Science.gov

Sample records for md trajectory analysis

  1. Direct NOE simulation from long MD trajectories

    NASA Astrophysics Data System (ADS)

    Chalmers, G.; Glushka, J. N.; Foley, B. L.; Woods, R. J.; Prestegard, J. H.

    2016-04-01

    A software package, MD2NOE, is presented which calculates Nuclear Overhauser Effect (NOE) build-up curves directly from molecular dynamics (MD) trajectories. It differs from traditional approaches in that it calculates correlation functions directly from the trajectory instead of extracting inverse sixth power distance terms as an intermediate step in calculating NOEs. This is particularly important for molecules that sample conformational states on a timescale similar to molecular reorientation. The package is tested on sucrose and results are shown to differ in small but significant ways from those calculated using an inverse sixth power assumption. Results are also compared to experiment and found to be in reasonable agreement despite an expected underestimation of water viscosity by the water model selected.

  2. Application of ensemble back trajectory and factor analysis methods to aerosol data from Fort Meade, MD: Implications for sources

    NASA Astrophysics Data System (ADS)

    Chen, L. A.; Doddridge, B. G.; Dickerson, R. R.

    2001-12-01

    As the primary field experiment for Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, chemically speciated PM2.5 has been sampled at Fort Meade (FME, 39.10° N 76.74° W) since July 1999. FME is suburban, located in the middle of the bustling Baltimore-Washington corridor, which is generally downwind of the highly industrialized Midwest. Due to this unique sampling location, the PM2.5 observed at FME is expected to be of both local and regional sources, with relative contributions varying temporally. This variation, believed to be largely controlled by the meteorology, influences day-to-day or seasonal profiles of PM2.5 mass concentration and chemical composition. Air parcel back trajectories, which describe the path of air parcels traveling backward in time from site (receptor), reflect changes in the synoptic meteorological conditions. In this paper, an ensemble back trajectory method is employed to study the meteorology associated with each high/low PM2.5 episode in different seasons. For every sampling day, the residence time of air parcels within the eastern US at a 1° x 1° x 500 m geographic resolution can be estimated in order to resolve areas likely dominating the production of various PM2.5 components. Local sources are found to be more dominant in winter than in summer. "Factor analysis" is based on mass balance approach, providing useful insights on air pollution data. Here, a newly developed factor analysis model (UNMIX) is used to extract source profiles and contributions from the speciated PM2.5 data. Combing the model results with ensemble back trajectory method improves the understanding of the source regions and helps partition the contributions from local or more distant areas. >http://www.meto.umd.edu/~bruce/MARCH-Atl.html

  3. Ascent trajectory dispersion analysis

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a Space Transportation System ascent trajectory dispersion analysis are documented. Critical trajectory parameter values useful for the definition of lightweight external tank insulation requirements are provided. This analysis was conducted using two of the critical missions specified for the Space Transportation System: a 28.5 deg inclination trajectory launched from the Eastern Test Range (ETR) and a Western Test Range (WTR) trajectory launched into a 104 deg orbital inclination.

  4. TrackTable Trajectory Analysis

    SciTech Connect

    Wilson, Andrew T.

    2014-08-25

    Tracktable is designed for analysis and rendering of the trajectories of moving objects such as planes, trains, automobiles and ships. Its purpose is to operate on large sets of trajectories (millions) to help a user detect, analyze and display patterns. It will also be used to disseminate trajectory research results from Sandia's PANTHER Grand Challenge LDRD.

  5. PANTHER. Trajectory Analysis

    SciTech Connect

    Rintoul, Mark Daniel; Wilson, Andrew T.; Valicka, Christopher G.; Kegelmeyer, W. Philip; Shead, Timothy M.; Newton, Benjamin D.; Czuchlewski, Kristina Rodriguez

    2015-09-01

    We want to organize a body of trajectories in order to identify, search for, classify and predict behavior among objects such as aircraft and ships. Existing compari- son functions such as the Fr'echet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as total distance traveled and distance be- tween start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans that are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to iden- tify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories, predict destination and apply unsupervised machine learning algorithms.

  6. 14 CFR 417.207 - Trajectory analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Trajectory analysis. 417.207 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.207 Trajectory analysis. (a) General. A flight safety analysis must include a trajectory analysis that establishes: (1) For any...

  7. 14 CFR 417.207 - Trajectory analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Trajectory analysis. 417.207 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.207 Trajectory analysis. (a) General. A flight safety analysis must include a trajectory analysis that establishes: (1) For any...

  8. 14 CFR 417.207 - Trajectory analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Trajectory analysis. 417.207 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.207 Trajectory analysis. (a) General. A flight safety analysis must include a trajectory analysis that establishes: (1) For any...

  9. 14 CFR 417.207 - Trajectory analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Trajectory analysis. 417.207 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.207 Trajectory analysis. (a) General. A flight safety analysis must include a trajectory analysis that establishes: (1) For any...

  10. Trajectory Analysis and Optimization System

    Energy Science and Technology Software Center (ESTSC)

    1996-06-04

    TAOS is a general-purpose software tool capable of analyzing nearly any type of three degree-of-freedom point-mass, high-speed trajectory. Input files contain aerodynamic coefficients, propulsion data, and a trajectory description. The trajectory description divides the trajectory into segments, and within each segment, guidance rules provided by the user describe how the trajectory is computed. Output files contain tabulated trajectory information such as position, velocity, and acceleration. Parametric optimization provides a powerful method for satisfying mission-planning constraints,more » and trajectories involving more than one vehicle can be computed within a single problem.« less

  11. Trajectory Analysis and Optimization System

    SciTech Connect

    Salguero, David E.

    1996-06-04

    TAOS is a general-purpose software tool capable of analyzing nearly any type of three degree-of-freedom point-mass, high-speed trajectory. Input files contain aerodynamic coefficients, propulsion data, and a trajectory description. The trajectory description divides the trajectory into segments, and within each segment, guidance rules provided by the user describe how the trajectory is computed. Output files contain tabulated trajectory information such as position, velocity, and acceleration. Parametric optimization provides a powerful method for satisfying mission-planning constraints, and trajectories involving more than one vehicle can be computed within a single problem.

  12. Flight test trajectory control analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1983-01-01

    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.

  13. Soccer ball lift coefficients via trajectory analysis

    NASA Astrophysics Data System (ADS)

    Goff, John Eric; Carré, Matt J.

    2010-07-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  14. ST-analyzer: a web-based user interface for simulation trajectory analysis.

    PubMed

    Jeong, Jong Cheol; Jo, Sunhwan; Wu, Emilia L; Qi, Yifei; Monje-Galvan, Viviana; Yeom, Min Sun; Gorenstein, Lev; Chen, Feng; Klauda, Jeffery B; Im, Wonpil

    2014-05-01

    Molecular dynamics (MD) simulation has become one of the key tools to obtain deeper insights into biological systems using various levels of descriptions such as all-atom, united-atom, and coarse-grained models. Recent advances in computing resources and MD programs have significantly accelerated the simulation time and thus increased the amount of trajectory data. Although many laboratories routinely perform MD simulations, analyzing MD trajectories is still time consuming and often a difficult task. ST-analyzer, http://im.bioinformatics.ku.edu/st-analyzer, is a standalone graphical user interface (GUI) toolset to perform various trajectory analyses. ST-analyzer has several outstanding features compared to other existing analysis tools: (i) handling various formats of trajectory files from MD programs, such as CHARMM, NAMD, GROMACS, and Amber, (ii) intuitive web-based GUI environment--minimizing administrative load and reducing burdens on the user from adapting new software environments, (iii) platform independent design--working with any existing operating system, (iv) easy integration into job queuing systems--providing options of batch processing either on the cluster or in an interactive mode, and (v) providing independence between foreground GUI and background modules--making it easier to add personal modules or to recycle/integrate pre-existing scripts utilizing other analysis tools. The current ST-analyzer contains nine main analysis modules that together contain 18 options, including density profile, lipid deuterium order parameters, surface area per lipid, and membrane hydrophobic thickness. This article introduces ST-analyzer with its design, implementation, and features, and also illustrates practical analysis of lipid bilayer simulations. PMID:24638223

  15. 14 CFR 417.207 - Trajectory analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the requirements of paragraph (a) of this section. (c) Wind effects. A trajectory analysis must account for all wind effects, including profiles of winds that are no less severe than the worst wind conditions under which flight might be attempted, and must account for uncertainty in the wind conditions....

  16. FEL Trajectory Analysis for the VISA Experiment

    SciTech Connect

    Nuhn, Heinz-Dieter

    1998-10-06

    The Visual to Infrared SASE Amplifier (VISA) [1] FEL is designed to achieve saturation at radiation wavelengths between 800 and 600 nm with a 4-m pure permanent magnet undulator. The undulator comprises four 99-cm segments each of which has four FODO focusing cells superposed on the beam by means of permanent magnets in the gap alongside the beam. Each segment will also have two beam position monitors and two sets of x-y dipole correctors. The trajectory walk-off in each segment will be reduced to a value smaller than the rms beam radius by means of magnet sorting, precise fabrication, and post-fabrication shimming and trim magnets. However, this leaves possible inter-segment alignment errors. A trajectory analysis code has been used in combination with the FRED3D [2] FEL code to simulate the effect of the shimming procedure and segment alignment errors on the electron beam trajectory and to determine the sensitivity of the FEL gain process to trajectory errors. The paper describes the technique used to establish tolerances for the segment alignment.

  17. Ascent trajectory dispersion analysis for WTR heads-up space shuttle trajectory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The results of a Space Transportation System ascent trajectory dispersion analysis are discussed. The purpose is to provide critical trajectory parameter values for assessing the Space Shuttle in a heads-up configuration launched from the Western Test Range (STR). This analysis was conducted using a trajectory profile based on a launch from the WTR in December. The analysis consisted of the following steps: (1) nominal trajectories were simulated under the conditions as specified by baseline reference mission guidelines; (2) dispersion trajectories were simulated using predetermined parametric variations; (3) requirements for a system-related composite trajectory were determined by a root-sum-square (RSS) analysis of the positive deviations between values of the aerodynamic heating indicator (AHI) generated by the dispersion and nominal trajectories; (4) using the RSS assessment as a guideline, the system related composite trajectory was simulated by combinations of dispersion parameters which represented major contributors; (5) an assessment of environmental perturbations via a RSS analysis was made by the combination of plus or minus 2 sigma atmospheric density variation and 95% directional design wind dispersions; (6) maximum aerodynamic heating trajectories were simulated by variation of dispersion parameters which would emulate the summation of the system-related RSS and environmental RSS values of AHI. The maximum aerodynamic heating trajectories were simulated consistent with the directional winds used in the environmental analysis.

  18. TAOS. Trajectory Analysis and Optimization System

    SciTech Connect

    Salguero, D.E.

    1995-12-09

    TAOS is a general-purpose software tool capable of analyzing nearly any type of three degree-of-freedom point-mass, high-speed trajectory. Input files contain aerodynamic coefficients, propulsion data, and a trajectory description. The trajectory description divides the trajectory into segments, and within each segment, guidance rules provided by the user describe how the trajectory is computed. Output files contain tabulated trajectory information such as position, velocity, and acceleration. Parametric optimization provides a powerful method for satisfying mission-planning constraints, and trajectories involving more than one vehicle can be computed within a single problem.

  19. Regulation of TLR4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis

    PubMed Central

    Vamadevan, Arunan S.; Fukata, Masayuki; Arnold, Elizabeth T.; Thomas, Lisa S.; Hsu, David; Abreu, Maria T.

    2009-01-01

    The intestinal epithelium maintains a state of controlled inflammation despite continuous contact with Gram-negative commensal bacteria and lipopolysaccharide (LPS) on its luminal surface. Recognition of LPS by the TLR4/MD-2 complex results in proinflammatory gene expression and cytokine secretion in intestinal epithelial cells (IEC). We have shown that IEC express low levels of MD-2 and TLR4 and are poorly responsive to LPS. In this study, we did a comprehensive analysis to understand the immune-mediated and epigenetic mechanisms by which IEC down-regulate MD-2 expression. Expression of MD-2 and TLR4 mRNA was examined in human inflammatory bowel disease and intestinal epithelial cell lines (T84, HT-29, Caco-2). Nuclear factor-κB transcriptional activation was used as a measure of LPS responsiveness. Intestinal epithelial cellsin patients with IBD exhibited increased expression of MD-2 and TLR4 mRNA. Lipopolysaccharide responsiveness in IEC was polarized to the basolateral membrane. Bisulfite sequencing of the MD-2 promoter demonstrated methylation of CpG dinucleotides. Inhibition of methylation by 5-azacytidine and histone deactylation by trichostatin A, two forms of epigenetic silencing, resulted in increased mRNA expression of MD-2 in IEC. These results demonstrate various molecular mechanisms by which IEC down-regulate MD-2 and thereby protect against dysregulated inflammation to commensal bacteria in the intestinal lumen. PMID:19710105

  20. The ESA's Space Trajectory Analysis software suite

    NASA Astrophysics Data System (ADS)

    Ortega, Guillermo

    The European Space Agency (ESA) initiated in 2005 an internal activity to develop an open source software suite involving university science departments and research institutions all over the world. This project is called the "Space Trajectory Analysis" or STA. This article describes the birth of STA and its present configuration. One of the STA aims is to promote the exchange of technical ideas, and raise knowledge and competence in the areas of applied mathematics, space engineering, and informatics at University level. Conceived as a research and education tool to support the analysis phase of a space mission, STA is able to visualize a wide range of space trajectories. These include among others ascent, re-entry, descent and landing trajectories, orbits around planets and moons, interplanetary trajectories, rendezvous trajectories, etc. The article explains that STA project is an original idea of the Technical Directorate of ESA. It was born in August 2005 to provide a framework in astrodynamics research at University level. As research and education software applicable to Academia, a number of Universities support this development by joining ESA in leading the development. ESA and Universities partnership are expressed in the STA Steering Board. Together with ESA, each University has a chair in the board whose tasks are develop, control, promote, maintain, and expand the software suite. The article describes that STA provides calculations in the fields of spacecraft tracking, attitude analysis, coverage and visibility analysis, orbit determination, position and velocity of solar system bodies, etc. STA implements the concept of "space scenario" composed of Solar system bodies, spacecraft, ground stations, pads, etc. It is able to propagate the orbit of a spacecraft where orbital propagators are included. STA is able to compute communication links between objects of a scenario (coverage, line of sight), and to represent the trajectory computations and

  1. Trajectory analysis and optimization system (TAOS) user`s manual

    SciTech Connect

    Salguero, D.E.

    1995-12-01

    The Trajectory Analysis and Optimization System (TAOS) is software that simulates point--mass trajectories for multiple vehicles. It expands upon the capabilities of the Trajectory Simulation and Analysis program (TAP) developed previously at Sandia National Laboratories. TAOS is designed to be a comprehensive analysis tool capable of analyzing nearly any type of three degree-of-freedom, point-mass trajectory. Trajectories are broken into segments, and within each segment, guidance rules provided by the user control how the trajectory is computed. Parametric optimization provides a powerful method for satisfying mission-planning constraints. Althrough TAOS is not interactive, its input and output files have been designed for ease of use. When compared to TAP, the capability to analyze trajectories for more than one vehicle is the primary enhancement, although numerous other small improvements have been made. This report documents the methods used in TAOS as well as the input and output file formats.

  2. Discontinuity Detection for Analysis of Telerobot Trajectories

    NASA Technical Reports Server (NTRS)

    Yeom, Kiwon; Ellis, Stephen R.; Adelstein, Bernard D.

    2013-01-01

    To identify spatial and temporal discontinuities in telerobot movement in order to describe the shift in operators control and error correction strategies from continuous control to move-and-wait strategies. This shift was studied under conditions of simulated increasingly time-delayed teleoperation. The ultimate goal is to determine if the time delay associated with the shift is invariant with independently imposed control difficulty. We expect this shift to manifest itself as changes in the number of discontinuity of movement path. We proposed an approach to spatial and temporal discontinuity detection algorithm for analysis of teleoperated trajectory in three dimensional space. The algorithm provides a simple and potentially objective method for detecting the discontinuity during telerobot operation and evaluating the difficulty of rotational coordinate condition in teleoperation.

  3. Stochastic and fractal analysis of fracture trajectories

    NASA Technical Reports Server (NTRS)

    Bessendorf, Michael H.

    1987-01-01

    Analyses of fracture trajectories are used to investigate structures that fall between 'micro' and 'macro' scales. It was shown that fracture trajectories belong to the class of nonstationary processes. It was also found that correlation distance, which may be related to a characteristic size of a fracture process, increases with crack length. An assemblage of crack trajectory processes may be considered as a diffusive process. Chudnovsky (1981-1985) introduced a 'crack diffusion coefficient' d which reflects the ability of the material to deviate the crack trajectory from the most energetically efficient path and thus links the material toughness to its structure. For the set of fracture trajectories in AISI 304 steel, d was found to be equal to 1.04 microns. The fractal dimension D for the same set of trajectories was found to be 1.133.

  4. Trajectory analysis of a soccer ball

    NASA Astrophysics Data System (ADS)

    Goff, John Eric; Carré, Matt J.

    2009-11-01

    We performed experiments in which a soccer ball was launched from a machine while two cameras recorded portions of its trajectory. Drag coefficients were obtained from range measurements for no-spin trajectories, for which the drag coefficient does not vary appreciably during the ball's flight. Lift coefficients were obtained from the trajectories immediately following the ball's launch, in which Reynolds number and spin parameter do not vary much. We obtain two values of the lift coefficient for spin parameters that had not been obtained previously. Our codes for analyzing the trajectories are freely available to educators and students.

  5. Soccer Ball Lift Coefficients via Trajectory Analysis

    ERIC Educational Resources Information Center

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  6. Trajectory Based Behavior Analysis for User Verification

    NASA Astrophysics Data System (ADS)

    Pao, Hsing-Kuo; Lin, Hong-Yi; Chen, Kuan-Ta; Fadlil, Junaidillah

    Many of our activities on computer need a verification step for authorized access. The goal of verification is to tell apart the true account owner from intruders. We propose a general approach for user verification based on user trajectory inputs. The approach is labor-free for users and is likely to avoid the possible copy or simulation from other non-authorized users or even automatic programs like bots. Our study focuses on finding the hidden patterns embedded in the trajectories produced by account users. We employ a Markov chain model with Gaussian distribution in its transitions to describe the behavior in the trajectory. To distinguish between two trajectories, we propose a novel dissimilarity measure combined with a manifold learnt tuning for catching the pairwise relationship. Based on the pairwise relationship, we plug-in any effective classification or clustering methods for the detection of unauthorized access. The method can also be applied for the task of recognition, predicting the trajectory type without pre-defined identity. Given a trajectory input, the results show that the proposed method can accurately verify the user identity, or suggest whom owns the trajectory if the input identity is not provided.

  7. Mars Ascent Propulsion Trades with Trajectory Analysis

    SciTech Connect

    Whitehead, J

    2004-04-22

    Optimized trajectories to a 500 km circular orbit are calculated for vehicles having a 100 kg Mars launch mass. Staging trades, thrust optimization, and the importance of vehicle shape for drag are all taken into consideration. The high acceleration of solid rockets requires a steep trajectory for drag avoidance, followed by a relatively large circularization burn, appropriate for a second stage. Liquid thrust reduces drag, resulting in less steep trajectories which have small circularization burns. Liquid propulsion requires less total {Delta}v, and offers options for multiple stages or just one. Graphs of payload mass versus stage propellant fractions are compared for liquid and solid propulsion.

  8. Analysis of Petal Rotation Trajectory Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Buffington, Brent B.

    2014-01-01

    In this study, the characteristics of petal rotation trajectories are explored in both the two-body and circular restricted three-body problem (CRTBP) models. Petal rotation trajectories alternate long and short resonances of different kinds to rotate the line of apsides. They are typically computed using the patched conic model, and they are used in a number of different missions and mission concepts including Cassini, JUICE, and Europa mission concepts. Petal rotation trajectories are first analyzed here using the patched conic model to quantify their characteristics and search for cases with fast rotation of the line of apsides. When they are computed in the CRTBP, they are unstable periodic orbits with corresponding stable and unstable manifolds. The characteristics of these orbits are explored from a dynamical systems perspective in the second phase of the study.

  9. Cell mechanics through analysis of cell trajectories in microfluidic channel

    NASA Astrophysics Data System (ADS)

    Bowie, Samuel; Alexeev, Alexander; Sulchek, Todd

    The understanding of dynamic cell behavior can aid in research ranging from the mechanistic causes of diseases to the development of microfluidic devices for cancer detection. Through analysis of trajectories captured from video of the cells moving in a specially designed microfluidic device, insight into the dynamic viscoelastic nature of cells can be found. The microfluidic device distinguishes cells viscoelastic properties through the use of angled ridges causing a series of compressions, resulting in differences in trajectories based on cell stiffness. Trajectories of cell passing through the device are collected using image processing methods and data mining techniques are used to relate the trajectories to cell properties obtained from experiments. Furthermore, numerical simulation of the cell and microfluidic device are used to match the experimental results from the trajectory analysis. Combination of the modeling and experimental data help to uncover how changes in cellular structures result in changes in mechanical properties.

  10. Quantifying ataxia: ideal trajectory analysis--a technical note

    NASA Technical Reports Server (NTRS)

    McPartland, M. D.; Krebs, D. E.; Wall, C. 3rd

    2000-01-01

    We describe a quantitative method to assess repeated stair stepping stability. In both the mediolateral (ML) and anterioposterior (AP) directions, the trajectory of the subject's center of mass (COM) was compared to an ideal sinusoid. The two identified sinusoids were unique in each direction but coupled. Two dimensionless numbers-the mediolateral instability index (IML) and AP instability index (IAP)-were calculated using the COM trajectory and ideal sinusoids for each subject with larger index values resulting from less stable performance. The COM trajectories of nine nonimpaired controls and six patients diagnosed with unilateral or bilateral vestibular labyrinth hypofunction were analyzed. The average IML and IAP values of labyrinth disorder patients were respectively 127% and 119% greater than those of controls (p<0.014 and 0.006, respectively), indicating that the ideal trajectory analysis distinguishes persons with labyrinth disorder from those without. The COM trajectories also identify movement inefficiencies attributable to vestibulopathy.

  11. [Sphygmogram analysis based on phase trajectories].

    PubMed

    Volkov, V I; Kozlov, D Iu

    2008-01-01

    Mattier's differential equation for parametric oscillation is suggested to be used as a method for simulating quasi-periodic processes in human body in terms of oscillation of the pulse wave produced by heart contraction. Obtained sphygmograms agree qualitatively with solutions of the Mattier's and Hill's equations at given shape of the exciting signal. A method of diagnosis based on assessment of the Mattier's equation solution stability from the phase trajectories is suggested. PMID:18507136

  12. Hodograph analysis in aircraft trajectory optimization

    NASA Technical Reports Server (NTRS)

    Cliff, Eugene M.; Seywald, Hans; Bless, Robert R.

    1993-01-01

    An account is given of key geometrical concepts involved in the use of a hodograph as an optimal control theory resource which furnishes a framework for geometrical interpretation of the minimum principle. Attention is given to the effects of different convexity properties on the hodograph, which bear on the existence of solutions and such types of controls as chattering controls, 'bang-bang' control, and/or singular control. Illustrative aircraft trajectory optimization problems are examined in view of this use of the hodograph.

  13. Dust trajectory sensor: accuracy and data analysis.

    PubMed

    Xie, J; Sternovsky, Z; Grün, E; Auer, S; Duncan, N; Drake, K; Le, H; Horanyi, M; Srama, R

    2011-10-01

    The Dust Trajectory Sensor (DTS) instrument is developed for the measurement of the velocity vector of cosmic dust particles. The trajectory information is imperative in determining the particles' origin and distinguishing dust particles from different sources. The velocity vector also reveals information on the history of interaction between the charged dust particle and the magnetospheric or interplanetary space environment. The DTS operational principle is based on measuring the induced charge from the dust on an array of wire electrodes. In recent work, the DTS geometry has been optimized [S. Auer, E. Grün, S. Kempf, R. Srama, A. Srowig, Z. Sternovsky, and V Tschernjawski, Rev. Sci. Instrum. 79, 084501 (2008)] and a method of triggering was developed [S. Auer, G. Lawrence, E. Grün, H. Henkel, S. Kempf, R. Srama, and Z. Sternovsky, Nucl. Instrum. Methods Phys. Res. A 622, 74 (2010)]. This article presents the method of analyzing the DTS data and results from a parametric study on the accuracy of the measurements. A laboratory version of the DTS has been constructed and tested with particles in the velocity range of 2-5 km/s using the Heidelberg dust accelerator facility. Both the numerical study and the analyzed experimental data show that the accuracy of the DTS instrument is better than about 1% in velocity and 1° in direction. PMID:22047326

  14. Dust trajectory sensor: Accuracy and data analysis

    NASA Astrophysics Data System (ADS)

    Xie, J.; Sternovsky, Z.; Grün, E.; Auer, S.; Duncan, N.; Drake, K.; Le, H.; Horanyi, M.; Srama, R.

    2011-10-01

    The Dust Trajectory Sensor (DTS) instrument is developed for the measurement of the velocity vector of cosmic dust particles. The trajectory information is imperative in determining the particles' origin and distinguishing dust particles from different sources. The velocity vector also reveals information on the history of interaction between the charged dust particle and the magnetospheric or interplanetary space environment. The DTS operational principle is based on measuring the induced charge from the dust on an array of wire electrodes. In recent work, the DTS geometry has been optimized [S. Auer, E. Grün, S. Kempf, R. Srama, A. Srowig, Z. Sternovsky, and V Tschernjawski, Rev. Sci. Instrum. 79, 084501 (2008), 10.1063/1.2960566] and a method of triggering was developed [S. Auer, G. Lawrence, E. Grün, H. Henkel, S. Kempf, R. Srama, and Z. Sternovsky, Nucl. Instrum. Methods Phys. Res. A 622, 74 (2010), 10.1016/j.nima.2010.06.091]. This article presents the method of analyzing the DTS data and results from a parametric study on the accuracy of the measurements. A laboratory version of the DTS has been constructed and tested with particles in the velocity range of 2-5 km/s using the Heidelberg dust accelerator facility. Both the numerical study and the analyzed experimental data show that the accuracy of the DTS instrument is better than about 1% in velocity and 1° in direction.

  15. The Best Estimated Trajectory Analysis for Pad Abort One

    NASA Technical Reports Server (NTRS)

    Kutty, Prasad; Noonan, Meghan; Karlgaard, Christopher; Beck, Roger

    2011-01-01

    I. Best Estimated Trajectory (BET) objective: a) Produce reconstructed trajectory of the PA-1 flight to understand vehicle dynamics and aid other post flight analyses. b) Leverage all measurement sources taken of vehicle during flight to produce the most accurate estimate of vehicle trajectory. c) Generate trajectory reconstructions of the Crew Module (CM), Launch Abort System (LAS), and Forward Bay Cover (FBC). II. BET analysis was started immediately following the PA-1 mission and was completed in September, 2010 a) Quick look version of BET released 5/25/2010: initial repackaging of SIGI data. b) Preliminary version of BET released 7/6/2010: first blended solution using available sources of external measurements. c) Final version of BET released 9/1/2010: final blended solution using all available sources of data.

  16. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis

    SciTech Connect

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2015-07-28

    The wettability of graphitic carbon and silicon surfaces was numerically and theoretically investigated. A multi-response method has been developed for the analysis of conventional molecular dynamics (MD) simulations of droplets wettability. The contact angle and indicators of the quality of the computations are tracked as a function of the data sets analyzed over time. This method of analysis allows accurate calculations of the contact angle obtained from the MD simulations. Analytical models were also developed for the calculation of the work of adhesion using the mean-field theory, accounting for the interfacial entropy changes. A calibration method is proposed to provide better predictions of the respective contact angles under different solid-liquid interaction potentials. Estimations of the binding energy between a water monomer and graphite match those previously reported. In addition, a breakdown in the relationship between the binding energy and the contact angle was observed. The macroscopic contact angles obtained from the MD simulations were found to match those predicted by the mean-field model for graphite under different wettability conditions, as well as the contact angles of Si(100) and Si(111) surfaces. Finally, an assessment of the effect of the Lennard-Jones cutoff radius was conducted to provide guidelines for future comparisons between numerical simulations and analytical models of wettability.

  17. 78 FR 14547 - Praxedes E. Alverez Santiago, M.D., Daniel Perez Brisebois, M.D., Jorge Grillasca Palou, M.D...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... Praxedes E. Alverez Santiago, M.D., Daniel Perez Brisebois, M.D., Jorge Grillasca Palou, M.D., Rafael Garcia Nieves, M.D., Francis M. Vazques Roura, M.D., Angel B. Rivera Santos, M.D., Cosme D. Santos Torres, M.D., and Juan L. Vilaro Chardon, M.D.; Analysis of Agreement Containing Consent Order To Aid...

  18. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation.

    PubMed Central

    Young, M A; Ravishanker, G; Beveridge, D L

    1997-01-01

    We report the results of four new molecular dynamics (MD) simulations on the DNA duplex of sequence d(CGCGAATTCGCG)2, including explicit consideration of solvent water, and a sufficient number of Na+ counterions to provide electroneutrality to the system. Our simulations are configured particularly to characterize the latest MD models of DNA, and to provide a basis for examining the sensitivity of MD results to the treatment of boundary conditions, electrostatics, initial placement of solvent, and run lengths. The trajectories employ the AMBER 4.1 force field. The simulations use particle mesh Ewald summation for boundary conditions, and range in length from 500 ps to 5.0 ns. Analysis of the results is carried out by means of time series for conformationalm, helicoidal parameters, newly developed indices of DNA axis bending, and groove widths. The results support a dynamically stable model of B-DNA for d(CGCGAATTCGCG)2 over the entire length of the trajectory. The MD results are compared with corresponding crystallographic and NMR studies on the d(CGCGAATTCGCG)2 duplex, and placed in the context of observed behavior of B-DNA by comparisons with the complete crystallographic data base of B-form structures. The calculated distributions of mobile solvent molecules, both water and counterions, are displayed. The calculated solvent structure of the primary solvation shell is compared with the location of ordered solvent positions in the corresponding crystal structure. The results indicate that ordered solvent positions in crystals are roughly twice as structured as bulk water. Detailed analysis of the solvent dynamics reveals evidence of the incorporation of ions in the primary solvation of the minor groove B-form DNA. The idea of localized complexation of otherwise mobile counterions in electronegative pockets in the grooves of DNA helices introduces an additional source of sequence-dependent effects on local conformational, helicoidal, and morphological structure

  19. CFD Analysis of Swing of Cricket Ball and Trajectory Prediction

    NASA Astrophysics Data System (ADS)

    G, Jithin; Tom, Josin; Ruishikesh, Kamat; Jose, Jyothish; Kumar, Sanjay

    2013-11-01

    This work aims to understand the aerodynamics associated with the flight and swing of a cricket ball and predict its flight trajectory over the course of the game: at start (smooth ball) and as the game progresses (rough ball). Asymmetric airflow over the ball due to seam orientation and surface roughness can cause flight deviation (swing). The values of Drag, Lift and Side forces which are crucial for determining the trajectory of the ball were found with the help of FLUENT using the standard K- ɛ model. Analysis was done to study how the ball velocity, spin imparted to be ball and the tilt of the seam affects the movement of the ball through air. The governing force balance equations in 3 dimensions in combination a MATLAB code which used Heun's method was used for obtaining the trajectory of the ball. The conditions for the conventional swing and reverse swing to occur were deduced from the analysis and found to be in alignment with the real life situation. Critical seam angle for maximum swing and transition speed for normal to reverse swing were found out. The obtained trajectories were compared to real life hawk eye trajectories for validation. The analysis results were in good agreement with the real life situation.

  20. The symbolic computation and automatic analysis of trajectories

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1991-01-01

    Research was generally done on computation of trajectories of dynamical systems, especially control systems. Algorithms were further developed for rewriting expressions involving differential operators. The differential operators involved arise in the local analysis of nonlinear control systems. An initial design was completed of the system architecture for software to analyze nonlinear control systems using data base computing.

  1. Spacecraft Trajectory Analysis and Mission Planning Simulation (STAMPS) Software

    NASA Technical Reports Server (NTRS)

    Puckett, Nancy; Pettinger, Kris; Hallstrom,John; Brownfield, Dana; Blinn, Eric; Williams, Frank; Wiuff, Kelli; McCarty, Steve; Ramirez, Daniel; Lamotte, Nicole; Vu, Tuan

    2014-01-01

    STAMPS simulates either three- or six-degree-of-freedom cases for all spacecraft flight phases using translated HAL flight software or generic GN&C models. Single or multiple trajectories can be simulated for use in optimization and dispersion analysis. It includes math models for the vehicle and environment, and currently features a "C" version of shuttle onboard flight software. The STAMPS software is used for mission planning and analysis within ascent/descent, rendezvous, proximity operations, and navigation flight design areas.

  2. Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Knocke, Philip C.

    2004-01-01

    The Mars Exploration Rover mission successfully landed two rovers "Spirit" and "Opportunity" on Mars on January 4th and 25th of 2004, respectively. The trajectory analysis performed to define the entry, descent, and landing (EDL) scenario is described. The entry requirements and constraints are presented, as well as uncertainties used in a Monte Carlo dispersion analysis to statistically assess the robustness of the entry design to off-nominal conditions. In the analysis, six-degree-of-freedom and three-degree-of-freedom trajectory results are compared to assess the entry characteristics of the capsule. Comparison of the preentry results to preliminary post-landing reconstruction data shows that all EDL parameters were within the requirements. In addition, the final landing position for both "Spirit" and "Opportunity" were within 15 km of the predicted landing location.

  3. AstroMD: A Multi Dimensional Visualization and Analysis Toolkit for Astrophysics

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Antonuccio-Delogu, V.; Gheller, C.; Calori, L.; Buonomo, F.; Imboden, S.

    2010-10-01

    Over the past few years, the role of visualization for scientific purpose has grown up enormously. Astronomy makes an extended use of visualization techniques to analyze data, and scientific visualization has became a fundamental part of modern researches in Astronomy. With the evolution of high performance computers, numerical simulations have assumed a great role in the scientific investigation, allowing the user to run simulation with higher and higher resolution. Data produced in these simulations are often multi-dimensional arrays with several physical quantities. These data are very hard to manage and to analyze efficiently. Consequently the data analysis and visualization tools must follow the new requirements of the research. AstroMD is a tool for data analysis and visualization of astrophysical data and can manage different physical quantities and multi-dimensional data sets. The tool uses virtual reality techniques by which the user has the impression of travelling through a computer-based multi-dimensional model.

  4. Trajectory Browser: An Online Tool for Interplanetary Trajectory Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus James

    2013-01-01

    The trajectory browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and (Delta)V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and (Delta)V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies.

  5. Numerical analysis and experimental verification of vehicle trajectories

    NASA Astrophysics Data System (ADS)

    Wekezer, J. W.; Cichocki, K.

    2003-09-01

    The paper presents research results of a study, in which computational mechanics was utilized to predict vehicle trajectories upon traversing standard Florida DOT street curbs. Computational analysis was performed using LS-DYNA non-linear, finite element computer code with two public domain, finite element models of motor vehicles: Ford Festiva and Ford Taurus. Shock absorbers were modeled using discrete spring and damper elements. Connections for the modifie suspension systems were carefully designed to assure proper range of motion for the suspension models. Inertia properties of the actual vehicles were collected using tilt-table tests and were used for LS-DYNA vehicle models. Full-scale trajectory tests have been performed at Texas Transportation Institute to validate the numerical models and predictions from computational mechanics. Experiments were conducted for Ford Festiva and Ford Taurus, both for two values of approach angle: 15 and 90 degrees, with impact velocity of 45 mph. Experimental data including accelerations, displacements and overall vehicles behavior were collected by high-speed video cameras and have e been compared with numerical results. Verification results indicated a good correlation between computational analysis and full-scale test data. The study also underlined a strong dependence of properly modeled suspension and tires on resulting vehicle trajectories.

  6. Estimation of Hydrogen-Exchange Protection Factors from MD Simulation Based on Amide Hydrogen Bonding Analysis.

    PubMed

    Park, In-Hee; Venable, John D; Steckler, Caitlin; Cellitti, Susan E; Lesley, Scott A; Spraggon, Glen; Brock, Ansgar

    2015-09-28

    Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure, and dynamics. More recently, hydrogen exchange mass spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from molecular dynamics (MD) simulation snapshots is used to determine partitioning over bonded and nonbonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of

  7. Trajectory Browser: An online tool for interplanetary trajectory analysis and visualization

    NASA Astrophysics Data System (ADS)

    Foster, C.

    The Trajectory Browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and Δ V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and Δ V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies. The educational potential of the website is also recognized for academia and the public with regards to trajectory design, a field that has generally been poorly understood by the public. The website is currently hosted on NASA-internal URL http://trajbrowser.arc.nasa.gov/ with plans for a public release in early 2013.

  8. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  9. The Sensitivity of Atmospheric Trajectory Cluster Analysis Results to Clustering Methods Using Trajectories to the PICO-NARE Station

    NASA Astrophysics Data System (ADS)

    Owen, R. C.; Honrath, R. E.; Merrill, J.

    2003-12-01

    The use of cluster analysis to group atmospheric trajectories according to similar flow paths has become a common tool in atmospheric studies. Many methods are available to conduct a cluster analysis. However, the dependence of the resulting clusters upon the specific clustering method chosen has not been fully characterized. Specifically, the use of hierarchical versus non-hierarchical clustering algorithms has received little focus. This study presents the results of two cluster analyses: one using the hierarchical clustering algorithm average linkage, and one using the non-hierarchical clustering algorithm k-means. These results demonstrate the sensitivity of this cluster analysis to the use of a hierarchical method versus a non-hierarchical method. In addition, this study analyzes methods for dealing with the vertical component of trajectories during the clustering process. The analyses were performed using a 40-year set of trajectories to the PICO-NARE station, located atop Pico Mountain in the Azores Islands in the central North Atlantic.

  10. Singular perturbation analysis of AOTV-related trajectory optimization problems

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J.; Bae, Gyoung H.

    1990-01-01

    The problem of real time guidance and optimal control of Aeroassisted Orbit Transfer Vehicles (AOTV's) was addressed using singular perturbation theory as an underlying method of analysis. Trajectories were optimized with the objective of minimum energy expenditure in the atmospheric phase of the maneuver. Two major problem areas were addressed: optimal reentry, and synergetic plane change with aeroglide. For the reentry problem, several reduced order models were analyzed with the objective of optimal changes in heading with minimum energy loss. It was demonstrated that a further model order reduction to a single state model is possible through the application of singular perturbation theory. The optimal solution for the reduced problem defines an optimal altitude profile dependent on the current energy level of the vehicle. A separate boundary layer analysis is used to account for altitude and flight path angle dynamics, and to obtain lift and bank angle control solutions. By considering alternative approximations to solve the boundary layer problem, three guidance laws were derived, each having an analytic feedback form. The guidance laws were evaluated using a Maneuvering Reentry Research Vehicle model and all three laws were found to be near optimal. For the problem of synergetic plane change with aeroglide, a difficult terminal boundary layer control problem arises which to date is found to be analytically intractable. Thus a predictive/corrective solution was developed to satisfy the terminal constraints on altitude and flight path angle. A composite guidance solution was obtained by combining the optimal reentry solution with the predictive/corrective guidance method. Numerical comparisons with the corresponding optimal trajectory solutions show that the resulting performance is very close to optimal. An attempt was made to obtain numerically optimized trajectories for the case where heating rate is constrained. A first order state variable inequality

  11. Quantitative multivariate analysis of dynamic multicellular morphogenic trajectories.

    PubMed

    White, Douglas E; Sylvester, Jonathan B; Levario, Thomas J; Lu, Hang; Streelman, J Todd; McDevitt, Todd C; Kemp, Melissa L

    2015-07-01

    Interrogating fundamental cell biology principles that govern tissue morphogenesis is critical to better understanding of developmental biology and engineering novel multicellular systems. Recently, functional micro-tissues derived from pluripotent embryonic stem cell (ESC) aggregates have provided novel platforms for experimental investigation; however elucidating the factors directing emergent spatial phenotypic patterns remains a significant challenge. Computational modelling techniques offer a unique complementary approach to probe mechanisms regulating morphogenic processes and provide a wealth of spatio-temporal data, but quantitative analysis of simulations and comparison to experimental data is extremely difficult. Quantitative descriptions of spatial phenomena across multiple systems and scales would enable unprecedented comparisons of computational simulations with experimental systems, thereby leveraging the inherent power of computational methods to interrogate the mechanisms governing emergent properties of multicellular biology. To address these challenges, we developed a portable pattern recognition pipeline consisting of: the conversion of cellular images into networks, extraction of novel features via network analysis, and generation of morphogenic trajectories. This novel methodology enabled the quantitative description of morphogenic pattern trajectories that could be compared across diverse systems: computational modelling of multicellular structures, differentiation of stem cell aggregates, and gastrulation of cichlid fish. Moreover, this method identified novel spatio-temporal features associated with different stages of embryo gastrulation, and elucidated a complex paracrine mechanism capable of explaining spatiotemporal pattern kinetic differences in ESC aggregates of different sizes. PMID:26095427

  12. Database Driven 6-DOF Trajectory Simulation for Debris Transport Analysis

    NASA Technical Reports Server (NTRS)

    West, Jeff

    2008-01-01

    Debris mitigation and risk assessment have been carried out by NASA and its contractors supporting Space Shuttle Return-To-Flight (RTF). As a part of this assessment, analysis of transport potential for debris that may be liberated from the vehicle or from pad facilities prior to tower clear (Lift-Off Debris) is being performed by MSFC. This class of debris includes plume driven and wind driven sources for which lift as well as drag are critical for the determination of the debris trajectory. As a result, NASA MSFC has a need for a debris transport or trajectory simulation that supports the computation of lift effect in addition to drag without the computational expense of fully coupled CFD with 6-DOF. A database driven 6-DOF simulation that uses aerodynamic force and moment coefficients for the debris shape that are interpolated from a database has been developed to meet this need. The design, implementation, and verification of the database driven six degree of freedom (6-DOF) simulation addition to the Lift-Off Debris Transport Analysis (LODTA) software are discussed in this paper.

  13. Methodologies for the Analysis of Instantaneous Lipid Diffusion in MD Simulations of Large Membrane Systems

    PubMed Central

    Chavent, Matthieu; Reddy, Tyler; Goose, Joseph; Dahl, Anna Caroline E.; Stone, John E.; Jobard, Bruno; Sansom, Mark S.P.

    2014-01-01

    Interactions between lipids and membrane proteins play a key role in determining the nanoscale dynamic and structural properties of biological membranes. Molecular dynamics (MD) simulations provide a valuable tool for studying membrane models, complementing experimental approaches. It is now possible to simulate large membrane systems, such as simplified models of bacterial and viral envelope membranes. Consequently, there is a pressing need to develop tools to visualize and quantify the dynamics of these immense systems, which typically are comprised of millions of particles. To tackle this issue, we have developed visual and quantitative analyses of molecular positions and their velocity field using path line, vector field and streamline techniques. This allows us to highlight large, transient flow-like movements of lipids and to better understand crowding within the lipid bilayer. The current study focuses on visualization and analysis of lipid dynamics. However, the methods are flexible and can be readily applied to e.g. proteins and nanoparticles within large complex membranes. The protocols developed here are readily accessible both as a plugin for the molecular visualization program VMD and as a module for the MDAnalysis library. PMID:25341001

  14. Ares I-X Best Estimated Trajectory Analysis and Results

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Beck, Roger E.; Starr, Brett R.; Derry, Stephen D.; Brandon, Jay; Olds, Aaron D.

    2011-01-01

    The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air-data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.

  15. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    NASA Technical Reports Server (NTRS)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  16. Beam Optics Analysis — An Advanced 3D Trajectory Code

    NASA Astrophysics Data System (ADS)

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-01

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  17. Beam Optics Analysis - An Advanced 3D Trajectory Code

    SciTech Connect

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-03

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  18. Trajectory analysis of the rotational dynamics of molecules

    SciTech Connect

    Petrov, S. V. Lokshtanov, S. E.

    2015-08-15

    A method for analysis of the rotational dynamics of molecular systems has been proposed on the basis of the calculation of the set of exact classical vibrational–rotational trajectories. It has been proposed to compose and to numerically solve the complete system of dynamic equations consisting of Hamilton’s equations and generalized Euler equations for an arbitrary system. The computer algebra system can be applied to automatize the process of derivation and subsequent solution of dynamic equations. The variation of the picture of known bifurcation in the rotational dynamics of symmetric triatomic hydride molecules with an increase in vibrational excitation has been studied within the proposed approach. It has been shown that manifestations of bifurcation completely disappear at a quite high level of vibrational excitations.

  19. Hi-G electronic gated camera for precision trajectory analysis

    NASA Astrophysics Data System (ADS)

    Snyder, Donald R.; Payne, Scott; Keller, Ed; Longo, Salvatore; Caudle, Dennis E.; Walker, Dennis C.; Sartor, Mark A.; Keeler, Joe E.; Kerr, David A.; Fail, R. Wallace; Gannon, Jim; Carrol, Ernie; Jamison, Todd A.

    1997-12-01

    It is extremely difficult and expensive to determine the flight attitude and aimpoint of small maneuvering miniature air vehicles from ground based fixed or tracking photography. Telemetry alone cannot provide sufficient information bandwidth on 'what' the ground tracking is seeing and consequently 'why' it did or did not function properly. Additionally, it is anticipated that 'smart' and 'brilliant' guided vehicles now in development will require a high resolution imaging support system to determine which target and which part of a ground feature is being used for navigation or targeting. Other requirements include support of sub-component separation from developmental supersonic vehicles, where the clean separation from the container is not determinable from ground based film systems and film cameras do not survive vehicle breakup and impact. Hence, the requirement is to develop and demonstrate an imaging support system for development/testing that can provide the flight vehicle developer/analyst with imagery (combined with miniature telemetry sources) sufficient to recreate the trajectory, terminal navigation, and flight termination events. This project is a development and demonstration of a real-time, launch-rated, shuttered, electronic imager, transmitter, and analysis system. This effort demonstrated boresighted imagery from inside small flight vehicles for post flight analysis of trajectory, and capture of ground imagery during random triggered vehicle functions. The initial studies for this capability have been accomplished by the Experimental Dynamics Section of the Air Force Wright Laboratory, Armament Directorate, Eglin AFB, Florida, and the Telemetry Support Branch of the Army Material Research and Development Center at Picatinny Arsenal, New Jersey. It has been determined that at 1/10,000 of a second exposure time, new ultra-miniature CCD sensors have sufficient sensitivity to image key ground target features without blur, thereby providing data for

  20. The trajectory analysis of bevel planetary gear trains

    SciTech Connect

    Lin, Chen-Chou; Tsai, Lung-Wen.

    1991-01-01

    In this paper, the trajectory of bevel planetary wear trains has been studied. The parametric equations of trajectory are derived. It is shown that the trajectory generated by a tracer point on the planet of a bevel planetary gear train is analogous to that of a spur planetary gear train. Two cases, gear ratio equal to one and two, are presented in detail including the geometric description, plane of symmetry, extent of trajectory, number of nodes (cusps) their locations. The criteria for the existence of cusps are verified algebraically, and interpreted from geometrical point of view.

  1. The trajectory analysis of bevel planetary gear trains

    SciTech Connect

    Lin, Chen-Chou; Tsai, Lung-Wen

    1991-12-31

    In this paper, the trajectory of bevel planetary wear trains has been studied. The parametric equations of trajectory are derived. It is shown that the trajectory generated by a tracer point on the planet of a bevel planetary gear train is analogous to that of a spur planetary gear train. Two cases, gear ratio equal to one and two, are presented in detail including the geometric description, plane of symmetry, extent of trajectory, number of nodes (cusps) their locations. The criteria for the existence of cusps are verified algebraically, and interpreted from geometrical point of view.

  2. Towards analysis of growth trajectory through multimodal longitudinal MR imaging

    NASA Astrophysics Data System (ADS)

    Sadeghi, Neda; Prastawa, Marcel; Gilmore, John H.; Lin, Weili; Gerig, Guido

    2010-03-01

    The human brain undergoes significant changes in the first few years after birth, but knowledge about this critical period of development is quite limited. Previous neuroimaging studies have been mostly focused on morphometric measures such as volume and shape, although tissue property measures related to the degree of myelination and axon density could also add valuable information to our understanding of brain maturation. Our goal is to complement brain growth analysis via morphometry with the study of longitudinal tissue property changes as reflected in patterns observed in multi-modal structural MRI and DTI. Our preliminary study includes eight healthy pediatric subjects with repeated scans at the age of two weeks, one year, and two years with T1, T2, PD, and DT MRI. Analysis is driven by the registration of multiple modalities and time points within and between subjects into a common coordinate frame, followed by image intensity normalization. Quantitative tractography with diffusion and structural image parameters serves for multi-variate tissue analysis. Different patterns of rapid changes were observed in the corpus callosum and the posterior and anterior internal capsule, structures known for distinctly different myelination growth. There are significant differences in central versus peripheral white matter. We demonstrate that the combined longitudinal analysis of structural and diffusion MRI proves superior to individual modalities and might provide a better understanding of the trajectory of early neurodevelopment.

  3. ASTP (SA-210) launch vehicle operational flight trajectory dispersion analysis, volume 1

    NASA Technical Reports Server (NTRS)

    Williams, N. D.; Klug, G. W.; Ransom, F. A.

    1975-01-01

    In order to establish realistic deviation limits for the ASTP (SA-210) Launch Vehicle Operational Flight Trajectory, a dispersion analysis was conducted. The nominal trajectory prescribed for this analysis is the ASTP (SA-210) Launch Vehicle 500 Pound Launch Window Opening OT. The error sources considered are those associated with predictions of vehicle characteristics, vehicle systems performance, and flight environment. The nominal vehicle, the boost trajectory simulations, the error sources, the analytic procedures utilized, and the results are discussed. Launch vehicle guidance system inaccuracies were determined from the guidance error analysis. These data are composed of individual error source trajectory parameter dispersion envelopes.

  4. Developmental Trajectories of Adolescent Popularity: A Growth Curve Modelling Analysis

    ERIC Educational Resources Information Center

    Cillessen, Antonius H. N.; Borch, Casey

    2006-01-01

    Growth curve modelling was used to examine developmental trajectories of sociometric and perceived popularity across eight years in adolescence, and the effects of gender, overt aggression, and relational aggression on these trajectories. Participants were 303 initially popular students (167 girls, 136 boys) for whom sociometric data were…

  5. Trajectory analysis via a geometric feature space approach

    SciTech Connect

    Rintoul, Mark D.; Wilson, Andrew T.

    2015-10-05

    This study aimed to organize a body of trajectories in order to identify, search for and classify both common and uncommon behaviors among objects such as aircraft and ships. Existing comparison functions such as the Fréchet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as the total distance traveled and the distance between start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans who are searching large databases. Most of these geometric features are invariant under rigid transformation. Furthermore, we demonstrate the use of different subsets of these features to identify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories and identify outliers.

  6. Detecting Hotspots from Taxi Trajectory Data Using Spatial Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Zhao, P. X.; Qin, K.; Zhou, Q.; Liu, C. K.; Chen, Y. X.

    2015-07-01

    A method of trajectory clustering based on decision graph and data field is proposed in this paper. The method utilizes data field to describe spatial distribution of trajectory points, and uses decision graph to discover cluster centres. It can automatically determine cluster parameters and is suitable to trajectory clustering. The method is applied to trajectory clustering on taxi trajectory data, which are on the holiday (May 1st, 2014), weekday (Wednesday, May 7th, 2014) and weekend (Saturday, May 10th, 2014) respectively, in Wuhan City, China. The hotspots in four hours (8:00-9:00, 12:00-13:00, 18:00-19:00 and 23:00-24:00) for three days are discovered and visualized in heat maps. In the future, we will further research the spatiotemporal distribution and laws of these hotspots, and use more data to carry out the experiments.

  7. H5MD: A structured, efficient, and portable file format for molecular data

    NASA Astrophysics Data System (ADS)

    de Buyl, Pierre; Colberg, Peter H.; Höfling, Felix

    2014-06-01

    We propose a new file format named "H5MD" for storing molecular simulation data, such as trajectories of particle positions and velocities, along with thermodynamic observables that are monitored during the course of the simulation. H5MD files are HDF5 (Hierarchical Data Format) files with a specific hierarchy and naming scheme. Thus, H5MD inherits many benefits of HDF5, e.g., structured layout of multi-dimensional datasets, data compression, fast and parallel I/O, and portability across many programming languages and hardware platforms. H5MD files are self-contained, and foster the reproducibility of scientific data and the interchange of data between researchers using different simulation programs and analysis software. In addition, the H5MD specification can serve for other kinds of data (e.g. experimental data) and is extensible to supplemental data, or may be part of an enclosing file structure.

  8. The analysis of control trajectories using symbolic and database computing

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1995-01-01

    This final report comprises the formal semi-annual status reports for this grant for the periods June 30-December 31, 1993, January 1-June 30, 1994, and June 1-December 31, 1994. The research supported by this grant is broadly concerned with the symbolic computation, mixed numeric-symbolic computation, and database computation of trajectories of dynamical systems, especially control systems. A review of work during the report period covers: trajectories and approximating series, the Cayley algebra of trees, actions of differential operators, geometrically stable integration algorithms, hybrid systems, trajectory stores, PTool, and other activities. A list of publications written during the report period is attached.

  9. Analysis of Capture Trajectories to the Vicinity of Libration Points

    NASA Technical Reports Server (NTRS)

    Nakamiya, M.; Scheeres, D. J.; Yamakawa, H.; Yoshikawa, M.

    2007-01-01

    Spacecraft capture trajectories to the periodic orbits of the L1 and L2 points in the restricted Hill three-body problem are studied. The specific focus is on transfer to these vicinities from interplanetary trajectories. This application is motivated by future proposals to place "Deep Space ports" at the Earth and Mars L1 or L2 points. These spaceports are considered as candidate gateways for interplanetary transfers in the future. We utilize stable manifolds for capture trajectories to periodic orbits around the libration points. As a result, the cost of capture into a periodic orbit is also reduced relative to direct capture into a parabolic orbit. The way of linking between interplanetary transfer trajectories and the stable manifold is also discussed.

  10. The Dynamic Outer Heliosphere and Preliminary Analysis of GCR Trajectories

    NASA Astrophysics Data System (ADS)

    Washimi, Haruichi; Zank, Gary P.; Hu, Qiang; Tanaka, Takashi; Munakata, Kazuoki; Shinagawa, Hiroyuki

    2010-12-01

    We show realistic and time-varying 3D MHD models of the outer heliosphere which satisfy both Voyager 1 (V1) and Voyager 2 (V2) observed crossing times of the termination shock (TS) simultaneously. The short-term variations found are a) the TS position increases whenever a solar-wind high-ram pressure pulse collides with the TS, b) a large amplitude magneto-sonic pulse is generated downstream of the TS when a solar-wind high ram pressure pulse collides with the TS, c) the generated pulse propagates outward in the heliosheath and is reflected at the plasma sheet, and d) when the reflected pulse collides with the TS, the TS position decreases. We also present preliminary results of galactic cosmic rays (GCRs) trajectories as they respond to three-dimensional global electric and magnetic fields in the outer heliosphere. This allows us to investigate (1) how GCRs cross the heliosphere and enter the inner heliosphere, and (2) their long-term variation. Preliminary GCR distributions in the outer heliosphere are shown. GCR diffusion due to magnetic-field fluctuations is not taken into account in this analysis.

  11. Trajectory Planning by Preserving Flexibility: Metrics and Analysis

    NASA Technical Reports Server (NTRS)

    Idris, Husni R.; El-Wakil, Tarek; Wing, David J.

    2008-01-01

    In order to support traffic management functions, such as mitigating traffic complexity, ground and airborne systems may benefit from preserving or optimizing trajectory flexibility. To help support this hypothesis trajectory flexibility metrics have been defined in previous work to represent the trajectory robustness and adaptability to the risk of violating safety and traffic management constraints. In this paper these metrics are instantiated in the case of planning a trajectory with the heading degree of freedom. A metric estimation method is presented based on simplifying assumptions, namely discrete time and heading maneuvers. A case is analyzed to demonstrate the estimation method and its use in trajectory planning in a situation involving meeting a time constraint and avoiding loss of separation with nearby traffic. The case involves comparing path-stretch trajectories, in terms of adaptability and robustness along each, deduced from a map of estimated flexibility metrics over the solution space. The case demonstrated anecdotally that preserving flexibility may result in enhancing certain factors that contribute to traffic complexity, namely reducing proximity and confrontation.

  12. Particle trajectory computer program for icing analysis of axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Frost, Walter; Chang, Ho-Pen; Kimble, Kenneth R.

    1982-01-01

    General aviation aircraft and helicopters exposed to an icing environment can accumulate ice resulting in a sharp increase in drag and reduction of maximum lift causing hazardous flight conditions. NASA Lewis Research Center (LeRC) is conducting a program to examine, with the aid of high-speed computer facilities, how the trajectories of particles contribute to the ice accumulation on airfoils and engine inlets. This study, as part of the NASA/LeRC research program, develops a computer program for the calculation of icing particle trajectories and impingement limits relative to axisymmetric bodies in the leeward-windward symmetry plane. The methodology employed in the current particle trajectory calculation is to integrate the governing equations of particle motion in a flow field computed by the Douglas axisymmetric potential flow program. The three-degrees-of-freedom (horizontal, vertical, and pitch) motion of the particle is considered. The particle is assumed to be acted upon by aerodynamic lift and drag forces, gravitational forces, and for nonspherical particles, aerodynamic moments. The particle momentum equation is integrated to determine the particle trajectory. Derivation of the governing equations and the method of their solution are described in Section 2.0. General features, as well as input/output instructions for the particle trajectory computer program, are described in Section 3.0. The details of the computer program are described in Section 4.0. Examples of the calculation of particle trajectories demonstrating application of the trajectory program to given axisymmetric inlet test cases are presented in Section 5.0. For the examples presented, the particles are treated as spherical water droplets. In Section 6.0, limitations of the program relative to excessive computer time and recommendations in this regard are discussed.

  13. [Numerical Analysis of Particle Trajectories in Living Cells under Uncertainty Conditions].

    PubMed

    Pisarev, A S; Rukolaine, S A; Samsonov, A M; Samsonova, M G

    2015-01-01

    We have developed a numerical method for the analysis of particle trajectories in living cells, where a type of movement is determined by Akaike's information criterion, while model parameters are identified by a weighted least squares method. The method is realized in computer software, written in the Java programming language, that enables us to automatically conduct the analysis of trajectories. The method is tested on synthetic trajectories with known parameters, and applied to the analysis of replication complexes in cells, infected with hepatitis C virus. Results of the analysis are in agreement with available data on the movement of biological objects along microtubules. PMID:26591609

  14. Trajectory analysis via a geometric feature space approach

    DOE PAGESBeta

    Rintoul, Mark D.; Wilson, Andrew T.

    2015-10-05

    This study aimed to organize a body of trajectories in order to identify, search for and classify both common and uncommon behaviors among objects such as aircraft and ships. Existing comparison functions such as the Fréchet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as the total distance traveled and the distance between start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally,more » these features can generally be mapped easily to behaviors of interest to humans who are searching large databases. Most of these geometric features are invariant under rigid transformation. Furthermore, we demonstrate the use of different subsets of these features to identify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories and identify outliers.« less

  15. Aerodynamic, structural, and trajectory analysis of ASTRID-1 vehicle

    SciTech Connect

    Glover, L.S.; Iwaskiw, A.P.; Oursler, M.A.; Perini, L.L.; Schaefer, E.D.

    1994-02-10

    The Johns Hopkins University/Applied Physics Laboratory, JHU/API, in support of Lawrence Livermore National Laboratory, LLNL, is conducting aerodynamic, trajectory, and structural analysis of the Advanced Single Stage Technology Rapid Insertion Demonstration (ASTRID) vehicle, being launched out of Vandenberg Air Force Base (VAFB) in February 1994. The launch is designated ASTRID-1 and is the first in a series of three that will be launched out of VAFB. Launch dates for the next two flights have not been identified, but they are scheduled for the 1994-1995 time frame. The primary goal of the ASTRID-1 flight is to test the LLNL light weight thrust on demand bi-propellant pumped divert propulsion system. The system is employed as the main thrusters for the ASTRID-1 vehicle and uses hydrazine as the mono-propellant. The major conclusions are: (1) The vehicle is very stable throughout flight (stability margin = 17 to 24 inches); (2) The aerodynamic frequency and the roll rate are such that pitch-roll interactions will be small; (3) The high stability margin combined with the high launcher elevation angle makes the vehicle flight path highly sensitive to perturbations during the initial phase of flight, i.e., during the first second of flight after leaving the rail; (4) The major impact dispersions for the test flight are due to winds. The wind impact dispersions are 90% dictated by the low altitude, 0 to 1000 ft., wind conditions; and (5) In order to minimize wind dispersions, head wind conditions are favored for the launch as November VAFB mean tail winds result in land impacts. The ballistic wind methodology can be employed to assess the impact points of winds at the launch site.

  16. Space Trajectory Error Analysis Program (STEAP) for halo orbit missions. Volume 2: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Byrnes, D. V.; Carney, P. C.; Underwood, J. W.; Vogt, E. D.

    1974-01-01

    The six month effort was responsible for the development, test, conversion, and documentation of computer software for the mission analysis of missions to halo orbits about libration points in the earth-sun system. The software consisting of two programs called NOMNAL and ERRAN is part of the Space Trajectories Error Analysis Programs. The program NOMNAL targets a transfer trajectory from earth on a given launch date to a specified halo orbit on a required arrival date. Either impulsive or finite thrust insertion maneuvers into halo orbit are permitted by the program. The transfer trajectory is consistent with a realistic launch profile input by the user. The second program ERRAN conducts error analyses of the targeted transfer trajectory. Measurements including range, doppler, star-planet angles, and apparent planet diameter are processed in a Kalman-Schmidt filter to determine the trajectory knowledge uncertainty.

  17. Design and Analysis of Optimal Ascent Trajectories for Stratospheric Airships

    NASA Astrophysics Data System (ADS)

    Mueller, Joseph Bernard

    Stratospheric airships are lighter-than-air vehicles that have the potential to provide a long-duration airborne presence at altitudes of 18-22 km. Designed to operate on solar power in the calm portion of the lower stratosphere and above all regulated air traffic and cloud cover, these vehicles represent an emerging platform that resides between conventional aircraft and satellites. A particular challenge for airship operation is the planning of ascent trajectories, as the slow moving vehicle must traverse the high wind region of the jet stream. Due to large changes in wind speed and direction across altitude and the susceptibility of airship motion to wind, the trajectory must be carefully planned, preferably optimized, in order to ensure that the desired station be reached within acceptable performance bounds of flight time and energy consumption. This thesis develops optimal ascent trajectories for stratospheric airships, examines the structure and sensitivity of these solutions, and presents a strategy for onboard guidance. Optimal ascent trajectories are developed that utilize wind energy to achieve minimum-time and minimum-energy flights. The airship is represented by a three-dimensional point mass model, and the equations of motion include aerodynamic lift and drag, vectored thrust, added mass effects, and accelerations due to mass flow rate, wind rates, and Earth rotation. A representative wind profile is developed based on historical meteorological data and measurements. Trajectory optimization is performed by first defining an optimal control problem with both terminal and path constraints, then using direct transcription to develop an approximate nonlinear parameter optimization problem of finite dimension. Optimal ascent trajectories are determined using SNOPT for a variety of upwind, downwind, and crosswind launch locations. Results of extensive optimization solutions illustrate definitive patterns in the ascent path for minimum time flights across

  18. The analysis of control trajectories using symbolic and database computing

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1991-01-01

    The research broadly concerned the symbolic computation, mixed numeric-symbolic computation, and data base computation of trajectories of dynamical systems, especially control systems. It was determined that trees can be used to compute symbolically series which approximate solutions to differential equations.

  19. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  20. Overview of the Development for a Suite of Low-Thrust Trajectory Analysis Tools

    NASA Technical Reports Server (NTRS)

    Kos, Larry D.; Polsgrove, Tara; Hopkins, Randall; Thomas, Dan; Sims, Jon A.

    2006-01-01

    A NASA intercenter team has developed a suite of low-thrust trajectory analysis tools to make a significant improvement in three major facets of low-thrust trajectory and mission analysis. These are: 1) ease of use, 2) ability to more robustly converge to solutions, and 3) higher fidelity modeling and accuracy of results. Due mostly to the short duration of the development, the team concluded that a suite of tools was preferred over having one integrated tool. This tool-suite, their characteristics, and their applicability will be described. Trajectory analysts can read this paper and determine which tool is most appropriate for their problem.

  1. Trajectory analysis and performance for SEP Comet Encke missions

    NASA Technical Reports Server (NTRS)

    Sauer, C. G., Jr.

    1973-01-01

    A summary of the performance of Solar Electric Propulsion spacecraft for Comet Encke missions for the 1980, 1984 and 1987 mission opportunities is presented together with a description of the spacecraft trajectory for each opportunity. Included is data for rendezvous trajectories for all three opportunities and data for a slow flyby mission during the 1980 opportunity. A range of propulsion system input powers of 10 to 20 kW are considered together with a constant spacecraft power requirement of 400 watts. The performance presented in this paper is indicative of that using 30 cm Mercury electron bombardment thrusters that are currently being developed. Performance is given in terms of final spacecraft mass and is thus independent of any particular spacecraft design concept.

  2. Trajectory analysis and bluetongue virus serotype 2 in Florida 1982.

    PubMed

    Sellers, R F; Maarouf, A R

    1989-01-01

    Examination of Northern Hemisphere synoptic charts and computation of backward trajectories indicated that Culicoides infected with bluetongue virus serotype 2 could have been carried on the wind and brought the virus to Florida on the afternoon of August 19, 1982 after leaving northern Cuba the previous evening. Flight would have occurred at a height of 1-1.5 km at temperatures of 15-17 degrees C. The distance of 500 km from northern Cuba to Ona would have been covered in 20 h at an average speed of 25 km h-1. Computation of trajectories indicated that a second electropherotype, Ona B, was unlikely to have been introduced by infected Culicoides. PMID:2536578

  3. Cross-correlation analysis for live-cell image trajectory

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Ming; Chang, Yu-Fen; Wu, Chien-ming

    2013-08-01

    In cell motility, researchers are usually used fluorescence microscopy, confocal microscopy, or total internal reflection microscopy to track a fluorescent labeled particle and reveal the dynamic trajectory in living. Because all fluorescent dyes have cell toxicity, quantum dots and gold nanoparticles can influence the structures and physical properties of biomolecules which they have labeled, to develop another label-free image approach becomes an important issue. We present here a Fourier-based cross-correlation process to analyze images of adhering living cell, including cell motility and single vesicle trajectory. We treated adhering MG-63 cell with 66 nM Epidermal growth factor (EGF) and observed its dynamic effect on cell motility based on the velocity fields of consecutive cell images. We also used crosscorrelation to track single vesicles in living cells. We found that EGF could rapidly activate the motility of adhering MG- 63 cell, and the vesicle exhibits either directed or diffusive motion.

  4. Performance analysis of bullet trajectory estimation: Approach, simulation, and experiments

    SciTech Connect

    Ng, L.C.; Karr, T.J.

    1994-11-08

    This paper describes an approach to estimate a bullet`s trajectory from a time sequence of angles-only observations from a high-speed camera, and analyzes its performance. The technique is based on fitting a ballistic model of a bullet in flight along with unknown source location parameters to a time series of angular observations. The theory is developed to precisely reconstruct, from firing range geometry, the actual bullet trajectory as it appeared on the focal plane array and in real space. A metric for measuring the effective trajectory track error is also presented. Detailed Monte-Carlo simulations assuming different bullet ranges, shot-angles, camera frame rates, and angular noise show that angular track error can be as small as 100 {mu}rad for a 2 mrad/pixel sensor. It is also shown that if actual values of bullet ballistic parameters were available, the bullet s source location variables, and the angles of flight information could also be determined.

  5. Trajectory Hunting: Analysis of UARS Measurements Showing Rapid Chlorine Activation

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.

    1998-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the AER photochemical box model. In this study, we investigate rapid chlorine activation in the Arctic lower stratosphere on 29 Dec. 1992 associated with a polar stratospheric cloud (PSC) event. Six air parcels that have been sampled twice were followed along 5-day trajectories at the 465 K (approx. 46 mb) and 585 K (approxi. 22 mb) levels. A detailed sensitivity study with the AER photochemical box model along these trajectories leads to the following conclusions for the episode considered: 1) model results are in better agreement with UARS measurements at these levels if the U.K. Meteorological Office (UKMO) temperature is decreased by at least 1-2 K; 2) the NAT (nitric acid trihydrate) PSC formation scheme produces results in better agreement with observations than the STS (supercooled ternary solution) scheme; 3) the model can explain the UARS measurements at 585 K, but under-estimates the ClO abundance at 465 K, suggesting some inconsistency between the UARS measurements at this level.

  6. Trajectory Hunting: Analysis of UARS Measurements showing Rapid Chlorine Activation

    NASA Technical Reports Server (NTRS)

    Danilin, M.Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.

    1998-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the AER photochemical box model. In this study, we investigate rapid chlorine activation in the Arctic lower stratosphere on 29 Dec 1992 associated with a polar stratospheric cloud (PSC) event. Six air parcels that have been sampled twice were followed along 5-day trajectories at the 465 K (approximately 46 mb) and 585 K (approximately 22 mb) levels. A detailed sensitivity study with the AER. photochemical box model along these trajectories leads to the following conclusions for the episode considered: (1) model results are in better agreement with UARS measurements at these levels if the UKMO temperature is decreased by at least 1-2 K; (2) the NAT (nitric acid trihydrate) PSC formation scheme produces results in better agreement with observations than the STS (supercooled ternary solution) scheme; (3) the model can explain the UARS measurements at 585 K, but under-estimates the ClO abundance at 465 K, suggesting some inconsistency between the UARS measurements at this level.

  7. Analysis of Trajectory Flexibility Preservation Impact on Traffic Complexity

    NASA Technical Reports Server (NTRS)

    Idris, Husni; El-Wakil, Tarek; Wing, David J.

    2009-01-01

    The growing demand for air travel is increasing the need for mitigation of air traffic congestion and complexity problems, which are already at high levels. At the same time new information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the authors proposed the introduction of decision-making metrics for preserving user trajectory flexibility. The hypothesis is that such metrics will make user actions naturally mitigate traffic complexity. In this paper, the impact of using these metrics on traffic complexity is investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a one-hour time horizon while mitigating the risk of loss of separation with the other aircraft, thus preserving its trajectory flexibility. The experiments showed promising results in that the individual trajectory flexibility preservation induced self-separation and self-organization effects in the overall traffic situation. The effects were quantified using traffic complexity metrics, namely dynamic density indicators, which indicated that using the flexibility metrics reduced aircraft density and the potential of loss of separation.

  8. Preliminary analysis on the MD-4® plasma-sprayed titanium acetabular component☆

    PubMed Central

    de Araújo Loures, Elmano; Simoni, Leandro Furtado; Leite, Isabel Cristina Gonçalves; Loures, Daniel Naya; Loures, Clarice Naya

    2015-01-01

    Objectives To evaluate the short-term performance of a type of implant manufactured in Brazil. Methods This study analyzed a cohort of 60 patients who underwent implantation of MD-4® acetabular components during primary hip arthroplasty procedures performed between January 1, 2010, and August 1, 2012. The patients were studied retrospectively with regard to clinical behavior, stability and radiological osseointegration. The patients were followed up for a minimum of 12 months and a maximum of 42 months (mean: 27) and were evaluated by means of the Harris Hip Score, SF-36 questionnaire and serial conventional radiographs. Results All the components were radiologically stable, without evidence of migration or progressive radiolucency lines. On average, the Harris Hip Score evolved from 36.1 to 92.1 (p < 0.001) and the SF-36 showed significant increases in all its domains (p < 0.001). No differences were observed among patients with osteoarthrosis, osteonecrosis, hip dysplasia or other conditions. Conclusions The short-term results showed clinical and radiological signs of stability and osseointegration of the implants, which may represent a predictive factor regarding medium-term survival of this acetabular component. PMID:26229918

  9. Comparative MD analysis of the stability of transthyretin providing insight into the fibrillation mechanism.

    PubMed

    Sørensen, Jesper; Hamelberg, Donald; Schiøtt, Birgit; McCammon, J Andrew

    2007-05-01

    Proteins can misfold and aggregate, which is believed to be the cause of a variety of diseases, affecting very diverse organs in the body. Many questions about the nature of aggregation and the proteins that are involved in these events are still left unanswered. One of the proteins that is known to form amyloids is transthyretin (TTR), the secondary transporter of thyroxine, and transporter of retinol-binding protein. Several experimental results have helped to explain this aberrant behavior of TTR; however, structural insights of the amyloidgenic process are still lacking. Therefore, we have used all-atom MD simulation and free energy calculations to study the initial phase of this process. We have calculated the free energy changes of the initial tetramer dissociation under different conditions and in the presence of thyroxine. We show that tetramer formation is indeed only thermodynamically favorable in neutral pH conditions. We find that binding of two thyroxine molecules stabilizes the complex, and that this occurs with negative cooperativity. In addition to the energetic calculations, we have also investigated the dominant motions of the TTR and found that only the dimeric form of the protein could undergo the initial fibril formation. PMID:17315201

  10. A Comparative Analysis of Two Full-Scale MD-500 Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2011-01-01

    Two full scale crash tests were conducted on a small MD-500 helicopter at NASA Langley Research Center fs Landing and Impact Research Facility. One of the objectives of this test series was to compare airframe impact response and occupant injury data between a test which outfitted the airframe with an external composite passive energy absorbing honeycomb and a test which had no energy absorbing features. In both tests, the nominal impact velocity conditions were 7.92 m/sec (26 ft/sec) vertical and 12.2 m/sec (40 ft/sec) horizontal, and the test article weighed approximately 1315 kg (2900 lbs). Airframe instrumentation included accelerometers and strain gages. Four Anthropomorphic Test Devices were also onboard; three of which were standard Hybrid II and III, while the fourth was a specialized torso. The test which contained the energy absorbing honeycomb showed vertical impact acceleration loads of approximately 15 g, low risk for occupant injury probability, and minimal airframe damage. These results were contrasted with the test conducted without the energy absorbing honeycomb. The test results showed airframe accelerations of approximately 40 g in the vertical direction, high risk for injury probability in the occupants, and substantial airframe damage.

  11. Automated trajectory design for impulsive and low thrust interplanetary mission analysis

    NASA Astrophysics Data System (ADS)

    Wagner, Samuel Arthur

    This dissertation describes a hybrid optimization algorithm that is able to determine optimal trajectories for many complex mission analysis and design orbital mechanics problems. This new algorithm will be used to determine optimal trajectories for a variety of mission design problems, including asteroid rendezvous, multiple gravity-assist (MGA), multiple gravity-assist with deep-space maneuvers (MGA-DSM), and low-thrust trajectory missions. The research described here was conducted at the Asteroid Deflection Research Center (ADRC) at Iowa State University.

  12. Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter

    2011-01-01

    On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where

  13. Low-thrust trajectory analysis for the geosynchronous mission

    NASA Technical Reports Server (NTRS)

    Jasper, T. P.

    1973-01-01

    Methodology employed in development of a computer program designed to analyze optimal low-thrust trajectories is described, and application of the program to a Solar Electric Propulsion Stage (SEPS) geosynchronous mission is discussed. To avoid the zero inclination and eccentricity singularities which plague many small-force perturbation techniques, a special set of state variables (equinoctial) is used. Adjoint equations are derived for the minimum time problem and are also free from the singularities. Solutions to the state and adjoint equations are obtained by both orbit averaging and precision numerical integration; an evaluation of these approaches is made.

  14. SOYUZ escape trajectory analysis from Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Heck, Michael L.

    1993-01-01

    It has been proposed to utilize the Russian built SOYUZ as an assured crew return vehicle (ACRV) for Space Station Freedom. Three departure directions (nadir, zenith, minus velocity) are evaluated to determine escape path clearances. In addition, the effects of the following parameters were also evaluated: delta-V magnitude, configuration dependent ballistic coefficients, atmospheric density, Freedom attitude control, and canted docking adaptors. The primary factor influencing the escape trajectory was station contingency attitude rate. The nadir and zenith departures were preferable to minus velocity. The impact of atmospheric density and relative ballistic coefficients was minimal.

  15. Simulated trajectories error analysis program, version 2. Volume 2: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Vogt, E. D.; Adams, G. L.; Working, M. M.; Ferguson, J. B.; Bynum, M. R.

    1971-01-01

    A series of three computer programs for the mathematical analysis of navigation and guidance of lunar and interplanetary trajectories was developed. All three programs require the integration of n-body trajectories for both interplanetary and lunar missions. The virutal mass technique is used in all three programs. The user's manual contains the information necessary to operate the programs. The input and output quantities of the programs are described. Sample cases are given and discussed.

  16. Orbiter Trajectory Analysis for a Two-Stage Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Cowling, Adam L.

    2011-01-01

    Trajectory analysis performed on NASA's reference two-stage-to-orbit launch vehicle upper stage will be presented. The work was completed in support of the Hypersonics Multidisciplinary Analysis and Optimization effort for the NASA-Air Force Joint System Study. Three degree-of-freedom (3-DOF) untrimmed trajectory analysis was performed for the orbiter ascent, closure and re-entry. An iterative closure process resulted in a 333,000 lb initial mass for the orbiter. The re-entry trajectory satisfied heating constraints for all payload out cases and met the constraints with reduced margins for payload in cases. Abort trajectories for engine out at staging, engine out during ascent, and failure to circularize in orbit, gave insight to the robustness of the orbiter. A trimmed ascent trajectory defined an engine gimbal location and the body flap angle best suited for maximizing injected mass. A trimmed re-entry trajectory revealed a need to update the trim routine to accommodate full flap aerodynamic data.

  17. Monte Carlo Analysis as a Trajectory Design Driver for the TESS Mission

    NASA Technical Reports Server (NTRS)

    Nickel, Craig; Lebois, Ryan; Lutz, Stephen; Dichmann, Donald; Parker, Joel

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will be injected into a highly eccentric Earth orbit and fly 3.5 phasing loops followed by a lunar flyby to enter a mission orbit with lunar 2:1 resonance. Through the phasing loops and mission orbit, the trajectory is significantly affected by lunar and solar gravity. We have developed a trajectory design to achieve the mission orbit and meet mission constraints, including eclipse avoidance and a 30-year geostationary orbit avoidance requirement. A parallelized Monte Carlo simulation was performed to validate the trajectory after injecting common perturbations, including launch dispersions, orbit determination errors, and maneuver execution errors. The Monte Carlo analysis helped identify mission risks and is used in the trajectory selection process.

  18. An analysis and comparison of several trajectory optimization methods

    NASA Technical Reports Server (NTRS)

    Lewallen, J. M.

    1971-01-01

    The sensitivities of the convergence characteristics of the methods to initially assumed parameters and trial solution, convergence times, computer logic, and storage requirements are discussed. Numerical comparison of the convergence characteristics is made by considering a minimum time, low thrust, Earth-Mars transfer trajectory. A modified quasi-linearization method reduces convergence time by approximately 70% when compared with the generalized Newton-Raphson method and allows the terminal boundary to be specified by a general function of the problem variables. A uniquely specified and easily determined, time dependent weighting matrix for the gradient techniques accelerates the shaping of the optimal control program and improves the convergence characteristics during the terminal iterations. Convergence envelopes, indicating how sensitive the convergence characteristics are to initially assumed parameters, are plotted for the perturbation and quasi-linearization methods. Several iteration schemes are proposed which increase the size of the convergence envelopes and decrease the sensitivity of the method to initially assumed parameters.

  19. Space Trajectory Error Analysis Program (STEAP) for halo orbit missions. Volume 1: Analytic and user's manual

    NASA Technical Reports Server (NTRS)

    Byrnes, D. V.; Carney, P. C.; Underwood, J. W.; Vogt, E. D.

    1974-01-01

    Development, test, conversion, and documentation of computer software for the mission analysis of missions to halo orbits about libration points in the earth-sun system is reported. The software consisting of two programs called NOMNAL and ERRAN is part of the Space Trajectories Error Analysis Programs (STEAP). The program NOMNAL targets a transfer trajectory from Earth on a given launch date to a specified halo orbit on a required arrival date. Either impulsive or finite thrust insertion maneuvers into halo orbit are permitted by the program. The transfer trajectory is consistent with a realistic launch profile input by the user. The second program ERRAN conducts error analyses of the targeted transfer trajectory. Measurements including range, doppler, star-planet angles, and apparent planet diameter are processed in a Kalman-Schmidt filter to determine the trajectory knowledge uncertainty. Execution errors at injection, midcourse correction and orbit insertion maneuvers are analyzed along with the navigation uncertainty to determine trajectory control uncertainties and fuel-sizing requirements. The program is also capable of generalized covariance analyses.

  20. A theoretical analysis of inferring molecular interactions from single particle trajectories

    NASA Astrophysics Data System (ADS)

    Kalay, Ziya

    2015-03-01

    Single molecule/particle tracking has become a valuable tool in microscopy that allows for recording trajectories of probes such as individual biological molecules with high temporal and spatial resolution. With the trajectory of a particle, mesoscale transport properties such as diffusion coefficients and first-passage times can be calculated. With the trajectories of two particles that interact, we can investigate the kinetics of reactions by analyzing the statistics of overlap between trajectories. This approach is useful for single molecule biophysics in exploring the kinetics of reversible binding among molecules in biological membranes and on the DNA. Nevertheless, extracting information from noisy trajectories, where the noise stems from a combination of thermal fluctuations and uncertainty introduced by measuring apparatus, is a challenging task. In this work, we consider an exactly solvable model of diffusion and reversible binding in a 1-D structure, such as the DNA, and present a mathematical analysis of how much information about the binding kinetics can be reliably extracted from experimental data. With insight gained from this low-dimensional model, we discuss the analysis of trajectory pairs in two-dimensional systems such as biological membranes. This research was supported by JSPS Grant-in-Aid for Young Scientists (B) (26730150).

  1. Molecular cloning and functional analysis of a UV-B photoreceptor gene, MdUVR8 (UV Resistance Locus 8), from apple.

    PubMed

    Zhao, Cheng; Mao, Ke; You, Chun-Xiang; Zhao, Xian-Yan; Wang, Shu-Hui; Li, Yuan-Yuan; Hao, Yu-Jin

    2016-06-01

    UVR8 (UV Resistance Locus 8) is an ultraviolet-B (UV-B; 280-315nm) light receptor that is involved in regulating many aspects of plant growth and development. UV-B irradiation can increase the development of flower and fruit coloration in many fruit trees, such as grape, pear and apple. Previous investigations of the structure and functions of UVR8 in plants have largely focused on Arabidopsis. Here, we isolated the UVR8 gene from apple (Malus domestica) and analyzed its function in transgenic Arabidopsis. Genomic and protein sequence analysis showed that MdUVR8 shares high similarity with the AtUVR8 protein from Arabidopsis, including the conserved seven-bladed β-propeller, the C27 region, the 3 "GWRHT" motifs and crucial amino-acid residues (14 Trps, 2 Args). A point mutation prediction and three-dimensional structural analysis of MdUVR8 indicated that it has a similar structure to AtUVR8 and that the crucial residues are also important in MdUVR8. In terms of transcript levels, MdUVR8 expression was up-regulated by UV-B light, which suggests that its expression follows a 24-h circadian rhythm. Using heterologous expression of MdUVR8 in both uvr8-1 mutant and wild-type (WT) Arabidopsis, we found that MdUVR8 regulates hypocotyl elongation and gene expression under UV-B light. These data provide functional evidence for a role of MdUVR8 in controlling photomorphogenesis under UV-B light and indicate that the function of UVR8 is conserved between Arabidopsis and apple. Furthermore, we examined the interaction between MdUVR8 and MdCOP1 (constitutive photomorphogenic1) using a yeast two-hybrid assay and a co-immunoprecipitation assay. This interaction provides a direction for investigating the regulatory mechanisms of the UV-B-light pathway in apple. PMID:27095405

  2. Analysis of Electron Trajectories in Magnetized High Power Plasmas

    NASA Astrophysics Data System (ADS)

    Krueger, Dennis; Gallian, Sara; Trieschmann, Jan; Brinkmann, Ralf Peter

    2015-09-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is an important example of magnetized technological plasmas. With HiPIMS the focus lies on the generation of a high density plasma with a remarkably high degree of ionization. It can be used for the deposition of thin films with superior density and quality. Theoretical approaches to the regime of magnetized low temperature plasmas encounter some fundamental difficulties, for example concerning the details of the magnetic field configuration, the strongly varying degree of magnetization, and the frequent wall interactions. A kinetic single particle model is used for the investigations. Single electron trajectories are analyzed with the widely used Boris algorithm within the magnetized zone above the target (racetrack). We further examine a configuration where symmetry breaking occurs due to a potential bump, which is rotating azimuthally around the racetrack (spoke). Observing the effects of this structure on the single electron motion may allow us to obtain further insight into this phenomenon. This work is supported by the German Research Foundation in the frame of the Collaborative Research Centre TRR 87.

  3. Sensitivity Analysis and Mitigation with Applications to Ballistic and Low-thrust Trajectory Design

    NASA Astrophysics Data System (ADS)

    Alizadeh, Iman

    The ever increasing desire to expand space mission capabilities within the limited budgets of space industries requires new approaches to the old problem of spacecraft trajectory design. For example, recent initiatives for space exploration involve developing new tools to design low-cost, fail-safe trajectories to visit several potential destinations beyond our celestial neighborhood such as Jupiter's moons, asteroids, etc. Designing and navigating spacecraft trajectories to reach these destinations safely are complex and challenging. In particular, fundamental questions of orbital stability imposed by planetary protection requirements are not easily taken into account by standard optimal control schemes. The event of temporary engine loss or an unexpected missed thrust can indeed quickly lead to impact with planetary bodies or other unrecoverable trajectories. While electric propulsion technology provides superior efficiency compared to chemical engines, the very low-control authority and engine performance degradation can impose higher risk to the mission in strongly perturbed orbital environments. The risk is due to the complex gravitational field and its associated chaotic dynamics which causes large navigation dispersions in a short time if left un-controlled. Moreover, in these situations it can be outside the low-thrust propulsion system capability to correct the spacecraft trajectory in a reasonable time frame. These concerns can lead to complete or partial mission failure or even an infeasible mission concept at the early design stage. The goal of this research is to assess and increase orbital stability of ballistic and low-thrust transfer trajectories in multi-body systems. In particular, novel techniques are presented to characterize sensitivity and improve recovery characteristics of ballistic and low-thrust trajectories in unstable orbital environments. The techniques developed are based on perturbation analysis around ballistic trajectories to

  4. Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet.

    PubMed

    Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo

    2016-01-01

    Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766

  5. ProtoMD: A prototyping toolkit for multiscale molecular dynamics

    NASA Astrophysics Data System (ADS)

    Somogyi, Endre; Mansour, Andrew Abi; Ortoleva, Peter J.

    2016-05-01

    ProtoMD is a toolkit that facilitates the development of algorithms for multiscale molecular dynamics (MD) simulations. It is designed for multiscale methods which capture the dynamic transfer of information across multiple spatial scales, such as the atomic to the mesoscopic scale, via coevolving microscopic and coarse-grained (CG) variables. ProtoMD can be also be used to calibrate parameters needed in traditional CG-MD methods. The toolkit integrates 'GROMACS wrapper' to initiate MD simulations, and 'MDAnalysis' to analyze and manipulate trajectory files. It facilitates experimentation with a spectrum of coarse-grained variables, prototyping rare events (such as chemical reactions), or simulating nanocharacterization experiments such as terahertz spectroscopy, AFM, nanopore, and time-of-flight mass spectroscopy. ProtoMD is written in python and is freely available under the GNU General Public License from github.com/CTCNano/proto_md.

  6. Improved Analysis for Determining Diffusion Coefficients from Short Single-Molecule Trajectories with Photoblinking

    PubMed Central

    Shuang, Bo; Byers, Chad P.; Kisley, Lydia; Wang, Lin-Yung; Zhao, Julia; Morimura, Hiroyuki; Link, Stephan; Landes, Christy F.

    2013-01-01

    Two Maximum Likelihood Estimation (MLE) methods were developed for optimizing the analysis of single-molecule trajectories that include phenomena such as experimental noise, photoblinking, photobleaching, and translation or rotation out of the collection plane. In particular, short, single-molecule trajectories with photoblinking were studied, and our method was compared with existing analytical techniques applied to simulated data. The optimal method for various experimental cases was established, and the optimized MLE method was applied to a real experimental system: single-molecule diffusion of fluorescent molecular machines known as nanocars. PMID:23215347

  7. Trajectory analysis of acid deposition data from the new jersey pine barrens

    NASA Astrophysics Data System (ADS)

    Budd, William W.

    This research provides an example of the application of a simple method for evaluating regional interrelationships using air parcel trajectory analysis. An assessment of trajectories associated with storms affecting McDonald's Branch watershed (39°50'N, 74°30'W) is presented. A simple classification system is used to examine regional contributions of acid precursors. The results of the work suggest that major regional sources of acid precursor emissions dominated precipitation acidity for the Pine Barrens region from 1978 to 1981. An incremental approach to acid precipitation policy is suggested.

  8. Action Recognition Using Rate-Invariant Analysis of Skeletal Shape Trajectories.

    PubMed

    Ben Amor, Boulbaba; Su, Jingyong; Srivastava, Anuj

    2016-01-01

    We study the problem of classifying actions of human subjects using depth movies generated by Kinect or other depth sensors. Representing human body as dynamical skeletons, we study the evolution of their (skeletons’) shapes as trajectories on Kendall’s shape manifold. The action data is typically corrupted by large variability in execution rates within and across subjects and, thus, causing major problems in statistical analyses. To address that issue, we adopt a recently-developed framework of Su et al. [1], [2] to this problem domain. Here, the variable execution rates correspond to re-parameterizations of trajectories, and one uses a parameterization-invariant metric for aligning, comparing, averaging, and modeling trajectories. This is based on a combination of transported square-root vector fields (TSRVFs) of trajectories and the standard Euclidean norm, that allows computational efficiency. We develop a comprehensive suite of computational tools for this application domain: smoothing and denoising skeleton trajectories using median filtering, up- and down-sampling actions in time domain, simultaneous temporal-registration of multiple actions, and extracting invertible Euclidean representations of actions. Due to invertibility these Euclidean representations allow both discriminative and generative models for statistical analysis. For instance, they can be used in a SVM-based classification of original actions, as demonstrated here using MSR Action-3D, MSR Daily Activity and 3D Action Pairs datasets. Using only the skeletal information, we achieve state-of-the-art classification results on these datasets. PMID:27030844

  9. Separating the Air Quality Impact of a Major Highway and Nearby Sources by Nonparametric Trajectory Analysis

    EPA Science Inventory

    Nonparametric Trajectory Analysis (NTA), a receptor-oriented model, was used to assess the impact of local sources of air pollution at monitoring sites located adjacent to highway I-15 in Las Vegas, NV. Measurements of black carbon, carbon monoxide, nitrogen oxides, and sulfur di...

  10. Stereoscopic Analysis of STEREO/SECCHI Data for CME Trajectory Determination

    NASA Technical Reports Server (NTRS)

    Liewer, P. C.; Hall, J. R.; Howard, R. A.; DeJong, E. M.; Thompson, W. T.; Thernisten, A.

    2010-01-01

    The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) coronagraphs on the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft provide simultaneous views of the corona and coronal mass ejections from two view points. Here, we analyze simultaneous image pairs using the technique of tie-pointing and triangulation (T&T) to determine the three-dimensional trajectory of seven coronal mass ejections (CMEs). The bright leading edge of a CME seen in coronagraph images results from line-of-sight integration through the CME front; the two STEREO coronagraphs see different apparent leading edges, leading to a systematic error in its three-dimensional reconstruction. We analyze this systematic error using a simple geometric model of a CME front. We validate the technique and analysis by comparing T&T trajectory determinations for seven CMEs with trajectories determined by Thernisien et al. (2009) using a forward modeling technique not susceptible to this systematic effect.

  11. Mercury Emission Inventory Analysis in Wisconsin using Inverse Modeling and Meso-scale Particle Trajectories

    NASA Astrophysics Data System (ADS)

    de Foy, B.; Schauer, J. J.

    2011-12-01

    Speciated measurements of mercury concentrations were performed at a rural and urban site in Wisconsin for year-long time periods with an hourly time resolution. These are used to evaluate existing emission inventories with an inverse method based on hourly back-trajectories. WRF-Flexpart reverse particle trajectories are calculated at the local to regional scale for every data point in the time series. In addition, we perform forward Eulerian simulations of biomass burning impacts at the receptor site. A least-squares inversion on both the forward impacts and the gridded back-trajectories is used to identify potential source locations and emission factors. Error analysis is performed using bootstrapping on the input grids and time series. Results suggest a combination of impacts from local, regional and biomass burning sources.

  12. Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering

    PubMed Central

    Wu, Pei-Hsun; Agarwal, Ashutosh; Hess, Henry; Khargonekar, Pramod P.; Tseng, Yiider

    2010-01-01

    Abstract The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes. PMID:20550894

  13. Steric effects on intramolecular reactivity in cyclic dipeptides: Conformational analysis validated by a combined MD/DFT approach

    NASA Astrophysics Data System (ADS)

    Lewandowska, A.; Carmichael, I.; Hörner, G.; Hug, G. L.; Marciniak, B.

    2011-08-01

    The present Molecular Dynamics (MD) simulation study addresses the geometric requirements of close-contact formation in short peptides. This process, that is probed herein by intramolecular H-atom transfer, initiated by triplet-excited ketones, demands close contact between the H-donating and H-accepting moieties. Thus, any deduction about the compound's reactivity based just on MD simulations, requires independent verification of the computed conformational preferences. In this study, a procedure was developed using diketopiperazine-linked benzophenone/tyrosine dyads. Specifically, it involves a comparison of the dyads' experimental 3J(H α-H β(a/b)) spin-spin coupling constants with the theoretical values obtained by weighting DFT-computed spin-spin coupling constants with the MD-computed probability distributions for the dyads' configurations.

  14. Examining Ambrosia pollen episodes at Poznań (Poland) using back-trajectory analysis

    NASA Astrophysics Data System (ADS)

    Stach, A.; Smith, M.; Skjøth, C. A.; Brandt, J.

    2007-03-01

    The pollen grains of Ambrosia spp. are considered to be important aeroallergens in parts of southern and central Europe. Back-trajectories have been analysed with the aim of finding the likely sources of Ambrosia pollen grains that arrived at Poznań (Poland). Temporal variations in Ambrosia pollen at Poznań from 1995-2005 were examined in order to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. The trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Analysis identified two separate populations in Ambrosia pollen episodes, those that peaked in the early morning between 4 a.m. and 8 a.m., and those that peaked in the afternoon between 2 p.m. and 6 p.m.. Six Ambrosia pollen episodes between 2001 and 2005 were examined using back-trajectory analysis. The results showed that Ambrosia pollen episodes that peaked in the early morning usually arrived at Poznań from a southerly direction after passing over southern Poland, the Czech Republic, Slovakia and Hungary, whereas air masses that brought Ambrosia pollen to Poznań during the afternoon arrived from a more easterly direction and predominantly stayed within the borders of Poland. Back-trajectory analysis has shown that there is a possibility that long-range transport brings Ambrosia pollen to Poznań from southern Poland, the Czech Republic, Slovakia and Hungary. There is also a likelihood that Ambrosia is present in Poland, as shown by the arrival of pollen during the afternoon that originated primarily from within the country.

  15. Substance Use and Abuse Trajectories across Adolescence: A Latent Trajectory Analysis of a Community-Recruited Sample of Girls

    ERIC Educational Resources Information Center

    Marti, C. Nathan; Stice, Eric; Springer, David W.

    2010-01-01

    We used data from a school-based study of 496 adolescent girls to identify qualitatively distinct substance use and substance abuse developmental trajectory groups and tested whether the problematic groups differed from the non-problematic groups on baseline and outcome validation variables. Results identified four substance use groups (late…

  16. Space Trajectories Error Analysis (STEAP) Programs. Volume 1: Analytic manual, update

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Manual revisions are presented for the modified and expanded STEAP series. The STEAP 2 is composed of three independent but related programs: NOMAL for the generation of n-body nominal trajectories performing a number of deterministic guidance events; ERRAN for the linear error analysis and generalized covariance analysis along specific targeted trajectories; and SIMUL for testing the mathematical models used in the navigation and guidance process. The analytic manual provides general problem description, formulation, and solution and the detailed analysis of subroutines. The programmers' manual gives descriptions of the overall structure of the programs as well as the computational flow and analysis of the individual subroutines. The user's manual provides information on the input and output quantities of the programs. These are updates to N69-36472 and N69-36473.

  17. Trajectory analysis for solar electric propulsion stage /SEPS/ planetary missions

    NASA Technical Reports Server (NTRS)

    Dazzo, E. J.; Nagorski, R. P.

    1973-01-01

    This paper summarizes a portion of the planetary mission analysis results of past and present studies conducted by Rockwell International for NASA-MSFC (Contract NAS8-27360) dealing with the feasibility of a Solar Electric Propulsion Stage (SEPS). The SEPS is envisioned as an upper stage of a transportation system capable of delivering either separable payload spacecraft or attached science packages to various planetary targets. The purpose of the paper is to demonstrate that, from a payload performance capability standpoint, a common SEP Stage can deliver various payloads to a host of planetary targets including inner and outer planets, asteroids, and comets.

  18. Northwest Trajectory Analysis Capability: A Platform for Enhancing Computational Biophysics Analysis

    SciTech Connect

    Peterson, Elena S.; Stephan, Eric G.; Corrigan, Abigail L.; Lins, Roberto D.; Soares, Thereza A.; Scarberry, Randall E.; Rose, Stuart J.; Williams, Leigh K.; Lai, Canhai; Critchlow, Terence J.; Straatsma, TP

    2008-07-30

    As computational resources continue to increase, the ability of computational simulations to effectively complement, and in some cases replace, experimentation in scientific exploration also increases. Today, large-scale simulations are recognized as an effective tool for scientific exploration in many disciplines including chemistry and biology. A natural side effect of this trend has been the need for an increasingly complex analytical environment. In this paper, we describe Northwest Trajectory Analysis Capability (NTRAC), an analytical software suite developed to enhance the efficiency of computational biophysics analyses. Our strategy is to layer higher-level services and introduce improved tools within the user’s familiar environment without preventing researchers from using traditional tools and methods. Our desire is to share these experiences to serve as an example for effectively analyzing data intensive large scale simulation data.

  19. Trajectory-based heating analysis for the ESA/Rosetta earth return vehicle

    NASA Technical Reports Server (NTRS)

    Henline, William D.; Tauber, Michael E.

    1993-01-01

    A coupled, trajectory based flowfield and material thermal response analysis is presented for the European Space Agency (ESA) proposed Rosetta comet nucleus sample return vehicle. The probe returns to Earth along a hyperbolic trajectory with an entry velocity of 16.5 km/sec and requires an ablative heat shield on the forebody. Combined radiative and convective, ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasi-steady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasi-steady analysis was performed using the two-dimensional, axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code, CMA. Results are presented for heating, temperature and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasi-steady results indicates that, for the heating pulse encountered by this probe, the quasi-static approach is conservative from the standpoint of predicted surface recession.

  20. Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle

    NASA Technical Reports Server (NTRS)

    Henline, William D.; Tauber, Michael E.

    1994-01-01

    A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.

  1. Crew Exploration Vehicle Ascent Abort Trajectory Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Gefert, Leon P.

    2007-01-01

    The Orion Crew Exploration Vehicle is the first crewed capsule design to be developed by NASA since Project Apollo. Unlike Apollo, however, the CEV is being designed for service in both Lunar and International Space Station missions. Ascent aborts pose some issues that were not present for Apollo, due to its launch azimuth, nor Space Shuttle, due to its cross range capability. The requirement that a North Atlantic splashdown following an abort be avoidable, in conjunction with the requirement for overlapping abort modes to maximize crew survivability, drives the thrust level of the service module main engine. This paper summarizes 3DOF analysis conducted by NASA to aid in the determination of the appropriate propulsion system for the service module, and the appropriate propellant loading for ISS missions such that crew survivability is maximized.

  2. Mars Exploration Rover Six-Degree-Of-Freedom Entry Trajectory Analysis

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Schoenenberger, Mark; Cheatwood, F. M.

    2003-01-01

    The Mars Exploration Rover mission will be the next opportunity for surface exploration of Mars in January 2004. Two rovers will be delivered to the surface of Mars using the same entry, descent, and landing scenario that was developed and successfully implemented by Mars Pathfinder. This investigation describes the trajectory analysis that was performed for the hypersonic portion of the MER entry. In this analysis, a six-degree-of-freedom trajectory simulation of the entry is performed to determine the entry characteristics of the capsules. In addition, a Monte Carlo analysis is also performed to statistically assess the robustness of the entry design to off-nominal conditions to assure that all entry requirements are satisfied. The results show that the attitude at peak heating and parachute deployment are well within entry limits. In addition, the parachute deployment dynamics pressure and Mach number are also well within the design requirements.

  3. Trajectory and Aeroheating Environment Development and Sensitivity Analysis for Capsule-shaped Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.; Wurster, Kathryn E.

    2006-01-01

    Recently, NASA's Exploration Systems Research and Technology Project funded several tasks that endeavored to develop and evaluate various thermal protection systems and high temperature material concepts for potential use on the crew exploration vehicle. In support of these tasks, NASA Langley's Vehicle Analysis Branch generated trajectory information and associated aeroheating environments for more than 60 unique entry cases. Using the Apollo Command Module as the baseline entry system because of its relevance to the favored crew exploration vehicle design, trajectories for a range of lunar and Mars return, direct and aerocapture Earth-entry scenarios were developed. For direct entry, a matrix of cases was created that reflects reasonably expected minimum and maximum values of vehicle ballistic coefficient, inertial velocity at entry interface, and inertial flight path angle at entry interface. For aerocapture, trajectories were generated for a range of values of initial velocity and ballistic coefficient that, when combined with proper initial flight path angles, resulted in achieving a low Earth orbit either by employing a full lift vector up or full lift vector down attitude. For each trajectory generated, aeroheating environments were generated which were intended to bound the thermal protection system requirements for likely crew exploration vehicle concepts. The trades examined clearly pointed to a range of missions / concepts that will require ablative systems as well as a range for which reusable systems may be feasible. In addition, the results clearly indicated those entry conditions and modes suitable for manned flight, considering vehicle deceleration levels experienced during entry. This paper presents an overview of the analysis performed, including the assumptions, methods, and general approach used, as well as a summary of the trajectory and aerothermal environment information that was generated.

  4. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  5. Analysis of air mass trajectories in the northern plateau of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pérez, Isidro A.; Sánchez, M. Luisa; García, M. Ángeles; Pardo, Nuria

    2015-11-01

    Air masses reaching the Iberian Peninsula, which is located between two continents and two seas, have been classified. 24-h backward air trajectories were calculated each hour for three years using the METEX model at a site in the centre of the northern plateau of the Iberian Peninsula where the air flow has scarcely been investigated to date. Rather than the usual Euclidean geometry, spherical trigonometry, together with the kernel regression method, was considered to calculate trajectory distances to the site. Numerical indicators allow for an accurate description of the results. Ranges surrounding the site from E to S evidenced a restriction in the movement of the arriving flow. However, the range to the N showed only a slight effect. A noticeable seasonal contrast was observed between winter, whose distances were the greatest, and summer, which displayed the shortest distances. Trajectory clusters, initially not considered in the METEX model, were obtained with different metrics to determine the air mass pathways reaching the site. Five clusters of trajectories were selected so as to easily explain the directions and distances covered. Regional and long range transport were observed in clusters from the NE, NW and SW. The NE cluster presented an orographic deviation and local processes were limited to the SE cluster. Finally, seasonal analysis revealed singular behaviour during autumn, when local processes centred on the N-S direction.

  6. Application-driven merging and analysis of person trajectories for distributed smart camera networks

    NASA Astrophysics Data System (ADS)

    Metzler, Jürgen; Monari, Eduardo; Kuntzsch, Colin

    2014-03-01

    Tracking of persons and analysis of their trajectories are important tasks of surveillance systems as they support the monitoring personnel. However, this trend is accompanied by an increasing demand on smarter camera networks carrying out surveillance tasks autonomously. Thus, there is a higher system complexity so that requirements on the video analysis algorithms are increasing as well. In this paper, we present a system concept and application for anonymously gathering, processing and analysis of trajectories in distributed smart camera networks. It allows a multitude of analysis techniques such as inspecting individual properties of the observed movement in real-time. Additionally, the anonymous movement data allows long-term storage and big data analyses for statistical purposes. The system described in this paper has been implemented as prototype system and deployed for proof of concept under real conditions at the entrance hall of the Leibniz University Hannover. It shows an overall stable performance, particularly with respect to significant illumination changes over hours, as well as regarding the reduction of false positives by post processing and trajectory merging performed on top of a panorama based person detection module.

  7. Comprehensive analysis of motions in molecular dynamics trajectories of the actin capping protein and its inhibitor complexes.

    PubMed

    Koike, Ryotaro; Takeda, Shuichi; Maéda, Yuichiro; Ota, Motonori

    2016-07-01

    The actin capping protein (CP) binds to actin filaments to block further elongation. The capping activity is inhibited by proteins V-1 and CARMIL interacting with CP via steric and allosteric mechanisms, respectively. The crystal structures of free CP, CP/V-1, and CP/CARMIL complexes suggest that the binding of CARMIL alters the flexibility of CP rather than the overall structure of CP, and this is an allosteric inhibition mechanism. Here, we performed molecular dynamics (MD) simulations of CP in the free form, and in complex with CARMIL or V-1. The resulting trajectories were analyzed exhaustively using Motion Tree, which identifies various rigid-body motions ranging from small local motions to large domain motions. After enumerating all the motions, CP flexibilities with different ligands were characterized by a list of frequencies for 20 dominant rigid-body motions, some of which were not identified in previous studies. The comparative analysis highlights the influence of the binding of the CARMIL peptide to CP flexibility. In free CP and the CP/V-1 complex, domain motions around a large crevice between the N-stalk and the CP-S domain occur frequently. The CARMIL peptide binds the crevice and suppresses the motions effectively. In addition, the binding of the CARMIL peptide enhances and alters local motions around the pocket that participates in V-1 binding. These newly identified motions are likely to suppress the binding of V-1 to CP. The observed changes in CP motion provide insights that describe the mechanism of allosteric regulation by CARMIL through modulating CP flexibility. Proteins 2016; 84:948-956. © 2016 Wiley Periodicals, Inc. PMID:27028786

  8. Space safety trajectory optimization and debris analysis using ASTOS at ESA

    NASA Astrophysics Data System (ADS)

    Ortega, Guillermo; Blasco, Ana; Weikert, Sven

    This paper describes the coupling of the space trajectory optimization software ASTOS with a tool for splashdown analysis of separated spacecraft stages and debris called DARS (Destructive Analysis for Re-entry Spacecraft), and a Risk Analysis Module called RAM. ASTOS is a main reference tool for space trajectory optimization at ESA. It is also used to compute demise and break up of rocket stages and re-entry vehicles and analyze the risk to populated areas. ASTOS software is a simulation and optimization environment to compute optimal trajectories for a variety of complex multi-phase optimal control problems. It consists of fast and powerful optimization programs, PROMIS, CAMTOS, SOCS and TROPIC, that handle large and highly discretized problems, a user interface with multiple plot capability, and GISMO, an integrated graphical iteration monitor to review the optimization process and plot the state and control histories at intermediate steps during the optimization. The optimization programs used by ASTOS use Non-Linear Programming (NLP) mathematical solvers like NPSOL, SLSQP, SLLSQP, and SNOPT. These solvers use Sequential Quadratic Programming (SQP) mathematical algorithms to find the solution of the non-linear programming problems in trajectory optimization. ASTOS comprises an extensive model library, which allows launcher and re-entry spacecraft trajectory optimization without programming work. DARS considers not only a stage break-up, but also ablation and melting of the fragments, taking diverse materials and shapes into account. The paper discusses hazard due to stage and debris impact, considering the ESA launchers and re-entry vehicles as examples. Previous approaches for the impact point calculation during trajectory optimization are presented. Subsequently the results of these approaches are compared to DARS results. This paper shows that ASTOS and the DARS and RAM extensions can calculate impact points with satisfactory accuracy and calculation time

  9. ProtoMD: A prototyping toolkit for multiscale molecular dynamics

    NASA Astrophysics Data System (ADS)

    Somogyi, Endre; Mansour, Andrew Abi; Ortoleva, Peter J.

    2016-05-01

    ProtoMD is a toolkit that facilitates the development of algorithms for multiscale molecular dynamics (MD) simulations. It is designed for multiscale methods which capture the dynamic transfer of information across multiple spatial scales, such as the atomic to the mesoscopic scale, via coevolving microscopic and coarse-grained (CG) variables. ProtoMD can be also be used to calibrate parameters needed in traditional CG-MD methods. The toolkit integrates 'GROMACS wrapper' to initiate MD simulations, and 'MDAnalysis' to analyze and manipulate trajectory files. It facilitates experimentation with a spectrum of coarse-grained variables, prototyping rare events (such as chemical reactions), or simulating nanocharacterization experiments such as terahertz spectroscopy, AFM, nanopore, and time-of-flight mass spectroscopy. ProtoMD is written in python and is freely available under the GNU General Public License from

  10. Design of cycler trajectories and analysis of solar influences on radioactive decay rates during space missions

    NASA Astrophysics Data System (ADS)

    Rogers, Blake A.

    investigated to determine if they can be used to find new cycler trajectories, as well as those previously discovered. First order approximations to the relative motion equations are unfruitful for Earth-Mars cyclers because the variation in radial distance from the Sun is too large. However, using optimization techniques, cycling trajectories are found for the Earth-Mars, Earth-Ceres, and Mars-Ceres systems. Experiments showing a seasonal variation of the nuclear decay rates of a number of different nuclei and decay anomalies--- apparently related to solar flares and solar rotation--- have suggested that the Sun may somehow be influencing nuclear decay processes. Recently, there have been searches for such an effect in 238Pu nuclei contained in the radioisotope thermoelectric generators on board the Cassini spacecraft. In this work, that analysis is modified and extended to obtain constraints on anomalous decays of 238Pu over a wider range of models, but these limits cannot be applied to other nuclei if the anomaly is composition-dependent. It is also shown that it may require very high sensitivity for terrestrial experiments to discriminate among some models if such a decay anomaly exists, motivating the consideration of future spacecraft experiments which would require less precision. A mission on which such an experiment could be run is proposed. The proposed mission will take various isotopes on a spacecraft that has a large variation in radial distance and return them to Earth. Two different types of trajectories are considered: one with intermediate Venus flybys and one that injects directly into an Earth-resonant orbit. It is shown that each of these types of trajectories have their relative merits with regards to the scientific objective. The suitability of the upcoming Solar Probe Plus and Solar Orbiter missions to perform this experiment is also investigated.

  11. Integrating graph partitioning and matching for trajectory analysis in video surveillance.

    PubMed

    Lin, Liang; Lu, Yongyi; Pan, Yan; Chen, Xiaowu

    2012-12-01

    In order to track moving objects in long range against occlusion, interruption, and background clutter, this paper proposes a unified approach for global trajectory analysis. Instead of the traditional frame-by-frame tracking, our method recovers target trajectories based on a short sequence of video frames, e.g., 15 frames. We initially calculate a foreground map at each frame obtained from a state-of-the-art background model. An attribute graph is then extracted from the foreground map, where the graph vertices are image primitives represented by the composite features. With this graph representation, we pose trajectory analysis as a joint task of spatial graph partitioning and temporal graph matching. The task can be formulated by maximizing a posteriori under the Bayesian framework, in which we integrate the spatio-temporal contexts and the appearance models. The probabilistic inference is achieved by a data-driven Markov chain Monte Carlo algorithm. Given a period of observed frames, the algorithm simulates an ergodic and aperiodic Markov chain, and it visits a sequence of solution states in the joint space of spatial graph partitioning and temporal graph matching. In the experiments, our method is tested on several challenging videos from the public datasets of visual surveillance, and it outperforms the state-of-the-art methods. PMID:22875250

  12. TRAJECTORY SENSITIVITY ANALYSIS FOR DYNAMIC SECURITY ASSESSMENT AND OTHER APPLICATIONS IN POWER SYSTEMS

    SciTech Connect

    Nguyen, Tony B.; Pai, M. A.

    2014-07-10

    Real time stability evaluation and preventive scheduling in power systems offer many challenges in a stressed power system. Trajectory sensitivity analysis (TSA) is a useful tool for this and other applications in the emerging smart grid area. In this chapter we outline the basic approach of TSA, to extract suitable information from the data and develop reliable metrics or indices to evaluate proximity of the system to an unstable condition. Trajectory sensitivities can be used to compute critical parameters such as clearing time of circuit breakers, tie line flow, etc. in a power system by developing suitable norms for ease of interpretation. The TSA technique has the advantage that model complexity is not a limitation, and the sensitivities can be computed numerically. Suitable metrics are developed from these sensitivities. The TSA technique can be extended to do preventive rescheduling. A brief discussion of other applications of TSA in placement of distributed generation is indicated.

  13. An oilspill trajectory analysis model with a variable wind deflection angle

    USGS Publications Warehouse

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  14. Trajectory and Analysis of Fireball-Meteorite ``2010.02.28 Kosice'' from Security Cameras and from Electomicroscopic Examination

    NASA Astrophysics Data System (ADS)

    Kubovics, I.; Vizi, P. G.

    2012-03-01

    We show our investigation about the 2010.02.28. fireball and meteorite Košice. Included trajectory analysis from security cameras (meteorite cameras were off because of cloudy sky) and detailed electronmicroscopic examination of meteorite.

  15. A graphics program for the analysis and display of molecular dynamics trajectories.

    PubMed

    Laaksonen, L

    1992-03-01

    The program SCARECROW has been developed to help the molecular modeler to analyze and display the very big and complex data files produced by molecular dynamics programs. The molecular graphics program SCARECROW is written to support the display, animation, and extensive analysis of molecular dynamics trajectories. Using the macro language it is easy to make scripts for video animation and for the automated display and analysis of time series. Extensive coloring and atom selection commands are included to help the user to focus on relevant regions of the molecule. Time series can be produced and viewed on the screen or transferred to other programs. PMID:1504051

  16. High-fidelity gravity modeling applied to spacecraft trajectories and lunar interior analysis

    NASA Astrophysics Data System (ADS)

    Chappaz, Loic P. R.

    As the complexity and boldness of emerging mission proposals increase, and with the rapid evolution of the available computational capabilities, high-accuracy and high-resolution gravity models and the tools to exploit such models are increasingly attractive within the context of spaceflight mechanics, mission design and analysis, and planetary science in general. First, in trajectory design applications, a gravity representation for the bodies of interest is, in general, assumed and exploited to determine the motion of a spacecraft in any given system. The focus is the exploration of trajectories in the vicinity of a system comprised of two small irregular bodies. Within this context, the primary bodies are initially modeled as massive ellipsoids and tools to construct third-body trajectories are developed. However, these dynamical models are idealized representations of the actual dynamical regime and do not account for any perturbing effects. Thus, a robust strategy to maintain a spacecraft near reference third-body trajectories is constructed. Further, it is important to assess the perturbing effect that dominates the dynamics of the spacecraft in such a region as a function of the baseline orbit. Alternatively, the motion of the spacecraft around a given body may be known to extreme precision enabling the derivation of a very high-accuracy gravity field for that body. Such knowledge can subsequently be exploited to gain insight into specific properties of the body. The success of the NASA's GRAIL mission ensures that the highest resolution and most accurate gravity data for the Moon is now available. In the GRAIL investigation, the focus is on the specific task of detecting the presence and extent of subsurface features, such as empty lava tubes beneath the mare surface. In addition to their importance for understanding the emplacement of the mare flood basalts, open lava tubes are of interest as possible habitation sites safe from cosmic radiation and

  17. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis. PMID:26806306

  18. A Four Degree of Freedom Malfunction Trajectory Analysis for Public Safety

    NASA Astrophysics Data System (ADS)

    Wilde, Paul D.; Weil, Andre O.; Draper, Christopher

    2010-09-01

    The FAA sponsored the development of computational simulations of the malfunction turn behavior of a new launch vehicle upper stage during African over-flight sufficient to compute foreseeable break-up state vectors, which are often critical input to public risk analyses. This paper describes the development and validation of a new method that uses a four Degree-of-Freedom(DOF) model to account for jet damping in the computation of break-up state vectors associated with malfunction turns, with a focus on typical malfunctions that manifest during down range over-flight. The lack of aerodynamic forces during over-flight makes simplified modeling of malfunction trajectories easier and more realistic than in the launch area. In addition, the lack of aerodynamic forces during over-flight allows the vehicle to potentially reach significant tumble rates before breaking up, and thus increases the potential importance of jet damping. The influence of jet damping can provide a limit to the tumble rate a vehicle can achieve as a result of a constant thrust offset as described in this paper. Furthermore, a nozzle burn-through could generate a thrust offset that produces a somewhat different vehicle response compared to a thrust vector control malfunction because of the influence of the location and direction of the thrust anomaly, as described in this analysis. The fundamental goals of this effort were to(1) develop a method to estimate malfunction trajectories using data typically made available to US agencies that oversee launch safety and in the absence of the detailed input data necessary for a 6-DOF model, and(2) verify that the method provides reasonable results in comparison to 6-DOF model results. The results indicate that the new method produces useful results for public safety analysis of down range launch vehicle over-flight. The newly developed malfunction trajectory analysis method might be useful during reentry or launch area risk analyses also, although those

  19. Programmer's manual for the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)

    NASA Technical Reports Server (NTRS)

    Lutzky, D.; Bjorkman, W. S.

    1973-01-01

    The Mission Analysis Evaluation and Space Trajectory Operations program known as MAESTRO is described. MAESTRO is an all FORTRAN, block style, computer program designed to perform various mission control tasks. This manual is a guide to MAESTRO, providing individuals the capability of modifying the program to suit their needs. Descriptions are presented of each of the subroutines descriptions consist of input/output description, theory, subroutine description, and a flow chart where applicable. The programmer's manual also contains a detailed description of the common blocks, a subroutine cross reference map, and a general description of the program structure.

  20. Stability analysis of the motion along re-entry optimal trajectories

    NASA Astrophysics Data System (ADS)

    Popescu, M.

    1983-10-01

    A stability analysis of the equations of motion governing the ricochet re-entry trajectory of a rocket-powered vehicle is presented. The plane case of a vehicle propelled by the time-dependent expulsion of gases is considered, taking the change in mass into account. The zone of stability is defined using a frequency criterion, while the stability domains of the parameters of motion are derived by constructing a Liapunov function. The perturbations of the state variables and their damping-out velocities are estimated.

  1. Orbit-determination performance of Doppler data for interplanetary cruise trajectories. Part 1: Error analysis methodology

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.; Thurman, S. W.

    1992-01-01

    An error covariance analysis methodology is used to investigate different weighting schemes for two-way (coherent) Doppler data in the presence of transmission-media and observing-platform calibration errors. The analysis focuses on orbit-determination performance in the interplanetary cruise phase of deep-space missions. Analytical models for the Doppler observable and for transmission-media and observing-platform calibration errors are presented, drawn primarily from previous work. Previously published analytical models were improved upon by the following: (1) considering the effects of errors in the calibration of radio signal propagation through the troposphere and ionosphere as well as station-location errors; (2) modelling the spacecraft state transition matrix using a more accurate piecewise-linear approximation to represent the evolution of the spacecraft trajectory; and (3) incorporating Doppler data weighting functions that are functions of elevation angle, which reduce the sensitivity of the estimated spacecraft trajectory to troposphere and ionosphere calibration errors. The analysis is motivated by the need to develop suitable weighting functions for two-way Doppler data acquired at 8.4 GHz (X-band) and 32 GHz (Ka-band). This weighting is likely to be different from that in the weighting functions currently in use; the current functions were constructed originally for use with 2.3 GHz (S-band) Doppler data, which are affected much more strongly by the ionosphere than are the higher frequency data.

  2. Optimum Three Impulse Trajectory Generator with Patched Conic Trajectory Model

    NASA Technical Reports Server (NTRS)

    Payne, M. H.; Pines, S.; Horsewood, J. L.

    1972-01-01

    Optimal multi-impulse trajectories were investigated as a nominal about which asymptotic expansion was used to obtain approximations of optimal low thrust trajectories. The work consisted of the analysis and description of an optimal 3-impulse trajectory program. A patched-conic trajectory model was specifically designed for compatibility with the subsequent addition of the low thrust expansion approximation.

  3. Spatio-Temporal Distribution Characteristics and Trajectory Similarity Analysis of Tuberculosis in Beijing, China.

    PubMed

    Li, Lan; Xi, Yuliang; Ren, Fu

    2016-03-01

    Tuberculosis (TB) is an infectious disease with one of the highest reported incidences in China. The detection of the spatio-temporal distribution characteristics of TB is indicative of its prevention and control conditions. Trajectory similarity analysis detects variations and loopholes in prevention and provides urban public health officials and related decision makers more information for the allocation of public health resources and the formulation of prioritized health-related policies. This study analysed the spatio-temporal distribution characteristics of TB from 2009 to 2014 by utilizing spatial statistics, spatial autocorrelation analysis, and space-time scan statistics. Spatial statistics measured the TB incidence rate (TB patients per 100,000 residents) at the district level to determine its spatio-temporal distribution and to identify characteristics of change. Spatial autocorrelation analysis was used to detect global and local spatial autocorrelations across the study area. Purely spatial, purely temporal and space-time scan statistics were used to identify purely spatial, purely temporal and spatio-temporal clusters of TB at the district level. The other objective of this study was to compare the trajectory similarities between the incidence rates of TB and new smear-positive (NSP) TB patients in the resident population (NSPRP)/new smear-positive TB patients in the TB patient population (NSPTBP)/retreated smear-positive (RSP) TB patients in the resident population (RSPRP)/retreated smear-positive TB patients in the TB patient population (RSPTBP) to detect variations and loopholes in TB prevention and control among the districts in Beijing. The incidence rates in Beijing exhibited a gradual decrease from 2009 to 2014. Although global spatial autocorrelation was not detected overall across all of the districts of Beijing, individual districts did show evidence of local spatial autocorrelation: Chaoyang and Daxing were Low-Low districts over the six

  4. Spatio-Temporal Distribution Characteristics and Trajectory Similarity Analysis of Tuberculosis in Beijing, China

    PubMed Central

    Li, Lan; Xi, Yuliang; Ren, Fu

    2016-01-01

    Tuberculosis (TB) is an infectious disease with one of the highest reported incidences in China. The detection of the spatio-temporal distribution characteristics of TB is indicative of its prevention and control conditions. Trajectory similarity analysis detects variations and loopholes in prevention and provides urban public health officials and related decision makers more information for the allocation of public health resources and the formulation of prioritized health-related policies. This study analysed the spatio-temporal distribution characteristics of TB from 2009 to 2014 by utilizing spatial statistics, spatial autocorrelation analysis, and space-time scan statistics. Spatial statistics measured the TB incidence rate (TB patients per 100,000 residents) at the district level to determine its spatio-temporal distribution and to identify characteristics of change. Spatial autocorrelation analysis was used to detect global and local spatial autocorrelations across the study area. Purely spatial, purely temporal and space-time scan statistics were used to identify purely spatial, purely temporal and spatio-temporal clusters of TB at the district level. The other objective of this study was to compare the trajectory similarities between the incidence rates of TB and new smear-positive (NSP) TB patients in the resident population (NSPRP)/new smear-positive TB patients in the TB patient population (NSPTBP)/retreated smear-positive (RSP) TB patients in the resident population (RSPRP)/retreated smear-positive TB patients in the TB patient population (RSPTBP) to detect variations and loopholes in TB prevention and control among the districts in Beijing. The incidence rates in Beijing exhibited a gradual decrease from 2009 to 2014. Although global spatial autocorrelation was not detected overall across all of the districts of Beijing, individual districts did show evidence of local spatial autocorrelation: Chaoyang and Daxing were Low-Low districts over the six

  5. A Genome-Wide Analysis of the LBD (LATERAL ORGAN BOUNDARIES Domain) Gene Family in Malus domestica with a Functional Characterization of MdLBD11

    PubMed Central

    Su, Ling; Liu, Xin; Hao, Yujin

    2013-01-01

    The plant-specific LBD (LATERAL ORGAN BOUNDARIES domain) genes belong to a major family of transcription factor that encode a zinc finger-like domain. It has been shown that LBD genes play crucial roles in the growth and development of Arabidopsis and other plant species. However, no detailed information concerning this family is available for apple. In the present study, we analyzed the apple (Malus domestica) genome and identified 58 LBD genes. This gene family was tested for its phylogenetic relationships with homologous genes in the Arabidopsis genome, as well as its location in the genome, structure and expression. We also transformed one MdLBD gene into Arabidopsis to evaluate its function. Like Arabidopsis, apple LBD genes also have a conserved CX2CX6CX3C zinc finger-like domain in the N terminus and can be divided into two classes. The expression profile indicated that apple LBD genes exhibited a variety of expression patterns, suggesting that they have diverse functions. At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype. This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits. Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species. PMID:23468909

  6. A combined Eulerian-Lagrangian two-phase analysis of the SSME HPOTP nozzle plug trajectories

    NASA Technical Reports Server (NTRS)

    Garcia, Robert; Mcconnaughey, P. K.; Dejong, F. J.; Sabnis, J. S.; Pribik, D.

    1989-01-01

    As a result of high cycle fatigue, hydrogen embrittlement, and extended engine use, it was observed in testing that the trailing edge on the first stage nozzle plug in the High Pressure Oxygen Turbopump (HPOTP) could detach. The objective was to predict the trajectories followed by particles exiting the turbine. Experiments had shown that the heat exchanger soils, which lie downstream of the turbine, would be ruptured by particles traveling in the order of 360 ft/sec. An axisymmetric solution of the flow was obtained from the work of Lin et. al., who used INS3D to obtain the solution. The particle trajectories were obtained using the method of de Jong et. al., which employs Lagrangian tracking of the particle through the Eulerian flow field. The collision parameters were obtained from experiments conducted by Rocketdyne using problem specific alloys, speeds, and projectile geometries. A complete 3-D analysis using the most likely collision parameters shows maximum particle velocities of 200 ft/sec. in the heat exchanger region. Subsequent to this analysis, an engine level test was conducted in which seven particles passed through the turbine but no damage was observed on the heat exchanger coils.

  7. APL@Voro: a Voronoi-based membrane analysis tool for GROMACS trajectories.

    PubMed

    Lukat, Gunther; Krüger, Jens; Sommer, Björn

    2013-11-25

    APL@Voro is a new program developed to aid in the analysis of GROMACS trajectories of lipid bilayer simulations. It can read a GROMACS trajectory file, a PDB coordinate file, and a GROMACS index file to create a two-dimensional geometric representation of a bilayer. Voronoi diagrams and Delaunay triangulations--generated for different selection models of lipids--support the analysis of the bilayer. The values calculated on the geometric structures can be visualized in a user-friendly interactive environment and, then, plotted and exported to different file types. APL@Voro supports complex bilayers with a mix of various lipids and proteins. For the calculation of the projected area per lipid, a modification of the well-known Voronoi approach is presented as well as the presentation of a new approach for including atoms into an existing triangulation. The application of the developed software is discussed for three example systems simulated with GROMACS. The program is written in C++, is open source, and is available free of charge. PMID:24175728

  8. Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states.

    PubMed

    Wu, Hao; Mey, Antonia S J S; Rosta, Edina; Noé, Frank

    2014-12-01

    We propose a discrete transition-based reweighting analysis method (dTRAM) for analyzing configuration-space-discretized simulation trajectories produced at different thermodynamic states (temperatures, Hamiltonians, etc.) dTRAM provides maximum-likelihood estimates of stationary quantities (probabilities, free energies, expectation values) at any thermodynamic state. In contrast to the weighted histogram analysis method (WHAM), dTRAM does not require data to be sampled from global equilibrium, and can thus produce superior estimates for enhanced sampling data such as parallel/simulated tempering, replica exchange, umbrella sampling, or metadynamics. In addition, dTRAM provides optimal estimates of Markov state models (MSMs) from the discretized state-space trajectories at all thermodynamic states. Under suitable conditions, these MSMs can be used to calculate kinetic quantities (e.g., rates, timescales). In the limit of a single thermodynamic state, dTRAM estimates a maximum likelihood reversible MSM, while in the limit of uncorrelated sampling data, dTRAM is identical to WHAM. dTRAM is thus a generalization to both estimators. PMID:25481128

  9. Statistically optimal analysis of state-discretized trajectory data from multiple thermodynamic states

    SciTech Connect

    Wu, Hao; Mey, Antonia S. J. S.; Noé, Frank; Rosta, Edina

    2014-12-07

    We propose a discrete transition-based reweighting analysis method (dTRAM) for analyzing configuration-space-discretized simulation trajectories produced at different thermodynamic states (temperatures, Hamiltonians, etc.) dTRAM provides maximum-likelihood estimates of stationary quantities (probabilities, free energies, expectation values) at any thermodynamic state. In contrast to the weighted histogram analysis method (WHAM), dTRAM does not require data to be sampled from global equilibrium, and can thus produce superior estimates for enhanced sampling data such as parallel/simulated tempering, replica exchange, umbrella sampling, or metadynamics. In addition, dTRAM provides optimal estimates of Markov state models (MSMs) from the discretized state-space trajectories at all thermodynamic states. Under suitable conditions, these MSMs can be used to calculate kinetic quantities (e.g., rates, timescales). In the limit of a single thermodynamic state, dTRAM estimates a maximum likelihood reversible MSM, while in the limit of uncorrelated sampling data, dTRAM is identical to WHAM. dTRAM is thus a generalization to both estimators.

  10. Sequence analysis of a non-classified, non-occluded DNA virus that causes salivary gland hypertrophy of Musca domestica, MdSGHV

    PubMed Central

    Garcia-Maruniak, Alejandra; Maruniak, James E.; Farmerie, William; Boucias, Drion G.

    2008-01-01

    The genome of the virus that causes salivary gland hypertrophy in Musca domestica (MdSGHV) was sequenced. This non-classified, enveloped, double stranded, circular DNA virus had a 124,279 bp genome. The G+C content was 43.5% with 108 putative methionine-initiated open reading frames (ORFs). Thirty ORFs had homology to database proteins: eleven to proteins coded by both baculoviruses and nudiviruses (p74, pif-1, pif-2, pif-3, odv-e66, rr1, rr2, iap, dUTPase, MMP, and Ac81-like), seven to nudiviruses (mcp, dhfr, ts, tk and three unknown proteins), one to baculovirus (Ac150-like), one to herpesvirus (dna pol), and ten to cellular proteins. Mass spectrum analysis of the viral particles’ protein components identified 29 structural ORFs, with only p74 and odv-e66 previously characterized as baculovirus structural proteins. Although most of the homology observed was to nudiviruses, phylogenetic analysis showed that MdSGHV was not closely related to them or to the baculoviruses. PMID:18495197

  11. UV - GAITHERSBURG MD

    EPA Science Inventory

    Brewer 105 is located in Gaithersburg MD, measuring ultraviolet solar radiation. Irradiance and column ozone are derived from this data. Ultraviolet solar radiation is measured with a Brewer Mark IV, single-monochrometer, spectrophotometer manufactured by SCI-TEC Instruments, Inc...

  12. Automatic Analysis of Cellularity in Glioblastoma and Correlation with ADC Using Trajectory Analysis and Automatic Nuclei Counting

    PubMed Central

    Burth, Sina; Kieslich, Pascal J.; Jungk, Christine; Sahm, Felix; Kickingereder, Philipp; Kiening, Karl; Unterberg, Andreas; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin; Radbruch, Alexander

    2016-01-01

    Objective Several studies have analyzed a correlation between the apparent diffusion coefficient (ADC) derived from diffusion-weighted MRI and the tumor cellularity of corresponding histopathological specimens in brain tumors with inconclusive findings. Here, we compared a large dataset of ADC and cellularity values of stereotactic biopsies of glioblastoma patients using a new postprocessing approach including trajectory analysis and automatic nuclei counting. Materials and Methods Thirty-seven patients with newly diagnosed glioblastomas were enrolled in this study. ADC maps were acquired preoperatively at 3T and coregistered to the intraoperative MRI that contained the coordinates of the biopsy trajectory. 561 biopsy specimens were obtained; corresponding cellularity was calculated by semi-automatic nuclei counting and correlated to the respective preoperative ADC values along the stereotactic biopsy trajectory which included areas of T1-contrast-enhancement and necrosis. Results There was a weak to moderate inverse correlation between ADC and cellularity in glioblastomas that varied depending on the approach towards statistical analysis: for mean values per patient, Spearman’s ρ = -0.48 (p = 0.002), for all trajectory values in one joint analysis Spearman’s ρ = -0.32 (p < 0.001). The inverse correlation was additionally verified by a linear mixed model. Conclusions Our data confirms a previously reported inverse correlation between ADC and tumor cellularity. However, the correlation in the current article is weaker than the pooled correlation of comparable previous studies. Hence, besides cell density, other factors, such as necrosis and edema might influence ADC values in glioblastomas. PMID:27467557

  13. Using back trajectories and process analysis to investigate photochemical ozone production in the Puget Sound region

    NASA Astrophysics Data System (ADS)

    Jiang, Guangfeng; Lamb, Brian; Westberg, Hal

    A photochemical Eulerian grid modeling system, consisting of MM5/CALMET/CALGRID, was modified to include a process analysis scheme, and a back trajectory method using the CALPUFF model in a reverse diffusion mode was implemented to define the air mass transport path reaching a downwind receptor from urban Seattle, WA. Process analysis was used to determine the relative importance of chemical production, advection, diffusion and deposition within the receptor grid cell and also along the air mass transport path from the urban source area to the receptor. This analysis was applied to an ozone episode occurring during 11-14 July 1996, in the Puget Sound region of Washington State. Within the receptor grid, the process analysis showed that ozone concentrations increase during the day as chemical production exceeds the net effects of deposition and vertical diffusion. Concentrations decrease after mid-afternoon when horizontal advection begins to dominate the other processes. When applied along the air mass transport path, process analysis shows that during most of the day, chemical production is larger than the other processes and causes the air mass ozone concentration to steadily increase during transport downwind of the urban core. Maximum ozone production rates equaled 20-25 ppb/h along the trajectory to the rural monitoring site where peak ozone levels occurred approximately 40 km downwind of urban Seattle, WA. The chemical production rates during this ozone evolution process play an important role in the peak ozone values. Higher peak ozone concentrations that occurred on Sunday, 14 July 1996 (118 ppbv), compared to those on Friday, 12 July 1996 (80 ppbv), were due, in part, to the higher ozone production rates along the trajectory to the rural monitoring site on 14 July compared to 12 July. These differences in chemical production appear to be related to differences in VOC/NO x ratios within the urban air mass for each day. The importance of VOC/NO x effects on

  14. DPTRAJ/ODP - DOUBLE PRECISION TRAJECTORY ANALYSIS AND ORBIT DETERMINATION PROGRAM

    NASA Technical Reports Server (NTRS)

    Breckheimer, P. J.

    1994-01-01

    The Double Precision Trajectory Analysis Program, DPTRAJ, and the Orbit Determination Program, ODP, have been developed and improved over the years to provide the NASA Jet Propulsion Laboratory with a highly reliable and accurate navigation capability for their deep space missions such as VOYAGER. DPTRAJ and ODP are each collections of programs which work together to provide the desired computational results. DPTRAJ, ODP, and their supporting utility programs are capable of handling the massive amounts of data and performing the various numerical calculations required for solving the navigation problems associated with planetary fly-by and lander missions. They were used extensively in support of NASA's VOYAGER project. DPTRAJ produces a spacecraft ephemeris by numerical integration of the equations of motion, which can be formulated using a full set of acceleration models. For each particular trajectory case the extent of the modeling employed and the precision of the integration process are controlled by user input specifications. The equation of motion used includes four types of terms. An acceleration term accounts for the basic conic motion of the spacecraft with respect to the central body. Terms that measure the attraction of the perturbing bodies on the spacecraft and terms that indirectly affect the motion as perturbations on the central body may be included. Terms are also provided to account for other gravitational and non-gravitational effects on the motion. ODP's function is the processing of the observational data in order to compute precise estimates of the spacecraft, or lander, position coordinate histories. This function is executed by processing the observation data and auxiliary calibration information. ODP also computes a spacecraft state vector, or a lander position vector, along with parameters which define the acceleration. The heart of the ODP process is a data fitting subprocess in which validated, edited, and corrected observational data

  15. A combined Eulerian-Lagrangian two-phase flow analysis of SSME HPOTP nozzle plug trajectories. I - Methodology

    NASA Technical Reports Server (NTRS)

    De Jong, Frederik J.; Sabnis, Jayant S.; Mcconnaughey, Paul K.

    1989-01-01

    A computer code has been developed for the analysis of SSME (Space Shuttle Main Engine) HPOTP (High Pressure Oxidizer Turbo Pump) nozzle plug trajectories in the turnaround duct downstream of the turbine. The algorithm is based on a combined Eulerian-Lagrangian analysis originally developed for the study of two-phase flows. The Lagrangian part of this analysis has been enhanced to include three-dimensional particle motion and the effect of particle-wall collisions in complex geometries (with a large number of boundaries). The sensitivity of the nozzle plug trajectories to a variety of parameters has been determined, via the qualitative analysis of a select number of computed trajectories. The results of extensive parametric studies have been reported in a companion paper.

  16. User's guide to the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)

    NASA Technical Reports Server (NTRS)

    Lutzky, D.; Schafer, J.

    1973-01-01

    The MAESTRO system is a mission analysis tool designed to present to the user information necessary to make the various decisions required in the design and execution of a spaceflight mission. The system was designed so that it can be used in both the pre-launch mission planning phase of a mission and during the flight as an in-flight decision making tool. A description of each of the following modes is presented: (1) trajectory propagation mode; (2) retro-fire determination mode; (3) midcourse analysis determination mode; (4) Monte Carlo mode; (5) verification mode; (6) orbit stability mode; and (7) post injection trim mode. A description of the inputs necessary to run the program mode is given along with a sample case.

  17. Evaluation of ionic pollutants of acid fog and rain using a factor analysis and back trajectories.

    PubMed

    Adzuhata, T; Inotsume, J; Okamura, T; Kikuchi, R; Ozeki, T; Kajikawa, M; Ogawa, N

    2001-01-01

    Fog and rain water samples were collected at the same time in the Akita Hachimantai mountain range in northern Japan from June to September in 1998 and 1999. The various ion concentrations in these samples were analyzed, and the fog droplet sizes were measured for each fog event. As the fog droplet size increased, the ion concentration decreased. The slope of log-log plots of the concentration versus the droplet size differed with the kind of ion. In order to characterize the air pollutant, moreover, these data were quantitatively analyzed by an oblique rotational factor analysis. We found that three factors were extracted as the air pollutant source: (NH4)2SO4, acids (HNO3 + H2SO4) and sea-salt. Combining the factor analysis with the 72 h back-trajectory at 850 hPa level, we found that the contribution of each factor varied with the transport pattern of air masses. PMID:11993680

  18. Reaction Trajectory Revealed by a Joint Analysis of Protein Data Bank

    PubMed Central

    Ren, Zhong

    2013-01-01

    Structural motions along a reaction pathway hold the secret about how a biological macromolecule functions. If each static structure were considered as a snapshot of the protein molecule in action, a large collection of structures would constitute a multidimensional conformational space of an enormous size. Here I present a joint analysis of hundreds of known structures of human hemoglobin in the Protein Data Bank. By applying singular value decomposition to distance matrices of these structures, I demonstrate that this large collection of structural snapshots, derived under a wide range of experimental conditions, arrange orderly along a reaction pathway. The structural motions along this extensive trajectory, including several helical transformations, arrive at a reverse engineered mechanism of the cooperative machinery (Ren, companion article), and shed light on pathological properties of the abnormal homotetrameric hemoglobins from α-thalassemia. This method of meta-analysis provides a general approach to structural dynamics based on static protein structures in this post genomics era. PMID:24244274

  19. Coral population trajectories, increased disturbance and management intervention: a sensitivity analysis.

    PubMed

    Riegl, Bernhard; Berumen, Michael; Bruckner, Andrew

    2013-04-01

    Coral reefs distant from human population were sampled in the Red Sea and one-third showed degradation by predator outbreaks (crown-of-thorns-starfish = COTS observed in all regions in all years) or bleaching (1998, 2010). Models were built to assess future trajectories. They assumed variable coral types (slow/fast growing), disturbance frequencies (5,10,20 years), mortality (equal or not), and connectivity (un/connected to un/disturbed community). Known disturbances were used to parameterize models. Present and future disturbances were estimated from remote-sensing chlorophyll and temperature data. Simulations and sensitivity analysis suggest community resilience at >20-year disturbance frequency, but degradation at higher frequency. Trajectories move from fast-grower to slow-grower dominance at intermediate disturbance frequency, then again to fast-grower dominance. A similar succession was observed in the field: Acropora to Porites to Stylophora/Pocillopora dominance on shallow reefs, and a transition from large poritids to small faviids on deep reefs. Synthesis and application: Even distant reefs are impacted by global changes. COTS impacts and bleaching were key driver of coral degradation, coral population decline could be reduced if these outbreaks and bleaching susceptibility were managed by maintaining water quality and by other interventions. Just leaving reefs alone, seems no longer a satisfactory option. PMID:23610643

  20. Student trajectories in physics: the need for analysis through a socio-cultural lens

    NASA Astrophysics Data System (ADS)

    Zapata, Mara

    2010-09-01

    An analysis of student connections through time and space relative to the core discipline of physics is attempted, as viewed through the lens of actor-network-theory, by Antonia Candela. Using lenses of cultural realities, networks, and perceived power in the discourse of one specific university in the capital city of Mexico and one undergraduate physics classroom, the trajectories and itineraries of students are analyzed, relative to a physics professor's pedagogical practices. This ethnographic study then yields comparisons between Mexican undergraduate students and students from the United States. Actor network theory recognizes that the symbiotic relationship existing between an actor and a continuum of space and time is defined by the symbiotic yet interdependent relationships and networks of practice (Lemke in Downward causation: Minds, bodies, and matter 2000). As part of this study and in line with actor-network-theory, human actors and non-human participants were viewed in relation to how subjects acted and were acted upon within networks of practice. Through this forum I reflect on this work with particular focus on the issues of situatedness of actors from a sociocultural perspective and how established networks viewed within this perspective frame and subsequently impact student trajectories and itineraries. In essence I argue for a need to look at a myriad of further complexities driving the symbiotic relationships being analyzed.

  1. Separating the air quality impact of a major highway and nearby sources by nonparametric trajectory analysis.

    PubMed

    Henry, Ronald C; Vette, Alan; Norris, Gary; Vedantham, Ram; Kimbrough, Sue; Shores, Richard C

    2011-12-15

    Nonparametric Trajectory Analysis (NTA), a receptor-oriented model, was used to assess the impact of local sources of air pollution at monitoring sites located adjacent to highway I-15 in Las Vegas, NV. Measurements of black carbon, carbon monoxide, nitrogen oxides, and sulfur dioxide concentrations were collected from December 2008 to December 2009. The purpose of the study was to determine the impact of the highway at three downwind monitoring stations using an upwind station to measure background concentrations. NTA was used to precisely determine the contribution of the highway to the average concentrations measured at the monitoring stations accounting for the spatially heterogeneous contributions of other local urban sources. NTA uses short time average concentrations, 5 min in this case, and constructed local back-trajectories from similarly short time average wind speed and direction to locate and quantify contributions from local source regions. Averaged over an entire year, the decrease of concentrations with distance from the highway was found to be consistent with previous studies. For this study, the NTA model is shown to be a reliable approach to quantify the impact of the highway on local air quality in an urban area with other local sources. PMID:22044064

  2. Comparative Analysis of VLF Signal Variation along Trajectory Induced by X-ray Solar Flares

    NASA Astrophysics Data System (ADS)

    Kolarski, A.; Grubor, D.

    2015-12-01

    Comparative qualitative analysis of amplitude and phase delay variations was carried out along the trajectory of GQD/22.1 kHz and NAA/24.0 kHz VLF signal traces, propagating from Skelton (UK) and Maine (USA) toward Belgrade, induced by four isolated solar X-ray flare events occurred during the period from September 2005 to December 2006. For monitoring, recording and for storage of VLF data at the Institute of Physics in Belgrade, Serbia, the AbsPAL system was used. For modeling purposes of propagating conditions along GQD and NAA signal propagation paths, LWPCv21 program code was used. Occurred solar flare events induced lower ionosphere electron density height profile changes, causing perturbations in VLF wave propagation within Earth-ionosphere waveguides. As analyzed VLF signals characterize by different propagation parameters along trajectories from their transmitters to the Belgrade receiver site, their propagation is affected in different ways for different solar flare events and also for the same solar flare events.

  3. Coral population trajectories, increased disturbance and management intervention: a sensitivity analysis

    PubMed Central

    Riegl, Bernhard; Berumen, Michael; Bruckner, Andrew

    2013-01-01

    Coral reefs distant from human population were sampled in the Red Sea and one-third showed degradation by predator outbreaks (crown-of-thorns-starfish = COTS observed in all regions in all years) or bleaching (1998, 2010). Models were built to assess future trajectories. They assumed variable coral types (slow/fast growing), disturbance frequencies (5,10,20 years), mortality (equal or not), and connectivity (un/connected to un/disturbed community). Known disturbances were used to parameterize models. Present and future disturbances were estimated from remote-sensing chlorophyll and temperature data. Simulations and sensitivity analysis suggest community resilience at >20-year disturbance frequency, but degradation at higher frequency. Trajectories move from fast-grower to slow-grower dominance at intermediate disturbance frequency, then again to fast-grower dominance. A similar succession was observed in the field: Acropora to Porites to Stylophora/Pocillopora dominance on shallow reefs, and a transition from large poritids to small faviids on deep reefs. Synthesis and application: Even distant reefs are impacted by global changes. COTS impacts and bleaching were key driver of coral degradation, coral population decline could be reduced if these outbreaks and bleaching susceptibility were managed by maintaining water quality and by other interventions. Just leaving reefs alone, seems no longer a satisfactory option. PMID:23610643

  4. A special protection scheme utilizing trajectory sensitivity analysis in power transmission

    NASA Astrophysics Data System (ADS)

    Suriyamongkol, Dan

    In recent years, new measurement techniques have provided opportunities to improve the North American Power System observability, control and protection. This dissertation discusses the formulation and design of a special protection scheme based on a novel utilization of trajectory sensitivity techniques with inputs consisting of system state variables and parameters. Trajectory sensitivity analysis (TSA) has been used in previous publications as a method for power system security and stability assessment, and the mathematical formulation of TSA lends itself well to some of the time domain power system simulation techniques. Existing special protection schemes often have limited sets of goals and control actions. The proposed scheme aims to maintain stability while using as many control actions as possible. The approach here will use the TSA in a novel way by using the sensitivities of system state variables with respect to state parameter variations to determine the state parameter controls required to achieve the desired state variable movements. The initial application will operate based on the assumption that the modeled power system has full system observability, and practical considerations will be discussed.

  5. Identification of a novel transcript of human MD2 gene.

    PubMed

    Shen, Chen; Shen, A-Dong

    2016-09-15

    Myeloid differentiation protein 2 (MD2) regulates bacterial lipopolysaccharide (LPS) triggered anti-bacterial immune response as a broker between LPS and Toll-like receptor 4 (TLR4). In this study, we identified a novel naturally occurring spliceosome of human MD2, termed as MD2-T3. This transcript lacked two exons of MD2 gene. By protein structure analysis and literature review, we predicted that MD2-T3 isoform might execute regulatory biological effects such as limiting LPS-triggered TLR4 signaling. PMID:27317890

  6. Single-cell analysis delineates a trajectory toward the human early otic lineage.

    PubMed

    Ealy, Megan; Ellwanger, Daniel C; Kosaric, Nina; Stapper, Andres P; Heller, Stefan

    2016-07-26

    Efficient pluripotent stem cell guidance protocols for the production of human posterior cranial placodes such as the otic placode that gives rise to the inner ear do not exist. Here we use a systematic approach including defined monolayer culture, signaling modulation, and single-cell gene expression analysis to delineate a developmental trajectory for human otic lineage specification in vitro. We found that modulation of bone morphogenetic protein (BMP) and WNT signaling combined with FGF and retinoic acid treatments over the course of 18 days generates cell populations that develop chronological expression of marker genes of non-neural ectoderm, preplacodal ectoderm, and early otic lineage. Gene expression along this differentiation path is distinct from other lineages such as endoderm, mesendoderm, and neural ectoderm. Single-cell analysis exposed the heterogeneity of differentiating cells and allowed discrimination of non-neural ectoderm and otic lineage cells from off-target populations. Pseudotemporal ordering of human embryonic stem cell and induced pluripotent stem cell-derived single-cell gene expression profiles revealed an initially synchronous guidance toward non-neural ectoderm, followed by comparatively asynchronous occurrences of preplacodal and otic marker genes. Positive correlation of marker gene expression between both cell lines and resemblance to mouse embryonic day 10.5 otocyst cells implied reasonable robustness of the guidance protocol. Single-cell trajectory analysis further revealed that otic progenitor cell types are induced in monolayer cultures, but further development appears impeded, likely because of lack of a lineage-stabilizing microenvironment. Our results provide a framework for future exploration of stabilizing microenvironments for efficient differentiation of stem cell-generated human otic cell types. PMID:27402757

  7. Developing the MD Explorer

    NASA Astrophysics Data System (ADS)

    Howie, Philip V.

    1993-04-01

    The MD Explorer is an eight-seat twin-turbine engine helicopter which is being developed using integrated product definition (IPD) team methodology. New techniques include NOTAR antitorque system for directional control, a composite fuselage, an all-composite bearingless main rotor, and digital cockpit displays. Three-dimensional CAD models are the basis of the entire Explorer design. Solid models provide vendor with design clarification, removing much of the normal drawing interpretation errors.

  8. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units-Radial Distribution Function Histogramming.

    PubMed

    Levine, Benjamin G; Stone, John E; Kohlmeyer, Axel

    2011-05-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis. PMID:21547007

  9. Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming

    SciTech Connect

    Levine, Benjamin G.; Stone, John E.; Kohlmeyer, Axel

    2011-05-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.

  10. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units—Radial Distribution Function Histogramming

    PubMed Central

    Stone, John E.; Kohlmeyer, Axel

    2011-01-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU’s memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis. PMID:21547007

  11. Video-tracker trajectory analysis: who meets whom, when and where

    NASA Astrophysics Data System (ADS)

    Jäger, U.; Willersinn, D.

    2010-04-01

    Unveiling unusual or hostile events by observing manifold moving persons in a crowd is a challenging task for human operators, especially when sitting in front of monitor walls for hours. Typically, hostile events are rare. Thus, due to tiredness and negligence the operator may miss important events. In such situations, an automatic alarming system is able to support the human operator. The system incorporates a processing chain consisting of (1) people tracking, (2) event detection, (3) data retrieval, and (4) display of relevant video sequence overlaid by highlighted regions of interest. In this paper we focus on the event detection stage of the processing chain mentioned above. In our case, the selected event of interest is the encounter of people. Although being based on a rather simple trajectory analysis, this kind of event embodies great practical importance because it paves the way to answer the question "who meets whom, when and where". This, in turn, forms the basis to detect potential situations where e.g. money, weapons, drugs etc. are handed over from one person to another in crowded environments like railway stations, airports or busy streets and places etc.. The input to the trajectory analysis comes from a multi-object video-based tracking system developed at IOSB which is able to track multiple individuals within a crowd in real-time [1]. From this we calculate the inter-distances between all persons on a frame-to-frame basis. We use a sequence of simple rules based on the individuals' kinematics to detect the event mentioned above to output the frame number, the persons' IDs from the tracker and the pixel coordinates of the meeting position. Using this information, a data retrieval system may extract the corresponding part of the recorded video image sequence and finally allows for replaying the selected video clip with a highlighted region of interest to attract the operator's attention for further visual inspection.

  12. A MD Simulation and Analysis for Aggregation Behaviors of Nanoscale Zero-Valent Iron Particles in Water via MS

    PubMed Central

    Liu, Dongmei; Tang, Huan; Lu, Jing; Cui, Fuyi

    2014-01-01

    With the development of nanotechnology, more nanomaterials will enter into water environment system. Studying the existing form of nanomaterials in water environment will help people benefit from the correct use of them and to reduce the harm to human caused by them for some nanomaterials can bring polluting effect. Aggregation is a main behavior for nanoparticle in water environment. NZVI are used widely in many fields resulting in more NZVI in water environment. Molecular dynamics simulations and Materials Studio software are used to investigate the microaggregation behaviors of NZVI particles. Two scenes are involved: (1) particle size of NZVI in each simulation system is the same, but initial distance of two NZVI particles is different; (2) initial distance of two NZVI particles in each simulation system is the same, but particle size of NZVI is different. Atomistic trajectory, NP activity, total energy, and adsorption of H2O are analyzed with MS. The method provides new quantitative insight into the structure, energy, and dynamics of the aggregation behaviors of NZVI particles in water. It is necessary to understand microchange of NPs in water because it can provide theoretical research that is used to reduce polluting effect of NPs on water environment. PMID:25250388

  13. A Spatiotemporal Analysis of Brazilian Science from the Perspective of Researchers’ Career Trajectories

    PubMed Central

    Furtado, Caio Alves; Davis, Clodoveu A.; Gonçalves, Marcos André; de Almeida, Jussara Marques

    2015-01-01

    The growth of Brazilian scientific production in recent years is remarkable, which motivates an investigation on the factors, inside and outside the country, that helped shape this wealthy research environment. This article provides a thorough analysis of the education of researchers that constitute the main Brazilian research groups, using data on about 6,000 researchers involved in the country’s National Institutes of Science and Technology (INCT) initiative. Data on the steps taken by each researcher in her education, from the bachelor’s degree to doctorate, including a possible postdoctoral experience, and employment, are extracted from an official curriculum vitae repository. The location and the time at which each career step occurred define spatiotemporal career trajectories. We then analyze such trajectories considering additional data, including the area of knowledge of the INCTs to which each researcher is associated. We found an increasing prevalence of Brazilian institutions in the education of Brazilian scientists, as the number of doctorates earned abroad is decreasing over time. Postdoctoral stages, on the other hand, often take place in Europe or in the United States. Taking an international postdoctoral position after a full education in Brazil suggests a drive towards seeking higher-level exchange and cooperation with foreign groups in a more advanced career stage. Results also show that Brazilian researchers tend to seek employment in regions that are close to the institutions at which they received their bachelor’s degrees, suggesting low mobility within the country. This study can be instrumental in defining public policies for correcting distortions, and can help other developing countries that aim to improve their national science systems. PMID:26513743

  14. Analysis of Spatio-Temporal Traffic Patterns Based on Pedestrian Trajectories

    NASA Astrophysics Data System (ADS)

    Busch, S.; Schindler, T.; Klinger, T.; Brenner, C.

    2016-06-01

    For driver assistance and autonomous driving systems, it is essential to predict the behaviour of other traffic participants. Usually, standard filter approaches are used to this end, however, in many cases, these are not sufficient. For example, pedestrians are able to change their speed or direction instantly. Also, there may be not enough observation data to determine the state of an object reliably, e.g. in case of occlusions. In those cases, it is very useful if a prior model exists, which suggests certain outcomes. For example, it is useful to know that pedestrians are usually crossing the road at a certain location and at certain times. This information can then be stored in a map which then can be used as a prior in scene analysis, or in practical terms to reduce the speed of a vehicle in advance in order to minimize critical situations. In this paper, we present an approach to derive such a spatio-temporal map automatically from the observed behaviour of traffic participants in everyday traffic situations. In our experiments, we use one stationary camera to observe a complex junction, where cars, public transportation and pedestrians interact. We concentrate on the pedestrians trajectories to map traffic patterns. In the first step, we extract trajectory segments from the video data. These segments are then clustered in order to derive a spatial model of the scene, in terms of a spatially embedded graph. In the second step, we analyse the temporal patterns of pedestrian movement on this graph. We are able to derive traffic light sequences as well as the timetables of nearby public transportation. To evaluate our approach, we used a 4 hour video sequence. We show that we are able to derive traffic light sequences as well as time tables of nearby public transportation.

  15. Uncertainty Optimization Applied to the Monte Carlo Analysis of Planetary Entry Trajectories

    NASA Technical Reports Server (NTRS)

    Olds, John; Way, David

    2001-01-01

    Recently, strong evidence of liquid water under the surface of Mars and a meteorite that might contain ancient microbes have renewed interest in Mars exploration. With this renewed interest, NASA plans to send spacecraft to Mars approx. every 26 months. These future spacecraft will return higher-resolution images, make precision landings, engage in longer-ranging surface maneuvers, and even return Martian soil and rock samples to Earth. Future robotic missions and any human missions to Mars will require precise entries to ensure safe landings near science objective and pre-employed assets. Potential sources of water and other interesting geographic features are often located near hazards, such as within craters or along canyon walls. In order for more accurate landings to be made, spacecraft entering the Martian atmosphere need to use lift to actively control the entry. This active guidance results in much smaller landing footprints. Planning for these missions will depend heavily on Monte Carlo analysis. Monte Carlo trajectory simulations have been used with a high degree of success in recent planetary exploration missions. These analyses ascertain the impact of off-nominal conditions during a flight and account for uncertainty. Uncertainties generally stem from limitations in manufacturing tolerances, measurement capabilities, analysis accuracies, and environmental unknowns. Thousands of off-nominal trajectories are simulated by randomly dispersing uncertainty variables and collecting statistics on forecast variables. The dependability of Monte Carlo forecasts, however, is limited by the accuracy and completeness of the assumed uncertainties. This is because Monte Carlo analysis is a forward driven problem; beginning with the input uncertainties and proceeding to the forecasts outputs. It lacks a mechanism to affect or alter the uncertainties based on the forecast results. If the results are unacceptable, the current practice is to use an iterative, trial

  16. Combining Propensity Score Matching and Group-Based Trajectory Analysis in an Observational Study

    ERIC Educational Resources Information Center

    Haviland, Amelia; Nagin, Daniel S.; Rosenbaum, Paul R.

    2007-01-01

    In a nonrandomized or observational study, propensity scores may be used to balance observed covariates and trajectory groups may be used to control baseline or pretreatment measures of outcome. The trajectory groups also aid in characterizing classes of subjects for whom no good matches are available and to define substantively interesting groups…

  17. Semi-Automated Trajectory Analysis of Deep Ballistic Penetrating Brain Injury

    PubMed Central

    Folio, Les; Solomon, Jeffrey; Biassou, Nadia; Fischer, Tatjana; Dworzak, Jenny; Raymont, Vanessa; Sinaii, Ninet; Wassermann, Eric M.; Grafman, Jordan

    2016-01-01

    Background Penetrating head injuries (PHIs) are common in combat operations and most have visible wound paths on computed tomography (CT). Objective We assess agreement between an automated trajectory analysis-based assessment of brain injury and manual tracings of encephalomalacia on CT. Methods We analyzed 80 head CTs with ballistic PHI from the Institutional Review Board approved Vietnam head injury registry. Anatomic reports were generated from spatial coordinates of projectile entrance and terminal fragment location. These were compared to manual tracings of the regions of encephalomalacia. Dice’s similarity coefficients, kappa, sensitivities, and specificities were calculated to assess agreement. Times required for case analysis were also compared. Results Results show high specificity of anatomic regions identified on CT with semiautomated anatomical estimates and manual tracings of tissue damage. Radiologist’s and medical students’ anatomic region reports were similar (Kappa 0.8, t-test p < 0.001). Region of probable injury modeling of involved brain structures was sensitive (0.7) and specific (0.9) compared with manually traced structures. Semiautomated analysis was 9-fold faster than manual tracings. Conclusion Our region of probable injury spatial model approximates anatomical regions of encephalomalacia from ballistic PHI with time-saving over manual methods. Results show potential for automated anatomical reporting as an adjunct to current practice of radiologist/neurosurgical review of brain injury by penetrating projectiles. PMID:23707123

  18. Transition paths of Met-enkephalin from Markov state modeling of a molecular dynamics trajectory.

    PubMed

    Banerjee, Rahul; Cukier, Robert I

    2014-03-20

    Conformational states and their interconversion pathways of the zwitterionic form of the pentapeptide Met-enkephalin (MetEnk) are identified. An explicit solvent molecular dynamics (MD) trajectory is used to construct a Markov state model (MSM) based on dihedral space clustering of the trajectory, and transition path theory (TPT) is applied to identify pathways between open and closed conformers. In the MD trajectory, only four of the eight backbone dihedrals exhibit bistable behavior. Defining a conformer as the string XXXX with X = "+" or "-" denoting, respectively, positive or negative values of a given dihedral angle and obtaining the populations of these conformers shows that only four conformers are highly populated, implying a strong correlation among these dihedrals. Clustering in dihedral space to construct the MSM finds the same four bistable dihedral angles. These state populations are very similar to those found directly from the MD trajectory. TPT is used to obtain pathways, parametrized by committor values, in dihedral state space that are followed in transitioning from closed to open states. Pathway costs are estimated by introducing a kinetics-based procedure that orders pathways from least (shortest) to greater cost paths. The least costly pathways in dihedral space are found to only involve the same XXXX set of dihedral angles, and the conformers accessed in the closed to open transition pathways are identified. For these major pathways, a correlation between reaction path progress (committors) and the end-to-end distance is identified. A dihedral space principal component analysis of the MD trajectory shows that the first three modes capture most of the overall fluctuation, and pick out the same four dihedrals having essentially all the weight in those modes. A MSM based on root-mean-square backbone clustering was also carried out, with good agreement found with dihedral clustering for the static information, but with results that differ

  19. Trajectories of Body Dissatisfaction and Dietary Restriction in Early Adolescent Girls: A Latent Class Growth Analysis.

    PubMed

    Rodgers, Rachel F; McLean, Siân A; Marques, Mathew; Dunstan, Candice J; Paxton, Susan J

    2016-08-01

    Clarifying the trajectories of body image and eating concerns in adolescents is critical. We examined longitudinal patterns of development of body dissatisfaction and dietary restriction among early adolescent girls within a sociocultural framework. A sample of 259 school girls (M age = 12.76 years, SD = 0.44) reported on sociocultural influences, body dissatisfaction and dietary restriction at baseline, 8, and 14 months. A subsample provided height and weight. Analyses identified four trajectories of body dissatisfaction: low, moderate-increasing, moderate-decreasing, and high. Three trajectories of dietary restriction emerged: low, moderate, and high. Baseline and 8-month sociocultural variables and BMI differed between the trajectories. A subgroup of girls displays high levels of body image and eating concerns by early adolescence. Sociocultural variables influence these trajectories. PMID:26386562

  20. Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1991-01-01

    A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.

  1. General Growth Mixture Analysis of Adolescents' Developmental Trajectories of Anxiety: The Impact of Untested Invariance Assumptions on Substantive Interpretations

    ERIC Educational Resources Information Center

    Morin, Alexandre J. S.; Maiano, Christophe; Nagengast, Benjamin; Marsh, Herbert W.; Morizot, Julien; Janosz, Michel

    2011-01-01

    Substantively, this study investigates potential heterogeneity in the developmental trajectories of anxiety in adolescence. Methodologically, this study demonstrates the usefulness of general growth mixture analysis (GGMA) in addressing these issues and illustrates the impact of untested invariance assumptions on substantive interpretations. This…

  2. Chemical and Trajectory Analysis of an Air Mass Plume from Asia

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Marrero, J. E.; Blake, D. R.

    2014-12-01

    Tracking the source of pollution events is important in understanding the transport of pollution plumes and impact on areas far from the source. Previous studies have shown that the rising contribution of Asian air pollution to the US has increased the number of days that pollution events exceed National Ambient Air Quality Standards (NAAQS). Whole air samples collected over the Edwards Air Force Base during a June 2014 NASA Student Airborne Research Program (SARP) flight exhibited enhancements in the concentrations of several compounds between 23-32 thousand feet. Chemical tracer analysis of these high altitude samples reveal that the air does not correspond to California emitted air. Chemical signatures in the plume, including high levels of OCS, chloroform, and methyl chloride, and low levels of methyl bromide, indicate that the plume was most heavily influence by coal combustion with contributions from biomass burning events from Asia. Low concentrations of ethene at the high altitude despite enhanced concentrations of ethane and ethyne suggest that this plume was aged. Further analysis of the plume using meteorological wind trajectories reveal that the plume had originated in China approximately 4-5 days prior. This is faster than results from previous studies that had found a Spring transport time of approximately 6 days.

  3. Numerical analysis of the asymptotic two-point boundary value solution for N-body trajectories.

    NASA Technical Reports Server (NTRS)

    Lancaster, J. E.; Allemann, R. A.

    1972-01-01

    Previously published asymptotic solutions for lunar and interplanetary trajectories have been modified and combined to formulate a general analytical boundary value solution applicable to a broad class of trajectory problems. In addition, the earlier first-order solutions have been extended to second-order to determine if improved accuracy is possible. Comparisons between the asymptotic solution and numerical integration for several lunar and interplanetary trajectories show that the asymptotic solution is generally quite accurate. Also, since no iterations are required, a solution to the boundary value problem is obtained in a fraction of the time required for numerically integrated solutions.

  4. Trends and sources of particulate matter in the Superstition Wilderness using air trajectory and aerosol cluster analysis

    NASA Astrophysics Data System (ADS)

    Coury, Charity; Dillner, Ann M.

    Ambient aerosols adversely affect human health and visibility and impact climate. Identification of sources of particulate matter and its precursors is necessary for developing control strategies. The goal of this research is to utilize long-term speciated particulate matter data and back-trajectory cluster analyses to determine trends and sources of particulate matter in the Superstition Wilderness, a rural area east of Phoenix, Arizona. Twenty-four hour back-trajectories were calculated for every hour of every 24-h particulate matter sample obtained by IMPROVE from 1991 to 2004. Days that included back-trajectories with considerable spatial variance were excluded from further analyses. To minimize uncertainties inherent in single trajectories, all calculated trajectories for each sampling day were averaged to represent the air mass sampled during that day. Cluster analysis of trajectories identified four unique regions, including a region with Phoenix, a region with copper smelters, and one with coal-fired power plants. Yearly averages of sulfate, nitrate, soil, and carbon concentrations were calculated for each region. Statistically significant trends in species concentrations by region and independent of region and differences in concentrations between regions were examined. Sulfate concentrations from the region with smelters were higher than other regions but decreased during the study period. Emissions data from the smelters indicate that much of the sulfate from the region was due to the smelters. The overall 2.2% year -1 decrease in sulfate concentrations at TNM is likely due to decreased emissions from the copper smelters. A 3.6% year -1 increase in nitrate concentrations was driven largely by increasing NO x concentrations from Phoenix and to a lesser extent the region southwest of the site which includes Tucson and suburban/urban areas between Phoenix and Tucson. Soil concentrations were higher from regions with deserts than the region without desert

  5. Barrier scattering with complex-valued quantum trajectories: Taxonomy and analysis of isochrones

    SciTech Connect

    David, Julianne K.; Wyatt, Robert E.

    2008-03-07

    To facilitate the search for isochrones when using complex-valued trajectory methods for quantum barrier scattering calculations, the structure and shape of isochrones in the complex plane were studied. Isochrone segments were categorized based on their distinguishing features, which are shared by each situation studied: High and low energy wave packets, scattering from both thick and thin Gaussian and Eckart barriers of varying height. The characteristic shape of the isochrone is a trifurcated system: Trajectories that transmit the barrier are launched from the lower branch (T), while the middle and upper branches form the segments for reflected trajectories (F and B). In addition, a model is presented for the curved section of the lower branch (from which transmitted trajectories are launched), and important features of the complex extension of the initial wave packet are identified.

  6. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang

    2014-08-01

    Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.

  7. Trajectory analysis for the nucleus and dust of comet C/2013 A1 (Siding Spring)

    SciTech Connect

    Farnocchia, Davide; Chesley, Steven R.; Chodas, Paul W.; Tricarico, Pasquale; Kelley, Michael S. P.; Farnham, Tony L.

    2014-08-01

    Comet C/2013 A1 (Siding Spring) will experience a high velocity encounter with Mars on 2014 October 19 at a distance of 135,000 km ± 5000 km from the planet center. We present a comprehensive analysis of the trajectory of both the comet nucleus and the dust tail. The nucleus of C/2013 A1 cannot impact on Mars even in the case of unexpectedly large nongravitational perturbations. Furthermore, we compute the required ejection velocities for the dust grains of the tail to reach Mars as a function of particle radius and density and heliocentric distance of the ejection. A comparison between our results and the most current modeling of the ejection velocities suggests that impacts are possible only for millimeter to centimeter size particles released more than 13 AU from the Sun. However, this level of cometary activity that far from the Sun is considered extremely unlikely. The arrival time of these particles spans a 20-minute time interval centered at 2014 October 19 at 20:09 TDB, i.e., around the time that Mars crosses the orbital plane of C/2013 A1. Ejection velocities larger than currently estimated by a factor >2 would allow impacts for smaller particles ejected as close as 3 AU from the Sun. These particles would reach Mars from 19:13 TDB to 20:40 TDB.

  8. Characterizing the Atmospheric Circulation over the Colombian Orinoquia through Lagrangian Back-Trajectory Analysis

    NASA Astrophysics Data System (ADS)

    Orjuela, H. R.; Leon, G. E.; Jimenez-Pizarro, R.

    2012-12-01

    The ongoing transformation of the Colombian Orinoquia (Eastern Plains) due to the rapid expansion of the agricultural frontier and oil production implies a series of new atmospheric emissions, which might negatively impact human health and ecosystems in different ways. Some air pollutants have already been detected in the region. This is the case of Persistent Organic Pollutants (POPs), which are sampled in a site of the Global Atmospheric Passive Sampling (GAPS) network located in Arauca, Colombia. The current understanding on the origin and transport of pollutants is limited due to the lack of information on the atmospheric circulation in the Colombian Orinoquia. This research aims at generating new knowledge on the meteorology of this region mainly for weather forecasting and atmospheric pollution impact assessment. We present a conceptual model of the atmospheric circulation in the Colombian Orinoquia, including the main synoptic and mesoscale factors governing its meteorology. In order to identify the source of air masses and synoptic scale disturbances, we used Lagrangian back trajectories obtained with the model HYSPLIT 4.9 over the period 2000-2010. NCEP/NCAR and Global Data Assimilation System (GDAS) reanalysis results were used as meteorological input to HYSPLIT. Prior to the Lagrangian simulation, these global datasets were evaluated for their capability to reproduce meteorological observations in the region, particularly for rain and flood-triggering conditions. The observational data included satellite images and ground level network measurements by the Colombian Institute of Hydrology, Meteorology and Environmental Research (IDEAM). Windgridds and other data analysis tools were used.

  9. Two Aspects of the Rural-Urban Divide and Educational Stratification in China: A Trajectory Analysis*

    PubMed Central

    Hao, Lingxin; Hu, Alfred; Lo, Jamie

    2015-01-01

    Contextualized in China’s social change of the past half-century, this paper develops the notion of dichotomous inequality to conceptualize the two aspects of China’s rural-urban divide in educational inequality—the household registration system (hukou) assigns people to a top-bottom hierarchy, and the rural-urban schooling system institutionalizes unequal resource distribution and diverse school mission. Based on this conceptualization, we formulate a Chinese version of the maximally maintained inequality (MMI) hypothesis. We capitalize on individual educational history data from the China General Social Survey (CGSS) 2008 and conduct a trajectory analysis using the generalized mixture modeling to estimate the differential effects of the two aspects of rural-urban divide on educational inequality in China. Findings indicate that (1) the sorting mechanism of the rural hukou places rural-hukou people in the very bottom of educational stratification, (2) the penalty of attending rural pre-tertiary school increases with educational stages, and (3) there is a cumulative disadvantage of rural hukou and rural school. Overall, our findings attest to the Chinese-version MMI and the behind principle of inequality reproduction. PMID:26166835

  10. Analysis of the contribution of experimental bias, experimental noise, and inter-subject biological variability on the assessment of developmental trajectories in diffusion MRI studies of the brain

    PubMed Central

    Sadeghi, Neda; Nayak, Amritha; Walker, Lindsay; Irfanoglu, M. Okan; Albert, Paul S.; Pierpaoli, Carlo

    2015-01-01

    Metrics derived from the diffusion tensor, such as fractional anisotropy (FA) and mean diffusivity (MD) have been used in many studies of postnatal brain development. A common finding of previous studies is that these tensor-derived measures vary widely even in healthy populations. This variability can be due to inherent inter-individual biological differences as well as experimental noise. Moreover, when comparing different studies, additional variability can be introduced by different acquisition protocols. In this study we examined scans of 61 individuals (aged 4–22 years) from the NIH MRI study of normal brain development. Two scans were collected with different protocols (low and high resolution). Our goal was to separate the contributions of biological variability and experimental noise to the overall measured variance, as well as to assess potential systematic effects related to the use of different protocols. We analyzed FA and MD in seventeen regions of interest. We found that biological variability for both FA and MD varies widely across brain regions; biological variability is highest for FA in the lateral part of the splenium and body of the corpus callosum along with the cingulum and the superior longitudinal fasciculus, and for MD in the optic radiations and the lateral part of the splenium. These regions with high inter-individual biological variability are the most likely candidates for assessing genetic and environmental effects in the developing brain. With respect to protocol-related effects, the lower resolution acquisition resulted in higher MD and lower FA values for the majority of regions compared with the higher resolution protocol. However, the majority of the regions did not show any age–protocol interaction, indicating similar trajectories were obtained irrespective of the protocol used. PMID:25583609

  11. Corresponding Functional Dynamics across the Hsp90 Chaperone Family: Insights from a Multiscale Analysis of MD Simulations

    PubMed Central

    Morra, Giulia; Potestio, Raffaello; Micheletti, Cristian; Colombo, Giorgio

    2012-01-01

    Understanding how local protein modifications, such as binding small-molecule ligands, can trigger and regulate large-scale motions of large protein domains is a major open issue in molecular biology. We address various aspects of this problem by analyzing and comparing atomistic simulations of Hsp90 family representatives for which crystal structures of the full length protein are available: mammalian Grp94, yeast Hsp90 and E.coli HtpG. These chaperones are studied in complex with the natural ligands ATP, ADP and in the Apo state. Common key aspects of their functional dynamics are elucidated with a novel multi-scale comparison of their internal dynamics. Starting from the atomic resolution investigation of internal fluctuations and geometric strain patterns, a novel analysis of domain dynamics is developed. The results reveal that the ligand-dependent structural modulations mostly consist of relative rigid-like movements of a limited number of quasi-rigid domains, shared by the three proteins. Two common primary hinges for such movements are identified. The first hinge, whose functional role has been demonstrated by several experimental approaches, is located at the boundary between the N-terminal and Middle-domains. The second hinge is located at the end of a three-helix bundle in the Middle-domain and unfolds/unpacks going from the ATP- to the ADP-state. This latter site could represent a promising novel druggable allosteric site common to all chaperones. PMID:22457611

  12. Air-breathing hypersonic vehicle guidance and control studies: An integrated trajectory/control analysis methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    An integrated trajectory/control analysis algorithm has been used to generate trajectories and desired control strategies for two different hypersonic air-breathing vehicle models and orbit targets. Both models used cubic spline curve fit tabulated winged-cone accelerator vehicle representations. Near-fuel-optimal, horizontal takeoff trajectories, imposing a dynamic pressure limit of 1000 psf, were developed. The first model analysis case involved a polar orbit and included the dynamic effects of using elevons to maintain longitudinal trim. Analysis results indicated problems with the adequacy of the propulsion model and highlighted dynamic pressure/altitude instabilities when using vehicle angle of attack as a control variable. Also, the magnitude of computed elevon deflections to maintain trim suggested a need for alternative pitch moment management strategies. The second analysis case was reformulated to use vehicle pitch attitude relative to the local vertical as the control variable. A new, more realistic, air-breathing propulsion model was incorporated. Pitch trim calculations were dropped and an equatorial orbit was specified. Changes in flight characteristics due to the new propulsion model have been identified. Flight regimes demanding rapid attitude changes have been noted. Also, some issues that would affect design of closed-loop controllers were ascertained.

  13. Method for Rapid Interplanetary Trajectory Analysis by delta-V Maps with Flyby Options

    NASA Astrophysics Data System (ADS)

    Ishimatsu, T.; Hoffman, J.; de Weck, O.

    This paper develops a convenient tool which is capable of calculating ballistic interplanetary trajectories with planetary flyby options to create exhaustive V contour plots for both direct trajectories without flybys and flyby trajectories in a single chart. The contours of V for a range of departure dates (x-axis) and times of flight (y-axis) serve as a “visual calendar” of launch windows, which are useful for the creation of a long-term transportation schedule for mission planning purposes. For planetary flybys, a simple powered flyby manoeuvre with a reasonably small velocity impulse at periapsis is allowed to expand the flyby mission windows. The procedure of creating a V contour plot for direct trajectories is a straightforward full- factorial computation with two input variables of departure and arrival dates solving Lambert's problem for each combination. For flyby trajectories, a “pseudo full-factorial” computation is conducted by decomposing the problem into two separate full- factorial computations. Mars missions including Venus flyby opportunities are used to illustrate the application of this model for the 2020-2040 time frame. The “competitiveness” of launch windows is defined and determined for each launch opportunity.

  14. A Trajectory Analysis of Alcohol and Marijuana Use Among Latino Adolescents in San Francisco, California

    PubMed Central

    McCoy, Sandra I.; Jewell, Nicholas P.; Hubbard, Alan; Gerdts, Caitlin E.; Doherty, Irene A.; Padian, Nancy S.; Minnis, Alexandra M.

    2014-01-01

    Purpose We examined alcohol and marijuana use trajectories among Latino adolescents in the San Francisco Bay Area. Methods A total of 410 Latino adolescents aged 14–19 years were recruited from community venues from years 2001 to 2004 and followed up for 2 years. In separate models, we identified groups with similar temporal patterns of alcohol and marijuana use using semi-parametric latent group trajectory modeling. Multivariable multinomial logistic regression was used to identify factors associated with the probability of trajectory group membership. Results The use of alcohol (76%) and marijuana (55%) in the previous 6 months was common. Three alcohol-use trajectories were identified: low users (18%), moderate users (37%), and frequent users (45%). Low alcohol users (vs. moderate users) were found to be younger in age, preferred Spanish language, and had more parental monitoring. Frequent users were more likely to be male, sexually active, gang exposed, and have less parental monitoring than moderate users. Similarly, three marijuana-use trajectories were identified: low users (36%), moderate users (35%), and frequent users (28%), with similar correlates of group membership. Conclusions Urban Latino adolescents’ substance use is shaped by complex cultural and environmental influences. Patterns of substance use emerge by early adolescence highlighting the need for timely intervention. PMID:21094433

  15. Harold E. Varmus, MD.

    PubMed

    Varmus, H E

    1995-06-01

    On November 19, 1993, the Senate approved the nomination of Harold E. Varmus, MD, as Director of the National Institutes of Health (NIH). Varmus, who received the 1989 Nobel Prize in Medicine, brought unquestioned credentials as a scientist to the NIH. Despite his limited background as an administrator, Varmus has received high marks from most observers for improving the morale of NIH staffers and implementing streamlined procedures in the grant review process. His tenure has not been free of controversy, however. Many clinical researchers have long felt there is a bias in NIH study sections against patient-oriented research. A recent study sponsored by the Division of Research Grants confirmed the lower success rate of patient-oriented research proposals, but the outcome of these findings remains unclear. Faced with mounting political pressure for a balanced budget, and the resultant reduction of funding to many branches of government, Varmus has been a strong voice for non-targeted investigator initiated research. Interviewed in his office in Building One on the NIH campus in Bethesda, Maryland, Varmus discussed the state of patient oriented research, the evolving role of the NIH in supporting science, and just where the money to pay for it should be found. PMID:7614067

  16. Analysis of Single Locus Trajectories for Extracting In Vivo Chromatin Tethering Interactions

    PubMed Central

    Amitai, Assaf; Toulouze, Mathias; Dubrana, Karine; Holcman, David

    2015-01-01

    Is it possible to extract tethering forces applied on chromatin from the statistics of a single locus trajectories imaged in vivo? Chromatin fragments interact with many partners such as the nuclear membrane, other chromosomes or nuclear bodies, but the resulting forces cannot be directly measured in vivo. However, they impact chromatin dynamics and should be reflected in particular in the motion of a single locus. We present here a method based on polymer models and statistics of single trajectories to extract the force characteristics and in particular when they are generated by the gradient of a quadratic potential well. Using numerical simulations of a Rouse polymer and live cell imaging of the MAT-locus located on the yeast Saccharomyces cerevisiae chromosome III, we recover the amplitude and the distance between the observed and the interacting monomer. To conclude, the confined trajectories we observed in vivo reflect local interaction on chromatin. PMID:26317360

  17. On trajectory generation for flexible space crane: Inverse dynamics analysis by LATDYN

    NASA Technical Reports Server (NTRS)

    Chen, G.-S.; Housner, J. M.; Wu, S.-C.; Chang, C.-W.

    1989-01-01

    For future in-space construction facility, one or more space cranes capable of manipulating and positioning large and massive spacecraft components will be needed. Inverse dynamics was extensively studied as a basis for trajectory generation and control of robot manipulators. The focus here is on trajectory generation in the gross-motion phase of space crane operation. Inverse dynamics of the flexible crane body is much more complex and intricate as compared with rigid robot link. To model and solve the space crane's inverse dynamics problem, LATDYN program which employs a three-dimensional finite element formulation for the multibody truss-type structures will be used. The formulation is oriented toward a joint dominated structure which is suitable for the proposed space crane concept. To track a planned trajectory, procedures will be developed to obtain the actuation profile and dynamics envelope which are pertinent to the design and performance requirements of the space crane concept.

  18. A Modification and Analysis of Lagrangian Trajectory Modeling and Granular Dynamics of Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Long, Jason M.; Lane, John E.; Metzger, Philip T.

    2008-01-01

    A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow.

  19. Determination of O3-, CO- and PM10-transport in the metropolitan area of São Paulo, Brazil through synoptic-scale analysis of back trajectories

    NASA Astrophysics Data System (ADS)

    Sánchez-Ccoyllo, O. R.; Silva Dias, P. L.; de Fátima Andrade, M.; Freitas, S. R.

    2006-02-01

    This study is aimed to qualitatively analyze the impact of remote sources on air pollution in the Metropolitan Area of São Paulo (MASP). Air-mass back trajectories from June to August of 1999 were calculated using a three-dimensional kinematic trajectory model and grouped into trajectory clusters. Correlations of individual trajectory clusters with O3, CO and PM10 concentrations were determined. In this model, trajectories were obtained using the means of the three wind velocity components (U, V and W). The three-dimensional wind field was derived from the Regional Atmospheric Modeling System, and downscaling was employed. Coarse and fine nested grids (64-km and 16-km horizontal resolution, respectively) were used. Every 12 h (at 00 and 12 UTC), a back-trajectory ensemble, using the 64-km grid, was calculated for five defined endpoints at intervals of 0.5° N, S, E and W of the MASP (λ = 23° 33‧S, ϕ = 46° 45‧W), that last endpoint being centered in the MASP. To analyze cluster trajectories, the five trajectory ensembles from each day were allocated into one of four clusters (northeast, southeast, southwest or northwest quadrant) based on the origin of the trajectory over 4 days. Days on which all five trajectories originated from the same quadrant were classified as “core” days. Core day concentrations of CO, O3 and PM10 during the study period were evaluated. The results show that, during the study period, air-mass back trajectories in the MASP originated from all four quadrants: northeast (32%), southeast (12%), southwest (19%) and northwest (37%). Our analysis of back-trajectory clusters in the MASP suggests a transport to ambient air of O3 precursors and O3 from the northeast region, which is associated with agricultural activities involving biomass burning.

  20. Trajectory analysis of the electrons in a magnetron-type gun. Progress report

    SciTech Connect

    Ezzeddine, A.; Smullin, L.D.

    1980-09-01

    Modification is introduced in the Herrmannsfeldt electron trajectory code to analyze the trajectories in magnetron injection guns with perveances I/V/sup 3/2/ in the range of 10/sup -5/ Perv. When tested on a particular magnetron gun, the computed perveance agreed well with experimental data for values V/B/sup 2/ less that or equal to 0.006, the flow was nearly laminar with V/sub perpendicular//V/sub parallel/ values reaching 12%. For larger voltages, both experiment and calculations indicate a turbulent electron flow.

  1. LONG-DISTANCE GM POLLEN MOVEMENT OF CREEPING BENTGRASS USING MODELED WIND TRAJECTORY ANALYSIS

    EPA Science Inventory

    The importance of understanding the role of atmospheric conditions in pollen dispersal has grown in recent years with increased field-testing of genetically modified (GM) crop plants. An atmospheric model was used to characterize wind trajectories at 10 m and 100 m above GM polle...

  2. Trajectory analysis of wet and dry deposited pollens from distant sources

    SciTech Connect

    Raynor, G S; Hayes, J V; Lewis, D M

    1981-01-01

    The purposes of this study are to determine if an available trajectory model calculates reasonable pathways from probable source regions to the sampling site and to determine the pathways and travel times involved in selected cases of long distance pollen transport. (PSB)

  3. Trajectory analysis of transfers between L4 and L5 and low lunar orbit

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The flight characteristics and spacecraft performance during missions involving flight between the equilateral libration points and the Moon are discussed. The conclusions drawn will show that a minimum energy trajectory is the most efficient transfer technique for this type of flight.

  4. Trajectory analysis of low-energy and hyperthermal ions scattered from Cu(110)

    SciTech Connect

    McEachern, R. L.; Goodstein, D. M.; Cooper, B. H.

    1989-05-15

    We have investigated the trajectories of Na/sup +/ ions scattered from the Cu(110) surface in the <1/bar 1/0> and <001> azimuths for a range of incident energies from 56 eV to 4 keV. Our goal is to explain the trends observed in the energy spectra and determine what types of trajectories contribute to these spectra. Using the computer program SAFARI, we have performed simulations with trajectory analyses for 100-, 200-, and 400-eV scattering. We show results from the 100-eV simulations in both azimuths and compare them with the experimental data. The simulated energy spectra are in excellent agreement with the data. Ion trajectories and impact parameter plots from the simulations are used to determine the relative importance of different types of ion--surface-atom collisions. The simulations have shown that the striking differences observed in comparing the <1/bar 1/0> and <001> spectra are mostly due to ions which scatter from second-layer atoms. This system exhibits strong focusing onto the second-layer atoms by the first-layer rows, and the focusing is very sensitive to the spacing between the rows. At the lower beam energies, scattering from the second layer dominates the measured spectra.

  5. Trajectory analysis of low-energy and hyperthermal ions scattered from Cu(110)

    SciTech Connect

    McEachern, R.L.; Goodstein, D.M.; Cooper, B.H.

    1989-05-15

    Trajectories of Na{sup +} ions scattered from the Cu(110) surface in the <1 1bar 0> and <001> azimuths were studied for a range of incident energies from 56 eV to 4 keV. The goal is to explain the trends observed in the energy spectra and determine what types of trajectories contribute to these spectra. Using the computer program SAFARI, simulations were performed with trajectory analyses for 100-, 200-, and 400-eV scattering. We show results from the 100-eV simulations in both azimuths and compare them with the experimental data. The simulated energy spectra are in excellent agreement with the data. Ion trajectories and impact parameter plots from the simulations are used to determine the relative importance of different types of ion-surface-atom collisions. The simulations have shown that the striking differences observed in comparing the <1 1bar 0> and <001> spectra are mostly due to ions which scatter from second-layer atoms. This system exhibits strong focusing onto the second-layer atoms by the first-layer rows, and the focusing is very sensitive to the spacing between the rows. At the lower beam energies, scattering from the second layer dominates the measured spectra.

  6. First-Grade Predictors of Mathematical Learning Disability: A Latent Class Trajectory Analysis

    ERIC Educational Resources Information Center

    Geary, David C.; Bailey, Drew H.; Littlefield, Andrew; Wood, Phillip; Hoard, Mary K.; Nugent, Lara

    2009-01-01

    Kindergarten to third grade mathematics achievement scores from a prospective study of mathematical development (n = 306) were subjected to latent growth trajectory analyses. The four corresponding classes included children with mathematical learning disability (MLD, 6% of sample), and low (LA, 50%), typically (TA, 39%) and high (HA, 5%) achieving…

  7. Latent Class Analysis of Early Developmental Trajectory in Baby Siblings of Children with Autism

    ERIC Educational Resources Information Center

    Landa, Rebecca J.; Gross, Alden L.; Stuart, Elizabeth A.; Bauman, Margaret

    2012-01-01

    Background: Siblings of children with autism (sibs-A) are at increased genetic risk for autism spectrum disorders (ASD) and milder impairments. To elucidate diversity and contour of early developmental trajectories exhibited by sibs-A, regardless of diagnostic classification, latent class modeling was used. Methods: Sibs-A (N = 204) were assessed…

  8. Trajectory analysis for the lunar flyby rescue of AsiaSat-3/HGS-1.

    PubMed

    Ocampo, C

    2005-12-01

    On May 13, 1998, the Hughes Global Services 1 Spacecraft (HGS-1, originally known as AsiaSat 3) became the first commercial spacecraft to fly by the Moon on a trajectory to reposition it into a useful geosynchronous orbit. This was necessary due to the failure of the last stage of the launch vehicle that left it in a high inclination, eccentric, and unusable orbit. The spacecraft did not have enough propellant to perform the maneuvers required to place it into its intended geostationary orbit via a standard transfer trajectory. However, it did have enough propellant to place it on a trajectory that flew by the Moon twice to finally achieve a useful low inclination geosynchronous orbit. In addition to being the first commercial operation in the vicinity of the Moon, it was the last successful lunar mission of the twentieth century. We discuss of the events leading up to the start of the rescue operation that included contributions from external organizations. We also describe the analytic estimates used to construct the trajectory and provide an overview of the details of the actual mission. PMID:16510412

  9. Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis

    NASA Technical Reports Server (NTRS)

    Toelle, R. G.; Blackwell, D. L.; Lott, L. N.

    1973-01-01

    A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.

  10. Trajectories of Parenting and Child Negative Emotionality during Infancy and Toddlerhood: A Longitudinal Analysis

    ERIC Educational Resources Information Center

    Lipscomb, Shannon Tierney; Leve, Leslie D.; Harold, Gordon T.; Neiderhiser, Jenae M.; Shaw, Daniel S.; Ge, Xiaojia; Reiss, David

    2011-01-01

    The current longitudinal study examined trajectories of child negative emotionality, parenting efficacy, and overreactive parenting among 382 adoptive families during infancy and toddlerhood. Data were collected from adoptive parents when the children were 9-, 18-, and 27-month-old. Latent growth curve modeling indicated age-related increases in…

  11. Identification of synoptic precursors to extreme precipitation events in the Swiss Alps by the analysis of backward trajectories

    NASA Astrophysics Data System (ADS)

    Nguyen, Liliane; Horton, Pascal; Jaboyedoff, Michel

    2015-04-01

    combinations of tools, datasets and methods as possible. For the second part, in order to reduce the number of models to be assessed, we removed those models yielding to similar results. Then, the selected models were used to search simple precursors leading to heavy precipitations. Based on deviations analysis, we preliminary observed that the larger differences between trajectories result mainly from the dataset used rather than the model. Then, we processed 10 days backward trajectories for the Binn station (Wallis, Switzerland), which is a gauging station that often measures big amount of rain. As for the validity domain, we selected all the days between 1961 and 2014 that were characterized by a southerly circulation in autumn. Backward trajectories offer a way to understand some characteristics of air masses inducing heavy precipitation. For example, specific humidity can be retrieved all along the trajectories. Therefore, the origin of moisture contributing to heavy precipitation, and the role of the different weather systems in transporting moisture towards the Alps can be determined with the help of a Lagrangian moisture source diagnostic. According to the first results, moisture sources for heavy precipitation in autumn are mainly located on the western Mediterranean. An identification of simple synoptic precursors is by then attempted throughout analysis made on the resulting trajectories.

  12. Worst-error analysis of batch filter and sequential filter in navigation problems. [in spacecraft trajectory estimation

    NASA Technical Reports Server (NTRS)

    Nishimura, T.

    1975-01-01

    This paper proposes a worst-error analysis for dealing with problems of estimation of spacecraft trajectories in deep space missions. Navigation filters in use assume either constant or stochastic (Markov) models for their estimated parameters. When the actual behavior of these parameters does not follow the pattern of the assumed model, the filters sometimes result in very poor performance. To prepare for such pathological cases, the worst errors of both batch and sequential filters are investigated based on the incremental sensitivity studies of these filters. By finding critical switching instances of non-gravitational accelerations, intensive tracking can be carried out around those instances. Also the worst errors in the target plane provide a measure in assignment of the propellant budget for trajectory corrections. Thus the worst-error study presents useful information as well as practical criteria in establishing the maneuver and tracking strategy of spacecraft's missions.

  13. Long-distance GM pollen movement of creeping bentgrass using modeled wind trajectory analysis.

    PubMed

    Van de Water, Peter K; Watrud, Lidia S; Lee, E Henry; Burdick, Connie; King, George A

    2007-06-01

    The importance of understanding the role of atmospheric conditions in pollen dispersal has grown in recent years with increased field-testing of genetically modified (GM) crop plants. An atmospheric model was used to characterize wind trajectories at 10 m and 100 m above GM pollen source fields located within a 4452-ha "control" area north of Madras, Oregon, USA, designated by the Oregon Department of Agriculture (ODA). The area was used in 2003 for the growth of GM creeping bentgrass (Agrostis stolonifera) engineered to be resistant to glyphosate herbicide. The presence of the GM gene (CP4 EPSPS) provided a distinct selectable marker for pollen-mediated gene flow to sentinel and resident Agrostis spp. plants. Linkage of GM gene presence with wind flow characteristics over the "control" area became essential to understand the timing and processes leading to long-distance transport of this pollen. Wind trajectories showed a general pattern of northwest to southeast air movement. Trajectory travel distances calculated hourly from 06:00 hours to 15:00 hours during the 2003 pollination period (15 June-15 July) showed movement up to 15 km from the "control" area's center by the first hour. Maximum travel distances increased to 40 and 55 km after two and three hours from release, respectively. Calculated wind trajectory positions corresponded with observed long-distance pollen-mediated gene flow in the seedlings of sentinel and resident plants. The highest correlations were found during the late morning hours. Back-calculated wind trajectories from sentinel and resident locations with GM-gene-positive progeny suggested that most successful fertilizations occurred in the direction of prevailing winds during late June 2003. The occurrence of positive progeny from sentinel plants, upwind of the "control" area during this period, indicated the additional influence of local topography on pollen dispersal. PMID:17555232

  14. HEAVY DRINKING TRAJECTORIES AMONG MEN WHO HAVE SEX WITH MEN: A LONGITUDINAL, GROUP-BASED ANALYSIS

    PubMed Central

    Marshall, Brandon DL; Shoveller, Jean A.; Kahler, Christopher W.; Koblin, Beryl A.; Mayer, Kenneth H.; Mimiaga, Matthew J.; van den Berg, Jacob J.; Zaller, Nickolas D.; Operario, Don

    2014-01-01

    Background Heavy episodic drinking (HED) is associated with sexual risk behavior and HIV seroconversion among men who have sex with men (MSM), yet few studies have examined heavy drinking typologies in this population. Methods We analyzed data from 4,075 HIV-uninfected MSM (aged 16 to 88) participating in EXPLORE, a 48-month behavioral intervention trial, to determine the patterns and predictors of HED trajectories. Heavy episodic drinking was defined as the number of days in which ≥5 alcohol drinks were consumed in the past 6 months. Longitudinal group-based mixture models were used to identify HED trajectories, and multinomial logistic regression was used to determine correlates of membership in each group. Results We identified five distinct HED trajectories: non-heavy drinkers (31.9%); infrequent heavy drinkers (i.e., <10 heavy drinking days per 6 month period, 54.3%); regular heavy drinkers (30-45 heavy drinking days per 6 months, 8.4%); drinkers who increased HED over time (average 33 days in the past six months to 77 days at end of follow-up, 3.6%); and very frequent heavy drinkers (>100 days per 6 months, 1.7%). Intervention arm did not predict drinking trajectory patterns. Younger age, self-identifying as white, lower educational attainment, depressive symptoms, and stimulant use were also associated with reporting heavier drinking trajectories. Compared to non-heavy drinkers, participants who increased HED more often experienced a history of childhood sexual abuse. Over the study period, depressive symptomatology increased significantly among very frequent heavy drinkers. Conclusions Socioeconomic factors, substance use, depression, and childhood sexual abuse were associated with heavier drinking patterns among MSM. Multi-component interventions to reduce HED should seek to mitigate the adverse impacts of low educational attainment, depression, and early traumatic life events on the initiation, continuation or escalation of frequent HED among MSM. PMID

  15. Childhood growth trajectories according to combinations of pregestational weight status and maternal smoking during pregnancy: a multilevel analysis.

    PubMed

    Suzuki, Kohta; Sato, Miri; Zheng, Wei; Shinohara, Ryoji; Yokomichi, Hiroshi; Yamagata, Zentaro

    2015-01-01

    Pregestational weight status and maternal smoking during pregnancy are significantly associated with fetal and childhood growth. However, few studies have examined associations between childhood growth and combinations of these factors using multilevel analysis. This study aimed to describe differences in childhood growth trajectories according to these combinations, using data from a prospective cohort study in Japan. The study participants were 1,973 women and their singletons, who were born between April 1, 1991 and March 31, 2003. Children were categorized according to whether they were born to normal-weight, nonsmoking mothers (NN); normal-weight, smoking mothers (NS); underweight, nonsmoking mothers (UN); underweight, smoking mothers (US); overweight, nonsmoking mothers (ON); or overweight, smoking mothers (OS). Birth weight and anthropometric data were collected from 1,965 children at birth (99.6%), 1,655 aged 3 (83.9%), 1,527 aged 5 (77.4%), 1,497 aged 7-8 (75.9%), and 1,501 aged 9-10 (76.1%). Multilevel analysis examining both individual and age as different level variables according to sex was used to describe the trajectories of body mass index z scores for statistical analyses. Although children of the OS group were the leanest at birth, their body mass indices had increased rapidly by 3 years of age. Moreover, body mass index was also likely to increase in boys in the NS and ON groups. A different trend was observed in girls. Body mass index decreased from 5 years of age in girls in the US group. There were no remarkable differences in body mass index trajectories between children in the other groups. In conclusion, childhood growth trajectories differed according to combinations of pregestational weight status and maternal smoking during pregnancy. Further, there were sex-related differences in the associations between childhood growth and factor combinations. PMID:25680116

  16. Design of cycler trajectories and analysis of solar influences on radioactive decay rates during space missions

    NASA Astrophysics Data System (ADS)

    Rogers, Blake A.

    This thesis investigates the design of interplanetary missions for the continual habitation of Mars via Earth-Mars cyclers and for the detection of variations in nuclear decay rates due to solar influences. Several cycler concepts have been proposed to provide safe and comfortable quarters for astronauts traveling between the Earth and Mars. However, no literature has appeared to show how these massive vehicles might be placed into their cycler trajectories. Trajectories are designed that use either Vinfinity leveraging or low thrust to establish cycler vehicles in their desired orbits. In the cycler trajectory cases considered, the use of Vinfinity leveraging or low thrust substantially reduces the total propellant needed to achieve the cycler orbit compared to direct orbit insertion. In the case of the classic Aldrin cycler, the propellant savings due to Vinfinity leveraging can be as large as a 24 metric ton reduction for a cycler vehicle with a dry mass of 75 metric tons, and an additional 111 metric ton reduction by instead using low thrust. The two-synodic period cyclers considered benefit less from Vinfinity leveraging, but have a smaller total propellant mass due to their lower approach velocities at Earth and Mars. It turns out that, for low-thrust establishment, the propellant required is approximately the same for each of the cycler trajectories. The Aldrin cycler has been proposed as a transportation system for human missions between Earth and Mars. However, the hyperbolic excess velocity values at the planetary encounters for these orbits are infeasibly large, especially at Mars. In a new version of the Aldrin cycler, low thrust is used in the interplanetary trajectories to reduce the encounter velocities. Reducing the encounter velocities at both planets reduces the propellant needed by the taxis (astronauts use these taxis to transfer between the planetary surfaces and the cycler vehicle) to perform hyperbolic rendezvous. While the propellant

  17. Release notice of MD 9ne and MD25 high fiber quality cotton germplasm lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MD 9ne and MD 25 are non-commercial breeding lines of cotton (Gossypium hirsutum L.) released by the USDA-ARS at Stoneville, MS. One parent of MD 9ne was a strain of MD 51ne that had high fiber quality genes introduced from the Species Polycross. The other parent was MD 15. The parents of MD 25 a...

  18. Mortality trajectory analysis reveals the drivers of sex-specific epidemiology in natural wildlife–disease interactions

    PubMed Central

    McDonald, Jennifer L.; Smith, Graham C.; McDonald, Robbie A.; Delahay, Richard J.; Hodgson, Dave

    2014-01-01

    In animal populations, males are commonly more susceptible to disease-induced mortality than females. However, three competing mechanisms can cause this sex bias: weak males may simultaneously be more prone to exposure to infection and mortality; being ‘male’ may be an imperfect proxy for the underlying driver of disease-induced mortality; or males may experience increased severity of disease-induced effects compared with females. Here, we infer the drivers of sex-specific epidemiology by decomposing fixed mortality rates into mortality trajectories and comparing their parameters. We applied Bayesian survival trajectory analysis to a 22-year longitudinal study of a population of badgers (Meles meles) naturally infected with bovine tuberculosis (bTB). At the point of infection, infected male and female badgers had equal mortality risk, refuting the hypothesis that acquisition of infection occurs in males with coincidentally high mortality. Males and females exhibited similar levels of heterogeneity in mortality risk, refuting the hypothesis that maleness is only a proxy for disease susceptibility. Instead, sex differences were caused by a more rapid increase in male mortality rates following infection. Males are indeed more susceptible to bTB, probably due to immunological differences between the sexes. We recommend this mortality trajectory approach for the study of infection in animal populations. PMID:25056621

  19. Optimal trajectories for the aeroassisted flight experiment. Part 3: Formulation, results, and analysis

    NASA Technical Reports Server (NTRS)

    Miele, A.; Wang, T.; Lee, W. Y.; Zhao, Z. G.

    1989-01-01

    The determination of optimal trajectories for the aero-assisted flight experiment (AFE) is investigated. The intent of this experiment is to simulate a GEO-to-LEO transfer, where GEO denotes a geosynchronous Earth orbit and LEO denotes a low Earth orbit. The trajectories of an AFE spacecraft are analyzed in a 3D-space, employing the full system of 6 ODEs describing the atmospheric pass. The atmospheric entry conditions are given, and the atmospheric exit conditions are adjusted in such a way that the following conditions are satisfied: (1) the atmospheric velocity depletion is such that, after exiting, the AFE spacecraft first ascends to a specified apogee and then descends to a specified perigee; and (2) the exit orbital plane is identical with the entry orbital plane. The final maneuver, not analyzed here, includes the rendezvous with and the capture by the space shuttle.

  20. Trajectory and System Analysis For Outer-Planet Solar-Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Woo, Byoungsam; Coverstone, Victoria L.; Hartmann, John W.

    2004-01-01

    Outer-planet mission and systems analyses are performed using three next generation solar-electric ion thruster models. The impact of variations in thruster model, flight time, launch vehicle, propulsion and power systems characteristics is investigated. All presented trajectories have a single Venus gravity assist and maximize the delivered mass to Saturn or Neptune. The effect of revolution ratio - the ratio of Venusian orbital period to the flight time between launch and flyby dates - is also discussed.

  1. Trajectories of Organized Activity Participation Among Urban Adolescents: An Analysis of Predisposing Factors.

    PubMed

    Eisman, Andria B; Stoddard, Sarah A; Bauermeister, José A; Caldwell, Cleopatra H; Zimmerman, Marc A

    2016-01-01

    Organized activity participation provides important opportunities for adolescents to develop assets and resources related to positive youth development. Predisposing factors, in addition to sociodemographics and self-selection factors, may influence how youth participate over time. In this study, we used growth mixture modeling with longitudinal data from African American adolescents attending urban high schools in Flint, MI to identify subgroups of participation trajectories (Wave 1 N = 681, mean age at Wave 1 = 14.86 years, 51% female). We measured activity participation using psychological and behavioral engagement across multiple contexts over the 4 years of high school. We examined how predisposing risk and promotive factors were related to these trajectories, accounting for sociodemographic and self-selection factors. The results indicated three participation trajectories: a low group decreasing over time (74%), a moderate, consistent participation group (21%) and a moderate, increasing group (5%). More substance use was associated with lower odds of being in the moderate/consistent versus low/decreasing participation group. More parental support was associated with lower odds of being in the moderate/increasing versus the moderate/consistent group. Our results suggest that addressing predisposing factors such as substance use may help facilitate participation over time. PMID:25735866

  2. A general framework for the analysis of phenotypic trajectories in evolutionary studies.

    PubMed

    Adams, Dean C; Collyer, Michael L

    2009-05-01

    Many evolutionary studies require an understanding of phenotypic change. However, while analyses of phenotypic variation across pairs of evolutionary levels (populations or time steps) are well established, methods for testing hypotheses that compare evolutionary sequences across multiple levels are less developed. Here we describe a general analytical procedure for quantifying and comparing patterns of phenotypic evolution. The phenotypic evolution of a lineage is defined as a trajectory across a set of evolutionary levels in a multivariate phenotype space. Attributes of these trajectories (their size, direction, and shape), are quantified, and statistically compared across pairs of taxa, and a summary statistic is used to determine the extent to which patterns of phenotypic evolution are concordant across multiple taxa. This approach provides a direct quantitative description of how patterns of phenotypic evolution differ, as well as a statistical assessment of the degree of repeatability in the evolutionary responses to selection among taxa. We describe how this approach can quantify phenotypic trajectories from many ecological and evolutionary processes, whose data encode multivariate characterizations of the phenotype, including: phenotypic plasticity, ecological selection, ontogeny and growth, local adaptation, and biomechanics. We illustrate the approach by examining the phenotypic evolution of several fossil lineages of Globorotalia. PMID:19210539

  3. Reconstructing folding energy landscapes from splitting probability analysis of single-molecule trajectories

    PubMed Central

    Manuel, Ajay P.; Lambert, John; Woodside, Michael T.

    2015-01-01

    Structural self-assembly in biopolymers, such as proteins and nucleic acids, involves a diffusive search for the minimum-energy state in a conformational free-energy landscape. The likelihood of folding proceeding to completion, as a function of the reaction coordinate used to monitor the transition, can be described by the splitting probability, pfold(x). Pfold encodes information about the underlying energy landscape, and it is often used to judge the quality of the reaction coordinate. Here, we show how pfold can be used to reconstruct energy landscapes from single-molecule folding trajectories, using force spectroscopy measurements of single DNA hairpins. Calculating pfold(x) directly from trajectories of the molecular extension measured for hairpins fluctuating in equilibrium between folded and unfolded states, we inverted the result expected from diffusion over a 1D energy landscape to obtain the implied landscape profile. The results agreed well with the landscapes reconstructed by established methods, but, remarkably, without the need to deconvolve instrumental effects on the landscape, such as tether compliance. The same approach was also applied to hairpins with multistate folding pathways. The relative insensitivity of the method to the instrumental compliance was confirmed by simulations of folding measured with different tether stiffnesses. This work confirms that the molecular extension is a good reaction coordinate for these measurements, and validates a powerful yet simple method for reconstructing landscapes from single-molecule trajectories. PMID:26039984

  4. Assessing randomness and complexity in human motion trajectories through analysis of symbolic sequences

    PubMed Central

    Peng, Zhen; Genewein, Tim; Braun, Daniel A.

    2014-01-01

    Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects' self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories. PMID:24744716

  5. Trajectory-Based Analysis of Urban Land-Cover Change Detection

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Liu, H. P.

    2016-06-01

    China have occurred unprecedented urban growth over the last two decades. It is reported that the level of China's urbanization increased from 18 % in 1978 to 41 % in 2003, and this figure may exceed 65 % by 2050. The change detection of long time serious remote sensing images is the effective way to acquire the data of urban land-cover change to understand the pattern of urbanization. In this paper, we proposed the similarity index (SI) and apply it in long time series urban land-cover change detection. First of all, we built possible change trajectories in four times based on the normalized difference vegetation index (NDVI) and modified normalized difference water index (MNDWI) that extracted from time series Landsat images. Secondly, we applied SI in similarity comparison between the observed change trajectory and the possible trajectories. Lastly, verifying the accuracy of the results. The overall accuracy in four periods is 85.7 % and the overall accuracy of each two years is about 90 % and kappa statistic is about 0.85. The results show that this method is effective for time series land-cover change detection.

  6. SU-E-T-144: Effective Analysis of VMAT QA Generated Trajectory Log Files for Medical Accelerator Predictive Maintenance

    SciTech Connect

    Able, CM; Baydush, AH; Nguyen, C; Munley, MT; Gersh, J; Ndlovu, A; Rebo, I; Booth, J; Perez, M; Sintay, B

    2014-06-01

    Purpose: To determine the effectiveness of SPC analysis for a model predictive maintenance process that uses accelerator generated parameter and performance data contained in trajectory log files. Methods: Each trajectory file is decoded and a total of 131 axes positions are recorded (collimator jaw position, gantry angle, each MLC, etc.). This raw data is processed and either axis positions are extracted at critical points during the delivery or positional change over time is used to determine axis velocity. The focus of our analysis is the accuracy, reproducibility and fidelity of each axis. A reference positional trace of the gantry and each MLC is used as a motion baseline for cross correlation (CC) analysis. A total of 494 parameters (482 MLC related) were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and parameter/system specifications. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: TG-142 and published analysis of VMAT delivery accuracy. Results: All errors introduced were detected. Synthetic positional errors of 2mm for collimator jaw and MLC carriage exceeded the chart limits. Gantry speed and each MLC speed are analyzed at two different points in the delivery. Simulated Gantry speed error (0.2 deg/sec) and MLC speed error (0.1 cm/sec) exceeded the speed chart limits. Gantry position error of 0.2 deg was detected by the CC maximum value charts. The MLC position error of 0.1 cm was detected by the CC maximum value location charts for every MLC. Conclusion: SPC I/MR evaluation of trajectory log file parameters may be effective in providing an early warning of performance degradation or component failure for medical accelerator systems.

  7. Trajectories of recovery among homeless adults with mental illness who participated in a randomised controlled trial of Housing First: a longitudinal, narrative analysis

    PubMed Central

    Patterson, Michelle L; Rezansoff, Stefanie; Currie, Lauren; Somers, Julian M

    2013-01-01

    Objectives This study used longitudinal, narrative data to identify trajectories of recovery among homeless adults with mental illness alongside the factors that contribute to positive, negative, mixed or neutral trajectories over time. We expected that participants who received Housing First (HF) would describe more positive trajectories of recovery than those who were assigned to Treatment as Usual (TAU; no housing or support provided through the study). Design Narrative interview data were collected from participants at baseline and 18 months after random assignment to HF or TAU. Setting Participants were sampled from the community in Vancouver, British Columbia. Participants Fifty-four participants were randomly and purposively selected from the larger trial; 52 were interviewed at baseline and 43 were reinterviewed 18 months after randomisation. Method Semistructured interviews were conducted at both time points. For each participant, paired baseline and follow-up narratives were classified as positive, negative, mixed or neutral trajectories of recovery, and thematic analysis was used to identify the factors underlying different trajectories. Results Participants assigned to HF (n=28) were generally classified as positive or mixed trajectories; those assigned to TAU (n=15) were generally classified as neutral or negative trajectories. Positive trajectories were characterised by a range of benefits associated with good-quality, stable housing (eg, reduced substance use, greater social support), positive expressions of identity and the willingness to self-reflect. Negative, neutral and mixed trajectories were characterised by hopelessness (‘things will never get better’) related to continued hardship (eg, eviction, substance use problems), perceived failures and loss. Conclusions HF is associated with positive trajectories of recovery among homeless adults with mental illness. Those who did not receive housing or support continued to struggle across a

  8. Trajectories of Suicidal Ideation in People Seeking Web-Based Help for Suicidality: Secondary Analysis of a Dutch Randomized Controlled Trial

    PubMed Central

    van Spijker, Bregje; Karstoft, Karen-Inge; Nordentoft, Merete; Kerkhof, Ad JFM

    2016-01-01

    Background Suicidal ideation (SI) is a common mental health problem. Variability in intensity of SI over time has been linked to suicidal behavior, yet little is known about the temporal course of SI. Objective The primary aim was to identify prototypical trajectories of SI in the general population and, secondarily, to examine whether receiving Web-based self-help for SI, psychiatric symptoms, or sociodemographics predicted membership in the identified SI trajectories. Methods We enrolled 236 people, from the general Dutch population seeking Web-based help for SI, in a randomized controlled trial comparing a Web-based self-help for SI group with a control group. We assessed participants at inclusion and at 2, 4, and 6 weeks. The Beck Scale for Suicide Ideation was applied at all assessments and was included in latent growth mixture modeling analysis to empirically identify trajectories. Results We identified 4 SI trajectories. The high stable trajectory represented 51.7% (122/236) of participants and was characterized by constant high level of SI. The high decreasing trajectory (50/236, 21.2%) consisted of people with a high baseline SI score followed by a gradual decrease to a very low score. The third trajectory, high increasing (12/236, 5.1%), also had high initial SI score, followed by an increase to the highest level of SI at 6 weeks. The fourth trajectory, low stable (52/236, 22.0%) had a constant low level of SI. Previous attempted suicide and having received Web-based self-help for SI predicted membership in the high decreasing trajectory. Conclusions Many adults experience high persisting levels of SI, though results encouragingly indicate that receiving Web-based self-help for SI increased membership in a decreasing trajectory of SI. PMID:27363482

  9. A combined Eulerian-Lagrangian two-phase flow analysis of SSME HPOTP nozzle plug trajectories. II - Results

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.; Garcia, R.; Dejong, F. J.; Sabnis, J. S.; Pribik, D. A.

    1989-01-01

    An analysis of Space Shuttle Main Engine high-pressure oxygen turbopump nozzle plug trajectories has been performed, using a Lagrangian method to track nozzle plug particles expelled from a turbine through a high Reynolds number flow in a turnaround duct with turning vanes. Axisymmetric and parametric analyses reveal that if nozzle plugs exited the turbine they would probably impact the LOX heat exchanger with impact velocities which are significantly less than the penetration velocity. The finding that only slight to moderate damage will result from nozzle plug failure in flight is supported by the results of a hot-fire engine test with induced nozzle plug failures.

  10. Mission objectives and trajectories

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present state of the knowledge of asteroids was assessed to identify mission and target priorities for planning asteroidal flights in the 1980's and beyond. Mission objectives, mission analysis, trajectory studies, and cost analysis are discussed. A bibliography of reports and technical memoranda is included.

  11. Trajectory analysis for solar electric propulsion stage /SEPS/ out-of-ecliptic mission

    NASA Technical Reports Server (NTRS)

    Dazzo, E. J.

    1975-01-01

    It is planned to use the SEPS as the upper stage of a transportation system capable of delivering either a separable payload spacecraft or an attached science package to a host of planetary targets including inner and outer planets, asteroids, and comets. It may also be employed in earth orbit to deliver and retrieve payloads in geosynchronous orbit. An investigation is conducted regarding the use of the SEPS for a relatively high energy out-of-ecliptic mission planned for 1980. Parametric performance data for the mission are considered along with trajectory characteristics, launch vehicle performance, and SEPS performance.

  12. [The trajectory towards alternative medicines: an analysis of health professionals' social representations].

    PubMed

    Queiroz, M S

    2000-01-01

    This article focuses on social representations of alternative medicines by a group of professors from the School of Medicine and health professionals from the public health system in the city of Campinas, São Paulo, basically physicians and nurses. The article also emphasizes personal trajectories by which these health professionals opted for a dissident theoretical and practical perspective vis-à-vis the hegemonic positivist scientific medical paradigm. The research methods were mainly ethnographic, from a phenomenological perspective. The article concludes by sustaining (in theoretical terms) the importance of these dissident perspectives for scientific development. PMID:10883035

  13. Analysis of total least squares in estimating the parameters of a mortar trajectory

    SciTech Connect

    Lau, D.L.; Ng, L.C.

    1994-12-01

    Least Squares (LS) is a method of curve fitting used with the assumption that error exists in the observation vector. The method of Total Least Squares (TLS) is more useful in cases where there is error in the data matrix as well as the observation vector. This paper describes work done in comparing the LS and TLS results for parameter estimation of a mortar trajectory based on a time series of angular observations. To improve the results, we investigated several derivations of the LS and TLS methods, and early findings show TLS provided slightly, 10%, improved results over the LS method.

  14. Trajectory Reconstruction and Uncertainty Analysis Using Mars Science Laboratory Pre-Flight Scale Model Aeroballistic Testing

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael A.; Tolson, Robert H.; Schoenenberger, Mark

    2013-01-01

    As part of the Mars Science Laboratory (MSL) trajectory reconstruction effort at NASA Langley Research Center, free-flight aeroballistic experiments of instrumented MSL scale models was conducted at Aberdeen Proving Ground in Maryland. The models carried an inertial measurement unit (IMU) and a flush air data system (FADS) similar to the MSL Entry Atmospheric Data System (MEADS) that provided data types similar to those from the MSL entry. Multiple sources of redundant data were available, including tracking radar and on-board magnetometers. These experimental data enabled the testing and validation of the various tools and methodologies that will be used for MSL trajectory reconstruction. The aerodynamic parameters Mach number, angle of attack, and sideslip angle were estimated using minimum variance with a priori to combine the pressure data and pre-flight computational fluid dynamics (CFD) data. Both linear and non-linear pressure model terms were also estimated for each pressure transducer as a measure of the errors introduced by CFD and transducer calibration. Parameter uncertainties were estimated using a "consider parameters" approach.

  15. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.; Windhorst, Robert; Phillips, James

    1998-01-01

    This paper develops a near-optimal guidance law for generating minimum fuel, time, or cost fixed-range trajectories for supersonic transport aircraft. The approach uses a choice of new state variables along with singular perturbation techniques to time-scale decouple the dynamic equations into multiple equations of single order (second order for the fast dynamics). Application of the maximum principle to each of the decoupled equations, as opposed to application to the original coupled equations, avoids the two point boundary value problem and transforms the problem from one of a functional optimization to one of multiple function optimizations. It is shown that such an approach produces well known aircraft performance results such as minimizing the Brequet factor for minimum fuel consumption and the energy climb path. Furthermore, the new state variables produce a consistent calculation of flight path angle along the trajectory, eliminating one of the deficiencies in the traditional energy state approximation. In addition, jumps in the energy climb path are smoothed out by integration of the original dynamic equations at constant load factor. Numerical results performed for a supersonic transport design show that a pushover dive followed by a pullout at nominal load factors are sufficient maneuvers to smooth the jump.

  16. Multinomial logistic regression analysis for differentiating 3 treatment outcome trajectory groups for headache-associated disability.

    PubMed

    Lewis, Kristin Nicole; Heckman, Bernadette Davantes; Himawan, Lina

    2011-08-01

    Growth mixture modeling (GMM) identified latent groups based on treatment outcome trajectories of headache disability measures in patients in headache subspecialty treatment clinics. Using a longitudinal design, 219 patients in headache subspecialty clinics in 4 large cities throughout Ohio provided data on their headache disability at pretreatment and 3 follow-up assessments. GMM identified 3 treatment outcome trajectory groups: (1) patients who initiated treatment with elevated disability levels and who reported statistically significant reductions in headache disability (high-disability improvers; 11%); (2) patients who initiated treatment with elevated disability but who reported no reductions in disability (high-disability nonimprovers; 34%); and (3) patients who initiated treatment with moderate disability and who reported statistically significant reductions in headache disability (moderate-disability improvers; 55%). Based on the final multinomial logistic regression model, a dichotomized treatment appointment attendance variable was a statistically significant predictor for differentiating high-disability improvers from high-disability nonimprovers. Three-fourths of patients who initiated treatment with elevated disability levels did not report reductions in disability after 5 months of treatment with new preventive pharmacotherapies. Preventive headache agents may be most efficacious for patients with moderate levels of disability and for patients with high disability levels who attend all treatment appointments. PMID:21420240

  17. 3-D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian Manifold.

    PubMed

    Devanne, Maxime; Wannous, Hazem; Berretti, Stefano; Pala, Pietro; Daoudi, Mohamed; Del Bimbo, Alberto

    2015-07-01

    Recognizing human actions in 3-D video sequences is an important open problem that is currently at the heart of many research domains including surveillance, natural interfaces and rehabilitation. However, the design and development of models for action recognition that are both accurate and efficient is a challenging task due to the variability of the human pose, clothing and appearance. In this paper, we propose a new framework to extract a compact representation of a human action captured through a depth sensor, and enable accurate action recognition. The proposed solution develops on fitting a human skeleton model to acquired data so as to represent the 3-D coordinates of the joints and their change over time as a trajectory in a suitable action space. Thanks to such a 3-D joint-based framework, the proposed solution is capable to capture both the shape and the dynamics of the human body, simultaneously. The action recognition problem is then formulated as the problem of computing the similarity between the shape of trajectories in a Riemannian manifold. Classification using k-nearest neighbors is finally performed on this manifold taking advantage of Riemannian geometry in the open curve shape space. Experiments are carried out on four representative benchmarks to demonstrate the potential of the proposed solution in terms of accuracy/latency for a low-latency action recognition. Comparative results with state-of-the-art methods are reported. PMID:25216492

  18. Gradient trajectory analysis of the scalar superlayer in a jet flow

    NASA Astrophysics Data System (ADS)

    Gampert, Markus; Schaefer, Philip; Peters, Norbert

    2012-11-01

    Based on planar high-speed Rayleigh scattering measurements of the mass fraction of propane discharging from a turbulent round jet into co-flowing carbon dioxide at nozzle based Reynolds numbers Re0 = 3 , 000 - 8 , 600 , we investigate the scalar superlayer. The latter is located between the fully turbulent part of the jet and the outer flow and has the so called turbulent/non-turbulent interface embedded within it. It is termed in analogy to the laminar superlayer introduced by Corrsin and Kistler (NACA Report 1244, 1955). Using scalar gradient trajectories, we partition the turbulent scalar field into the afore mentioned three regions according to an approach developed by Mellado et al. (J. Fluid Mech. 626:333-365, 2009) based on which we in a next step investigate conditioned zonal statistics of the scalar pdf as well as the scalar difference along the trajectory and its mean scalar value. Finally, we relate our results for the scalar superlayer on the one hand to the findings made in other experimental and numerical studies of the turbulent/non-turbulent interface and discuss them on the other hand in the context of the flamelet approach in turbulent non-premixed combustion. This work was funded by the Cluster of Excellence ``Tailor-Made Fuels from Biomass,'' which is funded by the Excellence Initiative of the German federal state governments to promote science and research at German universities.

  19. The evaluation of several agility metrics for fighter aircraft using optimal trajectory analysis

    NASA Technical Reports Server (NTRS)

    Ryan, George W., III; Downing, David R.

    1993-01-01

    Several functional agility metrics, including the combat cycle time metric, dynamic speed turn plots, and relative energy state metric, are used to compare turning performance for generic F-18, X-29, and X-31-type aircraft models. These three-degree-of-freedom models have characteristics similar to the real aircraft. The performance comparisons are made using data from optimal test trajectories to reduce sensitivities to different pilot input techniques and to reduce the effects of control system limiters. The turn performance for all three aircraft is calculated for simulated minimum time 180 deg heading captures from simulation data. Comparisons of the three aircraft give more insight into turn performance than would be available from traditional measures of performance. Using the optimal test technique yields significant performance improvements as measured by the metrics. These performance improvements were found without significant increases in turn radius.

  20. Shuttle derived atmospheric density model. Part 2: STS atmospheric implications for AOTV trajectory analysis, a proposed GRAM perturbation density model

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Troutman, P. A.

    1984-01-01

    A perturbation model to the Marshall Space Flight Center (MSFC) Global Reference Atmosphere Model (GRAM) was developed for use in the Aeroassist Orbital Transfer Vehicle (AOTV) trajectory and analysis. The model reflects NASA Space Shuttle experience over the first twelve entry flights. The GRAM was selected over the Air Force 1978 Reference Model because of its more general formulation and wider use throughout NASA. The add-on model, a simple scaling with altitude to reflect density structure encountered by the Shuttle Orbiter was selected principally to simplify implementation. Perturbations, by season, can be utilized to minimize the number of required simulations, however, exact Shuttle flight history can be exercised using the same model if desired. Such a perturbation model, though not meteorologically motivated, enables inclusion of High Resolution Accelerometer Package (HiRAP) results in the thermosphere. Provision is made to incorporate differing perturbations during the AOTV entry and exit phases of the aero-asist maneuver to account for trajectory displacement (geographic) along the ground track.

  1. Parameter estimation supplement to the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)

    NASA Technical Reports Server (NTRS)

    Bjorkman, W. S.; Uphoff, C. W.

    1973-01-01

    This Parameter Estimation Supplement describes the PEST computer program and gives instructions for its use in determination of lunar gravitation field coefficients. PEST was developed for use in the RAE-B lunar orbiting mission as a means of lunar field recovery. The observations processed by PEST are short-arc osculating orbital elements. These observations are the end product of an orbit determination process obtained with another program. PEST's end product it a set of harmonic coefficients to be used in long-term prediction of the lunar orbit. PEST employs some novel techniques in its estimation process, notably a square batch estimator and linear variational equations in the orbital elements (both osculating and mean) for measurement sensitivities. The program's capabilities are described, and operating instructions and input/output examples are given. PEST utilizes MAESTRO routines for its trajectory propagation. PEST's program structure and subroutines which are not common to MAESTRO are described. Some of the theoretical background information for the estimation process, and a derivation of linear variational equations for the Method 7 elements are included.

  2. Heliocentric trajectory analysis of Sun-pointing smart dust with electrochromic control

    NASA Astrophysics Data System (ADS)

    Mengali, Giovanni; Quarta, Alessandro A.

    2016-02-01

    A smart dust is a micro spacecraft, with a characteristic side length on the order of a few millimeters, whose surface is coated with electrochromic material. Its orbital dynamics is controlled by exploiting the differential force due to the solar radiation pressure, which is obtained by modulating the reflectivity coefficient of the electrochromic material within a range of admissible values. A significant thrust level can be reached due to the high values of area-to-mass ratio of such a spacecraft configuration. Assuming that the smart dust is designed to achieve a passive Sun-pointing attitude, the propulsive acceleration due to the solar radiation pressure lies along the Sun-spacecraft direction. The aim of this paper is to study the smart dust heliocentric dynamics in order to find a closed form, analytical solution of its trajectory when the reflectivity coefficient of the electrochromic material can assume two values only. The problem is addressed by introducing a suitable transformation that regularizes the spacecraft motion and translates the smart-dust dynamics into that of a linear harmonic oscillator with unitary frequency, whose forcing input is a boxcar function. The solution is found using the Laplace transform method, and afterwards the problem is generalized by accounting for the degradation of the electrochromic material due to its exposition to the solar radiation. Three spacecraft configurations, corresponding to low, medium and high performance smart dusts, are finally used to quantify the potentialities of these advanced devices in an interplanetary mission scenario.

  3. Vibrational nonequilibrium in chain branching reactions of hydrogen combustion using quasi-classical trajectory analysis

    NASA Astrophysics Data System (ADS)

    Voelkel, Stephen; Raman, Venkat; Varghese, Philip

    2015-11-01

    In high-speed reactive flows in scramjets, thermal nonequilibrium is introduced in the flow via shock waves. Though rotational and translational energy modes relax back to equilibrium quickly, vibrational relaxation is comparable to the bulk mixing and reaction timescales. The discrepancy between vibration and rotation/translation energy distributions can dramatically alter on the initiation of the fuel oxidation process. For continuum-scale applications, thermal nonequilibrium effects are derived from the rovibrational state-specific reaction and scattering rates associated with the chemical mechanism. In this work, the state-specific reaction rates are calculated for the chain branching reactions in the hydrogen combustion mechanism using a quasi-classical trajectory (QCT) framework. The state-specific rates are incorporated into a multiple temperature continuum-scale model whereby each species is characterized by a Boltzmann distribution parametrized by its own vibrational temperature. The flame ignition rates are implemented in a CFD code to simulate a reactive coflow. Funded by AFOSR FA9550-12-1-0460.

  4. Using Lidar, in-situ measurements and Trajectory Analysis to observe air pollution in Beijing, 2014

    NASA Astrophysics Data System (ADS)

    Chen, Zhenyi; Liu, Wenqing; Liu, Jianguo; Zhang, Tianshu; Dong, Yunsheng

    2016-06-01

    We present combined Mie lidar, ozone lidar and wide-range particle spectrometer observations that were carried out in Beijing, north China during two periods—one haze period before the Asia-Pacific Economic Cooperation (APEC) meeting and one moderate pollution period during the meeting in 2014. High extinction coefficient, moderate ozone concentration and variable particle number concentration were obtained throughout the first haze observation period. The mean extinction coefficients in the two pollution periods were 0.52 km-1 and 0.23 km-1, respectively, at 532 nm. The ozone concentration during the first haze phase was more various with higher average value of 49 ppb compared to that in the second pollution observations (32 ppb). The comparison of aerosols and ozone in different heights indicate different pollution sources and complicated ozone process of generation and disappearance. The four-day back trajectories from a HYSPLIT model indicate that the air masses in the lower boundary layer were advected from the densely populated south regions of China and the long pollution transportation passing through northern China.

  5. Ballistic trajectories

    NASA Technical Reports Server (NTRS)

    Bender, D. F.

    1978-01-01

    The only ballistic trajectory mode feasible for a close solar probe or for an orbit inclined approximately 90 degrees to the ecliptic is the Jupiter gravity assisted mode. A comparison of the trajectories of the Solar Polar and the Solar Probe Mission for 1983 launches is shown. The geometry of the solar encounter phase is practically the same for the 4.3 year orbit achieved by a Jupiter gravity assist and for a one year orbit. Data describing the geometry of an orbit with perihelion at 4 solar radii and aphelion at Jupiter are listed. The range of apparent directions of the solar wind if it is flowing radially outward from the Sun with a speed of either 150 or 300 km/sec is shown. The minimum sun-earth-probe angle during the solar encounter as a function of the earth-node angle and the orbital inclination is also shown. If the inclination is 60 degrees or more, the minimum SEP angle is not greatly different from the 90 degree value.

  6. Apple fruit copper amine oxidase isoforms: peroxisomal MdAO1 prefers diamines as substrates, whereas extracellular MdAO2 exclusively utilizes monoamines.

    PubMed

    Zarei, Adel; Trobacher, Christopher P; Cooke, Alison R; Meyers, Ashley J; Hall, J Christopher; Shelp, Barry J

    2015-01-01

    4-Aminobutyrate (GABA) accumulates in apple fruit during controlled atmosphere storage. A potential source of GABA is the polyamine putrescine, which can be oxidized via copper-containing amine oxidase (CuAO), resulting in the production 4-aminobutanal/Δ(1)-pyrroline, with the consumption of O2 and release of H2O2 and ammonia. Five putative CuAO genes (MdAO genes) were cloned from apple (Malus domestica Borkh. cv. Empire) fruit, and the deduced amino acid sequences found to contain the active sites typically conserved in CuAOs. Genes encoding two of these enzymes, MdAO1 and MdAO2, were highly expressed in apple fruit and selected for further analysis. Amino acid sequence analysis predicted the presence of a C-terminal peroxisomal targeting signal 1 tripeptide in MdAO1 and an N-terminal signal peptide and N-glycosylation site in MdAO2. Transient expression of green fluorescent fusion proteins in Arabidopsis protoplasts or onion epidermal cells revealed a peroxisomal localization for MdAO1 and an extracellular localization for MdAO2. The enzymatic activities of purified recombinant MdAO1 and MdAO2 were measured continuously as H2O2 production using a coupled reaction. MdAO1 did not use monoamines or polyamines and displayed high catalytic efficiency for 1,3-diaminopropane, putrescine and cadaverine, whereas MdAO2 exclusively utilized aliphatic and aromatic monoamines, including 2-phenylethylamine and tyramine. Together, these results indicate that MdAO1 may contribute to GABA production via putrescine oxidation in the peroxisome of apple fruit under controlled atmosphere conditions. MdAO2 seems to be involved in deamination of 2-phenylethylamine, which is a step in the biosynthesis of 2-phenylethanol, a contributor to fruit flavor and flower fragrance. PMID:25378687

  7. PM over summertime India: Sources and trends investigated using long term measurements and multi-receptor site back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Sarkar, Chinmoy; Sachan, Himanshu; Kumar, Devender; Sinha, Baerbel

    2013-04-01

    We apply multi-receptor site residence-time weighted concentration back trajectory analysis to a ten year data set (1991-2003) of PM10 and TSP measurement data from four Indian megacities Delhi, Mumbai, Kolkata and Chennai. The dataset was sourced from the published and peer reviewed work of Gupta and Kumar (2006). Sources and trends of PM10 and TSP during the pre-monsoon season (March-June) were investigated. Residence-time weighted concentration maps were derived using 72 hour HYSPLIT back trajectory ensemble calculations. Trajectory runs were started 100 m AGL and the observed PM monthly averages were attributed to all trajectory runs in a month and each trajectory of the ensemble runs with equal probability. For investigating trends the dataset was further subdivided into two groups of four year durations each (1992-1995 and 2000-2003). We found a linear correlation with a slope of 1.0 (R2=0.9) between estimated seasonal average TSP (2000-2003) using our approach and the measured seasonal averages (2006-2007) for Kanpur, Ahmedabad, Pune and Bangalore. A linear fit between predicted and measured PM10 concentration for 19 sites with PM10 observations of at least one seasonal average between 1999-2009 shows a slope of 1.4 (R2=0.4). For the observation period 2000-2003, the Thar Desert and Taklimakan Desert emerged as largest sources for both PM10 (>180 μg/m3 and >200 μg/m3 respectively) and TSP (>650 μg/m3 and >725 μg/m3 respectively). In-situ observation at Bikaner (central Thar Desert) and in Jhunjhunu (semi-arid site at the border of the Thar Desert) indicate that both TSP and PM10 inside the desert source region are underpredicted by a factor of 10 compared to in-situ observations while for the semi arid area bordering the desert PM10 and TSP are underpredicted by a factor of 5 and 3 respectively. This indicates that strong sources are underpredicted by a receptor site centred approach. The entire North-Western Indo-Gangetic Basin (NW-IGB), where crop

  8. Investigating trajectories of social recovery in individuals with first-episode psychosis: a latent class growth analysis

    PubMed Central

    Hodgekins, Jo; Birchwood, Max; Christopher, Rose; Marshall, Max; Coker, Sian; Everard, Linda; Lester, Helen; Jones, Peter; Amos, Tim; Singh, Swaran; Sharma, Vimal; Freemantle, Nick; Fowler, David

    2015-01-01

    Background Social disability is a hallmark of severe mental illness yet individual differences and factors predicting outcome are largely unknown. Aim To explore trajectories and predictors of social recovery following a first episode of psychosis (FEP). Method A sample of 764 individuals with FEP were assessed on entry into early intervention in psychosis (EIP) services and followed up over 12 months. Social recovery profiles were examined using latent class growth analysis. Results Three types of social recovery profile were identified: Low Stable (66%), Moderate-Increasing (27%), and High-Decreasing (7%). Poor social recovery was predicted by male gender, ethnic minority status, younger age at onset of psychosis, increased negative symptoms, and poor premorbid adjustment. Conclusions Social disability is prevalent in FEP, although distinct recovery profiles are evident. Where social disability is present on entry into EIP services it can remain stable, highlighting a need for targeted intervention. PMID:26294371

  9. Design of Quiet Rotorcraft Approach Trajectories: Verification Phase

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    2010-01-01

    Flight testing that is planned for October 2010 will provide an opportunity to evaluate rotorcraft trajectory optimization techniques. The flight test will involve a fully instrumented MD-902 helicopter, which will be flown over an array of microphones. In this work, the helicopter approach trajectory is optimized via a multiobjective genetic algorithm to improve community noise, passenger comfort, and pilot acceptance. Previously developed optimization strategies are modified to accommodate new helicopter data and to increase pilot acceptance. This paper describes the MD-902 trajectory optimization plus general optimization strategies and modifications that are needed to reduce the uncertainty in noise predictions. The constraints that are imposed by the flight test conditions and characteristics of the MD-902 helicopter limit the testing possibilities. However, the insights that will be gained through this research will prove highly valuable.

  10. Analysis and Comparison of Clothoid and Dubins Algorithms for UAV Trajectory Generation

    NASA Astrophysics Data System (ADS)

    Al Nuaimi, Mohanad

    The differences between two types of pose-based UAV path generation methods clothoid and Dubins are analyzed in this thesis. The Dubins path is a combination of circular arcs and straight line segments; therefore its curvature will exhibit sudden jumps between constant values. The resulting path will have a minimum length if turns are performed at the minimum possible turn radius. The clothoid path consists of a similar combination of arcs and segments but the difference is that the clothoid arcs have a linearly variable curvature and are generated based on Fresnel integrals. Geometrically, the generation of the clothoid arc starts with a large curvature that decreases to zero. The clothoid path results are longer than the Dubins path between the same two poses and for the same minimum turn radius. These two algorithms are the focus of this research because of their geometrical simplicity, flexibility, and low computational requirements. The comparison between clothoid and Dubins algorithms relies on extensive simulation results collected using an ad-hoc developed automated data acquisition tool within the WVU UAV simulation environment. The model of a small jet engine UAV has been used for this purpose. The experimental design considers several primary factors, such as different trajectory tracking control laws, normal and abnormal flight conditions, relative configuration of poses, and wind and turbulence. A total of five different controllers have been considered, three conventional with fixed parameters and two adaptive. The abnormal flight conditions include locked or damaged actuators (stabilator, aileron, or rudder) and sensor bias affecting roll, pitch, or yaw rate gyros that are used in the feedback control loop. The relative configuration of consecutive poses is considered in terms of heading (required turn angle) and relative location of start and end points (position quadrant). Wind and turbulence effects were analyzed for different wind speed and