, even during periods of quiescence, we find significant seismic deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (MW > -2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50 m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with propagating ice shelf rifts.

  10. Massive Ice Layer Formed by Refreezing of Ice-shelf Surface Melt Ponds: Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; Hubbard, B. P.; Luckman, A. J.; Ashmore, D.; Bevan, S. L.; Kulessa, B.; Jansen, D.; O'Leary, M.

    2015-12-01

    Surface melt ponds now form frequently on ice shelves across the northern sector of the Antarctic Peninsula in response to regional warming and local föhn winds. Analysis of a new, 1-year set of observations from an Automatic Weather Station on Larsen C Ice Shelf, Antarctica, reveals that föhn winds are able to cause intense melt in summer, and even into the late austral autumn. A potentially important, but hitherto unknown, consequence of this intense surface melting and ponding is the formation of high-density near-surface ice from the refreezing of that water. We report the discovery of a massive subsurface ice layer located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and ground-based radar measurements with remote sensing and firn modelling to investigate the formation and spatial extent of this layer, found to be tens of kilometres across and tens of metres deep. The presence of this ice layer has the effect of raising local ice shelf density by ~190 kg m-3 and temperature by 5 - 10 °C above values found in areas unaffected by ponding and hitherto used in models of ice-shelf fracture and flow.

  11. Ocean interactions with the base of Amery Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hellmer, Hartmut H.; Jacobs, Stanley S.

    1992-12-01

    Using a two-dimensional ocean thermohaline circulation model, we varied the cavity shape beneath Amery Ice Shelf in an attempt to reproduce the 150-m-thick marine ice layer observed at the "G1" ice core site. Most simulations caused melting rates which decrease the ice thickness by as much as 400 m between grounding line and G1, but produce only minor accumulation at the ice core site and closer to the ice front. Changes in the seafloor and ice topographies revealed a high sensitivity of the basal mass balance to water column thickness near the grounding line, to submarine sills, and to discontinuities in ice thickness. Model results showed temperature/salinity gradients similar to observations from beneath other ice shelves where ice is melting into seawater. Modeled outflow characteristics at the ice front are in general agreement with oceanographic data from Prydz Bay. A freshwater flux across the grounding line, derived from melting beneath the grounded ice sheet, would have to be anomalously large to produce the basal marine ice layer and account for the Ice Shelf Water outflow. We concur with Morgan's inference that the G1 core may have been taken in a basal crevasse filled with marine ice. This ice is formed from water cooled by ocean/ice shelf interactions along the interior ice shelf base.

  12. Oceanic and atmospheric forcing of early Holocene ice shelf retreat, George VI Ice Shelf, Antarctica Peninsula

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Bentley, Michael J.; Hodgson, Dominic A.; Roberts, Stephen J.; Leng, Melanie J.; Lloyd, Jeremy M.; Barrett, Melissa S.; Bryant, Charlotte; Sugden, David E.

    2007-02-01

    We use lake sediment records from an epishelf lake on Alexander Island to provide a detailed picture of the Holocene history of George VI Ice Shelf (GVI-IS). Core analyses included; micropaleontology (diatoms/foraminifera), stable isotope (δ18O, δ13C), geochemistry (total organic carbon (TOC), total nitrogen (TN), C/N ratios) and grain-size analyses. These data provide robust evidence for one period of past ice shelf absence during the early Holocene. The timing of this period has been constrained by 10 AMS 14C dates performed on mono-specific foraminifera samples. These dates suggest that GVI-IS was absent between c 9600 cal yr BP and c 7730 cal yr BP. This early Holocene collapse immediately followed a period of maximum Holocene warmth that is recorded in some Antarctic ice cores and coincides with an influx of warmer ocean water onto the western Antarctic Peninsula (AP) shelf at c 9000 cal yr BP. The absence of a currently extant ice shelf during this time interval suggests that early Holocene ocean-atmosphere variability in the AP was greater than that measured in recent decades.

  13. Simulations of ice flux through Totten Glacier as ice shelf calving changes

    NASA Astrophysics Data System (ADS)

    Moore, John; Sun, Sainan; Åström, Jan

    2016-04-01

    Totten glacier is one of the most important ocean portals for the East Antarctic ice sheet. Melt rates under the ice shelf in front of the glacier are very high, and the ice shelf seems to suffer from extensive basal melt-induced calving. The ice shelf is underlain by a relatively narrow and convoluted cavity, which recent resurveying suggests maybe substantially different from Bedmap2 geometry. Here we use the BISICLES ice flow model and ice shelf buttressing derived from inverse modeling to simulate present day ice dynamics. We then use a discrete particle model so simulate ice shelf fracturing to simulate how the ice shelf geometry, calving patterns and buttressing force could evolve. The new ice shelf geometry is then used with the continuum model to asses ice flux through the region 50 years into the future. The results suggest considerable changes in glacier-ice shelf configuration, but which are sensitive to ice shelf pinning points and sub-shelf cavity geometry.

  14. A Thin-Plate (Shallow Shelf) Treatment of Viscoelastic Ice-Shelf Flexure with Applications

    NASA Astrophysics Data System (ADS)

    MacAyeal, D. R.; Sergienko, O. V.; Banwell, A. F.; Rosier, S. H. R.; Gudmundsson, G. H.

    2014-12-01

    We derive a Shallow Shelf style treatment of the viscoelastic flexural deformation of a floating ice shelf and apply it to various problems relevant to ice-shelf response to sudden changes of loads (e.g., draining supra glacial lakes, iceberg calving, basal crevassing). Our analysis is based on the assumption that total deformation is the simple sum of elastic and viscous (or power-law creep) deformations (i.e., akin to a Maxwell model having a spring and dashpot in series). The key simplification in our analysis is the assumption that strain and its time derivative vary linearly as a function of depth through the thin ice shelf, and are zero at the neutral plane half the distance between the surface and base. We develop an analytic solution for idealized geometry and loading functions, and compare to a hierarchy of numerical treatments, including comparisons with full-Stokes solutions of viscoelastic flexure using an advanced finite-element package. Our work is applicable to numerous problems in ice-shelf and ice-tongue glaciology where impulsive loads or impulsive changes in geometry are involved. Examples of application include hydrostatic rebound in the aftermath of sudden surface lake drainage on Larsen B Ice Shelf immediately prior to its disintegration, ice-shelf and iceberg margin response to sudden edge-on-edge collisions between the two (push-mound formation), impulsive changes to geometry associated with ice-shelf calving, ice-front geometry modification by melting, necking phenomena, and basal crevassing.

  15. Ice shelf studies off northern Ellesmere Island, Spring 1983

    SciTech Connect

    Jeffries, M.O.

    1985-09-01

    In spring 1983 work on the ice shelves of northern Ellesmere Island was continued. A total of 55 m of 7.6 cm diameter ice core was obtained from 10 locations. The longest core of 31.79 m is composed of iced-firn and basement ice and can be divided into three distinct strata according to ice salinity. Oscillating strains in Ward Hunt Ice Shelf were measured with a wire strainmeter. It is suggested that the periodic calving of ice from Ward Hung Ice Shelf might be related to the effects of the high frequency oscillation of 35s to 40s. Ice conditions along 150 km of coastline continue to change. Continued monitoring of the ice shelves and landfast ice is believed to be necessary in view of the offshore development in the Beaufort Sea.

  16. Geochemical and isotopic signatures of ice shelves and ice shelf circulation in marine sediments

    NASA Astrophysics Data System (ADS)

    White, Duanne; Fink, David; Simon, Krista; Post, Alix; Galton-Fenzi, Ben; Yokoyama, Yusuke

    2016-04-01

    Ice shelves are a key component of the ice sheet drainage network. Most ice lost from the present day Antarctic ice sheet occurs via ice shelves, so ice shelf processes (e.g. calving and basal melt) modulate ice sheet mass balance. Knowledge of the past distribution and geometry of ice shelves will help understand their sensitivity to climate forcing, and the response of ice sheets to changes and loss of ice shelves. However, detecting the presence or absence of past ice shelves in the sedimentary record is challenging. In this study, we compare concentrations of elemental and isotopic tracers in modern sediments in open water in Prydz Bay to those being deposited underneath the Amery Ice Shelf at ten sites across the region. Our results suggest that sub-ice shelf and open water sediments differ in their acid-extractable elemental concentrations. Also, meteoric Be-10 concentrations are on average lower in sub-ice shelf settings than they are in open water environments. However, the Be-10 concentration is modulated by sub-ice shelf ocean circulation, so that there is overlap between the sediment concentrations in these two environments. In combination, we suggest that these tracers can be used as proxies to reconstruct former ice shelf geometries and sub-shelf circulation.

  17. Observing ice-shelf channels and basal melting from space

    NASA Astrophysics Data System (ADS)

    Berger, Sophie; Drews, Reinhard; Helm, Veit; Rack, Wolfgang; Lenaerts, Jan; Ligtenberg, Stefan; Pattyn, Frank

    2016-04-01

    Ice-shelf channels (along-flow lineations in which ice is thinner) are ubiquitous in Antarctic ice shelves. Although these features are readily visible in satellite imagery, ice-thickness and ice-velocity variations in their surrounding are typically heavily undersampled. Ice-shelf channels focus channelized melting and significantly alter the basal mass balance (and hence ice-shelf stability) on short horizontal scales. Here we use interferometrically-derived TandDEM-X digital elevation models and ice-flow velocities with a horizontal gridding of 125 m illustrating the ice-shelf dynamics of the Roi Baudouin Ice Shelf, Dronning Maud Land (East Antarctica) in unprecedented detail. Using ground-based GPS surface elevation, we demonstrate that TanDEM-X is an ideal sensor to map the channel morphology at the ice-shelf surface. We find velocity anomalies surrounding the channels along the entire ice shelf potentially indicating the presence of locally elevated basal melt rates. Using mass conservation in a Lagrangian framework, we find basal melt rates averaging 0.4 m/a in the middle of the ice shelf and peaking at 12 m/a inside some channels. We illustrate the sensitivity of the method with respect to systematic biases in elevation/velocity and also with respect to lateral variations of the depth-density relationship. With the increased availability of high-resolution radar satellites (such as Sentinel1), the techniques presented here could be applied on an pan-Antarctic scale to map basal melting both in space and time at high-resolution.

  18. Massive Ice Layer Formed by Refreezing of Ice-shelf Surface Melt Ponds: Larsen C Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Jansen, Daniela; O'Leary, Martin

    2016-04-01

    Surface melt ponds now form frequently on ice shelves across the northern sector of the Antarctic Peninsula in response to regional warming and local föhn winds. A potentially important, but hitherto unknown, consequence of this surface melting and ponding is the formation of high-density near-surface ice from the refreezing of that water. We report the discovery and physical character of a massive subsurface ice layer located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and ground-based radar measurements with remote sensing and firn modelling to investigate the formation and spatial extent of this layer, found to be tens of kilometres across and tens of metres deep. The presence of this ice layer has the effect of raising local ice shelf density by ~190 kg m^-3 and temperature by 5 - 10 degrees C above values found in areas unaffected by ponding and hitherto used in models of ice-shelf fracture and flow.

  19. Mathematical Modelling of Melt Lake Formation on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Buzzard, Sammie; Feltham, Daniel; Flocco, Daniela; Sammonds, Peter

    2015-04-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice shelf collapse. The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present results of a 1D mathematical model of heat transfer through an idealised ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation, melt lake development and refreezing are demonstrated through the modelled results. Furthermore, the effect of lateral meltwater transport upon melt lakes is examined. This will be developed through the estimations of meltwater catchment areas and the fraction of the ice shelf where melt lakes are present. Investigating the role of meltwater in ice shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea level rise.

  20. A simple law for ice-shelf calving.

    PubMed

    Alley, Richard B; Horgan, Huw J; Joughin, Ian; Cuffey, Kurt M; Dupont, Todd K; Parizek, Byron R; Anandakrishnan, Sridhar; Bassis, Jeremy

    2008-11-28

    A major problem for ice-sheet models is that no physically based law for the calving process has been established. Comparison across a diverse set of ice shelves demonstrates that iceberg calving increases with the along-flow spreading rate of a shelf. This relation suggests that frictional buttressing loss, which increases spreading, also leads to shelf retreat, a process known to accelerate ice-sheet flow and contribute to sea-level rise. PMID:19039129

  1. Environment at the Grounding Zone of the Whillans Ice Stream-Ross Ice Shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Hodson, T. O.; Powell, R. D.; Mikucki, J.; Scherer, R. P.; Tulaczyk, S. M.; Coenen, J. J.; Puttkammer, R.; Branecky, C.

    2015-12-01

    Grounding zones where grounded ice sheets transition to floating ice shelves, are the primary gateways through which the Antarctic Ice Sheet loses mass to the ocean. In these environments, ice, ocean, meltwater and sediment meet and interact, influencing both the ice sheet and ocean circulation beneath the ice shelf. Here, we report on conditions near the grounding zone of the Whillans Ice Stream, which feeds into the Ross Ice Shelf. Cameras and instruments lowered through an access borehole to the ocean cavity beneath the ice shelf found a 10m-thick water column comprising an upper layer of colder ice shelf water formed from mixing between meltwater with the lower layer of warmer higher salinity shelf water. This style of stratification is typical of large ice shelves, but it was uncertain whether it existed so near the grounding zone, where stronger tidal currents and/or strong subglacial stream discharges could mix the water column. Salinity and temperature of the water suggest it formed from sea ice production in the Western Ross Sea, with minimal modification beneath the ice shelf. This source region is distinct from waters previously observed at the nearby J-9 borehole, illustrating the importance of the sub-ice shelf bathymetry in steering circulation between the ocean and the grounding zone. Preliminary data suggest an active exchange of heat and nutrients between the grounding zone and the open ocean, despite being separated by 600km. Thus life found near the grounding line is probably not an isolated oasis, but may instead be part of a much broader ecosystem that spans the ice shelf. Although sea ice formation presently maintains water in the sub-ice shelf cavity near the surface freezing point, buffering many larger ice shelves from gradual ocean warming, these findings suggest that even grounding zones of extensive ice shelves may respond quickly to abrupt changes in ocean circulation, such as that observed in the Amundsen Sea.

  2. Ice Shelf Modeling: A Cross-Polar Bayesian Statistical Approach

    NASA Astrophysics Data System (ADS)

    Kirchner, N.; Furrer, R.; Jakobsson, M.; Zwally, H. J.

    2010-12-01

    Ice streams interlink glacial terrestrial and marine environments: embedded in a grounded inland ice such as the Antarctic Ice Sheet or the paleo ice sheets covering extensive parts of the Eurasian and Amerasian Arctic respectively, ice streams are major drainage agents facilitating the discharge of substantial portions of continental ice into the ocean. At their seaward side, ice streams can either extend onto the ocean as floating ice tongues (such as the Drygalsky Ice Tongue/East Antarctica), or feed large ice shelves (as is the case for e.g. the Siple Coast and the Ross Ice Shelf/West Antarctica). The flow behavior of ice streams has been recognized to be intimately linked with configurational changes in their attached ice shelves; in particular, ice shelf disintegration is associated with rapid ice stream retreat and increased mass discharge from the continental ice mass, contributing eventually to sea level rise. Investigations of ice stream retreat mechanism are however incomplete if based on terrestrial records only: rather, the dynamics of ice shelves (and, eventually, the impact of the ocean on the latter) must be accounted for. However, since floating ice shelves leave hardly any traces behind when melting, uncertainty regarding the spatio-temporal distribution and evolution of ice shelves in times prior to instrumented and recorded observation is high, calling thus for a statistical modeling approach. Complementing ongoing large-scale numerical modeling efforts (Pollard & DeConto, 2009), we model the configuration of ice shelves by using a Bayesian Hiearchial Modeling (BHM) approach. We adopt a cross-polar perspective accounting for the fact that currently, ice shelves exist mainly along the coastline of Antarctica (and are virtually non-existing in the Arctic), while Arctic Ocean ice shelves repeatedly impacted the Arctic ocean basin during former glacial periods. Modeled Arctic ocean ice shelf configurations are compared with geological spatial

  3. Inversion of IceBridge gravity data for continental shelf bathymetry beneath the Larsen ice shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Bell, R. E.; Frearson, N.; Elieff, S.

    2010-12-01

    Accurate bathymetry beneath large ice shelves is crucial for developing models of the ocean circulation in the large sub-ice cavities and for effectively deploying moorings to monitor changing conditions. Improved models and observations should improve our understanding of how these large ice shelves collapse. A grid of free-air gravity data collected during the IceBridge 2009 Antarctic campaign over the floating Larsen C ice shelf was utilized to investigate the bathymetry of the underlying continental shelf. Data were collected with a Sander AIRGrav system mounted in a NASA DC-8 aircraft and flown at an altitude of about 500 m above the ice surface. Airborne data were augmented by upward continued marine gravity data from the former Larsen B ice shelf to provide control in an area where the bathymetry is known. Independent control on the geologic structures of the continental shelf was used to constrain the bathymetric inversion. The bathymetry determined by inverting the gravity data generally agrees with the shipboard bathymetry to within ±30 m and with a BAS seismic refraction line at 67°30’S on the ice shelf to 24 m. Simultaneously collected laser altimetry and radar data allow the geometry of the water-filled cavity to be investigated. Depths on the continental shelf beneath the ice shelf estimated from the inversion average about 450-600 m, but vary greatly from less than 300 m to greater than 1000 m. Distinctive localized overdeepenings, 20-30 km wide and reaching 900-1000 m deep are located in the inlets where three to five glaciers converge. Submarine valleys extending seaward from the overdeepened areas coalesce into three broad channels that extend to the seaward limit of the ice shelf and appear to extend to the edge of the continental shelf. The channels generally are at a depth of 550-700 m although the southernmost mapped channel deepens to over 1000 m near the edge of the ice shelf just south of 68°S. These newly imaged channels provide a

  4. Ice shelf melt rates and 3D imaging

    NASA Astrophysics Data System (ADS)

    Lewis, Cameron Scott

    Ice shelves are sensitive indicators of climate change and play a critical role in the stability of ice sheets and oceanic currents. Basal melting of ice shelves plays an important role in both the mass balance of the ice sheet and the global climate system. Airborne- and satellite based remote sensing systems can perform thickness measurements of ice shelves. Time separated repeat flight tracks over ice shelves of interest generate data sets that can be used to derive basal melt rates using traditional glaciological techniques. Many previous melt rate studies have relied on surface elevation data gathered by airborne- and satellite based altimeters. These systems infer melt rates by assuming hydrostatic equilibrium, an assumption that may not be accurate, especially near an ice shelf's grounding line. Moderate bandwidth, VHF, ice penetrating radar has been used to measure ice shelf profiles with relatively coarse resolution. This study presents the application of an ultra wide bandwidth (UWB), UHF, ice penetrating radar to obtain finer resolution data on the ice shelves. These data reveal significant details about the basal interface, including the locations and depth of bottom crevasses and deviations from hydrostatic equilibrium. While our single channel radar provides new insight into ice shelf structure, it only images a small swatch of the shelf, which is assumed to be an average of the total shelf behavior. This study takes an additional step by investigating the application of a 3D imaging technique to a data set collected using a ground based multi channel version of the UWB radar. The intent is to show that the UWB radar could be capable of providing a wider swath 3D image of an ice shelf. The 3D images can then be used to obtain a more complete estimate of the bottom melt rates of ice shelves.

  5. Holocene dynamics of the Arctic's largest ice shelf

    PubMed Central

    Antoniades, Dermot; Francus, Pierre; Pienitz, Reinhard; St-Onge, Guillaume; Vincent, Warwick F.

    2011-01-01

    Ice shelves in the Arctic lost more than 90% of their total surface area during the 20th century and are continuing to disintegrate rapidly. The significance of these changes, however, is obscured by the poorly constrained ontogeny of Arctic ice shelves. Here we use the sedimentary record behind the largest remaining ice shelf in the Arctic, the Ward Hunt Ice Shelf (Ellesmere Island, Canada), to establish a long-term context in which to evaluate recent ice-shelf deterioration. Multiproxy analysis of sediment cores revealed pronounced biological and geochemical changes in Disraeli Fiord in response to the formation of the Ward Hunt Ice Shelf and its fluctuations through time. Our results show that the ice shelf was absent during the early Holocene and formed 4,000 years ago in response to climate cooling. Paleoecological data then indicate that the Ward Hunt Ice Shelf remained stable for almost three millennia before a major fracturing event that occurred ∼1,400 years ago. After reformation ∼800 years ago, freshwater was a constant feature of Disraeli Fiord until the catastrophic drainage of its epishelf lake in the early 21st century. PMID:22025693

  6. Teleseismic Earthquake Signals Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2015-12-01

    The West Antarctic Rift System (WARS) is one of Earth's largest continental extension zones. Study of the WARS is complicated by the presence of the West Antarctic Ice Sheet, the Ross Ice Shelf, and the Ross Sea. Recent deployments of broadband seismographs in the POLENET project have allowed passive seismic techniques, such as receiver function analysis and surface wave dispersion, to be widely utilized to infer crustal and mantle velocity structure across much of the WARS and West Antarctica. However, a large sector of the WARS lies beneath the Ross Ice Shelf. In late 2014, 34 broadband seismographs were deployed atop the ice shelf to jointly study deep Earth structure and the dynamics of the ice shelf. Ice shelf conditions present strong challenges to broadband teleseismic imaging: 1) The presence of complicating signals in the microseism through long-period bands due to the influence of ocean gravity waves; 2) The strong velocity contrasts at the ice-water and water-sediment interfaces on either side of the water layer give rise to large amplitude reverberations; 3) The water layer screens S-waves or P-to-S phases originating from below the water layer. We present an initial analysis of the first teleseismic earthquake arrivals collected on the ice shelf at the end of the 2014 field season from a limited subset of these stations.

  7. Holocene dynamics of the Arctic's largest ice shelf.

    PubMed

    Antoniades, Dermot; Francus, Pierre; Pienitz, Reinhard; St-Onge, Guillaume; Vincent, Warwick F

    2011-11-22

    Ice shelves in the Arctic lost more than 90% of their total surface area during the 20th century and are continuing to disintegrate rapidly. The significance of these changes, however, is obscured by the poorly constrained ontogeny of Arctic ice shelves. Here we use the sedimentary record behind the largest remaining ice shelf in the Arctic, the Ward Hunt Ice Shelf (Ellesmere Island, Canada), to establish a long-term context in which to evaluate recent ice-shelf deterioration. Multiproxy analysis of sediment cores revealed pronounced biological and geochemical changes in Disraeli Fiord in response to the formation of the Ward Hunt Ice Shelf and its fluctuations through time. Our results show that the ice shelf was absent during the early Holocene and formed 4,000 years ago in response to climate cooling. Paleoecological data then indicate that the Ward Hunt Ice Shelf remained stable for almost three millennia before a major fracturing event that occurred ∼1,400 years ago. After reformation ∼800 years ago, freshwater was a constant feature of Disraeli Fiord until the catastrophic drainage of its epishelf lake in the early 21st century. PMID:22025693

  8. Small-scale modeling of ice flow perturbations induced by sudden ice shelf breakup

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio; Iandelli, Irene

    2014-08-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. In this paper, this process is analyzed by means of scaled analogue experiments reproducing the flow of a valley glacier draining an ice sheet grounded above sea level into an ice shelf, and analyzing the dynamic perturbations resulting from ice shelf disintegration and removal of buttressing effect. Models show a significant increase in glacier velocity close to its outlet following ice shelf breakup, a transient effect that does not significantly propagate upstream towards the ice sheet and rapidly decays with time. Basal lubrication and variations in ice thickness do not significantly influence the process that thus leaves the ice sheet almost unaffected by flow perturbations.

  9. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    NASA Astrophysics Data System (ADS)

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-06-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ~10 °C warmer and ~170 kg m-3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades.

  10. Mathematical Modelling of Melt Lake Formation On An Ice Shelf

    NASA Astrophysics Data System (ADS)

    Buzzard, Sammie; Feltham, Daniel; Flocco, Daniela

    2016-04-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice-shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice-shelf collapse. The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present results of a 1-D mathematical model of heat transfer through an idealized ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation, melt lake development and refreezing are demonstrated through the modelled results. Furthermore, the effect of lateral meltwater transport upon melt lakes and the effect of the lakes upon the surface energy balance are examined. Investigating the role of meltwater in ice-shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea-level rise.

  11. Mathematical Modelling of Melt Lake Formation on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Buzzard, S. C.; Flocco, D.; Sammonds, P. R.

    2014-12-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice shelf collapse.The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present preliminary results of a mathematical model of heat transfer through an idealised ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation and melt lake development are demonstrated through the modelled results. Investigating the role of meltwater in ice shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea level rise.

  12. Rapid collapse of northern Larsen Ice Shelf, Antarctica

    SciTech Connect

    Rott, H.; Nagler, T.; Skvarca, P.

    1996-02-09

    In January 1995, 4200 square kilometers of the northern Larsen Ice Shelf, Antarctic Peninsula, broke away. Radar images from the ERS-1 satellite, complemented by field observations, showed that the two northernmost sections of the ice shelf fractured and disintegrated almost completely within a few days. This breakup followed a period of steady retreat that coincided with a regional trend of atmospheric warming. The observations imply that after an ice shelf retreats beyond a critical limit, it may collapse rapidly as a result of perturbated mass balance. 26 refs., 5 figs., 1 tab.

  13. Comparison of Ice-shelf Creep Flow Simulations with Ice-front Motion of Filchner-Ronne Ice Shelf, Antarctica, Detected by SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Hulbe, C. L.; Rignot, E.; MacAyeal, D. R.

    1998-01-01

    Comparison between numerical model ice-shelf flow simulations and synthetic aperture radar (SAR) interferograms is used to study the dynamics at the Hemmen Ice Rise (HIR) and Lassiter Coast (LC) corners of the iceberg-calving front of the Filchner-Ronne Ice Shelf (FRIS).

  14. Ocean mixing beneath Pine Island Glacier Ice Shelf

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Dutrieux, Pierre; Jenkins, Adrian; Forryan, Alexander; Naveira Garabato, Alberto; Firing, Yvonne

    2016-04-01

    Ice shelves around Antarctica are vulnerable to increase in ocean-driven melting, with the melt rate depending on ocean temperature and strength of sub-ice-shelf-cavity circulations. We present repeated measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate and thermal variance dissipation rate beneath Pine Island Glacier Ice Shelf, collected by CTD, ADCP and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The turbulence quantities measured by the AUV outside the ice shelf are in good agreement with ship-based measurements. The highest rate of turbulent kinetic energy dissipation is found near the grounding line, while its temporal fluctuation over seabed ridge within the cavity corresponds to the tidal fluctuation predicted in the Pine Island Bay to the west. The highest thermal variance dissipation rate is found when the AUV was 0.5 m away from the ice, and the thermal variance dissipation generally increases with decreasing distance between the AUV and ice.

  15. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  16. Impact of ice-shelf sediment content on the dynamics of plumes under melting ice shelves

    NASA Astrophysics Data System (ADS)

    Wells, A.

    2015-12-01

    When a floating ice shelf melts into an underlying warm salty ocean, the resulting fresh meltwater can rise in a buoyant Ice-Shelf-Water plume under the ice. In certain settings, ice flowing across the grounding line carries a basal layer of debris rich ice, entrained via basal freezing around till in the upstream ice sheet. Melting of this debris-laden ice from floating ice shelves provides a flux of dense sediment to the ocean, in addition to the release of fresh buoyant meltwater. This presentation considers the impact of the resulting suspended sediment on the dynamics of ice shelf water plumes, and identifies two key flow regimes depending on the sediment concentration frozen into the basal ice layer. For large sediment concentration, melting of the debris-laden ice shelf generates dense convectively unstable waters that drive convective overturning into the underlying ocean. For lower sediment concentration, the sediment initially remains suspended in a buoyant meltwater plume rising along the underside of the ice shelf, before slowly depositing into the underlying ocean. A theoretical plume model is used to evaluate the significance of the negatively buoyant sediment on circulation strength and the feedbacks on melting rate, along with the expected depositional patterns under the ice shelf.

  17. Changes in photosynthetic metabolism of sea-ice microalgae during a spring bloom in McMurdo Sound

    SciTech Connect

    Palmisano, A.C.; Smith, G.A.; White, D.C.; Nichols, P.D.; Lizotte, M.P.; Cota, G.; Sullivan, C.W.

    1986-01-01

    Microalgae, primarily diatoms, bloom in the lower layers of coarse-grained congelation ice and platelet ice during the austral spring at McMurdo Sound, Antarctica. The purpose in the 1985-1986 field season was to examine changes in photosynthetic metabolism that occur during the development and decline of the spring bloom of sea-ice microalgae. The authors have proposed that sea-ice microalgae may serve as a model system for studying growth phase-related changes in physiology of natural populations of microalgae. Because they are physically trapped within the brine channels and pockets that permeate sea ice, a single community may be repetitively sampled throughout the bloom period. The seasonal study of photosynthetic metabolism included the following parameters: carbon assimilation into crude fractions of protein, lipids, carbohydrates, and small molecular weight metabolites; carbon assimilation into specific lipid fractions: neutral lipids, glycolipids, and phospholipids; identification of key lipid components by gas chromatography/mass spectrometry; photosynthesis/light relationships; release of extracellular organic carbon; and analysis of pigment composition: chlorophylls, carotenoids, and breakdown products.

  18. Investigating the Flow Dynamics at Ice Shelf Calving Fronts

    NASA Astrophysics Data System (ADS)

    Wearing, Martin; Hindmarsh, Richard; Worster, Grae

    2015-04-01

    Ice-shelf calving-rates and the buttressing ice shelves provide to grounded ice are both difficult to model and quantify. An increased understanding of the mechanics of this process is imperative in determining the dynamics of marine ice sheets and consequently predicting their future extent, thickness and discharge. Alley et al. (2008) proposed an empirically derived calving law, relating the calving rate to the strain rate at the calving front. However, Hindmarsh (2012) showed that a similar relationship could be deduced by considering the viscous flow of the ice shelf. We investigate the relationship between the ice shelf flow field and the strain rate field in the area close to the calving front. Analysis is undertaken of ice surface velocity data for a range of Antarctic ice shelves (data from Rignot et al., 2011) and an inferred strain rate field produced from that data. These geophysical results are compared with a simple mathematical model for laterally confined ice shelf flow. Correlations are calculated between the same variables as Alley et al. but using a new and larger data compilation, which gives a greater degree of scatter. Good agreement is observed between the expected theoretical scaling and geophysical data for the flow of ice near the calving front in the case of laterally confined ice shelves. This lateral confinement ensures flow is aligned in the along-shelf direction and resistance to flow is provided by near stationary ice in the grounded margins. In other cases, the velocity is greater than predicted, which we attribute on a case-by-case basis to marginal weakening or the presence of ice tongues. We develop statistical methodologies for identifying these outliers.

  19. Marine ice regulates the future stability of a large Antarctic ice shelf.

    PubMed

    Kulessa, Bernd; Jansen, Daniela; Luckman, Adrian J; King, Edward C; Sammonds, Peter R

    2014-01-01

    The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula in 1995 and 2002 confirm the impact of southward-propagating climate warming in this region. Recent mass and dynamic changes of Larsen B's southern neighbour Larsen C, the fourth largest ice shelf in Antarctica, may herald a similar instability. Here, using a validated ice-shelf model run in diagnostic mode, constrained by satellite and in situ geophysical data, we identify the nature of this potential instability. We demonstrate that the present-day spatial distribution and orientation of the principal stresses within Larsen C ice shelf are akin to those within pre-collapse Larsen B. When Larsen B's stabilizing frontal portion was lost in 1995, the unstable remaining shelf accelerated, crumbled and ultimately collapsed. We hypothesize that Larsen C ice shelf may suffer a similar fate if it were not stabilized by warm and mechanically soft marine ice, entrained within narrow suture zones. PMID:24751641

  20. Influence of grounding ice on the Arctic shelf of Alaska

    USGS Publications Warehouse

    Reimnitz, E.; Barnes, P.; Forgatsch, T.; Rodeick, C.

    1972-01-01

    Alaska's Beaufort Sea shelf is characterized by small-scale relief with an average amplitude of 1-2 m and wavelength of 50-100 m. Diving observations confirm that much of the bottom roughness reflects the action of grounded ice. Except for areas in the shadow of islands, bars, and offshore bathymetric highs, the entire shelf surface from the beach to at least the 75-m contour is now or has been modified by ice gouging. Ice contact with the bottom is more common, and rates of sedimentation higher on the inner shelf than on the outer shelf; the density of gouge features is about equal in both areas. Therefore, the chances are that an area of gouging on the inner shelf contains younger gouges than a similar area on the outer shelf. When ice grounds, it becomes an important agent in the sedimentary and morphologic environment of the Arctic shelf, directly by deforming bottom deposits and secondarily by affecting the current regime near the sediment/ice contact. While bulldozing action and rafting do not seem to contribute significantly to the direct transport of sediment, re-suspension of bottom material during bulldozing, which makes sediment available for transport, may be significant. ?? 1972.

  1. Heating the Ice-Covered Lakes of the McMurdo Dry Valleys, Antarctica - Decadal Trends in Heat Content, Ice Thickness, and Heat Exchange

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Priscu, J. C.; Doran, P. T.; Chiuchiolo, A.; Obryk, M.

    2014-12-01

    Lakes integrate landscape processes and climate conditions. Most of the permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica are closed basin, receiving glacial melt water from streams for 10-12 weeks per year. Lake levels rise during the austral summer are balanced by sublimation of ice covers (year-round) and evaporation of open water moats (summer only). Vertical profiles of water temperature have been measured in three lakes in Taylor Valley since 1988. Up to 2002, lake levels were dropping, ice covers were thickening, and total heat contents were decreasing. These lakes have been gaining heat since the mid-2000s, at rates as high as 19.5x1014 cal/decade). Since 2002, lake levels have risen substantially (as much as 2.5 m), and ice covers have thinned (1.5 m on average). Analyses of lake ice thickness, meteorological conditions, and stream water heat loads indicate that the main source of heat to these lakes is from latent heat released when ice-covers form during the winter. An aditional source of heat to the lakes is water inflows from streams and direct glacieal melt. Mean lake temperatures in the past few years have stabilized or cooled, despite increases in lake level and total heat content, suggesting increased direct inflow of meltwater from glaciers. These results indicate that McMurdo Dry Valley lakes are sensitive indicators of climate processes in this polar desert landscape and demonstrate the importance of long-term data sets when addressing the effects of climate on ecosystem processes.

  2. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    PubMed Central

    Noble, Abigail E.; Moran, Dawn M.; Allen, Andrew E.; Saito, Mak A.

    2013-01-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO3−4 ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic

  3. Dissolved and particulate trace metal micronutrients under the McMurdo Sound seasonal sea ice: basal sea ice communities as a capacitor for iron

    NASA Astrophysics Data System (ADS)

    Noble, Abigail; Saito, Mak; Moran, Dawn; Allen, Andrew

    2013-10-01

    Dissolved and particulate metal concentrations are reported from three sites beneath and at the base of the McMurdo Sound seasonal sea ice in the Ross Sea of Antarctica. This dataset provided insight into Co and Mn biogeochemistry, supporting a previous hypothesis for water column mixing occurring faster than scavenging. Three observations support this: first, Mn-containing particles with Mn/Al ratios in excess of the sediment were present in the water column, implying the presence of bacterial Mn-oxidation processes. Second, dissolved and labile Co were uniform with depth beneath the sea ice after the winter season. Third, dissolved Co:PO43- ratios were consistent with previously observed Ross Sea stoichiometry, implying that over-winter scavenging was slow relative to mixing. Abundant dissolved Fe and Mn were consistent with a winter reserve concept, and particulate Al, Fe, Mn, and Co covaried, implying that these metals behaved similarly. Elevated particulate metals were observed in proximity to the nearby Islands, with particulate Fe/Al ratios similar to that of nearby sediment, consistent with a sediment resuspension source. Dissolved and particulate metals were elevated at the shallowest depths (particularly Fe) with elevated particulate P/Al and Fe/Al ratios in excess of sediments, demonstrating a sea ice biomass source. The sea ice biomass was extremely dense (chl a >9500 μg/L) and contained high abundances of particulate metals with elevated metal/Al ratios. A hypothesis for seasonal accumulation of bioactive metals at the base of the McMurdo Sound sea ice by the basal algal community is presented, analogous to a capacitor that accumulates iron during the spring and early summer. The release and transport of particulate metals accumulated at the base of the sea ice by sloughing is discussed as a potentially important mechanism in providing iron nutrition during polynya phytoplankton bloom formation and could be examined in future oceanographic expeditions.

  4. Changes on the ice plain of Ice Stream B and Ross Ice Shelf

    NASA Technical Reports Server (NTRS)

    Shabtaie, Sion

    1993-01-01

    During the 1970's and 1980's, nearly 200 stations from which accurate, three dimensional position fixes have been obtained from TRANSIT satellites were occupied throughout the Ross Ice Shelf. We have transformed the elevations obtained by satellite altimetry to the same geodetic datum, and then applied a second transformation to reduce the geodetic heights to elevations above mean sea level using the GEM-10C geoidal height. On the IGY Ross Ice Shelf traverse between Oct. 1957 and Feb. 1958, an accurate method of barometric altimetry was used on a loop around the ice shelf that was directly tied to the sea at both ends of the travel route, thus providing absolute elevations. Comparisons of the two sets of data at 32 station pairs on floating ice show a mean difference of 0 +/- 1 m. The elevation data were also compared with theoretical values of elevations for a hydrostatically floating ice shelf. The mean difference between theoretical and measured values of elevations is -2 +/- 1 m.

  5. Investigating the marginal ice zone on the Newfoundland Shelf

    NASA Astrophysics Data System (ADS)

    Smith, Peter C.; Tang, C. L.; MacPherson, J. Ian; McKenna, Richard F.

    From the ice and current data collected over the Newfoundland Shelf by the second Canadian Atlantic Storms Program (CASP II), it is evident that ice motion is affected by wind-generated ocean current. This points to the importance of coupled ice-ocean response to wind forcing in the study of shortterm ice motion and operational ice forecasting. The mutual influence of ice and the ocean can also be seen in the water properties.To study the mature stages of explosive cyclogenesis in east coast winter storms and to investigate their influence on the circulation and sea ice properties on the Newfoundland continental shelf and Grand Banks, CASP II was conducted by scientists from the Bedford Institute of Oceanography (BIO), the Atmospheric Environment Service (AES), the National Research Council (NRC), and many universities, private companies, and other government agencies.

  6. Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Holt, T. O.; Glasser, N. F.; Quincey, D. J.; Siegfried, M. R.

    2013-01-01

    George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to on-going atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.

  7. Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Holt, T. O.; Glasser, N. F.; Quincey, D. J.; Siegfried, M. R.

    2013-05-01

    George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.

  8. Antarctic Ice-Shelf Front Dynamics from ICESat

    NASA Technical Reports Server (NTRS)

    Robbins, John W.; Zwally, H. Jay; Saba, Jack L.; Yi, Donghui

    2012-01-01

    Time variable elevation profiles from ICESat Laser Altimetry over the period 2003-2009 provide a means to quantitatively detect and track topographic features on polar ice surfaces. The results of this study provide a measure of the horizontal motion of ice-shelf fronts. We examine the time histories of elevation profiles crossing the ice fronts of the Ross, Ronne, Filchner, Riiser-Larson and Fimbul shelves. This provides a basis for estimating dynamics in two dimensions, i.e. in elevation and horizontally in the along-track direction. Ice front velocities, corrected for ground-track intersection angle, range from nearly static to 1.1 km/yr. In many examples, a decrease in elevation up to 1 m/yr near the shelf frontis also detectable. Examples of tabular calving along shelf fronts are seen in some elevation profiles and are confirmed by corresponding MODIS imagery.

  9. Ross Ice Shelf Seismic Survey and Future Drilling Recommendation

    NASA Astrophysics Data System (ADS)

    van Haastrecht, Laurine; Ohneiser, Christian; Gorman, Andrew; Hulbe, Christina

    2016-04-01

    The Ross Ice Shelf (RIS) is one of three gateways through which change in the ocean can be propagated into the interior of West Antarctica. Both the geologic record and ice sheet models indicate that it has experienced widespread retreat under past warm climates. But inland of the continental shelf, there are limited data available to validate the models. Understanding what controls the rate at which the ice shelf will respond to future climate change is central to making useful climate projections. Determining the retreat rate at the end of the last glacial maximum is one part of this challenge. In November 2015, four lines of multi-channel seismic data, totalling over 45 km, were collected on the Ross Ice Shelf, approximately 300 km south of Ross Island using a thumper seismic source and a 96 channel snow streamer. The seismic survey was undertaken under the New Zealand Antarctic Research Institute (NZARI) funded Aotearoa New Zealand Ross Ice Shelf Programme to resolve bathymetric details and to image sea floor sediments under a proposed drilling site on the ice shelf, at about 80.7 S and 174 E. The thumper, a purpose-built, trailer mounted, weight-drop seismic source was towed behind a Hägglund tracked vehicle to image the bathymetry and sediments underneath the RIS. Seismic data collection on an ice shelf has unique challenges, in particular strong attenuation of the seismic energy by snow and firn, and complex multiple ray paths. The thumper, which consists of a heavy weight (250kg) that is dropped on a large, ski mounted steel plate, produced a consistent, repeatable higher energy signal when compared to sledge hammer source and allowed for a greater geographic coverage and lower environmental impact than an explosive source survey. Our survey revealed that the seafloor is smooth and that there may be up to 100 m of layered sediments beneath the seafloor and possibly deeper, more complex structures. A multiple generated by internally reflected seismic energy

  10. DEM, tide and velocity over sulzberger ice shelf, West Antarctica

    USGS Publications Warehouse

    Baek, S.; Shum, C.K.; Lee, H.; Yi, Y.; Kwoun, Oh-Ig; Lu, Zhiming; Braun, Andreas

    2005-01-01

    Arctic and Antarctic ice sheets preserve more than 77% of the global fresh water and could raise global sea level by several meters if completely melted. Ocean tides near and under ice shelves shifts the grounding line position significantly and are one of current limitations to study glacier dynamics and mass balance. The Sulzberger ice shelf is an area of ice mass flux change in West Antarctica and has not yet been well studied. In this study, we use repeat-pass synthetic aperture radar (SAR) interferometry data from the ERS-1 and ERS-2 tandem missions for generation of a high-resolution (60-m) Digital Elevation Model (DEM) including tidal deformation detection and ice stream velocity of the Sulzberger Ice Shelf. Other satellite data such as laser altimeter measurements with fine foot-prints (70-m) from NASA's ICESat are used for validation and analyses. The resulting DEM has an accuracy of-0.57??5.88 m and is demonstrated to be useful for grounding line detection and ice mass balance studies. The deformation observed by InSAR is found to be primarily due to ocean tides and atmospheric pressure. The 2-D ice stream velocities computed agree qualitatively with previous methods on part of the Ice Shelf from passive microwave remote-sensing data (i.e., LANDSAT). ?? 2005 IEEE.

  11. Seasonal circulation under the eastern Ross Ice Shelf, Antarctia

    SciTech Connect

    Hellmer, H.H.; Jacobs, S.S.

    1995-06-15

    An annual cycle of shelf water temperatures and salinities measured at depth near the eastern Ross Ice Shelf front is used to force a two-dimensional thermohaline circulation model adapted to different subice paths in the vicinity of Roosevelt Island. These paths were assumed to have constant water column thicknesses of 160, 200, and 240 m and lengths of 460-800 km. Additional simulations with the longer cavity included a 80-m thick interior water column in order to approximate conditions closer to the grounding line. Model results were compared with other long-term measurements that showed outflow from beneath the ice shelf. Shelf water flowing into the cavity west of Roosevelt Island appears to follow a cyclonic route around the island. The ice shelf base loses mass at a rate of 18-27 cm yr{sup {minus}1}, with seasonal forcing increasing the spatial and temporal variability of circulation and property distributions in the larger cavities. Shallow cavities reduce the influence of shelf water variability with increasing length. Introducing a transient shelf water temperature rise of 0.01{degrees}C yr {sup {minus}1} for 100 years increases the melt rate by 4-5 times. However, this increase is smaller if salinity also decreases over the same period of time, as might be expected from the added meltwater component. 42 refs., 9 figs.

  12. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    NASA Astrophysics Data System (ADS)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  13. Structural and dynamic changes of Wilkins Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Rankl, Melanie; Helm, Veit; Braun, Matthias

    2013-04-01

    Wilkins Ice Shelf (WIS) has shown considerable ice front retreat since 1990. This retreat includes various break-up events, such as recently in 2008 (Feb: 425 km², May: 160 km², Jul: 1220 km²) and in 2009 (790 km²). The break-up events took place under contrasting surface conditions, which indicates potentially different mechanisms for break-up. WIS shows quite specific peculiarities like a high amount of ice rises, highly variable ice thicknesses across the ice shelf, tributary glaciers draining into inlets as well as only limited nourishing by direct inflow from tributary glaciers. The present study aims to better understand the dynamics and mechanisms leading to disintegration and break-up of WIS. We hence investigate satellite data to reveal changes of glaciological structures like fractures and shear margins, the position of the grounding line, changes of frontal positions and ice surface velocities. Very few in situ measurements are available at WIS, which emphasizes the use of satellite data. Especially Synthetic Aperture Radar (SAR) data show high potential for glaciological purposes. We use SAR data (ALOS PALSAR, TerraSAR-X, TanDEM-X, ERS-1/2) in order to calculate surface velocities of the ice shelf and its tributaries at different times using SAR offset tracking procedures. The combined use of TanDEM-X InSAR surface elevations and IceSAT, CryoSat and NASA Ice Bridge ATM data enables the estimation of ice thickness assuming a constant ice density. First results show surface velocities before and after the break-up events in 2008 and 2009 as well as changing flow velocities of tributary glaciers. The combination of InSAR surface elevation and altimeter data allows for a comprehensive estimation of ice thickness across WIS. Both data sets can be used for subsequent ice dynamic modeling and fracture mechanics.

  14. Evidence for a former large ice sheet in the Orville Coast- Ronne Ice Shelf area, Antarctica.

    USGS Publications Warehouse

    Carrara, P.

    1981-01-01

    The Orville Coast area of the Antarctic Peninsula was extensively glacierized in the past. Striations, polished rock surfaces, and erratics on nunatak summits indicate that this area was covered by a broad regional ice sheet whose grounded ice margin was on the continental shelf, in the present-day Ronne Ice Shelf area. If the glacial history of Antarctica has been controlled by eustatic sea-level changes, the destruction of this ice sheet would have been contemporaneous with that of the Ross Sea ice sheet due to the world-wide rise of eustatic sea-level at the end of the Wisconsin glaciation. -Author

  15. Core drilling through the ross ice shelf (antarctica) confirmed Basal freezing.

    PubMed

    Zotikov, I A; Zagorodnov, V S; Raikovsky, J V

    1980-03-28

    New techniques that have been used to obtain a continuous ice core through the whole 416-meter thickness of the Ross Ice Shelf at Camp J-9 have demonstrated that the bottom 6 meters of the ice shelf consists of sea ice. The rate of basal freezing that is forming this ice is estimated by different methods to be 2 centimeters of ice per year. The sea ice is composed of large vertical crystals, which form the waffle-like lower boundary of the shelf. A distinct alignment of the crystals throughout the sea ice layer suggests the presence of persistent long-term currents beneath the ice shelf. PMID:17779616

  16. Evolving Toward the Next Antarctic Ice Shelf Disintegration: Recent Ice Velocity, Climate, and Ocean Observations of the Larsen B Ice Shelf Remnants

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.; Shuman, C. A.; Truffer, M.; Pettit, E. C.; Huber, B. A.; Haran, T. M.; Ross, R.; Domack, E. W.

    2013-12-01

    Ice shelf / ice tongue disintegrations and break-ups have a major effect on glacier mass balance, and nowhere has this been more evident than in the northern sections of the Larsen Ice Shelf in the Antarctic Peninsula. Ice flux in this region surged 2- to 6-fold after the 1995 and 2002 ice shelf disintegration events, driven by a group of processes based on the presence of extensive surface melt lakes. However, precursor changes in the ice shelves beginning more than a decade before the events have been identified. A new assessment of these provides insight on the earliest causes of ice shelf change. Among the precursor changes are an increase in meltwater lake extent, structural changes in the ice shelf shear margins, grounding line changes, and pre-breakup acceleration of the ice shelves and feeder glaciers. In the aftermath of the 2002 disintegration of the Larsen B, the two large remnant ice shelves at Seal Nunataks (~400 km2) and Scar Inlet (~2400 km2) have also evolved in these ways. These changes have been measured by a combination of in situ automated observation systems (AMIGOS: see Scambos et al., 2013, J. Glaciol.) and remote sensing as part of the Larsen Ice Shelf System, Antarctica (LARISSA) NSF project and NASA Cryosphere Program funding. Ice flow speed on the central Scar Inlet ice shelf has increased 60% between 2002 and 2012 (425 to 675 m/yr), and by 20% (540 to 660 m/yr) just above the grounding line of Flask Glacier, a tributary. Elevation change data from ICESat altimetry and ASTER stereo images show evidence of grounding line movement for Flask between 2003 and 2008, and for Crane Glacier prior to the 2002 break-up. In late 2002, and again in late 2012, major new rifts have formed on the southern portion of the Scar Inlet shelf, and the northwestern shear zone has rapidly evolved. The ice speed increase and the new rifts are inferred to be due to significant structural changes in the ice shelf shear margin on its northern side (concentration of

  17. Abiotic versus Biotic Drivers of Ocean pH Variation under Fast Sea Ice in McMurdo Sound, Antarctica

    PubMed Central

    Matson, Paul G.; Washburn, Libe; Martz, Todd R.; Hofmann, Gretchen E.

    2014-01-01

    Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes – in this case algal photosynthesis – to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound. PMID:25221950

  18. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    PubMed

    Matson, Paul G; Washburn, Libe; Martz, Todd R; Hofmann, Gretchen E

    2014-01-01

    Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound. PMID:25221950

  19. Numerical model of ice melange expansion during abrupt ice-shelf collapse

    NASA Astrophysics Data System (ADS)

    Guttenberg, N.; Abbot, D. S.; Amundson, J. M.; Burton, J. C.; Cathles, L. M.; Macayeal, D. R.; Zhang, W.

    2010-12-01

    Satellite imagery of the February 2008 Wilkins Ice-Shelf Collapse event reveals that a large percentage of the involved ice shelf was converted to capsized icebergs and broken fragments of icebergs over a relatively short period of time, possibly less than 24 hours. The extreme violence and short time scale of the event, and the considerable reduction of gravitational potential energy between upright and capsized icebergs, suggests that iceberg capsize might be an important driving mechanism controlling both the rate and spatial extent of ice shelf collapse. To investigate this suggestion, we have constructed an idealized, 2-dimensional model of a disintegrating ice shelf composed of a large number (N~100 to >1000) of initially well-packed icebergs of rectangular cross section. The model geometry consists of a longitudinal cross section of the idealized ice shelf from grounding line (or the upstream extent of ice-shelf fragmentation) to seaward ice front, and includes the region beyond the initial ice front to cover the open, ice-free water into which the collapsing ice shelf expands. The seawater in which the icebergs float is treated as a hydrostatic fluid in the computation of iceberg orientation (e.g., the evaluation of buoyancy forces and torques), thereby eliminating the complexities of free-surface waves, but net horizontal drift of the icebergs is resisted by a linear drag law designed to energy dissipation by viscous forces and surface-gravity-wave radiation. Icebergs interact via both elastic and inelastic contacts (typically a corner of one iceberg will scrape along the face of its neighbor). Ice-shelf collapse in the model is embodied by the mass capsize of a large proportion of the initially packed icebergs and the consequent advancement of the ice front (leading edge). Model simulations are conducted to examine (a) the threshold of stability (e.g., what density of initially capsizable icebergs is needed to allow a small perturbation to the system

  20. Prokaryotic diversity of arctic ice shelf microbial mats.

    PubMed

    Bottos, Eric M; Vincent, Warwick F; Greer, Charles W; Whyte, Lyle G

    2008-04-01

    The prokaryotic diversity and respiratory activity of microbial mat communities on the Markham Ice Shelf and Ward Hunt Ice Shelf in the Canadian high Arctic were analysed. All heterotrophic isolates and > 95% of bacterial 16S rRNA gene clone library sequences from both ice shelves grouped within the phyla Bacteroidetes, Proteobacteria and Actinobacteria. Clone library analyses showed that the bacterial communities were diverse and varied significantly between the two ice shelves, with the Markham library having a higher estimated diversity (Chao1 = 243; 105 operational taxonomic units observed in 189 clones) than the Ward Hunt library (Chao1 = 106; 52 operational taxonomic units observed in 128 clones). Archaeal 16S rRNA gene clone libraries from both ice shelves were dominated by a single Euryarchaeota sequence, which appears to represent a novel phylotype. Analyses of community activity by radiorespiration assays detected metabolism in mat samples from both ice shelves at temperatures as low as -10 degrees C. These findings provide the first insight into the prokaryotic biodiversity of Arctic ice shelf communities and underscore the importance of these cryo-ecosystems as a rich source of microbiota that are adapted to extreme cold. PMID:18215157

  1. Ocean and Atmosphere Forcing of Larsen Ice Shelf Thinning

    NASA Astrophysics Data System (ADS)

    Holland, P.; Brisbourne, A.; Corr, H. F. J.; McGrath, D.; Purdon, K.; Paden, J. D.; Fricker, H. A.; Padman, L.; Paolo, F. S.; Fleming, A. H.

    2014-12-01

    The ice shelves of the Antarctic Peninsula (AP) have shown a progressive decline over the last five decades, including the spectacular collapses of Larsen A Ice Shelf in 1995 and Larsen B in 2002. These collapses have accelerated the flow of ice inland, contributing significantly to sea-level rise, and have also freshened the Antarctic Bottom Water formed nearby. Larsen C Ice Shelf (LCIS), the largest on the peninsula, has progressively lowered since 1992, but the origin of this lowering remains controversial; it has been attributed to ocean melting, but most evidence has favoured enhanced firn (snowpack) compaction. By applying a novel method to the data from eight separate radar surveys of LCIS spanning a 15-year period, we show that the lowering is caused by both ice loss and firn air loss. The ice loss may be caused by unbalanced ocean melting, so oceanic changes have contributed to the wastage of LCIS in addition to the well-documented atmospheric warming in the region. If naively extrapolated in space and time, the air loss rate would deplete LCIS firn within 2-3 centuries, while the ice loss could cause LCIS to unground from Bawden Ice Rise within 2-4 centuries. Until we better understand the atmosphere and ocean forcing of the AP Ice Sheet, it will not be possible to project its future stability or determine the anthropogenic contribution to its decline.

  2. A Blowing Snow Model for Ice Shelf Rifts

    NASA Astrophysics Data System (ADS)

    Leonard, K. C.; Tremblay, L.; Macayeal, D. R.

    2005-12-01

    Ice melange (a mixture of snow, marine ice, and ice talus) may play various roles in the rates of propagation of iceberg-calving rifts through Antarctic ice shelves. This modeling study examines the role of windblown snow in the formation and maintenance of ice melange in the "nascent rift" in the Ross Ice Shelf (78 08'S, 178 29'W). The rift axis is perpendicular to the regional wind direction, allowing us to employ a two-dimensional blowing snow model. The Piektuk-Tuvaq blowing snow model (Dery and Tremblay, 2004) adapted the Piektuk blowing snow model for use in sea ice environments by including parameterization for open-water leads within the sea ice. This version of the model was used to study the initial conditions of a freshly-opened rift, as the input of blowing snow into the seawater within the rift promotes marine ice formation by cooling and freshening the surface water. We adapted the Piektuk-Tuvaq model both for the local climatic conditions and to incorporate the geometry of the rift, which is 30m deep and 100m wide (far deeper than a lead). We present the evolution of the topography within the rift for two cases. The first is an ice melange composed exclusively of snow and marine ice, the second uses an initial topography including large chunks of ice talus.

  3. CLIVAR Exchanges No. 62: Sea Level Rise, Ocean/Ice Shelf Interactions and Ice Sheets

    SciTech Connect

    Pirani, Anna; Danabasoglu, Gokhan; Griffies, Stephen; Marsland, Simon

    2013-08-01

    This special issue of CLIVAR Exchanges is devoted to presenting a selection of the science contributed by both speakers and poster presenters at the CLIVAR Workshop on Sea Level Rise, Ocean/Ice Shelf Interactions and Ice Sheets at CSIRO Marine and Atmospheric Research in Hobart, Australia, on 18-20 February 2013. The workshop brought together leading international scientists and early-career researchers from the ocean, ice-sheet, ice-shelf, and sea-level rise modelling and observational communities to explore the state-of-science and emerging pathways for development of the next generation of coupled climate models.

  4. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    USGS Publications Warehouse

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif G.; Backman, Jan; Bjork, Goran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Macho, Natalia Barrientos; Cherniykh, Dennis; Coxall, Helen; Eriksson, Bjorn; Floden, Tom; Gemery, Laura; Gustafsson, Orjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (~140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

  5. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    PubMed Central

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif; Backman, Jan; Björk, Göran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Barrientos Macho, Natalia; Cherniykh, Denis; Coxall, Helen; Eriksson, Björn; Flodén, Tom; Gemery, Laura; Gustafsson, Örjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening. PMID:26778247

  6. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation

    NASA Astrophysics Data System (ADS)

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif; Backman, Jan; Björk, Göran; Cronin, Thomas M.; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Barrientos Macho, Natalia; Cherniykh, Denis; Coxall, Helen; Eriksson, Björn; Flodén, Tom; Gemery, Laura; Gustafsson, Örjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (~140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening.

  7. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation.

    PubMed

    Jakobsson, Martin; Nilsson, Johan; Anderson, Leif; Backman, Jan; Björk, Göran; Cronin, Thomas M; Kirchner, Nina; Koshurnikov, Andrey; Mayer, Larry; Noormets, Riko; O'Regan, Matthew; Stranne, Christian; Ananiev, Roman; Barrientos Macho, Natalia; Cherniykh, Denis; Coxall, Helen; Eriksson, Björn; Flodén, Tom; Gemery, Laura; Gustafsson, Örjan; Jerram, Kevin; Johansson, Carina; Khortov, Alexey; Mohammad, Rezwan; Semiletov, Igor

    2016-01-01

    The hypothesis of a km-thick ice shelf covering the entire Arctic Ocean during peak glacial conditions was proposed nearly half a century ago. Floating ice shelves preserve few direct traces after their disappearance, making reconstructions difficult. Seafloor imprints of ice shelves should, however, exist where ice grounded along their flow paths. Here we present new evidence of ice-shelf groundings on bathymetric highs in the central Arctic Ocean, resurrecting the concept of an ice shelf extending over the entire central Arctic Ocean during at least one previous ice age. New and previously mapped glacial landforms together reveal flow of a spatially coherent, in some regions >1-km thick, central Arctic Ocean ice shelf dated to marine isotope stage 6 (∼ 140 ka). Bathymetric highs were likely critical in the ice-shelf development by acting as pinning points where stabilizing ice rises formed, thereby providing sufficient back stress to allow ice shelf thickening. PMID:26778247

  8. Representation of sharp rifts and faults mechanics in modeling ice shelf flow dynamics: Application to Brunt/Stancomb-Wills Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Larour, E.; Khazendar, A.; Borstad, C. P.; Seroussi, H.; Morlighem, M.; Rignot, E.

    2014-09-01

    Ice shelves play a major role in buttressing ice sheet flow into the ocean, hence the importance of accurate numerical modeling of their stress regime. Commonly used ice flow models assume a continuous medium and are therefore complicated by the presence of rupture features (crevasses, rifts, and faults) that significantly affect the overall flow patterns. Here we apply contact mechanics and penalty methods to develop a new ice shelf flow model that captures the impact of rifts and faults on the rheology and stress distribution of ice shelves. The model achieves a best fit solution to satellite observations of ice shelf velocities to infer the following: (1) a spatial distribution of contact and friction points along detected faults and rifts, (2) a more realistic spatial pattern of ice shelf rheology, and (3) a better representation of the stress balance in the immediate vicinity of faults and rifts. Thus, applying the model to the Brunt/Stancomb-Wills Ice Shelf, Antarctica, we quantify the state of friction inside faults and the opening rates of rifts and obtain an ice shelf rheology that remains relatively constant everywhere else on the ice shelf. We further demonstrate that better stress representation has widespread application in examining aspects affecting ice shelf structure and dynamics including the extent of ice mélange in rifts and the change in fracture configurations. All are major applications for better insight into the important question of ice shelf stability.

  9. Mertz Ice Shelf Dynamics in the Last Twenty Years

    NASA Astrophysics Data System (ADS)

    Wang, X.; Cheng, X.; Shum, C.

    2013-12-01

    In February 2010, the Mertz Ice Tongue collapsed and generated a giant iceberg. However, parameters about this iceberg have not been calculated and published in detail. In this study, the freeboard map of this iceberg was generated for the first time using a time-series ICESat/GLAS data. Methods for producing the freeboard map of this iceberg are suggested. Field data for ice velocity were used to relocate the footprints collected by different campaigns. Cross-validation was conducted with freeboards extracted from crossovers observed within 30 days of each other. The precision of the freeboard extraction is approximately 0.50 m, when taking one standard deviation as the precision. The freeboard varied from 23 m to 59 m with an averaged 41 m. The histogram of crevasse depth on Mertz Ice Shelf from 2003 to 2009 showed nearly the same annual distribution, indicating the almost stable situation. The crevasse depth ranged from 2m to 10m takes more than 70% every year, with remaining 30% greater than 10m and smaller than 56m. The area of large rift in the right side along ice shelf advancing showed an increasing trend (4.05 square km to 19.4 square km) from 1989 to 2003 and a decreasing trend (19.05 square km to 17.6 square km) from 2003 to 2009. However, large rift in the left side along ice shelf advancing occurred at about 2002 and the area increased to 11.38 square km at the end of 2009. Deep crevasse on surface and expansion of central large rift made Mertz Ice Shelf fragile and disintegrated after collision by an iceberg. With the assumption of hydrostatic equilibrium (assuming a snow layer depth of 1m, a snow density of 360 kg/m^3, an ice density of 915 kg/m^3 and a sea water density of 1024 kg/m^3), the minimum, maximum and average ice thickness for the disintegrated ice tongue were calculated as 210 m, 550 m and 383 m respectively. The total ice loss is approximately 896 G ton over an area, 34 km in width and 75 km in length, or approximately 2560×5 km^2

  10. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    PubMed Central

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades. PMID:27283778

  11. Massive subsurface ice formed by refreezing of ice-shelf melt ponds.

    PubMed

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m(-3) denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades. PMID:27283778

  12. Analysis of Ice Plains of Filchner/Ronne Ice Shelf Using ICESat Data

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Fricker, Helen A.; Padman, Laurie

    2010-01-01

    We use repeat-track laser altimeter data from the Ice, Cloud, and land Elevation Satellite (ICESat) to map the grounding zone of Filchner/Ronne Ice Shelf (FRIS), Antarctica. Repeated passes of ICESat reveal ice flexure in the grounding zone occurs as the ice shelf responds to ocean height changes due primarily to tides. In the course of our mapping, we have confirmed or identified three major "ice plains", regions of low surface slope near the GZ where the ice is close to hydrostatic equilibrium: one on Institute Ice Stream, another to its east, and another west of Foundation Ice Stream. The vertical information from repeated ICESat tracks enables us to study the topography and flexure characteristics across these three ice plains, and we use this to develop a classification scheme for ice plains based on their surface topography and their state of flotation. We show that one of these ice plains indicates changes in lateral extent on short time-scales, depending on the state of the ocean tide. Understanding the location and nature of ice plains is important for ice sheet modeling, since they add uncertainty to the absolute boundary between floating and grounded ice.

  13. Scavenging amphipods from under the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Stockton, William L.

    1982-07-01

    Amphipods in the genus Orchomene were collected from under the Ross Ice Shelf, Antarctica, 400 km from the shelf edge at a depth of 600 m. A study of 992 individuals of the 3500 captured revealed that the population is dominated by the larger size classes. Two-thirds of the population is composed of males. Ovigerous females will approach and consume bait and females are multiply brooded. The source of nutrition for this population is not definitely known. Identifiable gut contents were bacteria mixed with sediment, pieces of crustacean carapaces, and tissue from apparently cannibalized conspecifics. It is an open question as to whether the population sampled is persistent over time and whether amphipods are common under all of the Ross Ice Shelf.

  14. Elastic response of a grounded ice sheet coupled to a floating ice shelf

    NASA Astrophysics Data System (ADS)

    Worster, M. G.; Sayag, R.

    2011-12-01

    An ice sheet that spreads into an ocean is forced to bend owing to its buoyancy, and detaches from the ground to form an ice shelf. The detachment position, called the grounding-line, behaves as a free boundary. Observational evidence suggests that the surface elevation of the ice at the grounding zone can be undulated and that the bed beneath the ice can deform. We present a theoretical and experimental study of an elastic sheet resting on a deformable elastic bed, coupled to an elastic shelf, with a free grounding line. We find that the grounding-line position is determined by the geometry of the bed and a lengthscale representing a balance of bending and buoyancy forces. We show that the undulated structure of the floating shelf depends on the bending-buoyancy lengthscale only, allowing us to calculate the bending stiffness of the elastic shelf independently of the bed slope or bed stiffness. We also find relations between features on the surface of the floating shelf and the grounding-line position. Our theoretical predictions agree with laboratory experiments made using thick elastic sheets acting as the ice, and a dense salt solution acting as the ocean. Our findings provide new insights on the dynamics near grounding lines, which may have important implications for ice-sheet dynamics and stability, as well as methods to infer the bending stiffness of ice sheets and the grounding line position from satellite altimetery.

  15. Does Arctic sea ice reduction foster shelf-basin exchange?

    PubMed

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  16. SPH non-Newtonian Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect

    Tartakovsky, Alexandre M.; Pan, Wenxiao; Monaghan, Joseph J.

    2012-07-07

    We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice sheet and ice shelf dynamics. Most existing ice sheet numerical models use a grid-based Eulerian approach, and are usually restricted to shallow ice sheet and ice shelf approximations of the momentum conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum conservation equation. SPH method also allows modeling of free-surface flows, large material deformation, and material fragmentation without employing complex front-tracking schemes, and does not require re-meshing. As a result, SPH codes are highly scalable. Numerical accuracy of the proposed SPH model is first verified by simulating a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding line dynamics of ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding line dynamics. The non-Newtonian constitutive model is based on Glen's law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.

  17. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  18. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    NASA Technical Reports Server (NTRS)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  19. Marine ice regulates the future stability of a large Antarctic ice shelf

    PubMed Central

    Kulessa, Bernd; Jansen, Daniela; Luckman, Adrian J.; King, Edward C.; Sammonds, Peter R.

    2014-01-01

    The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula in 1995 and 2002 confirm the impact of southward-propagating climate warming in this region. Recent mass and dynamic changes of Larsen B’s southern neighbour Larsen C, the fourth largest ice shelf in Antarctica, may herald a similar instability. Here, using a validated ice-shelf model run in diagnostic mode, constrained by satellite and in situ geophysical data, we identify the nature of this potential instability. We demonstrate that the present-day spatial distribution and orientation of the principal stresses within Larsen C ice shelf are akin to those within pre-collapse Larsen B. When Larsen B’s stabilizing frontal portion was lost in 1995, the unstable remaining shelf accelerated, crumbled and ultimately collapsed. We hypothesize that Larsen C ice shelf may suffer a similar fate if it were not stabilized by warm and mechanically soft marine ice, entrained within narrow suture zones. PMID:24751641

  20. Marine ice regulates the future stability of a large Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Jansen, Daniela; Luckman, Adrian J.; King, Edward C.; Sammonds, Peter R.

    2014-04-01

    The collapses of the Larsen A and B ice shelves on the Antarctic Peninsula in 1995 and 2002 confirm the impact of southward-propagating climate warming in this region. Recent mass and dynamic changes of Larsen B’s southern neighbour Larsen C, the fourth largest ice shelf in Antarctica, may herald a similar instability. Here, using a validated ice-shelf model run in diagnostic mode, constrained by satellite and in situ geophysical data, we identify the nature of this potential instability. We demonstrate that the present-day spatial distribution and orientation of the principal stresses within Larsen C ice shelf are akin to those within pre-collapse Larsen B. When Larsen B’s stabilizing frontal portion was lost in 1995, the unstable remaining shelf accelerated, crumbled and ultimately collapsed. We hypothesize that Larsen C ice shelf may suffer a similar fate if it were not stabilized by warm and mechanically soft marine ice, entrained within narrow suture zones.

  1. Flow of Ice near a Large Melt Channel in the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Conway, H.; Hindmarsh, R. C. A.; Koutnik, M. R.; Stevens, C.; Winberry, J. P.

    2014-12-01

    There is increasing evidence for the existence of large channels incised beneath ice shelves in West Antarctica. However, the genesis of these channels is still not clear. Measurements from the floating tongue of Pine Island Glacier show that sub-shelf channels formed by localized melting (Stanton et al., 2013); oceanographic models of flow in sub-ice-shelf cavities are capable of producing sub-shelf channels through non-linear feed-back mechanisms (Gladish et al. 2012; Sergienko, 2013). On the other hand, other evidence suggests that sub-shelf channels can initiate at locations where melt water beneath grounded ice crosses the grounding line (Le Brocq et al. 2013). Here we use ground-based radar to map a channel incised into the base of the Ross Ice Shelf proximal to the grounding zone of Beardmore Glacier, West Antarctica. Results show that in the grounding zone (ice thickness is 1150m), the channel is 100m deep and 0.5 km wide. On the shelf, the channel widens and deepens down stream; 8km down from the grounding line (ice thickness is 600-800 m), the channel is 200m deep and 1 km wide (see Figure); apparently in this case, the channel originates from beneath the grounded ice. Although there is some indication of radar-detected internal stratigraphy dipping toward the channels indicative of meltin, the pattern of the stratigraphy suggests significant accumulated strain (see Figure). Further, vertical strain-rates calculated from repeat measurements using phase-sensitive radar (pRES), show a more complex pattern over melt-channels than is usually assumed for ice shelves. Specifically, 57 of the 69 pRES measurements exhibit a pattern of compression in the upper 75% of the ice column and extension in the lower 25%. This observation is important because such a pattern affects the ratio of surface- to mean-velocity, which is usually assumed to be unity in shelf-mass balance calculations. FIGURE CAPTION: Unmigrated, across-channel radar profile 8km downstream from the

  2. Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Arzeno, Isabella B.; Beardsley, Robert C.; Limeburner, Richard; Owens, Breck; Padman, Laurie; Springer, Scott R.; Stewart, Craig L.; Williams, Michael J. M.

    2014-07-01

    Basal melting of ice shelves is an important, but poorly understood, cause of Antarctic ice sheet mass loss and freshwater production. We use data from two moorings deployed through Ross Ice Shelf, ˜6 and ˜16 km south of the ice front east of Ross Island, and numerical models to show how the basal melting rate near the ice front depends on sub-ice-shelf ocean variability. The moorings measured water velocity, conductivity, and temperature for ˜2 months starting in late November 2010. About half of the current velocity variance was due to tides, predominantly diurnal components, with the remainder due to subtidal oscillations with periods of a few days. Subtidal variability was dominated by barotropic currents that were large until mid-December and significantly reduced afterward. Subtidal currents were correlated between moorings but uncorrelated with local winds, suggesting the presence of waves or eddies that may be associated with the abrupt change in water column thickness and strong hydrographic gradients at the ice front. Estimated melt rate was ˜1.2 ± 0.5 m a-1 at each site during the deployment period, consistent with measured trends in ice surface elevation from GPS time series. The models predicted similar annual-averaged melt rates with a strong annual cycle related to seasonal provision of warm water to the ice base. These results show that accurately modeling the high spatial and temporal ocean variability close to the ice-shelf front is critical to predicting time-dependent and mean values of meltwater production and ice-shelf thinning.

  3. Sea-ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Over 1500 water samples from surface and from standard hydrographic depths were collected during June and July 1973 from Bering Sea and Gulf of Alaska. The measurement of temperature, salinity, and productivity indicated that various distinct water masses cover the Bering Sea Shelf. The suspended load in surface waters will be correlated with the ERTS-1 imagery as it becomes available to delineate the surface water circulation. The movement of ice floes in the Bering Strait and Bering Sea indicated that movement of ice varies considerably and may depend on wind stress as well as ocean currents.

  4. Recent changes in the flow of the Ross Ice Shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Hulbe, Christina L.; Scambos, Ted A.; Lee, Choon-Ki; Bohlander, Jennifer; Haran, Terry

    2013-08-01

    Comparison of surface velocities measured during the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS, 1973 to 1978) and velocities measured via feature tracking between two Moderate-resolution Imaging Spectroradiometer (MODIS) mosaics (compiled from 2003/4 and 2008/9 images) reveals widespread slowing and minor areas of acceleration in the Ross Ice Shelf (RIS) over the approximately 30 year interval. The largest changes (-13 ma) occur near the Whillans and Mercer Ice Streams grounding line in the southernmost part of the ice shelf. Speed has increased over the interval (up to 5 ma) between the MacAyeal Ice Stream grounding line and the shelf front, and along the eastern shelf front. Changes in ice thickness computed using ICESat laser altimetry are used together with a well-tested model of the ice shelf to investigate underlying causes of change in the flow of the ice shelf over time. The observed transients represent a combination of recent forcings and ongoing response to ice stream discharge variations over the past millennium. While evidence of older events may be present, the modern signal is dominated by shorter time scale events, including the stagnation of Kamb Ice Stream about 160 years ago, recent changes in basal drag on the Whillans Ice Stream ice plain and, perhaps, iceberg calving. Details in embayment geometry, for example the shallow sea floor below Crary Ice Rise, modulate the spatial pattern of ice shelf response to boundary condition perturbations.

  5. Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics

    SciTech Connect

    Pan, W.; Tartakovsky, A. M.; Monaghan, J. J.

    2013-06-01

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is verif;ed by simulating Poiseuille flow, plane shear flow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian fluid. In the present work, however, the ice is modeled as both viscous Newtonian fluid and non-Newtonian fluid, such that the effect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glen’s law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.

  6. A Smoothed Particle Hydrodynamics Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect

    Pan, Wenxiao; Tartakovsky, Alexandre M.; Monaghan, Joseph J.

    2012-02-08

    Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) model for coupled ice sheet and ice shelf dynamics. SPH is a fully Lagrangian particle method. It is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper SPH is used to study ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from the SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is further verified by simulating the plane shear flow of two immiscible fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment, the ice was represented with a viscous newtonian fluid. For consistency, in the described SPH model the ice is also modeled as a viscous newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian fluid, accounting for the changes in the mechanical properties of ice. Implementation of a non-Newtonian rheology in the SPH model is the subject of our ongoing research.

  7. Glider observations of the Dotson Ice Shelf outflow

    NASA Astrophysics Data System (ADS)

    Miles, Travis; Lee, Sang Hoon; Wåhlin, Anna; Ha, Ho Kyung; Kim, Tae Wan; Assmann, Karen M.; Schofield, Oscar

    2016-01-01

    The Amundsen Sea is one of the most productive polynyas in the Antarctic per unit area and is undergoing rapid changes including a reduction in sea ice duration, thinning ice sheets, retreat of glaciers and the potential collapse of the Thwaites Glacier in Pine Island Bay. A growing body of research has indicated that these changes are altering the water mass properties and associated biogeochemistry within the polynya. Unfortunately difficulties in accessing the remote location have greatly limited the amount of in situ data that has been collected. In this study data from a Teledyne-Webb Slocum glider was used to supplement ship-based sampling along the Dotson Ice Shelf (DIS). This autonomous underwater vehicle revealed a detailed view of a meltwater laden outflow from below the western flank of the DIS. Circumpolar Deep Water intruding onto the shelf drives glacial melt and the supply of macronutrients that, along with ample light, supports the large phytoplankton blooms in the Amundsen Sea Polynya. Less well understood is the source of micronutrients, such as iron, necessary to support this bloom to the central polynya where chlorophyll concentrations are highest. This outflow region showed decreasing optical backscatter with proximity to the bed indicating that particulate matter was sourced from the overlying glacier rather than resuspended sediment. This result suggests that particulate iron, and potentially phytoplankton primary productivity, is intrinsically linked to the magnitude and duration of sub-glacial melt from Circumpolar Deep Water intrusions onto the shelf.

  8. Ice flow velocities and elevation change at Fleming Glacier, Wordie Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Wendt, A.; Wendt, J.; Bown, F.; Rivera, A.; Zamora, R.; Bravo, C.; Casassa, G.

    2009-04-01

    Glaciers in the Antarctic Peninsula have been responding to the pronounced atmospheric warming in the region (Vaughan et al. 2003) with frontal retreat (Cook et al. 2005), ice shelf collapse (Rott et al. 1996) and ice flow acceleration and thinning (Rignot et al. 2004; Shepherd et al. 2003; Pritchard & Vaughan 2007). These trends have progressively migrated southwards along the Antarctic Peninsula causing, for instance, a substantial retreat of Wilkins Ice Shelf (70.2˚ S) in 2008. At 69.3˚ S, but 300 km to the east, Wordie Ice Shelf experienced a major reduction in size in the 1980s (Doake & Vaughan 1991). Available information about this ice shelf and its feeding glaciers dates back to the 1970s when ice thickness and velocity measurements were carried out on Fleming Glacier (Doake 1975). Although initially it was thought that the post-collapse conditions of the feeding glaciers remained unchanged (Vaughan 1993), more recent evidence shows that glaciers accelerated after the ice shelf collapse and substantial glacier thinning has occurred (Rignot et al. 2005). We present data acquired during two field expeditions to Fleming Glacier. During the first season in November 2007, we installed an Automatic Weather Station (AWS) and a permanent GPS site. Additional data including a local GPS network, ground penetrating radar measurements and snow densities were collected. In December 2008, during the second field campaign, surface elevation data were acquired using an airborne laser scanner along a trajectory between Gibbs Glacier and Airy Glacier, along the ice divide between both sides of the Peninsula and on Fleming Glacier. The AWS was found protruding only 20 cm above the snow surface, demonstrating the high snow accumulation in the area, which was sufficient to cover the 4 m high tower installed in 2007 and that annual variability in the mass accumulation is significant. The station collected data for 250 days. The permanent GPS stopped collecting data after

  9. Life Detection and Characterization of Subsurface Ice and Brine in the McMurdo Dry Valleys Using an Ultrasonic Gopher: A NASA ASTEP Project

    NASA Technical Reports Server (NTRS)

    Doran, P. T.; Bar-Cohen, Y.; Fritsen, C.; Kenig, F.; McKay, C. P.; Murray, A.; Sherrit, S.

    2003-01-01

    Evidence for the presence of ice and fluids near the surface of Mars in both the distant and recent past is growing with each new mission to the Planet. One explanation for fluids forming springlike features on Mars is the discharge of subsurface brines. Brines offer potential refugia for extant Martian life, and near surface ice could preserve a record of past life on the planet. Proven techniques to get underground to sample these environments, and get below the disruptive influence of the surface oxidant and radiation regime, will be critical for future astrobiology missions to Mars. Our Astrobiology for Science and Technology for Exploring Planets (ASTEP) project has the goal to develop and test a novel ultrasonic corer in a Mars analog environment, the McMurdo Dry valleys, Antarctica, and to detect and describe life in a previously unstudied extreme ecosystem; Lake Vida (Fig. 1), an ice-sealed lake.

  10. Using ice-penetrating radars to date ice-rise formation and Late Holocene ice-sheet retreat in the Ronne Ice Shelf region, West Antarctica

    NASA Astrophysics Data System (ADS)

    Kingslake, Jonathan; Hindmarsh, Richard; King, Edward; Corr, Hugh

    2015-04-01

    The history of the West Antarctic Ice Sheet in the region currently occupied by the Ronne Ice Shelf is poorly known. This reflects a lack of accessible recently deglaciated surfaces, which prohibits conventional paleo glaciological techniques that can provide evidence of past ice-sheet extent and retreat, for example ocean coring or exposure-dating of geological material. We use a glaciological technique, Raymond Effect Dating, to constrain the retreat of the ice sheet through the Ronne Ice Shelf region. During two Antarctic field seasons, we used a pulse-echo ice-penetrating radar to image the base and internal stratigraphy of four ice rises - areas of grounded ice containing ice divides. Towing the radar with skidoos, we conducted over 2000 km of surveys on the Skytrain, Korff, Henry and Fowler Ice Rises and the ice shelf between them. We also used a step-frequency radar called pRES to measure the vertical ice flow in the vicinity of each ice divide. Isochronal ice layers imaged during the surveys deforming in a predictable way with ice flow, meaning that their shape contains information about past ice flow. Directly beneath ice divides the downward motion of the ice is impeded by an ice-dynamical phenomenon called the Raymond Effect. This causes layers beneath the divides to form 'Raymond Arches' that grow over time. We will present the data and simulate the growth of the Raymond Arches using our pRES-measured vertical ice velocities and date the onset of ice-divide flow at each ice rise by comparing the size of simulated arches to the arches imaged during our radar surveys. We consider the main sources of uncertainty associated with these ice-rise formation dates and discuss what they can tell us about the retreat of the West Antarctic Ice Sheet through this region during the last few thousand years.

  11. Susceptibility of the Antarctic ice sheet to changes in ice shelf buttressing

    NASA Astrophysics Data System (ADS)

    Fürst, Johannes J.; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Gagliardini, Olivier

    2015-04-01

    Higher surface air temperatures over the Antarctic Peninsula are hypothesised to have caused melt-pond formation, destabilisation and sudden disintegration of the Larsen B ice shelf in 2002. The almost total removal of the shelf resulted in an acceleration of the extant glacier fronts, upstream thinning and unabated ice loss up to this day. Similar thinning is observed for Thwaites and Pine Island Glaciers in the Amundsen Sea sector, but here, ocean warming is suspected for enhancing the shelf melting. In both cases, shelf geometries were altered in a way that upstream buttressing was reduced, an explanation for the observed accelerations. Since more than half of all Antarctic glaciers extend into floating shelves and since most of them showed no significant accelerations in the recent past, it remains unclear how susceptible the upstream ice sheet is to geometric changes of the corresponding shelves under further warming in the future. In this context, we aim at quantifying the dynamic susceptibility using ice geometry and surface velocities inferred from observations. To obtain the stress distribution near the grounding line, the shelf viscosity field is determined using a variational inverse method that optimises the mismatch between observed and modelled surface velocities. This allows us to compute a buttressing factor along the grounding line. Using this factor as one criterion, we succeed to a priori discern the segments of the grounding line in the Amundsen Sea sector that, in fact, retreated by now. An abrupt drop-off in buttressing across the main trunk of Thwaites Glacier can explain its asymmetric retreat pattern. Moreover, other regions in this sector are recognised as susceptible to further loss of shelf buttressing, where, for now, perturbations remain too weak for a distinct migration of the grounding line. With the chosen criteria, we are able to localise the regions that are prone to changes in the downstream shelves. This identification enables

  12. Susceptibility of the Antarctic Ice Sheet to Changes in Ice Shelf Buttressing

    NASA Astrophysics Data System (ADS)

    Fürst, J. J.; Durand, G.; Gillet-chaulet, F.; Tavard, L.; Gagliardini, O.

    2014-12-01

    Higher surface air temperatures over the Antarctic Peninsula are hypothesised to have caused melt-pond formation, destabilisation and sudden disintegration of the Larsen B ice shelf in 2002. The almost total removal of the shelf resulted in an acceleration of the extant glacier fronts, upstream thinning and unabated ice loss up to this day. Similar thinning is observed for Thwaites and Pine Island Glaciers in the Amundsen Sea sector, but here, ocean warming is suspected for enhancing the shelf melting. In both cases, shelf geometries were altered in a way that upstream buttressing was reduced, an explanation for the observed accelerations. Since more than half of all Antarctic glaciers extend into floating shelves and since most of them showed no significant accelerations in the recent past, it remains unclear how susceptible the upstream ice sheet is to geometric changes of the corresponding shelves under further warming in the future. In this context, we aim at quantifying the dynamic susceptibility using ice geometry and surface velocities inferred from observations. To obtain the stress distribution near the grounding line, the shelf viscosity field is determined using a variational inverse method that optimises the mismatch between observed and modelled surface velocities. This allows us to compute a buttressing factor along the grounding line. Using this factor as one criterion, we succeed to a priori discern the segments of the grounding line in the Amundsen Sea sector that, in fact, retreated by now. An abrupt drop-off in buttressing across the main trunk of Thwaites Glacier can explain its asymmetric retreat pattern. Moreover, other regions in this sector are recognised as susceptible to further loss of shelf buttressing, where, for now, perturbations remain too weak for a distinct migration of the grounding line. With the chosen criteria, we are able to localise the regions that are prone to changes in the downstream shelves. This identification enables

  13. Process involved in the propagation of rifts across the Ronne Ice Shelf, near the region of Hemmen Ice Rise

    NASA Technical Reports Server (NTRS)

    Larour, E.; Rignot, E.; Aubry, D.

    2002-01-01

    We use radar interferometric images collected by ERS-1 and Radarsat-1 to observe the rupture tip of rifts along Hemmen Ice Rise on the Ronne Ice Shelf, Antarctica. Interferograms generated in 1992 and 1997 allow us to observe the deformation of ice accumulated over respectively 9 and24 days. The results are an important step towards developing a better model of ice-shelf calving mechanism.

  14. A Theoretical and Experimental Investigation of Ice-Shelf Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Wearing, M.; Worster, G.; Hindmarsh, R. C. A.

    2015-12-01

    Ice-shelf buttressing is a major control on the rate of ice discharged from fast-flowing ice streams that drain the Antarctic Ice Sheet. The collapse of an ice shelf can lead to dramatic acceleration and thinning of the ice streams and glaciers that flowed into the former shelf. The magnitude of the buttressing force depends on the shelf geometry and confinement. This geometry is determined by the ice-shelf extent, resulting from retreat due to iceberg calving and shelf advance due to flow. In contrast to large-scale ice-sheet models, which require high resolution datasets, we aim to gain insight using simple idealized models, focusing on the transition from lateral confinement to non-confinement. By considering a confined shelf with lateral shear stresses controlling the flow, steady-state analytical solutions can be calculated. These solutions are then compared to a numerical model for a confined flow, which incorporates both shear and extensional stresses. A boundary layer close to the calving front is identified, where both extensional and shear stresses control the dynamics. We test these idealized models against fluid-mechanical laboratory experiments, designed to simulate the flow of an ice shelf in a narrow channel. From these experiments velocity fields and altimetry for the ice-shelf are collected, allowing for comparison with the theoretical models and geophysical data.

  15. Elastic response of a grounded ice sheet coupled to a floating ice shelf.

    PubMed

    Sayag, Roiy; Worster, M Grae

    2011-09-01

    An ice sheet that spreads into an ocean is forced to bend owing to its buoyancy and detaches from the bedrock to form a floating ice shelf. The location of the transition between the grounded sheet and the floating shelf, defined as the grounding line, behaves as a free boundary. We develop a model of an elastic grounded sheet resting on a deformable elastic bed and coupled to an elastic floating shelf. We find that the grounding-line position is determined by the geometry of the bed and the bending-buoyancy length scale of the system. These two contributions depend on the reaction modulus of the bed in opposite ways. We show that the structure of the floating shelf depends on the bending-buoyancy length scale only, allowing us to calculate the bending stiffness of the elastic sheet independently of the properties of the bed. Relations between the structure of the floating shelf and the grounding-line position are also developed. Our theoretical predictions agree with laboratory experiments made using thick elastic sheets and a dense salt solution. Our findings may provide new insights into the dynamics near grounding lines, as well as methods to infer the bending stiffness of ice sheets and the grounding-line position from satellite altimetery that can be applied to elastic sheets in general. PMID:22060460

  16. Volume and area changes of the Milne Ice Shelf, Ellesmere Island, Nunavut, Canada, since 1950

    NASA Astrophysics Data System (ADS)

    Mortimer, Colleen A.; Copland, Luke; Mueller, Derek R.

    2012-12-01

    Ground penetrating radar (GPR) surveys of the 205 km2Milne Ice Shelf conducted in 2008 and 2009 are compared with radio echo sounding (RES) data from 1981 to provide the first direct measurements of thinning for any northern Ellesmere Island ice shelf. Our results show an average thinning for the ice shelf as a whole of 8.1 ± 2.8 m, with a maximum of >30 m, over this 28-year period. Direct-line comparisons along a 7.5 km transect near the front of ice shelf indicate a mean thinning of 2.63 ± 2.47 m over the same period. Reductions in areal extent (29%, 82 ± 8.4 km2: 1950-2009) and volume (13%, 1.5 ± 0.73 km3 water equivalent (w.e.): 1981-2008/2009) indicate that the Milne Ice Shelf has been in a state of negative mass balance for at least the last 59 years. A comparison of mean annual specific mass balance measurements with the nearby Ward Hunt Ice Shelf (WHIS) suggests that basal melt is a key contributor to Milne Ice Shelf thinning. Glacier inflow to the ice shelf has also reduced markedly over the past 28 years. The transition of ice shelf ice to lake ice was the most important source of mass loss. A 28.5 km2 epishelf lake now exists on the landward side of the ice shelf. Given these recent changes, disintegration of the Milne Ice Shelf will almost certainly continue in the future.

  17. Feedbacks between ice and ocean dynamics at the West Antarctic Filchner-Ronne Ice Shelf in future global warming scenarios

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Timmermann, Ralph

    2016-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the complex interactions between ocean and ice dynamics at the Filchner-Ronne Ice Shelf. We focus on the impact of a changing ice shelf cavity on ocean dynamics as well as the feedback of the resulting sub-shelf melting rates on the ice shelf geometry and implications for the dynamics of the adjacent marine-based Westantarctic Ice Sheet. Our simulations reveal the high sensitivity of grounding line migration to ice-ocean interactions within the Filchner-Ronne Ice Shelf and emphasize the importance of coupled model studies for realistic assessments of the Antarctic mass balance in future global warming scenarios.

  18. Change Detection of the Amery Ice Shelf Front (2004-2012) Using ENVISAT ASAR Data

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Cheng, X.; Liu, Y.

    2012-12-01

    Antarctic ice shelves are prominent constituent parts of ice sheets due to their ice-ocean-atmosphere interface and their vulnerability to regional and global changes in atmospheric and oceanic temperatures. The majority of mass loss from the Antarctic ice sheet occurs at the ice shelves via either iceberg calving or basal melting. To fully understand the complex process of ice shelf mass balance, it is necessary to monitor the ice shelf changes over an extended period of time. The Amery Ice Shelf is the largest ice shelf in East Antarctica. Understanding the changes of the Amery Ice Shelf front are crucial for making accurate predictions about the response of ice sheets to global climate change. Here we use the time series of ENVISAT images from 2004 to 2012 and the ice flow lines in Antarctic to monitor the changes of 11 test areas in the Amery Ice Shelf front (Fig. 1). Each image was linearly stretched to enhance the edges and then filtered according to an efficient image denoising scheme. We then extracted the coastlines semi-automatically by combining an artificial drawing method with an improved watershed algorithm. The 11 test areas are chosen according to the ice flow lines of the Antarctic. The results show that the Amery Ice Shelf has been expanding obviously. The rate in the middle of the Amery Ice Shelf front is higher than that on both sides of the front. The highest average propagation rate is 3.36 m/day and the lowest rate is 1.65 m/day in the past 9 years. The rates of 11 test areas during 2009 and 2010 are generally lower than those in other periods. It indicates that the propagation rate would be influenced by the climate environment. Additionally, the short-term environmental forces, such as calving events, tidal bending, ocean swell and so on would influence the ice shelf propagation. In conclusion, the rapid propagation of the Amery Ice Shelf has confirmed the fact that the East Antarctic has been expanding. Once some large iceberg calving

  19. Application of ERS-ENVISAT Tandem data for sea ice, ice shelf and glacier in Amery Ice Shelf region, east Antarctica

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao; Cheng, Cheng; Qi, Xin

    2013-04-01

    ERS - ENVISAT Tandem (EET) data are SAR data pairs acquired by the ERS-2 and ENVISAT ASAR instruments from approximately the same orbits within 28 minutes. During the dedicated campaigns in 2010/2011 ESA specifically acquired EET pairs with baselines suited for cross-interferometry (CInSAR) in east Antarctica. Amery Ice Shelf is among the largest ice shelves in Antarctica. Five continuous frames of EET data over this ice shelf are collected for study. At perpendicular baselines of about 2km the frequency difference and baseline effects on the reflectivity spectrum compensate and so coherent interferograms can be obtained. Shelf ice has usually a relatively flat surface and so EET interferometry with about 2km perpendicular baselines is most suitable for the high-definition surface topography mapping and grounding line extraction. Comparing to existing DEMs (Gtopo30 DEM, RAMP DEM, ASTER GDEM and GLAS DEM) in this region, EET DEM reveals the most detailed shelf surface features and proves to be the best. Centimeter scale motion at the shelf front region occurring during the 28 minute interval results in deformation phase, which should be removed for ice-surface topography mapping and while useful for those flat sea ice and shelf front regions to derive motions. Motion at this rate is often observed for sea and shelf ice and is of interest to understand dynamics and stress occurring. Over those more open sea where sea ice moves at much higher rates and even rotation occurs in the 28-minutes, EET coherence is typically lost but offset tracking may be used to retrieve motion fields. The sensitivity of EET cross-interferometry is in the order of 1/20 of a SAR image pixel. So in azimuth direction this translates to about 20cm per 28 minutes interval and in cross-track direction to about 1m per 28 minutes interval. On the other hand maximum rates which can reliably be retrieved correspond to offsets of several pixels between the two acquisitions corresponding to rates up

  20. Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds

    PubMed Central

    Archer, Stephen D. J.; McDonald, Ian R.; Herbold, Craig W.; Lee, Charles K.; Cary, Craig S.

    2015-01-01

    The numerous perennial meltwater ponds distributed throughout Antarctica represent diverse and productive ecosystems central to the ecological functioning of the surrounding ultra oligotrophic environment. The dominant taxa in the pond benthic communities have been well described however, little is known regarding their regional dispersal and local drivers to community structure. The benthic microbial communities of 12 meltwater ponds in the McMurdo Sound of Antarctica were investigated to examine variation between pond microbial communities and their biogeography. Geochemically comparable but geomorphologically distinct ponds were selected from Bratina Island (ice shelf) and Miers Valley (terrestrial) (<40 km between study sites), and community structure within ponds was compared using DNA fingerprinting and pyrosequencing of 16S rRNA gene amplicons. More than 85% of total sequence reads were shared between pooled benthic communities at different locations (OTU0.05), which in combination with favorable prevailing winds suggests aeolian regional distribution. Consistent with previous findings Proteobacteria and Bacteroidetes were the dominant phyla representing over 50% of total sequences; however, a large number of other phyla (21) were also detected in this ecosystem. Although dominant Bacteria were ubiquitous between ponds, site and local selection resulted in heterogeneous community structures and with more than 45% of diversity being pond specific. Potassium was identified as the most significant contributing factor to the cosmopolitan community structure and aluminum to the location unique community based on a BEST analysis (Spearman's correlation coefficient of 0.632 and 0.806, respectively). These results indicate that the microbial communities in meltwater ponds are easily dispersed regionally and that the local geochemical environment drives the ponds community structure. PMID:26074890

  1. Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds.

    PubMed

    Archer, Stephen D J; McDonald, Ian R; Herbold, Craig W; Lee, Charles K; Cary, Craig S

    2015-01-01

    The numerous perennial meltwater ponds distributed throughout Antarctica represent diverse and productive ecosystems central to the ecological functioning of the surrounding ultra oligotrophic environment. The dominant taxa in the pond benthic communities have been well described however, little is known regarding their regional dispersal and local drivers to community structure. The benthic microbial communities of 12 meltwater ponds in the McMurdo Sound of Antarctica were investigated to examine variation between pond microbial communities and their biogeography. Geochemically comparable but geomorphologically distinct ponds were selected from Bratina Island (ice shelf) and Miers Valley (terrestrial) (<40 km between study sites), and community structure within ponds was compared using DNA fingerprinting and pyrosequencing of 16S rRNA gene amplicons. More than 85% of total sequence reads were shared between pooled benthic communities at different locations (OTU0.05), which in combination with favorable prevailing winds suggests aeolian regional distribution. Consistent with previous findings Proteobacteria and Bacteroidetes were the dominant phyla representing over 50% of total sequences; however, a large number of other phyla (21) were also detected in this ecosystem. Although dominant Bacteria were ubiquitous between ponds, site and local selection resulted in heterogeneous community structures and with more than 45% of diversity being pond specific. Potassium was identified as the most significant contributing factor to the cosmopolitan community structure and aluminum to the location unique community based on a BEST analysis (Spearman's correlation coefficient of 0.632 and 0.806, respectively). These results indicate that the microbial communities in meltwater ponds are easily dispersed regionally and that the local geochemical environment drives the ponds community structure. PMID:26074890

  2. Draft Genome Sequence of Paenisporosarcina sp. Strain TG-14, a Psychrophilic Bacterium Isolated from Sediment-Laden Stratified Basal Ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica

    PubMed Central

    Koh, Hye Yeon; Lee, Sung Gu; Lee, Jun Hyuck; Doyle, Shawn; Christner, Brent C.

    2012-01-01

    The psychrophilic bacterium Paenisporosarcina sp. TG-14 was isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. Here we report the draft genome sequence of this strain, which may provide useful information on the cold adaptation mechanism in extremely variable environments. PMID:23144403

  3. Strong thermodynamic coupling between sub-ice-shelf melting and sea ice in a high-resolution global sea-ice-ocean isopycnal model

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2015-12-01

    Sub-ice-shelf melting(freezing) of the Antarctic ice shelves acts as a source(sink) of freshwater, therefore, affects ocean water properties and circulation. In its turn, sub-ice-shelf melting/freezing is controlled by the ocean water properties that reach the sub-ice-shelf cavities. The properties of these water masses are determined by heat and fresh-water exchange with sea ice and atmosphere. Simulations of a high-resolution (1/8 deg) global sea-ice-ocean isopycnal model capable to resolve the ocean circulation in sub-ice-shelf cavities of Antarctic ice shelves and account for the thermodynamic interaction of the circulation with ice shelves show that melting/freezing rates have a strong seasonal cycle with highest melting rates observed in the Austral Fall. On the continental shelf, subsurface ocean temperatures (100-300 m) have a similar seasonal cycle which is lagged with respect to the surface. Shelf temperatures peak in the summertime, followed by rapid cooling towards the freezing point as seasonal ice cover increases. The lagged warming in the subsurface is attributable to reduced heat loss to the atmosphere in the presence of seasonal sea ice. This suggests that the seasonal cycle in melt rates is controlled by the phasing of subsurface temperatures on the continental shelf, which is in turn dominated by sea ice. The outflowing fresh, cold and light meltwater formed in sub-ice-shelf cavities remains in the mixed layer and promotes formation of sea ice and its longer persistence into the Austral Summer. These processes suggest the presence of strong mutual feedbacks between sub-ice-shelf melting and sea ice formation around Antarctic ice shelves.

  4. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch.

    PubMed

    Domack, Eugene; Duran, Diana; Leventer, Amy; Ishman, Scott; Doane, Sarah; McCallum, Scott; Amblas, David; Ring, Jim; Gilbert, Robert; Prentice, Michael

    2005-08-01

    The stability of the Antarctic ice shelves in a warming climate has long been discussed, and the recent collapse of a significant part, over 12,500 km2 in area, of the Larsen ice shelf off the Antarctic Peninsula has led to a refocus toward the implications of ice shelf decay for the stability of Antarctica's grounded ice. Some smaller Antarctic ice shelves have undergone periodic growth and decay over the past 11,000 yr (refs 7-11), but these ice shelves are at the climatic limit of ice shelf viability and are therefore expected to respond rapidly to natural climate variability at century to millennial scales. Here we use records of diatoms, detrital material and geochemical parameters from six marine sediment cores in the vicinity of the Larsen ice shelf to demonstrate that the recent collapse of the Larsen B ice shelf is unprecedented during the Holocene. We infer from our oxygen isotope measurements in planktonic foraminifera that the Larsen B ice shelf has been thinning throughout the Holocene, and we suggest that the recent prolonged period of warming in the Antarctic Peninsula region, in combination with the long-term thinning, has led to collapse of the ice shelf. PMID:16079842

  5. Decadal variability of rift propagation on the Amery Ice Shelf

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Bassis, J. N.; Czerwinski, R. J.; Fricker, H. A.

    2012-12-01

    The Amery Ice Shelf, East Antarctica, features five prominent rifts within 30 km of its calving front. We produce a time series of changes in rift length for the period 2002-2012 using available MODIS and MISR data. We find that all five are actively propagating, but with a complex spatio-temporal pattern of variability in which some rifts propagate in tandem while others appear to tradeoff. Temporal variability in rift propagation is dominated by large episodic bursts. These bursts, analogous to the much smaller propagation events detected from field observations, are not synchronous across all five rifts nor do the timing of propagation events exhibit any correlation with observed proxies for environmental forcing (e.g., atmospheric temperatures, sea-ice extent). However, we find that several propagation events take place after the predicted arrival from tsunamis originating in the Indian Ocean. This is especially apparent following the December 2004 Sumatra earthquake and three other earthquakes in the Sumatra/W. Indonesia area. This connection is bolstered by the observation of similar effects at other ice shelves, e.g., a large iceberg calving after the sudden propagation of two front-initiated rifts at Larsen C after the December 2004 tsunami. In comparing rift propagation at Amery with 61 rifts on 10 other ice shelves, we find that with the exception of the occasional tsunami triggered propagation event, the extreme variability on the Amery Ice Shelf is highly atypical. We postulate that the pronounced activity on the Amery is due to the fact that it last had a large calving event in 1963/64, and is approaching its pre-calved position. This suggests that the AIS is poised for another major calving event and the highly dynamic propagation we observe is the precursor to such an event. That multiple rifts exist and propagate due to structural heterogeneity and shelf geometry also makes these observations relevant to the highly fractured shells of the icy moons

  6. Brief Communication: Newly developing rift in Larsen C Ice Shelf presents significant risk to stability

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Luckman, A. J.; Cook, A.; Bevan, S.; Kulessa, B.; Hubbard, B.; Holland, P. R.

    2015-06-01

    An established rift in the Larsen C Ice Shelf, formerly constrained by a suture zone containing marine ice, grew rapidly during 2014 and is likely in the near future to generate the largest calving event since the 1980s and result in a new minimum area for the ice shelf. Here we investigate the recent development of the rift, quantify the projected calving event and, using a numerical model, assess its likely impact on ice shelf stability. We find that the ice front is at risk of becoming unstable when the anticipated calving event occurs.

  7. recent changes the in flow of the Ross Ice Shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Hulbe, C. L.; Scambos, T. A.; Bohlander, J. A.; Lee, C.

    2012-12-01

    Comparison of surface velocities measured during the Ross Ice Shelf Geophysical and Glaciological Survey (RIGGS, 1973 to 1978) and velocities measured via feature tracking between two Moderate-resolution Imaging Spectroradiometer (MODIS) mosaics (compiled from 2003-4 and 2008-9 images) reveals widespread slowing and minor areas of acceleration in the Ross Ice Shelf (RIS) over the \\~30 year interval. The largest changes (-13 m/a/a) occur near the Whillans and Mercer Ice Streams grounding line in the southernmost part of the ice shelf. Speed has increased over the interval (up to 5 m/a/a) between the MacAyeal Ice Stream grounding line and the shelf front, and along the eastern part of the shelf front. Here, a well-tested model of the ice shelf is used to discern between longer and shorter time scale transients in ice shelf flow. Changes in ice thickness computed using ICESat laser altimetry are used to test various model outcomes. The observed transients represent a combination of ongoing response to ice stream discharge variations and resulting shelf thickness changes over the past millennium and while faint impressions of past events are evident, the modern signal is dominated by shorter time scale events, including the stagnation of Kamb Ice Stream about 160 years ago, recent changes in basal drag on the Whillans Ice Stream ice plain and, apparently, iceberg calving. Details in embayment geometry, for example the shallow sea floor below Crary Ice Rise, modulate the spatial pattern of ice shelf response to flow perturbations.

  8. Widespread collapse of the Ross Ice Shelf during the late Holocene.

    PubMed

    Yokoyama, Yusuke; Anderson, John B; Yamane, Masako; Simkins, Lauren M; Miyairi, Yosuke; Yamazaki, Takahiro; Koizumi, Mamito; Suga, Hisami; Kusahara, Kazuya; Prothro, Lindsay; Hasumi, Hiroyasu; Southon, John R; Ohkouchi, Naohiko

    2016-03-01

    The stability of modern ice shelves is threatened by atmospheric and oceanic warming. The geologic record of formerly glaciated continental shelves provides a window into the past of how ice shelves responded to a warming climate. Fields of deep (-560 m), linear iceberg furrows on the outer, western Ross Sea continental shelf record an early post-Last Glacial Maximum episode of ice-shelf collapse that was followed by continuous retreat of the grounding line for ∼200 km. Runaway grounding line conditions culminated once the ice became pinned on shallow banks in the western Ross Sea. This early episode of ice-shelf collapse is not observed in the eastern Ross Sea, where more episodic grounding line retreat took place. More widespread (∼280,000 km(2)) retreat of the ancestral Ross Ice Shelf occurred during the late Holocene. This event is recorded in sediment cores by a shift from terrigenous glacimarine mud to diatomaceous open-marine sediment as well as an increase in radiogenic beryllium ((10)Be) concentrations. The timing of ice-shelf breakup is constrained by compound specific radiocarbon ages, the first application of this technique systematically applied to Antarctic marine sediments. Breakup initiated around 5 ka, with the ice shelf reaching its current configuration ∼1.5 ka. In the eastern Ross Sea, the ice shelf retreated up to 100 km in about a thousand years. Three-dimensional thermodynamic ice-shelf/ocean modeling results and comparison with ice-core records indicate that ice-shelf breakup resulted from combined atmospheric warming and warm ocean currents impinging onto the continental shelf. PMID:26884201

  9. Widespread collapse of the Ross Ice Shelf during the late Holocene

    PubMed Central

    Yokoyama, Yusuke; Anderson, John B.; Yamane, Masako; Simkins, Lauren M.; Miyairi, Yosuke; Yamazaki, Takahiro; Koizumi, Mamito; Suga, Hisami; Kusahara, Kazuya; Prothro, Lindsay; Hasumi, Hiroyasu; Southon, John R.; Ohkouchi, Naohiko

    2016-01-01

    The stability of modern ice shelves is threatened by atmospheric and oceanic warming. The geologic record of formerly glaciated continental shelves provides a window into the past of how ice shelves responded to a warming climate. Fields of deep (−560 m), linear iceberg furrows on the outer, western Ross Sea continental shelf record an early post-Last Glacial Maximum episode of ice-shelf collapse that was followed by continuous retreat of the grounding line for ∼200 km. Runaway grounding line conditions culminated once the ice became pinned on shallow banks in the western Ross Sea. This early episode of ice-shelf collapse is not observed in the eastern Ross Sea, where more episodic grounding line retreat took place. More widespread (∼280,000 km2) retreat of the ancestral Ross Ice Shelf occurred during the late Holocene. This event is recorded in sediment cores by a shift from terrigenous glacimarine mud to diatomaceous open-marine sediment as well as an increase in radiogenic beryllium (10Be) concentrations. The timing of ice-shelf breakup is constrained by compound specific radiocarbon ages, the first application of this technique systematically applied to Antarctic marine sediments. Breakup initiated around 5 ka, with the ice shelf reaching its current configuration ∼1.5 ka. In the eastern Ross Sea, the ice shelf retreated up to 100 km in about a thousand years. Three-dimensional thermodynamic ice-shelf/ocean modeling results and comparison with ice-core records indicate that ice-shelf breakup resulted from combined atmospheric warming and warm ocean currents impinging onto the continental shelf. PMID:26884201

  10. Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica.

    PubMed

    Rebesco, M; Domack, E; Zgur, F; Lavoie, C; Leventer, A; Brachfeld, S; Willmott, V; Halverson, G; Truffer, M; Scambos, T; Smith, J; Pettit, E

    2014-09-12

    Grounding zones, where ice sheets transition between resting on bedrock to full floatation, help regulate ice flow. Exposure of the sea floor by the 2002 Larsen-B Ice Shelf collapse allowed detailed morphologic mapping and sampling of the embayment sea floor. Marine geophysical data collected in 2006 reveal a large, arcuate, complex grounding zone sediment system at the front of Crane Fjord. Radiocarbon-constrained chronologies from marine sediment cores indicate loss of ice contact with the bed at this site about 12,000 years ago. Previous studies and morphologic mapping of the fjord suggest that the Crane Glacier grounding zone was well within the fjord before 2002 and did not retreat further until after the ice shelf collapse. This implies that the 2002 Larsen-B Ice Shelf collapse likely was a response to surface warming rather than to grounding zone instability, strengthening the idea that surface processes controlled the disintegration of the Larsen Ice Shelf. PMID:25214629

  11. Numerical modelling and data assimilation of the Larsen B ice shelf, Antarctic Peninsula.

    PubMed

    Vieli, Andreas; Payne, Antony J; Du, Zhijun; Shepherd, Andrew

    2006-07-15

    In this study, the flow and rheology of pre-collapse Larsen B ice shelf are investigated by using a combination of flow modelling and data assimilation. Observed shelf velocities from satellite interferometry are used to constrain an ice shelf model by using a data assimilation technique based on the control method. In particular, the ice rheology field and the velocities at the inland shelf boundary are simultaneously optimized to get a modelled flow and stress field that is consistent with the observed flow. The application to the Larsen B ice shelf shows that a strong weakening of the ice in the shear zones, mostly along the margins, is necessary to fit the observed shelf flow. This pattern of bands with weak ice is a very robust feature of the inversion, whereas the ice rheology within the main shelf body is found to be not well constrained. This suggests that these weak zones play a major role in the control of the flow of the Larsen B ice shelf and may be the key to understanding the observed pre-collapse thinning and acceleration of Larsen B. Regarding the sensitivity of the stress field to rheology, the consistency of the model with the observed flow seems crucial for any further analysis such as the application of fracture mechanics or perturbation model experiments. PMID:16782611

  12. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf

    NASA Astrophysics Data System (ADS)

    Borstad, C. P.; Rignot, E.; Mouginot, J.; Schodlok, M. P.

    2013-12-01

    Around the perimeter of Antarctica, much of the ice sheet discharges to the ocean through floating ice shelves. The buttressing provided by ice shelves is critical for modulating the flux of ice into the ocean, and the presently observed thinning of ice shelves is believed to be reducing their buttressing capacity and contributing to the acceleration and thinning of the grounded ice sheet. However, relatively little attention has been paid to the role that fractures play in the ability of ice shelves to sustain and transmit buttressing stresses. Here, we present a new framework for quantifying the role that fractures play in the creep deformation and buttressing capacity of ice shelves. We apply principles of continuum damage mechanics to derive a new analytical relation for the creep of an ice shelf that accounts for the softening influence of fractures on longitudinal deformation using a state damage variable. We use this new analytical relation, combined with a temperature calculation for the ice, to partition an inverse method solution for ice shelf rigidity into independent solutions for softening damage and stabilizing backstress. Using this new approach, field and remote sensing data can be utilized to monitor the structural integrity of ice shelves, their ability to buttress the flow of ice at the grounding line, and thus their indirect contribution to ice sheet mass balance and global sea level. We apply this technique to the Larsen C ice shelf using remote sensing and Operation IceBridge data, finding damage in areas with known crevasses and rifts. Backstress is highest near the grounding line and upstream of ice rises, in agreement with patterns observed on other ice shelves. The ice in contact with the Bawden ice rise is weakened by fractures, and additional damage or thinning in this area could diminish the backstress transmitted upstream. We model the consequences for the ice shelf if it loses contact with this small ice rise, finding that flow speeds

  13. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to Larsen C ice shelf

    NASA Astrophysics Data System (ADS)

    Borstad, C. P.; Rignot, E.; Mouginot, J.; Schodlok, M. P.

    2013-07-01

    Around the perimeter of Antarctica, much of the ice sheet discharges to the ocean through floating ice shelves. The buttressing provided by ice shelves is critical for modulating the flux of ice into the ocean, and the presently observed thinning of ice shelves is believed to be reducing their buttressing capacity and contributing to the acceleration and thinning of the grounded ice sheet. However, relatively little attention has been paid to the role that fractures play in the flow and stability of ice shelves and their capacity to buttress the flow of grounded ice. Here, we develop an analytical framework for describing the role that fractures play in the creep deformation and buttressing capacity of ice shelves. We apply principles of continuum damage mechanics to derive a new analytical relation for the creep of an ice shelf as a function of ice thickness, temperature, material properties, resistive backstress and damage. By combining this analytical theory with an inverse method solution for the spatial rheology of an ice shelf, both backstress and damage can be calculated. We demonstrate the applicability of this new theory using satellite remote sensing and Operation IceBridge data for the Larsen C ice shelf, finding damage associated with known crevasses and rifts. We find that increasing thickness of mélange between rift flanks correlates with decreasing damage, with some rifts deforming coherently with the ice shelf as if completely healed. We quantify the stabilizing backstress caused by ice rises and lateral confinement, finding high backstress associated with two ice rises that likely stabilize the ice front in its current configuration. Though overall the ice shelf appears stable at present, the ice in contact with the Bawden ice rise is weakened by fractures, and additional damage or thinning in this area could portend significant change for the shelf. Using this new approach, field and remote sensing data can be utilized to monitor the structural

  14. The unfolding instability of the remnant Larsen B Ice Shelf and its tributary glaciers

    NASA Astrophysics Data System (ADS)

    Khazendar, A.; Borstad, C. P.; Scheuchl, B.; Rignot, E. J.; Seroussi, H.

    2014-12-01

    The disintegration of the northern and central parts of the Larsen B Ice Shelf in 2002 demonstrated the strong interaction between ice shelves and their tributary glaciers. The surviving southern part of the ice shelf and its glaciers have hitherto received less attention, based on the assumption that the remnant ice shelf continued to provide the glaciers with sufficient buttressing. Our findings here contradict this view, revealing significant changes since 2002 or earlier from IceBridge altimetry measurements and InSAR-derived flow speeds. The surfaces of Leppard and Flask glaciers directly upstream of their grounding lines lowered persistently by 15 to 20 m in the period 2002-2011. The thinning appears to be dynamic as the flow of both glaciers and the remnant ice shelf accelerated in the same period. Flask in particular started accelerating as early as 2000 almost doubling its flow speed by 2012. These changes are associated with a reduction in the buttressing afforded by the remnant ice shelf and an increase in its fracture as shown by our numerical modeling. One large rift in particular, only 12 km downstream of the grounding line, is revealed by the observations and modeling to be rapidly extending across the ice shelf, defining the likely front of the next large calving event. The increased fracture and continued flow acceleration of the remnant Larsen B Ice Shelf presage its approaching demise.

  15. Nitrate analysis of snow and ice core samples collected in the vicinity of a waste detonation event, McMurdo Station, Antarctica

    SciTech Connect

    White, G.J.; Lugar, R.M.; Crockett, A.B.

    1994-07-01

    On December 30, 1991, a small quantity of hazardous materials was detonated at a site near McMurdo Station, Antarctica. The materials involved in the detonation represented highly reactive or explosive wastes that could not be transported safely for disposal in the United States. Detonation was therefore considered the safest and most effective means for disposing these hazardous materials. One concern regarding the detonation of these substances was that the process could generate or distribute measurable quantities of contaminants to the area surrounding the detonation site. Nitrate was selected as a tracer to document the distribution of contaminants from the detonation. Snow and ice cores were collected about 4 months after the event. These cores were analyzed for nitrate concentrations in May 1993, and a map was generated to show the extent of nitrate contamination. This report describes the collection of these samples and summarizes the analytical results.

  16. New insights into the origin and evolution of Lake Vida, McMurdo Dry Valleys, Antarctica — A noble gas study in ice and brines

    NASA Astrophysics Data System (ADS)

    Malone, Jessica L.; Castro, M. Clara; Hall, Chris M.; Doran, Peter T.; Kenig, Fabien; McKay, Chris P.

    2010-01-01

    Unlike other lakes in the McMurdo Dry Valleys, Antarctica, Lake Vida has a thick (~ 19 m) ice cover sealing a liquid brine body of unusually high salinity (~ 245 g/L) from the atmosphere. To constrain the conditions under which the atypical Lake Vida ice cover formed and evolved, 19 ice samples were collected down to a depth of ~ 14 m, together with three brine samples trapped in the ice at ~ 16 m for analysis of helium, neon, argon, krypton, and xenon concentrations. The broad pattern of noble gas concentrations for Lake Vida samples is fundamentally different from that of air saturated water (ASW) at 0 °C and an elevation of 340 m for salinities of 0 (ice) and 245 g/L (brine). Overall, ice samples are enriched in He and depleted in Ne with saturation relative to ASW averages of 1.38 and 0.82, respectively, and strongly depleted in Ar, Kr, and Xe with relative saturations of 0.10, 0.06, and 0.05, respectively. By contrast, brine samples are generally depleted in He and Ne (relative saturation averages of 0.33 and 0.27, respectively) but enriched in Ar, Kr, and Xe, with relative saturation averages of 1.45, 3.15, and 8.86, respectively. A three-phase freezing partitioning model generating brine, ice and bubble concentrations for all stable noble gases was tested and compared with our data. Measured brine values are best reproduced for a salinity value of 175 g/L, a pressure of 1.1 atm, and a bubble volume of 20 cm 3 kg -1. Sensitivity tests for ice + bubble samples show an ideal fit for bubble volumes of ~ 1-2 cm 3 kg -1. Our results show that the conditions under which ice and brine formed and evolved at Lake Vida are significantly different from other ice-covered lakes in the area. Our brine data suggest that Lake Vida may be transitioning from a wet to a dry-based lake, while the ice + bubble data suggest at least partial re-equilibration of residual liquid with the atmosphere as ice forms at the top of Lake Vida ice cover.

  17. The relevance of buttressing for Filchner-Ronne and Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Reese, Ronja; Gudmundsson, Hilmar; Levermann, Anders; Winkelmann, Ricarda

    2016-04-01

    Sub-shelf melting is an important component of Antarctica's mass budget. Although thinning of ice shelves does not directly contribute to sea-level rise, it may have a significant indirect impact through the potential of ice shelves to buttress their adjacent ice sheet. This is clearly seen in recent observations, e.g. in the Amundsen region (Pritchard et al., 2012) or at the Southern Antarctic Peninsula (Wouters et al, 2015) where increased ice loss of the adjacent upstream drainage basins is attributed to enhanced sub-shelf melting. In the extreme case, the complete disintegration of an ice shelf, e.g. during the calving events of Larsen A and B in 1995 and 2002, respectively, the adjacent ice streams subsequently accelerated significantly (Scambos et al., 2014). Here, we investigate the importance of buttressing using the finite-element, shallow-stream approximation numerical model Úa. We derive transfer functions for an idealized setup (Gudmundsson et al. 2012) and the Filchner-Ronne and Ross Ice Shelf. They allow for the computation of instantaneous changes in velocities to thickness perturbation patterns. Based on the transfer functions, we calculate the sensitivity of flux across the grounding line to regional varying melting patterns for the idealized setup and for Filchner-Ronne and Ross Ice Shelf. We find that the immediate response of velocities in the ice shelf-ice sheet system to changes in sub-shelf melting can be understood as the interaction of two effects: On the one hand, the spreading rate is a function of local ice thickness, indicating that a thinning of the ice shelf reduces velocities. On the other hand, ice shelf thinning weakens its ability to buttress, and thus enhances velocities. These two processes compete, leading to a complex pattern of velocity changes within the ice shelf. We find - both in the idealized setup and for Ross and Filchner-Ronne Ice Shelves - that the reduction in buttressing is dominating the velocity changes in the

  18. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Technical Reports Server (NTRS)

    Jacobs, S. S.; Comiso, J. C.

    1989-01-01

    The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.

  19. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf

    NASA Astrophysics Data System (ADS)

    Borstad, Chris; Khazendar, Ala; Scheuchl, Bernd; Morlighem, Mathieu; Larour, Eric; Rignot, Eric

    2016-03-01

    The increasing contribution of the Antarctic Ice Sheet to sea level rise is linked to reductions in ice shelf buttressing, driven in large part by basal melting of ice shelves. These ocean-driven buttressing losses are being compounded as ice shelves weaken and fracture. To date, model projections of ice sheet evolution have not accounted for weakening ice shelves. Here we present the first constitutive framework for ice deformation that explicitly includes mechanical weakening, based on observations of the progressive degradation of the remnant Larsen B Ice Shelf from 2000 to 2015. We implement this framework in an ice sheet model and are able to reproduce most of the observed weakening of the ice shelf. In addition to predicting ice shelf weakening and reduced buttressing, this new framework opens the door for improved understanding and predictions of iceberg calving, meltwater routing and hydrofracture, and ice shelf collapse.

  20. Firn structure of Larsen C Ice Shelf, Antarctic Peninsula, from in-situ geophysical surveys

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Brisbourne, A.; Kuipers Munneke, P.; Bevan, S. L.; Luckman, A. J.; Hubbard, B. P.; Ashmore, D.; Holland, P.; Jansen, D.; King, E. C.; O'Leary, M.; McGrath, D.

    2015-12-01

    Rising surface temperatures have been causing firn layers on Antarctic Peninsula ice shelves to compact, a process that is strongly implicated in ice shelf disintegration. Firn compaction is expected to warm the ice column and given sufficiently wet and compacted firn layers, to allow meltwater to penetrate into surface crevasses and thus enhance the potential for hydrofracture. On Larsen C Ice Shelf a compacting firn layer has previously been inferred from airborne radar and satellite data, with strongly reduced air contents in Larsen C's north and north-west. The hydrological processes governing firn compaction, and the detailed firn structures they produce, have so far remained uncertain however. Using integrated seismic refraction, MASW (Multi-Channel Analysis of Surface Waves), seismoelectric and ground-penetrating radar (GPR) data, we reveal vertical and horizontal changes in firn structure across Larsen C Ice Shelf. Particular attention is paid to the spatial prevalence of refrozen meltwaters within firn, such as the massive subsurface ice layer discovered recently by the NERC-funded MIDAS project in Cabinet Inlet in Larsen C's extreme northwest. Such ice layers or lenses are particularly dramatic manifestations of increased ice shelf densities and temperatures, and contrast sharply with the relatively uncompacted firn layers present in the ice shelf's southeast. We consider our observations in the context of a one-dimensional firn model for Larsen C Ice Shelf that includes melt percolation and refreezing, and discuss temporal changes in firn layer structures due to surface melt and ponding.

  1. Modern sedimentation, circulation and life beneath the Amery Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Post, A. L.; Galton-Fenzi, B. K.; Riddle, M. J.; Herraiz-Borreguero, L.; O'Brien, P. E.; Hemer, M. A.; McMinn, A.; Rasch, D.; Craven, M.

    2014-02-01

    The surface sedimentary record from six cores collected from beneath the Amery Ice Shelf, East Antarctica, provides a unique view of the sedimentary and oceanographic processes in this sub-ice shelf setting. The composition and age of the surface sediments indicate spatial variations in ice shelf cavity-ocean interaction, which are consistent with patterns of ocean inflow and outflow modelled and observed beneath the ice shelf. Sediments within 100 km of the ice shelf front (site AM01) show the greatest open ocean influence with a young surface age and the highest total diatom abundance, compared to older ages and lower diatom abundances at sites deeper in the cavity (AM03-AM06). The variable marine influence between sites determines the nature of benthic communities. Seabed imagery indicates the existence of sessile suspension feeders in areas of strong marine inflow (site AM01b), while grazers, deposit feeders and a few suspension feeders occur at sites more distal from the shelf calving front where the food supply is lower (sites AM03 and AM04). Understanding the sedimentary and oceanographic processes within the sub-ice shelf environment allows better constraint of interpretations of down core sediment records, an improved understanding of the nature of biological communities in sub-ice shelf environments, and a baseline for determining the sensitivity of the system to any future changes in ocean dynamics.

  2. Numerical and theoretical treatment of grounding line movement and ice shelf buttressing in marine ice sheets

    NASA Astrophysics Data System (ADS)

    Goldberg, Daniel N.

    Understanding the dynamics of marine ice sheets is integral to studying the evolution of the Antarctic Ice Sheet in both the short and long terms. An important component of the dynamics, grounding line migration, has proved difficult to represent in numerical models, with undesirable behavior such as sensitivity to grid resolution having been observed. Most successful attempts at representing grounding line migration have made use of techniques that are only readily applicable to flowline models, such as Arbitrary Lagrangian-Eulerian schemes. It remains unclear whether a purely Eulerian flowline model can reproduce the actual solution of the governing differential equations, as well as what the theoretical properties of that solution are. In addition, in order to capture the stress transmission involved in another important dynamic component, the buttressing of a marine ice sheet by its ice shelf, the transverse flow direction must also be resolved. Here a numerical model is developed that solves the time-dependent Shelfy-Stream equations [MacAyeal, 1989] and makes use of mesh adaption techniques to overcome the difficulties typically associated with the numerics of grounding line migration. In the special case of a flowline model, it is shown that the Shelfy-Stream equations have a unique solution provided constraints on the initial condition and the forcing are satisfied, and the convergence properties of the model are examined. Model output is also compared with a recent benchmark for flowline models. It is shown that our model yields an accurate solution while using far less resources than would be required without mesh adaption. It is also shown that the mesh adapting techniques extend to two horizontal dimensions. Experiments are carried out to determine how both ice shelf buttressing and ice rises affect the marine instability predicted for an ice sheet on a foredeepened bed. It is found that buttressing is not always sufficient to stabilize such a sheet but

  3. Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic.

    PubMed

    Vincent, Warwick F; Mueller, Derek R; Bonilla, Sylvia

    2004-04-01

    Microbial communities occur throughout the cryosphere in a diverse range of ice-dominated habitats including snow, sea ice, glaciers, permafrost, and ice clouds. In each of these environments, organisms must be capable of surviving freeze-thaw cycles, persistent low temperatures for growth, extremes of solar radiation, and prolonged dormancy. These constraints may have been especially important during global cooling events in the past, including the Precambrian glaciations. One analogue of these early Earth conditions is the thick, landfast sea ice that occurs today at certain locations in the Arctic and Antarctic. These ice shelves contain liquid water for a brief period each summer, and support luxuriant microbial mat communities. Our recent studies of these mats on the Markham Ice Shelf (Canadian high Arctic) by high performance liquid chromatography (HPLC) showed that they contain high concentrations of chlorophylls a and b, and several carotenoids notably lutein, echinenone and beta-carotene. The largest peaks in the HPLC chromatograms were two UV-screening compounds known to be produced by cyanobacteria, scytonemin, and its decomposition product scytonemin-red. Microscopic analyses of the mats showed that they were dominated by the chlorophyte genera cf. Chlorosarcinopsis, Pleurastrum, Palmellopsis, and Bracteococcus, and cyanobacteria of the genera Nostoc, Phormidium, Leptolyngbya, and Gloeocapsa. From point transects and localized sampling we estimated a total standing stock on this ice shelf of up to 11,200 tonnes of organic matter. These observations underscore the ability of microbial communities to flourish despite the severe constraints imposed by the cryo-ecosystem environment. PMID:15094087

  4. Observed rift propagation in the Larsen C Ice Shelf from Sentinel 1-A radar data

    NASA Astrophysics Data System (ADS)

    Jansen, Daniela; Helm, Veit; Neckel, Niklas; Luckman, Adrian; Bevan, Suzanne

    2016-04-01

    The Larsen C Ice Shelf is the most northerly of the remaining major Antarctic Peninsula ice shelves and is vulnerable to changes in both to ocean and atmospheric forcing. It is the largest ice shelf in the region and its loss would lead to a significant drawdown of ice from the Antarctic Peninsula Ice Sheet. There have been observations of widespread thinning, melt ponding in the northern inlets, and, in the northern part, a speed-up in ice flow, all processes which have been linked to former ice shelf collapses. Previous studies have also highlighted the vulnerability of Larsen C Ice Shelf to specific potential changes in its geometry including a retreat from the Bawden and Gipps Ice Rise. In a change from the usual pattern, a northwards-propagating rift from Gipps Ice Rise has recently advanced towards the center of the ice shelf. It is now more than halfway towards calving a large section of the ice shelf and continues to widen. We followed the rift propagation on MODIS and Landsat imagery and, during the austral winter 2015, on Sentinel-1A radar data. Due to the very cloudy weather conditions during the austral Summer 2015 / 2016 the Sentinel data became an essential part of the monitoring. By calculating differential interferograms it was possible to clearly identify the active tip of the rift, which was not always obvious on the Landsat images. Further, surface velocities were derived from recent Sentinel-1A acquisitions by means of offset intensity tracking. In order to investigate a possible speed-up of the ice shelf we extended the study area to the north including Bawden ice rise.

  5. A Theoretical and Experimental Investigation of Ice-Shelf Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Wearing, Martin; Worster, Grae; Hindmarsh, Richard

    2015-11-01

    Ice-shelf buttressing is a major control on the rate of ice discharged from fast-flowing ice streams that drain the Antarctic Ice Sheet. The magnitude of the buttressing force depends on the shelf geometry and confinement. This geometry is determined by the ice-shelf extent, resulting from retreat due to iceberg calving and shelf advance due to flow. In contrast to large-scale ice-sheet models, which require high resolution datasets, we aim to gain insight using simple idealized models, focusing on the transition from lateral confinement to non-confinement. By considering a confined shelf with lateral shear stresses controlling the flow, steady-state analytical solutions can be calculated. These solutions are then compared to a numerical model for a confined flow, which incorporates both shear and extensional stresses. A boundary layer close to the calving front is identified, where both extensional and shear stresses control the dynamics. We test these idealized models against fluid-mechanical laboratory experiments, designed to simulate the flow of an ice shelf in a narrow channel. From these experiments velocity fields and altimetry for the ice-shelf are collected, allowing for comparison with the theoretical models and geophysical data.

  6. Dense water production in the Larsen Ice Shelf region

    NASA Astrophysics Data System (ADS)

    van Caspel, Mathias; Schröder, Michael; Huhn, Oliver; Hellmer, Hartmut

    2014-05-01

    Dense water flowing out from the Weddell Sea significantly contributes to Antarctic Bottom Water (AABW). The relative importance of two dense water formation sites in the Weddell Sea, the continental shelves in front of Ronne-Filchner Ice Shelf and Larsen Ice Shelf, remains unclear. Measurements made in summer 2012/2013 during Polarstern cruise ANT XXIX-3 add evidence to the importance of the western source region. During the cruise, three sections were made perpendicular to the continental slope of the northwestern Weddell Sea. Visual inspection of temperature and salinity data suggest that the dense water found in the throughs in front of Larsen A and B mixes with slope waters and sinks down the continental slope to form a fresher type of Weddell Sea Deep Water. This hypothesis was tested using the Optimum Multiparameter Analysis with three source water types, Larsen A/B dense Water (LABW), Warm Deep Water (WDW) and Weddell Sea Bottom Water (WSBW) and potential temperature, salinity, oxygen, and mass as conservative parameters. The majority of the slope waters were reproduced with this setting but the densest bottom water sampled during the cruise at ~1200m and ~1800m depth. To overcome this, a fourth source water type, representing very dense water observed in front of Larsen C (LCW) during summer 2004/2005 (ISPOL), was added. The mixture of Larsen waters - LABW and LCW - and the water masses coming from the south - WDW and WSBW - increases the thickness of the dense layer on the continental slope that can cross the ridges confining the northwestern Weddell Sea. Since this process occurs next to the outflow areas, changes in the thermohaline properties or in the production rates may have an impact on the global thermohaline circulation.

  7. Impacts of warm water on Antarctic ice shelf stability through basal channel formation

    NASA Astrophysics Data System (ADS)

    Alley, Karen E.; Scambos, Ted A.; Siegfried, Matthew R.; Fricker, Helen Amanda

    2016-04-01

    Antarctica's ice shelves provide resistance to the flow of grounded ice towards the ocean. If this resistance is decreased as a result of ice shelf thinning or disintegration, acceleration of grounded ice can occur, increasing rates of sea-level rise. Loss of ice shelf mass is accelerating, especially in West Antarctica, where warm seawater is reaching ocean cavities beneath ice shelves. Here we use satellite imagery, airborne ice-penetrating radar and satellite laser altimetry spanning the period from 2002 to 2014 to map extensive basal channels in the ice shelves surrounding Antarctica. The highest density of basal channels is found in West Antarctic ice shelves. Within the channels, warm water flows northwards, eroding the ice shelf base and driving channel evolution on annual to decadal timescales. Our observations show that basal channels are associated with the development of new zones of crevassing, suggesting that these channels may cause ice fracture. We conclude that basal channels can form and grow quickly as a result of warm ocean water intrusion, and that they can structurally weaken ice shelves, potentially leading to rapid ice shelf loss in some areas.

  8. Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia

    2011-01-01

    Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  9. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Marsh, Oliver J.; Fricker, Helen A.; Siegfried, Matthew R.; Christianson, Knut; Nicholls, Keith W.; Corr, Hugh F. J.; Catania, Ginny

    2016-01-01

    Antarctica's ice shelves are thinning at an increasing rate, affecting their buttressing ability. Channels in the ice shelf base unevenly distribute melting, and their evolution provides insight into changing subglacial and oceanic conditions. Here we used phase-sensitive radar measurements to estimate basal melt rates in a channel beneath the currently stable Ross Ice Shelf. Melt rates of 22.2 ± 0.2 m a-1 (>2500% the overall background rate) were observed 1.7 km seaward of Mercer/Whillans Ice Stream grounding line, close to where subglacial water discharge is expected. Laser altimetry shows a corresponding, steadily deepening surface channel. Two relict channels to the north suggest recent subglacial drainage reorganization beneath Whillans Ice Stream approximately coincident with the shutdown of Kamb Ice Stream. This rapid channel formation implies that shifts in subglacial hydrology may impact ice shelf stability.

  10. Continuously imaging sub-ice shelf geomorphology with the vibroseismic method

    NASA Astrophysics Data System (ADS)

    Eisen, Olaf; Lambrecht, Astrid; Hofstede, Coen; Mayer, Christoph

    2015-04-01

    Bathymetry, seabed geomorphology and water column thickness are three important quantities to investigate the current and past interaction of ice shelves with the ocean and underlying geologic strata. Water column thickness is important to understand the present water circulation and interaction of ocean water with the overlying ice, geomorphology informs us about the past activity of the ice shelf or even stream, i.e. whether it was grounded and caused megascale glacial lineations, where it was grounded and deposited grounding line wedges or whether it was floating and iceberg scaring took place. Whereas ice thickness of meteoric ice can best be derived with radar, the thickness of accreted (marine) ice, the water column and the stratigraphy of the seabed require seismic techniques. Without an ice shelf, geomorphology can best be obtained with swath sounding methods. With a floating ice shelf, things become more difficult. Although AUVs provided sub-shelf data, their deployment is restricted to regions where the AUV can safely return. In other regions, sub-shelf bathymetry was so far only estimated by sparse seismic point measurements or deduced in coarse resolution from gravimetric surveys. Here we present results from a vibroseismic traverse on the Ekströmisen, Antarctica, which recorded 80 km of high resolution seismic data in 2014 on the ice shelf. Seabed geomorphology shows considerable variations, from undisturbed regions to troughs several tens of meters deep. Some features show a height of 300 m and could be interpreted as past grounding lines of the active ice stream. Our results demonstrate that imaging sub-ice shelf regions with vibroseismic techniques could provide 3D images of the seabed, not as highly resolved as with swath bathymetry in open water, but considerably better than presently available data sets, and should be routinely obtained to improve our understanding of past ice activity and current processes.

  11. Changes of CDW on the Amundsen Sea Shelf as a major cause for Ice Sheet melt

    NASA Astrophysics Data System (ADS)

    Schroeder, Michael; Hellmer, Hartmut; Wisotzki, Andreas; Jacobs, Stan

    2010-05-01

    From February to March 2010 a joint geophysical and oceanographic German expedition with RV Polarstern into the Amundsen Sea will provide an important contribution to the long-term monitoring of CDW characteristics on the Amundsen Sea continental shelf, continuously conducted by colleagues in the US (LDEO) and UK (BAS), as part of the international ASEP (Amundsen Sea Embayment Project). For the Amundsen Sea it is entirely plausible that ocean influence on the WAIS (West-Antarctic Ice Sheet) could increase from changes in ocean temperature, heat transport and vertical thermohaline structure, in response to altered atmospheric forcing, sea ice production, and ice shelf morphology. Previous work has revealed that the ‘warm,' salty CDW gains access to the continental shelf near the sea floor, particularly in the eastern sector, and ponds in glacially scoured troughs that extend deep beneath the ice shelves. The oceanic heat drives basal ice shelf melting rates orders of magnitude faster than beneath the largest ice shelves. Substantial thermohaline variability is apparent in some of the repeated late summer observations, but little is yet known about the seasonal cycle or interannual variability. Heat transport from the continental shelf break to the ice shelf caverns may be influenced by mixing over the rough bottom topography, tidal currents, winds, sea ice production, icebergs, and meltwater impacts on the pycnocline. The talk will focus on first results form CTD measurements conducted during the just finished cruise and the comparison with previous hydrographic data.

  12. Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf

    NASA Astrophysics Data System (ADS)

    Jacobs, Stanley S.; Jenkins, Adrian; Giulivi, Claudia F.; Dutrieux, Pierre

    2011-08-01

    In 1994, ocean measurements near Antarctica's Pine Island Glacier showed that the ice shelf buttressing the glacier was melting rapidly. This melting was attributed to the presence of relatively warm, deep water on the Amundsen Sea continental shelf. Heat, salt and ice budgets along with ocean modelling provided steady-state calving and melting rates. Subsequent satellite observations and modelling have indicated large system imbalances, including ice-shelf thinning and more intense melting, glacier acceleration and drainage basin drawdown. Here we combine our earlier data with measurements taken in 2009 to show that the temperature and volume of deep water in Pine Island Bay have increased. Ocean transport and tracer calculations near the ice shelf reveal a rise in meltwater production by about 50% since 1994. The faster melting seems to result mainly from stronger sub-ice-shelf circulation, as thinning ice has increased the gap above an underlying submarine bank on which the glacier was formerly grounded. We conclude that the basal melting has exceeded the increase in ice inflow, leading to the formation and enlargement of an inner cavity under the ice shelf within which sea water nearly 4°C above freezing can now more readily access the grounding zone.

  13. The NE Greenland Ice Sheet during the last glacial - a dynamic retreat from the shelf edge triggered by ice melting?

    NASA Astrophysics Data System (ADS)

    Sverre Laberg, Jan; Forwick, Matthias; Husum, Katrine

    2014-05-01

    The dynamics of the north-eastern sector of the Greenland Ice Sheet during the last glacial are still poorly constrained and large uncertainties about its extent exist. We present new swath-bathymetry data and sub-bottom profiles acquired from the outer parts of a shelf-crossing trough. These data reveal glacial landforms suggesting that grounded ice extended to the shelf break. Thus, the hypothesis of a mid-shelf position of the ice sheet in this area during the last glacial maximum is rejected, instead other studies predicting an ice expansion to the shelf break is reinforced. The results presented here also add further details on the behavior of the ice sheet during the initial deglaciation. The outer trough studied was characterized by the formation of a complex pattern of moraine ridges and sediment wedges overlying mega-scale glacial lineations, providing evidence of repeated halts and readvances of the ice sheet during an early phase of its decay. This suggests that the early deglaciation was related to melting of the grounded ice due to temperature increase in the ocean, rather than being triggered by abrupt sea level rise. The latter should, according to established models, result in ice lift-off and a sea floor dominated by landforms formed during full-glacial conditions (mega-scale glacial lineations) and ice disintegration (iceberg plough-marks).

  14. Millennial-scale variability of the George VI Sound Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Bentley, M.; Hodgson, D.; Bryant, C.; Carmicheal, E.; Noon, P.; Smith, J.; Sugden, D.; Verleyen, E.

    2003-04-01

    This project provides a Late Quaternary perspective of Antarctic ice shelf variability by examining sediment records from epishelf lakes dammed on the eastern side of Alexander Island by George VI Ice Shelf. In recent decades, vast areas of ice shelves on the east coast of the Antarctic Peninsula have fragmented in a series of large break-up events, while others have disintegrated progressively. The global significance of current ice shelf loss is difficult to judge as similar variations may be a feature of the last 10,000 years. George VI Ice Shelf is currently close to the limit for ice shelf stability; hence, a two-season sediment-coring programme was undertaken to establish its palaeo-stability record. Recent results are presented from two principal study sites, Moutonnée and Ablation, with preliminary data from Cannonball and Citadel Bastion. These lakes are almost unique in Antarctica because they possess a continuous palaeolacustrine record of ice shelf history that can be linked to a geomorphological record of ice shelf variability. Most significant thus far, is the discovery of benthic foram-rich zones in the Moutonnée basin cores, representing at least one occasion when the ice shelf withdrew and open marine conditions existed in the sound. To determine when this occurred, mono-specific radiocarbon ages and oxygen and carbon isotope data are being obtained from forams, algal mat material and sediments. Physical, chemical and isotope analysis of cores reveals cyclic patterns that potentially match sections of ice core records.

  15. Insights into ice shelf buttressing and ice rheology on Rutford Ice Stream, West Antarctica, from synoptic-scale observations of tidally driven ice flow variations

    NASA Astrophysics Data System (ADS)

    Minchew, Brent; Simons, Mark; Riel, Bryan; Millio, Pietro

    2016-04-01

    Synoptic-scale observations of the response of ice streams to well-constrained forcing functions provide unique insights into ice stream dynamics and the underlying mechanics of glacier flow. Rutford Ice Stream, West Antarctica, is one of the few recognized ice streams with strong, observed, periodic ice-flow variability (e.g., Gudmundsson, 2006; Murray et al., 2007); numerous in situ observations of the subglacial environment (e.g., Smith et al., 2015); and extensive modeling efforts focused on understanding the mechanisms that drive the observed variations in glacier flow (e.g. Thompson et al., 2014; Rosier et al., 2014; 2015). Despite these efforts, the processes underlying the ~20% modulation in horizontal ice flow at Msf (14.77-day) periods - which corresponds to the beat frequency of the lunar and solar semi-diurnal ocean tides - remain a mystery. To help resolve the salient processes, we contribute a first-of-its-kind observational dataset that provides ice-stream-scale measurements of 3D secular and time-varying ice flow on Rutford with ~40-m spatial resolution. These data were inferred from 9 months of continuous synthetic aperture radar observations collected with the COSMO-SkyMed 4-satellite constellation from multiple satellite viewing geometries. The resulting velocity fields provide constraints on ice flow in all three spatial dimensions and in time, making them true 4D surface velocity fields. The time-varying velocity field components elucidate the spatial characteristics of the response of ice flow on Rutford to ocean tidal forcing and agree with collocated GPS measurements. We show that the response of horizontal ice flow to ocean tidal forcing is most pronounced over the ice shelf and subsequently propagates through the grounded ice stream at ~29 km/day, decaying quasi-linearly with distance over ~85 km upstream of the grounding zone. We observe multiple regions over the ice shelf whose motion is consistent with subglacial pinning points and that

  16. Late Pleistocene ice-shelf, valley-glacier and ice-sheet interactions on Alexander Island, Antarctic Peninsula: implications for climatic and ice-volume changes

    NASA Astrophysics Data System (ADS)

    Davies, Bethan; Hambrey, Michael; Glasser, Neil; Smellie, John; Carrivick, Jonathan; Bentley, Michael

    2014-05-01

    Recent rapid warming across the Antarctic Peninsula has resulted in ice-sheet thinning, dramatic ice-shelf collapse, acceleration of ice-flow velocities and widespread glacier recession. Reconstructing past rates, volumes and magnitudes of cryospheric change, particularly with respect to the former configuration of ice sheets and ice shelves, and their response to changing oceanic and climatic regimes, is vital in providing a context for this change, in order to improve predictions of future ice-sheet behaviour, and to provide glacio-isostatic adjustment corrections for gravimetric measurements of contemporary ice loss. This research aimed to investigate valley glacier and ice-shelf interactions during the Last Glacial Maximum (LGM) and Holocene Epoch across George VI Sound and Alexander Island, western Antarctic Peninsula, an area with a well-preserved but poorly dated record. We identify four principal stratigraphic units: (1) a high-elevation drift with Alexander Island erratics only (interpreted as recording older advances of ice from the interior of the island), (2) a lower-elevation drift with exotic Palmer Land erratics (interpreted as ice-shelf moraine, representing incursions of George VI Ice Shelf onto Ablation Point Massif), (3) multiple overlapping sequences of valley glacier moraine and ice-shelf moraine, presumed to be Holocene in age, and (4) more recent processes and units, including frozen epishelf lakes, slope processes and alluvial fans. On-going cosmogenic nuclide dating on these sediments (in progress; 25 10Be exposure ages) has the potential to unlock the complex history and interactions of ice streams, valley glaciers and ice shelves in this area. This work will also provide the first long-term record of sea-level indicators, allowing the first estimates of glacial unloading, rates of uplift and ice-sheet thinning to be calculated. The Holocene record of the ice shelf, preserved in the younger ice-shelf moraines and in the overlapping

  17. Seasonal and decadal variations of ice-shelf front positions in Dronning Maud Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Deschamps-Berger, César; Matsuoka, Kenichi; Moholdt, Geir; König, Max

    2015-04-01

    Most of recent rapid changes of the Antarctic ice sheet have been triggered from the ice shelves through enhanced basal melting and/or iceberg calving. The Dronning Maud Land (DML) coastal region is encompassed by many semi-continuous ice shelves, and its mass balance is thus particularly sensitive to changes in the coastal environment. Better knowledge on the region's ice shelves is necessary to predict future behavior of the ice sheet. Here, we present temporal changes of the ice-shelf front positions in DML over the past decade. RADARSAT-2 imagery was used to delineate the front positions at six times between August 2012 and December 2013. Displacements of the ice-shelf edges over this period are mostly in good agreement with displacements derived from satellite interferometery observations. Yet we observe in several sub-regions that displacement during the austral summer is larger than that during the winter. We also observe winter-growth of sea ice from the ice-shelf fronts and outwards to icebergs that are grounded on the continental shelf. Fast sea ice growth and break-up is seasonal and could influence ice-shelf flow close to the fronts. On a longer term, comparison between 2004 and 2009 MOA coast line datasets and our 2012-13 dataset highlights the general stability of the area in the past decade. Between 2004 and 2013, only six ice shelves experienced considerable retreat due to calving of tabular icebergs, leaving the remaining 90 % of the region's ice-shelf fronts advancing in accordance with their local flow.

  18. The Recent Nansen's Ice-Shelf Calving Event : Comparison with Meteo-Climatic and Marine Conditions.

    NASA Astrophysics Data System (ADS)

    Fusco, G.; Cannito, A. C. C.; Marinangeli, L.; Cardinale, M.; Pompilio, L.

    2015-12-01

    Ice shelves are important elements of the Cryosphere representing the interface between ice, atmosphere and ocean. They are also the mean to discharge ice from the interior ice sheets contributing to the continental ice mass balance. A sudden change in volume and extension of both ice shelves and floating glacier tongues can rapidly increase the ice streams speed and the ice sheets flow variability.The Nansen ice shelf represent a particular sensible interface between the floating ice and the Terra Nova Bay polynya, a sea area that remains ice-free for almost all the winter time , thus being one of the major responsible of the production of the Antarctic bottom water. Remote sensing technologies gave us the opportunity to observe and investigate on the formation and evolution of an incipient crevasse on the Nansen Ice Shelf, starting from 1999. The crack showed a steady and slow increase in length and rotation up to 2011 and then underwent an abrupt evolution. During the 2014 winter season, the crack reached its maximum elongation and the detachment of large tabular bergs seems to be very close. This should be the first observation of a detachment of large tabular bergs from the Nansen Ice Shelf since the beginning of satellite observations and is an opportunity to investigate complex processes. We analyzed the last ten years record of climate data over the Southern ocean to evaluate the relationships between the intense cyclonic activity, synoptic and mesoscale systems, ocean swells and calving events. We used ECMWF ERA-interim global atmospheric reanalysis model, Landsat images and in situ weather observations from AWS of the Italian Antarctic Program deployed over the Terra Nova Bay cost. Our preliminary results show a strong correlation between the occurrence of some anomalous meteorological configurations over the Southern Ocean and the sudden grow of the monitored crack in the ice shelf. If confirmed, together with this new arrangement of the cryosphere, some

  19. AUTOSUB UNDER ICE: Exploration of the environment under sea ice and an ice shelf using an Autonomous Underwater Vehicle.

    NASA Astrophysics Data System (ADS)

    Collins, K.; Ackley, S. F.

    2006-12-01

    Since 2000, the UK government's environmental science agency, NERC, has sponsored a thematic program, Autosub Under Ice(www.noc.soton.ac.uk/AUI). The program was a combined technology development of a versatile autonomous underwater vehicle and ship-based science projects using that vehicle in both the Arctic and Antarctic. The program development described is perhaps unique in the polar sciences since it required the concurrent development of a new technology and nearly simultaneous application of that technology to conduct science in previously unreachable areas under sea ice and an ice shelf. Management of the program was conducted by a Science Steering Group composed about equally of independent appointees as well as several of the projects' Principal Investigators. Three ship expeditions were conducted, two to the Antarctic and one (split into two legs) to the Arctic. The vehicle's capabilities included ability to navigate over long distances (400km) and return to a position with less than 0.1% error using inertial navigation combined with either top or bottom surface tracking to achieve this accuracy. Other technical advances successfully trialed include the capability to launch in heavy ice conditions, detect and avoid obstacles, and return to a homing beacon (when the original location programmed became inaccessible because of ice cover). New sensors fitted into the AUV included an up or down looking swath bathymeter, a water sampler, digital camera, along with continuous CTD and up and down looking ADCPs previously used. Results presented include the currents and ice shelf bottom topography obtained from under the Fimbul Ice Shelf, Antarctica; morphology of the sea ice cover, ocean currents and water properties under fast ice off NE Greenland; water sampling from a Greenland fjord. An new phase of the project Collaborative Autosub Science in Extreme Environment www.noc.soton.ac.uk/CASEE) seeks to transfer the technology internationally, through technology

  20. Rheology of the Ronne Ice Shelf, Antarctica, Inferred from Satellite Radar Interferometry Data using an Inverse Control Method

    NASA Technical Reports Server (NTRS)

    Larour, E.; Rignot, E.; Joughin, I.; Aubry, D.

    2005-01-01

    The Antarctic Ice Sheet is surrounded by large floating ice shelves that spread under their own weight into the ocean. Ice shelf rigidity depends on ice temperature and fabrics, and is influenced by ice flow and the delicate balance between bottom and surface accumulation. Here, we use an inverse control method to infer the rigidity of the Ronne Ice Shelf that best matches observations of ice velocity from satellite radar interferometry. Ice rigidity, or flow law parameter B, is shown to vary between 300 and 900 kPa a(sup 1/3). Ice is softer along the side margins due to frictional heating, and harder along the outflow of large glaciers, which advect cold continental ice. Melting at the bottom surface of the ice shelf increases its rigidity, while freezing decreases it. Accurate numerical modelling of ice shelf flow must account for this spatial variability in mechanical characteristics.

  1. Modeling the instantaneous response of glaciers after the collapse of the Larsen B Ice Shelf

    NASA Astrophysics Data System (ADS)

    De Rydt, J.; Gudmundsson, G. H.; Rott, H.; Bamber, J. L.

    2015-07-01

    Following the disintegration of the Larsen B Ice Shelf, Antarctic Peninsula, in 2002, regular surveillance of its ˜20 tributary glaciers has revealed a response which is varied and complex in both space and time. The major outlets have accelerated and thinned, smaller glaciers have shown little or no change, and glaciers flowing into the remnant Scar Inlet Ice Shelf have responded with delay. In this study we present the first areawide numerical analysis of glacier dynamics before and immediately after the collapse of the ice shelf, combining new data sets and a state-of-the-art numerical ice flow model. We simulate the loss of buttressing at the grounding line and find a good qualitative agreement between modeled changes in glacier flow and observations. Through this study, we seek to improve confidence in our numerical models and their ability to capture the complex mechanical coupling between floating ice shelves and grounded ice.

  2. Parameterization for subgrid-scale motion of ice-shelf calving-fronts

    NASA Astrophysics Data System (ADS)

    Albrecht, T.; Martin, M.; Haseloff, M.; Winkelmann, R.; Levermann, A.

    2010-08-01

    A parameterization for the motion of ice-shelf fronts on a Cartesian grid in finite-difference land-ice models is presented. The scheme prevents artificial thinning of the ice shelf at its edge, which occurs due to the finite resolution of the model. The intuitive numerical implementation diminishes numerical dispersion at the ice front and enables the application of physical boundary conditions to improve the calculation of stress and velocity fields throughout the ice-sheet-shelf system. Numerical properties of this subgrid modification are assessed in the Potsdam Parallel Ice Sheet Model (PISM-PIK) for different geometries in one and two horizontal dimensions and are verified against an analytical solution in a flow-line setup.

  3. Parameterization for subgrid-scale motion of ice-shelf calving fronts

    NASA Astrophysics Data System (ADS)

    Albrecht, T.; Martin, M.; Haseloff, M.; Winkelmann, R.; Levermann, A.

    2011-01-01

    A parameterization for the motion of ice-shelf fronts on a Cartesian grid in finite-difference land-ice models is presented. The scheme prevents artificial thinning of the ice shelf at its edge, which occurs due to the finite resolution of the model. The intuitive numerical implementation diminishes numerical dispersion at the ice front and enables the application of physical boundary conditions to improve the calculation of stress and velocity fields throughout the ice-sheet-shelf system. Numerical properties of this subgrid modification are assessed in the Potsdam Parallel Ice Sheet Model (PISM-PIK) for different geometries in one and two horizontal dimensions and are verified against an analytical solution in a flow-line setup.

  4. Long-term observing system for the oceanic regime of Filchner-Ronne Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Østerhus, Svein; Schröder, Michael; Hellmer, Hartmunt; Darelius, Elin; Nicholls, Keith; Makinson, Keith

    2014-05-01

    Long term observations of the flow of dense waters from their area of formation to the abyss of the World Ocean, and the return flow of warm waters, are central to climate research. For the Weddell Sea an important component of such a system entails monitoring the formation of High Salinity Shelf Water (HSSW) on the continental shelf north of Ronne Ice Front, the transformation to Ice Shelf Water (ISW) beneath the floating Filchner-Ronne ice shelf, and the flux of ISW overflowing the shelf break to the deep Weddell Sea. Equally important is the return flow of warm water toward the Filchner-Ronne Ice Shelf system. AWI, BAS and UNI/UIB operate a number of monitoring stations in the southern Weddell Sea. The systems build upon techniques and methods developed over several decades and have a proven record of high data return. Here we present plans for extending, integrating and operating the existing long term observatories to increase our knowledge of the natural variability of the ocean-ice shelf system, and to allow early identification of possible changes of regional or global importance. The S2 observatory at the Filchner sill was established in 1977 and continues to deliver the longest existing marine time series from Antarctica. As a key site for monitoring the ISW overflow S2 is a part of the global net of monitoring sites under CLIVAR Southern Ocean Observing System (SOOS) and OceanSITES. The existing S2 observatory consists of a sub-surface mooring carrying sensors for current velocity, temperature, salinity and dissolved oxygen measurements. Observations at the Filchner sill also show a seasonal inflow of relatively warm water that is able to reach Filchner Ice Front. New model results indicate that this flow of water might increase in the future and we have deployed a number of instrumented moorings in the Filchner Depression to estimate the heat flux towards the ice shelf. In 1999 we established Site 5 on Ronne Ice Shelf using a hot-water drill to access

  5. Quantification of Changes for the Milne Ice Shelf, Nunavut, Canada, 1950 -- 2009

    NASA Astrophysics Data System (ADS)

    Mortimer, Colleen Adel

    This study presents a comprehensive overview of the current state of the Milne Ice Shelf and how it has changed over the last 59 years. The 205 +/-1 km2 ice shelf experienced a 28% (82 +/-0.8 km 2) reduction in area between 1950 -- 2009, and a 20% (2.5 +/-0.9km 3 water equivalent (w.e.)) reduction in volume between 1981 -- 2008/2009, suggesting a long-term state of negative mass balance. Comparison of mean annual specific mass balances (up to -0.34 m w.e. yr-1) with surface mass balance measurements for the nearby Ward Hunt Ice Shelf suggest that basal melt is a key contributor to total ice shelf thinning. The development and expansion of new and existing surface cracks, as well as ice-marginal and epishelf lake development, indicate significant ice shelf weakening. Over the next few decades it is likely that the Milne Ice Shelf will continue to deteriorate.

  6. What Lay Beneath the Larsen B Ice Shelf: Results of the First Survey of a Large Modern Sub Ice Shelf Deposystem

    NASA Astrophysics Data System (ADS)

    Leventer, A.; Domack, E.; Ishman, S.; Willmott, V.; Smith, J.; Huber, B.; Brachfeld, S.; Gilbert, R.; Padman, L.

    2005-12-01

    Extraordinary weather conditions this past Austral field season in the NW Weddell Sea allowed a marine geologic expedition to enter the formerly ice shelf bound coastal regions of the Oscar II Coast located along the eastern northern side of the Antarctic Peninsula. In February to March (2005) the US Antarctic Program Research Vessel L. M Gould conducted high resolution seismic reflection (3.5 kHz Chirp), single channel echo sounding, bottom imaging and sampling in conjunction with physical and biological measurements of the ocean water column. The region has only been an open system for about 3 years following the dramatic collapse of the Larsen B Ice Shelf in 2002 and hence we were provided with an opportunity to examine the depositional character of both ice shelf and post ice shelf sediments. Several new insights were provided by our data set including: the observation of a significantly (~25 m) thick syn- to post-glacial section of unconsolidated sediment in a rift-like basin, mapping of two distinct glacial troughs that reach 850-900 m depth and lead to the Hektoria/Evans and Crane Glacial systems, observations of a chemotrophic (cold seep) ecosystem, documentation of post-break up sedimentation patterns including rapid flux of ice rafted detritus, abundant and diverse sediment laden icebergs, biogenic sediment flux to the seafloor, and a spatially varying regime of modern organic (phytoplankton) carbon and lithogenic detritus across the seafloor. In addition, a circuitous grounding line zone was mapped based upon a unique, stratal geometry of dipping and terraced reflectors. Some of these features appear to relate to the historical grounding line of the Larsen B ice shelf system and an earlier and deeper positioned system that may be related to a pause in de-glacial recession of the ice shelf/ice sheet system from the continental shelf. Large diameter jumbo piston cores and gravity cores were collected from the different depositional regimes and the results

  7. Polynya dynamics and associated atmospheric forcing at the Ronne Ice Shelf

    NASA Astrophysics Data System (ADS)

    Ebner, Lars; Heinemann, Günther

    2014-05-01

    The Ronne Ice Shelf is known as one of the most active regions of polynya developments around the Antarctic continent. Low temperatures are prevailing throughout the whole year, particularly in winter. It is generally recognized that polynya formations are primarily forced by offshore winds and secondarily by ocean currents. Many authors have addressed this issue previously at the Ross Ice Shelf and Adélie Coast and connected polynya dynamics to strong katabatic surge events. Such investigations of atmospheric dynamics and simultaneous polynya occurrence are still severely underrepresented for the southwestern part of the Weddell Sea and especially for the Ronne Ice Shelf. Due to the very flat terrain gradients of the ice shelf katabatic winds are of minor importance in that area. Other atmospheric processes must therefore play a crucial role for polynya developments at the Ronne Ice Shelf. High-resolution simulations have been carried out for the Weddell Sea region using the non-hydrostatic NWP model COSMO from the German Meteorological Service (DWD). For the austral autumn and winter (March to August) 2008 daily forecast simulations were conducted with the consideration of daily sea-ice coverage deduced from the passive microwave system AMSR-E. These simulations are used to analyze the synoptic and mesoscale atmospheric dynamics of the Weddell Sea region and find linkages to polynya occurrence at the Ronne Ice Shelf. For that reason, the relation between the surface wind speed, the synoptic pressure gradient in the free atmosphere and polynya area is investigated. Seven significant polynya events are identified for the simulation period, three in the autumn and four in the winter season. It can be shown that in almost all cases synoptic cyclones are the primary polynya forcing systems. In most cases the timely interaction of several passing cyclones in the northern and central Weddell Sea leads to maintenance of a strong synoptic pressure gradient above the

  8. The evolving instability of the remnant Larsen B Ice Shelf and its tributary glaciers

    NASA Astrophysics Data System (ADS)

    Khazendar, Ala; Borstad, Christopher P.; Scheuchl, Bernd; Rignot, Eric; Seroussi, Helene

    2015-06-01

    Following the 2002 disintegration of the northern and central parts of the Larsen B Ice Shelf, the tributary glaciers of the southern surviving part initially appeared relatively unchanged and hence assumed to be buttressed sufficiently by the remnant ice shelf. Here, we modify this perception with observations from IceBridge altimetry and InSAR-inferred ice flow speeds. Our analyses show that the surfaces of Leppard and Flask glaciers directly upstream from their grounding lines lowered by 15 to 20 m in the period 2002-2011. The thinning appears to be dynamic as the flow of both glaciers and the remnant ice shelf accelerated in the same period. Flask Glacier started accelerating even before the 2002 disintegration, increasing its flow speed by ∼55% between 1997 and 2012. Starbuck Glacier meanwhile did not change much. We hypothesize that the different evolutions of the three glaciers are related to their dissimilar bed topographies and degrees of grounding. We apply numerical modeling and data assimilation that show these changes to be accompanied by a reduction in the buttressing afforded by the remnant ice shelf, a weakening of the shear zones between its flow units and an increase in its fracture. The fast flowing northwestern part of the remnant ice shelf exhibits increasing fragmentation, while the stagnant southeastern part seems to be prone to the formation of large rifts, some of which we show have delimited successive calving events. A large rift only 12 km downstream from the grounding line is currently traversing the stagnant part of the ice shelf, defining the likely front of the next large calving event. We propose that the flow acceleration, ice front retreat and enhanced fracture of the remnant Larsen B Ice Shelf presage its approaching demise.

  9. Analogue modelling of the influence of ice shelf collapse on the flow of ice sheets grounded below sea-level

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio

    2016-04-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. This effect has been tested in previous analogue models, which however applied to ice sheets grounded above sea level (e.g., East Antarctic Ice Sheet; Antarctic Peninsula and the Larsen Ice Shelf). In this work we expand these previous results by performing small-scale laboratory models that analyse the influence of ice shelf collapse on the flow of ice streams draining an ice sheet grounded below sea level (e.g., the West Antarctic Ice Sheet). The analogue models, with dimensions (width, length, thickness) of 120x70x1.5cm were performed at the Tectonic Modelling Laboratory of CNR-IGG of Florence, Italy, by using Polydimethilsyloxane (PDMS) as analogue for the flowing ice. This transparent, Newtonian silicone has been shown to well approximate the rheology of natural ice. The silicone was allowed to flow into a water reservoir simulating natural conditions in which ice streams flow into the sea, terminating in extensive ice shelves which act as a buttress for their glaciers and slow their flow. The geometric scaling ratio was 10(-5), such that 1cm in the models simulated 1km in nature; velocity of PDMS (a few mm per hour) simulated natural velocities of 100-1000 m/year. Instability of glacier flow was induced by manually removing a basal silicone platform (floating on water) exerting backstresses to the flowing analogue glacier: the simple set-up adopted in the experiments isolates the effect of the removal of the buttressing effect that the floating platform exerts on the flowing glaciers, thus offering insights into the influence of this parameter on the flow perturbations resulting from a collapse event. The experimental results showed a significant increase in glacier velocity close to its outlet following ice shelf breakup, a process similar to what

  10. Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska

    USGS Publications Warehouse

    Reimnitz, E.; Toimil, L.; Barnes, P.

    1978-01-01

    Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom

  11. Coastal-change and glaciological map of the Amery Ice Shelf area, Antarctica: 1961–2004

    USGS Publications Warehouse

    Foley, Kevin M.; Ferrigno, Jane G.; Swithinbank, Charles; Williams, Richard S., Jr.; Orndorff, Audrey L.

    2013-01-01

    Reduction in the area and volume of Earth’s two polar ice sheets is intricately linked to changes in global climate and to the resulting rise in sea level. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council. On the basis of these recommendations, the U.S. Geological Survey used its archive of satellite images to document changes in the cryospheric coastline of Antarctica and analyze the glaciological features of the coastal regions. Amery Ice Shelf, lying between 67.5° and 75° East longitude and 68.5° and 73.2° South latitude, is the largest ice shelf in East Antarctica. The latest measurements of the area of the ice shelf range between 62,620 and 71,260 square kilometers. The ice shelf is fed primarily by Lambert, Mellor, and Fisher Glaciers; its thickness ranges from 3,000 meters in the center of the grounding line to less than 300 meters at the ice front. Lambert Glacier is considered to be the largest glacier in the world, and its drainage basin is more than 1 million square kilometers in area. It is possible to see some coastal change on the outlet glaciers along the coast, but most of the noticeable change occurs on the Amery Ice Shelf front.

  12. Evidence against a late Wisconsinan ice shelf in the Gulf of Maine

    USGS Publications Warehouse

    Oldale, R.N.; Williams, R.S., Jr.; Colman, Steven M.

    1990-01-01

    Proposals for the formation of a late Wisconsinan ice shelf in the Gulf of Maine during the retreat of the Laurentide Ice Sheet are considered to be inappropriate. An Antarctic-type ice shelf does not fit the field data that indicate temperate glacial, terrestrial, and marine climates for the region between 18 ka and 12 ka. A temperate ice shelf has no modern analogues and may be physically impossible. The preponderance of stratified drift in the Gulf of Maine region supports temperate climates during late Wisconsinan time. It also indicates that glacial meltwater, rather than ice in either an ice sheet or ice shelf, was the primary transport mechanism of glacial sediment and the source for the glaciomarine mud. For these reasons we have proposed glacial analogues for the deglaciation of the Gulf of Maine that consist of temperate or subpolar marine-based glaciers, characterized by depositional environments dominated by meltwater discharge directly to the sea or the sea by way of subaerial meltwater streams. These analogues include Alaskan fjord glaciers, glaciers on the Alaskan continental shelf that discharged meltwater directly into the sea in the not too distant past, and Austfonna (Nordaustandet, Svalbard, Norway) that is presently discharging meltwater in the sea along a grounded ice wall. This last example is the best modern-day analogue for the depositional environment for most of the glaciomarine mud in the Gulf of Maine and deglaciation of the Gulf. ?? 1990.

  13. RTopo-2: A global high-resolution dataset of ice sheet topography, ice shelf cavity geometry and ocean bathymetry

    NASA Astrophysics Data System (ADS)

    Timmermann, Ralph; Schaffer, Janin

    2016-04-01

    The RTopo-1 data set of Antarctic ice sheet/shelf geometry and global ocean bathymetry has proven useful not only for modelling studies of ice-ocean interaction in the southern hemisphere. Following the spirit of this data set, we introduce a new product (RTopo-2) that contains consistent maps of global ocean bathymetry, upper and lower ice surface topographies for Greenland and Antarctica, and global surface height on a spherical grid with now 30 arc seconds resolution. We used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. To achieve a good representation of the fjord and shelf bathymetry around the Greenland continent, we corrected data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ and Helheim Glacier assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79°N, we incorporated a high-resolution digital bathymetry model including all available multibeam survey data for the region. Radar data for ice surface and ice base topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centers of Technical University of Denmark (DTU), Operation Icebridge (NASA/NSF) and Alfred Wegener Institute (AWI). For the Antarctic ice sheet/ice shelves, RTopo-2 largely relies on the Bedmap-2 product but applies corrections for the geometry of Getz, Abbot and Fimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from the PANGAEA database.

  14. Strong sensitivity of Pine Island ice-shelf melting to climatic variability.

    PubMed

    Dutrieux, Pierre; De Rydt, Jan; Jenkins, Adrian; Holland, Paul R; Ha, Ho Kyung; Lee, Sang Hoon; Steig, Eric J; Ding, Qinghua; Abrahamsen, E Povl; Schröder, Michael

    2014-01-10

    Pine Island Glacier has thinned and accelerated over recent decades, significantly contributing to global sea-level rise. Increased oceanic melting of its ice shelf is thought to have triggered those changes. Observations and numerical modeling reveal large fluctuations in the ocean heat available in the adjacent bay and enhanced sensitivity of ice-shelf melting to water temperatures at intermediate depth, as a seabed ridge blocks the deepest and warmest waters from reaching the thickest ice. Oceanic melting decreased by 50% between January 2010 and 2012, with ocean conditions in 2012 partly attributable to atmospheric forcing associated with a strong La Niña event. Both atmospheric variability and local ice shelf and seabed geometry play fundamental roles in determining the response of the Antarctic Ice Sheet to climate. PMID:24385606

  15. Interannual Variability in Amundsen Sea Ice-Shelf Height Change Linked to ENSO

    NASA Astrophysics Data System (ADS)

    Paolo, F. S.; Fricker, H. A.; Padman, L.

    2015-12-01

    Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to our 18-year (1994-2012) time series of ice-shelf height in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends of AS ice-shelf height changes are much larger than the range of interannual variability, the short-term rate of change dh/dt can vary about the trend by more than 50%. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. Since both of these processes affecting ice-shelf mass balance respond to changes in wind fields for different ENSO states, we expect some correlation between them. We will describe the spatial structure of AS ice-shelf height response to ENSO, and attempt to distinguish the precipitation signal from basal mass balance due to changing CDW inflows.

  16. Sea ice and the ocean mixed layer over the Antarctic shelf seas

    NASA Astrophysics Data System (ADS)

    Petty, A.; Holland, P.; Feltham, D. L.

    2013-12-01

    An ocean mixed layer model has been incorporated into the Los Alamos sea ice model CICE, to investigate regional variations in the surface-driven formation of Antarctic shelf sea waters. The model captures well the expected sea ice thickness distribution and produces deep (>500 m) mixed layers in the Weddell and Ross shelf seas each winter. By deconstructing the surface power input to the mixed layer, we have shown that the salt/fresh water flux from sea ice growth/melt dominates the evolution of the mixed layer in all shelf sea regions, with a smaller contribution from the mixed layer-surface heat flux. The Weddell and Ross shelf seas have the highest annual ice growth, with a large fraction exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, driven by the advection of ice from the northeast. Forcing the model with ERA-Interim (1980-2011) and hadGEM2-ES (1980-2099) atmospheric data allows us to look at the impact of atmospheric trends on the sea ice and ocean mixed layer. Both simulations show a shallowing of the wintertime mixed layer in the Amundsen & Bellingshausen seas, potentially increasing the access of warm CDW to ice shelves in both regions. The ERA-I hindcast simulation shows a significant freshening in the Ross and salinification in the Weddell due to surface driven trends (primarily through changes in the sea ice). The Ross freshening is smaller than observed however, highlighting the important role of ice shelf melt in the Amundsen Sea.

  17. The response of the West Antarctic Ice Sheet to ocean warming beneath the Filchner Ronne Ice Shelf

    NASA Astrophysics Data System (ADS)

    Goeller, Sebastian; Timmermann, Ralph; Thoma, Malte

    2015-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet (WAIS) is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf (FRIS) within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the sensitivity of the ice dynamics within the entire FRIS catchment to simulated future basal shelf melt rates. Our simulations indicate a high sensitivity of the ice dynamics for the Möller and the Institute Ice Stream but only very little response of other ice streams like Rutford, Foundation and Recovery Ice Stream to enhanced basal shelf melting. The grounding line between the Möller and Institute Ice Streams is located on a submarine ridge in front of a deep trough further inland. In this area, basal shelf melting causes a local thinning of the FRIS. The consequent initial retreat of the grounding line continues once it reaches the adjacent reverse-sloped bedrock. We state, that a possible 'point of no return' for a vast grounding line retreat along this steep reverse bedrock slope might have been crossed already even for simulated present-day melt rates, indicating that the WAIS is currently not in equlibrium. Furthermore, our simulations show an

  18. Measuring Changes in the Vicinity of the Seal Nunataks Ice Shelf Remnant from Imagery and Altimetry

    NASA Astrophysics Data System (ADS)

    Shuman, C. A.; Berthier, E.; Scambos, T.

    2015-12-01

    Analysis of repeated imagery and ICESat laser altimetry has enabled the ongoing losses from the northern Larsen ice shelf remnant to be assessed in detail. The remnant, the Seal Nunataks ice shelf (SNIS), has four ICESat tracks that cross it as well as adjacent tracks that cross Robertson Island (RI) and its remaining tributary, Rogosh Glacier (RG), on the Antarctic Peninsula. The altimetry data from ICESat (2003-2009) shows that elevation losses increase from west to east across the SNIS. Ice elevation differences suggest mean ice shelf thinning rates of up to 1.6 m a-1 and reveal processes impacting the remaining shelf ice as well. Limited altimetry data across RG suggests elevation losses of almost 1 m a-1 inland from the grounding zone with smaller losses further up the evolving tributary. Farther east, asymmetric elevation changes across RI suggest the magnitude of regional climate impacts vary distinctly depending on slope aspect. Imagery analysis using Landsat 7 and ASTER images from 2001-2013 shows that ice area losses continued on the shelf remnant following the Larsen A break up in 1995 as well as after the Larsen B break up in 2002. The largest losses (~350 km2) occurred on the north side of the remnant in late 2004 into 2005 with smaller losses along the remaining margins. Despite a slight regional cooling recently and more persistent sea ice since early 2008 as seen in MODIS imagery, the SNIS is still losing ice along its margins and appears to be retreating past its pinning nunataks. In contrast to SNIS, RI has experienced minor ice area losses that suggest most of its ice is grounded and thus less directly impacted by ocean interactions. Combining these remote sensing data sets provides additional insights about ongoing ice loss processes in this part of the Antarctic Peninsula.

  19. The effect of basal friction on melting and freezing in ice shelf-ocean models

    NASA Astrophysics Data System (ADS)

    Gwyther, David E.; Galton-Fenzi, Benjamin K.; Dinniman, Michael S.; Roberts, Jason L.; Hunter, John R.

    2015-11-01

    The ocean is an important control on the mass budget of the Antarctic ice sheet, through basal melting and refreezing underneath the floating extensions of the ice sheet known as ice shelves. The effect of the ice surface roughness (basal roughness) on melting and refreezing is investigated with idealised ice shelf-ocean numerical simulations. Both "hot" ocean forcing (e.g. Pine Island Glacier; high basal melting) and "cold" ocean forcing (e.g. Amery Ice Shelf; low basal melting, stronger refreezing) environments are investigated. The interaction between the ocean and ice shelf is further explored by examining the contributions to melt from heat exchange across the ice-ocean interface and across the boundary layer-ocean interior, with a varying drag coefficient. Simulations show increasing drag strengthens melting. Refreezing increases with drag in the cold cavity environment, while in the hot cavity environment, refreezing is small in areal extent and decreases with drag. Furthermore, melting will likely be focussed where there are strong boundary layer currents, rather than at the deep grounding line. The magnitude of the thermal driving of the basal melt decreases with increasing drag, except for in cold cavity refreeze zones where it increases. The friction velocity, a function of the upper layer ocean velocity and the drag coefficient, monotonically increases with drag. We find friction-driven mixing into the boundary layer is important for representing the magnitude and distribution of refreezing and without this effect, refreezing is underestimated. Including a spatially- and temporally-varying basal roughness (that includes a more realistic, rougher refreezing drag coefficient) alters circulation patterns and heat and salt transport. This leads to increased refreezing, altered melt magnitude and distribution, and a pattern of altered vertical flow across the entire ice shelf. These results represent a summary of melting and freezing beneath ice shelves and

  20. Late holocene fluctuations in the front of the Muller Ice Shelf, Antarctic Peninsula

    SciTech Connect

    Domack, E.W. ); Stein, A.B. )

    1993-01-01

    Ice shelves are important environmental indicators along the antarctic Peninsula. This study investigates the fluctuation of the Muller Ice Shelf by collecting and analysing surface sediment samples, piston cores, and kasten cores close to the present calving line. 3 refs., 3 figs.

  1. A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica.

    PubMed

    Tregoning, George S; Kempher, Megan L; Jung, Deborah O; Samarkin, Vladimir A; Joye, Samantha B; Madigan, Michael T

    2015-03-01

    Lake Vanda is a perennially ice-covered and stratified lake in the McMurdo Dry Valleys, Antarctica. The lake develops a distinct chemocline at about a 50-m depth, where the waters transition from cool, oxic, and fresh to warm, sulfidic, and hypersaline. The bottom water brine is unique, as the highly chaotropic salts CaCl2 and MgCl2 predominate, and CaCl2 levels are the highest of those in any known microbial habitat. Enrichment techniques were used to isolate 15 strains of heterotrophic bacteria from the Lake Vanda brine. Despite direct supplementation of the brine samples with different organic substrates in primary enrichments, the same organism, a relative of the halophilic bacterium Halomonas (Gammaproteobacteria), was isolated from all depths sampled. The Lake Vanda (VAN) strains were obligate aerobes and showed broad pH, salinity, and temperature ranges for growth, consistent with the physicochemical properties of the brine. VAN strains were halophilic and quite CaCl2 tolerant but did not require CaCl2 for growth. The fact that only VAN strain-like organisms appeared in our enrichments hints that the highly chaotropic nature of the Lake Vanda brine may place unusual physiological constraints on the bacterial community that inhabits it. PMID:25576606

  2. A Halophilic Bacterium Inhabiting the Warm, CaCl2-Rich Brine of the Perennially Ice-Covered Lake Vanda, McMurdo Dry Valleys, Antarctica

    PubMed Central

    Tregoning, George S.; Kempher, Megan L.; Jung, Deborah O.; Samarkin, Vladimir A.; Joye, Samantha B.

    2015-01-01

    Lake Vanda is a perennially ice-covered and stratified lake in the McMurdo Dry Valleys, Antarctica. The lake develops a distinct chemocline at about a 50-m depth, where the waters transition from cool, oxic, and fresh to warm, sulfidic, and hypersaline. The bottom water brine is unique, as the highly chaotropic salts CaCl2 and MgCl2 predominate, and CaCl2 levels are the highest of those in any known microbial habitat. Enrichment techniques were used to isolate 15 strains of heterotrophic bacteria from the Lake Vanda brine. Despite direct supplementation of the brine samples with different organic substrates in primary enrichments, the same organism, a relative of the halophilic bacterium Halomonas (Gammaproteobacteria), was isolated from all depths sampled. The Lake Vanda (VAN) strains were obligate aerobes and showed broad pH, salinity, and temperature ranges for growth, consistent with the physicochemical properties of the brine. VAN strains were halophilic and quite CaCl2 tolerant but did not require CaCl2 for growth. The fact that only VAN strain-like organisms appeared in our enrichments hints that the highly chaotropic nature of the Lake Vanda brine may place unusual physiological constraints on the bacterial community that inhabits it. PMID:25576606

  3. Sea ice and the ocean mixed layer over the Antarctic shelf seas

    NASA Astrophysics Data System (ADS)

    Petty, A. A.; Holland, P. R.; Feltham, D. L.

    2013-08-01

    An ocean mixed layer model has been incorporated into the Los Alamos sea ice model CICE to investigate regional variations in the surface-driven formation of Antarctic shelf waters. This model captures well the expected sea ice thickness distribution, and produces deep (> 500 m) mixed layers in the Weddell and Ross shelf seas each winter. This results in the complete destratification of the water column in deep southern coastal regions (leading to HSSW formation) and also in some shallower regions (no HSSW formation) of these seas. Shallower mixed layers are produced in the Amundsen and Bellingshausen seas. By deconstructing the surface power input to the mixed layer, we show that the freshwater flux from sea ice growth/melt dominates the evolution of the mixed layer in all seas, with a smaller contribution from the surface heat flux. The Weddell and Ross shelf seas receive an annual surplus of energy at the surface, the Amundsen shelf sea energy input in autumn/winter is balanced by energy extraction in spring/summer, and the Bellingshausen shelf sea experiences an annual surface energy deficit, through both a low energy input in autumn/winter and the highest energy loss in spring/summer. An analysis of the sea ice mass balance demonstrates the contrasting mean ice growth, melt and export in each region. The Weddell and Ross shelf seas have the highest annual ice growth, with a large fraction exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, driven by the advection of ice from the northeast. A linear regression analysis is performed to determine the temporal and spatial correlations between the autumn/winter mixed layer power input and several atmospheric variables. The temporal mean Weddell and Ross autumn/winter power input shows stronger spatial correlation to several atmospheric variables compared to the Amundsen and Bellingshausen. In contrast the spatial mean autumn/winter power input shows stronger

  4. Ice shelf basal melt rates around Antarctica from simulations and observations

    NASA Astrophysics Data System (ADS)

    Schodlok, M. P.; Menemenlis, D.; Rignot, E. J.

    2016-02-01

    We introduce an explicit representation of Antarctic ice shelf cavities in the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) ocean retrospective analysis; and compare resulting basal melt rates and patterns to independent estimates from satellite observations. Two simulations are carried out: the first is based on the original ECCO2 vertical discretization; the second has higher vertical resolution particularly at the depth range of ice shelf cavities. The original ECCO2 vertical discretization produces higher than observed melt rates and leads to a misrepresentation of Southern Ocean water mass properties and transports. In general, thicker levels at the base of the ice shelves lead to increased melting because of their larger heat capacity. This strengthens horizontal gradients and circulation within and outside the cavities and, in turn, warm water transports from the shelf break to the ice shelves. The simulation with more vertical levels produces basal melt rates (1735 ± 164 Gt/a) and patterns that are in better agreement with observations. Thinner levels in the sub-ice-shelf cavities improve the representation of a fresh/cold layer at the ice shelf base and of warm/salty water near the bottom, leading to a sharper pycnocline and reduced vertical mixing underneath the ice shelf. Improved water column properties lead to more accurate melt rates and patterns, especially for melt/freeze patterns under large cold-water ice shelves. At the 18 km grid spacing of the ECCO2 model configuration, the smaller, warm-water ice shelves cannot be properly represented, with higher than observed melt rates in both simulations.

  5. Integration of airborne altimetry and in situ radar measurements to estimate marine ice thickness beneath the Larsen C ice shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    McGrath, D.; Steffen, K.; Rodriguez Lagos, J.

    2010-12-01

    Observed atmospheric and oceanic warming is driving significant retreat and / or collapse of ice shelves along the Antarctic Peninsula totaling over 25,000 km2 in the past five decades. Basal melting of meteoric ice can occur near the grounding line of deep glacier inflows if the ocean water is above the pressure melting point. Buoyant meltwater will develop thermohaline circulation, rising beneath the ice shelf, where it may become supercooled and subsequently refreeze in ice draft minima. Marine ice, due to its warm and thus relatively viscous nature, is hypothesized to suture parallel flow bands, increasing ice shelf stability by arresting fracture propagation and controlling iceberg calving dimensions. Thus efforts to model ice shelf stability require accurate estimates of marine ice location and thickness. Ice thickness of a floating ice shelf can be determined in two manners: (1) from measurements of ice elevation above sea level and the calculation of ice thickness from assumptions of hydrostatic equilibrium, and (2) from radar echo measurements of the ice-water interface. Marine ice can confound the latter because its high dielectric constant and strong absorptive properties attenuate the radar energy, often preventing a return signal from the bottom of the ice shelf. These two methods are complementary for determining the marine ice component though because positive anomalies in (1) relative to (2) suggest regions of marine ice accretion. Nearly 350 km of ice penetrating radar (25 MHz) surveys were collected on the Larsen C ice shelf, in conjunction with kinematic GPS measurements and collocated with surface elevation data from the NASA Airborne Topographic Mapper (ATM) as part of the ICE Bridge mission in 2009. Basal ice topography and total ice thickness is accurately mapped along the survey lines and compared with calculated ice thickness from both the kinematic GPS and ATM elevation data. Positive anomalies are discussed in light of visible imagery and

  6. Modelling Antarctic ice shelf melting under LGM and doubled CO2 climate using ice shelf-ocean model and climate model

    NASA Astrophysics Data System (ADS)

    Obase, T.; Abe-Ouchi, A.; Kusahara, K.; Hasumi, H.

    2014-12-01

    Ice-ocean interaction is thought to be a responsible process on long-term Antarctic ice sheet variations, such as retreat of West Antarctic Ice Sheet during Eemian interglacial. Numerical simulation of Antarctic ice sheet require melt rate at ice shelf base as a boundary condition, but the relation between climate and melt rate is unclear. We calculate Antarctic ocean and basal melting of Antarctic ice shelves under Last Glacial Maximum(LGM) and doubled CO2(2xCO2) climate at equilibrium as well as present-day(CTL). We use circumpolar ice shelf-ocean general circulation model(OGCM, based on COCO) and outputs of climate model(MIROC). For the CTL case, we drive OGCM with surface atmospheric climatology based on reanalysis(OMIP) and present-day ocean temperature and salinity for restoration at northern boundary, placed at around latitude of 40S. The surface boundary conditions for LGM(or 2xCO2) is computed from the outputs from climate model simulations. Annual mean marine 2m air temperature anomaly averaged for south of 60S is -7.3℃ for LGM and +6.0℃ for 2xCO2. LGM (or 2xCO2) anomalies of surface atmospheric variables are superimposed to OMIP to make LGM (or 2xCO2) atmospheric boundary conditions. We modify the ocean temperature and salinity column for restoration at northern boundary by superimposing anomaly to present-day ocean climatology. Present-day geometry of ice sheet and ice shelf is used in all experiments to test the sensitivity to climate. We show that melting amount of Antarctic ice shelves show 23% reduction for the LGM and 3.5 times increase for the 2xCO2 compared to the CTL case. We perform a series of additional sensitivity experiments to investigate the role of surface change in sea surface atmospheric variables (temperature, wind) and ocean structures in the Southern Ocean on melt rate of ice shelves. Water mass, ocean circulation and sea ice production on continental shelf are analyzed.

  7. Icepod Plus Potential Field: An Integrated Approach For Understanding Ice Shelf Processes

    NASA Astrophysics Data System (ADS)

    Frearson, N.

    2015-12-01

    Warm water flowing beneath the large floating ice shelves in Antarctica will play an important role in how fast sea level rises. The lack of detailed bathymetry beneath the large ice shelves and lack of understanding of their internal structure inherently limits our knowledge of how ice shelves will thin and collapse. Understanding the bathymetry beneath the remaining ice shelves is critical to understanding how ice shelves will thin in the future and how that will impact the flux of ice into the global ocean. The Ross Ice Shelf, the largest ice shelf remaining on our planet, buttresses the West Antarctic Ice Sheet. The bathymetry beneath the Ross Ice Shelf is the least explored piece of ocean floor on our planet. The IcePod is a compact integrated ice imaging system developed for use on any C-130 aircraft developed with NSF support. The initial development program was targeted towards investigating glacial and ice-sheet processes. In this program, deep and shallow ice radars were developed. Optical instruments, including a scanning laser, Infra-red camera and visible wave camera were integrated into the pod. We have expanded the IcePod instrument suite to include the potential field measurements of magnetic and gravity anomalies with support from the Moore Foundation. During the development, a total field cesium sensor magnetometer and 3-axis fluxgate from previously funded work were also incorporated into the pod. Their behavioral response to being located close to high-frequency electronics, power supplies and metallic objects were studied. We describe in part some of that development process and the positive findings that resulted. The Icepod group is also actively pursuing the development, modification and incorporation of a new gravimeter into the suite of instruments available to the program and is investigating reduction in size of this that may eventually lead to incorporating the gravimeter into the pod itself. As part of this program we are also

  8. Sea ice and the ocean mixed layer over the Antarctic shelf seas

    NASA Astrophysics Data System (ADS)

    Petty, A. A.; Holland, P. R.; Feltham, D. L.

    2014-04-01

    An ocean mixed-layer model has been incorporated into the Los Alamos sea ice model CICE to investigate regional variations in the surface-driven formation of Antarctic shelf waters. This model captures well the expected sea ice thickness distribution, and produces deep (> 500 m) mixed layers in the Weddell and Ross shelf seas each winter. This results in the complete destratification of the water column in deep southern coastal regions leading to high-salinity shelf water (HSSW) formation, and also in some shallower regions (no HSSW formation) of these seas. Shallower mixed layers are produced in the Amundsen and Bellingshausen seas. By deconstructing the surface processes driving the mixed-layer depth evolution, we show that the net salt flux from sea ice growth/melt dominates the evolution of the mixed layer in all regions, with a smaller contribution from the surface heat flux and a negligible input from wind stress. The Weddell and Ross shelf seas receive an annual surplus of mixing energy at the surface; the Amundsen shelf sea energy input in autumn/winter is balanced by energy extraction in spring/summer; and the Bellingshausen shelf sea experiences an annual surface energy deficit, through both a low energy input in autumn/winter and the highest energy loss in spring/summer. An analysis of the sea ice mass balance demonstrates the contrasting mean ice growth, melt and export in each region. The Weddell and Ross shelf seas have the highest annual ice growth, with a large fraction exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, driven by the advection of ice from the northeast. A linear regression analysis is performed to determine the link between the autumn/winter mixed-layer deepening and several atmospheric variables. The Weddell and Ross shelf seas show stronger spatial correlations (temporal mean - intra-regional variability) between the autumn/winter mixed-layer deepening and several

  9. Quantitative Links between Amundsen Sea Heat and Pine Island Ice Shelf Melt

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.; Vaughan, D. G.; Vornberger, P.

    2010-12-01

    Previous researchers have established the strong connection between the Amundsen Sea and basal melt of Pine Island Glacier’s ice shelf in Antarctica. In this presentation we extend this work by focusing on a strong spatial pattern of ice thickness undulations observed on the ice shelf and the predicted temporal pattern of pulses of Circumpolar Deep Water (CDW) upwelled onto the Amundsen Sea continental shelf by variable surface winds (Thoma et al., 2008). After converting the temporal pattern to spatial position on the ice shelf, we show a remarkable correlation over the last decade of these records that allows us to quantitatively associate an amount of heat at the front of the ice shelf, with an amount of melt that occurs at the grounding line. By considering the excess melting driven by pulses of CDW separately from the background melting, we extract a set of heat vs. melt values that suggest a linear relationship supporting the results of Rignot and Jacobs (2002) and disputing the non-linear relationship suggested by Holland et al. (2008). We infer that the current delivering the ocean’s heat is approximately 3.4 cm/sec , that most of the heat is expended by melt, and that the majority of melting is spatially limited to the grounding line vicinity. References cited: Holland, P.R., A. Jenkins and D.M. Holland, 2008. The Response of Ice Shelf Basal Melting to Variations in Ocean Temperature. Journal of Climate, Vol. 21, pp. 2558-2572, DOI: 10.1175/2007JCLI1909.1 Rignot E. and S.S. Jacobs, 2002. Rapid bottom melting widespread near Antarctic ice sheet grounding lines, Science, Vol. 296, No. 5575, p. 2020-2023. Thoma, M., A. Jenkins, D. Holland, and S. Jacobs, 2008. Modelling Circumpolar Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica, Geophysical Research Letters, Vol. 35, No. 18, L18602, doi: 10.1029/2008GL034939

  10. Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica

    NASA Technical Reports Server (NTRS)

    McKay, C.; Mellon, M. T.; Friedmann, E. I.

    1998-01-01

    Year-round temperature measurements at 1600 m elevation during 1994 in the Asgard Range Antarctica, indicate that the mean annual frost point of the ice-cemented ground, 25 cm below the surface, is -21.7 +/- 0.2 degrees C and the mean annual frost point of the atmosphere is -27.5 +/- 1.0 degrees C. The corresponding mean annual temperatures are -24.9 degrees C and -23.3 degrees C. These results imply that there is a net flux of water vapour from the ice to the atmosphere resulting in a recession of the ice-cemented ground by about 0.4-0.6 mm yr-1. The level of the ice-cemented permafrost is about 12 cm below the level of dry permafrost. The summer air temperatures would have to increase about 7 degrees C for thawing temperatures to just reach the top of the subsurface ice. Either subsurface ice at this location is evaporating over time or there are sporadic processes that recharge the ice and maintain equilibrium over long timescales.

  11. Evolution of basal crevasses links ice shelf stability to ocean forcing

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.

    2013-12-01

    Basal melting and iceberg calving are the primary mechanisms responsible for transferring mass from the ice shelves to the ocean. Although the connection between basal melting and ocean forcing is clear, the effect of ocean forcing on iceberg calving remains more controversial with conflicting hypothesis about whether a warming ocean will increase or decrease iceberg production. Previous theories of iceberg calving have often relied on various flavors of fracture mechanics, assuming that iceberg calving is a brittle process. Here I use a perturbation analysis to show that the strain weakening nature of ice allows initially narrow basal crevasses with width much smaller than the ice thickness to seed a visco-plastic instability that gives rise to locally enhanced ductile deformation and ice shelf thinning over length scales that are compared to the ice thickness. This process, called plastic necking, widens crevasses and allows crevasses to penetrate an increasing fraction of the ice thickness as they advect downstream. This instability progresses slowly, however, and enhanced melting or accretion of marine ice within crevasses as they advect downstream will either enhance or decrease crevasse penetration depth thereby exerting a strong control on ice shelf stability. Despite large uncertainty in ice-ocean interaction on the scale of individual crevasses, this model is able to explain the difference between the quasi-steady short (<15 km long) Erebus Glacier Tongue and much longer (>80 km long) Drygalski Ice Tongue. Moreover, application of the model to the four largest Antarctic ice shelves predicts that without marine ice accumulation in basal crevasses, deep crevasses form downstream of the grounding line that correspond to locations of fractures visible in satellite imagery. However, accumulation of marine ice within basal crevasses can substantially decrease crevasse penetration heights, increasing ice shelf stability, providing a strong link between iceberg

  12. An Isotopic Map of Dust Source Areas in the McMurdo Sound Sector of Antarctica

    NASA Astrophysics Data System (ADS)

    Blakowski, M. A.; Aciego, S.; Delmonte, B.; Baroni, C.; Salvatore, M. C.

    2014-12-01

    The McMurdo Sound sector of Antarctica features a unique, polar desert ecosystem characterized by low temperatures, hyper-aridity, and high-speed winds. These climatic conditions result in limited water sources, sparse vegetation, underdeveloped soils, and abundant unconsolidated sediment easily influenced by wind-driven transport. Radiogenic isotopes (87Sr/86Sr, 143Nd/144Nd) provide constant signatures of dust from source- to sink-areas. Accordingly, aeolian dust derived from arid regions has been recognized in many studies as an important tracer of atmospheric circulation, as well as a tool for deciphering past climatic conditions in dust source regions. However, while major global dust sources (e.g. from South America, Africa, and Asia) are well studied and easily identifiable via distinct isotopic signatures when encountered in different depositional environments (e.g. Antarctic ice cores), local material from sources in and around the ice-free Dry Valleys and surrounding areas have remained in need of further documentation. We analyzed 40 samples of silt, sand, glacial drift, and weathered regolith material in both fine (<5μm) and coarse fractions collected from Victoria Land and the McMurdo Sound sector, including Cape Royds, Cape Bird, and the McMurdo Ice Shelf. Here we present an ArcGIS-generated, high-precision geochemical map of Antarctic PSAs synthesized from our data and combined with geomorphological and stratigraphic information on the studied sites. We believe that our expanded isotopic catalogue and map can be used to enhance and/or prompt regional studies in a variety of disciplines, such as by providing greater constraints on models of regional dust variability and transport pathways and of the melting history of the Antarctic ice sheet, and by determining the provenance of dust archived in ice cores, lake sediment, soil records, and impurities in Antarctic sea-ice.

  13. Characterizing Microbial Mat Morphology with Structure from Motion Techniques in Ice-Covered Lake Joyce, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Mackey, T. J.; Leidman, S. Z.; Allen, B.; Hawes, I.; Lawrence, J.; Jungblut, A. D.; Krusor, M.; Coleman, L.; Sumner, D. Y.

    2015-12-01

    Structure from Motion (SFM) techniques can provide quantitative morphological documentation of otherwise inaccessible benthic ecosystems such as microbial mats in Lake Joyce, a perennially ice-covered lake of the Antarctic McMurdo Dry Valleys (MDV). Microbial mats are a key ecosystem of MDV lakes, and diverse mat morphologies like pinnacles emerge from interactions among microbial behavior, mineralization, and environmental conditions. Environmental gradients can be isolated to test mat growth models, but assessment of mat morphology along these gradients is complicated by their inaccessibility: the Lake Joyce ice cover is 4-5 m thick, water depths containing diverse pinnacle morphologies are 9-14 m, and relevant mat features are cm-scale. In order to map mat pinnacle morphology in different sedimentary settings, we deployed drop cameras (SeaViewer and GoPro) through 29 GPS referenced drill holes clustered into six stations along a transect spanning 880 m. Once under the ice cover, a boom containing a second GoPro camera was unfurled and rotated to collect oblique images of the benthic mats within dm of the mat-water interface. This setup allowed imaging from all sides over a ~1.5 m diameter area of the lake bottom. Underwater lens parameters were determined for each camera in Agisoft Lens; images were reconstructed and oriented in space with the SFM software Agisoft Photoscan, using the drop camera axis of rotation as up. The reconstructions were compared to downward facing images to assess accuracy, and similar images of an object with known geometry provided a test for expected error in reconstructions. Downward facing images identify decreasing pinnacle abundance in higher sedimentation settings, and quantitative measurements of 3D reconstructions in KeckCAVES LidarViewer supplement these mat morphological facies with measurements of pinnacle height and orientation. Reconstructions also help isolate confounding variables for mat facies trends with measurements

  14. Sea ice and surface water circulation, Alaskan Continental Shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burn, J. J.

    1973-01-01

    The author has identified the following significant results. The boundaries of land-fast ice, distribution of pack ice, and major polynya were studied in the vicinity of the Bering Strait. Movement of pack ice during 24 hours was determined by plotting the distinctly identifiable ice floes on ERTS-1 imagery obtained from two consecutive passes. Considerably large shallow area along the western Seward Peninsula just north of the Bering Strait is covered by land fast ice. This ice hinders the movement of ice formed in eastern Chukchi Sea southward through the Bering Strait. The movement of ice along the Russian coast is relatively faster. Plotting of some of the ice floes indicated movement of ice in excess of 30 km in and south of the Bering Strait between 6 and 7 March, 1973. North of the Bering Strait the movement approached 18 km. The movement of ice observed during March 6 and 7 considerably altered the distribution and extent of polynya. These features when continually plotted should be of considerable aid in navigation of ice breakers. The movement of ice will also help delineate the migration and distribution of sea mammals.

  15. Bimodal pattern of seismicity detected at the ocean margin of an Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Lombardi, Denis; Benoit, Lionel; Camelbeeck, Thierry; Martin, Olivier; Meynard, Christophe; Thom, Christian

    2016-06-01

    In Antarctica, locally grounded ice, such as ice rises bordering floating ice shelves, plays a major role in the ice mass-balance as it stabilizes the ice sheet flow from the hinterland. When in direct contact with the ocean, the ice rise buttressing effect may be altered in response of changing ocean forcing. To investigate this vulnerable zone, four sites near the boundary of an ice shelf with an ice rise promontory in Dronning Maud Land, East-Antarctica were monitored for a month in early 2014 with new instruments that include both seismic and GPS sensors. Our study indicated that this transition zone experiences periodic seismic activity resulting from surface crevassing during oceanic tide-induced flexure of the ice shelf. The most significant finding is the observation of apparent fortnightly tide-modulated low frequency, long duration seismic events at the seaward front of the ice rise promontory. A basal origin of these events is postulated with the ocean water surge at each new spring tide triggering basal crevassing or basal slip on a local bedrock asperity. Detection and monitoring of such seismicity may help identifying ice rise zones vulnerable to intensified ocean forcing.

  16. Bimodal pattern of seismicity detected at the ocean margin of an Antarctic ice shelf

    NASA Astrophysics Data System (ADS)

    Lombardi, Denis; Benoit, Lionel; Camelbeeck, Thierry; Martin, Olivier; Meynard, Christophe; Thom, Christian

    2016-08-01

    In Antarctica, locally grounded ice, such as ice rises bordering floating ice shelves, plays a major role in the ice mass balance as it stabilizes the ice sheet flow from the hinterland. When in direct contact with the ocean, the ice rise buttressing effect may be altered in response of changing ocean forcing. To investigate this vulnerable zone, four sites near the boundary of an ice shelf with an ice rise promontory in Dronning Maud Land, East-Antarctica were monitored for a month in early 2014 with new instruments that include both seismic and GPS sensors. Our study indicated that this transition zone experiences periodic seismic activity resulting from surface crevassing during oceanic tide-induced flexure of the ice shelf. The most significant finding is the observation of apparent fortnightly tide-modulated low-frequency, long-duration seismic events at the seaward front of the ice rise promontory. A basal origin of these events is postulated with the ocean water surge at each new spring tide triggering basal crevassing or basal slip on a local bedrock asperity. Detection and monitoring of such seismicity may help identifying ice rise zones vulnerable to intensified ocean forcing.

  17. Variability and ice production budget in the Ross Ice Shelf Polynya based on a simplified polynya model and satellite observations

    NASA Astrophysics Data System (ADS)

    Nakata, Kazuki; Ohshima, Kay I.; Nihashi, Sohey; Kimura, Noriaki; Tamura, Takeshi

    2015-09-01

    We examined to what degree a simplified polynya model can explain a real polynya based on satellite-derived sea-ice data. In the model, the polynya area, defined as the frazil ice production region, is determined by a balance between the offshore consolidated ice drift and frazil ice production. We used daily polynya area, ice production, and ice drift data derived from AMSR-E. The study area is the Ross Ice Shelf Polynya (RISP), which has the highest sea-ice production in the Southern Ocean. As a modification of the original model to apply the available satellite data set, we introduced the lag time by which produced frazil ice is transported and accumulated at the polynya edge. The model represents a half (48-60%) of the polynya variability when using a lag time of 1.5 days. The frazil ice collection depth at the polynya edge, a key parameter in the model, is estimated to be ˜16 cm. The expansion of the RISP is achieved by ice divergence, and the contraction is achieved mostly by ice production. Both the wind and the remaining components (mainly regarded as the ocean current component) in the ice divergence are larger in the western part of the RISP, which explains the larger extent there. In the one-dimensional frame, assuming that the frazil ice produced within the RISP transforms into consolidated ice with a thickness of 16 cm, the frazil ice production (˜1.7 × 103 m2 d-1) within the RISP approximately balances the export (˜1.6 × 103 m2 d-1) of consolidated thin ice from the RISP edge.

  18. Lagrangian analysis of ICESat altimetry reveals patterns of ice shelf basal melting

    NASA Astrophysics Data System (ADS)

    Moholdt, G.; Fricker, H. A.; Padman, L.

    2012-12-01

    Iceberg calving and ice shelf basal melting are normal mass-loss processes that over time roughly balance the outflow of ice from the Antarctic Ice Sheet. Most basal melting is thus compensated by ice advection and is not detected by the traditional methods of analyzing surface elevation changes in a fixed geographic coordinate system (Eulerian). Here we present a new method that derive elevation changes in a "Lagrangian" sense from repeat-track ICESat laser altimetry, where specific locations are followed on the advancing ice shelf surface. We use a published ice shelf velocity field to correct for ice advection between consecutive repeats, and then convert the Lagrangian dh/dt estimates into ice thickness changes based on a model of the firn layer. In some locations, the derived ice thickness changes are much larger the Eulerian approach. The Lagrangian approach reduces the noise level of the derived ice thickness changes and reveals clear spatial patterns that we interpret as variations in basal melting. For the largest Antarctic ice shelves (Ross and Filchner-Ronne), we find that the Lagrangian thinning rates increase progressively towards the fronts, which is consistent with oceanographic models that suggest higher basal melt rates in the frontal zone. There are few examples of localized Lagrangian thickening, suggesting that basal melting is likely dominating over basal freezing in the interior of most ice shelves. Combined with data on surface mass balance and firn compaction, our Lagrangian approach can provide new insights into the magnitude and extent of basal melting, as well as being an important validation for models of ice-ocean interaction.

  19. McMurdo Dry Valleys

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the few areas of Antarctica not covered by thousands of meters of ice, the McMurdo Dry Valleys stand out in this satellite image. For a few weeks each summer temperatures are warm enough to melt glacial ice, creating streams that feed freshwater lakes that lie at the bottom of the valleys. Beneath a cap of ice these lakes remains unfrozen year-round, supporting colonies of bacteria and phytoplankton. Over the past 14 years, however, summers have been colder than usual, and the lakes are becoming more and more frozen. If the trend continues, the biological communities they support may go into hibernation. Most of Antarctica has cooled along with the Dry Valleys, in contrast to much of the rest of the Earth, which has warmed over the past 100 years. No one knows if the trend is related to global climate, or just a quirk in the weather. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) instrument on December 18, 1999. For more information, visit: National Public Radio's Mixed Signals from Antarctica Declassified Satellite Imagery of the McMurdo Dry Valleys Image by Robert Simmon, based on data provided by the NASA GSFC Oceans and Ice Branch and the Landsat 7 Science Team

  20. Ice-shelf height variability in Amundsen Sea linked to ENSO

    NASA Astrophysics Data System (ADS)

    Paolo, Fernando; Fricker, Helen; Padman, Laurie

    2016-04-01

    Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to 18-year (1994-2012) time series of ice-shelf height derived from satellite radar altimetry in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends in ice-shelf height change are much larger than the range of interannual variability in the AS region, the short-term rate of change dh/dt can vary about the trend by more than 50%. We extract the principal modes of variability (EOFs) based on common spectral properties from a set of 140 height time series. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. This interannual mode in ice-shelf height, represented by the two leading EOFs, is responsible for about 25% of the variance in the de-trended data set. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. While we find a correlation between modeled precipitation anomalies and ice-shelf height, we are investigating (a) errors in model precipitation, (b) radar backscatter and firn-density issues, and (c) ocean contribution correlated with atmosphere through wind-stress forcing. We

  1. Mounting evidence for intense ocean interaction with the Pine Island Glacier Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.; Holland, D.; Vaughan, D.; Vornberger, P.

    2008-12-01

    The spatial signature of thinning and acceleration of the Pine Island Glacier has led to the inference that these changes originate at the seaward end of the glacier, possibly within or under the ice shelf (Payne et al., 2004; Shepherd et al., 2004). We present new analyses resulting from both new and archived satellite imagery of the ice shelf that supports this inference and provides new insights into strong seasonal and intra- annual characters of ocean-ice shelf interaction. Strong longitudinal variations in both thickness and surface elevation measured by British Antarctic Survey airborne radars (Vaughan et al., 2006) have wavelengths that correspond roughly to the annual motion of the ice shelf. These could be caused by seasonal variations in flow speed, but such variations of flow speed have never been reported and are not seen in the most recent continuous GPS observations of the ice shelf. We suggest that these strong variations in ice thickness, as large as 200 meters in an average thickness of 600 meters, are caused by seasonal variations in the properties of the water circulating underneath the ice shelf. One likely explanation is that the dominant water mass reaching the deepest parts of the ice shelf alternates between cold High Salinity Shelf Water in the winter and warm Circumpolar Deep Water in the summer. Evidence for recent strengthening of the sub- shelf circulation is the sudden occurrence of three persistent polynyas immediately adjacent to the ice front. These are located in precisely the locations expected from modeled sub-shelf circulation (Payne et al., 2007). This mode was never observed in any satellite imagery prior to the 1999-2000 austral summer (data of 7 summers since 1973 were available), but has occurred in 7 of the 9 summers since and persists throughout the summer. Payne, A.J., A. Vieli, A.P. Shepherd, D.J. Wingham and E. Rignot, 2004. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans, Geophysical

  2. Evolution of basal crevasses links ice shelf stability to ocean forcing

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Ma, Y.

    2015-01-01

    Iceberg calving is one of the primary mechanisms responsible for transferring ice from the Antarctic ice shelves to the ocean, but remains poorly understood. Previous theories of calving have sought to explain the calving process as a brittle phenomenon that occurs rapidly when surface or basal crevasses penetrate the entire ice thickness. Here we show that the strain-rate-weakening nature of ice permits initially narrow basal crevasses to seed an instability that gives rise to locally enhanced ductile deformation and thinning over length scales that are large compared to the ice thickness. This ductile failure process, called necking, amplifies long wavelength features of bottom topography and allows basal crevasses to penetrate an increasing fraction of the ice thickness as they advect downstream. Application of the model to the four largest Antarctic ice shelves shows that necking occurs downstream of pinning points and sharp protrusions in the ice shelf embayment where stress is highly concentrated. However, model predictions are sensitive to assumptions about basal melting and refreezing within crevasses, suggesting that the combination of mechanical instability and ice-ocean interaction on the scale of an individual crevasse may play a leading role in controlling ice shelf stability.

  3. Biodiversity change after climate-induced ice-shelf collapse in the Antarctic

    NASA Astrophysics Data System (ADS)

    Gutt, Julian; Barratt, Iain; Domack, Eugene; d'Udekem d'Acoz, Cédric; Dimmler, Werner; Grémare, Antoine; Heilmayer, Olaf; Isla, Enrique; Janussen, Dorte; Jorgensen, Elaina; Kock, Karl-Hermann; Sophia Lehnert, Linn; López-Gonzáles, Pablo; Langner, Stephanie; Linse, Katrin; Eugenia Manjón-Cabeza, Maria; Meißner, Meike; Montiel, Americo; Raes, Maarten; Robert, Henri; Rose, Armin; Sañé Schepisi, Elisabet; Saucède, Thomas; Scheidat, Meike; Schenke, Hans-Werner; Seiler, Jan; Smith, Craig

    2011-03-01

    The marine ecosystem on the eastern shelf of the Antarctic Peninsula was surveyed 5 and 12 years after the climate-induced collapse of the Larsen A and B ice shelves. An impoverished benthic fauna was discovered, that included deep-sea species presumed to be remnants from ice-covered conditions. The current structure of various ecosystem components appears to result from extremely different response rates to the change from an oligotrophic sub-ice-shelf ecosystem to a productive shelf ecosystem. Meiobenthic communities remained impoverished only inside the embayments. On local scales, macro- and mega-epibenthic diversity was generally low, with pioneer species and typical Antarctic megabenthic shelf species interspersed. Antarctic Minke whales and seals utilised the Larsen A/B area to feed on presumably newly established krill and pelagic fish biomass. Ecosystem impacts also extended well beyond the zone of ice-shelf collapse, with areas of high benthic disturbance resulting from scour by icebergs discharged from the Larsen embayments.

  4. Reducing the uncertainty in projections of future ice shelf basal melting

    NASA Astrophysics Data System (ADS)

    Timmermann, Ralph; Kauker, Frank

    2014-05-01

    Simulations of ice shelf basal melting in future climate scenarios from the IPCC's Fourth Assessment Report (AR4) have revealed a large uncertainty and the potential of a rapidly increasing basal mass loss particularly for the large cold-water ice shelves in the Ross and Weddell Seas. The large spread in model results was traced back to uncertainties in the freshwater budget on the continental shelf, which is governed by sea ice formation. Differences in sea ice formation, in turn, follow the regional differences between the atmospheric heat fluxes imprinted by the climate models. A more recent suite of BRIOS and FESOM model experiments was performed with output from two members of the newer generation of climate models enganged in the IPCC's Fifth Assessment Report (AR5). Comparing simulations forced with output from the AR5/CMIP5 models HadGem2 and MPI-ESM, we find that uncertainties arising from inter-model differences in high latitudes have reduced considerably. Projected heat fluxes and thus sea ice formation over the Southern Ocean continental shelves have converged to an ensemble with a much smaller spread than between the AR4 experiments. For most of the ten larger ice shelves in Antarctica, a gradual (but accelerating) increase of basal melt rates during the 21st century is a robust feature throughout the various realisations. Both with HadGem2 and with MPI-ESM forcing, basal melt rates for Filchner-Ronne Ice Shelf in FESOM increase by a factor of two by the end of the 21st century in the RCP85 scenario. For the smaller, warm-water ice shelves, inter-model differences in ice shelf basal mass loss projections are still slightly larger than differences between the scenarios RCP45 and RCP85; compared to AR4 projections, however, the model-dependent spread has been strongly reduced.

  5. Seismic observations of sea swell on the floating Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.; Okal, Emile A.; Macayeal, Douglas R.

    2009-06-01

    A seismometer operating on the floating Ross Ice Shelf near its seaward ice front (Nascent Iceberg) for 340 days (out of 730 days) during the 2004, 2005, and 2006 Antarctic field seasons recorded the arrival of 93 distantly sourced ocean swell events displaying frequency dispersion characteristic of surface gravity waves propagating on deep water. Comparison of swell event dispersion with the NOAA Wave Watch III (NWW3) ocean wave model analysis reveals that 83 of these events were linked to specific storms located in the Pacific, Southern, and Indian oceans. Nearly all major storms in the NWW3 analysis of the Pacific Ocean were linked to signals observed at the Nascent site during the period of seismometer operation. Swell-induced motion of the Ross Ice Shelf is found to increase by several orders of magnitude over the time period that sea ice surrounding Antarctica decreases from its maximum extent (October) to its minimum extent (February). The amplitude of vertical vibration of the ice shelf in the frequency band between 0.025 and 0.14 Hz varies between tens of micrometers to millimeters as sea ice decays to its minimum seasonal extent. This suggests that climate influence on sea ice extent may indirectly modulate swell energy incident on the calving margins of the Antarctic Ice Sheet. The largest swell signals observed on the Ross Ice Shelf come from storms in the tropical Pacific and Gulf of Alaska. These remote events emphasize how the iceberg calving margin of Antarctica is connected to environmental conditions well beyond Antarctica.

  6. Coupled ice shelf-ocean modeling and complex grounding line retreat from a seabed ridge

    NASA Astrophysics Data System (ADS)

    De Rydt, J.; Gudmundsson, G. H.

    2016-05-01

    Recent observations and modeling work have shown a complex mechanical coupling between Antarctica's floating ice shelves and the adjacent grounded ice sheet. A prime example is Pine Island Glacier, West Antarctica, which has a strong negative mass balance caused by a recent increase in ocean-induced melting of its ice shelf. The mass loss coincides with the retreat of the grounding line from a seabed ridge, on which it was at least partly grounded until the 1970s. At present, it is unclear what has caused the onset of this retreat and how feedback mechanisms between the ocean and ice shelf geometry have influenced the ice dynamics. To address these questions, we present the first results from an offline coupling between a state-of-the-art shallow-ice flow model with grounding line resolving capabilities and a three-dimensional ocean general circulation model with a static implementation of the ice shelf. A series of idealized experiments simulate the retreat from a seabed ridge in response to changes in the ocean forcing, and we show that the retreat becomes irreversible after 20 years of warm ocean conditions. A comparison to experiments with a simple depth-dependent melt rate parameterization demonstrates that such parameterizations are unable to capture the details of the retreat process, and they overestimate mass loss by more than 40% over a 50 year timescale.

  7. High Resolution Magnetic Anomaly Imaging of Southern McMurdo Sound (Antarctica)

    NASA Astrophysics Data System (ADS)

    Chiappini, M.; Gaya Pique, L. R.; Pignatelli, A.; Wilson, T.

    2004-12-01

    During the 2003-04 austral summer season, a low-altitude, high-resolution airborne magnetic survey was conducted in the area of Southern McMurdo Sound, western Ross Sea, in the framework of the joint Italian-US initiative called GEOIMAG (GEOphysical IMAGing of Antarctic tectonic and volcanic units in the Transantarctic Mountains and Ross Sea area). The survey was flown by helicopter from McMurdo Station, at a constant terrain clearance of 70 m. Profile spacing was 350 m. The resolution of the survey, the accuracy of the data acquisition, and a preliminary digital enhancement of the processed magnetic data have contributed to highlight the short-wavelength component of the regional magnetic anomaly field, resolving volcanic bodies and faults. A broad positive anomaly tapers northward from the volcanic Brown Peninsula. The breadth and low amplitude of the anomaly suggests this may mark relatively thin deposits of volcanic material on or near the seafloor. High-frequency and high-amplitude anomalies are associated with the volcanic Daily Islands at the edge of the Ross Ice Shelf. Anomalies of similar amplitude and size in adjacent areas indicate additional volcanic cones occur on the seafloor and beneath the ice sheet. Low-amplitude, curvilinear anomalies with a convex shape toward McMurdo Sound occur offshore of the outlet of Ferrar Glacier and extending southward parallel to the coastline. The new data are being integrated with a multi-source database (magnetic, digital terrain data, bathymetry, regional structural trends) to obtain an unprecedented view of the magnetic signature of the major tectonic elements in the area. The structural and volcanic framework resulting from this investigation will provide important site survey information for the proposed ANDRILL drill sites in southern McMurdo Sound.

  8. Direct evidence of warm water access to the Totten Glacier sub-ice shelf cavity

    NASA Astrophysics Data System (ADS)

    Orsi, A. H.; Rintoul, S. R.; Silvano, A.; van Wijk, E.; Pena-Molino, B.; Rosenberg, M. A.

    2015-12-01

    The Totten Glacier holds enough ice to raise global sea level by 3.5 m, is thinning according to (some) satellite data, and is grounded well below sea level on a retrograde bed and hence is potentially unstable. Basal melt driven by ocean heat flux has been linked to ice shelf thinning elsewhere in Antarctica, but no oceanographic measurements had been made near the Totten. In January 2015 the RSV Aurora Australis was the first ship to reach the Totten calving front. Observations from ship-board CTD, moorings and profiling floats provide direct confirmation that warm water reaches the ice shelf cavity. Warm water is present near the sea floor at every station deeper than 300 m depth, with maximum temperatures at mid-shelf >0.5°C. Mooring data confirm that the warm water is present year-round. A deep (>1100 m) channel at the calving front allows warm water (-0.4°C, >2°C above the local freezing point) to access the ice shelf cavity. The contrast between the oceanographic conditions near the Totten and near the Mertz Glacier is stark, although they are separated by only 30 degrees of longitude. East Antarctic ice shelves have often been assumed to behave in a similar manner and to be invulnerable to ocean change; these measurements suggest these assumptions need to be reconsidered.

  9. Antarctic ice shelf thickness from CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Chuter, Stephen; Bamber, Jonathan

    2016-04-01

    The Antarctic ice shelves provide buttressing to the inland grounded ice sheet, and therefore play a controlling role in regulating ice dynamics and mass imbalance. Accurate knowledge of ice shelf thickness is essential for input-output method mass balance calculations, sub-ice shelf ocean models and buttressing parameterisations in ice sheet models. Ice shelf thickness has previously been inferred from satellite altimetry elevation measurements using the assumption of hydrostatic equilibrium, as direct measurements of ice thickness do not provide the spatial coverage necessary for these applications. The sensor limitations of previous radar altimeters have led to poor data coverage and a lack of accuracy, particularly the grounding zone where a break in slope exists. We present a new ice shelf thickness dataset using four years (2011-2014) of CryoSat-2 elevation measurements, with its SARIn dual antennae mode of operation alleviating the issues affecting previous sensors. These improvements and the dense across track spacing of the satellite has resulted in ˜92% coverage of the ice shelves, with substantial improvements, for example, of over 50% across the Venable and Totten Ice Shelves in comparison to the previous dataset. Significant improvements in coverage and accuracy are also seen south of 81.5° for the Ross and Filchner-Ronne Ice Shelves. Validation of the surface elevation measurements, used to derive ice thickness, against NASA ICESat laser altimetry data shows a mean bias of less than 1 m (equivalent to less than 9 m in ice thickness) and a fourfold decrease in standard deviation in comparison to the previous continental dataset. Importantly, the most substantial improvements are found in the grounding zone. Validation of the derived thickness data has been carried out using multiple Radio Echo Sounding (RES) campaigns across the continent. Over the Amery ice shelf, where extensive RES measurements exist, the mean difference between the datasets is 3

  10. The role of pinning-points, marine ice and subglacial channeling in defining the buttressing strength of the Roi Baudouin Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Drews, Reinhard; Matsuoka, Kenichi; Berger, Sophie; Callens, Denis; Favier, Lionel; Pattyn, Frank

    2014-05-01

    Within the coastal belt of Dronning Maud Land, many ice shelves, which are freely floating otherwise, reattach to localized highs in the bathymetry on the ice-shelf front. These localized pinning-points exert a buttressing force, which typically slows down the ice shelves farther upstream. Our interest is to quantify this buttressing effect, and to determine as to whether or not, the comparatively small pinning-points can play a decisive role in defining the mass balance of tributary glaciers. We consider the Roi Baudouin ice shelf, which is laterally confined by two large ice rises, and pinned on the ice-shelf front by a small ice rumple. It buttresses the western Ragnhild glacier. On the ice-shelf surface, satellite imagery reveals a number of elongated surface depressions, which are aligned along-flow and which correspond to a sub-ice shelf channeling system. We present the results of two consecutive field seasons which were geared at unraveling the combined effect of ice rumple and subice-shelf channels on the ice shelf's buttressing strength. Around 130 km of multi-frequency radar profiles map the channeling as well as the basal interface of the pinning-point. We observe strongly dipping internal layers within the surface depressions and a firmly grounded ice rumple. Data from a 20 x 25 km wide GNSS strain net is extended spatially on a 50 m grid with the help of satellite derived surface velocities. Six wide-angle radar surveys within the research grid show that the depth-averaged density varies spatially on scales that are smaller than the grid size in commonly applied Antarctic-wide firn densification models. The density variations are significant, and need to be taken into account when comparing the hydrostatically inverted GPS thickness with the measured radar thickness. Notwithstanding the ice-rumple's small extent (1-2 km), the combined strain rates show a shear zone which extends all the way back to the grounding line and emphasizes the importance of

  11. Contrasts in Arctic shelf sea-ice regimes and some implications: Beaufort Sea versus Laptev Sea

    USGS Publications Warehouse

    Reimnitz, E.; Dethleff, D.; Nurnberg, D.

    1994-01-01

    The winter ice-regime of the 500 km) from the mainland than in the Beaufort Sea. As a result, the annual freeze-up does not incorporate old, deep-draft ice, and with a lack of compression, such deep-draft ice is not generated in situ, as on the Beaufort Sea shelf. The Laptev Sea has as much as 1000 km of fetch at the end of summer, when freezing storms move in and large (6 m) waves can form. Also, for the first three winter months, the polynya lies inshore at a water depth of only 10 m. Turbulence and freezing are excellent conditions for sediment entrainment by frazil and anchor ice, when compared to conditions in the short-fetched Beaufort Sea. We expect entrainment to occur yearly. Different from the intensely ice-gouged Beaufort Sea shelf, hydraulic bedforms probably dominate in the Laptev Sea. Corresponding with the large volume of ice produced, more dense water is generated in the Laptev Sea, possibly accompanied by downslope sediment transport. Thermohaline convection at the midshelf polynya, together with the reduced rate of bottom disruption by ice keels, may enhance benthic productivity and permit establishment of open-shelf benthic communities which in the Beaufort Sea can thrive only in the protection of barrier islands. Indirect evidence for high benthic productivity is found in the presence of walrus, who also require year-round open water. By contrast, lack of a suitable environment restricts walrus from the Beaufort Sea, although over 700 km farther to the south. We could speculate on other consequences of the different ice regimes in the Beaufort and Laptev Seas, but these few examples serve to point out the dangers of exptrapolating from knowledge gained in the North American Arctic to other shallow Arctic shelf settings. ?? 1994.

  12. On the Structure of the Ice-Shelf-Ocean Boundary Layer and Current

    NASA Astrophysics Data System (ADS)

    Jenkins, A.

    2015-12-01

    Ocean-forced basal melting has been implicated in the widespread thinning of Antarctic ice shelves that has been causally linked with acceleration in the outflow of grounded ice. What determines the distribution and rates of basal melting and freezing beneath an ice shelf and how these respond to changes in the ocean temperature or circulation are therefore key questions. Recent years have seen major progress in our ability to observe basal melting and the ocean conditions that drive it, but data on the latter remain sparse, limiting our understanding of the key processes of ice-ocean heat transfer. In particular, we have no observations of current profiles through the buoyancy- and frictionally-controlled flows along the ice shelf base that drive mixing through the ice-ocean boundary layer. This presentation represents an attempt to address this gap in our knowledge through the application of a very simple model of such boundary flows that considers only the spatial dimension perpendicular to the boundary. Results indicate that for the purely buoyancy-driven flow two possible regimes exist: a weakly-stratified, geostrophic cross-slope current with an embedded Ekman layer; or a strongly-stratified upslope jet with weak cross-slope flow. The latter regime, while well-known to students of katabatic winds, has no analogue in the ocean, and is most appropriate when the ice-ocean interface is very steep. For the gentle slopes typical of ice shelves the buoyant Ekman regime provides some useful insight. When combined with a background flow a range of possible near-ice current profiles emerges as a result of arrest or enhancement of the upslope Ekman transport. Furthermore a simple expression for the upslope transport can be formed that is analogous to that for the wind-forced surface Ekman layer, with the curvature of the ice shelf base replacing the wind-stress curl in driving Ekman pumping to and from the geostrophic flow.

  13. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events.

    PubMed

    Marcott, Shaun A; Clark, Peter U; Padman, Laurie; Klinkhammer, Gary P; Springer, Scott R; Liu, Zhengyu; Otto-Bliesner, Bette L; Carlson, Anders E; Ungerer, Andy; Padman, June; He, Feng; Cheng, Jun; Schmittner, Andreas

    2011-08-16

    Episodic iceberg-discharge events from the Hudson Strait Ice Stream (HSIS) of the Laurentide Ice Sheet, referred to as Heinrich events, are commonly attributed to internal ice-sheet instabilities, but their systematic occurrence at the culmination of a large reduction in the Atlantic meridional overturning circulation (AMOC) indicates a climate control. We report Mg/Ca data on benthic foraminifera from an intermediate-depth site in the northwest Atlantic and results from a climate-model simulation that reveal basin-wide subsurface warming at the same time as large reductions in the AMOC, with temperature increasing by approximately 2 °C over a 1-2 kyr interval prior to a Heinrich event. In simulations with an ocean model coupled to a thermodynamically active ice shelf, the increase in subsurface temperature increases basal melt rate under an ice shelf fronting the HSIS by a factor of approximately 6. By analogy with recent observations in Antarctica, the resulting ice-shelf loss and attendant HSIS acceleration would produce a Heinrich event. PMID:21808034

  14. Competing connections between the Ross Ice Shelf with the Southern Ocean.

    NASA Astrophysics Data System (ADS)

    Jendersie, Stefan

    2016-04-01

    The stability of the Ross Ice Shelf (RIS) is critical to both the East Antarctic Ice Sheet, and the West Antarctic Ice Sheet. Results from a climatological ice shelf-ocean coupled numerical model (ROMS) suggest a new circulation mechanism associated with High Salinity Water (HSSW) production in the Ross Sea Polynya (RSP) that controls oceanic heat access to the RIS cavity. Within the RSP the dense water-saturated water column contracts during winter and causes a seasonal drop in Sea Surface Height (SSH) localised to a convection chimney under the RSP. The SSH gradients of up to 1.5 mm per km are sufficient to generate a barotropic pressure gradient that can counteract the wide scale horizontal baroclinic force and reverse the geostrophic circulation. In water depths between 600 and 800 m north of the western RIS the effect causes the seasonal occurrence of a cyclonic circulation cell with transports greater than 1Sv. Appearing with the beginning of winter sea ice formation in the RSP it significantly changes the dynamics at the ice shelf front. The new mechanism is described as one element in a framework of oceanographic processes that mitigate the exchange between the deep ocean and the ocean cavity under the RIS. Our study links local circulation features that are known from observation and previous model studies, and for the first time establishes a coherent system of responsible physical forcing processes in the Ross Sea.​

  15. Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Steffen, Konrad; Rajaram, Harihar; Scambos, Ted; Abdalati, Waleed; Rignot, Eric

    2012-08-01

    A key mechanism for the rapid collapse of both the Larsen A and B Ice Shelves was meltwater-driven crevasse propagation. Basal crevasses, large-scale structural features within ice shelves, may have contributed to this mechanism in three important ways: i) the shelf surface deforms due to modified buoyancy and gravitational forces above the basal crevasse, creating >10 m deep compressional surface depressions where meltwater can collect, ii) bending stresses from the modified shape drive surface crevassing, with crevasses reaching 40 m in width, on the flanks of the basal-crevasse-induced trough and iii) the ice thickness is substantially reduced, thereby minimizing the propagation distance before a full-thickness rift is created. We examine a basal crevasse (4.5 km in length, ∼230 m in height), and the corresponding surface features, in the Cabinet Inlet sector of the Larsen C Ice Shelf using a combination of high-resolution (0.5 m) satellite imagery, kinematic GPS and in situ ground penetrating radar. We discuss how basal crevasses may have contributed to the breakup of the Larsen B Ice Shelf by directly controlling the location of meltwater ponding and highlight the presence of similar features on the Amery and Getz Ice Shelves with high-resolution imagery.

  16. Efficient Flowline Simulations of Ice Shelf-Ocean Interactions: Sensitivity Studies with a Fully Coupled Model

    NASA Technical Reports Server (NTRS)

    Walker, Ryan Thomas; Holland, David; Parizek, Byron R.; Alley, Richard B.; Nowicki, Sophie M. J.; Jenkins, Adrian

    2013-01-01

    Thermodynamic flowline and plume models for the ice shelf-ocean system simplify the ice and ocean dynamics sufficiently to allow extensive exploration of parameters affecting ice-sheet stability while including key physical processes. Comparison between geophysically and laboratory-based treatments of ice-ocean interface thermodynamics shows reasonable agreement between calculated melt rates, except where steep basal slopes and relatively high ocean temperatures are present. Results are especially sensitive to the poorly known drag coefficient, highlighting the need for additional field experiments to constrain its value. These experiments also suggest that if the ice-ocean interface near the grounding line is steeper than some threshold, further steepening of the slope may drive higher entrainment that limits buoyancy, slowing the plume and reducing melting; if confirmed, this will provide a stabilizing feedback on ice sheets under some circumstances.

  17. Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning

    NASA Astrophysics Data System (ADS)

    Holland, P. R.; Brisbourne, A.; Corr, H. F. J.; McGrath, D.; Purdon, K.; Paden, J.; Fricker, H. A.; Paolo, F. S.; Fleming, A. H.

    2015-05-01

    The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15-year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 ± 0.017 m yr-1) is caused by both ice loss (0.28 ± 0.18 m yr-1) and firn-air loss (0.037 ± 0.026 m yr-1). The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in the future. The most rapid pathways to collapse are offered by the ungrounding of LCIS from Bawden Ice Rise or ice-front retreat past a "compressive arch" in strain rates. Recent evidence suggests that either mechanism could pose an imminent risk.

  18. Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning

    USGS Publications Warehouse

    Holland, P. R.; Brisbourne, A.; Corr, H. F. J.; Mcgrath, Daniel; Purdon, K.; Paden, J.; Fricker, H. A.; Paolo, F. S.; Fleming, A.H.

    2015-01-01

    The catastrophic collapses of Larsen A and B ice shelves on the eastern Antarctic Peninsula have caused their tributary glaciers to accelerate, contributing to sea-level rise and freshening the Antarctic Bottom Water formed nearby. The surface of Larsen C Ice Shelf (LCIS), the largest ice shelf on the peninsula, is lowering. This could be caused by unbalanced ocean melting (ice loss) or enhanced firn melting and compaction (englacial air loss). Using a novel method to analyse eight radar surveys, this study derives separate estimates of ice and air thickness changes during a 15-year period. The uncertainties are considerable, but the primary estimate is that the surveyed lowering (0.066 ± 0.017 m yr−1) is caused by both ice loss (0.28 ± 0.18 m yr−1) and firn-air loss (0.037 ± 0.026 m yr−1). The ice loss is much larger than the air loss, but both contribute approximately equally to the lowering because the ice is floating. The ice loss could be explained by high basal melting and/or ice divergence, and the air loss by low surface accumulation or high surface melting and/or compaction. The primary estimate therefore requires that at least two forcings caused the surveyed lowering. Mechanisms are discussed by which LCIS stability could be compromised in the future. The most rapid pathways to collapse are offered by the ungrounding of LCIS from Bawden Ice Rise or ice-front retreat past a "compressive arch" in strain rates. Recent evidence suggests that either mechanism could pose an imminent risk.

  19. Thermohaline circulation below the Ross Ice Shelf - A consequence of tidally induced vertical mixing and basal melting

    NASA Technical Reports Server (NTRS)

    Macayeal, D. R.

    1984-01-01

    The warmest water below parts of the Ross Ice Shelf resides in the lowest portion of the water column because of its high salinity. Vertical mixing caused by tidal stirring can thus induce ablation by lifting the warm but dense water into contact with the ice shelf. A numerical tidal simulation indicates that vertically well-mixed conditions predominate in the southeastern part of the sub-ice shelf cavity, where the water column thickness is small. Basal melting in this region is expected to be between 0.05 and 0.5 m/yr and will drive a thermohaline circulation having the following characteristics: high salinity shelf water (at - 1.8 C), formed by winter sea ice production in the open Ross Sea, flows along the seabed toward the tidal mixing fronts below the ice shelf; and meltwater (at -2.2 C), produced in the well-mixed region, flows out of the sub-ice shelf cavity along the ice shelf bottom. Sensitivity of this ablation process to climatic change is expected to be small because high salinity shelf water is constrained to have the sea surface freezing temperature.

  20. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water

    PubMed Central

    Darelius, E.; Fer, I.; Nicholls, K. W.

    2016-01-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659

  1. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water

    NASA Astrophysics Data System (ADS)

    Darelius, E.; Fer, I.; Nicholls, K. W.

    2016-08-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing.

  2. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water.

    PubMed

    Darelius, E; Fer, I; Nicholls, K W

    2016-01-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659

  3. The Effect of Ice Shelf Meltwater on Antarctic Sea Ice and the Southern Ocean in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Pauling, A.; Bitz, C. M.; Smith, I.; Langhorne, P.

    2015-12-01

    It has been suggested that recent Antarctic sea ice expansion resulted from an increase in fresh water reaching the Southern Ocean. This presentation investigates this conjecture in an Earth System Model. The freshwater flux from ice sheet and ice shelf mass imbalance is largely missing in models that participated in the Fifth Coupled Model Intercomparison Project (CMIP5). However, CMIP5 models do account for the fresh water from precipitation minus evaporation (P-E). On average in CMIP5 models P- E reaching the Southern Ocean has increased to a present value of about 2600 Gt yr-1 greater than pre-industrial times and 3-8 times larger than estimates of the mass imbalance of Antarctic ice sheets and shelves. Two sets of model experiments were conducted from 1980-2013 in CESM1-CAM5 artificially distributing fresh water either at the ocean surface according to an estimate of iceberg melt, or at the ice shelf fronts at depth. An anomalous reduction in vertical advection of heat into the surface mixed layer resulted in sea surface cooling at high southern latitudes, and an associated increase in sea ice area. A freshwater enhancement of 1780 Gt yr-1 (approximately 1.3 times either present day basal melt or iceberg calving freshwater fluxes) raised the sea ice total area by 1×106 km2. Yet, even a freshwater enhancement up to 2670 Gt yr-1 was insufficient to offset the sea ice decline due to anthropogenic forcing for any period of 20 years or longer. Further, the sea ice response was found to be insensitive to the depth of fresh water injection.

  4. RTOPO-1: A consistent dataset for Antarctic ice shelf topography and global ocean bathymetry

    NASA Astrophysics Data System (ADS)

    Timmermann, Ralph

    2010-05-01

    Sub-ice shelf circulation and freezing/melting rates depend critically on an accurate and consistent representation of cavity geometry (i.e. ice-shelf draft and ocean bathymetry). Existing global or pan-Antarctic data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional fields into a global data set. We use the S-2004 global 1-minute bathymetry as the backbone and add an improved version of the BEDMAP topography for an area that roughly coincides with the Antarctic continental shelf. Locations of the merging line have been carefully adjusted in order to get the best out of each data set. High-resolution gridded data for the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves and for Pine Island Glacier have been carefully merged into the ambient ice and ocean topographies. Multibeam ship survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI), British Antarctic Survey (BAS) and Lamont-Doherty Earth Observatory (LDEO), gridded, and again carefully merged into the existing bathymetry map. The resulting global 1-minute data set contains consistent masks for open ocean, grounded ice, floating ice, and bare land surface. The Ice Shelf Cavern Geometry Team: Anne Le Brocq, Tara Deen, Eugene Domack, Pierre Dutrieux, Ben Galton-Fenzi, Dorothea Graffe, Hartmut Hellmer, Angelika Humbert, Daniela Jansen, Adrian Jenkins, Astrid Lambrecht, Keith Makinson, Fred Niederjasper, Frank Nitsche, Ole Anders Nøst, Lars Henrik Smedsrud, and Walter Smith

  5. Validation of the Antarctic Snow Accumulation and Ice Discharge Basal Stress Boundary in the South Eastern Region of the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Nelson, C. B.; King, K.

    2015-12-01

    The largest ice shelf in Antarctic, Ross Ice Shelf, was investigated over the years of (1970-2015). Near the basal stress boundary between the ice shelf and the West Antarctic ice sheet, ice velocity ranges from a few meters per year to several hundred meters per year in ice streams. Most of the drainage from West Antarctica into the Ross Ice Shelf flows down two major ice streams, each of which discharges more than 20 km3 of ice each year. Along with velocity changes, the warmest water below parts of the Ross Ice Shelf resides in the lowest portion of the water column because of its high salinity. Vertical mixing caused by tidal stirring can thus induce ablation by lifting the warm water into contact with the ice shelf. This process can cause melting over a period of time and eventually cause breakup of ice shelf. With changes occurring over many years a validation is needed for the Antarctic Snow Accumulation and Ice Discharge (ASAID) basal stress boundary created in 2003. After the 2002 Larsen B Ice Shelf disintegration, nearby glaciers in the Antarctic Peninsula accelerated up to eight times their original speed over the next 18 months. Similar losses of ice tongues in Greenland have caused speed-ups of two to three times the flow rates in just one year. Rapid changes occurring in regions surrounding Antarctica are causing concern in the polar science community to research changes occurring in coastal zones over time. During the research, the team completed study on the Ross Ice Shelf located on the south western coast of the Antarctic. The study included a validation of the ABSB vs. the natural basal stress boundary (NBSB) along the Ross Ice Shelf. The ASAID BSB was created in 2003 by a team of researchers headed by National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), with an aim of studying coastal deviations as it pertains to the mass balance of the entire continent. The point data file was aimed at creating a replica of the

  6. Ice interaction with the Arctic shelf and coast: Constraints on and implication for petroleum development

    SciTech Connect

    Barnes, P.W.; Reimnitz, E. )

    1990-05-01

    Along the Arctic coast of Alaska sea ice affects structures placed on and under the sea bed and influences the erosion and dispersal patterns of sedimentary particulates and pollutants. Most directly, ice gouges the sea floor to depths of a few meters, with return periods on the inner shelf of tens of years and, in places, annually, primarily during freezeup and breakup. These sea-floor ice-gouge patterns provide information on the motion and characteristics of the local ice canopy. The design and alignment of pipelines and coast structures should consider that ice gouging extends to the coast and onto the beaches; however, ice gouging is less apparent on beaches owing to lower gouge intensities and vigorous wave reworking. In the long term, gouging contributes to high rates of coastal and shelf erosion. Protruding ice keels extending downward from the sea-ice canopy divert and focus currents causing increased sea-floor scour to depths of a few meters below the sea floor. Sea-ice freezing during the commonly turbulent fall storms causes large volumes of sediment and pollutants to be sorted, resuspended, and, ultimately, incorporated into the ice canopy. Most entrained material is re-released to the nearshore the following open-water season however, some material may be transported offshore to become part of the Arctic pack. During freezeup and breakup (4-5 months/yr) when these processes are most active, trafficability in the Arctic nearshore is nil owing to the instability of the ice canopy, and so our comprehension of this processes is limited.

  7. Mass Balance of the Northern Antarctic Peninsula and its Ongoing Response to Ice Shelf Loss

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.; Berthier, E.; Haran, T. M.; Shuman, C. A.; Cook, A. J.; Bohlander, J. A.

    2012-12-01

    An assessment of the most rapidly changing areas of the Antarctic Peninsula (north of 66°S) shows that ice mass loss for the region is dominated by areas affected by eastern-Peninsula ice shelf losses in the past 20 years. Little if any of the mass loss is compensated by increased snowfall in the northwestern or far northern areas. We combined satellite stereo-image DEM differencing and ICESat-derived along-track elevation changes to measure ice mass loss for the Antarctic Peninsula north of 66°S between 2001-2010, focusing on the ICESat-1 period of operation (2003-2009). This mapping includes all ice drainages affected by recent ice shelf loss in the northeastern Peninsula (Prince Gustav, Larsen Inlet, Larsen A, and Larsen B) as well as James Ross Island, Vega Island, Anvers Island, Brabant Island and the adjacent west-flowing glaciers. Polaris Glacier (feeding the Larsen Inlet, which collapsed in 1986) is an exception, and may have stabilized. Our method uses ASTER and SPOT-5 stereo-image DEMs to determine dh/dt for elevations below 800 m; at higher elevations ICESat along-track elevation differencing is used. To adjust along-track path offsets between its 2003-2009 campaigns, we use a recent DEM of the Peninsula to establish and correct for cross-track slope (Cook et al., 2012, doi:10.5194/essdd-5-365-2012; http://nsidc.org/data/nsidc-0516.html) . We reduce the effect of possible seasonal variations in elevation by using only integer-year repeats of the ICESat tracks for comparison. Mass losses are dominated by the major glaciers that had flowed into the Prince Gustav (Boydell, Sjorgren, Röhss), Larsen A (Edgeworth, Bombardier, Dinsmoor, Drygalski), and Larsen B (Hektoria, Jorum, and Crane) embayments. The pattern of mass loss emphasizes the significant and multi-decadal response to ice shelf loss. Areas with shelf losses occurring 30 to 100s of years ago seem to be relatively stable or losing mass only slowly (western glaciers, northernmost areas). The

  8. Detailed Ar-Ar Geochronology of Volcanism at Minna Bluff, Antarctica: Two-Phased Growth and Influence on Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Ross, J. I.; McIntosh, W. C.; Wilch, T. I.

    2012-12-01

    Minna Bluff has been a significant topographic barrier to the flow of the Ross Ice Shelf since the mid-Miocene. Detailed Ar-Ar analyses of kaersutite and sanidine phenocrysts, and groundmass concentrates from volcanic units indicate an overall west to east progression of volcanic activity. Eruptions of basaltic to intermediate lavas, domes, and scoria cones started at ~12 Ma in at what is now the eastern most point of Minna Bluff, "Minna Hook." Activity was centered in this area for ~4 Ma, constructing a pre-Minna Bluff island. Multiple glacial unconformities found at Minna Hook suggest repeated interaction with large warm-based, erosive ice sheets. Activity migrated westward from Minna Bluff Island at 7-8 Ma closing the gap created by the island and the mainland. Significant edifice construction continued until 4-5 Ma with sporadic and parasitic scoria cone eruptions, possibly associated with Mt. Discovery activity, continuing until 2 Ma. The orientations of Minna Bluff's two major axes are strongly controlled by regional tectonic features. Minna Bluff's E-W axis, McIntosh Cliffs, is sub-parallel to the Radial Lineament and the N-S axis, Minna Hook, appears as extension of faulting bounding the Terror Rift. The constructional evolution of the 70km long volcanic complex has an important role in interpreting the climate signals recovered by the ANDRILL Project. Minna Bluff influenced the material delivered to the AND-1B drill site (ANDRILL MIS 2006-2007) in three critical ways: 1) Minna Bluff diverted upstream material, 2) provided a pinning and stabilizing point for the Ross Ice Shelf, possible controlling the calving line prior to the emergence of Ross Island, and 3) was a significant source of fresh volcanic material throughout much of the period recovered by ANDRILL MIS. For example, a kaersutite-bearing clast recovered from 822.78 mbsf in AND-1B yielded an age of 8.53±0.51 Ma, and was likely derived from Minna Bluff. The results from this study can be

  9. Outlet glacier response to the 2012 collapse of the Matusevich Ice Shelf, Severnaya Zemlya, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Willis, Michael J.; Melkonian, Andrew K.; Pritchard, Matthew E.

    2015-10-01

    The Matusevich Ice Shelf (MIS), located within the Severnaya Zemlya Archipelago in the Russian Arctic, rapidly broke apart between 10 August and 7 September 2012. We examine the response of the outlet glaciers that fed the MIS from local ice caps to the removal of the ice shelf. We use spaceborne laser altimetry and multiple optically derived digital elevation models to track ice surface elevation change rates (dh/dt) between 1984 and 2014. Glacier speeds are measured by pixel-tracking from optical and RADAR imagery between 2010 and 2014 and interferometric synthetic aperture radar in 1995 to compare precollapse and postcollapse velocities. We find that the three main outlet glaciers that fed the MIS are thinning an order of magnitude more rapidly than most of the rest of Severnaya Zemyla, based upon ICESat data from 2003 to 2009. Recent, 2012 to 2014 thinning rates are three to four times faster than the 30 year average thinning rate, calculated between 1984 and 2014. The springtime speeds of the largest outlet glacier (Issledovateley) have increased more than 200% at the terminus between April 2010 and April 2014. To date, changes in surface elevation (dh/dt) and velocity at the outlet glaciers near MIS are smaller than glacier responses to ice shelf collapse in Antarctica. It is possible that the MIS was already very weak prior to the 2012 collapse and unable to support back stress. Further observations are required to assess whether the thinning and nonmelt season glacier speeds are continuing to accelerate.

  10. The effect of basal channels on oceanic ice-shelf melting

    NASA Astrophysics Data System (ADS)

    Millgate, Thomas; Holland, Paul R.; Jenkins, Adrian; Johnson, Helen L.

    2013-12-01

    The presence of ice-shelf basal channels has been noted in a number of Antarctic and Greenland ice shelves, but their impact on basal melting is not fully understood. Here we use the Massachusetts Institute of Technology general circulation model to investigate the effect of ice-shelf basal channels on oceanic melt rate for an idealized ice shelf resembling the floating tongue of Petermann Glacier in Greenland. The introduction of basal channels prevents the formation of a single geostrophically balanced boundary current; instead the flow is diverted up the right-hand (Coriolis-favored) side of each channel, with a return flow in the opposite direction on the left-hand side. As the prescribed number of basal channels is increased the mean basal melt rate decreases, in agreement with previous studies. For a small number of relatively wide channels the subice flow is found to be a largely geostrophic horizontal circulation. The reduction in melt rate is then caused by an increase in the relative contribution of weakly melting channel crests and keels. For a larger number of relatively narrow channels, the subice flow changes to a vertical overturning circulation. This change in circulation results in a weaker sensitivity of melt rates to channel size. The transition between the two regimes is governed by the Rossby radius of deformation. Our results explain why basal channels play an important role in regulating basal melting, increasing the stability of ice shelves.

  11. Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.; Young, N. W.; Coleman, R.; Bassis, J. N.; Minster, J.-B.

    2005-01-01

    We use satellite imagery from four sensors (Multi-angle Imaging SpectroRadiometer (MISR), Enhanced Thematic Mapper (ETM), and RADARSAT and ERS Synthetic Aperture Radar (SAR) to monitor the lengths of two rifts on the Amery Ice Shelf, from 1996 to 2004. We find that the rifts have each been propagating at a steady annual rate for the past 5 years. Superimposed on this steady rate is a seasonal signal, where propagation rates are significantly higher in the summer period (i.e., September-April) than in the winter period (i.e., April-September). Possible causes of this summer-winter effect are changing properties of the ice mélange, which fills the rifts, and seasonal changes in ocean circulation beneath the ice shelf.

  12. Grounding Zone and Tidal Response of the Amery Ice Shelf, East Antarctica

    NASA Technical Reports Server (NTRS)

    Fricker, Helen A.; Sandwell, David; Coleman, Richard; Minster, Bernard

    2005-01-01

    This report summarizes the main findings of the research project. Unfortunately, it turned out that there was not a great deal of SAR data over the Amery Ice Shelf that we were able to work with on the project; nevertheless, we did make considerable progress on this project, with both the existing SAR data and new field measurements that were collected under this grant. In total we had constructed two SAR interferograms (SSIs), and four SSIs. The latter were combined them to construct two differential SAR interferograms (DSIs;). DSIs are useful because the contribution to the SAR phase from horizontal ice motion is eliminated, since the time difference between the first and second pass within both image pairs used to make the DSI is the same for each pair. The SSIs and DSIs have revealed several interesting glaciological features, and have added to our knowledge of the Amery Ice Shelf (AIS).

  13. Sea ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Wright, F. F. (Principal Investigator); Sharma, G. D.; Burns, J. J.

    1973-01-01

    The author has identified the following significant results. Sediments contributed by the Copper River in the Gulf of Alaska are carried westward along the shore as a distinct plume. Oceanic water relatively poor in suspended material appears to intrude near Montague Island, and turbid water between Middleton Island and Kayak Island is the result of Ekman between transport. An anticlockwise surface water circulation is observed in this region. Ground truth data indicate striking similarity with ERTS-1 imagery obtained on October 12, 1972. Observations of ERTS-1 imagery reveal that various characteristics and distribution of sea ice in the Arctic Ocean can be easily studied. Formation of different types of sea ice and their movement is quite discrenible. Sea ice moves parallel to the cost in near shore areas and to the northerly direction away from the coast.

  14. Anomalously-dense firn in an ice-shelf channel revealed by wide-angle radar

    NASA Astrophysics Data System (ADS)

    Drews, R.; Brown, J.; Matsuoka, K.; Witrant, E.; Philippe, M.; Hubbard, B.; Pattyn, F.

    2015-10-01

    The thickness of ice shelves, a basic parameter for mass balance estimates, is typically inferred using hydrostatic equilibrium for which knowledge of the depth-averaged density is essential. The densification from snow to ice depends on a number of local factors (e.g. temperature and surface mass balance) causing spatial and temporal variations in density-depth profiles. However, direct measurements of firn density are sparse, requiring substantial logistical effort. Here, we infer density from radio-wave propagation speed using ground-based wide-angle radar datasets (10 MHz) collected at five sites on Roi Baudouin Ice Shelf (RBIS), Dronning Maud Land, Antarctica. Using a novel algorithm including traveltime inversion and raytracing with a prescribed shape of the depth-density relationship, we show that the depth to internal reflectors, the local ice thickness and depth-averaged densities can reliably be reconstructed. For the particular case of an ice-shelf channel, where ice thickness and surface slope change substantially over a few kilometers, the radar data suggests that firn inside the channel is about 5 % denser than outside the channel. Although this density difference is at the detection limit of the radar, it is consistent with a similar density anomaly reconstructed from optical televiewing, which reveals 10 % denser firn inside compared to outside the channel. The denser firn in the ice-shelf channel should be accounted for when using the hydrostatic ice thickness for determining basal melt rates. The radar method presented here is robust and can easily be adapted to different radar frequencies and data-acquisition geometries.

  15. Southern ocean controls on current ice shelf evolution. Annual progress report, September 1, 1993--August 31, 1994

    SciTech Connect

    Hellmer, H.H.; Jacobs, S.S.

    1994-04-01

    A seasonal cycle of shelf water temperatures and salinities observed at the eastern Ross Ice Shelf edge was used to force a two-dimensional thermohaline circulation model adapted to two different sub-ice cavity paths around Roosevelt Island. Model results verified by current meter measurements reveal that shelf water flowing into the cavity west of Roosevelt Island might follow a sub-ice path with nearly constant water column thickness of 200 m. This would largely exclude the grounding line of the northern Siple Coast from the contact with open ocean water masses. In contrast to the forcing with time-independent summer profiles, seasonal forcing causes a higher spatial and temporal variability of the cavity`s circulation and property distribution. At the model`s open boundaries the intermitted inflow of shelf water displaces the meltwater outflow originating from the interior ice shelf base to greater depth and initiates an additional shallow meltwater plume. The average melting along the ice shelf base increases from 0.07 m/a to 0.38.m/a due to seasonality in shelf water characteristics, and to 2.3 m/a, if we introduce a 100-year temperature rise of 1{degree}C. The rate decreases, if salinity simultanously decreases; a possible scenario, if the enhanced meltwater outflow mixes with shelf water in front of the ice shelves.

  16. The sea ice dynamics of Terra Nova Bay and Ross Ice Shelf Polynyas during a spring and winter simulation

    NASA Astrophysics Data System (ADS)

    Petrelli, P.; Bindoff, N. L.; Bergamasco, A.

    2008-09-01

    The Terra Nova Bay (TNB) and Ross Ice Shelf (RIS) polynyas are simulated using a coupled atmosphere-sea ice model in winter 2002 and summer 2000. The atmospheric component of the model is compared with Automatic Weather Stations (AWS) data and shows a significantly increased skill over the ECMWF atmospheric variables. During winter, the sea ice production in TNB is largely determined by katabatic winds. We estimate the monthly production rate to be 8.7 km3/month of sea ice during winter. In early summer (November), the katabatics are weaker and the sea ice production is more influenced by the synoptic wind. The net sea ice production is weaker during November at 1.2 km3/month. The summer production is characterized by a diurnal cycle of melt and sea ice formation. For small coastal polynyas, like TNB, it is important to resolve all the glacier valleys accurately. Increasing the model resolution by a factor of five leads to a doubling of the sea ice formation during winter simulations due to the point intensity of the katabatics winds. For open coastal polynyas, like RIS polynya, sea ice production is largely controlled by synoptic winds and resolution is less important. The RIS polynya production is 61.3 km3 during winter and 19.1 km3 during November. These results are comparable to RIS polynya observations. Although the TNB polynya has a smaller winter sea ice production, the sea ice rate of growth per unit area is 1.6 times that of the RIS polynya.

  17. Invisible polynyas: Modulation of fast ice thickness by ocean heat flux on the Canadian polar shelf

    NASA Astrophysics Data System (ADS)

    Melling, Humfrey; Haas, Christian; Brossier, Eric

    2015-02-01

    Although the Canadian polar shelf is dominated by thick fast ice in winter, areas of young ice or open water do recur annually at locations within and adjacent to the fast ice. These polynyas are detectable by eye and sustained by wind or tide-driven ice divergence and ocean heat flux. Our ice-thickness surveys by drilling and towed electromagnetic sounder reveal that visible polynyas comprise only a subset of thin-ice coverage. Additional area in the coastal zone, in shallow channels and in fjords is covered by thin ice which is too thick to be discerned by eye. Our concurrent surveys by CTD reveal correlation between thin fast ice and above-freezing seawater beneath it. We use winter time series of air and ocean temperatures and ice and snow thicknesses to calculate the ocean-to-ice heat flux as 15 and 22 W/m2 at locations with thin ice in Penny Strait and South Cape Fjord, respectively. Near-surface seawater above freezing is not a sufficient condition for ocean heat to reach the ice; kinetic energy is needed to overcome density stratification. The ocean's isolation from wind under fast ice in winter leaves tides as the only source. Two tidal mechanisms driving ocean heat flux are discussed: diffusion via turbulence generated by shear at the under-ice and benthic boundaries, and the internal hydraulics of flow over topography. The former appears dominant in channels and the coastal zone and the latter in some silled fjords where and when the layering of seawater density permits hydraulically critical flow.

  18. Continued rapid glacier recession following the 1995 collapse of the Prince Gustav Ice Shelf on the Antarctic Peninsula (Invited)

    NASA Astrophysics Data System (ADS)

    Glasser, N. F.; Scambos, T. A.

    2009-12-01

    We use optical satellite imagery (ASTER and Landsat) to document changes in the Prince Gustav Ice Shelf (PGIS) and its tributary glaciers before and after its 1995 collapse. Interpretation of a pre-collapse Landsat 4-5 TM image acquired in February 1988 shows that the ice shelf was fed primarily by Sjogren Glacier from the Antarctic Peninsula and by Rhoss Glacier from James Ross Island (JRI). In 1988, the PGIS contained numerous structural discontinuities (rifts and crevasses), which collectively indicate that ice-shelf break-up had commenced at least seven years before collapse. Meltwater ponds and streams were also common across its surface. After the ice shelf collapsed, Rhoss Glacier became a tidewater glacier and has since experienced rapid and continued recession. Between January 2001 and December 2006 (six to eleven years after the collapse of the PGIS), the front of Rhoss Glacier receded a total of 13.6 km. We conclude that where tributary glaciers become tidewater glaciers they react to ice-shelf removal by rapid and continued recession and that the response time of glaciers on the Antarctic Peninsula to ice-shelf removal is measured on annual to decadal timescales. This rapid recession, coupled with previously documented tributary glacier thinning and acceleration, indicates that Antarctic Peninsula glaciers are extremely sensitive to ice-shelf collapse.

  19. Using control methods to evaluate the effect of unpinning on the Roi Baudouin Ice shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Favier, Lionel; Mercenier, Rémy; Berger, Sophie; Drews, Reinhard; Witrant, Emmanuel; Pattyn, Frank

    2014-05-01

    Numerous seamounts emerge from the edge of the Continental Shelf in Dronning Maud Lands. Those features translate into pinning points when they attach to the otherwise freely floating ice shelves from beneath, leading to buttressing and ice shelf stability. The observed thinning of ice shelves, enhanced through Circumpolar Deep Water incursions across the shelf makes pinning points lose their contact, hence increase ice flow speed. Here, we study the effects of de-pinning on the Roi Baudouin Ice Shelf (RBIS), which is currently buttressed through a small pinning point that has a large effect on the ice dynamics. A control method is used to infer the viscosity pattern from a very high resolution (50 m) InSAR flowfield. The surface elevation from which is deduced the thickness stems from a DEM which was produced from local data at the same resolution. The background model is based on the Shallow Shelf Approximation. Using the inferred viscosity pattern, the contact between the pinning point and the ice shelf is removed and the instantaneous effect on the ice flow field investigated.

  20. Divergent trajectories of Antarctic ice shelf surface melt under 21st century climate scenarios

    NASA Astrophysics Data System (ADS)

    Trusel, L. D.; Frey, K. E.; Das, S. B.; Kuipers Munneke, P.; van Meijgaard, E.

    2014-12-01

    Antarctic ice shelves represent a critical interface between continental ice masses and the surrounding ocean. Breakup events of several ice shelves in recent decades have been linked to an increase in intense surface melting, and have in turn lead to cascading effects including accelerated glacier discharge into the ocean. In this study, we utilized sophisticated regional and global climate models (GCMs) to assess potential future surface melt trajectories across Antarctica under two climate scenarios (RCP4.5 and RCP8.5). RACMO2.1, a polar-adapted regional atmospheric climate model, was forced by the ERA-Interim reanalysis (1980-2010) and by two GCMs, EC-EARTH and HadGEM2-ES (2007-2100). Using RACMO2.1, we observed an exponential growth function well represents the relationship between ice shelf surface meltwater production and mean summer (DJF) 2-meter air temperature (t2m). We employed this melt-t2m relationship to project melt using t2m output from an ensemble of five CMIP5-based GCMs incorporating the NCAR Community Land Model 4 (CLM4), following spatial downscaling and bias correction using t2m from ERA-Interim-forced RACMO2.1. Our resulting GCM-derived melt projections provide an independent and methodologically unique perspective into potential future melt pathways, complementary to those derived from RACMO2.1. Most notably, both RACMO2.1 and the CMIP5 ensemble reveal divergent trajectories of meltwater production beyond 2050 under the two climate scenarios. For many ice shelves in RCP4.5, meltwater production through 2100 remains at levels comparable to present. Conversely, under RCP8.5 all methods indicate non-linear melt intensification, resulting in a four-fold increase in the Antarctic-wide meltwater volume by the end of the 21st century. For some ice shelves, including Larsen C and Wilkins (Antarctic Peninsula), and Shackleton and West (Wilkes Land), spatially averaged end-of-century meltwater production within RCP8.5 approaches or surpasses levels

  1. Mapping the grounding zone of Ross Ice Shelf using ICESat laser altimetry

    USGS Publications Warehouse

    Brunt, Kelly M.; Fricker, Helen A.; Padman, Laurie; Scambos, Ted A.; O'Neel, Shad

    2010-01-01

    We use laser altimetry from the Ice, Cloud, and land Elevation Satellite (ICESat) to map the grounding zone (GZ) of the Ross Ice Shelf, Antarctica, at 491 locations where ICESat tracks cross the grounding line (GL). Ice flexure in the GZ occurs as the ice shelf responds to short-term sea-level changes due primarily to tides. ICESat repeat-track analysis can be used to detect this region of flexure since each repeated pass is acquired at a different tidal phase; the technique provides estimates for both the landward limit of flexure and the point where the ice becomes hydrostatically balanced. We find that the ICESat-derived landward limits of tidal flexure are, in many places, offset by several km (and up to ∼60 km) from the GL mapped previously using other satellite methods. We discuss the reasons why different mapping methods lead to different GL estimates, including: instrument limitations; variability in the surface topographic structure of the GZ; and the presence of ice plains. We conclude that reliable and accurate mapping of the GL is most likely to be achieved when based on synthesis of several satellite datasets

  2. Coupled ice shelf-ocean modeling and complex grounding line retreat for Pine Island Glacier

    NASA Astrophysics Data System (ADS)

    De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    Recent observations and modeling work have shown a complex mechanical coupling between Antarctica's floating ice shelves and the adjacent grounded ice sheet. A prime example is Pine Island Glacier, West Antarctica, which has a strong negative mass balance caused by a recent increase in ocean-induced melting of its ice shelf. The mass loss coincides with the retreat of the grounding line from a seabed ridge, on which it was at least partly grounded until the 1970s. At present, it is unclear what has caused the onset of this retreat, and how feedback mechanisms between the ocean and iceshelf geometry have influenced the ice dynamics. To address these questions, we present results from an offline coupling between a state-of-the-art shallow-ice flow model with grounding line resolving capabilities, and a three-dimensional ocean general circulation model with a static implementation of the ice shelf. A series of idealized experiments simulate the retreat from a seabed ridge in response to changes in the ocean forcing, and we show that the retreat becomes irreversible after 20 years of warm ocean conditions. A comparison to experiments with a simple depth-dependent meltrate parameterisation demonstrates that such parameterizations are unable to capture the details of the retreat process, and they overestimate mass loss by more than 40% over a 50-year timescale.

  3. Ross ice shelf cavity circulation, residence time, and melting: Results from a model of oceanic chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Reddy, Tasha E.; Holland, David M.; Arrigo, Kevin R.

    2010-04-01

    Despite their harmful effects in the upper atmosphere, anthropogenic chlorofluorocarbons dissolved in seawater are extremely useful for studying ocean circulation and ventilation, particularly in remote locations. Because they behave as a passive tracer in seawater, and their atmospheric concentrations are well-mixed, well-known, and have changed over time, they are ideal for gaining insight into the oceanographic characteristics of the isolated cavities found under Antarctic ice shelves, where direct observations are difficult to obtain. Here we present results from a modeling study of air-sea chlorofluorocarbon exchange and ocean circulation in the Ross Sea, Antarctica. We compare our model estimates of oceanic CFC-12 concentrations along an ice shelf edge transect to field data collected during three cruises spanning 16 yr. Our model produces chlorofluorocarbon concentrations that are quite similar to those measured in the field, both in magnitude and distribution, showing high values near the surface, decreasing with depth, and increasing over time. After validating modeled circulation and air-sea gas exchange through comparison of modeled temperature, salinity, and chlorofluorocarbons with field data, we estimate that the residence time of water in the Ross Ice Shelf cavity is approximately 2.2 yr and that basal melt rates for the ice shelf average 10 cm yr -1. The model predicts a seasonal signature to basal melting, with highest melt rates in the spring and also the fall.

  4. Antarctic ice shelf thickness from CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Chuter, S. J.; Bamber, J. L.

    2015-12-01

    Ice shelf thickness for the whole of Antarctica is derived from 4 years (2011-2014) of CryoSat-2 (CS2) radar altimetry measurements using the assumption that the shelves are in hydrostatic equilibrium. The satellite orbit and novel synthetic aperture radar interferometric mode of CS2 results in 92.3% data coverage over the ice shelves, with particular improvements around the grounding zone. When compared to ICESat data, surface elevations have a mean bias of less than 1 m and a fourfold reduction in standard deviation compared with the previous data set. Over the Amery Ice Shelf there is a mean thickness difference of 3.3% between radio echo sounding measurements and the CS2-derived thicknesses, rising to 4.7% within 10 km of the grounding line. Our new data set provides key improvements in accuracy and coverage, especially in the grounding zone, allowing for reduced uncertainties in mass budget calculations, subshelf ocean and ice sheet-shelf modeling.

  5. The role of an Arctic ice shelf in the climate of the MIS 6 glacial maximum (140 ka)

    NASA Astrophysics Data System (ADS)

    Colleoni, F.; Krinner, G.; Jakobsson, M.

    2010-12-01

    During the last decade, Arctic icebreaker and nuclear submarine expeditions have revealed large-scale Pleistocene glacial erosion on the Lomonosov Ridge, Chukchi Borderland and along the Northern Alaskan margin indicating that the glacial Arctic Ocean hosted large Antarctic-style ice shelves. Dating of sediment cores indicates that the most extensive and deepest ice grounding occurred during Marine Isotope Stage (MIS) 6. The precise extents of Pleistocene ice shelves in the Arctic Ocean are unknown but seem comparable to present existing Antarctic ice shelves. How would an Antarctic-style ice shelf in the MIS 6 Arctic Ocean influence the Northern Hemisphere climate? Could it have impacted on the surface mass balance (SMB) of the MIS 6 Eurasian ice sheet and contributed to its large southward extent? We use an Atmospheric General Circulation Model (AGCM) to investigate the climatic impacts of both a limited MIS 6 ice shelf covering portions of the Canada Basin and a fully ice shelf covered Arctic Ocean. The AGCM results show that both ice shelves cause a temperature cooling of about 3 °C over the Arctic Ocean mainly due to the combined effect of ice elevation and isolation from the underlying ocean heat fluxes stopping the snow cover from melting during summer. The calculated SMB of the ice shelves are positive. The ice front horizontal velocity of the Canada Basin ice shelf is estimated to ≈ 1 km yr -1 which is comparable to the recent measurements of the Ross ice shelf, Antarctica. The existence of a large continuous ice shelf covering the entire Arctic Ocean would imply a mean annual velocity of icebergs of ≈12 km yr -1 through the Fram Strait. Our modeling results show that both ice shelf configurations could be viable under the MIS 6 climatic conditions. However, the cooling caused by these ice shelves only affects the Arctic margins of the continental ice sheets and is not strong enough to significantly influence the surface mass balance of the entire MIS

  6. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse.

    PubMed

    Fillinger, Laura; Janussen, Dorte; Lundälv, Tomas; Richter, Claudio

    2013-07-22

    Over 30% of the Antarctic continental shelf is permanently covered by floating ice shelves, providing aphotic conditions for a depauperate fauna sustained by laterally advected food. In much of the remaining Antarctic shallows (<300 m depth), seasonal sea-ice melting allows a patchy primary production supporting rich megabenthic communities dominated by glass sponges (Porifera, Hexactinellida). The catastrophic collapse of ice shelves due to rapid regional warming along the Antarctic Peninsula in recent decades has exposed over 23,000 km(2) of seafloor to local primary production. The response of the benthos to this unprecedented flux of food is, however, still unknown. In 2007, 12 years after disintegration of the Larsen A ice shelf, a first biological survey interpreted the presence of hexactinellids as remnants of a former under-ice fauna with deep-sea characteristics. Four years later, we revisited the original transect, finding 2- and 3-fold increases in glass sponge biomass and abundance, respectively, after only two favorable growth periods. Our findings, along with other long-term studies, suggest that Antarctic hexactinellids, locked in arrested growth for decades, may undergo boom-and-bust cycles, allowing them to quickly colonize new habitats. The cues triggering growth and reproduction in Antarctic glass sponges remain enigmatic. PMID:23850279

  7. Amundsen Sea sector ice shelf thickness, melt rates, and inland response from annual high-resolution DEM mosaics

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Joughin, I. R.; Smith, B. E.; Alexandrov, O.; Moratto, Z.; Porter, C. C.; Morin, P. J.

    2014-12-01

    Significant grounding line retreat, acceleration, and thinning have occurred along the Amundsen Sea sector of West Antarctica in recent decades. These changes are driven primarily by ice-ocean interaction beneath ice shelves, but existing observations of the spatial distribution, timing, and magnitude of ice shelf melt are limited. Using the NASA Ames Stereo Pipeline, we generated digital elevation models (DEMs) with ~2 m posting from all ~450 available WorldView-1/2 along-track stereopairs for the Amundsen Sea sector. A novel iterative closest point algorithm was used to coregister DEMs to filtered Operation IceBridge ATM/LVIS data and ICESat-1 GLAS data, offering optimal sub-meter horizontal/vertical accuracy. The corrected DEMs were used to produce annual mosaics for the entire ~500x700 km region with focused, sub-annual products for ice shelves and grounding zones. These mosaics provide spatially-continuous measurements of ice shelf topography with unprecedented detail. Using these data, we derive estimates of ice shelf thickness for regions in hydrostatic equilibrium and map networks of sub-shelf melt channels for the Pine Island (PIG), Thwaites, Crosson, and Dotson ice shelves. We also document the break-up of the Thwaites ice shelf and PIG rift evolution leading up to the 2013 calving event. Eulerian difference maps document 2010-2014 thinning over fast-flowing ice streams and adjacent grounded ice. These data reveal the greatest thinning rates over the Smith Glacier ice plain and slopes beyond the margins of the fast-flowing PIG trunk. Difference maps also highlight the filling of at least two subglacial lakes ~30 km upstream of the PIG grounding line in 2011. Lagrangian difference maps reveal the spatial distribution of ice shelf thinning, which can primarily be attributed to basal melt. Preliminary results show focused ice shelf thinning within troughs and large basal channels, especially along the western margin of the Dotson ice shelf. These new data

  8. Glacier Acceleration and Thinning after Ice Shelf Collapse in the Larsen B Embayment, Antarctica

    NASA Technical Reports Server (NTRS)

    Scambos, T. A.; Bohlander, J. A.; Shuman, C. A.; Skvarca, P.

    2004-01-01

    Ice velocities derived from five Landsat 7 images acquired between January 2000 and February 2003 show a two- to six-fold increase in centerline speed of four glaciers flowing into the now-collapsed section of the Larsen B Ice Shelf. Satellite laser altimetry from ICEsat indicates the surface of Hektoria Glacier lowered by up to 38 +/- 6 m a six-month period beginning one year after the break-up in March 2002. Smaller elevation losses are observed for Crane and Jorum glaciers over a later 5-month period. Two glaciers south of the collapse area, Flask and Leppard, show little change in speed or elevation. Seasonal variations in speed preceding the large post-collapse velocity increases suggest that both summer melt percolation and changes in the stress field due to shelf removal play a major role in glacier dynamics.

  9. Sea, ice and surface water circulation, Alaskan continental shelf

    NASA Technical Reports Server (NTRS)

    Sharma, G. D.; Wright, F. F.; Burns, J. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery has been extremely useful in understanding the tidal water movements in a large estuary such as Cook Inlet. As more imagery obtained during various tidal stages become available it appears that complex and fast changing micro-circulation patterns develop in various regions of Cook Inlet during each advancing and receding tide. More ERTS-1 synoptic imagery is needed to fully understand the effect of the approach of tidal front on the water movements in the various regions through the estuary. The conventional onboard ship data gathered during various cruises although revealed the overall circulation pattern in Cook Inlet but failed to show micro-subgyres which develop in various regions during each tide which are discernible on ther ERTS-1 imagery. Suspended load distribution in the Bering Sea during summer varies significantly. In areas of phytoplankton bloom and at the river mouths the suspended load is higher than the 1 mg/1 which is found over most areas. The influence of major rivers on temperature, salinity, and suspended load in surface water as well as at shallow depth is apparent. On the Bering shelf a strong pycnocline generally at depth 10-20 m is formed by surface fresh water flow which retains sediment in suspension over extended periods.

  10. Community dynamics of nematodes after Larsen ice-shelf collapse in the eastern Antarctic Peninsula.

    PubMed

    Hauquier, Freija; Ballesteros-Redondo, Laura; Gutt, Julian; Vanreusel, Ann

    2016-01-01

    Free-living marine nematode communities of the Larsen B embayment at the eastern Antarctic Peninsula were investigated to provide insights on their response and colonization rate after large-scale ice-shelf collapse. This study compares published data on the post-collapse situation from 2007 with new material from 2011, focusing on two locations in the embayment that showed highly divergent communities in 2007 and that are characterized by a difference in timing of ice-shelf breakup. Data from 2007 exposed a more diverse community at outer station B.South, dominated by the genus Microlaimus. On the contrary, station B.West in the inner part of Larsen B was poor in both numbers of individuals and genera, with dominance of a single Halomonhystera species. Re-assessment of the situation in 2011 showed that communities at both stations diverged even more, due to a drastic increase in Halomonhystera at B.West compared to relatively little change at B.South. On a broader geographical scale, it seems that B.South gradually starts resembling other Antarctic shelf communities, although the absence of the genus Sabatieria and the high abundance of Microlaimus still set it apart nine years after the main Larsen B collapse. In contrast, thriving of Halomonhystera at B.West further separates its community from other Antarctic shelf areas. PMID:26811794

  11. The influence of continental shelf bathymetry on Antarctic Ice Sheet response to climate forcing

    NASA Astrophysics Data System (ADS)

    Bart, Philip J.; Mullally, Dan; Golledge, Nicholas R.

    2016-07-01

    We investigated whether shelf-depth changes would have influenced Antarctic Ice Sheet (AIS) response to climate forcing using the Parallel Ice Sheet Model (PISM). The simulations confirm that this would have indeed been the case. For the last-glacial-cycle (LGC) type forcing we prescribed, a modern-like polar AIS surrounded by shallow and intermediate bathymetries experiences rapid grounding-line advance early during the transition from interglacial to glacial forcing. This is in contrast to our baseline simulation of AIS response on the currently overdeepened bathymetry, which showed the expected gradual advance of grounding lines to the same climatic forcing. In the simulation, the more-positive mass balance for the shallower bathymetry is primarily a result of significantly lower calving fluxes from smaller-area ice shelves. On the basis of these results, we suggest that shelf bathymetry is an important boundary condition that should be considered when reconstructing AIS behavior since at least the middle Miocene. We note that caution should be used when applying these concepts because the particular way in which AIS mass balance is altered by shelf depth depends on how the changes in accumulation and ablation at the marine terminations combine with accumulation and ablation on land.

  12. Bathymetry of Grounding Zones and Sub-Ice Shelf Cavities of the Amundsen Sea, from Operation IceBridge Gravity Inversions

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Cochran, J. R.; Bell, R. E.

    2012-12-01

    In order to understand the observed changes in thinning and grounding line position of outlet glaciers it is essential to have accurate maps of the bathymetry of the sea floor within and around the grounding zone. This bathymetry controls the stability of the grounding line as well as access and circulation of seawater under their stabilizing ice shelves. Since 2009 Operation IceBridge has flown gridded surveys over four of the ice shelves of the Amundsen Sea embayment. We present a 3D inversion of the gravity from the region, supplemented by 2D profile models across the ice shelves to provide a self-consistent bathymetric model of the grounding zone and sub ice cavity of Pine Island, Thwaites, Dotson and Crosson ice shelves. Much attention has been paid to the largest outlet glaciers of the Amundsen Sea, and to the bathymetry beneath the floating ice in front of their grounding zones. Considerable changes have also been observed from the smaller Amundsen ice shelves, Crosson and Dotson, which flow to the east and north respectively, between Thwaites Glacier and Getz ice shelf, but little is known about their sub-ice bathymetry. The Amundsen Sea region is vulnerable to the influence of relatively warm circumpolar deep water encroaching on to the continental shelf. The influence of these waters at the grounding zone of the glaciers in the region is dictated by the depth and orientation of bathymetric features of the sea floor. The dominant geological fabric of the region is a NE-SW trending series of ridges and troughs, formed in association with the rifting of the Amundsen Sea region. The bathymetry models from OIB gravity inversions reveal the continuation of the deep (~1500 m) trough of the Kohler Glacier under Crosson Ice Shelf. At the eastern end of the trough, at the front of Crosson ice shelf, the sea floor rises to an average of ~500 m depth over a broad, 50 km wide region. Further east from here the NE-SW fabric is continued in a previously reported ridge

  13. Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Bassis, J. N.; Fricker, H. A.; Czerwinski, R. J.

    2013-12-01

    Iceberg calving from ice shelves accounts for nearly half of the mass loss from the Antarctic Ice Sheet, yet our understanding of this process is limited. The precursor to iceberg calving is large through-cutting fractures, called "rifts," that can propagate for decades after they have initiated until they become iceberg detachment boundaries. To improve our knowledge of rift propagation, we monitored the lengths of 78 rifts in 13 Antarctic ice shelves using satellite imagery from the Moderate Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer between 2002 and 2012. This data set allowed us to monitor trends in rift propagation over the past decade and test if variation in trends is controlled by variable environmental forcings. We found that 43 of the 78 rifts were dormant, i.e., propagated less than 500 m over the observational interval. We found only seven rifts propagated continuously throughout the decade. An additional eight rifts propagated for at least 2 years prior to arresting and remaining dormant for the rest of the decade, and 13 rifts exhibited isolated sudden bursts of propagation after 2 or more years of dormancy. Twelve of the fifteen active rifts were initiated at the ice shelf fronts, suggesting that front-initiated rifts are more active than across-flow rifts. Although we did not find a link between the observed variability in rift propagation rate and changes in atmospheric temperature or sea ice concentration correlated with, we did find a statistically significant correlation between the arrival of tsunamis and propagation of front-initiated rifts in eight ice shelves. This suggests a connection between ice shelf rift propagation and mechanical ocean interaction that needs to be better understood.

  14. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.

    PubMed

    Mulvaney, Robert; Abram, Nerilie J; Hindmarsh, Richard C A; Arrowsmith, Carol; Fleet, Louise; Triest, Jack; Sime, Louise C; Alemany, Olivier; Foord, Susan

    2012-09-01

    Rapid warming over the past 50 years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500 years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600 years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula. PMID:22914090

  15. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean

    NASA Astrophysics Data System (ADS)

    Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.

    2014-10-01

    Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of “shallow melting” is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of “deep melting”, in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.

  16. The eigenvalue problem for ice-shelf vibrations: comparison of a full 3-D model with the thin plate approximation

    NASA Astrophysics Data System (ADS)

    Konovalov, Y. V.

    2015-09-01

    Ice-shelf forced vibration modelling is performed using a full 3-D finite-difference elastic model, which also takes into account sub-ice seawater flow. The ocean flow in the cavity is described by the wave equation; therefore, ice-shelf flexures result from hydrostatic pressure perturbations in sub-ice seawater layer. Numerical experiments have been carried out for idealized rectangular and trapezoidal ice-shelf geometries. The ice-plate vibrations are modelled for harmonic ingoing pressure perturbations and for high-frequency spectra of the ocean swells. The spectra show distinct resonance peaks, which demonstrate the ability to model a resonant-like motion in the suitable conditions of forcing. The spectra and ice-shelf deformations obtained by the developed full 3-D model are compared with the spectra and the deformations modelled by the thin-plate Holdsworth and Glynn model (1978). The main resonance peaks and ice-shelf deformations in the corresponding modes, derived by the full 3-D model, are in agreement with the peaks and deformations obtained by the Holdsworth and Glynn model. The relative deviation between the eigenvalues (periodicities) in the two compared models is about 10 %. In addition, the full model allows observation of 3-D effects, for instance, the vertical distribution of the stress components in the plate. In particular, the full model reveals an increase in shear stress, which is neglected in the thin-plate approximation, from the terminus towards the grounding zone with a maximum at the grounding line in the case of the considered high-frequency forcing. Thus, the high-frequency forcing can reinforce the tidal impact on the ice-shelf grounding zone causing an ice fracture therein.

  17. Linear sea-level response of Antarctic tributaries to strong projected ocean warming underneath the Filchner-Ronne ice shelf

    NASA Astrophysics Data System (ADS)

    Mengel, Matthias; Feldmann, Johannes; Levermann, Anders

    2015-04-01

    Antarctica is the biggest potential contributor to future sea-level rise. Whether its ice discharge will become unstable and decouple from the anthropogenic forcing or increase linearly with the warming of the surrounding ocean is of fundamental importance for future projections. Under continued greenhouse-gas emissions, ocean models indicate the possibility of an abrupt intrusion of warm circumpolar deep water into the cavity below the Filchner-Ronne ice shelf within the next two centuries. The retrograde bed slope of the tributaries of this ice shelf suggests that an unstable ice-sheet retreat is possible in this region while the buttressing of the ice shelf and the narrow glacier troughs tend to inhibit such instability. So far, it is unclear whether the instability or the external forcing will dominate future ice losses for the highly buttressed tributaries. Here we show in regional and continental-scale ice-sheet simulations, which are capable of resolving unstable grounding line retreat, that the ice instability does not dominate the sea-level response of the Filchner-Ronne tributaries but that the discharge follows the strength of the forcing quasi-linearly. Exploring the ice-sheet response to melt-pulses from ocean projections with abrupt warm-water intrusion, we find that ice loss reduces after the end of each pulse and the long-term sea-level contribution is approximately proportional to the total shelf-ice melt. Although the local instabilities might dominate the ice loss for weak oceanic warming, we find that the upper limit of ice discharge from the region is determined by the forcing and not by the marine ice sheet instability. Generally, fast anthropogenic warming may override instabilities in inert cryospheric systems regarding their contribution to future sea level rise.

  18. Bathymetry and geological structures beneath the Ross Ice Shelf at the mouth of Whillans Ice Stream, West Antarctica, modeled from ground-based gravity measurements

    NASA Astrophysics Data System (ADS)

    Muto, A.; Christianson, K.; Horgan, H.; Anandakrishnan, S.; Alley, R. B.

    2012-12-01

    Grounding zones of ice sheets and contiguous ice shelves are important in understanding ice sheet dynamics, as key processes that influence the grounded ice and its discharge into the ocean occur in these regions. Ice-ocean interactions are controlled by the relatively poorly known bathymetry and the configuration of the cavity beneath ice shelves. In addition, knowledge of submarine geological structures and their distributions contributes to understanding the dynamic history of the glaciers and ice streams feeding the ice shelves. However, detailed geophysical surveys of these areas remain scarce due largely to the logistic difficulties of obtaining observational data about the subglacial environment beneath an ice shelf. Here we present a 3D model of the bathymetry and geological structures beneath the Ross Ice Shelf in an embayment at the mouth of Whillans Ice Stream. We use gravity data collected at 82 locations with a portable gravimeter, in conjunction with high-resolution active-source seismic and ice-penetrating radar data to constrain thicknesses of the water column, sediments, ice and firn where the data sets overlap. The active-source seismic survey revealed a shallow water column and soft sediments approximately 15 km seaward of the grounding zone. We explore the extent of such water and sedimentary columns, and the density of the sediment, in a ~500 km-2 embayment that is roughly triangular in shape. Finally, we discuss the uncertainties and trade-offs of the various methods.

  19. The Turbulent Convective Plume at Ice Shelf Fronts and the Sides of Tabular Icebergs

    NASA Astrophysics Data System (ADS)

    Kerr, R. C.; McConnochie, C. D.

    2015-12-01

    We present laboratory experiments and theoretical analysis that quantify the turbulent buoyant plume formed by the dissolution of a vertical ice face in homogeneous salt water. In our experiments, we vary the temperature and salinity of the salt water and measure the dissolution rate of the ice, the temperature of the ice-water interface, the maximum vertical velocity of the buoyant plume, and the rate at which the laboratory tank becomes stratified with buoyant fluid. Using this experimental information, we then construct a theoretical model of the turbulent buoyant plume as a function of height. The plume has a top-hat entrainment coefficient of 0.048 ± 0.006, and is found to have substantial drag. The plume model is used to calculate a plume width, velocity, buoyancy and Reynolds number for typical dissolving icebergs and ice shelf fronts. Our laboratory experiments also examine the effect of a linear salinity gradient on the dissolution of a vertical ice face. As the stratification is increased, the dissolution rate, the interface temperature and the maximum vertical plume velocity all decrease, and their dependence on height changes. We also outline a method of scaling the effects of stratification from our laboratory experiments to the much larger vertical scales of ice shelves and icebergs.

  20. Future sea-level rise due to projected ocean warming beneath the Filchner Ronne Ice Shelf: A coupled model study

    NASA Astrophysics Data System (ADS)

    Thoma, Malte; Determann, Jürgen; Grosfeld, Klaus; Goeller, Sebastian; Hellmer, Hartmut H.

    2015-12-01

    A general ocean circulation model is coupled with a 3D-thermodynamical ice-sheet/shelf model to simulate the response of the Filchner-Ronne Ice Shelf (FRIS, Antarctica) and coastal parts of its catchment basin to a postulated inflow of Warm Deep Water into the ice-shelf cavity on a 1000-yr timescale. Prescribed ocean warming (based on climate projections) enters the ice-shelf cavity in the up to 1500 m deep Filchner Trough and penetrates deep into the sub-ice cavity. Increasing basal melt rates induce geometry changes of the cavity, which in turn have an impact on the ocean circulation and therefore the modelled melt rates. Highest melt rates of about 20 m yr-1 follow the (up to 180 km) retreating grounding line. Basal mass loss reaches about 250 km3 yr-1, doubling the present-day value. The most vulnerable areas below the FRIS are the Bailey Ice Stream and the area between the Institute and Moeller Ice Streams, where the increased melting accounts for about 80 km of the modelled grounding line retreat on the backward sloping bedrock. The potential additional contribution to the eustatic sea level rise due to the grounded-ice loss, simulated in an ensemble approach against a transient control experiment, is about 0.05 mm yr-1 during the first 500 yr and about 0.17 mm yr-1 thereafter.

  1. Sheet, stream, and shelf flow as progressive ice-bed uncoupling: Byrd Glacier, Antarctica, and Jakobshavn Isbrae, Greenland

    NASA Astrophysics Data System (ADS)

    Hughes, T.; Sargent, A.; Fastook, J.; Purdon, K.; Li, J.; Yan, J.-B.; Gogineni, S.

    2015-08-01

    The first-order control of ice thickness and height above sea level is linked to the decreasing strength of ice-bed coupling alone flowlines from an interior ice divide to the calving front of an ice shelf. Uncoupling progresses as a frozen bed progressively thaws for sheet flow, as a thawed bed is progressively drowned for stream flow, and as lateral and/or local grounding vanish for shelf flow. This can reduce ice thicknesses by 90 % and ice elevations by 99 % along flowlines. Original work presented here includes (1) replacing flow and sliding laws for sheet flow with upper and lower yield stresses for creep in cold overlying ice and basal ice sliding over deforming till, respectively, (2) replacing integrating the Navier-Stokes equations for stream flow with geometrical solutions to the force balance, and (3) including resistance to shelf flow caused by lateral confinement in a fjord and local grounding at ice rumples and ice rises. A comparison is made between our approach and two approaches based on continuum mechanics. Applications are made to Byrd Glacier in Antarctica and Jakobshavn Isbrae in Greenland.

  2. Sheet, stream, and shelf flow as progressive ice-bed uncoupling: Byrd Glacier, Antarctica and Jakobshavn Isbrae, Greenland

    NASA Astrophysics Data System (ADS)

    Hughes, T.; Sargent, A.; Fastook, J.; Purdon, K.; Li, J.; Yan, J.-B.; Gogineni, S.

    2016-01-01

    The first-order control of ice thickness and height above sea level is linked to the decreasing strength of ice-bed coupling along flowlines from an interior ice divide to the calving front of an ice shelf. Uncoupling progresses as a frozen bed progressively thaws for sheet flow, as a thawed bed is progressively drowned for stream flow, and as lateral and/or local grounding vanish for shelf flow. This can reduce ice thicknesses by 90 % and ice elevations by 99 % along flowlines. Original work presented here includes (1) replacing flow and sliding laws for sheet flow with upper and lower yield stresses for creep in cold overlying ice and basal ice sliding over deforming till, respectively, (2) replacing integrating the Navier-Stokes equations for stream flow with geometrical solutions to the force balance, and (3) including resistance to shelf flow caused by lateral confinement in a fjord and local grounding at ice rumples and ice rises. A comparison is made between our approach and two approaches based on continuum mechanics. Applications are made to Byrd Glacier in Antarctica and Jakobshavn Isbrae in Greenland.

  3. Ice streaming in western Scotland and the deglaciation of the Hebrides Shelf and Firth of Lorn

    NASA Astrophysics Data System (ADS)

    Arosio, Riccardo; Howe, John; O'Cofaigh, Colm; Crocket, Kirsty

    2014-05-01

    Previously, numerous studies have been undertaken both onshore and offshore to decipher the morphological and sedimentological record in order to better constrain the limits and duration of the British-Irish Ice Sheet (BIIS) (Ballantyne et al. 2009, Bradwell et al. 2008b, Clark et al. 2011, Dunlop et al. 2010, Howe et al. 2012, O'Cofaigh et al., 2012). Late glacial ice sheet dynamics have been revealed to be far more rapid and responsive to climatic amelioration than had previously been considered. Notable in this debate has been the evidence that has been obtained in the inshore and, to a lesser extent, offshore on the UK continental shelf. Here new geomorphological data, principally multibeam echo sounder (MBES) data has provided imagery of previously unseen features interpreted as being glacial in origin. In the wake of these new discoveries this projects aims to investigate the extent, timing, growth and final disintegration of the BIIS across Western Scotland. This area of particular interest for the development of the glaciated North Atlantic margin has been generally neglected in past studies, especially across the mid-outer shelf, which constitutes a missing part in the jigsaw of the reconstructed BIIS during the last ~20.000yrs. We aim to mainly focus on geomorphological analyses of MBES data collected in the Firth of Lorn and Sea of Hebrides; a study of features as moraines, glacial lineations and drumlins will provide important clues on the dynamics and maximum extension of the sheet. Subsequently we will examine the geometry and composition of the shelf sediment infill, aiming to constrain the influence of ice retreat on depositional environments using multi-element geochemical (Pb-isotopes ratios, 14C and OSL dating) and sedimentological techniques. Such an investigation will also give retrospective information on the sources for these sediments, hence more indications on ice configuration. Ultimately we aim to provide a model of deglaciation for the

  4. Satellite color observations of spring blooming in Bering Sea shelf waters during the ice edge retreat in 1980

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.; Clark, Dennis K.

    1987-01-01

    The temporal and spatial development of the ice-edge bloom and the spring open-water bloom on the eastern Bering Sea shelf was studied using CZCS images of the eastern Bering Sea between April 27 and July 22, 1980. Images of the Norton Sound area taken during the period of ice breakup show that the influence of ice melt on phytoplankton growth is particularly significant where the ice is actively melting. Significant levels (5-30 mg/cu m) of chlorophyll could be seen trailing the ice pack as it melted and moved northward and westward in late April and early May. In the ice-free eastern Bering Sea midsummer image, a northwesterly oriented band of high pigment concentration was seen in the area of the outer domain, suggesting periodic offshore movements of shelf waters.

  5. Greenhouse to Icehouse Antarctic Paleoclimate and Ice History from George V Land and Adélie Land Shelf Sediments

    NASA Astrophysics Data System (ADS)

    Williams, T.; Escutia, C.; De Santis, L.; O'Brien, P.; Pekar, S. F.; Brinkhuis, H.; Domack, E. W.

    2013-12-01

    Along the George V and Adélie Land continental shelf of East Antarctica, shallowly-buried strata contain a record of Antarctica's climate and ice history from the lush forests of the Eocene greenhouse to the dynamic ice sheet margins of the Neogene. Short piston cores and dredges have recovered Early Cretaceous and Eocene organic-rich sediment at the seabed, and in 2010, IODP Expedition 318 recovered earliest Oligocene and early Pliocene subglacial and proglacial diamictites. However, challenging ice and drilling conditions from the JOIDES Resolution on the shelf resulted in poor core recovery and sites had to be abandoned before the stratigraphic targets could be reached. Therefore, in a new IODP drilling proposal submitted earlier this year, we propose to use the MeBo sea bed drill for improved core recovery and easier access to the shelf, and drill a stratigraphic transect of shallow (~80m) holes. To investigate the evolution of the Antarctic ice sheet in this sector, we target strata above and below regional erosional and downlap surfaces to date and characterize major episodes of ice sheet advance and retreat. These direct records of ice extent on the shelf can be set in the context of Southern Ocean records of temperature, ice-rafted debris (IRD) and latitudinal fluctuations of the opal belt, and hence we can relate ice sheet evolution to paleoclimate conditions. Targets include possible late Eocene precursor glaciations, the Eocene/Oligocene boundary erosion surface, Oligocene and Miocene ice extents, and ice margin fluctuations in the Pliocene. At the Cretaceous and Eocene proposed sites, marine and terrestrial temperature proxies and palynological records will provide information on high-latitude paleoenvironments and pole-equator temperature gradients. Here we present existing data from the area and the proposed new drill sites. The ice and climate history of the George V and Adélie Land margin can provide warm-world scenarios to help understand ice

  6. Extension of Greenland Ice Sheet outlets to the shelf edge bordering Baffin Bay during the last glacial cycle

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, C.; Dowdeswell, J. A.; Jennings, A. E.; Kilfeather, A. A.; Hogan, K.; Andrews, J. T.

    2010-12-01

    Despite much research seeking to understand recent dynamic changes to the Greenland Ice Sheet our understanding of the longer-term history of the ice sheet remains surprisingly poor for many sectors. This is particularly the case on the central west Greenland continental margin bordering Baffin Bay. In this region, several major fast flowing outlets, including Jakobshavns Isbrae, drain the ice sheet today. Marine geological and geophysical records recently acquired from the continental shelf and slope offshore of central west Greenland provide new evidence for the extension of ice sheet outlets to the shelf edge during the last glaciation. Bathymetric troughs extend from the mouths of Umanak Fjord and Disko Bugt to the shelf edge. Streamlined subglacial bedforms imaged on geophysical records and subglacial tills recovered in cores from these troughs record the flow of grounded ice sheet outlets along these troughs to the shelf edge during the last glaciation. Major submarine fans deposited at the mouths of the troughs record associated glacigenic sediment delivery to the continental slope. Cores and geophysical records from the fans show significant differences between them in terms of the nature of sediment delivery and slope morphology, with examples of both low gradient debris-flow dominated fans and much steeper channelized fans. These differences imply marked spatial variations in the nature of continental slope sedimentation in front of fast flowing ice sheet outlets. Over thirty AMS radiocarbon dates provide new chronological control on the timing and rate of glacigenic sediment delivery to the continental slope and the timing of subsequent ice sheet retreat from the shelf edge. These new landform, sediment and chronological records from the central west Greenland shelf and slope will be presented and the wider implications for Greenland Ice Sheet history at and following the LGM discussed.

  7. Recent climate tendencies on an East Antarctic ice shelf inferred from a shallow firn core network

    PubMed Central

    Schlosser, E; Anschütz, H; Divine, D; Martma, T; Sinisalo, A; Altnau, S; Isaksson, E

    2014-01-01

    Nearly three decades of stable isotope ratios and surface mass balance (SMB) data from eight shallow firn cores retrieved at Fimbul Ice Shelf, East Antarctica, in the Austral summers 2009–2011 have been investigated. An additional longer core drilled in 2000/2001 extends the series back to the early eighteenth century. Isotope ratios and SMB from the stacked record of all cores were also related to instrumental temperature data from Neumayer Station on Ekström Ice Shelf. Since the second half of the twentieth century, the SMB shows a statistically significant negative trend, whereas the δ18O of the cores shows a significant positive trend. No trend is found in air temperature at the nearest suitable weather station, Neumayer (available since 1981). This does not correspond to the statistically significant positive trend in Southern Annular Mode (SAM) index, which is usually associated with a cooling of East Antarctica. SAM index and SMB are negatively correlated, which might be explained by a decrease in meridional exchange of energy and moisture leading to lower precipitation amounts. Future monitoring of climate change on the sensitive Antarctic ice shelves is necessary to assess its consequences for sea level change. Key Points Mass balance and stable oxygen isotope ratios from shallow firn cores Decreasing trend in surface mass balance, no trend in stable isotopes Negative correlation between SAM and SMB PMID:25821663

  8. Low melt rates with seasonal variability at the base of Fimbul Ice Shelf, East Antarctica, revealed by in situ interferometric radar measurements

    NASA Astrophysics Data System (ADS)

    Langley, Kirsty; Kohler, Jack; Sinisalo, Anna; Øyan, Mats Jørgen; Hamran, Svein Erik; Hattermann, Tore; Matsuoka, Kenichi; Nøst, Ole Anders; Isaksson, Elisabeth

    2014-11-01

    Basal melt is a major cause of ice shelf thinning affecting the stability of the ice shelf and reducing its buttressing effect on the inland ice. The Fimbul ice shelf (FIS) in Dronning Maud Land (DML), East Antarctica, is fed by the fast-flowing Jutulstraumen glacier, responsible for 10% of ice discharge from the DML sector of the ice sheet. Current estimates of the basal melt rates of the FIS come from regional ocean models, autosub measurements, and satellite observations, which vary considerably. This discrepancy hampers evaluation of the stability of the Jutulstraumen catchment. Here, we present estimates of basal melt rates of the FIS using ground-based interferometric radar. We find a low average basal melt rate on the order of 1 m/yr, with the highest rates located at the ice shelf front, which extends beyond the continental shelf break. Furthermore, our results provide evidence for a significant seasonal variability.

  9. New Insight into Ice Shelf Rift Propagation from Geodetic and Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Fricker, H. A.; Coleman, R.; Minster, B.

    2005-12-01

    Rifts in Antarctic ice shelves are large through-cutting fractures that penetrate the entire ice thickness. These rifts can grow to be hundreds of kilometers long, eventually forming the boundary from which large tabular bergs detach. Despite the important role that iceberg calving plays in the mass balance of the Antarctic ice sheet (icebergs account for up to two thirds of the mass loss), very little is known about the forces involved in their initiation and subsequent propagation. During the 2002-2003 and 2004-2005 seasons we jointly deployed arrays of GPS and seismometers around the tip of an actively propagating rift on the Amery Ice Shelf, East Antarctica. Our observations show strong clustering of seismicity along the rift axis, extending far ahead of where the rift tip is visible on the surface. We also find episodic swarms of seismicity accompanied by rapid rift widening, which we interpret as bursts of rift propagation. The locations of events during the seismic swarm show that during each burst, the rift propagated approximately 100-200 meters. Previous studies have shown no direct triggering of bursts of propagation by tides or winds. Serendipitously, during the 2004-5 our instruments were deployed one week before the magnitude 9.3 Sumatra earthquake. Not only is the earthquake clearly visible in our seismic records, but we also see the arrival of T-waves (acoustic waves which propagate through the ocean) as well as the tsunami triggered by the earthquake. This presents us with a novel opportunity to study the influence of both the earthquake and the tsunami on rift propagation. We present preliminary results showing that neither the earthquake nor the T-waves had any effect on propagation. However, one of the bursts occurs several hours after the tsunami arrives at the ice shelf, suggesting a possible connection and raising questions about the potential influence of large storms and swell on propagation.

  10. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica

    NASA Astrophysics Data System (ADS)

    Cape, M. R.; Vernet, Maria; Skvarca, Pedro; Marinsek, Sebastián.; Scambos, Ted; Domack, Eugene

    2015-11-01

    Rapid warming of the Antarctic Peninsula over the past several decades has led to extensive surface melting on its eastern side, and the disintegration of the Prince Gustav, Larsen A, and Larsen B ice shelves. The warming trend has been attributed to strengthening of circumpolar westerlies resulting from a positive trend in the Southern Annular Mode (SAM), which is thought to promote more frequent warm, dry, downsloping foehn winds along the lee, or eastern side, of the peninsula. We examined variability in foehn frequency and its relationship to temperature and patterns of synoptic-scale circulation using a multidecadal meteorological record from the Argentine station Matienzo, located between the Larsen A and B embayments. This record was further augmented with a network of six weather stations installed under the U.S. NSF LARsen Ice Shelf System, Antarctica, project. Significant warming was observed in all seasons at Matienzo, with the largest seasonal increase occurring in austral winter (+3.71°C between 1962-1972 and 1999-2010). Frequency and duration of foehn events were found to strongly influence regional temperature variability over hourly to seasonal time scales. Surface temperature and foehn winds were also sensitive to climate variability, with both variables exhibiting strong, positive correlations with the SAM index. Concomitant positive trends in foehn frequency, temperature, and SAM are present during austral summer, with sustained foehn events consistently associated with surface melting across the ice sheet and ice shelves. These observations support the notion that increased foehn frequency played a critical role in precipitating the collapse of the Larsen B ice shelf.

  11. Variability of the oceanic environment and basal melting of the Dotson Ice Shelf, West Antarctica, 2000 to 2014

    NASA Astrophysics Data System (ADS)

    Shoosmith, Deb; Jenkins, Adrian; Dutrieux, Pierre; Jacobs, Stan; Kim, Tae Wan; Lee, Sang Hoon; Ha, Ho Kyung; Stammerjohn, Sharon

    2016-04-01

    It is well known that the ocean plays a key role in the process of mass loss from ice sheets through iceberg calving and basal melting. The Amundsen Sea, in the eastern Pacific sector of the Southern Ocean, is a region where the ice shelves are rapidly thinning. The widespread, coherent nature of the thinning suggests oceanic forcing, which has now been well documented for Pine Island Glacier. Studies using satellite data have indicated that Dotson Ice Shelf was melting at a rate of 8 m per year and thinning by about 3 m per year during the 2003 - 2008 period. This study takes a slightly longer term perspective, exploiting oceanographic observations spanning a decade and a half (2000 - 2014) that have been obtained at the Dotson Ice Front. A total of 7 hydrographic sections reveal variability in the oceanographic environment in front of the ice shelf and associated changes in meltwater production over time. We quantify the variability in circulation and net meltwater transport from beneath the ice shelf to produce estimates of the basal melt rate for this 15 year period. We find that changes in ocean heat content in front of the ice shelf drive high variability in melting on multi-annual to decadal time-scales.

  12. New surface-based observations of the environment beneath Pine Island Glacier ice shelf

    NASA Astrophysics Data System (ADS)

    Bindschadler, Robert; Truffer, Martin; Stanton, Tim; Peters, Leo; Shortt, Mike; Pomraning, Dale; Stockel, Jim; Shaw, Bill; Steinarson, Einar; Anandakrishnan, Sridhar; Wilson, Kiya; Holland, David; Bushuk, Mitch; Behar, Alberto; Cocaud, Cedric; Stam, Christina

    2013-04-01

    Extensive surface, sub-shelf cavity and seabed observations of the Pine Island Glacier (PIG) ice shelf environment were collected by a surface field team during the 2012-13 austral summer. Three sites aligned along a central, flow-aligned surface valley were occupied for about one week each during which two hot-water holes were drilled at each site. In one hole, a mast-mounted set of oceanographic sensors recorded water temperature, current and salinity in the few meters immediately below the ice-shelf bottom. In the other hole, a similarly instrumented profiler was deployed to make quasi-daily vertical transects of the sub-shelf cavity by rising and sinking along a cable suspended in the cavity. These instruments are already returning data that provide direct rates of heat and momentum transfer in the boundary layer, basal melt rates and the temporal variation of water movements on daily and longer time scales. Shallow cores of the sea bed and a photographic record of the drill holes, ocean cavity and sea bed were also collected at two of the drill sites. The geophysics program was spatially much broader and consisted of phase-sensitive radars to measure basal melt rates and active seismic instrumentation to explore the character of the sea bed. Continuous profiling between the drill sites established the previously discovered ("Autosub") sea bed ridge is asymmetric with a steeper downstream face. Spot measurements upstream of the drill sites were reached by helicopter and refined the shape of the ocean cavity where extensive melt rates were measured. The field work is concluding as this abstract is being submitted, so most results are not yet available, but will be included in the presentation as first results emerge.

  13. Shear, Stability and Mixing within the Ice-Shelf-Ocean Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jenkins, Adrian

    2016-04-01

    Ocean-forced basal melting has been implicated in the widespread thinning of Antarctic ice shelves that has been causally linked with acceleration in the outflow of grounded ice. What determines the distribution and rates of basal melting and freezing beneath an ice shelf and how these respond to changes in the ocean temperature or circulation are therefore key questions. Recent years have seen major progress in our ability to observe basal melting and the ocean conditions that drive it, but data on the latter remain sparse, limiting our understanding of the key processes of ice-ocean heat transfer. In particular, we have no observations of current profiles through the buoyancy- and frictionally-controlled flows along the ice shelf base that drive mixing through the ice-ocean boundary layer. This presentation represents an attempt to address this gap in our knowledge through application of a very simple model of such boundary flows that considers only the spatial dimension perpendicular to the boundary. Initial results obtained with an unrealistic assumuption of constant eddy viscosity/diffusivity are nevertheless informative. For the buoyancy-driven flow two possible regimes exist: a weakly-stratified, geostrophic cross-slope current with an embedded Ekman layer, somewhat analogous to a conventional density current on a slope; or a strongly-stratified upslope jet with weak cross-slope flow, more analogous to an inverted katabatic wind. The latter is most appropriate when the ice-ocean interface is very steep, while for the gentle slopes typical of ice shelves the buoyant Ekman regime prevails. Introduction of a variable eddy viscosity/diffusivity derived from a local turbulence closure scheme modifies the current structure and stratification. There is a sharp step in properties across the surface layer, where the viscosity/diffusivity is low, weak gradients across the outer part of the boundary layer, where shear-driven mixing is strong, and a relatively strong

  14. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    NASA Astrophysics Data System (ADS)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated

  15. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current.

    PubMed

    Hellmer, Hartmut H; Kauker, Frank; Timmermann, Ralph; Determann, Jürgen; Rae, Jamie

    2012-05-10

    The Antarctic ice sheet loses mass at its fringes bordering the Southern Ocean. At this boundary, warm circumpolar water can override the continental slope front, reaching the grounding line through submarine glacial troughs and causing high rates of melting at the deep ice-shelf bases. The interplay between ocean currents and continental bathymetry is therefore likely to influence future rates of ice-mass loss. Here we show that a redirection of the coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf during the second half of the twenty-first century would lead to increased movement of warm waters into the deep southern ice-shelf cavity. Water temperatures in the cavity would increase by more than 2 degrees Celsius and boost average basal melting from 0.2 metres, or 82 billion tonnes, per year to almost 4 metres, or 1,600 billion tonnes, per year. Our results, which are based on the output of a coupled ice-ocean model forced by a range of atmospheric outputs from the HadCM3 climate model, suggest that the changes would be caused primarily by an increase in ocean surface stress in the southeastern Weddell Sea due to thinning of the formerly consolidated sea-ice cover. The projected ice loss at the base of the Filchner-Ronne Ice Shelf represents 80 per cent of the present Antarctic surface mass balance. Thus, the quantification of basal mass loss under changing climate conditions is important for projections regarding the dynamics of Antarctic ice streams and ice shelves, and global sea level rise. PMID:22575964

  16. Quantifying Ice-sheet/Ice-shelf Dynamics and Variability with Meter-scale DEM and Velocity Timeseries

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Joughin, I. R.; Smith, B. E.; Moratto, Z. M.; Porter, C.; Morin, P. J.

    2012-12-01

    Both the Antarctic and Greenland ice sheets are losing mass at an increasing rate, although loss due to accelerating flow and dynamic thinning remains poorly understood. We are using complementary data from repeat satellite and airborne observations to investigate the relationship between ice-sheet/ice-shelf dynamics and geometry on seasonal to interannual timescales. High-resolution along-track stereo imagery from commercial satellite vendors DigitalGlobe and GeoEye provides unprecedented spatial (~0.5 m/px with ~17 km swath width) and temporal (weekly/monthly) resolution for these efforts. We have developed an automated pipeline using open-source software to produce orthoimage, DEM, and surface velocity products from DigitalGlobe imagery. High-contrast surface texture (e.g. sastrugi, crevasses) visible at sub-meter resolution provides near-perfect image correlation (~99% success rate) during DEM and velocity map derivation. Elevation data from IceBridge ATM/LVIS, ICESat GLAS, and GPS campaigns are used to correct DEMs and perform accuracy assessment. Preliminary tests over exposed bedrock provide relative vertical accuracy estimates of <1-2 m for Worldview-1/2 DEMs. Velocity data from TerraSAR-X and GPS campaigns provide validation for surface velocity products, with horizontal error estimates of <10 m. Velocity and elevation change products with 2-4 m/px spatial resolution allow for unprecedented 3D dynamic characterization of sub-km flow transition zones (e.g. grounding lines, shear margins), capturing both local and regional variations due to melting and dynamic thinning. We present timeseries for West Greenland (Jakobshavn front - 20 observations, Jakobshavn south catchment - 10) and West Antarctica (Pine Island and Thwaites - 5 each) from 2009-2012. These observations complement ongoing efforts to measure and model outlet glacier dynamics, with implications for future ice-sheet mass balance estimates.

  17. Climatological aspects of mesoscale cyclogenesis over the Ross Sea and Ross Ice shelf regions of Antarctica

    SciTech Connect

    Carrasco, J.F.; Bromwich, D.H.

    1994-11-01

    A one-year (1988) statistical study of mesoscale cyclogenesis near Terra Nova Bay and Byrd Glacier, Antarctica, was conducted using high-resolution digital satellite imagery and automatic weather station data. Results indicate that on average two (one) mesoscale cyclones form near Terra Nova Bay (Byrd Glacier) each week, confirming these two locations as mesoscale cyclogeneis areas. The maximum (minimum) weekly frequency of mesoscale cyclones occurred during the summer (winter). The satellite survey of mesoscale vortices was extended over the Ross Sea and Ross Ice Shelf. Results suggest southern Marie Byrd Land as another area of mesoscale cyclone formation. Also, frequent mesoscale cyclonic activity was noted over the Ross Sea and Ross Ice Shelf, where, on average, six and three mesoscale vortices were observed each week, respectively, with maximum (minimum) frequency during summer (winter) in both regions. The majority (70-80%) of the vortices were of comma-cloud type and were shallow. Only around 10% of the vortices near Terra Nova Bay and Byrd Glacier were classified as deep vortices, while over the Ross Sea and Ross Ice Shelf around 20% were found to be deep. The average large-scale pattern associated with cyclogenesis days near Terra Nova Bay suggests a slight decrease in the sea level pressure and 500-hPa geopotential height to the northwest of this area with respect to the annual average. This may be an indication of the average position of synoptic-scale cyclones entering the Ross Sea region. Comparison with a similar study but for 1984-85 shows that the overall mesoscale cyclogenesis activity was similar during the three years, but 1985 was found to be the year with greater occurrence of {open_quotes}significant{close_quotes} mesoscales cyclones. The large-scale pattern indicates that this greater activity is related to a deeper circumpolar trough and 500-hPa polar vortex for 1985 in comparison to 1984 and 1988. 64 refs., 13 figs., 5 tabs.

  18. An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    NASA Astrophysics Data System (ADS)

    Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.

    2011-12-01

    Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage

  19. Autonomous ocean observations beneath Pine Island Glacier Ice Shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Dutrieux, P.; Jenkins, A.; Jacobs, S.; Heywood, K. J.

    2015-12-01

    Warm circumpolar deep water reaching 3.5ºC above the in situ freezing point pervasively fills a network of glacially carved troughs in the Amundsen sea, West Antarctica, and melts and thins neighbouring ice shelves, including Pine Island glacier Ice Shelf (PIIS). Hydrographic, current, and microstructure observations obtained in austral summer 2009 and 2014 by an autonomous underwater vehicle beneath the PIIS are used here to detail the complex ice-ocean interaction and resulting ocean circulation. The theoretical schematic of deeply incoming warm and saline water melting the grounding line and generating a buoyant plume upwelling along the ice draft is generally consistent with observations. The cavity beneath PIIS is clearly divided in two by a seabed ridge, constraining the oceanic circulation and water masses distribution. On the seaward side of the ridge, a thick warm deep water layer circulates cyclonically and is overlaid by a thin meltwater layer. Only intermediate depth waters are allowed to overflow from the ridge top into the inner cavity, where a much thinner warm water layer is now overlaid by a thicker meltwater layer. At the ice/ocean interface, melt induced freshening is forcing an upwelling which in turn injects cyclonic vorticity and participates in creating a vigorous cyclonic recirculation in the inner cavity. The top of the ridge, where warm waters overflow in the inner cavity, is a dynamical boundary characterized by northward along-ridge currents up to 0.2 m/s and enhanced shear, thermal gradient, and mixing. Observations at two points at the ice interface indicate that the ocean remains stratified within 2 meters of the ice.

  20. Maceral, total organic carbon, and palynological analyses of ross ice shelf project site j9 cores.

    PubMed

    Wrenn, J H; Beckman, S W

    1982-04-01

    Analyses of macerals and total organic carbon indicate that the low organic content of core sediments from Ross Ice Shelf Project site J9 has been selectively reduced further, probably by postdepositional submarine oxidation. Palynological analysis revealed a reworked Paleogene dinocyst flora of low diversity (the transantarctic flora). This constitutes the most southerly dinocyst flora reported thus far. The antarctic distribution of the transantarctic flora supports the existence of a transantarctic strait during the Paleogene. The J9 sporomorph assemblage also is reworked and Paleogene in age. PMID:17736253

  1. Lateral mixing across ice meltwater fronts of the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Lu, K.; Weingartner, T.; Danielson, S.; Winsor, P.; Dobbins, E.; Martini, K.; Statscewich, H.

    2015-08-01

    Summer and fall hydrographic sections in the northeastern Chukchi Sea frequently capture 5-20 m thick intrapycnocline lenses or horizontal plumes of warm, moderately salty summer Bering Sea Water flowing northward from Bering Strait. These features occur within the shallow (~20 m depth) pycnocline separating cold, dilute, surface meltwater from near-freezing, salty, winter-formed waters beneath the pycnocline. An idealized numerical model suggests that the features arise from eddies and meanders generated by instability of the surface front separating meltwater from Bering Sea Water. Warm Bering Sea Water is transported across the front and into the pycnocline by the cross-frontal velocities associated with the instabilities. The accompanying lateral eddy heat fluxes may be important both in summer for promoting ice melt and in fall by delaying the onset of ice formation over portions of this shelf. Lateral heat flux magnitudes depend upon the stratification of the Bering Sea Water.

  2. Retreat of the West Antarctic Ice Sheet from the western Amundsen Sea shelf at a pre- or early LGM stage

    NASA Astrophysics Data System (ADS)

    Klages, J. P.; Kuhn, G.; Hillenbrand, C.-D.; Graham, A. G. C.; Smith, J. A.; Larter, R. D.; Gohl, K.; Wacker, L.

    2014-05-01

    Recent palaeoglaciological studies on the West Antarctic shelf have mainly focused on the wide embayments of the Ross and Amundsen seas in order to reconstruct the extent and subsequent retreat of the West Antarctic Ice Sheet (WAIS) since the Last Glacial Maximum (LGM). However, the narrower shelf sectors between these two major embayments have remained largely unstudied in previous geological investigations despite them covering extensive areas of the West Antarctic shelf. Here, we present the first systematic marine geological and geophysical survey of a shelf sector offshore from the Hobbs Coast. It is dominated by a large grounding zone wedge (GZW), which fills the base of a palaeo-ice stream trough on the inner shelf and marks a phase of stabilization of the grounding line during general WAIS retreat following the last maximum ice-sheet extent in this particular area (referred to as the Local Last Glacial Maximum, ‘LLGM’). Reliable age determination on calcareous microfossils from the infill of a subglacial meltwater channel eroded into the GZW reveals that grounded ice had retreated landward of the GZW before ˜20.88 cal. ka BP, with deglaciation of the innermost shelf occurring prior to ˜12.97 cal. ka BP. Geophysical sub-bottom information from the inner-, mid- and outer shelf indicates grounded ice extended to the shelf edge prior to the formation of the GZW. Assuming the wedge was deposited during deglaciation, we infer the timing of maximum grounded ice extent occurred before ˜20.88 cal. ka BP. This could suggest that the WAIS retreat from the outer shelf was already underway during or even prior to the global LGM (˜23-19 cal. ka BP). Our new findings give insights into the regional deglacial behaviour of this understudied part of the West Antarctic shelf and at the same time support early deglaciation ages recently presented for adjacent drainage sectors of the WAIS. If correct, these findings contrast with the hypothesis that initial deglaciation

  3. Implications of Increasing Vertical Resolution in an Isopycnal Model of an Ice Shelf Cavity

    NASA Astrophysics Data System (ADS)

    Little, C. M.

    2007-12-01

    Boundary layer dynamics and thermodynamic feedback processes govern the efficiency of oceanic heat delivery to ice shelves. Isopycnal models offer an opportunity to resolve thin meltwater-freshened layers, improving the representation of the oceanic boundary layer and water masses modified in the cavity. However, heat, freshwater, and momentum fluxes between ice and ocean pass through a variable density bulk mixed layer (BML). Increased vertical resolution impacts the properties of the BML, and may modify the rate and spatial distribution of basal melting. To investigate these impacts, a series of simulations using the Hallberg Isopycnal Model, modified to represent sub-ice shelf processes, is conducted in an idealized, strongly forced, east-west aligned ice shelf cavity. Meltwater mixtures remain in the BML or fill intermediate density isopycnal layers (from 1-22 layers, depending on resolution) above a uniform (1.4°C) source water mass. Since mixing may mute the benefits of increased resolution, these simulations incorporate differing parameterizations, including a minimum BML thickness, background (tidal) velocities, and Richardson number-dependent entrainment. Water in the BML and, if present, intermediate layers, is advected weakly (O(10-2) ms-1) towards a southern boundary current. Meltwater flux near the ice shelf front is dominated by O(10-1) ms-1 flow in this boundary layer. The thickness of the meltwater-enriched outflow (20-160 m) increases in step with vertical resolution; gradients in tracers are apparent in all but the lowest resolution cases. Area-averaged melt rates of 16-35 myr-1 indicate a strong sensitivity to near-boundary mixing; the spatial distribution of melting reveals the influence of vertical resolution under different regimes. Under uniformly high mixing, melting rates are dominated by "upstream" regions and are insensitive to resolution. Weaker imposed mixing induces a shift to a "shear-driven" regime, with melting intensified in the

  4. The role of cooperative iceberg capsize during ice-shelf disintegration

    NASA Astrophysics Data System (ADS)

    Wilder, W. G.; Burton, J. C.; Amundson, J. M.; Cathles, L. M.; Zhang, W. W.

    2011-12-01

    The physical processes responsible for the sudden, rapid collapse of Antarctic ice-shelves (Larsen B, in 2002; Wilkins, in 2008) are poorly understood. Observations are limited to a handful of satellite images. Thus we have undertaken a series of laboratory-scale experiments using a water-filled tank and "ice" made from buoyant plastic blocks to investigate these processes. Previous experiments have quantified how gravitational potential energy of single-iceberg capsize is converted to other forms of energy [described in Burton et al., submitted], including hydrodynamic forms that may feed back on the ice shelf to cause additional calving. The new experiments reported here examine the energetics of hydrodynamically coupled icebergs that exhibit collective behaviors qualitatively similar to features observed in satellite imagery. Our results suggest that there is a critical proximity at which icebergs will capsize in the same direction an overwhelming majority of the time (cooperative capsize), and a significant part of the gravitational potential energy is converted into translational kinetic energy. We speculate that the residual translational energy observed in our experiments may explain the significant expansion rate (~1 meter/second) of collapsing Antarctic ice-shelves. Burton, J. C., J. M. Amundson, D. S. Abbot, A. Boghosian, L. M. Cathles, S. Correa-Legisos, K. N. Darnell, N. Guttenberg, D. M. Holland, and D. R. MacAyeal. submitted. Laboratory investigations of iceberg-capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res.

  5. Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf

    USGS Publications Warehouse

    Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.

    2012-01-01

    Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along <5% of the tracklines at depths of ~5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.

  6. Marine geological and geophysical records of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, Colm; Callard, S. Louise; Benetti, Sara; Chiverell, Richard C.; Saher, Margot; van Landeghem, Katrien; Livingstone, Stephen J.; Scourse, James; Clark, Chris D.

    2015-04-01

    The record of glaciation on the continental shelf west of Ireland has, until recently, been relatively poorly studied. The UK NERC funded project BRITICE-CHRONO collected marine geophysical data in the form of multibeam swath bathymetry and sub-bottom profiles supplemented by over 50 vibro- and piston cores across the continental shelf west of Ireland during cruise JC106 of the RRS James Cook in 2014. Across the western Irish shelf, offshore of counties Galway and Clare, a series of large arcuate moraines record the former presence of a grounded ice sheet on the shelf. However, geophysical data from further to the west across the Porcupine Bank show a series of ridges and wedge-shaped sedimentary features whose form is consistent with an origin as moraines and/or grounding-zone wedges. Sediment cores from several of these landforms recovered stiff, massive diamictons containing reworked shells that are interpreted as subglacial tills. Cores from the eastern Porcupine Bank recovered laminated muds with cold-water glacimarine foraminifera, in some cases overlying till. Collectively the geophysical and sedimentary data imply the presence of grounded ice across the northern Porcupine Bank and thus much further west on the Irish margin than has previously been considered. This ice underwent retreat in a glacimarine setting. The large 'Olex Moraine' on the western Irish shelf is thus interpreted as recessional feature. Work is currently underway to dates these features and to obtain a retreat chronology for this sector of the last British-Irish Ice Sheet.

  7. Perennial water stratification and the role of basal freshwater flow in the mass balance of the Ward Hunt Ice Shelf, Canadian High Arctic

    SciTech Connect

    Jefferies, M.O.

    1992-03-01

    A pronounced perennial water stratification in Disraeli Fjord behind the Ward Hunt Ice Shelf on the north coast of Ellesmere Island is described. The ice shelf acts as a hanging dam at the mouth of the fjord and minimizes mixing between inflowing meltwater runoff and the seawater. Consequently, a 4 1 -m-deep layer of low salinity water, interposed between a 2- to 3-m-thick fjord surface ice layer and deeper seawater, is impounded behind the ice shelf. Highly negative delta 18O Values and high tritium activity in the low salinity water indicate it is derived primarily from snow-meltwater. Highly negative delta 18O values and high tritium values in a 5-m-thick basal ice layer in Hobson's Choice Ice Island, which broke off the East Ward Hunt Ice Shelf in 1982-83, might be evidence that basal accretion from freshwater flowing out of Disraeli Fjord below the ice shelf occurred prior to the calving. Using the known chronology of tritium occurrence in precipitation since 1952 and the measured levels in the basal ice, mean basal accretion rates of 96-141 mm yr-1 (water equivalent, w.e.) are calculated. The record of ablation and accumulation at the surface of the East Ward Hunt Ice Shelf for the period 1966-1982 shows an accumulated loss at the surface of 1.26 m (w.e.) at a mean annual rate of 74 mm yr-1. Therefore, despite many consecutive warm summers with considerable surface melting and runoff, the calculated basal accretion exceeds the surface loss and the ice shelf has increased, or at least maintained, its thickness. The thickening has been possible because of the feedback system created by the location of the ice shelf across the mouth of the fjord, the resultant water stratification and the outflow of freshwater below the ice shelf.

  8. An optimized estimate of glacial melt from the Ross Ice Shelf using noble gases, stable isotopes, and CFC transient tracers

    NASA Astrophysics Data System (ADS)

    Loose, B.; Schlosser, P.; Smethie, W. M.; Jacobs, S.

    2009-08-01

    Isotopes of helium and neon and the H218O/H216O ratio of water are proven proxies for melt from glacial ice beneath floating ice shelves and at ice shelf fronts. Their high concentrations in glacial meltwater, compared to other environmental sources, make them ideal tracers for studies of the pathways of glacial meltwater from its origins into the ocean interior. We combine noble gas and stable isotopes with temperature, salinity, and dissolved oxygen measurements from three cruises (along the Ross Ice Shelf during the austral summers of 1993-1994 and 1999-2000 and to the Ross Sea in 2000-2001) and use optimal multiparameter analysis to compute the water mass concentration, including glacial meltwater. The distribution of meltwater at the front of the Ross Ice Shelf extended east from 180°W, with the highest concentrations found near 165°W in both 1994 and 2000. The mean meltwater concentration at the ice shelf front was 2.0 ± 0.33‰ in 1994, 2.2 ± 0.36‰ in 2000, and 0.25 ± 0.1‰ in the western Ross Sea in 2001. Water mass concentrations are used to correct for bias in the CFC age, introduced by mixing with CFC-free waters, an effect revealed by comparing CFC age with transit time distribution curves. The water residence time within the ice shelf cavity, using CFCs and the mean meltwater concentration, implies a basal melt rate of 33-50 km3 a-1.

  9. A flow band model of the Ross Ice Shelf, Antarctica: Response to CO sub 2 -induced climatic warming

    SciTech Connect

    Lingle, C.S.; Brown, T.J. ); Schilling, D.H. ); Fastook, J.L. ); Paterson, W.S.B. )

    1991-04-10

    A time-dependent model is applied to the Ross Ice Shelf flow band discharging ice stream B, West Antarctica. The model includes the effects of temperature, depth-dependent density, and backpressure from the coasts of the Ross embayment and Crary Ice Rise. Data from the Ross Ice Shelf Geophysical and Glaciological Survey and the Siple Coast Project are used as input data. Accuracy and stability are verified by reproducing the flow band for 10,000 model years with equilibrium distributions of accumulation, surface temperature, and basal balance. Sensitivity is tested by forcing the model with increasing accumulation rates, surface temperatures, and basal melt rates, respectively, while other factors are held constant. The response of the ice shelf to three climatic scenarios that may result from increasing carbon dioxide and trace greenhouse gases is simulated. The results range from slight thickening with moderately increased backpressure in the grounding zone to rapid thinning accompanied by rapidly decreasing backpressure during 175- to 600-year simulations, depending primarily upon whether increasing surface temperatures and accumulaton rates are accompanied by increased rates of basal melting. The central ice shelf, about 400 km upglacier from the calving front, thins by 22% in 600 years when basal melting is increased linearly to a maximum of 0.5 m/yr after 150 years, then held steady. The ice shelf thins by 40% in 175 years at the same location when basal melting is increasedlinearly to 2.0 m/yr after 150 years, then held steady. The present calculated equilibrium rate of basal melting, averaged over the bottom surface of the flow band is 0.17 m/yr.

  10. Coastal-change and glaciological map of the Ronne Ice Shelf area, Antarctica, 1974-2002

    USGS Publications Warehouse

    Ferrigno, Jane G.; Foley, K.M.; Swithinbank, C.; Williams, R.S., Jr.; Dalide, L.M.

    2005-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level may severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet could cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). In spite of its importance, the mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is poorly known; it is not known for certain whether the ice sheet is growing or shrinking. In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic part of the Antarctic ice sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Joughin and Tulaczyk (2002), on the basis of analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance, whereas Rignot and others (in press) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b, 2004). The mass balance of the East Antarctic part of the Antarctic ice sheet is unknown, but thought to be in near equilibrium. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation's (1990) Division of Polar Pro-grams. On the basis of these recommendations, the U.S. Geo-logical Survey (USGS) decided that the archive of early 1970s Landsat 1, 2, and 3 Multispectral Scanner

  11. Outlet Glacier Thickness and Velocity Changes in Response to the Destruction of the Matsuevich Ice Shelf, Severnaya Zemlya, Russian High Arctic

    NASA Astrophysics Data System (ADS)

    Willis, M. J.; Melkonian, A. K.; Stewart, A.; Golos, E. M.; Pritchard, M. E.; Ramage, J. M.

    2013-12-01

    The ~200 km2 Matusevich Ice Shelf is the largest remaining ice shelf in the Russian High Arctic. The constricted, fjord-spanning ice shelf has a cyclical history of destruction with a period of about 30 years. A break-up occurred in 1985 and, as predicted by Williams and Dowdeswell (2001), the ice shelf disintegrated again in late 2012. In contrast to previous break-up event, in 2012 the iceberg detritus of the ice shelf quickly evacuated the fjord, clearing the shallow region at the mouth of the fjord. This suggests the 1985-2012 ice shelf was thinner than the incarnations of the 1930s, 1950s and 1980s. We compare pre-break up ICESat and optically derived elevations of the feeder glaciers of the 2,480 km2 Karpinsky Ice Cap to the south and the 1,060 km2 Rusanov Ice Cap to the north with recent, high-resolution elevations from half-meter stereo imagery from Worldview-1 and -2 in order to examine the evolution of the dynamic response of the glaciers to the removal of the ice shelf. We examine pre- and post-break up speeds at the glaciers from feature tracking on Landsat, ASTER and high-resolution images to search for accelerations analogous to those seen at at grounded glaciers after the destruction of the Larsen Ice Shelf of the Antarctic Peninsula. We further examine recent climate, sea surface temperature records and the regional ice surface melt history, and comment upon the causes of the ice shelf break up.

  12. Seabed corrugations beneath an Antarctic ice shelf revealed by autonomous underwater vehicle survey: Origin and implications for the history of Pine Island Glacier

    NASA Astrophysics Data System (ADS)

    Graham, Alastair G. C.; Dutrieux, Pierre; Vaughan, David G.; Nitsche, Frank O.; Gyllencreutz, Richard; Greenwood, Sarah L.; Larter, Robert D.; Jenkins, Adrian

    2013-09-01

    Ice shelves are critical features in the debate about West Antarctic ice sheet change and sea level rise, both because they limit ice discharge and because they are sensitive to change in the surrounding ocean. The Pine Island Glacier ice shelf has been thinning rapidly since at least the early 1990s, which has caused its trunk to accelerate and retreat. Although the ice shelf front has remained stable for the past six decades, past periods of ice shelf collapse have been inferred from relict seabed "corrugations" (corrugated ridges), preserved 340 km from the glacier in Pine Island Trough. Here we present high-resolution bathymetry gathered by an autonomous underwater vehicle operating beneath an Antarctic ice shelf, which provides evidence of long-term change in Pine Island Glacier. Corrugations and ploughmarks on a sub-ice shelf ridge that was a former grounding line closely resemble those observed offshore, interpreted previously as the result of iceberg grounding. The same interpretation here would indicate a significantly reduced ice shelf extent within the last 11 kyr, implying Holocene glacier retreat beyond present limits, or a past tidewater glacier regime different from today. The alternative, that corrugations were not formed in open water, would question ice shelf collapse events interpreted from the geological record, revealing detail of another bed-shaping process occurring at glacier margins. We assess hypotheses for corrugation formation and suggest periodic grounding of ice shelf keels during glacier unpinning as a viable origin. This interpretation requires neither loss of the ice shelf nor glacier retreat and is consistent with a "stable" grounding-line configuration throughout the Holocene.

  13. The LARsen Ice Shelf System, Antarctica, LARISSA a Model for Antarctic Integrated System Science (AISS) Investigations using Marine Platforms

    NASA Astrophysics Data System (ADS)

    Domack, E. W.; Huber, B. A.; Vernet, M.; Leventer, A.; Scambos, T. A.; Mosley-Thompson, E. S.; Smith, C. R.; de Batist, M. A.; Yoon, H.; Larissa

    2010-12-01

    The LARISSA program is the first interdisciplinary project funded in the AISS program of the NSF Office of Polar Programs and was officially launched in the closing days of the IPY. This program brings together investigators, students, and media to address the rapid and fundamental changes taking place in the region of the Larsen Ice Shelf and surrounding areas. Scientific foci include: glaciologic and oceanographic interactions, the response of pelagic and benthic ecosystems to ice shelf decay, sedimentary record of ice shelf break disintegration, the geologic evolution of ice shelf systems over the last 100,000 years, paleoclimate/environmental records from marine sediment and ice cores, and the crustal response to ice mass loss at decade to millennial time scales. The first major field season took place this past austral summer aboard the NB Palmer (cruise NBP10-01) which deployed with a multi-layered logistical infrastructure that included: two Bell 220 aircraft, a multifunctional deep water ROV, video guided sediment corer, jumbo piston core, and an array of oceanographic and biological sensors and instruments. In tandem with this ship based operation Twin Otter aircraft supported an ice core team upon the crest of the Bruce Plateau with logistic support provided by the BAS at Rothera Station. Although unusually heavy sea ice prevented much of the original work from being completed in the Larsen Embayment the interdisciplinary approach proved useful. Further the logistical model of ship based aircraft to support interdisciplinary work proved viable, again despite an unusually severe summer meterologic pattern across the northern Antarctic Peninsula. As the program moves forward other vessels will come into play and the model can be applied to interdisciplinary objectives in other regions of Antarctica which are remote and lack land based infrastructure to support coastal field programs in glaciology, geology, or meteorology. This work could then be completed

  14. Pattern of cryospheric seismic events observed at Ekström Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Hammer, Conny; Ohrnberger, Matthias; Schlindwein, Vera

    2015-05-01

    Mobility of glaciers such as rapid retreat or disintegration of large ice volumes produces a large variety of different seismic signals. Thus, evaluating cryospheric seismic events (e.g., changes of their occurrence in space and time) allows to monitor glacier dynamics. We analyze a 1 year data span recorded at the Neumayer seismic network in Antarctica. Events are automatically recognized using hidden Markov models. In this study we focused on a specific event type occurring close to the grounding line of the Ekström ice shelf. Observed waveform characteristics are consistent with an initial fracturing followed by the resonance of a water-filled cavity resulting in a so-called hybrid event. The number of events detected strongly correlates with dominant tide periods. We assume the cracking to be driven by existing glacier stresses trough bending. Voids are then filled by seawater, exciting the observed resonance. In agreement with this model, events occur almost exclusively during rising tides where cavities are opened at the bottom of the glacier, i.e., at the sea/ice interface.

  15. DEM generation and tidal deformation detection for sulzberger ice shelf, West Antarctica using SAR interferometry

    USGS Publications Warehouse

    Baek, S.; Kwoun, Oh-Ig; Bassler, M.; Lu, Zhiming; Shum, C.K.; Dietrich, R.

    2004-01-01

    In this study we generated a relative Digital Elevation Model (DEM) over the Sulzberger Ice Shelf, West Antarctica using ERS1/2 synthetic aperture radar (SAR) interferometry data. Four repeat pass differential interferograms are used to find the grounding zone and to classify the study area. An interferometrically derived DEM is compared with laser altimetry profile from ICESat. Standard deviation of the relative height difference is 5.12 m and 1.34 m in total length of the profile and at the center of the profile respectively. The magnitude and the direction of tidal changes estimated from interferogram are compared with those predicted tidal differences from four ocean tide models. Tidal deformation measured in InSAR is -16.7 cm and it agrees well within 3 cm with predicted ones from tide models.

  16. Motion of Major Ice Shelf Fronts in Antarctica from Slant Range Analysis of Radar Altimeter Data, 1978 - 1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Beckley, M. A.; Brenner, A. C.; Giovinetto, M. B.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Slant range analysis of radar altimeter data from the Seasat, Geosat, ERS-1 and ERS-2 databases are used to determine barrier location at particular times, and estimate barrier motion (km/yr) for major Antarctic ice shelves. The barrier locations, which are the seaward edges or fronts of floating ice shelves, advance with time as the ice flows from the grounded ice sheets and retreat whenever icebergs calve from the fronts. The analysis covers various multiyear intervals from 1978 to 1998, supplemented by barrier location maps produced elsewhere for 1977 and 1986. Barrier motion is estimated as the ratio between mean annual ice shelf area change for a particular interval, and the length of the discharge periphery. This value is positive if the barrier location progresses seaward, or negative if the barrier location regresses (break-back). Either positive or negative values are lower limit estimates because the method does not detect relatively small area changes due to calving or surge events. The findings are discussed in the context of the three ice shelves that lie in large embayments (the Filchner-Ronne, Amery, and Ross), and marginal ice shelves characterized by relatively short distances between main segments of grounding line and barrier (those in the Queen Maud Land sector between 10.1 deg. W and 32.5 deg. E, and the West and Shackleton ice shelves). All the ice shelves included in the study account for approximately three-fourths of the total ice shelf area of Antarctica, and discharge approximately two-thirds of the total grounded ice area.

  17. Late Quaternary Advance and Retreat of an East Antarctic Ice Shelf System: Insights from Sedimentary Beryllium-10 Concentrations

    NASA Astrophysics Data System (ADS)

    Guitard, M. E.; Shevenell, A.; Domack, E. W.; Rosenheim, B. E.; Yokoyama, Y.

    2014-12-01

    Observed retreat of Antarctica's marine-based glaciers and the presence of warm (~2°C) modified Circumpolar Deep Water on Antarctica's continental shelves imply ocean temperatures may influence Antarctic cryosphere stability. A paucity of information regarding Late Quaternary East Antarctic cryosphere-ocean interactions makes assessing the variability, timing, and style of deglacial retreat difficult. Marine sediments from Prydz Bay, East Antarctica contain hemipelagic siliceous mud and ooze units (SMO) alternating with glacial marine sediments. The record suggests Late Quaternary variability of local outlet glacier systems, including the Lambert Glacier/Amery Ice Shelf system that drains 15% of the East Antarctic Ice Sheet. We present a refined radiocarbon chronology and beryllium-10 (10Be) record of Late Quaternary depositional history in Prydz Channel, seaward of the Amery Ice Shelf system, which provides insight into the timing and variability of this important outlet glacier system. We focus on three piston cores (NBP01-01, JPC 34, 35, 36; 750 m water depth) that contain alternating SMO and granulated units uninterrupted by glacial till; the record preserves a succession of glacial marine deposits that pre-date the Last Glacial Maximum. We utilize the ramped pyrolysis preparatory method to improve the bulk organic carbon 14C-based chronology for Prydz Channel. To determine if the SMO intervals reflect open water conditions or sub-ice shelf advection, we measured sedimentary 10Be concentrations. Because ice cover affects 10Be pathways through the water column, sedimentary concentrations should provide information on past depositional environments in Prydz Channel. In Prydz Channel sediments, 10Be concentrations are generally higher in SMO units and lower in glacial units, suggesting Late Quaternary fluctuations in the Amery Ice Shelf. Improved chronologic constraints indicate that these fluctuations occurred on millennial timescales during the Last Glacial

  18. First geomorphological record and glacial history of an inter-ice stream ridge on the West Antarctic continental shelf

    NASA Astrophysics Data System (ADS)

    Klages, J. P.; Kuhn, G.; Hillenbrand, C.-D.; Graham, A. G. C.; Smith, J. A.; Larter, R. D.; Gohl, K.

    2013-02-01

    Inter-ice stream areas cover significant portions of Antarctica's formerly glaciated shelves, but have been largely neglected in past geological studies because of overprinting by iceberg scours. Here, we present results of the first detailed survey of an inter-ice stream ridge from the West Antarctic continental shelf. Well-preserved sub- and proglacial bedforms on the seafloor of the ridge in the eastern Amundsen Sea Embayment (ASE) provide new insights into the flow dynamics of this sector of the West Antarctic Ice Sheet (WAIS) during the Last Glacial cycle. Multibeam swath bathymetry and PARASOUND acoustic sub-bottom profiler data acquired across a mid-shelf bank, between the troughs of the Pine Island-Thwaites (PITPIS) and Cosgrove palaeo-ice streams (COPIS), reveal large-scale ribbed moraines, hill-hole pairs, terminal moraines, and crevasse-squeeze ridges. Together, these features form an assemblage of landforms that is entirely different from that in the adjacent ice-stream troughs, and appears to be unique in the context of previous studies of Antarctic seafloor geomorphology. From this assemblage, the history of ice flow and retreat from the inter-ice stream ridge is reconstructed. The bedforms indicate that ice flow was significantly slower on the inter-ice stream ridge than in the neighbouring troughs. While terminal moraines record at least two re-advances or stillstands of the ice sheet during deglaciation, an extensive field of crevasse-squeeze ridges indicates ice stagnation subsequent to re-advancing ice, which deposited the field of terminal moraines in the NE. The presented data suggest that the ice flow behaviour on the inter-ice stream ridge was substantially different from that in the adjacent troughs. However, newly obtained radiocarbon ages on two sediment cores recovered from the inter-ice stream ridge suggest a similar timing in the deglaciation of both areas. This information closes an important gap in the understanding of past WAIS

  19. Implications of soils on mid-Miocene-aged drifts in the McMurdo Dry Valleys for ice sheet history and paleoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    Bockheim, James G.; Ackert, Robert P.

    2007-11-01

    Strongly developed soils on unconsolidated deposits of mid-Miocene age occur in the uplands above 1500 m elevation in the Asgard Range and Quartermain Mountains in the McMurdo Dry Valleys. Inferred from the preservation and distribution of their surfaces, these deposits have been largely unmodified since a widespread glacial erosional event prior to 10 Ma. Composition of the till plays a key role in soil development on these ancient surfaces. Soils derived from dolerite-rich till have significantly greater depths of staining and ghosts, color-development equivalents of the Bw horizon, and extractable Fe than sandstone-rich tills. However, no significant differences were found in depth of visible salts, salt stage, electrical conductivity of the horizon of salt enrichment, and profile quantities of salts, which implies a similar age for the soils. The soils on the Miocene-aged deposits are less developed than soils of early Quaternary and Pliocene age at lower elevation in the Dry Valleys, inconsistent with the conclusion that these are relict Miocene surfaces. We suggest that the lower stage of soil development on the surfaces of Miocene age deposits primarily reflects higher erosion (deflation) rates than soils on Pliocene age deposits at lower elevation. If so, several meters of material may have been removed on 10-million-year timescales and that many of the erosion features ascribed to ancient glacial erosion could simply be the result of subaerial erosion under cold desert conditions. In this case, the soils would only reflect the climate of the last few million years. Although the soils are classified primarily as Typic Anhyorthels and Typic Anhyturbels, some of the soils on doleritic till have saltpans enriched in NaNO 3 or Na 2SO 4 and are classified in petronitric or petrogypsic subgroups.

  20. Late Quaternary Sea-Ice Variability at the North Icelandic Shelf (Sub-Arctic): Reconstruction from Biomarkers

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Zhao, M.; Jiang, H.; Eiriksson, J.; Guo, Z.

    2015-12-01

    Sea ice, prevailing in the polar region and characterized by distinct seasonal and interannual variability, plays a pivotal role in Earth's climate system (Thomas and Dieckmann, 2010). In order to understand processes controlling the recent dramatic reduction in Arctic sea-ice cover, it is essential to determine temporal changes in sea-ice occurrence and its natural variability in the past. The North Icelandic shelf, bordering a marginal area of the Arctic Ocean, is located at the present-day boundary between the cold polar currents and warm Atlantic water masses, very sensitive to the changes in sea-ice cover, ice sheet and oceanic circulation patterns (Knudsen and Eiriksson, 2002). All these processes have been recorded in the marine shelf-sediment cores. We determined the concentrations of sea-ice diatom-derived biomarker "IP25" (monoene highly-branched isoprenoid with 25 carbon atom; Belt et al., 2007), phytoplankton-derived biomarkers (brassicasterol and dinosterol) and terrigenous biomarkers (campesterol and ß-sitosterol) in a sediment core from the North Icelandic shelf to reconstruct the Late Quaternary sea-ice conditions and related surface-water processes. The sea-ice cover reached its maximum during the cold period (i.e., Last Glacial Maximum and Younger dryas), while an open ocean environment existed during less severe periods (e.g. Bølling-Allerød and 8.2 ka event) in the study area. The biomarker records from this sediment core give insights into the variability in sea ice and circulation patterns as well as primary productivity in the Arctic marginal area during the Late Quaternary. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Org. Geochem. 38, 16-27. Knudsen, K.L. and Eiriksson, J., 2002. Application of tephrochronology to the timing and correlation of palaeoceanographic events recorded in Holocene and Late Glacial shelf sediments off North Iceland

  1. Sea ice retreat alters the biogeography of the Bering Sea continental shelf.

    PubMed

    Mueter, Franz J; Litzow, Michael A

    2008-03-01

    Seasonal ice cover creates a pool of cold bottom water on the eastern Bering Sea continental shelf each winter. The southern edge of this cold pool, which defines the ecotone between arctic and subarctic communities, has retreated approximately 230 km northward since the early 1980s. Bottom trawl surveys of fish and invertebrates in the southeastern Bering Sea (1982-2006) show a coincident reorganization in community composition by latitude. Survey catches show community-wide northward distribution shifts, and the area formerly covered by the cold pool has seen increases in total biomass, species richness, and average trophic level as subarctic fauna have colonized newly favorable habitats. Warming climate has immediate management implications, as 57% of variability in commercial snow crab (Chionoecetes opilio) catch is explained by winter sea ice extent. Several measures of community distribution and structure show linear relationships with bottom temperature, suggesting warming climate as the primary cause of changing biogeography. However, residual variability in distribution not explained by climate shows a strong temporal trend, suggesting that internal community dynamics also contribute to changing biogeography. Variability among taxa in their response to temperature was not explained by commercial status or life history traits, suggesting that species-specific responses to future warming will be difficult to predict. PMID:18488598

  2. Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem.

    PubMed

    Mueller, Derek R; Vincent, Warwick F; Bonilla, Sylvia; Laurion, Isabelle

    2005-06-01

    Remnant ice shelves along the northern coast of Ellesmere Island, Nunavut, Canada ( approximately 83 degrees N) provide a habitat for cryo-tolerant microbial mat communities. Bioassays of bacterial and primary production were undertaken to quantify the short-term physiological response of the mats to changes in key variables that characterize this cryo-ecosystem (salinity, irradiance and temperature). The heterotrophic versus autotrophic community responses to these stressors differed markedly. The heterotrophic bacteria were extremophilic and specifically adapted to ambient conditions on the ice shelf, whereas the autotrophic community had broader tolerance ranges and optima outside the ambient range. This latter, extremotrophic response may be partly due to a diverse suite of pigments including oligosaccharide mycosporine-like amino acids, scytonemins, carotenoids, phycobiliproteins and chlorophylls that absorb from the near UV-B to red wavelengths. These pigments provide a comprehensive broadband strategy for coping with the multiple stressors of high irradiance, variable salinity and low temperatures in this extreme cryo-environment. PMID:16329931

  3. A Shift to Melted Sea Ice From Runoff as the Major Component of Chukchi Shelf Open Water Freshwater Fractions, 1993-2013

    NASA Astrophysics Data System (ADS)

    Cooper, L. W.; Frey, K. E.; Logvinova, C. L.; Biasatti, D. M.; Grebmeier, J. M.

    2014-12-01

    The freshwater fraction of water that is derived from melted sea ice has increased significantly on the Chukchi shelf relative to runoff within the past decade, based upon analysis of salinity and δ18O mixing lines from a number of research cruises from 1993-2013. The shift to summertime dominance of melted sea ice (freshwater end-member δ18O >-10 per mil) relative to runoff occurred within the past ten years with a transition primarily observed from runoff dominance to sea ice melt after 2004. This shift is localized to the Chukchi shelf and does not reflect large amounts of melted sea ice flowing north through Bering Strait, which still largely transports a freshwater component with runoff origins (freshwater end-member δ18O ~-20 per mil). These observations have implications for understanding high latitude shelf biogeochemical cycling as melted sea ice carries much lower fractions of dissolved organic carbon (DOC) than runoff, allowing for greater light penetration, including through melt ponds in sea ice, and potential changes in productivity. Lower alkalinity and buffering capacity in melted sea ice compared to runoff will also increase the vulnerability of shelf organisms to water column acidification. Melted sea ice, with low DOC relative to runoff can dominate the freshwater budget in Chukchi shelf waters even under apparently continuous ice coverage. The higher transmission of light through melted sea ice with low DOC may be in part responsible for recent reported under-ice blooms on the Chukchi shelf. Since these blooms occur in waters with the freshwater budget dominated by melted sea ice, they can reasonably interpreted as being part of a continuum with other ice melt-associated blooms and not independent of sea ice retreat and dissolution.

  4. An Observationally-Validated Theory of Viscous Flow Dynamics at the Ice-Shelf Calving-Front

    NASA Astrophysics Data System (ADS)

    Hindmarsh, R. C.

    2011-12-01

    Calving of floating ice shelves exerts a fundamental control on their geometry, which directly determines the forces acting on grounded ice that control ice-sheet stability. At the calving front, the viscous supply of ice is balanced by calving. I show that a boundary layer in viscous ice flow exists at the calving front with simple quantitative characteristics matching one set of empirically-derived calving relationships [1]. This relationship is consequently likely to be related to viscous supply rather than fracturing. This explanation has a deeper significance, since the boundary layer is dynamically analogous to one posited to control the stability of ice flow at the grounding line. The observational validation of the properties of the calving front boundary layer shown here is consequently significant confirmation of the boundary layer theory of grounding-line dynamics [2] and the likelihood of a marine ice-sheet instability. [1] Alley, R.B. and 7 others. (2008). A simple law for ice-shelf calving. Science, 322(5906), 1344. (10.1126/science.1162543.) [2] Ice sheet grounding line dynamics: Steady states, stability and hysteresis. J. Geophys. Res., 112, F03S28, doi:10.1029/2006JF000664.

  5. Evolution and extensional history of the Antarctic Peninsula Ice Sheet from the NW Weddell Sea continental shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Smith, R. T.; Anderson, J. B.

    2006-12-01

    The continental margins around Antarctica show dramatic changes in the style of deposition over the last 30 Ma years. Ice sheets are believed to have dominated shallow marine deposition around Antarctica from the Late Miocene to present. The shift in depositional regime from fluvial/deltaic to glacial is manifested in the stratigraphic architecture and seismic facies of the continental margin. Evidence of these changes has been studied in detail along the Pacific side of the Antarctic Peninsula (Larter and Barker, 1991; Larter and Cunningham, 1993; Bart and Anderson, 1995; Rebesco, 1997, 2006). However, tectonic influences on the Pacific side result in high rates of shelf erosion and large unconformities during critical time periods when ice sheets took hold as the dominant depositional mechanism. The northwestern Weddell Sea is the ideal location to study the transition to an ice dominated margin because it has remained in a passive margin/back arc basin tectonic setting throughout the climate change. Evidence from the Weddell Sea continental shelf shows that the onset of glaciation in the Antarctic Peninsula may have been a more gradual event that post- dated the establishment of the West Antarctic ice sheet. The stratigraphic architecture of the NW Weddell Sea continental shelf shows three major phases of deposition: pre-glacial, transitional, and ice sheet dominated. The pre-glacial phase shows stratigraphic sequences similar to low latitude margins. During the transitional phase there are intermittent large erosion events caused by ice sheets coupled with what appears to be long hiatuses during which fluvial/deltaic systems predominate. The ice sheet-dominated phase exhibits all the classic features indicative of glacial strata; large scoured troughs 100's of meters deep and 10's of kilometers wide, truncation of underlying sequences followed by chaotic seismic facies and topped with coherent laminated reflections, and oversteepening of the continental slope

  6. Subsurface ice and brine sampling using an ultrasonic/sonic gopher for life detection and characterization in the McMurdo Dry Valleys

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Sherrit, S.; Chang, Z.; Wessel, L.; Bao, X.; Doran, P. T.; Fritsen, C. H.; Kenig, F.; McKay, C. P.; Murray, A.; Peterson, T.

    2004-01-01

    There is growing evidence for ice and fluids near the surface of Mars with potential discharge of brines, which may preserve a record of past life on the planet. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for such records.

  7. Unique manifestations of mixed-phase cloud microphysics over Ross Island and the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Scott, Ryan C.; Lubin, Dan

    2016-03-01

    Spaceborne radar and lidar observations from the CloudSat and CALIPSO satellites are used to compare seasonal variations in the microphysical and radiative properties of clouds over Ross Island, Antarctica, with two contrasting Arctic atmospheric observatories located in Barrow, Alaska, and Summit, Greenland. At Ross Island, downstream from recurrent intrusions of marine air over the West Antarctic Ice Sheet and eastern Ross Ice Shelf, clouds exhibit a tendency toward the greatest geometrical thickness and coldest temperatures in summer, the largest average ice water content, IWC, at low altitude during summer and autumn, the most abundant IWC at cold mixed-phase temperatures (-40°C ice water on the surface energy budget year round, all with likely origins in orographic lifting of marine air over complex ice sheet and mountainous terrain. Clouds over Barrow form and evolve in a contrastingly warm and moist atmosphere and on average contain the largest liquid water content and ice and liquid water effective particle radii, re, year round. In contrast, clouds observed atop the central Greenland Ice Sheet are relatively tenuous, containing the smallest IWC and ice re of all sites.

  8. Episodic warming of near-bottom waters under the Arctic sea ice on the central Laptev Sea shelf

    NASA Astrophysics Data System (ADS)

    Janout, Markus; Hölemann, Jens; Juhls, Bennet; Krumpen, Thomas; Rabe, Benjamin; Bauch, Dorothea; Wegner, Carolyn; Kassens, Heidemarie; Timokhov, Leonid

    2016-01-01

    A multiyear mooring record (2007-2014) and satellite imagery highlight the strong temperature variability and unique hydrographic nature of the Laptev Sea. This Arctic shelf is a key region for river discharge and sea ice formation and export and includes submarine permafrost and methane deposits, which emphasizes the need to understand the thermal variability near the seafloor. Recent years were characterized by early ice retreat and a warming near-shore environment. However, warming was not observed on the deeper shelf until year-round under-ice measurements recorded unprecedented warm near-bottom waters of +0.6°C in winter 2012/2013, just after the Arctic sea ice extent featured a record minimum. In the Laptev Sea, early ice retreat in 2012 combined with Lena River heat and solar radiation produced anomalously warm summer surface waters, which were vertically mixed, trapped in the pycnocline, and subsequently transferred toward the bottom until the water column cooled when brine rejection eroded stratification.

  9. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  10. Sinking particle flux in the sea ice zone of the Amundsen Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Minkyoung; Hwang, Jeomshik; Kim, Hyung J.; Kim, Dongseon; Yang, Eun J.; Ducklow, Hugh W.; Hyoung, S. La; Lee, Sang H.; Park, Jisoo; Lee, SangHoon

    2015-07-01

    We have examined the flux, biogenic composition, and isotopic values of sinking particles collected by a time-series sediment trap deployed in the sea ice zone (SIZ) of the Amundsen Sea from January 2011 for 1 year. The major portion of the particle flux occurred during the austral summer in January and February when sea ice concentration was reduced to <60%. Biogenic components, dominated by opal (~78% of the biogenic components), accounted for over 75% of particle flux during this high-flux period. The dominant source of sinking particles shifted from diatoms to soft-tissued organisms, evidenced by high particulate organic carbon (POC) content (>30%) and a low bio-Si/POC ratio (<0.5) during the austral winter. CaCO3 content and its contribution to total particle flux was low (~6%) throughout the study period. Aged POC likely supplied from sediment resuspension accounted for a considerable fraction only from October to December, which was evidenced by a low radiocarbon content and relatively high (30-50%) content of the non-biogenic components. When compared with POC flux inside the Amundsen Sea polynya obtained by the US Amundsen Sea Polynya International Research Expedition (ASPIRE), the POC flux integrated over the austral summer in the SIZ was virtually identical, although the maximum POC flux was approximately half that inside the Amundsen Sea polynya. This comparatively high POC flux integrated over the austral summer in the SIZ may be caused by phytoplankton blooms persisting over a longer periods and more efficient export of organic matter potentially owing to the diatom-dominant plankton community. If this observation is a general phenomenon on the Amundsen Shelf, the role of the SIZ, compared with the polynyas, need to be examined more carefully when trying to characterize the POC export in this region.

  11. Sinking Particle Flux in the Sea Ice Zone of the Amundsen Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, M.; Hwang, J.; Kim, H. J.; Kim, D.; Ducklow, H. W.; Lee, S. H.; Yang, E. J.; Lee, S.

    2014-12-01

    We have examined the flux, compositions of biogenic components, and isotopic values of sinking particles collected by a sediment trap deployed in the sea ice zone (SIZ) of the Amundsen Sea from January 2011 for one year. Major portion of the particle flux occurred during the austral summer in January and February when sea ice concentration was reduced to below 60 %. Biogenic components, dominated by opal, accounted for over 75 % during this high flux period. The dominant source of sinking particles shifted from diatoms to soft-tissued organisms, evidenced by high particulate organic carbon (POC) content (> 30 %) during the polar night. CaCO3 content and its contribution to total particle flux were low throughout the study period. Contribution of aged POC likely supplied from sediment resuspension was considerable only from October to December, evidenced by low radiocarbon content and relatively high (30-50 %) content of the non-biogenic component. When compared to POC flux inside the Amundsen Sea polynya obtained by the US Amundsen Sea Polynya International Research Expedition (ASPIRE), the POC flux integrated over the austral summer in the SIZ was virtually identical although maximum POC flux was about half that inside the Amundsen Sea polynya. This comparatively high POC flux in the SIZ may be caused by persistence of phytoplankton bloom for longer period and more efficient export of organic matter owing to the diatom-dominant plankton community. If this observation is a general phenomenon on the Amundsen shelf, the role of the SIZ compared to the polynyas need to be examined more carefully when trying to characterize the POC export in this region.

  12. Characteristics of the near-surface atmosphere over the Ross Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Cassano, John J.; Nigro, Melissa A.; Lazzara, Matthew A.

    2016-04-01

    Two years of data from a 30 m instrumented tower are used to characterize the near-surface atmospheric state over the Ross Ice Shelf, Antarctica. Stable stratification dominates the surface layer at this site, occurring 83% of the time. The strongest inversions occur for wind speeds less than 4 m s-1 and the inversion strength decreases rapidly as wind speed increases above 4 m s-1. In summer unstable stratification occurs 50% of the time and unstable conditions are observed in every season. A novel aspect of this work is the use of an artificial neural network pattern identification technique, known as self-organizing maps, to objectively identify characteristic potential temperature profiles that span the range of profiles present in the 2 year study period. The self-organizing map clustering technique allows the more than 100,000 observed potential temperature profiles to be represented by just 30 patterns. The pattern-averaged winds show distinct and physically consistent relationships with the potential temperature profiles. The strongest winds occur for the nearly well mixed but slightly stable patterns and the weakest winds occur for the strongest inversion patterns. The weakest wind shear over the depth of the tower occurs for slightly unstable profiles and the largest wind shear occurs for moderately strong inversions. Pattern-averaged log wind profiles are consistent with theoretical expectations. The log wind profiles exhibit a kinked profile for the strongest inversion cases indicative of decoupling of the winds between the bottom and top of the tower.

  13. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Price, D.; Rack, W.; Langhorne, P. J.; Haas, C.; Leonard, G.; Barnsdale, K.

    2014-06-01

    This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice-ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the southwestern Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that within 100 km of an ice shelf this influence might need to be considered when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.

  14. Diatoms in sediments of perennially ice-covered Lake Hoare, and implications for interpreting lake history in the McMurdo Dry Valleys of Antarctica

    USGS Publications Warehouse

    Spaulding, S.A.; McKnight, Diane M.; Stoermer, E.F.; Doran, P.T.

    1997-01-01

    Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hore, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake=wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4-16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (2-31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta. Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process

  15. Seafloor glacial geomorphology in a cross shelf trough: insights into the deglaciation of the Melville Bay Ice Stream

    NASA Astrophysics Data System (ADS)

    Newton, Andrew; Huuse, Mads

    2016-04-01

    Compared to other glaciated margins such as offshore mid-Norway and Svalbard, the Greenland continental shelf has, until recently, been the subject of only a limited amount of academic and industry research. This has been mainly due to the difficulty and expense of obtaining data in such harsh and operationally complex settings. Climate amelioration and technological advance has, particularly in recent years, allowed both academics and industry to substantially increase data collection across the many glaciated continental shelves in the Northern Hemisphere. Baffin Bay has been one of the primary regions of interest for the hydrocarbon industry which has sought to operate in the frontier basins offshore Greenland. As a result of these industry operations, a large database of geophysical and geological data has been collected. Some of this data has been made available to glacial scientists and provides a unique opportunity to investigate the seafloor geomorphology for regions where the majority of previous work has been hypothetical rather than grounded in geological evidence. In the work presented here we present a landform record offshore NW Greenland in the Melville Bay cross-shelf trough. This is one of the largest troughs on the entire Greenland shelf and measures up to 140 km in width. Shallow-marine cores collected in the coastal part of the trough show bedrock of Miocene age and indicate that a significant cover has likely been removed from the shelf by ice streams operating through the Late Cenozoic. This material has then been deposited at the shelf edge as a trough mouth fan. Using multibeam and seismic reflection data a large number of glacial landforms are observed and mapped in the trough. These include mega-scale glacial lineations, grounding-zone wedges, iceberg scours, and iceberg grounding pits. These landforms are used to reconstruct the ice dynamics of the Melville Bugt Ice Stream at the last glacial maximum and during its deglaciation. The

  16. Ice Velocity Mapping of Ross Ice Shelf, Antarctica by Matching Surface Undulations Measured by Icesat Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Lee, Choon-Ki; Han, Shin-Chan; Yu, Jaehyung; Scambos, Ted A.; Seo, Ki-Weon

    2012-01-01

    We present a novel method for estimating the surface horizontal velocity on ice shelves using laser altimetrydata from the Ice Cloud and land Elevation Satellite (ICESat; 20032009). The method matches undulations measured at crossover points between successive campaigns.

  17. Sea Ice Formation Rate and Temporal Variation of Temperature and Salinity at the Vicinity of Wilkins Ice Shelf from Data Collected by Southern Elephant Seals in 2008

    NASA Astrophysics Data System (ADS)

    Santini, M. F.; Souza, R.; Wainer, I.; Muelbert, M.; Hindell, M.

    2013-05-01

    The use of marine mammals as autonomous platforms for collecting oceanographic data has revolutionized the understanding of physical properties of low or non-sampled regions of the polar oceans. The use of these animals became possible due to advancements in the development of electronic devices, sensors and batteries carried by them. Oceanographic data collected by two southern elephant seals (Mirounga leonina) during the Fall of 2008 were used to infer the sea-ice formation rate in the region adjacent to the Wilkins Ice Shelf, west of the Antarctic Peninsula at that period. The sea-ice formation rate was estimated from the salt balance equation for the upper (100 m) ocean at a daily frequency for the period between 13 February and 20 June 2008. The oceanographic data collected by the animals were also used to present the temporal variation of the water temperature and salinity from surface to 300 m depth in the study area. Sea ice formation rate ranged between 0,087 m/day in early April and 0,008 m/day in late June. Temperature and salinity ranged from -1.84°C to 1.60°C and 32.85 to 34.85, respectively, for the upper 300 m of the water column in the analyzed period. The sea-ice formation rate estimations do not consider water advection, only temporal changes of the vertical profile of salinity. This may cause underestimates of the real sea-ice formation rate. The intense reduction of sea ice rate formation from April to June 2008 may be related to the intrusion of the Circumpolar Depth Water (CDW) into the study region. As a consequence of that we believe that this process can be partly responsible for the disintegration of the Wilkins Ice Shelf during the winter of 2008. The data presented here are considered a new frontier in physical and biological oceanography, providing a new approach for monitoring sea ice changes and oceanographic conditions in polar oceans. This is especially valid for regions covered by sea ice where traditional instruments deployed by

  18. The sensitivity of Arctic sea ice production to shelf flooding during the early Holocene: a modelling study

    NASA Astrophysics Data System (ADS)

    Blaschek, M.; Renssen, H.

    2012-04-01

    During the last deglaciation, the global sea-level started rising, changing the coastlines from an early Holocene stand (40 m lower than today at approximately 10 kyr BP, Siddall et al., 2003) to modern day coastlines. Proxy evidence shows that this transgression occurred non-uniformly over the globe. For instance, Bauch et al. (2001) report for the Laptev Sea (Arctic Ocean), that the modern coastline was only established at 5 kyr BP after a fast transgression from the early Holocene, leading to a flooding of the extensive shelf area. This shelf area is presently regarded to be an important production zone of Arctic sea ice, playing an important role in the dynamics of sea ice in the Arctic, as well as its export to the Nordic Seas along the East Greenland Current (EGC). Through this sea ice export, changes in the Laptev Sea shelf area during the Holocene could potentially have had a substantial impact on the sea surface conditions of the EGC, and the Denmark Strait, which is known to be sensitive to sea ice. This is consistent with a rapid increase in sea ice export through the EGC around 5 kyr BP as reported by Jennings et al. (2002). In this study we investigate the impact of this Arctic shelf flooding on sea ice production in the Holocene, and on the climate of the Nordic Seas in the LOVECLIM1.2 global ocean-atmosphere-vegetation model. We present results of several experiments in which we study the sensitivity of Arctic sea ice production to various Arctic shelf areas under early Holocene conditions (9 kyr BP). We approach this by changing the land-sea mask to represent different lower-than-present sea-level coastlines. For example, we perform experiments with the Last Glacial Maximum (LGM) land-sea mask, representing a lowering of the sea-level by 120 m, while keeping other forcings at 9 kyr BP. A further step is to modify selected areas in the Arctic, such as the Laptev Sea area, to examine the importance of different areas. Our results help to explain long

  19. Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.

    2014-12-01

    During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.

  20. Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, Antarctica.

    PubMed

    Carr, S A; Vogel, S W; Dunbar, R B; Brandes, J; Spear, J R; Levy, R; Naish, T R; Powell, R D; Wakeham, S G; Mandernack, K W

    2013-07-01

    Marine sediments of the Ross Sea, Antarctica, harbor microbial communities that play a significant role in the decomposition, mineralization, and recycling of organic carbon (OC). In this study, the cell densities within a 153-cm sediment core from the Ross Sea were estimated based on microbial phospholipid fatty acid (PLFA) concentrations and acridine orange direct cell counts. The resulting densities were as high as 1.7 × 10⁷ cells mL⁻¹ in the top ten centimeters of sediments. These densities are lower than those calculated for most near-shore sites but consistent with deep-sea locations with comparable sedimentation rates. The δ¹³C measurements of PLFAs and sedimentary and dissolved carbon sources, in combination with ribosomal RNA (SSU rRNA) gene pyrosequencing, were used to infer microbial metabolic pathways. The δ¹³C values of dissolved inorganic carbon (DIC) in porewaters ranged downcore from -2.5‰ to -3.7‰, while δ¹³C values for the corresponding sedimentary particulate OC (POC) varied from -26.2‰ to -23.1‰. The δ¹³C values of PLFAs ranged between -29‰ and -35‰ throughout the sediment core, consistent with a microbial community dominated by heterotrophs. The SSU rRNA gene pyrosequencing revealed that members of this microbial community were dominated by β-, δ-, and γ-Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Among the sequenced organisms, many appear to be related to known heterotrophs that utilize OC sources such as amino acids, oligosaccharides, and lactose, consistent with our interpretation from δ¹³CPLFA analysis. Integrating phospholipids analyses with porewater chemistry, δ¹³CDIC and δ¹³CPOC values and SSU rRNA gene sequences provides a more comprehensive understanding of microbial communities and carbon cycling in marine sediments, including those of this unique ice shelf environment. PMID:23682649

  1. Intense nutrient removal in the remote area off larsen ice shelf (Weddell Sea)

    SciTech Connect

    Hoppema, M.; Goeyens, L.; Fahrbach, E.

    2000-07-01

    Although carbon dioxide (CO{sub 2}) is a minor component of the atmosphere, the issue of its steadily rising atmospheric concentration has stimulated much interest, because this may lead to an enhanced greenhouse effect with accompanying adverse environmental and economical effects. CO{sub 2} is a natural and essential component of the atmosphere, which plays a pivotal role in the heat budget of the earth surface. Using Weddell Sea data collected during a cruise with FS Polarstern in austral summer 1992/1993, depletions of nutrients and TCO{sub 2} in the summer surface layer were calculated. The analogous depletion-like properties for temperature (Heat Storage) and salinity were also computed. The latter properties are useful to describe the physical conditions over the time period pertinent to the depletions. For different areas a strong correlation exists of Heat Storage and nutrient/TCO{sub 2} depletions, which is caused by a common factor--the period of light availability. Offshore of the Larsen shelf, an area usually inaccessible due to perennial ice cover, high nutrients/TCO{sub 2} depletions are achieved over a short period of time, pointing to a rapidly producing biological system. Primary productivity, calculated from the TCO{sub 2} depletion, amounts to about 100 mg C m{sup {minus}2} day{sup {minus}1} for the central Weddell Sea, but 570--1,140 mg C m{sup {minus}2} day{sup {minus}1} for the offshore Larsen region. These values agree fairly well with the open-ocean Antarctic and other coastal areas, respectively.

  2. Ice-sheet retreat from the continental shelf offshore of Northwest Ireland following the last glacial maximum: sedimentary facies and initial chronology

    NASA Astrophysics Data System (ADS)

    Weilbach, Kasper; O'Cofaigh, Colm; Lloyd, Jerry; Benetti, Sara; Dunlop, Paul; Howe, John; Purcell, Catriona

    2015-04-01

    The glacial history of North-West Ireland and the adjoining continental shelf have been debated for over a century. The traditional reconstruction of a British-Irish Ice Sheet (BIIS) in this region was based predominantly on terrestrial evidence and showed an ice sheet that did not extend beyond the present coastline of Britain and Ireland. This traditional reconstruction of a relatively restricted ice sheet has been replaced in the last decade by the reconstruction of a more dynamic ice sheet that, during the Last Glacial Maximum (LGM), flowed onto the continental shelf and extended to the NW-Irish shelf edge. High resolution swath bathymetry and sub bottom profiler data along with sedimentological, micropalaeontological and geochronological investigations of sediment cores from the shelf offshore of NW Ireland are being used to reconstruct the timing, extent and the nature of retreat of the BIIS from the shelf following the LGM. A total of twenty seven vibro-cores were collected during two research cruises on the NW-Irish shelf in 2008 and 2014 on board the Irish and UK research vessels the Celtic Explorer and RRS James Cook The cores were collected in two east-west orientated transects across a series of arcuate recessional moraines from the shelf edge to Donegal Bay. These moraines record progressive stillstands of a lobate ice sheet margin during its retreat from the shelf edge, although to date, there has been a lack of direct dating control to constrain the timing and rate of ice retreat across the shelf. Sedimentary descriptions of core facies and physical properties, combined with taxonomic analysis of foraminifera will be presented along with radiocarbon dates. This forms the first detailed reconstruction of glacigenic sedimentation, depositional environments and the timing of ice sheet retreat across the shelf offshore of NW Ireland. The project is part of a larger EU funded research programme GLANAM ('Glaciated North Atlantic Margins') which is

  3. Reconstructing the last British-Irish Ice Sheet from continental shelf records: initial results from BRITICE-CHRONO

    NASA Astrophysics Data System (ADS)

    O'Cofaigh, Colm; Benetti, Sara; Callard, S. Louise; Chiverell, Richard; Clark, Chris D.; Livingstone, Stephen; Praeg, Daniel; Saher, Margot; Scourse, James; van Landeghem, Katrien

    2015-04-01

    BRITICE-CHRONO is a large UK NERC-funded project that aims to constrain the timing and rate of retreat of the last British-Irish Ice Sheet (BIIS). Although the pattern of ice sheet retreat is reasonably well established the retreat chronology remains poorly constrained for many areas, particularly offshore. In BRITICE-CHRONO marine and terrestrial samples are being collected for dating along a series of 8 transects extending from the continental shelf edge to a few tens of kilometres onshore. The transects will yield over 800 new dates, which will be combined with existing age and landform information to undertake an ice-sheet wide empirical reconstruction of the demise of the BIIS as it underwent the transition from marine-terminating margins to being entirely land-based. This talk will present an overview of the project and highlight some of the key scientific findings from the first of two research cruises that form a central part of the project. Cruise JC106 of the RRS James Cook took place in 2014 and circumnavigated Ireland, surveying and sampling in the Celtic Sea, Irish Sea, Malin Sea, Donegal Bay and the shelf offshore of western Ireland, including the Porcupine Bank. During the 38 day cruise over 220 cores were collected as well as extensive geophysical datasets (sub-bottom profiles and swath bathymetry). Analysis of these data is now underway and is yielding important new insights into the extent, retreat style, chronology and depositional environments associated with the BIIS during and following the Last Glacial Maximum. A second cruise, planned for the summer 2015, will survey and sample the continental shelf north of Scotland and the North Sea.

  4. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    PubMed Central

    Cochran, James R; Tinto, Kirsty J; Bell, Robin E

    2015-01-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5–1.7 with 80–100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. Key Points: Abbot Ice Shelf is underlain by E-W rift basins created at ∼90 Ma Amundsen shelf shaped by subsidence, sedimentation, and passage of the ice sheet Bellingshausen plate boundary is located near the base of continental slope and rise PMID:26709352

  5. A continental shelf sedimentary record of Little Ice Age to modern glacial dynamics: Bering Glacier, Alaska

    NASA Astrophysics Data System (ADS)

    Jaeger, John M.; Kramer, Branden

    2014-09-01

    The Bering Glacier System is the world's largest surging temperate glacier with seven events occurring over the past century under a range of north Pacific climatic conditions. Onshore records reveal changes in glacial termini positions and evidence of late Holocene glacial advances, but the Little Ice Age (LIA) record of potential glacial surging and associated flooding has not been examined. A 13.6 m-long jumbo core collected on the adjacent continental shelf reveals a 600-yr-long record of sedimentation associated with changing glacifluvial discharge. The chronology is based on 210Pb geochronology and five radiocarbon dates, and the core can be separated into three distinct lithologic units based on the examination of X-radiographs and physical properties: (1) an uppermost unit dating from ∼125 cal yr BP to the present characterized by bioturbated mud interbedded with laminated, thick (5-20 cm) low-bulk density clay-rich beds; (2) a middle unit dating from ∼120-400 cal yr BP that includes numerous interlaminated-to-interbedded low- and high-bulk density beds with infrequent evidence of bioturbation; thick laminated clay-rich beds are rare; (3) a lowermost unit that predates ∼400 cal yr BP and is composed of rare laminated beds grading down into mottled to massive mud. In each of these units, the laminated lithofacies from this mid-shelf location indicates both flood deposition and likely sediment transport in the wave-current bottom-boundary layer. The thick low-density, clay-rich beds in the uppermost unit correlate with historic outburst floods associated with known surge events. Based on previous terrestrial studies, the terminus was at its Holocene Neoglacial maximum extent close to the modern coastline at some point in the middle to late stages of the LIA in southern Alaska (100-350 cal yr BP). During the LIA, preservation of bioturbated intervals is rare while laminated intervals are common. This style of interbedding indicates frequent (<10 yr

  6. The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Price, D.; Rack, W.; Langhorne, P. J.; Haas, C.; Leonard, G.; Barnsdale, K.

    2014-02-01

    This is an investigation to quantify the influence of the sub-ice platelet layer on satellite measurements of total freeboard and their conversion to thickness of Antarctic sea ice. The sub-ice platelet layer forms as a result of the seaward advection of supercooled ice shelf water from beneath ice shelves. This ice shelf water provides an oceanic heat sink promoting the formation of platelet crystals which accumulate at the sea ice-ocean interface. The build-up of this porous layer increases sea ice freeboard, and if not accounted for, leads to overestimates of sea ice thickness from surface elevation measurements. In order to quantify this buoyant effect, the solid fraction of the sub-ice platelet layer must be estimated. An extensive in situ data set measured in 2011 in McMurdo Sound in the south-western Ross Sea is used to achieve this. We use drill-hole measurements and the hydrostatic equilibrium assumption to estimate a mean value for the solid fraction of this sub-ice platelet layer of 0.16. This is highly dependent upon the uncertainty in sea ice density. We test this value with independent Global Navigation Satellite System (GNSS) surface elevation data to estimate sea ice thickness. We find that sea ice thickness can be overestimated by up to 19%, with a mean deviation of 12% as a result of the influence of the sub-ice platelet layer. It is concluded that in close proximity to ice shelves this influence should be considered universally when undertaking sea ice thickness investigations using remote sensing surface elevation measurements.

  7. Potential positive feedback between Greenland Ice Sheet melt and Baffin Bay heat content on the west Greenland shelf

    NASA Astrophysics Data System (ADS)

    Castro de la Guardia, Laura; Hu, Xianmin; Myers, Paul G.

    2015-06-01

    Greenland ice sheet meltwater runoff has been increasing in recent decades, especially in the southwest and the northeast. To determine the impact of this accelerating meltwater flux on Baffin Bay, we examine eight numerical experiments using an ocean-sea ice model: Nucleus for European Modelling of the Ocean. Enhanced runoff causes shoreward increasing sea surface height and strengthens the stratification in Baffin Bay. The changes in sea surface height reduces the southward transport through the Canadian Arctic Archipelago and strengthens the gyre circulation within Baffin Bay. The latter leads to further freshening of surface waters as it produces a larger northward surface freshwater transport across Davis Strait. Increasing the meltwater runoff leads to a warming and shallowing of the west Greenland Irminger water on the northwest Greenland shelf. These warmer waters can now more easily enter fjords on the Greenland coast and thus provide additional heat to accelerate the melting of marine-terminating glaciers.

  8. Ocean current observations near McMurdo Station, Antarctica, 1993 to 1994: Relation to wastewater discharge dispersal

    SciTech Connect

    Barry, J.P.

    1995-09-01

    This report presents analyses of current measurements from McMurdo Sound, Antarctica during December, 1993 to November, 1994, in relation to dispersal of the McMurdo Station wastewater plume. Data collected from 1991 to 1993 are also discussed here. Six current meters were deployed near McMurdo Station, Antarctica, from December 1993 to November 1994. Five functioned properly throughout the observation period, and one failed. Analyses of 5 data series include: (1) summaries of current speed and direction, (2) directional analyses of flow, (3) time series current vectors averaged over 1, 3, 6, 12, and 24 h, (4) principal axes of flow, (5) maps of mean seasonal flow, (6) progressive vector plots, (7) spectral analyses, and (8) low-pass filtered (30h) time series of currents at McMurdo Station. Observations of flow near McMurdo Station during 1994 were generally similar to 1993. Short term variation in flow was related principally to diurnal tidal motions. Longer period oscillations in flow such as seasonal shifts, and non-periodic changes in current speed and direction were likely related to changes in ice cover and wind stress in the vicinity of McMurdo Station or over much larger scales or both. Three distinct oceanographic {open_quote}seasons{close_quote} were apparent in time series from 1992 to 1994, from stations furthest offshore, where the effects of local topography are minimal. The spring-summer (Oct.-Jan.) period of both years was dominated by regional southward flow, which generates a counter-clockwise eddy (McMurdo Gyre) adjacent to McMurdo Station. With regard to dispersal of the wastewater plume from McMurdo Station, observations of currents during 1994 generally corroborate those from 1993, and the recommendation that the outfall pipe should be repositioned offshore of the McMurdo Gyre is supported.

  9. The impact of ice shelf - iceberg coupling on the North Atlantic Ocean in a global climate model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Bugelmayer, M.; Roche, D. M.; Renssen, H.

    2012-04-01

    The influence of icebergs on the climate system is well known. On the one hand they act as a source of fresh water and on the other hand icebergs are a sink of latent heat. As a consequence icebergs clearly affect the ocean stratification and the formation of sea ice. The influence of icebergs on the climate system is especially important during so - called Heinrich events, which were periods with huge armadas of icebergs during the glacial climate. So far, icebergs have mostly been parameterized in global climate models as freshwater and heat fluxes. More recently, an iceberg module was used to generate bergs at specific locations. In this study a version of the Earth System Model of Intermediate Complexity, LOVECLIM, that includes a 3D dynamic - thermodynamic iceberg module (Jongma et al, 2008) is coupled to the Grenoble model for ice shelves and land ice (GRISLI, Ritz et al, 1997; 2001). Therefore, the icebergs are generated according to the amount of mass loss at the calving sites of GRISLI. The ice shelf model itself depends on the precipitation and temperature that is calculated by LOVECLIM. The calving rate of GRISLI is given back to the dynamic iceberg module in the form of an ice volume flux. The volume flux is taken to generate icebergs according to the size and mass distribution of Bigg et al. (1997). These bergs are then released at the same locations as the calving took place. In the present study we analyse the effect of moving icebergs on sea surface temperature, salinity and convection in comparison to an experiment where the ice volume that is lost by calving is given to the ocean directly as a freshwater flux at the calving site. Moreover, the influence of the start position of the icebergs on their tracks and on the ocean is investigated as we examine the differences between a model run using prescribed locations and the model run with the coupled ice shelf - iceberg model. All the experiments are done under preindustrial forcing.

  10. Seismic Stratigraphy of Ice Sheet Advance-Retreat Cycles on the Sabrina Coast Continental Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Frederick, B. C.; Gulick, S. P. S.; Saustrup, S.; Fernandez-Vasquez, R. A.; Domack, E. W.; Lavoie, C.; Blankenship, D. D.; Leventer, A.; Shevenell, A.

    2014-12-01

    2D multichannel seismic (MCS), multibeam and CHIRP data were collected as part of the recent R/V Nathaniel B. Palmer (NBP1402) cruise to investigate the marine record of cryosphere-ocean dynamics on the continental shelf between the Dalton Ice Tongue and Totten Glacier systems. Outlet glaciers and ice shelves along this coastline drain a catchment area extending across the Aurora Subglacial Basin (ASB) whose topography lies below sea level and contains an ice volume of approximately 6.9m of sea level rise equivalent. Analysis of over 750km of high-resolution MCS data has revealed the preservation of extensive tilted fluvial-deltaic shelf sedimentation and the first evidence of polythermal glacial advance in this region with well-preserved subglacial meltwater channels and tunnel valley systems. This expansive fluvial to glacial sedimentary section is separated by a regional unconformity from a series of irregular, localized unconformities preserved in an otherwise seismically transparent facies. We interpret these transparent facies as subglacial diamictites deposited over several glacial cycles. Detailed seismic stratigraphic analysis of the glacial sequences above the regional unconformity identified at least 4 glacial cycles illustrated by grounding zone wedge moraine deposits recorded in both MCS and multibeam bathymetric data. Distinct differences were evident in the stratigraphic architecture of polar versus polythermal glaciations including greater preservation of till deposits above the regional unconformity proximal to the exposed bedrock boundary and the present-day ice front. Sedimentary sequence preservation here appears dictated by the geometry of local ice advance and allied basement structure controls. Integration of marine geology, high resolution CHIRP and multibeam bathymetry data with MCS sequence geometry and acoustic facies mapping has led to improved constraints on rates, styles and patterns of glacial retreat. Such improvements to deformable

  11. Preliminary ice shelf-ocean simulation results from idealized standalone-ocean and coupled model intercomparison projects (MIPs)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel

    2016-04-01

    The second Ice Shelf-Ocean MIP (ISOMIP+) and the first Marine Ice Sheet-Ocean MIP (MISOMIP1) prescribe a set of idealized experiments for ocean models with ice-shelf cavities and coupled ice sheet-ocean models, respectively. ISOMIP+ and MISOMIP1 were designed together with the third Marine Ice Sheet MIP (MISMIP+) with three main goals, namely that the MIPs should provide: a controlled forum for researchers to compare their model results with those from other models during model development. a path for testing components in the process of developing coupled ice sheet-ocean models. a basic setup from which a large variety of parameter and process studies can usefully be performed. The experimental design for the three MIPs is currently under review in Geoscientific Model Development (Asay-Davis et al. 2015, doi:10.5194/gmdd-8-9859-2015). We present preliminary results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (e.g. boundary-layer transfer coefficients, drag coefficients, vertical mixing parameterizations) for each models. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to how models would be tuned based on observations for non-idealized simulations. We also present a number of parameter studies based the MIP experiments. Again, using several models, we show that melt rates respond sub-linearly to both changes in the square root of the drag coefficient and the heat-transfer coefficient, and that melting is relatively insensitive to horizontal-mixing coefficients (perhaps because the resolution is sufficient to permit eddies) but more sensitive to vertical-mixing coefficients. We show that the choice of the equation of state (linear or nonlinear) does not have a significant impact as long as

  12. Geochemical compositional differences of the supramicron plankton-dominated fraction in two regimes of the Marginal Ice Zone (MIZ) of the outer East Siberian Arctic Shelf

    NASA Astrophysics Data System (ADS)

    Panova, E.; Tesi, T.; Pearce, C.; Salvado, J. A.; Karlsson, E. S.; Krusa, M.; Semiletov, I. P.; Gustafsson, O.

    2015-12-01

    The >10 um fraction of surface water in ice-covered and ice-free MIZ regimes of the East Siberian Arctic Shelf (ESAS) was investigated to improve understanding of its source and composition as well as to provide end-member constraints on the planktonic contribution to the underlying sedimentary organic matter. Samples were collected during the SWERUS-C3 2014 expedition in outer shelf open waters (Laptev Sea) and ice-covered conditions (East Siberian Sea). Our analyses indicate a contrasting composition in the two regimes. The stable carbon isotopic composition (δ13C) is more enriched in the ice-covered eastern ESAS where the radiocarbon age is also slightly depleted compared to the modern atmospheric value. By contrast, the western ESAS shows opposite trends with more depleted δ13C values but modern 14C ages (Fmod >1). Because the influence of terrigenous organic carbon in these samples is negligible (as documented at molecular level by lignin biomarkers), we interpret these compositional differences as a result of the HCO3- uptake by sea ice algae during carbon fixation due to the restricted access to CO2. This is consistent with the lipid biomarker IP25, unique for specific sea ice diatoms, which was found in relatively high concentration in the eastern shelf. Preliminary identifications of the phytoplankton taxa show also that open waters are characterized by a mixture of dinoflagellates, silicoflagellates and diatoms whereas the ice-covered region is mainly dominated by diatoms. In addition, while the distribution of nitrates in surface waters is fairly homogenous over the shelf, the nitrogen stable isotopic composition (δ15N) is more depleted in the western than in the eastern shelf, likely mirroring the difference in phytoplankton taxa. Our results indicate that, as the sea ice reduces due to Arctic warming, phytoplankton assemblages will progressively adjust to the different climate conditions which will affect both trophic chain and the biogeochemistry

  13. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf.

    PubMed

    Searles, J A; Carpenter, J F; Randolph, T W

    2001-07-01

    The objective of this study was to determine the influence of ice nucleation temperature on the primary drying rate during lyophilization for samples in vials that were frozen on a lyophilizer shelf. Aqueous solutions of 10% (w/v) hydroxyethyl starch were frozen in vials with externally mounted thermocouples and then partially lyophilized to determine the primary drying rate. Low- and high-particulate-containing samples, ice-nucleating additives silver iodide and Pseudomonas syringae, and other methods were used to obtain a wide range of nucleation temperatures. In cases where the supercooling exceeded 5 degrees C, freezing took place in the following three steps: (1) primary nucleation, (2) secondary nucleation encompassing the entire liquid volume, and (3) final solidification. The primary drying rate was dependent on the ice nucleation temperature, which is stochastic in nature but is affected by particulate content and the presence of ice nucleators. Sample cooling rates of 0.05 to 1 degrees C/min had no effect on nucleation temperatures and drying rate. We found that the ice nucleation temperature is the primary determinant of the primary drying rate. However, the nucleation temperature is not under direct control, and its stochastic nature and sensitivity to difficult-to-control parameters result in drying rate heterogeneity. Nucleation temperature heterogeneity may also result in variation in other morphology-related parameters such as surface area and secondary drying rate. Overall, these results document that factors such as particulate content and vial condition, which influence ice nucleation temperature, must be carefully controlled to avoid, for example, lot-to-lot variability during cGMP production. In addition, if these factors are not controlled and/or are inadvertently changed during process development and scaleup, a lyophilization cycle that was successful on the research scale may fail during large-scale production. PMID:11458335

  14. Minimum distribution of subsea ice-bearing permafrost on the U.S. Beaufort Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.

    2012-08-01

    Starting in Late Pleistocene time (˜19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ˜120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s-1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along <5% of the tracklines at depths of ˜5 to 470 m below the seafloor. The resulting map reveals the minimum extent of subsea ice-bearing permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.

  15. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice.

    PubMed

    Shakhova, Natalia; Semiletov, Igor; Sergienko, Valentin; Lobkovsky, Leopold; Yusupov, Vladimir; Salyuk, Anatoly; Salomatin, Alexander; Chernykh, Denis; Kosmach, Denis; Panteleev, Gleb; Nicolsky, Dmitry; Samarkin, Vladimir; Joye, Samantha; Charkin, Alexander; Dudarev, Oleg; Meluzov, Alexander; Gustafsson, Orjan

    2015-10-13

    Sustained release of methane (CH(4)) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH(4) from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our latest observations, we show that CH(4) emissions from this shelf are likely to be determined by the state of subsea permafrost degradation. We observed CH(4) emissions from two previously understudied areas of the ESAS: the outer shelf, where subsea permafrost is predicted to be discontinuous or mostly degraded due to long submergence by seawater, and the near shore area, where deep/open taliks presumably form due to combined heating effects of seawater, river run-off, geothermal flux and pre-existing thermokarst. CH(4) emissions from these areas emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing and decrease in ice extent could result in a significant increase in CH(4) emissions from the ESAS. PMID:26347539

  16. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice

    PubMed Central

    Shakhova, Natalia; Semiletov, Igor; Sergienko, Valentin; Lobkovsky, Leopold; Yusupov, Vladimir; Salyuk, Anatoly; Salomatin, Alexander; Chernykh, Denis; Kosmach, Denis; Panteleev, Gleb; Nicolsky, Dmitry; Samarkin, Vladimir; Joye, Samantha; Charkin, Alexander; Dudarev, Oleg; Meluzov, Alexander; Gustafsson, Orjan

    2015-01-01

    Sustained release of methane (CH4) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH4 from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our latest observations, we show that CH4 emissions from this shelf are likely to be determined by the state of subsea permafrost degradation. We observed CH4 emissions from two previously understudied areas of the ESAS: the outer shelf, where subsea permafrost is predicted to be discontinuous or mostly degraded due to long submergence by seawater, and the near shore area, where deep/open taliks presumably form due to combined heating effects of seawater, river run-off, geothermal flux and pre-existing thermokarst. CH4 emissions from these areas emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing and decrease in ice extent could result in a significant increase in CH4 emissions from the ESAS. PMID:26347539

  17. Constraints on ice volume changes of the East Antarctic Ice Sheet and Ross Ice Shelf since the LGM based on cosmogenic exposure ages from Darwin-Hatherton outlet glaciers.

    NASA Astrophysics Data System (ADS)

    Fink, David; Joy, Kurt; Storey, Bryan

    2013-04-01

    At the Last Glacial Maximum and during Termination-1 (~20-10 ka), marine evidence indicates that the grounding line of the West Antarctic Ice Sheet (WAIS) advanced northwards into the Ross Ice Shelf (RIS), blocking drainage of the Darwin and Hatherton outlet glaciers through the Transantarctic Mountains (TM) resulting in significant downstream thickening of glacier profiles. These outlet glaciers provide geological and glaciological records of EAIS expansion through the TMs as well as WAIS fluctuations which together suggest an LGM thickness of ~800 m lager than today at their confluence with the Ross Embayment. About 80 cosmogenic 10Be and 26Al exposure ages of erratics from 3 locations flanking the Hatherton Glacier (Dubris Valley near the EAIS source region, from Lake Wellman at its midpoint and Diamond Hill at its terminus) taken along transects covering 800 m in differential elevation from ice-sheet contact to mountain peaks documents 2.5 Ma of ice volume evolution of the Hatherton allowing a reconstruction of its quaternary paleo-ice surface. Pleistocene ice thickness is some 800 to 400 meters thicker between 2.5 to 0.5 Ma years ago than today . However at all 3 locations, exposure ages of mapped glacial drifts younger than 0.5 Ma at lower elevations down to current ice margin did not show any evidence for a distinct LGM advance. At Lake Wellman a cluster of mid-elevation moraine boulders from the Britannia Drift, previously taken to demarcate the LGM advance, have exposure ages ranging from 30 to 40 ka. At Dubris Valley, the same drift returned ages of 120-125 ka. At Diamond Hill, the confluence of the Darwin Glacier and RIS, two transects were sampled that cover an altitude range of 1100 meters. Cosmogenic dates show a similar trend to that seen further upvalley - the WAIS was approximately 900 meters thicker than the current Rose Ice Shelf configuration at ~1.5Ma and with only minor advances in the last 10ka and an absence of any LGM ages. The absence of a

  18. Organized flow from the South Pole to the Filchner-Ronne ice shelf: An assessment of balance velocities in interior East Antarctica using radio echo sounding data

    NASA Astrophysics Data System (ADS)

    Bingham, Robert G.; Siegert, Martin J.; Young, Duncan A.; Blankenship, Donald D.

    2007-09-01

    Ice flow through central Antarctica has the potential to transmit accumulation changes from deep-interior East Antarctica rapidly to the shelf, but it is poorly constrained owing to a dearth of ice-velocity observations. We use parameters derived from airborne radio echo sounding (RES) data to examine the onset, areal extent, and englacial conditions of an organized flow network (tributaries feeding an ice stream) draining from the South Pole to the Filchner-Ronne Ice Shelf. We classified RES flight tracks covering the region according to whether englacial stratigraphy was disrupted (i.e., internal layers diverged significantly from the surface and bed echoes) or undisrupted (i.e., internal layers closely parallel surface and basal topography), and we calculated subglacial roughness along basal reflectors. Where satellite-measured surface ice-flow speeds are available (covering 39% of the study region), regions of fast and tributary flow correspond with RES flight tracks that exhibit more disrupted internal layers and smoother subglacial topography than their counterparts in regions of slow flow. This suggests that disrupted internal layering and smooth subglacial topography identified from RES profiles can be treated as indicators of past or present enhanced-flow tributaries where neither satellite nor ground-based ice-flow measurements are available. We therefore use these RES-derived parameters to assess the balance-flux-modeled steady state flow regime between the South Pole and Filchner-Ronne Ice Shelf. The RES analysis confirms that an organized flow network drains a wide region around the South Pole into the Filchner-Ronne Ice Shelf. However, the spatial extent of this network, as delineated by the RES data, diverges from that predicted by currently available balance-flux models.

  19. Ice sheet dynamics on the Lofoten-Vesterålen shelf, north Norway, from Late MIS-3 to Heinrich Stadial 1

    NASA Astrophysics Data System (ADS)

    Brendryen, Jo; Haflidason, Haflidi; Rise, Leif; Chand, Shyam; Vanneste, Maarten; Longva, Oddvar; L'Heureux, Jean Sébastien; Forsberg, Carl Fredrik

    2015-07-01

    We present an account of the glacial dynamics from late Marine Isotope Stage (MIS) 3 to the Heinrich Stadial (HS) 1 on the Lofoten-Vesterålen margin, Northern Norway. This account is based on an analysis of the sedimentary stratigraphy on the upper slope close to the ice sheet grounding line at the continental shelf edge, and an analysis of the glacial morphology on the shelf areas. Our results point to a dynamic ice sheet that waxed and waned on the Lofoten-Vesterålen continental shelf from the late MIS-3, through the Last Glacial Maximum (LGM) and the HS 1. Glacigenic debris flows and deposition of laminated diamicts suggest that the ice sheet reached the shelf edge on several occasions. These are dated to ˜25.5 ka BP (HS3), between 21.1 and 21.7 ka BP, ˜19.5 ka BP, 15.6 ka BP and 14.4 ka BP (uncorrected 14C ages). A contouritic sorted sand sediment unit that formed in a relatively warm interval during Late MIS-3 suggests that a strong Norwegian Atlantic Slope Current also developed during glacial interstadials implying that the oceanic circulation in the eastern Norwegian Sea was similar as today. The general pattern is that the ice sheet advanced onto the shelf during cold period with little influx of Atlantic Water to the Norwegian Sea and that it retreated toward the coast during intervals with higher temperatures and higher influx of warm Atlantic Water. The last ice advance to the edge of the continental shelf occurred during HS 1.

  20. The examination of a downslope warming wind event over the Larsen Ice Shelf in Antarctica through modeling and aircraft observations.

    NASA Astrophysics Data System (ADS)

    Grosvenor, Daniel; Choularton, Thomas; King, John; Lachlan-Cope, Thomas

    2010-05-01

    During the last 50-60 years temperatures over the Antarctic Peninsula region have increased more rapidly than anywhere else in the southern hemisphere, at several times the global average rate. At one station, the near-surface warming between 1951 and 2004 was 2.94 oC compared to a global average of 0.52 oC. However, the seasonal pattern of this regional warming has varied with location, with the east side having warmed more than the west in the autumn and summer seasons. This is important since the process of surface melting on the Larsen ice shelves, which are located on the east side, predominately occurs in summer. Crevasse propagation due to the weight of accumulated melt water is currently thought to have been the major factor in causing the catastrophic near-total disintegration of the Larsen B ice shelf in 2002, representing a loss of ice of area 3200 km2. The larger and more southerly Larsen C ice shelf could also suffer a similar fate if the warming continues, with consequences for the ecology and for increased glacier flow, leading to sea level rise. The difference in warming between the east and west side in these seasons is thought to have been driven by circulation changes that have led to increases in the strength of westerly winds. The high mountains of the Antarctic Peninsula provide a climatic barrier between the warmer oceanic air of the west and the cold continental air of the east. It has been suggested that increased westerlies allow warm winds to cross to the east side more frequently. The warming of westerly flow can also be enhanced by latent heat release on the upslope side and/or adiabatic descent of air from above, on the downslope side. In January 2006 the British Antarctic Survey performed an aircraft flight over the Larsen C ice shelf on the east side of the Peninsula, which sampled a strong downslope warming wind event. Surface flux measurements over the ice shelf suggest that the sensible heat provided by the warm jets would be

  1. Episodic warming of near-bottom waters under the Arctic sea ice on the central Laptev Sea shelf: observations, explanations, and implications

    NASA Astrophysics Data System (ADS)

    Janout, Markus; Hölemann, Jens; Juhls, Bennet; Krumpen, Thomas; Rabe, Benjamin; Bauch, Dorothea; Wegner, Carolyn; Kassens, Heidi; Timokhov, Leonid

    2016-04-01

    A multi-year mooring record (2007-2014) and satellite imagery highlight the strong temperature variability and unique hydrographic nature of the Laptev Sea shelf. This Arctic shelf is the beginning of teh transpolar drift system and a key region for river discharge and sea ice formation and export, and includes submarine permafrost and methane deposits, which emphasizes the need to understand the thermal variability near the seafloor. Recent years were characterized by early ice retreat and a warming near-shore environment. However, warming was not observed on the deeper shelf until year-round under-ice measurements recorded unprecedented warm near-bottom waters of +0.6°C in winter 2012/2013, just after the Arctic sea ice extent featured a record minimum. In the Laptev Sea, early ice retreat in 2012 combined with Lena River heat and solar radiation produced anomalously warm summer surface waters, which were vertically mixed, trapped in the pycnocline, and subsequently transferred toward the bottom until the water column cooled when brine rejection eroded stratification. This presentation highlights the strong temperature variability and the dominant oceanographic processes in the Laptev Sea, as well as the role of the Lena River as a source for heat and bio-optical properties such as colored dissolved organic matter. Finally, we discuss how continuing changes in sea ice conditions may affect the thermal environment and hence the Laptev Sea ecosystem.

  2. Coastal-Change and Glaciological Map of the Northern Ross Ice Shelf Area, Antarctica: 1962-2004

    USGS Publications Warehouse

    Ferrigno, Jane G.; Foley, Kevin M.; Swithinbank, Charles; Williams, Richard S., Jr.

    2007-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level could severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet would cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). The mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is highly complex, responding differently to different conditions in each region (Vaughan, 2005). In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic ice sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Thomas and others (2004), on the basis of aircraft and satellite laser altimetry surveys, believe the thinning may be accelerating. Joughin and Tulaczyk (2002), on the basis of analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance, whereas Rignot and others (2004) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b; 2004). The mass balance of the East Antarctic ice sheet is thought by Davis and others (2005) to be strongly positive on the basis of the change in satellite altimetry measurements made between 1992 and 2003. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation?s (1990) Division of Polar

  3. The 'interior' shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange

    NASA Astrophysics Data System (ADS)

    Williams, William J.; Carmack, Eddy C.

    2015-12-01

    The interior shelves of the Arctic Mediterranean are the shelves of the Kara Sea, Laptev Sea, East Siberian Sea and Beaufort Sea. They comprise approximately 40% of the total arctic shelf area (∼2.5 × 106 km2) and are distinguished from inflow and outflow shelves by their principal forcing dynamics. Along their southern (continental) boundary the interior shelves are dominated by the major arctic rivers, receiving over 80% of the total freshwater input to the Arctic Ocean. In the mid-shelf region wind and ice motion surface stresses dominate mixing and circulation, resulting in high variability. Along, their northern (seaward) boundary they are forced by upwelling- and downwelling-favourable surface stresses which drive shelf-basin exchanges with Atlantic- and Pacific-origin cyclonic boundary currents over the upper slope. Shelf-basin exchange is further modified by shelf-break morphometry (e.g. canyons, valleys, headlands and bottom slope). Here we review the physical oceanographic settings and forcing of the interior shelves and then focus on shelfbreak exchange and supply of nutrients for new primary production due to upwelling across the shelfbreak. As a proxy for this nutrient supply, we show seasonal and annual time series of along-shelfbreak surface-stress due to wind and ice motion from 1979 to 2011. We apply this analysis to the shallow shelves from the Kara Sea to the Beaufort Sea and comment on recent increases due to atmospheric changes and sea-ice retreat.

  4. Benthic foraminifera in the surface sediments of the Beaufort Shelf and slope, Beaufort Sea, Canada: Applications and implications for past sea-ice conditions

    NASA Astrophysics Data System (ADS)

    Scott, David B.; Schell, Trecia; Rochon, André; Blasco, Steve

    2008-12-01

    This paper presents new data on distribution patterns of modern benthic foraminifera and other microfossils from the Canadian Arctic, specifically the Beaufort Shelf and slope. The material was collected in June to August of 2004 and is the first of its kind in this area to be collected since 1970. We examined the smaller sizes (45-63µm) as well as > 63µm and discovered that many species had been severely underrepresented in previous studies. Deep sea forms, that had been overlooked previously, were common on the shelf; two species ( Elphidiella arctica and Ammotium cassis) appeared in preliminary results to be indicators of methane seepage; and it was possible to make determinations of sea-ice coverage using a combination of foraminifera and tintinnids (planktic ciliates). Our data indicated the presence of many of the same species as previous studies from this area, but improved techniques of sample processing greatly increased the number of specimens and species found (particularly the small deep sea arctic species Buliminella hensoni and Bolivina arctica) which provide much more reliable data for paleoceanographic determinations. One of the primary objectives for this work was to provide baseline data to help determine paleo-ice cover; these data cover a broad range of conditions on the Beaufort Shelf that make it possible to achieve this objective as well as improving what it is known about the assemblages on this shelf as compared to other arctic shelf areas, such as the Siberian Shelf).

  5. Surface Melt Magnitude Retrieval Over Ross Ice Shelf, Antarctica Using Coupled MODIS Optical and Thermal Satellite Measurements During the 2002-03 Melt Season

    NASA Astrophysics Data System (ADS)

    Karmosky, C. C.; Lampkin, D. J.

    2008-12-01

    Ice shelf stability is of crucial importance in the Antarctic because shelves serve as buttresses to glacial ice advancing from the Antarctic Ice Sheet. Surface melt has been increasing over recent years, especially over the Antarctic Peninsula, contributing to disintegration of shelves such as Larsen. Unfortunately, we are not realistically able to quantify surface snowmelt from ground-based methods because there is sparse coverage in automatic weather stations. Satellite based assessments of melt from passive microwave systems are limited in that they only provide an indication of melt occurrence and have coarse resolution. Though this is useful in tracking the duration of melt, melt amount of magnitude is still unknown. Coupled optical/thermal surface measurements from MODIS were calibrated by estimates of liquid water fraction (LWF) in the upper 1cm of the firn derived from a one-dimensional thermal snowmelt model (SNTHERM). SNTHERM was forced by hourly meteorological data from automatic weather station data at reference sites spanning a range of melt conditions across the Ross Ice Shelf during a particularly intense melt season. Melt intensities or LWF were derived for satellite composite periods covering the Antarctic summer months at a 4km resolution over the entire Ross Ice Shelf, ranging from 0-2 percent LWF in early December to areas along the coast with upwards of 10 percent LWF during the time of peak surface melt. Spatial and temporal variations in the amount of surface melt are seen to be related to both katabatic wind strength and wind shifts due to the progression of cyclones along the circumpolar vortex. Sea ice concentration along the ice shelf front, specifically the formation of polynyas, are also thought to be driving factors for surface melt as latent and sensible heat fluxes increase by one to three orders of magnitude as polynyas form. A future application of surface melt mapping using this empirical retrieval model is to determine melt

  6. Glacial landforms on German Bank, Scotian Shelf: evidence for Late Wisconsinan ice-sheet dynamics and implications for the formation of De Geer moraines

    USGS Publications Warehouse

    Todd, Brian J.; Valentine, Page C.; Longva, Oddvar; Shaw, John

    2007-01-01

    The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (

  7. Sedimentology and chronology of the advance and retreat of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    Peters, Jared L.; Benetti, Sara; Dunlop, Paul; Ó Cofaigh, Colm; Moreton, Steven G.; Wheeler, Andrew J.; Clark, Christopher D.

    2016-05-01

    The last British-Irish Ice Sheet (BIIS) had extensive marine-terminating margins and was drained by multiple large ice streams and is thus a useful analogue for marine-based areas of modern ice sheets. However, despite recent advances from investigating the offshore record of the BIIS, the dynamic history of its marine margins, which would have been sensitive to external forcing(s), remain inadequately understood. This study is the first reconstruction of the retreat dynamics and chronology of the western, marine-terminating, margin of the last (Late Midlandian) BIIS. Analyses of shelf geomorphology and core sedimentology and chronology enable a reconstruction of the Late Midlandian history of the BIIS west of Ireland, from initial advance to final retreat onshore. Five AMS radiocarbon dates from marine cores constrain the timing of retreat and associated readvances during deglaciation. The BIIS advanced without streaming or surging, depositing a bed of highly consolidated subglacial traction till, and reached to within ∼20 km of the shelf break by ∼24,000 Cal BP. Ice margin retreat was likely preceded by thinning, grounding zone retreat and ice shelf formation on the outer shelf by ∼22,000 Cal BP. This ice shelf persisted for ≤2500 years, while retreating at a minimum rate of ∼24 m/yr and buttressing a >150-km long, 20-km wide, bathymetrically-controlled grounding zone. A large (∼150 km long), arcuate, flat-topped grounding-zone wedge, termed here the Galway Lobe Grounding-Zone Wedge (GLGZW), was deposited below this ice shelf and records a significant stillstand in BIIS retreat. Geomorphic relationships indicate that the BIIS experienced continued thinning during its retreat across the shelf, which led to increased topographic influence on its flow dynamics following ice shelf break up and grounding zone retreat past the GLGZW. At this stage of retreat the western BIIS was comprised of several discrete, asynchronous lobes that underwent several

  8. Subglacial bathymetry and sediment distribution beneath Pine Island Glacier ice shelf modeled using aerogravity and in situ geophysical data: New results

    NASA Astrophysics Data System (ADS)

    Muto, Atsuhiro; Peters, Leo E.; Gohl, Karsten; Sasgen, Ingo; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.

    2016-01-01

    Pine Island Glacier (PIG) in the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is losing mass and contributing to global sea-level rise at an accelerating rate. Although recent observations and modeling have identified the incursion of relatively warm Circumpolar Deep Water (CDW) beneath the PIG ice shelf (PIGIS) as the main driver of this ice-mass loss, the lack of precise bathymetry limits furthering our understanding of the ice-ocean interactions and improving the accuracy of modeling. Here we present updated bathymetry and sediment distribution beneath the PIGIS, modeled by the inversion of aerogravity data with constraints from active-source seismic data, observations from an autonomous underwater vehicle, and the regional gravity-anomaly field derived from satellite gravity observations. Modeled bathymetry shows a submarine ridge beneath the middle of PIGIS that rises ∼350 to 400 m above the surrounding sea floor, with a minimum water-column thickness of ∼200 m above it. This submarine ridge continues across the whole width of the 45-km wide ice shelf, with no deep troughs crossing it, confirming the general features of the previously predicted sub-ice-shelf ocean circulation. However, the relatively low resolution of the aerogravity data and limitations in our inversion method leave a possibility that there is an undetected, few-kilometers-wide or narrower trough that may alter the predicted sub-ice-shelf ocean circulation. Modeled sediment distribution indicates a sedimentary basin of up to ∼800 m thick near the current grounding zone of the main PIG trunk and extending farther inland, and a region seaward of the submarine ridge where sediments are thin or absent with exposed crystalline basement that extends seaward into Pine Island Bay. Therefore, the submarine ridge marks the transition from a thick sedimentary basin providing a smooth interface over which ice could flow easily by sliding or sediment deformation, to a region with no to

  9. Coastal-Change and Glaciological Map of the Larsen Ice Shelf Area, Antarctica, 1940-2005

    USGS Publications Warehouse

    Ferrigno, Jane G.; Cook, Alison J.; Mathie, Amy M.; Williams, Richard S., Jr.; Swithinbank, Charles; Foley, Kevin M.; Fox, Adrian J.; Thomson, Janet W.; Sievers, Jorn

    2008-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level could severely impact the densely populated coastal regions on Earth. Antarctica is Earth's largest reservoir of glacial ice. Melting of the West Antarctic part alone of the Antarctic ice sheet would cause a sea-level rise of approximately 6 meters (m), and the potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). The mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is highly complex, responding differently to different climatic and other conditions in each region (Vaughan, 2005). In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic ice sheet is probably becoming thinner overall; although it is known to be thickening in the west, it is thinning in the north. The mass balance of the East Antarctic ice sheet is thought by Davis and others (2005) to be positive on the basis of the change in satellite-altimetry measurements made between 1992 and 2003. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation's (1990) Division of Polar Programs. On the basis of these recommendations, the U.S. Geological Survey (USGS) decided that the archive of early 1970s Landsat 1, 2, and 3 Multispectral Scanner (MSS) images of Antarctica and the subsequent repeat coverage made possible with Landsat and other satellite images provided an excellent means of documenting changes in the cryospheric coastline of Antarctica (Ferrigno and Gould, 1987). The availability of this information provided the impetus for carrying out a

  10. Abbot Ice Shelf, structure of the Amundsen Sea continental margin and the southern boundary of the Bellingshausen Plate seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, James R.; Tinto, Kirsty J.; Bell, Robin E.

    2015-05-01

    Inversion of NASA Operation IceBridge airborne gravity over the Abbot Ice Shelf in West Antarctica for subice bathymetry defines an extensional terrain made up of east-west trending rift basins formed during the early stages of Antarctica/Zealandia rifting. Extension is minor, as rifting jumped north of Thurston Island early in the rifting process. The Amundsen Sea Embayment continental shelf west of the rifted terrain is underlain by a deeper, more extensive sedimentary basin also formed during rifting between Antarctica and Zealandia. A well-defined boundary zone separates the mildly extended Abbot extensional terrain from the deeper Amundsen Embayment shelf basin. The shelf basin has an extension factor, β, of 1.5-1.7 with 80-100 km of extension occurring across an area now 250 km wide. Following this extension, rifting centered north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf appears to have been tectonically quiescent and shaped by subsidence, sedimentation, and the advance and retreat of the West Antarctic Ice Sheet. The Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to incorporation into the Antarctic Plate at about 62 Ma. During the latter part of its independent existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence across the north-south trending Bellingshausen Gravity Anomaly structure at 94°W and compressive deformation on the continental slope between 94°W and 102°W. Farther west, the relative motion was extensional along an east-west trending zone occupied by the Marie Byrd Seamounts. The copyright line for this article was changed on 5 JUN 2015 after original online publication.

  11. Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica

    USGS Publications Warehouse

    Esposito, R.M.M.; Spaulding, S.A.; McKnight, Diane M.; Van De Vijver, B.; Kopalova, K.; Lubinski, D.; Hall, B.; Whittaker, T.

    2008-01-01

    Diatom taxa present in the inland streams and lakes of the McMurdo Dry Valleys and James Ross Island, Antarctica, are presented in this paper. A total of nine taxa are illustrated, with descriptions of four new species (Luticola austroatlantica sp. nov., Luticola dolia sp. nov., Luticola laeta sp. nov., Muelleria supra sp. nov.). In the perennially ice-covered lakes of the McMurdo Dry Valleys, diatoms are confined to benthic mats within the photic zone. In streams, diatoms are attached to benthic surfaces and within the microbial mat matrix. One species, L. austroatlantica, is found on James Ross Island, of the southern Atlantic archipelago, and the McMurdo Dry Valleys. The McMurdo Dry Valley populations are at the lower range of the size spectrum for the species. Streams flow for 6-10 weeks during the austral summer, when temperatures and solar radiation allow glacial ice to melt. The diatom flora of the region is characterized by species assemblages favored under harsh conditions, with naviculoid taxa as the dominant group and several major diatom groups conspicuously absent. ?? 2008 NRC.

  12. Abundance, Distribution and Cycling of Organic Carbon and Nitrogen in University Valley (McMurdo Dry Valleys of Antarctica) Permafrost Soils with Differing Ground Thermal and Moisture Conditions: Analogue to C-N Cycle on Mars

    NASA Astrophysics Data System (ADS)

    Faucher, B. F.; Lacelle, D. L.; Davila, A. D.; Pollard, W. P.; McKay, C. P. M.

    2016-05-01

    High elevation McMurdo Dry Valleys of Antarctica are key Mars analogue sites. Our investigation focuses on the link between ground ice origin, distribution and cycling of organic carbon and nitrogen in University Valley, and its soil habitability.

  13. Constraints on ice volume changes of the WAIS and Ross Ice Shelf since the LGM based on cosmogenic exposure ages in the Darwin-Hatherton glacial system of the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Fink, David; Storey, Bryan; Hood, David; Joy, Kurt; Shulmeister, James

    2010-05-01

    Quantitative assessment of the spatial and temporal scale of ice volume change of the West Antarctic ice sheet (WAIS) and Ross Ice Shelf since the last glacial maximum (LGM) ~20 ka is essential to accurately predict ice sheet response to current and future climate change. Although global sea level rose by approximately 120 metres since the LGM, the contribution of polar ice sheets is uncertain and the timing of any such contribution is controversial. Mackintosh et al (2007) suggest that sectors of the EAIS, similar to those studied at Framnes Mountains where the ice sheet slowly calves at coastal margins, have made marginal contributions to global sea-level rise between 13 and 7 ka. In contrast, Stone et al (2003) document continuing WAIS decay during the mid-late Holocene, raising the question of what was the response of the WAIS since LGM and into the Holocene. Terrestrial evidence is restricted to sparse coastal oasis and ice free mountains which archive limits of former ice advances. Mountain ranges flanking the Darwin-Hatherton glaciers exhibit well-defined moraines, weathering signatures, boulder rich plateaus and glacial tills, which preserve the evidence of advance and retreat of the ice sheet during previous glacial cycles. Previous studies suggest a WAIS at the LGM in this location to be at least 1,000 meters thicker than today. As part of the New Zealand Latitudinal Gradient Project along the Transantarctic, we collected samples for cosmogenic exposure dating at a) Lake Wellman area bordering the Hatherton Glacier, (b) Roadend Nunatak at the confluence of the Darwin and Hatherton glaciers and (c) Diamond Hill which is positioned at the intersection of the Ross Ice Shelf and Darwin Glacier outlet. While the technique of exposure dating is very successful in mid-latitude alpine glacier systems, it is more challenging in polar ice-sheet regions due to the prevalence of cold-based ice over-riding events and absence of outwash processes which removes

  14. Rift in Antarctic Glacier: a Unique Chance to Study Ice Shelf Retreat

    NASA Technical Reports Server (NTRS)

    Howat, Ian M.; Jezek, Ken; Studinger, Michael; Macgregor, Joseph A.; Paden, John; Floricioiu, Dana; Russell, Rob; Linkswiler, Matt; Dominguez, Roseanne T.

    2012-01-01

    It happened again, but this time it was caught in the act. During the last week of September 2011 a large transverse rift developed across thefloating terminus of West Antarcticas PineIsland Glacier, less than 5 years after its lastlarge calving event, in 2007 (Figure 1). PineIsland Glaciers retreat has accelerated substantiallyin the past 2 decades, and it is nowlosing 50 gigatons of ice per year, or roughly 25 of Antarcticas total annual contributionto sea level rise [Rignot et al., 2008]. The glaciers recent accelerated retreat is likely triggered by ocean warming and increased submarine melting. As such, it is of significant interest to glaciologists and of heightened societal relevance.

  15. Sea-ice distribution and primary production on the East Greenland Shelf and the NW Fram Strait - a high resolution study of the last 5.2 ka

    NASA Astrophysics Data System (ADS)

    Kolling, Henriette Marie; Stein, Ruediger; Fahl, Kirsten

    2015-04-01

    Over the last decades, the extent and thickness of Arctic sea ice has changed dramatically and much more rapidly than predicted by climate models. Based on this alarming observation, the reconstruction of natural variability of past sea-ice cover and its forcing became a major focus of international scientific research. Here, we present a high-resolution biomarker approach over the last 4 ka from the East Greenland Shelf to investigate the interrelationship between sea-ice cover, meltwater/freshwater discharge and primary productivity. The phytoplankton-derived sea-ice proxy IP25 (Belt et al., 2007) points to a late Holocene cooling trend initiated around 1.5 ka which is interrupted by a period of reduced sea-ice cover centred around 1 ka. The latter might be related to the well known Medieval Warm Period. Our new results from the East Greenland Shelf will be compared with similar records from the Fram Strait area published by Müller et al., (2012). These data give information about differences and/or similarities of sea-ice variability and changes in productivity in the area influenced by the cold East Greenland Current and the warm Westspitsbergen Current, respectively. First data suggest a time lag of the Neoglacial cooling between western (Greenland side) and eastern (Westspitsbergen-side) of Fram Strait, as also proposed by Müller et al. (2012). References Belt., S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of paleo sea ice: IP25. Organic Geochemistry 38, 16-27 Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., Jansen, E., 2012. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quaternay Science Reviews 47, 1-14

  16. High-Resolution Reconstruction of Late Holocene Sea-ice Distribution and Primary Production on the East Greenland Shelf and the NW Fram Strait.

    NASA Astrophysics Data System (ADS)

    Stein, R. H.; Kolling, H. M.; Fahl, K.

    2014-12-01

    Over the last decades, the extent and thickness of Arctic sea ice has changed dramatically and much more rapidly than predicted by climate models. Based on this alarming observation, the reconstruction of natural variability of past sea-ice cover and its forcing became a major focus of international scientific research. Here, we present a high-resolution biomarker approach over the last 4 ka from the East Greenland Shelf to investigate the interrelationship between sea-ice cover, meltwater/freshwater discharge and primary productivity. The phytoplankton-derived sea-ice proxy IP25 (Belt et al., 2007) points to a late Holocene cooling trend initiated around 1.5 ka which is interrupted by a period of reduced sea-ice cover centred around 1 ka. The latter might be related to the well known Medieval Warm Period. Our new results from the East Greenland Shelf will be compared with similar records from the Fram Strait area published by Müller et al., (2012). These data give information about differences and/or similarities of sea-ice variability and changes in productivity in the area influenced by the cold East Greenland Current and the warm Westspitsbergen Current, respectively. First data suggest a time lag of the Neoglacial cooling between western (Greenland side) and eastern (Westspitsbergen-side) of Fram Strait, as also proposed by Müller et al. (2012). ReferencesBelt., S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of paleo sea ice: IP25. Organic Geochemistry 38, 16-27 Müller, J., Werner, K., Stein, R., Fahl, K., Moros, M., Jansen, E., 2012. Holocene cooling culminates in sea ice oscillations in Fram Strait. Quaternay Science Reviews 47, 1-14

  17. Current surges and seabed erosion near the shelf break in the Canadian Beaufort Sea: A response to wind and ice motion stress

    NASA Astrophysics Data System (ADS)

    Forest, Alexandre; Osborne, Philip D.; Curtiss, Gregory; Lowings, Malcolm G.

    2016-08-01

    Estimating the erosion potential of seabed sediments and the magnitude of the resulting suspended load in relation to current dynamics near the shelf break is a key issue for better understanding shelf-slope sediment transport. On the outer Mackenzie Shelf (Canadian Beaufort Sea, Arctic Ocean), a thin and discontinuous veneer of recent surficial clays overlie old glaciomarine sediments that further pinch out at the shelf edge. Gas and fluid venting is known to underlie part of sediment instability in the area, but recent mooring-based measurements also indicate that sediments near the shelf break are recurrently remobilized by strong subsurface currents. Here, we relate storms to the development of current surges that resulted in the abrupt resuspension of sediments at two locations along the shelf break. Near-bottom concentrations of suspended sediments were estimated using the acoustic backscatter of high-frequency acoustic Doppler current profilers deployed from September 2011 to September 2013 as part of the Beaufort Regional Environmental Assessment (BREA) program. Near-bottom currents near the shelf edge (140 to 150 m isobaths) were characterized by recurring episodes of elevated velocities (instantaneous speeds up to ~ 40-50 cm s-1) that were extensions of current surges (~ 60-80 cm s-1) occurring in the core of the shelfbreak jet located at ca. 90-120 m. Sudden peaks in suspended sediments (above 100 g m-3) corresponded closely with current surges in the near-bottom boundary layer (< 10 m) implying the local erosion of surficial sediments and the rapid advection or redeposition of the resuspended sediments. A range of apparent threshold velocities from 18 to 36 cm s-1 was calculated based on the relationship between suspended sediment concentrations and near-bottom current speeds. Two meteorological scenarios were identified to explain the current surges underlying these erosion events at the shelf edge: (1) Pacific or Arctic-born low pressure systems that

  18. Characterisation of the Nematode Community of a Low-Activity Cold Seep in the Recently Ice-Shelf Free Larsen B Area, Eastern Antarctic Peninsula

    PubMed Central

    Hauquier, Freija; Ingels, Jeroen; Gutt, Julian; Raes, Maarten; Vanreusel, Ann

    2011-01-01

    Background Recent climate-induced ice-shelf disintegration in the Larsen A (1995) and B (2002) areas along the Eastern Antarctic Peninsula formed a unique opportunity to assess sub-ice-shelf benthic community structure and led to the discovery of unexplored habitats, including a low-activity methane seep beneath the former Larsen B ice shelf. Since both limited particle sedimentation under previously permanent ice coverage and reduced cold-seep activity are likely to influence benthic meiofauna communities, we characterised the nematode assemblage of this low-activity cold seep and compared it with other, now seasonally ice-free, Larsen A and B stations and other Antarctic shelf areas (Weddell Sea and Drake Passage), as well as cold-seep ecosystems world-wide. Principal Findings The nematode community at the Larsen B seep site differed significantly from other Antarctic sites in terms of dominant genera, diversity and abundance. Densities in the seep samples were high (>2000 individuals per 10 cm2) and showed below-surface maxima at a sediment depth of 2–3 cm in three out of four replicates. All samples were dominated by one species of the family Monhysteridae, which was identified as a Halomonhystera species that comprised between 80 and 86% of the total community. The combination of high densities, deeper density maxima and dominance of one species is shared by many cold-seep ecosystems world-wide and suggested a possible dependence upon a chemosynthetic food source. Yet stable 13C isotopic signals (ranging between −21.97±0.86‰ and −24.85±1.89‰) were indicative of a phytoplankton-derived food source. Conclusion The recent ice-shelf collapse and enhanced food input from surface phytoplankton blooms were responsible for the shift from oligotrophic pre-collapse conditions to a phytodetritus-based community with high densities and low diversity. The parthenogenetic reproduction of the highly dominant Halomonhystera species is rather unusual for marine

  19. Electric Vehicle Performance at McMurdo Station (Antarctica) and Comparison with McMurdo Station Conventional Vehicles

    SciTech Connect

    Sears, T.; Lammert, M.; Colby, K.; Walter, R.

    2014-09-01

    This report examines the performance of two electric vehicles (EVs) at McMurdo, Antarctica (McMurdo). The study examined the performance of two e-ride Industries EVs initially delivered to McMurdo on February 16, 2011, and compared their performance and fuel use with that of conventional vehicles that have a duty cycle similar to that of the EVs used at McMurdo.

  20. Reconstruction of sea-ice cover and primary production on the East Greenland Shelf (73°N) during the last 5200 years

    NASA Astrophysics Data System (ADS)

    Kolling, Henriette Marie; Stein, Rüdiger; Fahl, Kirsten; Perner, Kerstin; Moros, Matthias

    2016-04-01

    Over the last decades the extent and thickness of Arctic sea ice has changed dramatically and much more rapidly than predicted by climate models. Thus, high-resolution sea-ice reconstructions from pre-anthropogenic times are useful and needed in order to better understand the processes controlling the natural sea-ice variability. Here, we present the first high-resolution biomarker (IP25, sterols) approach over the last 5.2 ka from the East Greenland Shelf (for background about the biomarker approach see Belt et al., 2007; Müller et al., 2009, 2011). This area is highly sensitive to sea-ice changes, as it underlies the pathway of the East Greenland Current, the main exporter of Arctic freshwater and sea ice that affects the environmental conditions on the East Greenland Shelf and deep-water formation/ convection in the Northern North Atlantic. After rather stable sea-ice conditions in the mid-Holocene we found a strong increase in sea ice, cumulating around 1.5 ka and associated with the Neoglacial cooling. The general trend especially during the last 1ka is interrupted by several short-lived events such as the prominent Medieval Warm Period and Little Ice Age, characterized by minimum and maximum sea-ice extent, respectively. Using a spectral analysis, we could identify several cyclicites, e.g. a 45-year cyclicity for cold events. A comparison to similar records from the eastern Fram Strait revealed a slight time lag in the onset of the Neoglacial, but also suggesting the direct link of the East Greenland Shelf area to the Arctic sea-ice/freahwater outflow. A comparison of the biomarker data with a new foraminiferal record obtained from the same site (Perner et al., 2015) suggests that IP25 and foraminifera assemblages are probably controlled by rather different processes within the oceanographic systems, such as the sea-ice conditions and, for the foraminifera, water-mass changes and nutrient supply. References: Belt. S.T., Massé, G., Rowland, S.J., Poulin, M

  1. Reconstructing Holocene conditions under ice in the Ross Sea and in the Southern Ocean using barnacles

    NASA Astrophysics Data System (ADS)

    Burgess, S. N.; Henderson, G. M.; Hall, B. L.

    2009-12-01

    Paleoclimate archives that capture annual and subannual resolution marine conditions outside the tropics are not common but would be highly desirable. This study demonstrates the potential of barnacles for such purposes and applies them to paleoceanographic reconstruction under the McMurdo ice shelf and in the Southern Ocean. Most of the Bathylasma samples used in this study grew in the Ross Sea and range in age between modern samples (used for calibration) and Holocene samples which were collected on the surface of the McMurdo Ice Shelf, having been entrained at the grounding line and moved through the ice by surface ablation and further basal freezing. Like other barnacles, this species secretes a robust low-Mg calcite shell with distinct growth increments on the external surface indicating growth durations of several decades. Barnacle shells were subsampled at high resolution (60 μm) for δ18O and δ13C analysis and dated by 14C. Measured δ18O values indicate that Bathylasma calcifies close to equilibrium with ambient seawater and those of old (>200kyr) samples suggest little or no diagenesis. These features make barnacles a promising archive for reconstruction of past ocean conditions. Variations in barnacle δ18O within each plate and between plates reflect changes in δ18O of the seawater, and allow some assessment of the salinity under the ice shelf. Salinities are lowered by addition of meltwaters, but the barnacle data suggest this lowering does not go below 33‰. Salinity near the grounding line shows both temporal and spatial variability. These data indicate that Bathylasma can provide valuable paleoclimate information at subannual resolution for shallow/intermediate water depths and regions such as Antarctica that play an important role in the climate system. We are now exploring this potential to investigate intermediate water conditions in the South Pacific during the last glacial using samples from seamounts on the Macquarie Ridge and south of

  2. Pleistocene variability of Antarctic Ice Sheet extent in the Ross Embayment

    NASA Astrophysics Data System (ADS)

    McKay, Robert; Naish, Tim; Powell, Ross; Barrett, Peter; Scherer, Reed; Talarico, Franco; Kyle, Philip; Monien, Donata; Kuhn, Gerhard; Jackolski, Chris; Williams, Trevor

    2012-02-01

    Cores acquired by the ANDRILL McMurdo Ice Shelf Project (AND-1B) provide the basis for a new sedimentation model for glacimarine depositional sequences that reflect cyclic glacial-interglacial fluctuations of a marine-based ice sheet in the western Ross Embayment over the past 2.0 Ma. Notwithstanding periodic erosion during advances of the ice sheet, uncertainties inherent to the sedimentological interpretation, and a limited number of chronological datums, it is clear that subglacial to grounding-zone sedimentation was dominant at the AND-1B site during the Late Pleistocene with interglacials being represented only by thin intervals of ice-shelf sediment. Each sequence is characterised by subglacial, massive diamictite that pass upwards into glacimarine diamictites and mudstones. This provides the first direct evidence that the marine-based Antarctic Ice Sheet has oscillated between a grounded and floating state at least 7 times in the Ross Embayment over the last 780ka, implying a Milankovitch orbital influence. An unconformity in AND-1B, that spans most (˜200 kyr) of the Mid-Pleistocene Transition is inferred to represent widespread expansion of a marine-based ice sheet in the Ross Embayment at 0.8 Ma. Prior to 1.0 Ma, interglacial periods are characterised by open-water conditions at the drill site with high abundances of volcanoclastic deposits and occasional diatomaceous sediments. These may have responded to precession (˜20-kyr) or obliquity (˜40-kyr) orbital control. The occurrence of 6.7 m of phonolitic glass reworked from Mt Erebus in interglacial deposits beneath Last Glacial Maximum till requires open ocean or ice shelf conditions in the western Ross Sea around the drill site within the past 250 ka and implies a Ross Ice Shelf similar to or less extensive than today during Marine Isotope Stage 7 or 5.

  3. Orbitally-paced shifts in the particle size of Antarctic continental shelf sediments in response to ice dynamics during the Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Passchier, S.; Falk, C. J.; Florindo, F.; Sangiorgi, F.

    2012-12-01

    The AND-2A drillhole at ca. 10 km from the east Antarctic coastline records nearly 6 million years of sedimentation across the Miocene Climatic Optimum at a high-latitude site. We collected and interpreted a laser particle size record on 300 samples in the upper 855 m of the drillhole. Within the expanded early to mid-Miocene section (~17.6 to 15.7 Ma), in an interval characterized by hemipelagic deposition and deposition from floating ice, we document changes in mud percent within glacial-interglacial cycles, which we attribute to the hydrodynamic effects of wave stirring tied to episodes of ice growth and decay. Bedforms logged from the cut face of the core confirm that the sedimentation was strongly affected by changes in the strength of shelf currents (waves). Spectral analysis demonstrates that the mud percent displays cyclicity within the short-eccentricity band (99 kyr), suggestive of low-latitude climate forcing. Both wave climate and paleobathymetry affect wave stirring, and we argue that through these variables its intensity and impact on the particle size record is ultimately forced by the size of the ice sheet. Ice sheet and climate modeling studies indicate that ice retreat likely negatively impacts the wave-dampening effect of floating ice, and increases atmospheric pressure gradients and wind speed. Further, geodynamic modeling studies of glacio-isostatic and self-gravitation effects of the collapse of marine sectors of the Antarctic ice sheet have shown a decrease in paleobathymetry at the high-latitude AND-2A site, which would enhance wave stirring. The exact contributions of wave climate and paleobathymetric changes cannot be quantified without further regional modeling. However, despite uncertainties in the relative importance of these contributing forcings, wave stirring intensity and ice volume are anticorrelated for the AND-2A site and the particle size record can be viewed as a near-field ice volume proxy. Under the Miocene polythermal

  4. Sedimentary processes on the NW Iberian Continental Shelf since the Little Ice Age

    NASA Astrophysics Data System (ADS)

    Martins, Virgínia; Figueira, Rubens Cesar Lopes; França, Elvis Joacir; Ferreira, Paulo Alves de Lima; Martins, Paula; Santos, José Francisco; Dias, João Alveirinho; Laut, Lazaro L. M.; Monge Soares, António M.; Silva, Eduardo Ferreira da; Rocha, Fernando

    2012-05-01

    The OMEX core CD110 W90, retrieved from the Douro Mud Patch (DMP) off the River Douro in the north of Portugal, records the period since the beginning of Little Ice Age (LIA). The core chronology is based upon the data attributes for 210Pb, 137Cs and a 14C dating from a level near the core base. Geochemical, granulometric, microfaunal (benthic foraminifera) and compositional data suggest the occurrence of precipitation changes which may have been, at least partially, influenced by the North Atlantic Oscillation (NAO), that contributes to the regulation of the ocean-atmosphere dynamics in the North Atlantic. Southwesterly Atlantic storm track is associated with the negative phases of the NAO, when the Azores High is anomalously weak, higher oceanographic hydrodynamism, downwelling events and increased rainfall generally occurs. Prevalence of these characteristics during the LIA left a record that corresponds to phases of major floods. During these phases the DMP received a higher contribution of relatively coarse-grained terrigenous sediments, enriched in quartz particles, which diluted the contribution of other minerals, as indicated by reduced concentrations of several lithogenic chemical elements such as: Al, As, Ba, Ce, Co, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Rb, Sc, Sn, Th, V and Y. The presence of biogenic carbonate particles also underwent dilution, as revealed by the smaller abundance of foraminifera and correlative lower concentrations of Ca and Sr. During this period, the DMP also received an increased contribution of organic matter, indicated by higher values of lignin remains and a benthic foraminifera high productivity index, or BFHP, which gave rise to early diagenetic changes with pyrite formation. Since the beginning of the 20th century this contribution diminished, probably due to several drier periods and the impact of human activities in the river basins, e.g. construction of dams, or, on the littoral areas, construction of hard

  5. Exploring Ice-Covered Waters with an Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Hamilton, A.; Forrest, A.; Laval, B.

    2009-12-01

    Reductions in lake- and sea-ice extent and ice-shelf collapse in both the Arctic and Antarctic are exposing underlying waters to significant increases in light and heat penetration, altering water mass properties and current dynamics. These physical changes likely drive rapid biological evolution and succession in associated marine ecosystems, influencing the biogeochemical transformation of matter and energy in previously ice-covered waters. However the unaltered, or pristine state of waters covered by thick (>3m) or moving ice is poorly understood, as these environments are largely inaccessible to investigation from the surface. Advancement of autonomous underwater vehicle (AUV) technology now allows these vehicles to be utilized as platforms for polar oceanographic research, permitting exploration of previously uncharted ice-covered waters. UBC-Gavia, a 2.5 m long AUV operated out of the University of British Columbia, has been involved in several under-ice (both lake and sea) missions making it one of the few such vehicles to be successfully deployed under-ice. Results of three under-ice case studies are presented in this work: Pavilion Lake, Canada - an ice-covered temperate lake; Lake Thingvallavatn, Iceland - a subarctic lake experiencing spring ice break-up; and Joliffe Bay, Lincoln Sea, Canadian High Arctic - a near shore multi- and first-year sea ice environment. The focus of each of these case studies was to examine physical processes in the water column under ice (e.g. radiatively driven convection) using a Conductivity-Temperature-Depth (CTD) profiler mounted on the front of the vehicle. In addition, various engineering lessons were acquired in order to adapt the vehicle for deployment, operation and recovery in ice-covered waters. The next phase of research will also be presented; a planned deployment of UBC-Gavia near the McMurdo Ice Shelf in Antarctica, to map under ice structure, ice thickness and convective processes in the water column. These

  6. Integrated provenance-detrital thermochronology studies in ANDRILL AND-2A drill core: first evidence of an Oligocene exhumation episode (McMurdo Sound, Antarctica)

    NASA Astrophysics Data System (ADS)

    Zattin, M.; Talarico, F. M.; Sandroni, S.

    2009-12-01

    An integrated investigation including provenance analysis of the gravel-fraction and detrital apatite fission-track (AFT) thermochronology on the AND-2A core provides new results to constrain the exhumation history of source regions and the reconstruction of sediment provenance models in the Ross Embayment in Late Cenozoic time. All the AFT ages, from 20 samples, evenly distributed in the uppermost 1000 m of the core, indicate that the entire succession originated from a source that exhumed in the Oligocene/Late Eocene time. In fact, most of the grains in nearly all the samples can be grouped into a youngest grain-age component (P1) in the range between 21.7 Ma and 43.4 Ma. However, most of the samples show more than one population, documenting the presence of multiple source areas in some periods of the basin history. On the other hand, the presence in some of the samples of a unique peak suggests a limited drainage system, as indicated by the petrographic data. The AFT data indicate the presence of active tectonics at the end of the Oligocene, therefore suggesting a source of sediments located along the Transantarctic Mountains (TAM) south of the Dry Valleys Block, where bedrock AFT ages indicate an older (Eocene) exhumation phase. Hence, the idea of a structural segmentation of the TAM during the Cenozoic (Wilson, Glob. Plan. Change, 1999) is well supported by these data. Provenance analysis of the gravel fraction highlights significant down-core modal and compositional variations and the occurrence of two main basement clast assemblages, diagnostic of specific source regions and occurring in distinct core sections: a) including marbles, garnet micaschists and diopside schists, suggesting oscillation of "local" glaciers in the on-shore area close to the AND-2A drill site, and b) low-grade metasediments and alkaline granites, indicating oscillations of a most extensive ice sheet/shelf with a clear provenance from the Skelton-Mulock glacier area. These data agree

  7. NPOESS McMurdo Multimission Communications System

    NASA Astrophysics Data System (ADS)

    Paciaroni, J.; Higgins, C.; Jamilkowski, M. L.

    2010-12-01

    The National Oceanic & Atmospheric Administration (NOAA), Dept. of Defense (DoD), and National Aeronautics & Space Administration (NASA) are jointly acquiring the next-generation weather/environmental satellite system - the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current NOAA Polar-orbiting Operational Environmental Satellites (POES) and DoD Defense Meteorological Satellite Program (DMSP). NPOESS sensors will collect meteorological, oceanographic, climatological and solar-geophysical data of the earth, atmosphere and space. Northrop Grumman Aerospace Systems (NGAS), NPOESS’ prime contractor, provides the Space Segment (SS). The NPOESS command & data distribution part known as the Command, Control & Communications Segment (C3S), developed by Raytheon Intelligence & Information Systems, manages the overall mission from control & status of the space & ground assets to ensuring delivery of timely, high-quality data from the SS to the Interface Data Processing Segment (IDPS). A C3S data-delivery system key feature is SafetyNetTM (a NGAS trademark), 15 globally-distributed ground receptors developed by Raytheon. These antennae will collect up to 5X as much environmental data about 4X faster than current polar-orbiting weather satellites. These data will then be forwarded nearly at once to US weather centrals via the global fiber optic network for processing & production of data records for use in environmental prediction models. McMurdo Antarctica is a significant SafetyNetTM antenna site due to its high-latitude location. C3S, working with the National Science Foundation to upgrade & expand the existing off-continent satellite communications (SATCOM) link at McMurdo, will provide 60 Mbps of bandwidth outbound from McMurdo and 20 Mbps inbound to those missions. The 1st major upgrade milestone (2008) increased the bandwidth from 3 Mbps to/from Antarctica to 10 Mbps. Additionally, Raytheon’s C3S is upgrading the

  8. Solar Forcing of the McMurdo Dry Valleys Climate

    NASA Astrophysics Data System (ADS)

    Bertler, N. N.; Mayewski, P. A.; Barrett, P. J.; Shulmeister, J.; Kreutz, K. J.

    2002-05-01

    Major ion analyses and oxygen isotope data from snow and firn from Victoria Lower Glacier (VLG) in the McMurdo Dry Valleys (MDV) indicate that variations in solar activity have a measurable influence on local air mass trajectories. Centered between the Ross Sea, the East Antarctic Ice Sheet (EAIS), and the Transantarctic Mountains (TAA), the MDV combine some of the greatest climatic contrasts found in Antarctica. The three distinct climatic environments - the ocean, ice sheet, and mountain range - interact in the MDV and alter the dry valley climate system. These different environments exhibit large contrasts in surface albedo, with values ranging from 98% at the EAIS and VLG, and 10-80% at the Ross Sea to 25% in Victoria Valley, the northern most ice-free area of the MDV. The resulting albedo gradients are indicative for the dissimilar energy budgets of the four systems that make the MDV sensitive to radiation variations. A comparison between the historical solar activity record and the chemical signal in shallow firn cores from VLG shows a relationship for at least the last 75 years between the alternation of marine and continental airmass input to the glacier in phase with solar radiation output. A climate model is presented to explain this relationship.

  9. Dynamic response of Sjögren Inlet glaciers, Antarctic Peninsula, to ice shelf breakup derived from multi-mission remote sensing time series

    NASA Astrophysics Data System (ADS)

    Seehaus, Thorsten; Marinsek, Sebastián; Skvarca, Pedro; van Wessem, Jan Melchior; Reijmer, Carleen H.; Seco, José; Braun, Matthias

    2016-06-01

    The substantial retreat or disintegration of numerous ice shelves has been observed on the Antarctic Peninsula. The ice shelf in the Prince Gustav Channel has retreated gradually since the late 1980s and broke up in 1995. Tributary glaciers reacted with speed-up, surface lowering and increased ice discharge, consequently contributing to sea level rise. We present a detailed long-term study (1993-2014) of the dynamic response of Sjögren Inlet glaciers to the disintegration of the Prince Gustav Ice Shelf. We analyzed various remote sensing datasets to identify the reactions of the glaciers to the loss of the buttressing ice shelf. A strong increase in ice surface velocities was observed, with maximum flow speeds reaching 2.82±0.48 m d-1 in 2007 and 1.50±0.32 m d-1 in 2004 at Sjögren and Boydell glaciers respectively. Subsequently, the flow velocities decelerated, however in late 2014, we still measured approximately twice the values of our first observations in 1996. The Sjögren Inlet glaciers retreated 61.7±3.1 km² behind the former grounding line in 1996. For the glacier area below 1000 m a.s.l. and above the 2014 grounding (399 km²), a mean surface lowering of -68±10 m (-3.1 m a-1) was observed in the period 1993-2014. The lowering rate decreased to -2.2 m a-1 in the period 2012-2014. Based on the surface lowering rates, geodetic mass balances of the glaciers were derived for different time periods. A strongly negative mass change rate of -1.16±0.38 Gt a-1 was found for the area of all Sjögren Inlet glaciers (including the area above 1000 m a.s.l.) above the 2014 grounding line (559km2) for the earliest period (1993-2001). Due to the dynamic adjustments of the glaciers to the new boundary conditions the rate changed to -0.54±0.13 Gt a-1 in the period 2012-2014, resulting in an average mass change rate of -0.84±0.18 Gt a-1 (1993-2014) for the same domain. Including the retreat of the ice front and grounding line, a total mass change of -37.5±8.2 Gt

  10. Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over the last 8000 years: A multi-proxy evaluation

    NASA Astrophysics Data System (ADS)

    Cabedo-Sanz, Patricia; Belt, Simon T.; Jennings, Anne E.; Andrews, John T.; Geirsdóttir, Áslaug

    2016-08-01

    North Iceland represents a climatically sensitive region, in part, due to its location at the confluence of southward flowing and drift ice-laden polar waters from the Arctic Ocean delivered by the East Greenland Current, and the relatively warm and saline Irminger Current, a northerly flowing branch of the North Atlantic Current. Despite its pivotal location, there is a paucity of high resolution and long-term sea ice records for the region, with some disparities in certain previous investigations. Here, the identification of the biomarker IP25 as a reliable proxy for drift ice for North Iceland has been confirmed by measuring its abundance in surface sediments from the region and comparison of outcomes with documentary records of sea ice and other proxy data. By analysing IP25 in a well-dated marine sediment core from the North Icelandic Shelf (NIS) (MD99-2269), we also provide a high resolution (ca. 25 yr) record of drift sea ice for the region and complement this with a lower resolution record (ca. 100 yr) obtained from a second core site, located further east (JR51-GC35). Statistical treatment of equi-spaced time series reveals strong linear correlations between IP25 and a further drift ice proxy (quartz) in each core. Thus, linear regression analysis between both proxies gave correlation coefficients (R2) of 0.74 and 0.66 for MD99-2269 (25 yr) and JR51-GC35 (100 yr), respectively. Further, the individual proxies were well correlated between the two cores, with R = 0.91 and 0.77 for IP25 and quartz, respectively. The IP25-based sea ice record for MD99-2269, combined with other new biomarker and foraminifera data, and previously published proxy data for primary productivity and sea surface temperature, suggest that the paleoceanographic evolution for the NIS over the last 8 ka can be classified into three main intervals. The early mid Holocene (ca 8-6.2 cal ka BP) was characterized by relatively low or absent drift ice, low primary productivity and relatively

  11. The McMurdo Dry Valleys: A landscape on the threshold of change

    NASA Astrophysics Data System (ADS)

    Fountain, Andrew G.; Levy, Joseph S.; Gooseff, Michael N.; Van Horn, David

    2014-11-01

    Field observations of coastal and lowland regions in the McMurdo Dry Valleys suggest they are on the threshold of rapid topographic change, in contrast to the high elevation upland landscape that represents some of the lowest rates of surface change on Earth. A number of landscapes have undergone dramatic and unprecedented landscape changes over the past decade including, the Wright Lower Glacier (Wright Valley) - ablated several tens of meters, the Garwood River (Garwood Valley) has incised > 3 m into massive ice permafrost, smaller streams in Taylor Valley (Crescent, Lawson, and Lost Seal Streams) have experienced extensive down-cutting and/or bank undercutting, and Canada Glacier (Taylor Valley) has formed sheer, > 4 meter deep canyons. The commonality between all these landscape changes appears to be sediment on ice acting as a catalyst for melting, including ice-cement permafrost thaw. We attribute these changes to increasing solar radiation over the past decade despite no significant trend in summer air temperature. To infer possible future landscape changes in the McMurdo Dry Valleys, due to anticipated climate warming, we map ‘at risk’ landscapes defined as those with buried massive ice in relative warm regions of the valleys. Results show that large regions of the valley bottoms are ‘at risk’. Changes in surface topography will trigger important responses in hydrology, geochemistry, and biological community structure and function.

  12. Bulldozing and resuspension of shallow-shelf sediment by ice keels: Implications for Arctic sediment transport trajectories

    USGS Publications Warehouse

    Rearic, D.M.; Barnes, P.W.; Reimnitz, E.

    1990-01-01

    The orientations and termination directions of newly formed ice gouges, identified in a 5-year study of two offshore corridors in eastern Harrison Bay, Alasaka, indicate a bimodal distribution of sediment transport directions: west-southwest and southeast, due to ice-keel bulldozing. The westerly sediment transport results from the dominant westward drift of sea ice and ocean currents, whereas the southeasterly transport results from episodic fall storms with winds from the northwest. Transport associated with ice gouging occurs by bulldozing and by resuspension during the bulldozing processes. Fine-grained ( 63 ??m) is bulldozed as far as 7 m in the direction of ice movement, whereas sediment finer than 63 ??m may be transported by intensified bottom currents up to 80 times this distance. ?? 1990.

  13. Deglacial-Holocene short-term variability in sea-ice distribution on the Eurasian shelf (Arctic Ocean) - An IP25 biomarker reconstruction.

    NASA Astrophysics Data System (ADS)

    Hörner, Tanja; Stein, Ruediger; Fahl, Kirsten

    2016-04-01

    Four well-dated sediment cores from the Eurasian continental shelf, i.e., the Kara Sea (Cores BP99/07 and BP00/07) and Laptev Sea (Cores PS51/154 and PS51/159), were selected for high-resolution reconstruction of past Arctic environmental conditions during the deglacial-Holocene time interval. These marginal seas are strongly affected by the post-glacial sea-level rise of about 120m. The major focus of our study was the reconstruction of the paleo-sea-ice distribution as sea-ice plays a key role within the modern and past climate system. For reconstruction of paleo-sea ice, the sea-ice proxy IP25 in combination with open-water phytoplankton biomarkers was used (for approach see Belt et al., 2007; Müller et al., 2009, 2011). In addition, specific sterols were determined to reconstruct changes in river run-off and biological production. The post-glacial sea-level rise is especially reflected in prominent decrease in terrigenous biomarkers. Deglacial variations in sea-ice cover sustained for thousand of years, mostly following climatic changes like the Bølling/Allerød (14.7-12.9 ka), Younger Dryas (12.9-11.6 ka) and Holocene warm phase (10-8 ka). Superimposed on a (Late) Holocene cooling trend, short-term fluctuations in sea-ice cover (on centennial scale) are distinctly docum