Science.gov

Sample records for mda-mb-231 human breast

  1. Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells

    PubMed Central

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Jeyaraj, Muniyandi; Kim, Jin-Hoi

    2013-01-01

    Silver nanoparticles (AgNPs) have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant of Bacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spectrophotometer, particle size analyzer, and transmission electron microscopy (TEM). The toxicity was evaluated using cell viability, metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were treated with various concentrations of AgNPs (5 to 25 μg/mL) for 24 h. We found that AgNPs inhibited the growth in a dose-dependent manner using MTT assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells through activation of the lactate dehydrogenase (LDH), caspase-3, reactive oxygen species (ROS) generation, eventually leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. The present results showed that AgNPs might be a potential alternative agent for human breast cancer therapy. PMID:23936814

  2. Development of Resistance towards Artesunate in MDA-MB-231 Human Breast Cancer Cells

    PubMed Central

    Bachmeier, Beatrice; Fichtner, Iduna; Killian, Peter H.; Kronski, Emanuel; Pfeffer, Ulrich; Efferth, Thomas

    2011-01-01

    Breast cancer is the most common cancer and the second leading cause of cancer death in industrialized countries. Systemic treatment of breast cancer is effective at the beginning of therapy. However, after a variable period of time, progression occurs due to therapy resistance. Artesunate, clinically used as anti-malarial agent, has recently revealed remarkable anti-tumor activity offering a role as novel candidate for cancer chemotherapy. We analyzed the anti-tumor effects of artesunate in metastasizing breast carcinoma in vitro and in vivo. Unlike as expected, artesunate induced resistance in highly metastatic human breast cancer cells MDA-MB-231. Likewise acquired resistance led to abolishment of apoptosis and cytotoxicity in pre-treated MDA-MB-231 cells. In contrast, artesunate was more cytotoxic towards the less tumorigenic MDA-MB-468 cells without showing resistance. Unraveling the underlying molecular mechanisms, we found that resistance was induced due to activation of the tumor progression related transcription factors NFκB and AP-1. Thereby transcription, expression and activity of the matrix-degrading enzyme MMP-1, whose function is correlated with increased invasion and metastasis, was up-regulated upon acquisition of resistance. Additionally, activation of the apoptosis-related factor NFκB lead to increased expression of ant-apoptotic bcl2 and reduced expression of pro-apoptotic bax. Application of artesunate in vivo in a model of xenografted breast cancer showed, that tumors growth was not efficiently abolished as compared to the control drug doxorubicin. Taken together our in vitro and in vivo results correlate well showing for the first time that artesunate induces resistance in highly metastatic breast tumors. PMID:21637790

  3. Potential suppressive effects of gentian violet on human breast cancer MDA-MB-231 cells in vitro: Comparison with gemcitabine

    PubMed Central

    Yamaguchi, Masayoshi; Murata, Tomiyasu

    2016-01-01

    Gentian violet (GV), a cationic triphenylmethane dye, is used as an antifungal and antibacterial agent. Recently, attention has been focused on GV as a potential chemotherapeutic and antiangiogenic agent. The present study was undertaken to determine the suppressive effects of GV on human breast cancer MDA-MB-231 cells in vitro. The proliferation of MDA-MB-231 cells was suppressed by culture with GV (1–200 nM). The suppressive effects of GV on cell proliferation were not potentiated in the presence of various inhibitors that induce cell cycle arrest in vitro. This finding suggested that GV inhibits G1 and G2/M phase cell cycle arrest in MDA-MB-231 cells. The suppressive effects of GV on proliferation are mediated through the inhibition of various signaling pathways or nuclear transcription in vitro. Moreover, the suppressive effects of GV on cell proliferation were compared with that of gemcitabine, a strong antitumor agent that induces nuclear DNA damage. Notably, the culture with gemcitabine >50 nM suppressed cell proliferation, while the effects of GV were observed at >1 nM. The suppressive effects of gemcitabine on cell proliferation were not potentiated by GV. Overall, the present study demonstrated that GV exhibits a potential suppressive effect on the proliferation of human breast cancer MDA-MB-231 cells in vitro. PMID:27446479

  4. Artichoke polyphenols induce apoptosis and decrease the invasive potential of the human breast cancer cell line MDA-MB231.

    PubMed

    Mileo, Anna Maria; Di Venere, Donato; Linsalata, Vito; Fraioli, Rocco; Miccadei, Stefania

    2012-09-01

    The human breast cancer cell line, estrogen receptor negative, MDA-MB231, was used to evaluate the antitumor effect of polyphenolic extracts from the edible part of artichokes (AEs). Treatment of cancer cells reduced cell viability and inhibited cell growth in a dose-dependent manner. Importantly, AEs did not have any effect on normal breast epithelial cell line, MCF10A. Chlorogenic acid (ChA), the most representative component of the polyphenolic fraction of artichoke, had no prominent effects on the cell death rate of MDA-MB231 cells. The addition of AEs to the cells, rather than ChA, triggered apoptosis via a mitochondrial and a death-receptor pathway, as shown by the activation of caspase-9 and caspase-8, respectively. Furthermore, an increase of the Bax:Bcl2 ratio and up-regulation of cyclin-dependent kinase inhibitor, p21(WAF1), crucial apoptotic players, were documented. According to our data on activation of caspase-9, a loss of mitochondrial transmembrane potential (Ψ(m)) was shown. Cell motility and invasion capabilities were remarkably inhibited by AEs-treatment in highly invasive MDA-MB231 cells. In addition, a significant decrease of proteolytic activity of metalloproteinase-2 protein (MMP-2), involved in degrading components of the extracellular matrix, was detected. Our findings indicate that AEs reduced cell viability, inhibited cell growth, triggered apoptotic mechanisms, and showed inhibitory properties against the invasive behavior of MDA-MB231 cancer cell line. Altogether, these data indicate the potential chemopreventive activity of artichoke polyphenolic extracts. PMID:22170094

  5. Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells.

    PubMed

    Schley, Patricia D; Jijon, Humberto B; Robinson, Lindsay E; Field, Catherine J

    2005-07-01

    The omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), inhibit the growth of human breast cancer cells in animal models and cell lines, but the mechanism by which this occurs is not well understood. In order to explore possible mechanisms for the modulation of breast cancer cell growth by omega-3 fatty acids, we examined the effects of EPA and DHA on the human breast cancer cell line MDA-MB-231. Omega-3 fatty acids (a combination of EPA and DHA) inhibited the growth of MDA-MB-231 cells by 30-40% (p<0.05) in both the presence and absence of linoleic acid, an essential omega-6 fatty acid. When provided individually, DHA was more potent than EPA in inhibiting the growth of MDA-MB-231 cells (p<0.05). EPA and DHA treatment decreased tumor cell proliferation (p<0.05), as estimated by decreased [methyl-(3)H]-thymidine uptake and expression of proliferation-associated proteins (proliferating cell nuclear antigen, PCNA, and proliferation-related kinase, PRK). In addition, EPA and DHA induced apoptosis, as indicated by a loss of mitochondrial membrane potential, increased caspase activity and increased DNA fragmentation (p<0.05). Cells incubated with omega-3 fatty acids demonstrated decreased Akt phosphorylation, as well as NFkappaB DNA binding activity (p<0.05). The results of this study indicate that omega-3 fatty acids decrease cell proliferation and induce apoptotic cell death in human breast cancer cells, possibly by decreasing signal transduction through the Akt/NFkappaB cell survival pathway. PMID:15986129

  6. High throughput screening of natural products for anti-mitotic effects in MDA-MB-231 human breast carcinoma cells.

    PubMed

    Mazzio, E; Badisa, R; Mack, N; Deiab, S; Soliman, K F A

    2014-06-01

    Some of the most effective anti-mitotic microtubule-binding agents, such as paclitaxel (Taxus brevifolia) were originally discovered through robust National Cancer Institute botanical screenings. In this study, a high-through put microarray format was utilized to screen 897 aqueous extracts of commonly used natural products (0.00015-0.5 mg/mL) relative to paclitaxel for anti-mitotic effects (independent of toxicity) on proliferation of MDA-MB-231 cells. The data obtained showed that less than 1.34 % of the extracts tested showed inhibitory growth (IG50 ) properties <0.0183 mg/mL. The most potent anti-mitotics (independent of toxicity) were Mandrake root (Podophyllum peltatum), Truja twigs (Thuja occidentalis), Colorado desert mistletoe (Phoradendron flavescens), Tou Gu Cao [symbol: see text] Speranskia herb (Speranskia tuberculata), Bentonite clay, Bunge root (Pulsatilla chinensis), Brucea fruit (Brucea javanica), Madder root (Rubia tinctorum), Gallnut of Chinese Sumac (Melaphis chinensis), Elecampane root (Inula Helenium), Yuan Zhi [symbol: see text] root (Polygala tenuifolia), Pagoda Tree fruit (Melia Toosendan), Stone root (Collinsonia Canadensis), and others such as American Witchhazel, Arjun, and Bladderwrack. The strongest tumoricidal herbs identified from amongst the subset evaluated for anti-mitotic properties were wild yam (Dioscorea villosa), beth root (Trillium Pendulum), and alkanet root (Lithospermum canescens). Additional data was obtained on a lesser-recognized herb: (S. tuberculata), which showed growth inhibition on BT-474 (human ductal breast carcinoma) and Ishikawa (human endometrial adenocarcinoma) cells with ability to block replicative DNA synthesis, leading to G2 arrest in MDA-MB-231 cells. In conclusion, these findings present relative potency of anti-mitotic natural plants that are effective against human breast carcinoma MDA-MB-231 cell division. PMID:24105850

  7. High throughput screening of natural products for anti-mitotic effects in MDA-MB-231 human breast carcinoma cells

    PubMed Central

    Mazzio, E; Badisa, R; Mack, N; Deiab, S; Soliman, KFA

    2013-01-01

    Some of the most effective anti-mitotic microtubule-binding agents, such as paclitaxel (Taxus brevifolia) were originally discovered through robust NCI botanical screenings. In this study, a high-through microarray format was utilized to screen 897 aqueous extracts of commonly used natural products (0.00015–0.5 mg/ml) relative to paclitaxel for anti-mitotic effects (independent of toxicity) on proliferation of MDA-MB-231 cells. The data obtained showed that less than 1.34 % tested showed inhibitory growth (IG50) properties <0.0183 mg/ml. The most potent anti-mitotics (independent of toxicity) were Mandrake root (Podophyllum peltatum), Truja Twigs (Thuja occidentalis), Colorado desert mistletoe (Phoradendron flavescens), Tou Gu Cao Speranskia Herb (Speranskia tuberculata), Bentonite Clay, Bunge Root (Pulsatilla chinensis), Brucea Fruit (Brucea javanica), Madder Root (Rubia tinctorum), Gallnut of Chinese Sumac (Melaphis chinensis), Elecampane Root (Inula Helenium), Yuan Zhi Root (Polygala tenuifolia), Pagoda Tree Fruit (Melia Toosendan), Stone Root (Collinsonia Canadensis) and others such as American Witchhazel, Arjun and Bladderwrack. The strongest tumoricidal herbs identified from amongst the subset evaluated for anti-mitotic properties were wild yam (Dioscorea villosa), beth-root (Trillium Pendulum) and alkanet-root (Lithospermum canescens). Additional data was obtained on a lesser-recognized herb: (Speranskia tuberculata) which showed growth inhibition on BT-474 (human ductal breast carcinoma) and Ishikawa (human endometrial adenocarcinoma) cells with ability to block replicative DNA synthesis leading to G2 arrest in MDA-MB-231 cells. In conclusion, these findings present relative potency of natural anti-mitotic resources effective against human breast carcinoma MDA-MB-231 cell division. PMID:24105850

  8. Curcumin inhibits intracellular fatty acid synthase and induces apoptosis in human breast cancer MDA-MB-231 cells.

    PubMed

    Fan, Huijin; Liang, Yan; Jiang, Bing; Li, Xiabing; Xun, Hang; Sun, Jia; He, Wei; Lau, Hay Tong; Ma, Xiaofeng

    2016-05-01

    High levels of fatty acid synthase (FAS) expression have been found in many tumors, including prostate, breast, and ovarian cancers, and inhibition of FAS has been reported to obstruct tumor growth in vitro and in vivo. Curcumin is one of the major active ingredients of Curcuma longa, which has been proven to inhibit the growth of cancer cells. In the present study, we investigated the potential activity of curcumin as a FAS inhibitor for chemoprevention of breast cancer. As a result, curcumin induced human breast cancer MDA-MB-231 cell apoptosis with the half-inhibitory concentration value of 3.63 ± 0.26 µg/ml, and blocked FAS activity, expression and mRNA level in a dose-dependent manner. Curcumin also regulated B-cell lymphoma 2 (Bcl-2), Bax and p-Akt protein expression in MDA-MB-231 cells. Moreover, FAS knockdown showed similar effect as curcumin. All these results suggested that curcumin may induce cell apoptosis via inhibiting FAS. PMID:26985864

  9. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  10. Molecular deficiency (ies) in MT1 melatonin signaling pathway underlies the melatonin-unresponsive phenotype in MDA-MB-231 human breast cancer cells

    PubMed Central

    Mao, Lulu; Yuan, Lin; Xiang, Shulin; Zeringue, Samantha B.; Dauchy, Robert T.; Blask, David E.; Hauch, Adam; Hill, Steven M.

    2016-01-01

    Melatonin, has been shown repeatedly to inhibit the growth of human breast tumor cells in vitro and in vivo. Its anti-proliferative effects have been well-studied in MCF-7 human breast cancer cells and several other estrogen receptor α (ERα)-positive human breast cancer cell lines. However, the MDA-MB-231 breast cancer cell line, an ERα negative cell line widely used in breast cancer research, has been shown to be unresponsive to melatonin’s growth-suppressive effect in vitro. Here we examined the effect of melatonin on the cell proliferation of several ERα-negative breast cancer cell lines including MDA-MB-231, BT-20 and SK-BR-3 cells. Although the MT1 G-protein-coupled receptor is expressed in all three cell lines, melatonin significantly suppressed the proliferation of SK-BR-3 cells without having any significant effect on the growth of MDA-MB-231 and BT-20 cells. We confirmed that the MT1-associated Gα proteins are expressed in MDA-MB-231 cells. Further studies demonstrated that the melatonin-unresponsiveness in MDA-MB-231 cells may be caused by aberrant signaling downstream of the Gαi proteins, resulting in differential regulation of ERK1/2 activity. PMID:24372669

  11. L-leucine transport in human breast cancer cells (MCF-7 and MDA-MB-231): kinetics, regulation by estrogen and molecular identity of the transporter.

    PubMed

    Shennan, D B; Thomson, J; Gow, I F; Travers, M T; Barber, M C

    2004-08-30

    The transport of L-leucine by two human breast cancer cell lines has been examined. L-leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+ -independent pathway. L-leucine uptake by both cell lines was inhibited by L-alanine, D-leucine and to a lesser extent by L-lysine but not by L-proline. Estrogen (17beta-estradiol) stimulated L-leucine uptake by MCF-7 but not by MDA-MB-231 cells. L-leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on L-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 degrees C. There was, however, a significant efflux of L-leucine under zero-trans conditions which was also temperature-sensitive. L-glutamine, L-leucine, D-leucine, L-alanine, AIB and L-lysine all trans-stimulated L-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, D-alanine and L-proline had little or no effect. The anti-cancer agent melphalan inhibited L-leucine uptake by MDA-MB-231 cells but had no effect on L-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for L-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc. PMID:15328053

  12. Assessment of the anti-metastatic properties of sanguiin H-6 in HUVECs and MDA-MB-231 human breast cancer cells.

    PubMed

    Park, Eun-Hwa; Park, Jun Yeon; Yoo, Hwa-Seung; Yoo, Jeong-Eun; Lee, Hye Lim

    2016-07-15

    The anti-metastatic properties of sanguiin H-6 were examined in human umbilical vein vascular endothelial cells (HUVECs) and MDA-MB-231 human breast cancer cells. In HUVECs, sanguiin H-6 inhibited the density of migrated cells compared to that observed after treatment with the vehicle. In addition, sanguiin H-6 at a concentration of 6.25μM significantly blocked tube formation. Treatment with up to 25μM sanguiin H-6 had no effect on MDA-MB-231 cells, whereas treatment with 200μM sanguiin H-6 decreased cell viability. Sanguiin H-6 significantly decreased the expression levels of vascular endothelial growth factor (VEGF), phosphorylated Akt, and extracellular signal-regulated kinase 1/2 (ERK1/2) in MDA-MB-231 cells. These findings suggest that sanguiin H-6 is potentially useful as an anti-metastatic agent. PMID:27237777

  13. Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.

    PubMed

    Aumsuwan, Pranapda; Khan, Shabana I; Khan, Ikhlas A; Walker, Larry A; Dasmahapatra, Asok K

    2016-09-01

    Microarray technology (Human OneArray microarray, phylanxbiotech.com) was used to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified which was followed by pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|≧1. Among these genes, 2439 genes were upregulated and 2002 were downregulated. DS exposure (2.30 μM, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference when compared with the untreated cells (p<0.05). Within these gene sets, DS was able to upregulate 395 genes and downregulate 406 genes in MCF-7 and upregulate 36 and downregulate 60 genes in MDA-MB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 were down-regulated. Regarding to PEA, 12 canonical pathways were significantly altered between these two cell lines. However, there was no alteration in any of these pathways in MCF-7 cells, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, we identified the shared DEG, which were targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, by intersection analysis (Venn diagram). We found that 7 DEG were overlapped of which six are reported in the database. This data highlight the diverse gene networks and pathways in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin. PMID:27331101

  14. Chemotherapy cytotoxicity of human MCF-7 and MDA-MB 231 breast cancer cells is altered by osteoblast-derived growth factors.

    PubMed Central

    Koutsilieris, M.; Reyes-Moreno, C.; Choki, I.; Sourla, A.; Doillon, C.; Pavlidis, N.

    1999-01-01

    One-third of women with breast cancer will develop bone metastases and eventually die from disease progression at these sites. Therefore, we analyzed the ability of human MG-63 osteoblast-like cells (MG-63 cells), MG-63 conditioned media (MG-63 CM), insulin-like growth factor I (IGF-I), and transforming growth factor beta 1 (TGF-beta1) to alter the effects of adriamycin on cell cycle and apoptosis of estrogen receptor negative (ER-) MDA-MB-231 and positive (ER+) MCF-7 breast cancer cells, using cell count, trypan blue exclusion, flow cytometry, detection of DNA fragmentation by simple agarose gel, and the terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method for apoptosis (TUNEL assay). Adriamycin arrested MCF-7 and MDA-MB-231 cells at G2/M phase in the cell cycle and inhibited cell growth. In addition, adriamycin arrested the MCF-7 cells at G1/G0 phase and induced apoptosis of MDA-MB-231 cells. Exogenous IGF-I partially neutralized the adriamycin cytotoxicity/cytostasis of cancer cells. MG-63 CM and TGF-beta1 partially neutralized the adriamycin cytotoxicity of MDA-MB-231 cells but enhanced adriamycin blockade of MCF-7 cells at G1/G0 phase. MG-63 osteoblast-like cells inhibited growth of MCF-7 cells while promoting growth and rescued MDA-MB-231 cells from adriamycin apoptosis in a collagen co-culture system. These data suggest that osteoblast-derived growth factors can alter the chemotherapy response of breast cancer cells. Conceivably, host tissue (bone)-tumor cell interactions can modify the clinical response to chemotherapy in patients with advanced breast cancer. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:10203574

  15. The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro.

    PubMed

    Aumsuwan, Pranapda; Khan, Shabana I; Khan, Ikhlas A; Ali, Zulfiqar; Avula, Bharathi; Walker, Larry A; Shariat-Madar, Zia; Helferich, William G; Katzenellenbogen, Benita S; Dasmahapatra, Asok K

    2016-02-01

    Previously, we observed that wild yam (Dioscorea villosa) root extract (WYRE) was able to activate GATA3 in human breast cancer cells targeting epigenome. This study aimed to find out if dioscin (DS), a bioactive compound of WYRE, can modulate GATA3 functions and cellular invasion in human breast cancer cells. MCF-7 and MDA-MB-231 cells were treated in the absence/presence of various concentrations of DS and subjected to gene analysis by RT-qPCR, immunoblotting, and immunocytochemistry. We determined the ability of MDA-MB-231 cells to migrate into wound area and examined the effects of DS on cellular invasion using invasion assay. DS reduced cell viability of both cell lines in a concentration and time-dependent manner. GATA3 expression was enhanced by DS (5.76 μM) in MDA-MB-231 cells. DS (5.76 μM)-treated MDA-MB-231 cells exhibited the morphological characteristic of epithelial-like cells; mRNA expression of DNMT3A, TET2, TET3, ZFPM2 and E-cad were increased while TET1, VIM and MMP9 were decreased. Cellular invasion of MDA-MB-231 was reduced by 65 ± 5% in the presence of 5.76 μM DS. Our data suggested that DS-mediated pathway could promote GATA3 expression at transcription and translation levels. We propose that DS has potential to be used as an anti-invasive agent in breast cancer. PMID:26682631

  16. A potential peptide vector that allows targeted delivery of a desired fusion protein into the human breast cancer cell line MDA-MB-231

    PubMed Central

    LIU, WEI QING; YANG, JUN; HONG, MIN; GAO, CHANG E.; DONG, JIAN

    2016-01-01

    Effective control of breast cancer has been primarily hampered by a lack of tumor specificity in treatments. One potential way to improve targeting specificity is to develop novel vectors that specifically bind to and are internalized by tumor cells. Through a phage display library, an 11-L-amino acid peptide, PI (sequence, CASPSGALRSC), was selected. PI was labeled with fluorescein isothiocyanate (FITC) and named PI-FITC. Subsequently, the specific affinity of PI-FITC to MDA-MB-231 human breast cancer cells and other cancer cell lines was observed by confocal microscopy. Our previous study established that PI-FITC also shows affinity to Calu-1 human lung carcinoma cells and major histocompatibility complex class I antigen molecules; therefore, the cytomembrane proteins of the cell lines were analyzed to determine those that were common to the two cell lines and may be associated with transmembrane transduction. To further test the delivery ability of PI to MDA-MB-231 cells, PI-glutathione-S-transferase (GST) was constructed and the internalization of this fusion protein was visualized by immunofluorescence microscopy. The results revealed that PI exhibited specific affinity to MDA-MB-231 cells. Use of membrane transport inhibitors indicated that macropinocytosis and caveolin-mediated endocytosis may be involved in the endocytosis of PI. In addition, 11 membrane proteins common to MDA-MB-231 and Calu-1 may be associated with transmembrane transduction. In summary, PI was able to deliver PI-GST into MDA-MB-231 cells. Thus, PI could be modified to be a potential vector, and may contribute to the development of targeted therapeutic strategies for breast cancer. PMID:27313722

  17. Neohesperidin induces cellular apoptosis in human breast adenocarcinoma MDA-MB-231 cells via activating the Bcl-2/Bax-mediated signaling pathway.

    PubMed

    Xu, Fei; Zang, Jia; Chen, Daozhen; Zhang, Ting; Zhan, Huiying; Lu, Mudan; Zhuge, Hongxiang

    2012-11-01

    Neohesperidin, a flavonoid compound found in high amounts in Poncirus trifoliata, has free radical scavenging activity. For the first time, our study indicated that neohesperidin also induces cell apoptosis in human breast adenocarcinoma MDA-MB-231 cells, which was possibly mediated by regulating the P53/Bcl-2/Bax pathway. MDA-MB-231 cells were subjected to treatment with neohesperidin. MTT and Trypan blue exclusion assays were applied to assess the cell viability. The morphological changes of cells were observed using an inverted microscope, and cell apoptosis was detected by flow cytometric analysis. Immunoblot analysis was conducted to evaluate the protein expressions of apoptosis-related genes, including P53, Bcl-2 and Bax. Our results indicated that the proliferation of MDA-MB-231 cells was inhibited by the treatment with neohesperidin in a time- and dose-dependent manner. The IC50 values of neohesperidin at 24 and 48 h were 47.4 +/- 2.6 microM and 32.5 +/- 1.8 microM, respectively. The expressions of P53 and Bax in the neohesperidin-treated cells were significantly up-regulated, while that of Bcl-2 was down-regulated. Our study suggested that neohesperidin could induce apoptosis of MDA-MB-231 cells, a process which was associated with the activation of the Bcl-2/Bax-mediated signaling pathway. PMID:23285810

  18. Antioxidant Activity and ROS-Dependent Apoptotic Effect of Scurrula ferruginea (Jack) Danser Methanol Extract in Human Breast Cancer Cell MDA-MB-231.

    PubMed

    Marvibaigi, Mohsen; Amini, Neda; Supriyanto, Eko; Abdul Majid, Fadzilah Adibah; Kumar Jaganathan, Saravana; Jamil, Shajarahtunnur; Hamzehalipour Almaki, Javad; Nasiri, Rozita

    2016-01-01

    Scurrula ferruginea (Jack) Danser is one of the mistletoe species belonging to Loranthaceae family, which grows on the branches of many deciduous trees in tropical countries. This study evaluated the antioxidant activities of S. ferruginea extracts. The cytotoxic activity of the selected extracts, which showed potent antioxidant activities, and high phenolic and flavonoid contents, were investigated in human breast cancer cell line (MDA-MB-231) and non-cancer human skin fibroblast cells (HSF-1184). The activities and characteristics varied depending on the different parts of S. ferruginea, solvent polarity, and concentrations of extracts. The stem methanol extract showed the highest amount of both phenolic (273.51 ± 4.84 mg gallic acid/g extract) and flavonoid contents (163.41 ± 4.62 mg catechin/g extract) and strong DPPH• radical scavenging (IC50 = 27.81 μg/mL) and metal chelation activity (IC50 = 80.20 μg/mL). The stem aqueous extract showed the highest ABTS•+ scavenging ability. The stem methanol and aqueous extracts exhibited dose-dependent cytotoxic activity against MDA-MB-231 cells with IC50 of 19.27 and 50.35 μg/mL, respectively. Furthermore, the extracts inhibited the migration and colony formation of MDA-MB-231 cells in a concentration-dependent manner. Morphological observations revealed hallmark properties of apoptosis in treated cells. The methanol extract induced an increase in ROS generation and mitochondrial depolarization in MDA-MB-231 cells, suggesting its potent apoptotic activity. The present study demonstrated that the S. ferruginea methanol extract mediated MDA-MB-231 cell growth inhibition via induction of apoptosis which was confirmed by Western blot analysis. It may be a potential anticancer agent; however, its in vivo anticancer activity needs to be investigated. PMID:27410459

  19. Antioxidant Activity and ROS-Dependent Apoptotic Effect of Scurrula ferruginea (Jack) Danser Methanol Extract in Human Breast Cancer Cell MDA-MB-231

    PubMed Central

    Marvibaigi, Mohsen; Amini, Neda; Supriyanto, Eko; Abdul Majid, Fadzilah Adibah; Kumar Jaganathan, Saravana; Jamil, Shajarahtunnur; Hamzehalipour Almaki, Javad; Nasiri, Rozita

    2016-01-01

    Scurrula ferruginea (Jack) Danser is one of the mistletoe species belonging to Loranthaceae family, which grows on the branches of many deciduous trees in tropical countries. This study evaluated the antioxidant activities of S. ferruginea extracts. The cytotoxic activity of the selected extracts, which showed potent antioxidant activities, and high phenolic and flavonoid contents, were investigated in human breast cancer cell line (MDA-MB-231) and non-cancer human skin fibroblast cells (HSF-1184). The activities and characteristics varied depending on the different parts of S. ferruginea, solvent polarity, and concentrations of extracts. The stem methanol extract showed the highest amount of both phenolic (273.51 ± 4.84 mg gallic acid/g extract) and flavonoid contents (163.41 ± 4.62 mg catechin/g extract) and strong DPPH• radical scavenging (IC50 = 27.81 μg/mL) and metal chelation activity (IC50 = 80.20 μg/mL). The stem aqueous extract showed the highest ABTS•+ scavenging ability. The stem methanol and aqueous extracts exhibited dose-dependent cytotoxic activity against MDA-MB-231 cells with IC50 of 19.27 and 50.35 μg/mL, respectively. Furthermore, the extracts inhibited the migration and colony formation of MDA-MB-231 cells in a concentration-dependent manner. Morphological observations revealed hallmark properties of apoptosis in treated cells. The methanol extract induced an increase in ROS generation and mitochondrial depolarization in MDA-MB-231 cells, suggesting its potent apoptotic activity. The present study demonstrated that the S. ferruginea methanol extract mediated MDA-MB-231 cell growth inhibition via induction of apoptosis which was confirmed by Western blot analysis. It may be a potential anticancer agent; however, its in vivo anticancer activity needs to be investigated. PMID:27410459

  20. Immunolocalization of MMP9 and MMP2 in osteolytic metastasis originating from MDA-MB-231 human breast cancer cells.

    PubMed

    Liu, Bo; Cui, Jian; Sun, Jing; Li, Juan; Han, Xiuchun; Guo, Jie; Yi, Min; Amizuka, Norio; Xu, Xin; Li, Minqi

    2016-08-01

    The aim of the present study was to investigate the expression of matrix metalloproteinase (MMP)9 and MMP2, and their potential roles in bone metastasis nests using a well-standardized model of breast cancer bone metastasis in nude mice. BALB/c nu/nu mice (5-week-old; n=10) were subjected to intracardiac injection of MDA-MB-231 human breast cancer cells. After 4 weeks, the mice exhibiting radiolucent lesions in tibiae were sacrificed, and the tibiae were removed for histochemical analysis. The gene expression of MMP2 and MMP9 in the tumor cells, metaphysis and diaphysis of normal BALB/c nu/nu mice were determined using reverse transcription-polymerase chain reaction analysis. The metastatic tumor tissue occupied almost the entire bone marrow cavity. Numerous tartrate-resistant acid phosphatase-positive osteoclasts were found in the metastasized lesions. The invaded tumor cells positive for mammaglobin 1 exhibited different proliferation activities and apoptosis between the metaphysis and diaphysis. Proliferating cell nuclear antigen was expressed at high levels in the metaphyseal area, whereas TdT-mediated dUTP nick-end labeling (TUNEL)-positive cells were more evident in the diaphysis area. Of note, MMP9 was expressed predominantly in the proliferating cell nuclear antigen‑positive area, whereas the expression of MMP2 was observed predominantly in the diaphysis, which had more TUNEL‑positive cells. Taken together, the results suggested that MMP9 and MMP2 may have their own importance in extracellular matrix degradation and trabecular bone damage in different zones of bone metastasis, including the metaphysis and diaphysis. PMID:27278284

  1. Immunolocalization of MMP9 and MMP2 in osteolytic metastasis originating from MDA-MB-231 human breast cancer cells

    PubMed Central

    Liu, Bo; Cui, Jian; Sun, Jing; Li, Juan; Han, Xiuchun; Guo, Jie; Yi, Min; Amizuka, Norio; Xu, Xin; Li, Minqi

    2016-01-01

    The aim of the present study was to investigate the expression of matrix metalloproteinase (MMP)9 and MMP2, and their potential roles in bone metastasis nests using a well-standardized model of breast cancer bone metastasis in nude mice. BALB/c nu/nu mice (5-week-old; n=10) were subjected to intracardiac injection of MDA-MB-231 human breast cancer cells. After 4 weeks, the mice exhibiting radiolucent lesions in tibiae were sacrificed, and the tibiae were removed for histochemical analysis. The gene expression of MMP2 and MMP9 in the tumor cells, metaphysis and diaphysis of normal BALB/c nu/nu mice were determined using reverse transcription-polymerase chain reaction analysis. The metastatic tumor tissue occupied almost the entire bone marrow cavity. Numerous tartrate-resistant acid phosphatase-positive osteoclasts were found in the metastasized lesions. The invaded tumor cells positive for mammaglobin 1 exhibited different proliferation activities and apoptosis between the metaphysis and diaphysis. Proliferating cell nuclear antigen was expressed at high levels in the metaphyseal area, whereas TdT-mediated dUTP nick-end labeling (TUNEL)-positive cells were more evident in the diaphysis area. Of note, MMP9 was expressed predominantly in the proliferating cell nuclear antigen-positive area, whereas the expression of MMP2 was observed predominantly in the diaphysis, which had more TUNEL-positive cells. Taken together, the results suggested that MMP9 and MMP2 may have their own importance in extracellular matrix degradation and trabecular bone damage in different zones of bone metastasis, including the metaphysis and diaphysis. PMID:27278284

  2. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231)

    PubMed Central

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin Hoi

    2014-01-01

    Background Recently, graphene and graphene-related materials have attracted much attention due their unique properties, such as their physical, chemical, and biocompatibility properties. This study aimed to determine the cytotoxic effects of graphene oxide (GO) that is reduced biologically using Ganoderma spp. mushroom extracts in MDA-MB-231 human breast cancer cells. Methods Herein, we describe a facile and green method for the reduction of GO using extracts of Ganoderma spp. as a reducing agent. GO was reduced without any hazardous chemicals in an aqueous solution, and the reduced GO was characterized using a range of analytical procedures. The Ganoderma extract (GE)-reduced GO (GE-rGO) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, scanning electron microscopy, Raman spectroscopy, and atomic force microscopy. Furthermore, the toxicity of GE-rGO was evaluated using a sequence of assays such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation in human breast cancer cells (MDA-MB-231). Results The preliminary characterization of reduction of GO was confirmed by the red-shifting of the absorption peak for GE-rGO to 265 nm from 230 nm. The size of GO and GE-rGO was found to be 1,880 and 3,200 nm, respectively. X-ray diffraction results confirmed that reduction processes of GO and the processes of removing intercalated water molecules and the oxide groups. The surface functionalities and chemical natures of GO and GE-rGO were confirmed using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface morphologies of the synthesized graphene were analyzed using high-resolution scanning electron microscopy. Raman spectroscopy revealed single- and multilayer properties of GE-rGO. Atomic force microscopy images provided evidence for the formation of graphene

  3. A comparative study of protein patterns of human estrogen receptor positive (MCF-7) and negative (MDA-MB-231) breast cancer cell lines.

    PubMed

    Flodrova, Dana; Toporova, Lucia; Macejova, Dana; Lastovickova, Marketa; Brtko, Julius; Bobalova, Janette

    2016-07-01

    In the present study, we analyzed the cell lysates of human tumour cell lines representing two major clinically different types of breast cancer. Our main goal was to show the differences between them on proteomic level. Gel electrophoresis followed by MALDI-TOF MS analysis was used for proteins determination. Exactly 98 proteins were unequivocally identified and 60 of them were expressed differentially between MDA-MB-231 and MCF-7 cell lines. Among the proteins reported here, some well-known breast cancer markers (e.g., annexin A1, annexin A2 and vimentin) were identified in the MDA-MB-231 cell line and thus we were able to distinguish both cell lines sufficiently. PMID:27174898

  4. Human ether à-gogo K(+) channel 1 (hEag1) regulates MDA-MB-231 breast cancer cell migration through Orai1-dependent calcium entry.

    PubMed

    Hammadi, Mehdi; Chopin, Valérie; Matifat, Fabrice; Dhennin-Duthille, Isabelle; Chasseraud, Maud; Sevestre, Henri; Ouadid-Ahidouch, Halima

    2012-12-01

    Breast cancer (BC) has a poor prognosis due to its strong metastatic ability. Accumulating data present ether à go-go (hEag1) K(+) channels as relevant player in controlling cell cycle and proliferation of non-invasive BC cells. However, the role of hEag1 in invasive BC cells migration is still unknown. In this study, we studied both the functional expression and the involvement in cell migration of hEag1 in the highly metastatic MDA-MB-231 human BC cells. We showed that hEag1 mRNA and proteins were expressed in human invasive ductal carcinoma tissues and BC cell lines. Functional activity of hEag1 channels in MDA-MB-231 cells was confirmed using astemizole, a hEag1 blocker, or siRNA. Blocking or silencing hEag1 depolarized the membrane potential and reduced both Ca(2+) entry and MDA-MB-231 cell migration without affecting cell proliferation. Recent studies have reported that Ca(2+) entry through Orai1 channels is required for MDA-MB-231 cell migration. Down-regulation of hEag1 or Orai1 reduced Ca(2+) influx and cell migration with similar efficiency. Interestingly, no additive effects on Ca(2+) influx or cell migration were observed in cells co-transfected with sihEag1 and siOrai1. Finally, both Orai1 and hEag1 are expressed in invasive breast adenocarcinoma tissues and invaded metastatic lymph node samples (LNM(+)). In conclusion, this study is the first to demonstrate that hEag1 channels are involved in the serum-induced migration of BC cells by controlling the Ca(2+) entry through Orai1 channels. hEag1 may therefore represent a potential target for the suppression of BC cell migration, and thus prevention of metastasis development. PMID:22495877

  5. MicroRNA-378-mediated suppression of Runx1 alleviates the aggressive phenotype of triple negative MDA-MB-231 human breast cancer cells

    PubMed Central

    Browne, Gillian; Dragon, Julie A.; Hong, Deli; Messier, Terri L.; Gordon, Jonathan A. R.; Farina, Nicholas H.; Boyd, Joseph R.; VanOudenhove, Jennifer J.; Perez, Andrew W.; Zaidi, Sayyed K.; Stein, Janet L.; Stein, Gary S.; Lian, Jane B.

    2016-01-01

    The Runx1 transcription factor, known for its essential role normal hematopoiesis, was reported in limited studies to be mutated or associated with human breast tumor tissues. Runx 1 increases concomitant with disease progression in the MMTV-PyMT transgenic mouse model of breast cancer. Compelling questions relate to mechanisms that regulate Runx1 expression in breast cancer. Here, we tested the hypothesis that dysregulation of Runx1-targeting microRNAs (miRNAs) allows for pathologic increase of Runx1 during breast cancer progression. Microarray profiling of the MMTV-PyMT model revealed significant down-regulation of numerous miRNAs predicted to target Runx1. One of these, miR-378, was inversely correlated with Runx1 expression during breast cancer progression in mouse, and in human breast cancer cell lines MCF7 and triple negative MDA-MB-231 that represent early and late stage disease, respectively. MiR-378 is nearly absent in MDA-MB-231 cells. Luciferase reporter assays revealed that miR-378 binds the Runx1 3′UTR and inhibits Runx1 expression. Functionally, we demonstrated that ectopic expression of miR-378 in MDA-MB-231 cells inhibited Runx1 and suppressed migration and invasion; while inhibition of miR-378 in MCF7 cells increased Runx1 levels and cell migration. Depletion of Runx1 in late stage breast cancer cells resulted in increased expression of both the miR-378 host gene PPARGC1B and pre-miR-378, suggesting a feedback loop. Taken together, our study identifies a novel and clinically relevant mechanism for regulation of Runx1 in breast cancer that is mediated by a PPARGC1B-miR-378-Runx1 regulatory pathway. Our results highlight the translational potential of miRNA replacement therapy for inhibiting Runx1 in breast cancer. PMID:26749280

  6. Effects and mechanism of recombinant human erythropoietin on the growth of human breast cancer MDA-MB-231 cells in nude mice.

    PubMed

    Jin, Wen; Lin, Zhiwu; Zhang, Xiaorong; Kong, Lingying; Yang, Li

    2015-08-01

    This study aimed to explore the effects of recombinant human erythropoietin (rhEPO) on the growth of human breast cancer MDA-MB-231 cells in nude mice, and investigate its functions in regulating tumor growth, angiogenesis and apoptosis. A tumor-bearing nude mice model was established by subcutaneous injection of human breast cancer MDA-MB-231 cells. Two weeks later, the mice were randomly divided into four groups (n=6 for each group): negative control group, rhEPO group, EPO antibody group and EPO+EPO antibody group. Drugs were administered to the corresponding mice once every 3 days for five times. The size and weight of tumors were measured after the mice were sacrificed by cervical dislocation. The expression levels of EPO/EPOR, TNF-α, IL-10, and Bcl-2 in the tumor tissues were determined using RT-PCR and Western blot. The microvessel density (MVD) and expression of VEGF in the tumors were detected using immunohistochemistry. TUNEL assay was used to determine apoptosis in tumors. Results show that rhEPO significantly promoted the growth of MDA-MB-231 cells in nude mice (P<0.05). Compared with the negative control group, the expression levels of EPO, EPOR, TNF-α, IL-10, and VEGF, as well as the MVD values, were significantly elevated in the rhEPO group. However, the apoptotic index was significantly reduced (P<0.05). The ability of rhEPO to promote tumor growth may be associated with its functions in promoting microvessel formation and inhibiting tumor cell apoptosis. PMID:26008780

  7. Knockdown of aberrantly upregulated aryl hydrocarbon receptor reduces tumor growth and metastasis of MDA-MB-231 human breast cancer cell line

    PubMed Central

    Goode, Gennifer; Ballard, Billy R.; Manning, H Charles; Freeman, Michael L; Kang, Yibin; Eltom, Sakina E

    2013-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that belongs to the basic-helix-loop-helix (bHLH)–Per-ARNT-Sim (PAS) superfamily of transcription factors, mediates toxic response induced by environmental chemicals such as polycyclic aromatic hydrocarbons (PAH). AhR is expressed at high levels in several human breast carcinoma cell lines in direct correlation with the degree of their malignancy. Recent studies suggest a possible role for AhR in cancer independent of PAH. Therefore, we established stable AhR knockdown cells of the human breast cancer cell line MDA-MB-231 and analyzed their tumorigenic properties in in vitro and in vivo model systems. In addition we analyzed their response to radiation and chemotherapeutic treatment. AhR knockdown attenuated these cells tumorigenic properties in vitro including proliferation, anchorage independent growth, migration and apoptosis and reduced orthotopic xenograft tumor growth and lung metastasis in vivo. Notably, we observed that AhR knockdown enhanced radiation-induced apoptosis as well as significantly decreased cell clonogenic survival. Furthermore, AhR knockdown in MDA-MB-231 cells sensitized them to paclitaxel treatment, evident by a decrease in the required cytotoxic dose. Subsequent analysis revealed AhR knockdown significantly reduced phosphorylation of AKT, which impacts cell proliferation and survival. Apoptosis-focused gene expression analyses revealed an altered expression of genes regulating apoptosis in MDA-MB-231 cells. Collectively, our data identify AhR as a potential novel therapeutic target in the treatment of metastatic breast cancer. PMID:23733406

  8. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract

    PubMed Central

    2014-01-01

    Background Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals. Methods The potential anticancer effects of the ethanolic kernel extract on breast cancer cells (MDA-MB-231 and MCF-7) using MTT, anti-proliferation, neutral red (NR) uptake and lactate dehydrogenase (LDH) release assays were evaluated. Cytological studies on the breast cancer cells were also conducted, and phytochemical analyses of the extract were carried out to determine the likely bioactive compounds responsible for such effects. Results Results showed the extract induced cytotoxicity in MDA-MB-231 cells and MCF-7 cells with IC50 values of 30 and 15 μg/mL, respectively. The extract showed significant toxicity towards both cell lines, with low toxicity to normal breast cells (MCF-10A). The cytotoxic effects on the cells were further confirmed by the NR uptake, antiproliferative and LDH release assays. Bioactive analyses revealed that many bioactives were present in the extract although butylated hydroxytoluene, a potent antioxidant, was the most abundant with 44.65%. Conclusions M. indica extract appears to be more cytoxic to both estrogen positive and negative breast cancer cell lines than to normal breast cells. Synergistic effects of its antioxidant bioactives could have contributed to the cytotoxic effects of the extract. The extract of M. indica, therefore, has potential anticancer activity against breast cancer cells. This potential is worth studying further, and could have implications on future studies and eventually management of human breast cancers. PMID:24962691

  9. Estrogen and non-genomic upregulation of voltage-gated Na(+) channel activity in MDA-MB-231 human breast cancer cells: role in adhesion.

    PubMed

    Fraser, Scott P; Ozerlat-Gunduz, Iley; Onkal, Rustem; Diss, James K J; Latchman, David S; Djamgoz, Mustafa B A

    2010-08-01

    External (but not internal) application of beta-estradiol (E2) increased the current amplitude of voltage-gated Na(+) channels (VGSCs) in MDA-MB-231 human breast cancer (BCa) cells. The G-protein activator GTP-gamma-S, by itself, also increased the VGSC current whilst the G-protein inhibitor GDP-beta-S decreased the effect of E2. Expression of GPR30 (a G-protein-coupled estrogen receptor) in MDA-MB-231 cells was confirmed by PCR, Western blot and immunocytochemistry. Importantly, G-1, a specific agonist for GPR30, also increased the VGSC current amplitude in a dose-dependent manner. Transfection and siRNA-silencing of GPR30 expression resulted in corresponding changes in GPR30 protein expression but only internally, and the response to E2 was not affected. The protein kinase A inhibitor, PKI, abolished the effect of E2, whilst forskolin, an adenylate cyclase activator, by itself, increased VGSC activity. On the other hand, pre-incubation of the MDA-MB-231 cells with brefeldin A (a trans-Golgi protein trafficking inhibitor) had no effect on the E2-induced increase in VGSC amplitude, indicating that such trafficking ('externalisation') of VGSC was not involved. Finally, acute application of E2 decreased cell adhesion whilst the specific VGSC blocker tetrodotoxin increased it. Co-application of E2 and tetrodotoxin inhibited the effect of E2 on cell adhesion, suggesting that the effect of E2 was mainly through VGSC activity. Pre-treatment of the cells with PKI abolished the effect of E2 on adhesion, consistent with the proposed role of PKA. Potential implications of the E2-induced non-genomic upregulation of VGSC activity for BCa progression are discussed. PMID:20432453

  10. Long Term Exposure to Polyphenols of Artichoke (Cynara scolymus L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line

    PubMed Central

    Mileo, Anna Maria; Di Venere, Donato; Abbruzzese, Claudia; Miccadei, Stefania

    2015-01-01

    Polyphenolic extracts from the edible part of artichoke (Cynara scolymus L.) have been shown to be potential chemopreventive and anticancer dietary compounds. High doses of polyphenolic extracts (AEs) induce apoptosis and decrease the invasive potential of the human breast cancer cell line, MDA-MB231. However, the molecular mechanism underlying AEs antiproliferative effects is not completely understood. We demonstrate that chronic and low doses of AEs treatment at sublethal concentrations suppress human breast cancer cell growth via a caspases-independent mechanism. Furthermore, AEs exposure induces a significant increase of senescence-associated β-galactosidase (SA-β-gal) staining and upregulation of tumour suppressor genes, p16INK4a and p21Cip1/Waf1 in MDA-MB231 cells. AEs treatment leads to epigenetic alterations in cancer cells, modulating DNA hypomethylation and lysine acetylation levels in total proteins. Cell growth arrest correlates with increased reactive oxygen species (ROS) production in AEs treated breast cancer cells. Inhibition of ROS generation by N-acetylcysteine (NAC) attenuates the antiproliferative effect. These findings demonstrate that chronic AEs treatment inhibits breast cancer cell growth via the induction of premature senescence through epigenetic and ROS-mediated mechanisms. Our results suggest that artichoke polyphenols could be a promising dietary tool either in cancer chemoprevention or/and in cancer treatment as a nonconventional, adjuvant therapy. PMID:26180585

  11. Long Term Exposure to Polyphenols of Artichoke (Cynara scolymus L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line.

    PubMed

    Mileo, Anna Maria; Di Venere, Donato; Abbruzzese, Claudia; Miccadei, Stefania

    2015-01-01

    Polyphenolic extracts from the edible part of artichoke (Cynara scolymus L.) have been shown to be potential chemopreventive and anticancer dietary compounds. High doses of polyphenolic extracts (AEs) induce apoptosis and decrease the invasive potential of the human breast cancer cell line, MDA-MB231. However, the molecular mechanism underlying AEs antiproliferative effects is not completely understood. We demonstrate that chronic and low doses of AEs treatment at sublethal concentrations suppress human breast cancer cell growth via a caspases-independent mechanism. Furthermore, AEs exposure induces a significant increase of senescence-associated β-galactosidase (SA-β-gal) staining and upregulation of tumour suppressor genes, p16(INK4a) and p21(Cip1/Waf1) in MDA-MB231 cells. AEs treatment leads to epigenetic alterations in cancer cells, modulating DNA hypomethylation and lysine acetylation levels in total proteins. Cell growth arrest correlates with increased reactive oxygen species (ROS) production in AEs treated breast cancer cells. Inhibition of ROS generation by N-acetylcysteine (NAC) attenuates the antiproliferative effect. These findings demonstrate that chronic AEs treatment inhibits breast cancer cell growth via the induction of premature senescence through epigenetic and ROS-mediated mechanisms. Our results suggest that artichoke polyphenols could be a promising dietary tool either in cancer chemoprevention or/and in cancer treatment as a nonconventional, adjuvant therapy. PMID:26180585

  12. Anticancer effects of tributyltin chloride and triphenyltin chloride in human breast cancer cell lines MCF-7 and MDA-MB-231.

    PubMed

    Hunakova, Luba; Macejova, D; Toporova, L; Brtko, J

    2016-05-01

    Triorganotin compounds induce hormonal alterations, i.e., endocrine-disrupting effects in mammals, including humans. Tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) are known to function as nuclear retinoid X receptor (RXR) agonists. Their cytotoxic effects in ER(+) luminal human breast cancer cell line MCF-7 and ER(-) basal-like human breast cancer cell line MDA-MB-231 were examined. We observed significantly higher toxicity of TBT-Cl in comparison with TPT-Cl in both cell lines. Comparable apoptosis-inducing concentrations were 200 and 800 nM, respectively, as shown by PARP cleavage and FDA staining. Both compounds activated executive caspases in the concentration-dependent manner in MDA-MB-231 cells, but the onset of TPT-Cl-induced caspase-3/7 activation was delayed in comparison with TBT-Cl. Both compounds slowed down the migration of these highly invasive cells, which was accompanied by RARbeta upregulation. Other RAR and RXR expressions were differentially modulated by studied organotins in both cell lines. PMID:26662104

  13. Hispolon inhibits TPA-induced invasion by reducing MMP-9 expression through the NF-κB signaling pathway in MDA-MB-231 human breast cancer cells

    PubMed Central

    SUN, YI-SHENG; ZHAO, ZHAO; ZHU, HAN-PING

    2015-01-01

    Hispolon has been demonstrated to possess analgesic, anti-inflammatory and anticancer activities. However, whether hispolon prevents the invasion of breast carcinoma cells and the underlying mechanisms of its action remain unknown. In the present study, various assays, including a matrigel-based Transwell invasion assay and electrophoretic mobility shift assay, were used to investigate the anti-invasion effect of hispolon and explore its mechanism of action. The results revealed that hispolon inhibited the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced migration and invasion of MDA-MB-231 human breast cancer cells at non-toxic concentrations. Hispolon also prevented the TPA-induced secretion of matrix metalloproteinase-9 (MMP-9) and reduced its expression at the transcriptional and translational levels. Furthermore, the phosphorylation of IκBα was reduced by hispolon, which resulted in the suppression of nuclear factor-κB (NF-κB), and p65 phosphorylation and nuclear translocation. An electrophoretic mobility shift assay demonstrated that NF-κB DNA-binding activity was induced by TPA and inhibited by hispolon. In addition, Bay 11–7082, which is a specific inhibitor of NF-κB, functioned in a similar manner as hispolon and blocked the secretion and expression of MMP-9. In conclusion, the results of the present study indicated that hispolon inhibited TPA-induced migration and invasion of MDA-MB-231 cells by reducing the secretion and expression of MMP-9 through the NF-κB signaling pathway. PMID:26171065

  14. Suppression of RAD21 Induces Senescence of MDA-MB-231 Human Breast Cancer Cells Through RB1 Pathway Activation Via c-Myc Downregulation.

    PubMed

    Zhu, Shan; Zhao, Li; Li, Yueyang; Hou, Pingfu; Yao, Ruosi; Tan, Jiang; Liu, Dongxu; Han, Liping; Huang, Baiqu; Lu, Jun; Zhang, Yu

    2016-06-01

    Cellular senescence impedes cancer progression by limiting uncontrolled cell proliferation. To identify new genetic events controlling senescence, we performed a small interfering RNA screening human cancer cells and identified a number of targets potentially involved in senescence of MDA-MB-231 human breast cancer cells. Importantly, we showed that knockdown of RAD21 resulted in the appearance of several senescent markers, including enhanced senescence-associated β-galactosidase activity and heterochromatin focus formation, as well as elevated p21 protein levels and RB1 pathway activation. Further biochemical analyses revealed that RAD21 knockdown led to the downregulation of c-Myc and its targets, including CDK4, a negative regulator of RB1, and blockedRB1 phosphorylation (pRB1), and the RB1-mediated transcriptional repression of E2F. Moreover, c-Myc downregulation was partially mediated by proteasome-dependent degradation within promyelocytic leukemia (PML) nuclear bodies, which were found to be highly abundant during RAD21 knockdown-induced senescence. Exogenous c-Myc reconstitution rescued cells from RAD21 silencing-induced senescence. Altogether, data arising from this study implicate a novel function of RAD21 in cellular senescence in MDA-MB-231 cells that is mainly dependent onRB1 pathway activation via c-Myc downregulation. J. Cell. Biochem. 117: 1359-1369, 2016. © 2015 Wiley Periodicals, Inc. PMID:26529363

  15. (−)-Xanthatin Selectively Induces GADD45γ and Stimulates Caspase-Independent Cell Death in Human Breast Cancer MDA-MB-231 Cells

    PubMed Central

    Takeda, Shuso; Matsuo, Kazumasa; Yaji, Kentaro; Okajima-Miyazaki, Shunsuke; Harada, Mari; Miyoshi, Hiroko; Okamoto, Yoshiko; Amamoto, Toshiaki; Shindo, Mitsuru; Omiecinski, Curtis J.; Aramaki, Hironori

    2014-01-01

    exo-Methylene lactone group-containing compounds, such as (−)-xanthatin, are present in a large variety of biologically active natural products, including extracts of Xanthium strumarium (Cocklebur). These substances are reported to possess diverse functional activities, exhibiting anti-inflammatory, antimalarial, and anticancer potential. In this study, we synthesized six structurally related xanthanolides containing exo-methylene lactone moieties, including (−)-xanthatin and (+)-8-epi-xanthatin, and examined the effects of these chemically defined substances on the highly aggressive and farnesyltransferase inhibitor (FTI)-resistant MDA-MB-231 cancer cell line. The results obtained demonstrate that (−)-xanthatin was a highly effective inhibitor of MDA-MB-231 cell growth, inducing caspase-independent cell death, and that these effects were independent of FTase inhibition. Further, our results show that among the GADD45 isoforms, GADD45γ was selectively induced by (−)-xanthatin and that GADD45γ-primed JNK and p38 signaling pathways are, at least in part, involved in mediating the growth inhibition and potential anticancer activities of this agent. Given that GADD45γ is becoming increasingly recognized for its tumor suppressor function, the results presented here suggest the novel possibility that (−)-xanthatin may have therapeutic value as a selective inducer of GADD45γ in human cancer cells, in particular in FTI-resistant aggressive breast cancers. PMID:21568272

  16. (--)-Xanthatin selectively induces GADD45γ and stimulates caspase-independent cell death in human breast cancer MDA-MB-231 cells.

    PubMed

    Takeda, Shuso; Matsuo, Kazumasa; Yaji, Kentaro; Okajima-Miyazaki, Shunsuke; Harada, Mari; Miyoshi, Hiroko; Okamoto, Yoshiko; Amamoto, Toshiaki; Shindo, Mitsuru; Omiecinski, Curtis J; Aramaki, Hironori

    2011-06-20

    exo-Methylene lactone group-containing compounds, such as (--)-xanthatin, are present in a large variety of biologically active natural products, including extracts of Xanthium strumarium (Cocklebur). These substances are reported to possess diverse functional activities, exhibiting anti-inflammatory, antimalarial, and anticancer potential. In this study, we synthesized six structurally related xanthanolides containing exo-methylene lactone moieties, including (--)-xanthatin and (+)-8-epi-xanthatin, and examined the effects of these chemically defined substances on the highly aggressive and farnesyltransferase inhibitor (FTI)-resistant MDA-MB-231 cancer cell line. The results obtained demonstrate that (--)-xanthatin was a highly effective inhibitor of MDA-MB-231 cell growth, inducing caspase-independent cell death, and that these effects were independent of FTase inhibition. Further, our results show that among the GADD45 isoforms, GADD45γ was selectively induced by (--)-xanthatin and that GADD45γ-primed JNK and p38 signaling pathways are, at least in part, involved in mediating the growth inhibition and potential anticancer activities of this agent. Given that GADD45γ is becoming increasingly recognized for its tumor suppressor function, the results presented here suggest the novel possibility that (--)-xanthatin may have therapeutic value as a selective inducer of GADD45γ in human cancer cells, in particular in FTI-resistant aggressive breast cancers. PMID:21568272

  17. Taiwan cobra cardiotoxin III suppresses EGF/EGFR-mediated epithelial-to-mesenchymal transition and invasion of human breast cancer MDA-MB-231 cells.

    PubMed

    Tsai, Pei-Chien; Fu, Yaw-Syan; Chang, Long-Sen; Lin, Shinne-Ren

    2016-03-01

    Breast cancer is a highly malignant carcinoma and most deaths of breast cancer are caused by metastasis. The epithelial-to-mesenchymal transition (EMT) has emerged as a pivotal event in the development of the invasive and metastatic potentials of cancer progression. Epidermal growth factor (EGF) and its receptor, EGFR, play roles in cancer metastasis. CTX III, a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity; however, the effect of CTX III on the EMT of cancer cells remains elusive. CTX III treatment resulted in morphological changes from elongated and spindle shape to rounded and epithelial-like shape, induced upregulation of E-cadherin and concurrent downregulation of N-cadherin and Vimentin protein levels, corresponding to observed decreases in cell migration and invasion. CTX III treatment also decreased the expression of Snail and Twist in EGF-induced MDA-MB-231 cells. Concurrently, CTX III efficiently inhibited the EGFR phosphorylation and downstream activation of phosphatidylinositol 3-kinase (PI3K)/Akt and ERK1/2. The EGFR specific inhibitor AG1478 significantly suppressed ERK1/2 and Akt phosphorylation, cell migration and invasion, as well as the expressional changes associated with EMT markers in EGF-induced MDA-MB-231 cells. CTX III inhibitory effect on EGF-evoked invasion of MDA-MB-231 cells is mediated through suppressing EGF/EGFR activation and EMT process. PMID:26774845

  18. Isoalantolactone inhibits the migration and invasion of human breast cancer MDA-MB-231 cells via suppression of the p38 MAPK/NF-κB signaling pathway.

    PubMed

    Wang, Jing; Cui, Li; Feng, Liang; Zhang, Zhenhai; Song, Jie; Liu, Dan; Jia, Xiaobin

    2016-09-01

    Isoalantolactone is a bioactive sesquiterpene lactone isolated from the flowering plant Inula helenium L. This study was conducted to assess the anti-migratory and anti-invasive activities of isoalantolactone in MDA-MB-231 cells, and to explore the underlying mechanisms. Wound-healing and Transwell chambers assays demonstrated that isoalantolactone inhibited the adhesion, migration and invasion of MDA-MB-231 cells. The activity and expression of MMP-2 and MMP-9 were downregulated by isoalantolactone in a dose-dependent manner. Additionally, isoalantolactone markedly decreased the p-p38 MAPK level, whereas no significant change in p-ERK1/2 and p-JNK1/2 was noted. The downregulation of MMP-2 and MMP-9 protein expression and suppression of in vitro invasion might be associated with the blockade of p38 MAPK activation. Furthermore, isoalantolactone blocked the translocation of NF-κB p65 from the cytoplasm into the nucleus. These results revealed that isoalantolactone inhibited the adhesion, migration and invasion of MDA-MB-231 cells via suppression of the p38 MAPK/NF-κB signaling pathway, and isoalantolactone might be an alternative treatment for breast cancer. PMID:27461575

  19. Synergistic anticancer effects of a bioactive subfraction of Strobilanthes crispus and tamoxifen on MCF-7 and MDA-MB-231 human breast cancer cell lines

    PubMed Central

    2014-01-01

    Background Development of tumour resistance to chemotherapeutic drugs and concerns over their toxic effects has led to the increased use of medicinal herbs or natural products by cancer patients. Strobilanthes crispus is a traditional remedy for many ailments including cancer. Its purported anticancer effects have led to the commercialization of the plant leaves as medicinal herbal tea, although the scientific basis for its use has not been established. We previously reported that a bioactive subfraction of Strobilanthes crispus leaves (SCS) exhibit potent cytotoxic activity against human breast cancer cell lines. The current study investigates the effect of this subfraction on cell death activities induced by the antiestrogen drug, tamoxifen, in estrogen receptor-responsive and nonresponsive breast cancer cells. Methods Cytotoxic activity of SCS and tamoxifen in MCF-7 and MDA-MB-231 human breast cancer cells was determined using lactate dehydrogenase release assay and synergism was evaluated using the CalcuSyn software. Apoptosis was quantified by flow cytometry following Annexin V and propidium iodide staining. Cells were also stained with JC-1 dye to determine changes in the mitochondrial membrane potential. Fluorescence imaging using FAM-FLICA assay detects caspase-8 and caspase-9 activities. DNA damage in the non-malignant breast epithelial cell line, MCF-10A, was evaluated using Comet assay. Results The combined SCS and tamoxifen treatment displayed strong synergistic inhibition of MCF-7 and MDA-MB-231 cell growth at low doses of the antiestrogen. SCS further promoted the tamoxifen-induced apoptosis that was associated with modulation of mitochondrial membrane potential and activation of caspase-8 and caspase-9, suggesting the involvement of intrinsic and extrinsic signaling pathways. Interestingly, the non-malignant MCF-10A cells displayed no cytotoxicity or DNA damage when treated with either SCS or SCS-tamoxifen combination. Conclusions The combined use of

  20. Overexpression of neogenin inhibits cell proliferation and induces apoptosis in human MDA-MB-231 breast carcinoma cells.

    PubMed

    Zhang, Qingsong; Liang, Fang; Ke, Yang; Huo, Yanping; Li, Mingchuang; Li, Yanyan; Yue, Junmin

    2015-07-01

    Neogenin has been documented as playing an important role in cancer development. Although an elevated expression of neogenin has been detected in human breast cancer, the role of neogenin in breast cancer cells is not clearly understood. In the present study, we investigated neogenin in breast cancer cell proliferation, migration and apoptosis. We found that neogenin overexpression markedly reduced the proliferation and migration of breast cancer cells (P<0.05). Neogenin overexpression resulted in a reduction in the apoptosis rate. Inhibition of neogenin expression by neogenin siRNA dramatically promoted the proliferation and migration of breast cancer cells, whereas it inhibited cell apoptosis. Furthermore, we found that BMP-2-induced phosphorylation of Smad1/5/8 which was inhibited by neogenin overexpression. The present study demonstrates that neogenin may be a tumor suppressor in breast cancer. Neogenin may serve as a potential diagnostic marker and therapeutic target for breast cancer. PMID:25998984

  1. Dillenia Suffruticosa extract inhibits proliferation of human breast cancer cell lines (MCF-7 and MDA-MB-231) via induction of G2/M arrest and apoptosis.

    PubMed

    Armania, Nurdin; Yazan, Latifah Saiful; Ismail, Intan Safinar; Foo, Jhi Biau; Tor, Yim Sim; Ishak, Nurshafini; Ismail, Norsharina; Ismail, Maznah

    2013-01-01

    The present research was designed to evaluate the anticancer properties of Dillenia suffruticosa extract. Our focus was on the mode of cell death and cell cycle arrest induced in breast cancer cells by the active fractions (designated as D/F4, D/F5 and EA/P2) derived from chromatographic fractionation of D. suffruticosa extracts. The results showed that the active fractions are more cytotoxic towards MCF-7 (estrogen positive breast cancer cells) and MDA-MB-231 (estrogen negative breast cancer cells) as compared to other selected cancer cell lines that included HeLa, A459 and CaOV3. The induction of cell death through apoptosis by the active fractions on the breast cancer cells was confirmed by Annexin V-FITC and PI staining. Cell cycle analysis revealed that D/F4 and EA/P2 induced G2/M phase cell cycle arrest in MCF-7 cells. On the other hand, MDA-MB-231 cells treated with D/F4 and D/F5 accumulated in the sub-G1 phase without cell cycle arrest, suggesting the induction of cell death through apoptosis. The data suggest that the active fractions of D. suffruticosa extract eliminated breast cancer cells through induction of apoptosis and cell cycle arrest. The reason why MCF-7 was more sensitive towards the treatment than MDA-MB-231 remains unclear. This warrants further work, especially on the role of hormones in response towards cytotoxic agents. In addition, more studies on the mechanisms underlying the induction of apoptosis and cell cycle arrest by the plant extract also need to be carried out. PMID:24172241

  2. Induction of apoptosis by aqueous extract of Cordyceps militaris through activation of caspases and inactivation of Akt in human breast cancer MDA-MB-231 Cells.

    PubMed

    Jin, Cheng-Yun; Kim, Gi-Young; Choi, Yung Hyun

    2008-12-01

    Cordyceps militaris is well known as a traditional medicinal mushroom and has been shown to exhibit immunostimulatory and anticancer activities. In this study, we investigated the apoptosis induced by an aqueous extract of C. militaris (AECM) via the activation of caspases and altered mitochondrial membrane permeability in human breast cancer MDA-MB-231 cells. Exposure to AECM induced apoptosis, as demonstrated by a quantitative analysis of nuclear morphological change and a flow cytometric analysis. AECM increased hyperpolarization of mitochondrial membrane potential and promoted the activation of caspases. Both the cytotoxic effect and apoptotic characteristics induced by AECM treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrates the important role of caspase-3 in the observed cytotoxic effect. AECM-induced apoptosis was associated with the inhibition of Akt activation in a time-dependent manner, and pretreatment with LY294002, a PI3K/Akt inhibitor, significantly increased AECM-induced apoptosis. The results indicated that AECM-induced apoptosis may relate to the activation of caspase-3 and mitochondria dysfunctions that correlate with the inactivation of Akt. PMID:19131705

  3. Synergistic antitumor activity of vitamin D3 combined with metformin in human breast carcinoma MDA-MB-231 cells involves m-TOR related signaling pathways.

    PubMed

    Guo, Li-Shu; Li, Hong-Xia; Li, Chun-Yang; Zhang, Sheng-Yan; Chen, Jia; Wang, Qi-Long; Gao, Jing-Miao; Liang, Jia-Qi; Gao, Ming-Tang; Wu, Yong-Jie

    2015-02-01

    Metformin is usually used for the treatment of type 2 diabetes. Recently, many studies suggest that metformin and vitamin D have broad-spectrum antitumor activities. Our aim in this research was to study the effects of vitamin D3 combined with metformin on the apoptosis induction and its mechanisms in the human breast cancer cell line MDA-MB-231. Cell proliferation was measured by methylthiazol tetrazolium (MTT) assay. The morphology of cell apoptosis was observed after Hoechst 33342 staining. Here we show that vitamin D3 280 μg/ml or vitamin D3 300 μg/ml or vitamin D3 320 μg/ml seperately combined with metformin 15000 μg/ml exhibited synergistic effects on cell proliferation and apoptosis. The underlying anti-tumor mechanisms may involve m-TOR related pathways, which are related to activating expression of cleaved caspase-3, Bax and p-AMPK, as well as inhibiting expressions of p-Bcl-2, c-Myc, p-IGF-IR, p-mTOR, p-P70S6K, p-S6. PMID:25997252

  4. Inhibition of silibinin on migration and adhesion capacity of human highly metastatic breast cancer cell line, MDA-MB-231, by evaluation of β1-integrin and downstream molecules, Cdc42, Raf-1 and D4GDI.

    PubMed

    Dastpeyman, Mohadeseh; Motamed, Nasrin; Azadmanesh, Kayhan; Mostafavi, Ehsan; Kia, Vahid; Jahanian-Najafabadi, Ali; Shokrgozar, Mohammad Ali

    2012-12-01

    Metastasis is a property of malignant cancer cells that requires integrins which with their downstream molecules participate in a number of signaling events in cells with pivotal roles in malignancy, migration and invasion of tumor cells. Silibinin, a flavonoid antioxidant from milk thistle (Silybum marianum L.), has attracted attention in the last decades for chemoprevention and chemotherapy of tumor cells. In the present study, the effect of silibinin on migration and adhesion capacity of MDA-MB-231 cells, a highly metastatic human breast cancer cell line, was investigated by evaluation of β1-integrin and its important downstream molecules. MTT, migration and adhesion assays were performed to evaluate the silibinin effects on proliferation, migration and adhesion of MDA-MB-231 cells. In addition, the influence of the silibinin on the expression of β1-integrin, Raf-1, Cdc42 and D4-GDI mRNAs was assessed by RT-PCR. Results showed significant dose-dependent inhibitory effect of silibinin on proliferation, migration and adhesion of MDA-MB-231 cells. It significantly inhibited the expression of Cdc42 and D4-GDI mRNAs but had no statistically significant effect on the expression of β1-integrin and Raf-1 mRNAs although it indirectly but effectively modulated β1-integrin signaling pathway and RAF1 function. In conclusion, the results showed the silibinin effectson reducing the rate of metastasis, migration and adhesion of MDA-MB-231 to distant organs. PMID:22101790

  5. Suicide HSVtk gene delivery by neurotensin-polyplex nanoparticles via the bloodstream and GCV Treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice.

    PubMed

    Castillo-Rodríguez, Rosa A; Arango-Rodríguez, Martha L; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne; Forgez, Patricia; Martínez-Fong, Daniel

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55-60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier. PMID:24824754

  6. Suicide HSVtk Gene Delivery by Neurotensin-Polyplex Nanoparticles via the Bloodstream and GCV Treatment Specifically Inhibit the Growth of Human MDA-MB-231 Triple Negative Breast Cancer Tumors Xenografted in Athymic Mice

    PubMed Central

    Castillo-Rodríguez, Rosa A.; Arango-Rodríguez, Martha L.; Escobedo, Lourdes; Hernandez-Baltazar, Daniel; Gompel, Anne

    2014-01-01

    The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55–60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier. PMID:24824754

  7. Effect of recombinant human erythropoietin and doxorubicin in combination on the proliferation of MCF-7 and MDA-MB231 breast cancer cells.

    PubMed

    Radwan, Esam M; Abdullah, Rasedee; Al-Qubaisi, Mothanna Sadiq; El Zowalaty, Mohamed E; Naadja, Seïf-Eddine; Alitheen, Noorjahan B; Omar, Abdul-Rahman

    2016-05-01

    Patients with cancer often exhibit signs of anemia as the result of the disease. Thus, cancer chemotherapies often include erythropoietin (EPO) in the regime to improve the survival rate of these patients. The aim of the present study was to determine the effect of EPO on doxorubicin-treated breast cancer cells. The cytotoxicity of doxorubicin alone or in combination with EPO against the MCF-7 and MDA-MB‑231 human breast cancer cells were determined using an MTT cell viability assay, neutral red (NR) uptake assay and lactate dehydrogenase (LDH) assay. The estimated half maximal inhibitory concentration values for doxorubicin and the combination of doxorubicin with EPO were between 0.140 and 0.260 µg/ml for all cells treated for 72 h. Treatment with doxorubicin in combination with EPO led to no notable difference in cytotoxicity, compared with treatment with doxorubicin alone. The antiproliferative effect of doxorubicin at a concentration of 1 µg/ml on the MDA‑MB‑231 cells was demonstrated by the decrease in viable cells from 3.6x10(5) at 24 h to 2.1x10(5) at 72 h of treatment. In order to confirm apoptosis in the doxorubicin-treated cells, the activities of caspases-3/7 and ‑9 were determined using a TBE assay. The results indicated that the activities of caspases-3/7 and ‑9 were significantly elevated in the doxorubicin-treated MDA-MB-231 cells by 571 and 645%, respectively, and in the MCF 7 cells by 471 and 345%, respectively, compared with the control cells. EPO did not modify the effect of doxorubicin on these cell lines. The results of the present study suggested that EPO was safe for use in combination with doxorubicin in the treatment of patients with breast cancer and concurrent anemia. PMID:26987078

  8. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    PubMed

    Tenorio, María J; Ross, Breyan H; Luchsinger, Charlotte; Rivera-Dictter, Andrés; Arriagada, Cecilia; Acuña, Diego; Aguilar, Marcelo; Cavieres, Viviana; Burgos, Patricia V; Ehrenfeld, Pamela; Mardones, Gonzalo A

    2016-01-01

    Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes. PMID:27123979

  9. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231

    PubMed Central

    Luchsinger, Charlotte; Rivera-Dictter, Andrés; Arriagada, Cecilia; Acuña, Diego; Aguilar, Marcelo; Cavieres, Viviana; Burgos, Patricia V.; Ehrenfeld, Pamela; Mardones, Gonzalo A.

    2016-01-01

    Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes. PMID:27123979

  10. Action and Signaling of Lysophosphatidylethanolamine in MDA-MB-231 Breast Cancer Cells

    PubMed Central

    Park, Soo-Jin; Lee, Kyoung-Pil; Im, Dong-Soon

    2014-01-01

    Previously, we reported that lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, can increase intracellular Ca2+ ([Ca2+]i) via type 1 lysophosphatidic acid (LPA) receptor (LPA1) and CD97, an adhesion G-protein-coupled receptor (GPCR), in MDA-MB-231 breast cancer cells. Furthermore, LPE signaling was suggested as like LPA1/CD97-Gi/o proteins-phospholipase C-IP3-Ca2+ increase in these cells. In the present study, we further investigated actions of LPE not only in the [Ca2+]i increasing effect but also in cell proliferation and migration in MDA-MB-231 breast cancer cells. We utilized chemically different LPEs and a specific inhibitor of LPA1, AM-095 in comparison with responses in SK-OV3 ovarian cancer cells. It was found that LPE-induced Ca2+ response in MDA-MB-231 cells was evoked in a different manner to that in SK-OV3 cells in terms of structural requirements. AM-095 inhibited LPE-induced Ca2+ response and cell proliferation in MDA-MB-231 cells, but not in SK-OV3 cells, supporting LPA1 involvement only in MDA-MB-231 cells. LPA had significant effects on cell proliferation and migration in MDA-MB-231 cells, whereas LPE had less or no significant effect. However, LPE modulations of MAPKs (ERK1/2, JNK and p38 MAPK) was not different to those by LPA in the cells. These data support the involvement of LPA1 in LPE-induced Ca2+ response and cell proliferation in breast MDA-MB-231 cells but unknown GPCRs (not LPA1) in LPE-induced responses in SK-OV3 cells. Furthermore, although LPE and LPA utilized LPA1, LPA utilized more signaling cascades than LPE, resulting in stronger responses by LPA in proliferation and migration than LPE in MDA-MB-231 cells. PMID:24753818

  11. A network of clinically and functionally relevant genes is involved in the reversion of the tumorigenic phenotype of MDA-MB-231 breast cancer cells after transfer of human chromosome 8.

    PubMed

    Seitz, Susanne; Frege, Renate; Jacobsen, Anja; Weimer, Jörg; Arnold, Wolfgang; von Haefen, Clarissa; Niederacher, Dieter; Schmutzler, Rita; Arnold, Norbert; Scherneck, Siegfried

    2005-01-27

    Several investigations have supposed that tumor suppressor genes might be located on human chromosome 8. We used microcell-mediated transfer of chromosome 8 into MDA-MB-231 breast cancer cells and generated independent hybrids with strongly reduced tumorigenic potential. Loss of the transferred chromosome results in reappearance of the malignant phenotype. Expression analysis identified a set of 109 genes (CT8-ps) differentially expressed in microcell hybrids as compared to the tumorigenic MDA-MB-231 and rerevertant cells. Of these, 44.9% are differentially expressed in human breast tumors. The expression pattern of CT8-ps was associated with prognostic factors such as tumor size and grading as well as loss of heterozygosity at the short arm of chromosome 8. We identified CT8-ps networks suggesting that these genes act cooperatively to cause reversion of tumorigenicity in MDA-MB-231 cells. Our findings provide a conceptual basis and experimental system to identify and evaluate genes and gene networks involved in the development and/or progression of breast cancer. PMID:15580292

  12. Activation of microbubbles by low-intensity pulsed ultrasound enhances the cytotoxicity of curcumin involving apoptosis induction and cell motility inhibition in human breast cancer MDA-MB-231 cells.

    PubMed

    Li, Yixiang; Wang, Pan; Chen, Xiyang; Hu, Jianmin; Liu, Yichen; Wang, Xiaobing; Liu, Quanhong

    2016-11-01

    Ultrasound and microbubbles-mediated drug delivery has become a promising strategy to promote drug delivery and its therapeutic efficacy. The aim of this research was to assess the effects of microbubbles (MBs)-combined low-intensity pulsed ultrasound (LPUS) on the delivery and cytotoxicity of curcumin (Cur) to human breast cancer MDA-MB-231 cells. Under the experimental condition, MBs raised the level of acoustic cavitation and enhanced plasma membrane permeability; and cellular uptake of Cur was notably improved by LPUS-MBs treatment, aggravating Cur-induced MDA-MB-231 cells death. The combined treatment markedly caused more obvious changes of cell morphology, F-actin cytoskeleton damage and cell migration inhibition. Our results demonstrated that combination of MBs and LPUS may be an efficient strategy for improving anti-tumor effect of Cur, suggesting a potential effective method for antineoplastic therapy. PMID:27245953

  13. Platycodin D inhibits migration, invasion, and growth of MDA-MB-231 human breast cancer cells via suppression of EGFR-mediated Akt and MAPK pathways.

    PubMed

    Chun, Jaemoo; Kim, Yeong Shik

    2013-10-01

    Platycodin D (PD), an active triterpenoid saponin from Platycodon grandiflorum, has been known to inhibit the proliferation of a variety of cancer cells, but the effect of PD on the invasiveness of cancer cells is largely unknown. In this study, we first determined the molecular mechanism by which PD inhibits the migratory and invasive abilities of the highly metastatic MDA-MB-231 breast cancer cell line. We demonstrated that a non-cytotoxic concentration of PD markedly suppressed wound healing migration, invasion through the matrigel, and adhesion to an ECM-coated substrate in a dose-dependent manner. Moreover, PD inhibited cell invasion by reducing matrix metalloproteinase (MMP)-9 enzyme activity and mRNA expression. Western blot analysis indicated that PD potently suppressed the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK) as well as blocked the phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR signaling pathway. Furthermore, PD treatment inhibited the DNA binding activity of NF-κB, which is known to mediate the expression of epidermal growth factor receptor (EGFR), as observed by electrophoretic mobility shift assay. Specific mechanisms of action exerted by PD involved the downregulation of EGFR and the inhibition of EGF-induced activation of the EGFR, MAPK, and PI3K/Akt pathways. The in vivo studies showed that PD significantly inhibited the growth of MDA-MB-231 xenograft tumors in BALB/c nude mice. These results suggest that PD might be a potential therapeutic candidate for the treatment of breast cancer metastasis. PMID:23867902

  14. [Disparity of apoptotic response in human breast cancer cell lines MCF-7 and MDA-MB-231 after infection with recombinant adenovirus encoding the VP2 gene of infectious bursail disease virus].

    PubMed

    Shin, Tan Seok; Allaudin, Zeenathul Nazariah; Lila, Mohd-Azmi Mohd; Rahman, Sheikh-Omar Abdul

    2014-01-01

    Recombinant adenovirus encoding the VP2 gene of infectious bursal disease virus (ADV-VP2) has shown potent anti-tumour effects due to its capability of apoptotic induction in cancer cells. In the present study, human breast cancer cells MCF-7 and MDA-MB-231 were infected with ADV-VP2. The expression of VP2 protein was registered 4 h post-infection, particularly in MCF-7 cells. Multiple time-point DNA ladder assay demonstrated that ADV-VP2 infected MDA-MB-231 and MCF-7 cells endured apoptosis as early as 8 and 12 h post-infection, respectively. Apoptosis induction in both MDA-MB-231 and MCF-7 cells, albeit different start points, lasted til 36 h post-infection. The induction of apoptosis by ADV-VP2 was further shown by the TUNEL assay, with dark brown discoloration of apoptotic cells. The present study also explored the different stages of apoptosis by Annexin V/PI double staining flow cytometry quantification. Treated MCF-7 and MDA-MB-231 cells, respectively detected 25.58 +/- 9.02 and 14.51 +/- 3.12% of early apoptotic cells, 6.09 +/- 4.06 and 77.12 +/- 5.09% of late apoptotic cells. Results revealed that there were significant differences in the number of cells of both types which underwent early and late apoptosis. Significant differences were also observed among viable and apoptotic cells which have been post treated with ADV-VP2. The apoptotic effects of ADV-VP2 on human breast cancer cell lines were consistently demonstrated by three apoptosis detection methods. Therefore, a cancer vaccine basing on gene therapy could be developed in the near future using the present construct. PMID:25842834

  15. Polyphenols from Artemisia annua L Inhibit Adhesion and EMT of Highly Metastatic Breast Cancer Cells MDA-MB-231.

    PubMed

    Ko, Young Shin; Lee, Won Sup; Panchanathan, Radha; Joo, Young Nak; Choi, Yung Hyun; Kim, Gon Sup; Jung, Jin-Myung; Ryu, Chung Ho; Shin, Sung Chul; Kim, Hye Jung

    2016-07-01

    Recent evidence suggests that polyphenolic compounds from plants have anti-invasion and anti-metastasis capabilities. The Korean annual weed, Artemisia annua L., has been used as a folk medicine for treatment of various diseases. Here, we isolated and characterized polyphenols from Korean A. annua L (pKAL). We investigated anti-metastatic effects of pKAL on the highly metastatic MDA-MB-231 breast cancer cells especially focusing on cancer cell adhesion to the endothelial cell and epithelial-mesenchymal transition (EMT). Firstly, pKAL inhibited cell viability of MDA-MB-231 cells in a dose-dependent manner, but not that of human umbilical vein endothelial cells (ECs). Polyphenols from Korean A. annua L inhibited the adhesion of MDA-MB-231 cells to ECs through reducing vascular cell adhesion molecule-1 expression of MDA-MB-231 and ECs, but not intracellular adhesion molecule-1 at the concentrations where pKAL did not influence the cell viability of either MDA-MB-231 cells nor EC. Further, pKAL inhibited tumor necrosis factor-activated MDA-MB-231 breast cancer cell invasion through inhibition of matrix metalloproteinase-2 and matrix metalloproteinase-9 and EMT. Moreover, pKAL inhibited phosphorylation of Akt, but not that of protein kinase C. These results suggest that pKAL may serve as a therapeutic agent against cancer metastasis at least in part by inhibiting the cancer cell adhesion to ECs through suppression of vascular cell adhesion molecule-1 and invasion through suppression of EMT. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27151203

  16. Genipin, a constituent of Gardenia jasminoides Ellis, induces apoptosis and inhibits invasion in MDA-MB-231 breast cancer cells.

    PubMed

    Kim, Eun-Sook; Jeong, Choon-Sik; Moon, Aree

    2012-02-01

    Genipin, a constituent of Gardenia jasminoides Ellis, is used in the treatment of hepatic disorders and inflammatory diseases in traditional medicine. Although mounting evidence suggests an anti-tumor activity of genipin in several cancer cell systems, the inhibitory effect of genipin on the growth of breast cancer cells has not been reported yet. The present study aimed to investigate the anti-proliferative activity of genipin in MDA-MB-231 human breast cancer cells. Herein, we showed that genipin efficiently induced apoptosis in MDA-MB-231 cells by the down-regulation of Bcl-2, up-regulation of Bax and proteolytic activation of caspase-3. Activation of JNK and p38 MAPK also increased by genipin. Importantly, genipin significantly inhibited invasive and migratory phenotypes of MDA-MB-231 cells. Taken together, this study demonstrates that genipin induces apoptosis and inhibits invasive/migratory abilities of highly invasive MDA-MB-231 human breast cancer cells, suggesting a potential application of genipin as a chemopreventive agent that may prevent or alleviate metastatic breast cancer. PMID:22020372

  17. Modulation of septin and molecular motor recruitment in the microtubule environment of the Taxol-resistant human breast cancer cell line MDA-MB-231.

    PubMed

    Froidevaux-Klipfel, Laurence; Poirier, Florence; Boursier, Céline; Crépin, Ronan; Poüs, Christian; Baudin, Bruno; Baillet, Anita

    2011-10-01

    Cell resistance to low doses of paclitaxel (Taxol) involves a modulation of microtubule (MT) dynamics. We applied a proteomic approach based on 2-DE coupled with MS to identify changes in the MT environment of Taxol-resistant breast cancer cells. Having established a proteomic pattern of the microtubular proteins extracted from MDA-MB-231 cells, we verified by Western blotting that in resistant cells, α- and β-tubulins (more specifically the βIII and βIV isotypes) increased. Interestingly, four septins (SEPT2, 8, 9 and 11), which are GTPases involved in cytokinesis and in MT/actin cytoskeleton organization, were overexpressed and enriched in the MT environment of Taxol-resistant cells compared to their sensitive counterpart. Changes in the MT proteome of resistant cells also comprised increased kinesin-1 heavy chain expression and recruitment on MTs while dynein light chain-1 was downregulated. Modulation of motor protein recruitment around MTs might reflect their important role in controlling MT dynamics via the organization of signaling pathways. The identification of proteins previously unknown to be linked to taxane-resistance could also be valuable to identify new biological markers of resistance. PMID:21761557

  18. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines – An Isobolographic Analysis

    PubMed Central

    Wawruszak, Anna; Luszczki, Jarogniew J.; Grabarska, Aneta; Gumbarewicz, Ewelina; Dmoszynska-Graniczka, Magdalena; Polberg, Krzysztof; Stepulak, Andrzej

    2015-01-01

    Histone deacetylase inhibitors (HDIs) are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA, vorinostat), alone or in combination with cisplatin (CDDP) on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic) interaction was observed for the combination of CDDP with VPA in MDA-MB-231 “triple-negative” (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative) human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers. PMID:26580554

  19. SILAC-Based Proteomic Profiling of the Human MDA-MB-231 Metastatic Breast Cancer Cell Line in Response to the Two Antitumoral Lactoferrin Isoforms: The Secreted Lactoferrin and the Intracellular Delta-Lactoferrin

    PubMed Central

    Hoedt, Esthelle; Chaoui, Karima; Huvent, Isabelle; Mariller, Christophe; Monsarrat, Bernard; Burlet-Schiltz, Odile; Pierce, Annick

    2014-01-01

    Background Lactoferrins exhibit antitumoral activities either as a secretory lactoferrin or an intracellular delta-lactoferrin isoform. These activities involve processes such as regulation of the cell cycle and apoptosis. While lactoferrin has been shown to exert its function by activating different transduction pathways, delta-lactoferrin has been proven to act as a transcription factor. Like many tumor suppressors, these two proteins are under-expressed in several types of cancer, particularly in breast cancer. Methodology/Principal Findings In order to compare the differential effects of the re-introduction of lactoferrin isoforms in breast cancer cells we chose the cancerous mammary gland MDA-MB-231 cell line as a model. We produced a cell line stably expressing delta-lactoferrin. We also treated these cells with fresh purified human breast lactoferrin. We performed two quantitative proteomic studies in parallel using SILAC coupled to mass spectrometry in order to compare the effects of different doses of the two lactoferrin isoforms. The proteome of untreated, delta-lactoferrin expressing and human lactoferrin treated MDA-MB-231 cells were compared. Overall, around 5300 proteins were identified and quantified using the in-house developed MFPaQ software. Among these, expression was increased by 1.5-fold or more for around 300 proteins in delta-lactoferrin expressing cells and 190 proteins in lactoferrin treated cells. At the same time, about 200 and 40 proteins were found to be downregulated (0-0.7-fold) in response to delta-lactoferrin and lactoferrin, respectively. Conclusions/Significance Re-introduction of delta-lactoferrin and lactoferrin expression in MDA-MB-231 mainly leads to modifications of protein profiles involved in processes such as proliferation, apoptosis, oxidative stress, the ubiquitin pathway, translation and mRNA quality control. Moreover, this study identified new target genes of delta-lactoferrin transcriptional activity such as SelH, GTF

  20. Inorganic sulfur reduces cell proliferation by inhibiting of ErbB2 and ErbB3 protein and mRNA expression in MDA-MB-231 human breast cancer cells

    PubMed Central

    Ha, Ae Wha; Hong, Kyung Hee; Kim, Hee Sun

    2013-01-01

    Dietary inorganic sulfur is the minor component in our diet, but some studies suggested that inorganic sulfur is maybe effective to treat cancer related illness. Therefore, this study aims to examine the effects of inorganic sulfur on cell proliferation and gene expression in MDA-MB-231 human breast cancer cells. MDA-MB-231 cells were cultured the absence or presence of various concentrations (12.5, 25, or 50 µmol/L) of inorganic sulfur. Inorganic sulfur significantly decreased proliferation after 72 h of incubation (P < 0.05). The protein expression of ErbB2 and its active form, pErbB2, were significantly reduced at inorganic sulfur concentrations of 50 µmol/L and greater than 25 µmol/L, respectively (P < 0.05). The mRNA expression of ErbB2 was significantly reduced at an inorganic sulfur concentration of 50 µmol/L (P < 0.05). The protein expression of ErbB3 and its active form, pErbB3, and the mRNA expression of ErbB3 were significantly reduced at inorganic sulfur concentrations greater than 25 µmol/L (P < 0.05). The protein and mRNA expression of Akt were significantly reduced at an inorganic sulfur concentration of 50 µmol/L (P < 0.05), but pAkt was not affected by inorganic sulfur treatment. The protein and mRNA expression of Bax were significantly increased with the addition of inorganic sulfur concentration of 50 µmol/L (P < 0.05). In conclusion, cell proliferation was suppressed by inorganic sulfur treatment through the ErbB-Akt pathway in MDA-MB-231 cells. PMID:23610600

  1. Increased regucalcin gene expression extends survival in breast cancer patients: Overexpression of regucalcin suppresses the proliferation and metastatic bone activity in MDA-MB-231 human breast cancer cells in vitro.

    PubMed

    Yamaguchi, Masayoshi; Osuka, Satoru; Weitzmann, M Neale; Shoji, Mamoru; Murata, Tomiyasu

    2016-08-01

    Human breast cancer is highly metastatic to bone and drives bone turnover. Breast cancer metastases cause osteolytic lesions and skeletal damage that leads to bone fractures. Regucalcin, which plays a pivotal role as an inhibitor of signal transduction and transcription activity, has been suggested to act as a suppressor of human cancer. In the present study, we compared the clinical outcome between 44 breast cancer patients with higher regucalcin expression and 43 patients with lower regucalcin expression. Prolonged relapse-free survival was identified in the patients with increased regucalcin gene expression. We further demonstrated that overexpression of full length, but not alternatively spliced variants of regucalcin, induces G1 and G2/M phase cell cycle arrest, suppressing the proliferation of MDA-MB-231 cells, a commonly used in vitro model of human breast cancer that metastasize to bone causing osteolytic lesions. Overexpression of regucalcin was found to suppress multiple signaling pathways including Akt, MAP kinase and SAPK/JNK, and NF-κB p65 and β-catenin along with increased p53, a tumor suppressor, and decreased K-ras, c-fos and c-jun. Moreover, we found that co-culture of regucalcin-overexpressing MDA-MB-231 cells with mouse bone marrow cells prevented enhanced osteoclastogenesis and suppressed mineralization in mouse bone marrow cells in vitro. Taken together, the present study suggests that regucalcin may have important anticancer properties in human breast cancer patients. Mechanistically, these effects are likely mediated through suppression of multiple signaling pathways, upregulation of p53 and downregulation of oncogenes leading to anti-proliferative effects and reduced metastases to bone, a phenotype associated with poor clinical outcome. PMID:27221776

  2. Doxorubicin-Hyaluronan Conjugated Super-Paramagnetic Iron Oxide Nanoparticles (DOX-HA-SPION) Enhanced Cytoplasmic Uptake of Doxorubicin and Modulated Apoptosis, IL-6 Release and NF-kappaB Activity in Human MDA-MB-231 Breast Cancer Cells.

    PubMed

    Vyas, Dinesh; Lopez-Hisijos, Nicolas; Gandhi, Sulakshana; El-Dakdouki, M; Basson, Marc D; Walsh, Mary F; Huang, X; Vyas, Arpita K; Chaturvedi, Lakshmi S

    2015-09-01

    Triple negative breast cancer exhibit increased IL-6 expression compared with matched healthy breast tissue and a strong link between inflammation and cancer progression and metastasis has been reported. We investigated whether doxorubicin-hyaluronan-super-paramagnetic iron oxide nanoparticles (DOX-HA-SPION) would show greater therapeutic efficacy in human triple negative breast cancer cells (TNBC) MDA-MB-231, as was recently shown in drug-sensitive and multi-drug-resistant ovarian cancer cells. Therefore, we measured cellular DOX uptake via confocal microscopy; observed morphologic changes: mitochondrial and nuclear changes with electron microscopy, and quantitated apoptosis using FACS analysis after Annexin V and PI staining in MDA-MB-231 cells treated with either DOX alone or DOX-HA-SPION. We also measured both proinflammatory and anti-inflammatory cytokines; IL-6, IL-10 respectively and also measured nitrate levels in the conditioned medium by ELISA. Inaddition, NF-κB activity was measured by luciferase assay. Confocal microscopy demonstrated greater cytoplasmic uptake of DOX-HA-SPION than free DOX. We also demonstrated reduction of Vimentin with DOX-HA-SPION which is significantly less than both control and DOX. DOX-HA-SPION enhanced apoptosis and significantly down regulated both pro-inflammatory mediators IL-6 and NF-κB in comparison to DOX alone. The secretion levels of anti-inflammatory mediators IL-10 and nitrate was not decreased in the DOX or DOX-HA-SPION treatment groups. Our data suggest that DOX-HA-SPION nanomedicine-based drug delivery could have promising potential in treating metastasized and chemoresistant breast cancer by enhancing the drug efficacy and minimizing off-target effects. PMID:26690867

  3. The telomerase template antagonist GRN163L alters MDA-MB-231 breast cancer cell morphology, inhibits growth, and augments the effects of paclitaxel.

    PubMed

    Goldblatt, Erin M; Gentry, Erin R; Fox, Melanie J; Gryaznov, Sergei M; Shen, Changyu; Herbert, Brittney-Shea

    2009-07-01

    Telomeres are repetitive (TTAGGG)(n) DNA sequences found at the end of chromosomes that protect the ends from recombination, end to end fusions, and recognition as damaged DNA. Telomerase activity can be detected in 85% to 90% of human tumors, which stabilizes telomeres to prevent apoptosis or cellular senescence. Previous reports showed the efficacy of the novel telomerase template antagonist, GRN163L, as a potential anticancer agent. The objective of the present study was to elucidate the molecular effects of GRN163L in MDA-MB-231 breast cancer cells and to determine whether GRN163L could be used in mechanism-based combination therapy for breast cancer. We observed that GRN163L reduced MDA-MB-231 growth rates without a significant effect on breast cancer cell viability within the first 14 days in vitro. In addition, GRN163L altered cell morphology, actin filament organization, and focal adhesion formation in MDA-MB-231 cells. Importantly, the cellular response to GRN163L significantly augmented the effects of the microtubule stabilizer paclitaxel in MDA-MB-231 breast cancer cell growth in vitro and in vivo compared with paclitaxel alone or a mismatch control oligonucleotide plus paclitaxel. Furthermore, in vitro MDA-MB-231 invasive potential was significantly inhibited with GRN163L and paclitaxel. These data support a rationale for potentially combining GRN163L with paclitaxel for the treatment of breast cancer in the clinical setting. PMID:19509275

  4. In vitro effects of phenytoin and DAPT on MDA-MB-231 breast cancer cells.

    PubMed

    Aktas, Canan Cakir; Zeybek, N Dilara; Piskin, A Kevser

    2015-09-01

    Voltage-gated sodium channel (VGSC) activity enhances cell behaviors related to metastasis, such as motility, invasion, and oncogene expression. Neonatal alternative splice form of Nav1.5 isoform is expressed in metastatic breast cancers. Furthermore, aberrant Notch signaling pathway can induce oncogenesis and may promote the progression of breast cancers. In this study, we aimed to analyze the effect of the nNav1.5 inhibitor phenytoin and Notch signal inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl ester (DAPT) on triple negative breast cancer cell line (MDA-MB-231) via inhibition of nNav1.5 VGSC activity and Notch signaling, respectively. In order to determine the individual and combined effects of these inhibitors, the 4-[3-(4-iyodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) test, wound healing assay, and zymography were performed to detect the proliferation, lateral motility, and matrix metalloproteinase-9 (MMP9) activity, respectively. The expressions of nNav1.5, Notch4, MMP9, and tissue inhibitor of metalloproteinases-1 (TIMP1) were also detected by quantitative real-time reverse transcriptase-polymerase chain reaction. DAPT caused an antiproliferative effect when the doses were higher than 10 µM, whereas phenytoin showed no inhibitory action either alone or in combination with DAPT on the MDA-MB-231 cells. Furthermore, it was found that the lateral motility was inhibited by both inhibitors; however, this inhibitory effect was partially rescued when they were used in combination. Meanwhile, the results showed that the MMP9 activity and the ratio of MMP9 mRNA to TIMP1 mRNA were only decreased by DAPT. Thus, we conclude that the combined effect of DAPT and phenytoin is not as beneficial as using DAPT alone on MDA-MB-231 breast cancer cells. PMID:26206582

  5. The anticancer potential of steroidal saponin, dioscin, isolated from wild yam (Dioscorea villosa) root extract in invasive human breast cancer cell line MDA-MB-231 in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we observed that wild yam (Dioscorea villosa) root extract (WYRE) was able to activate GATA3 in human breast cancer cells targeting epigenome. This study aimed to 'nd out if dioscin (DS), a bioactive compound of WYRE, can modulate GATA3 functions and cellular invasion in human breast can...

  6. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy

    PubMed Central

    Gurunathan, Sangiliyandi; Park, Jung Hyun; Han, Jae Woong; Kim, Jin-Hoi

    2015-01-01

    downregulation of Bcl-2. Cells pretreated with pifithrin-alpha were protected from p53-mediated AgNPs-induced toxicity. Conclusion We have demonstrated a simple approach for the synthesis of AgNPs using the novel strains B. tequilensis and C. indica, as well as their mechanism of cell death in a p53-dependent manner in MDA-MB-231 human breast cancer cells. The present findings could provide insight for the future development of a suitable anticancer drug, which may lead to the development of novel nanotherapeutic molecules for the treatment of cancers. PMID:26170659

  7. Src kinases catalytic activity regulates proliferation, migration and invasiveness of MDA-MB-231 breast cancer cells.

    PubMed

    Sánchez-Bailón, María Pilar; Calcabrini, Annarica; Gómez-Domínguez, Daniel; Morte, Beatriz; Martín-Forero, Esther; Gómez-López, Gonzalo; Molinari, Agnese; Wagner, Kay-Uwe; Martín-Pérez, Jorge

    2012-06-01

    SFKs are frequently deregulated in cancer where they control cellular proliferation, migration, survival and metastasis. Here we study the role of SFKs catalytic activity in triple-negative/basal-like and metastatic human breast cancer MDA-MB-231 cells employing three well-established inhibitors: Dasatinib, PP2 and SU6656. These compounds inhibited migration and invasion. Concomitantly, they reduced Fak, paxillin, p130CAS, caveolin-1 phosphorylation and altered cytoskeletal structures. They also inhibited cell proliferation, but in different manners. Dasatinib and PP2 increased p27(Kip1) expression and reduced c-Myc levels, restraining G1–S transition. In contrast, SU6656 did not modify p27(Kip1) expression, slightly altered c-Myc levels and generated polyploid multinucleated cells, indicating inhibition of cytokinesis. These later effects were also observed in SYF fibroblasts, suggesting a SFKs-independent action. ZM447439, an Aurora B kinase inhibitor, produced similar cell cycle and morphological alterations in MDA-MB-231 cells, indicating that SU6656 blocked Aurora B kinase. This was confirmed by inhibition of histone H3 phosphorylation, the canonical Aurora B kinase substrate. Furthermore, hierarchical clustering analysis of gene expression profiles showed that SU6656 defined a set of genes that differed from Dasatinib and PP2. Additionally, Gene Set Enrichment Analyses revealed that SU6656 significantly reduces the Src pathway. Together, these results show the importance of SFKs catalytic activity for MDA-MB-231 proliferation, migration and invasiveness. They also illustrate that SU6656 acts as dual SFKs and Aurora B kinase inhibitor, suggesting its possible use as a therapeutic agent in breast cancer. PMID:22570868

  8. Gene expression profiling and pathway analysis in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene ex...

  9. Benzo-[a]-pyrene induces FAK activation and cell migration in MDA-MB-231 breast cancer cells.

    PubMed

    Castillo-Sanchez, Rocio; Villegas-Comonfort, Socrates; Galindo-Hernandez, Octavio; Gomez, Rocio; Salazar, Eduardo Perez

    2013-08-01

    Benzo-[a]-pyrene (B[a]P) is a family member of polycyclic aromatic hydrocarbons and a widespread environmental pollutant. It is a mammary carcinogen in rodents and contributes to the development of human breast cancer. However, the signal transduction pathways induced by B[a]P and its role in breast cancer progression have not been studied in detail. Here, we demonstrate that B[a]P induces cell migration through a lipoxygenase- and Src-dependent pathway, as well as the activation of focal adhesion kinase, Src, and the extracellular signal-regulated kinase 2 in MDA-MB-231 breast cancer cells. However, B[a]P is not able to promote migration in the mammary nontumorigenic epithelial cells MCF12A. Moreover, B[a]P promotes an increase of αvβ3 integrin-cell surface levels and an increase of metalloproteinase (MMP)-2 and MMP-9 secretions. In summary, our findings demonstrate that B[a]P induces the activation of signal transduction pathways and biological processes involved in the invasion/metastasis process in MDA-MB-231 breast cancer cells. PMID:23955088

  10. Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation

    PubMed Central

    Lee, Jung Ok; Kim, Nami; Lee, Hye Jeong; Lee, Yong Woo; Kim, Su Jin; Park, Sun Hwa; Kim, Hyeon Soo

    2016-01-01

    Resistin, an adipocyte-secreted factor, is known to be elevated in breast cancer patients. However, the molecular mechanism by which resistin acts is not fully understood. The aim of this study was to investigate whether resistin could stimulate invasion and migration of breast cancer cells. Here, we report that resistin stimulated invasion and migration of breast cancer cells as well as phosphorylation of c-Src. Inhibition of c-Src blocked resistin-induced breast cancer cell invasion. Resistin increased intracellular calcium concentration, and chelation of intracellular calcium blocked resistin-mediated activation of Src. Resistin also induced phosphorylation of protein phosphatase 2A (PP2A). Inhibition of c-Src blocked resistin-mediated PP2A phosphorylation. In addition, resistin increased phosphorylation of PKCα. Inhibition of PP2A enhanced resistin-induced PKCα phosphorylation, demonstrating that PP2A activity is critical for PKCα phosphorylation. Resistin also increased phosphorylation of ezrin, radixin, and moesin (ERM). Additionally, ezrin interacted with PKCα, and resistin promoted co-localization of ezrin and PKCα. Either inhibition of c-Src and PKCα or knock-down of ezrin blocked resistin-induced breast cancer cells invasion. Moreover, resistin increased expression of vimentin, a key molecule for cancer cell invasion. Knock-down of ezrin abrogated resistin-induced vimentin expression. These results suggest that resistin play as a critical regulator of breast cancer metastasis. PMID:26729407

  11. Development of novel sophorolipids with improved cytotoxic activity toward MDA-MB-231 breast cancer cells.

    PubMed

    Ribeiro, Isabel A C; Faustino, Célia M C; Guerreiro, Patrícia S; Frade, Raquel F M; Bronze, M Rosário; Castro, Matilde F; Ribeiro, Maria H L

    2015-03-01

    Sophorolipids (SLs) are glycolipid biosurfactants, produced as a mixture of several compounds by some nonpathogenic yeast. In the current study, separation of individual SLs from mixtures with further evaluation of their surface properties and biologic activity on MDA-MB-321 breast cancer cell line were investigated. SLs were biosynthesized by Starmerella bombicola in a culture media supplemented with borage oil. A reverse-phase flash chromatography method with an automated system coupled with a prepacked cartridge was used to separate and purify the main SLs. Compositional analysis of SLs was performed by high-performance liquid chromatography with electrospray ionization mass spectrometry and tandem mass spectrometry. The following diacetylated lactonic SLs were isolated and purified: C18:0, C18:1, C18:2, and C18:3. The critical micelle concentration (CMC) and surface tension at CMC (γCMC ) of the purified SLs showed an increase with the number of double bonds. High cytotoxic effect against MDA-MB-231 cells was observed with C18:0 and C18:1 lactonic SLs. The cytotoxic effects of C18:3 lactonic SL on cancerous cells were for the first time studied. This cytotoxic effect was considerably higher than the promoted by acidic SLs; however, it induced a lower effect than the previously mentioned SLs, C18:0 and C18:1. To our knowledge, for the first time, C18:1 lactonic SL, in selected concentrations, proved to be able to inhibit MDA-MB-231 cell migration without compromising cell viability and to increase intracellular reactive oxygen species. PMID:25647712

  12. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells.

    PubMed

    Kwiatkowska, Ewa; Wojtala, Martyna; Gajewska, Agnieszka; Soszyński, Mirosław; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2016-02-01

    Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP. PMID:26715289

  13. Unusual roles of caspase-8 in triple-negative breast cancer cell line MDA-MB-231.

    PubMed

    De Blasio, Anna; Di Fiore, Riccardo; Morreale, Marco; Carlisi, Daniela; Drago-Ferrante, Rosa; Montalbano, Mauro; Scerri, Christian; Tesoriere, Giovanni; Vento, Renza

    2016-06-01

    Triple-negative breast cancer (TNBC) is a clinically aggressive form of breast cancer that is unresponsive to endocrine agents or trastuzumab. TNBC accounts for ~10-20% of all breast cancer cases and represents the form with the poorest prognosis. Patients with TNBC are at higher risk of early recurrence, mainly in the lungs, brain and soft tissue, therefore, there is an urgent need for new therapies. The present study was carried out in MDA-MB-231 cells, where we assessed the role of caspase-8 (casp-8), a critical effector of death receptors, also involved in non‑apoptotic functions. Analysis of casp-8 mRNA and protein levels indicated that they were up-regulated with respect to the normal human mammalian epithelial cells. We demonstrated that silencing of casp-8 by small interfering-RNA, strongly decreased MDA-MB-231 cell growth by delaying G0/G1- to S-phase transition and increasing p21, p27 and hypo-phosphorylated/active form of pRb levels. Surprisingly, casp-8-knockdown, also potently increased both the migratory and metastatic capacity of MDA-MB‑231 cells, as shown by both wound healing and Matrigel assay, and by the expression of a number of related-genes and/or proteins such as VEGFA, C-MYC, CTNNB1, HMGA2, CXCR4, KLF4, VERSICAN V1 and MMP2. Among these, KLF4, a transcriptional factor with a dual role (activator and repressor), seemed to play critical roles. We suggest that in MDA-MB‑231 cells, the endogenous expression of casp-8 might keep the cells perpetually cycling through downregulation of KLF4, the subsequent lowering of p21 and p27, and the inactivation by hyperphosphorylation of pRb. Simultaneously, by lowering the expression of some migratory and invasive genes, casp-8 might restrain the metastatic ability of the cells. Overall, our findings showed that, in MDA-MB-231 cells, casp-8 might play some unusual roles which should be better explored, in order to understand whether it might be identified as a molecular therapeutic target. PMID

  14. Polyphenol mixtures of Euphorbia supina the inhibit invasion and metastasis of highly metastatic breast cancer MDA-MB-231 cells.

    PubMed

    Ko, Young Shin; Lee, Won Sup; Joo, Young Nak; Choi, Yung Hyun; Kim, Gon Sup; Jung, Jin-Myung; Ryu, Chung Ho; Shin, Sung Chul; Kim, Hye Jung

    2015-12-01

    The Korean prostrate spurge Euphorbia supina is abundant in polyphenols and has been used as a folk medicine in Korea against a variety of diseases. Thus, we aimed to investigate the effect of polyphenol mixtures of Korean Euphorbia supina (PES) on the invasion and metastasis of highly metastatic breast cancer MDA-MB-231 cells. Firstly, PES showed no cytotoxicity on cancer cells and endothelial cells (ECs) at the doses of 0.1-10 µg/ml, but showed significant cytotoxicity from 50 µg/ml. Thus, we performed subsequent experiments with PES at doses up to 5 µg/ml. PES dose‑dependently suppressed epithelial-mesenchymal transition by downregulating the mesenchymal markers, Snail1 and N-cadherin, showing significant inhibition from 1 and 5 µg/ml, respectively. In addition, PES significantly inhibited MMP-9 activity and LOX release induced by TNF-α at 5 µg/ml. Then, we determined the effect of PES on the expression of adhesion molecules and VE-cadherin phosphorylation. The results showed that PES effectively reduced TNF-α-mediated VCAM-1 expression but not ICAM expression both in the MDA-MB-231 cells and ECs, resulting in the reduced adhesion of MDA-MB-231 to ECs. Finally, PES effectively inhibited MDA-MB-231 cell invasion through ECs, suggesting that PES may serve as a therapeutic agent against cancer metastasis with minimal cytotoxicity to normal cells. PMID:26397047

  15. Phenotypic Switch Induced by Simulated Microgravity on MDA-MB-231 Breast Cancer Cells

    PubMed Central

    Masiello, Maria Grazia; Cucina, Alessandra; Proietti, Sara; Palombo, Alessandro; Coluccia, Pierpaolo; D'Anselmi, Fabrizio; Dinicola, Simona; Pasqualato, Alessia; Morini, Veronica; Bizzarri, Mariano

    2014-01-01

    Microgravity exerts dramatic effects on cell morphology and functions, by disrupting cytoskeleton and adhesion structures, as well as by interfering with biochemical pathways and gene expression. Impairment of cells behavior has both practical and theoretical significance, given that investigations of mechanisms involved in microgravity-mediated effects may shed light on how biophysical constraints cooperate in shaping complex living systems. By exposing breast cancer MDA-MB-231 cells to simulated microgravity (~0.001 g), we observed the emergence of two morphological phenotypes, characterized by distinct membrane fractal values, surface area, and roundness. Moreover, the two phenotypes display different aggregation profiles and adherent behavior on the substrate. These morphological differences are mirrored by the concomitant dramatic functional changes in cell processes (proliferation and apoptosis) and signaling pathways (ERK, AKT, and Survivin). Furthermore, cytoskeleton undergoes a dramatic reorganization, eventually leading to a very different configuration between the two populations. These findings could be considered adaptive and reversible features, given that, by culturing microgravity-exposed cells into a normal gravity field, cells are enabled to recover their original phenotype. Overall these data outline the fundamental role gravity plays in shaping form and function in living systems. PMID:25215287

  16. Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction.

    PubMed

    Marinello, Poliana Camila; da Silva, Thamara Nishida Xavier; Panis, Carolina; Neves, Amanda Fouto; Machado, Kaliana Larissa; Borges, Fernando Henrique; Guarnier, Flávia Alessandra; Bernardes, Sara Santos; de-Freitas-Junior, Júlio Cesar Madureira; Morgado-Díaz, José Andrés; Luiz, Rodrigo Cabral; Cecchini, Rubens; Cecchini, Alessandra Lourenço

    2016-04-01

    The participation of oxidative stress in the mechanism of metformin action in breast cancer remains unclear. We investigated the effects of clinical (6 and 30 μM) and experimental concentrations of metformin (1000 and 5000 μM) in MCF-7 and in MDA-MB-231 cells, verifying cytotoxicity, oxidative stress, DNA damage, and intracellular pathways related to cell growth and survival after 24 h of drug exposure. Clinical concentrations of metformin decreased metabolic activity of MCF-7 cells in the MTT assay, which showed increased oxidative stress and DNA damage, although cell death and impairment in the proliferative capacity were observed only at higher concentrations. The reduction in metabolic activity and proliferation in MDA-MB-231 cells was present only at experimental concentrations after 24 h of drug exposition. Oxidative stress and DNA damage were induced in this cell line at experimental concentrations. The drug decreased cytoplasmic extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT and increased nuclear p53 and cytoplasmic transforming growth factor β1 (TGF-β1) in both cell lines. These findings suggest that metformin reduces cell survival by increasing reactive oxygen species, which induce DNA damage and apoptosis. A relationship between the increase in TGF-β1 and p53 levels and the decrease in ERK1/2 and AKT was also observed. These findings suggest the mechanism of action of metformin in both breast cancer cell lineages, whereas cell line specific undergoes redox changes in the cells in which proliferation and survival signaling are modified. Taken together, these results highlight the potential clinical utility of metformin as an adjuvant during the treatment of luminal and triple-negative breast cancer. PMID:26561471

  17. Differential control of growth, cell cycle progression, and expression of NF-{kappa}B in human breast cancer cells MCF-7, MCF-10A, and MDA-MB-231 by ponicidin and oridonin, diterpenoids from the chinese herb Rabdosia rubescens

    SciTech Connect

    Hsieh Tzechen; Wijeratne, E. Kithsiri; Liang Jingyu; Gunatilaka, A. Leslie; Wu, Joseph M. . E-mail: Joseph_Wu@nymc.edu

    2005-11-11

    Ponicidin and oridonin are novel diterpenoids isolated from Rabdosia rubescens. We tested their effects in MCF-7 and MDA-MB-231 cells, as representing low and high invasive breast carcinoma, with normal MCF-10A cells. Clonogenicity and proliferation in MCF-7 cells were inhibited more significantly by ponicidin than oridonin, while the reverse was observed in MCF-10A cells. Ponicidin and oridonin induced S/G{sub 2}M arrest and G{sub 1}/S block in MCF-7 cells. In MCF-10A cells treated with either diterpenoid, induction of apoptosis was observed. Moreover, oridonin almost completely blocked MCF-10A progression from S to G{sub 2}/M phase; in contrast, ponicidin-treated MCF-10A cells showed no discernable changes in cell cycle phase distribution. Neither diterpenoid affected growth of MDA-MB-231 cells, at the dose range effective for MCF-7 or MCF-10A cells. Ponicidin-treated MCF-7 cells expressed reduced levels of cyclin B1, cdc2, transcription factor E2F, and Rb including phosphorylation at S780. Less pronounced effects were found in cells treated with oridonin. Neither compound altered cyclin D1 and cdk4 in MCF-7 cells. In MCF-10A cells, oridonin was more active than ponicidin in inhibiting the expression of cyclin B1, cdc2, S780-phosphorylated Rb, and E2F. To further investigate induction of apoptosis in MCF-10A cells, we measured changes in NF-{kappa}B. Decreases in p65 or p50 forms of NF-{kappa}B and its upstream regulator I-{kappa}B were found in oridonin-treated MCF-10A and not MCF-7 cells. Taken together, these results provide a mechanistic framework for the cellular effects of ponicidin and oridonin in different stage breast cancer cells.

  18. Analysis of the Antiproliferative Effects of Curcumin and Nanocurcumin in MDA-MB231 as a Breast Cancer Cell Line

    PubMed Central

    Khosropanah, Mohammad Hossein; Dinarvand, Amin; Nezhadhosseini, Afsaneh; Haghighi, Alireza; Hashemi, Sima; Nirouzad, Fereidon; Khatamsaz, Sepideh; Entezari, Maliheh; Hashemi, Mehrdad; Dehghani, Hossein

    2016-01-01

    Cancer is one of the main causes of mortality in the world which appears by the effect of enviromental physico-chemical mutagen and carcinogen agents. The identification of new cytotoxic drug with low sid effects on immune system has developed as important area in new studies of immunopharmacology. Curcumin is a natural polyphenol with anti-oxidative, anti-inflammatory and anti-cancer properties. Its therapeutic potential is substantially hindered by the rather low water solubility and bioavailability, hence the need for suitable carriers. In this report we employed nanogel-based nanoparticle approach to improve upon its effectiveness. Myristic acid-chitosan (MA-chitosan) nanogels were prepared by the technique of self-assembly. Curcumin was loaded into the nanogels. The surface morphology of the prepared nanoparticles was determined using SEM and TEM. The other objective of this study was to examine the in vitro cytotoxic activity of cell death of curcumin and nanocurcumin on human breast adenocarcinoma cell line (MDA-MB231). Cytotoxicity and viability of curcumin and nanocurcumin were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dye exclusion assay. Transmission electron microscopy confirmed the particle diameter was between 150 to 200 nm. Proliferation of MDA-MB231 cells was significantly inhibited by curcumin and nanocurcumin in a concentration-dependent manner in defined times. There were significant differences in IC50 curcumin and nanocurcumin. curcumin -loaded nanoparticles proved more effective compared to TQ solution. The high drug-targeting potential and efficiency demonstrates the significant role of the anticancer properties of curcumin -loaded nanoparticles. PMID:27610163

  19. Analysis of the Antiproliferative Effects of Curcumin and Nanocurcumin in MDA-MB231 as a Breast Cancer Cell Line.

    PubMed

    Khosropanah, Mohammad Hossein; Dinarvand, Amin; Nezhadhosseini, Afsaneh; Haghighi, Alireza; Hashemi, Sima; Nirouzad, Fereidon; Khatamsaz, Sepideh; Entezari, Maliheh; Hashemi, Mehrdad; Dehghani, Hossein

    2016-01-01

    Cancer is one of the main causes of mortality in the world which appears by the effect of enviromental physico-chemical mutagen and carcinogen agents. The identification of new cytotoxic drug with low sid effects on immune system has developed as important area in new studies of immunopharmacology. Curcumin is a natural polyphenol with anti-oxidative, anti-inflammatory and anti-cancer properties. Its therapeutic potential is substantially hindered by the rather low water solubility and bioavailability, hence the need for suitable carriers. In this report we employed nanogel-based nanoparticle approach to improve upon its effectiveness. Myristic acid-chitosan (MA-chitosan) nanogels were prepared by the technique of self-assembly. Curcumin was loaded into the nanogels. The surface morphology of the prepared nanoparticles was determined using SEM and TEM. The other objective of this study was to examine the in vitro cytotoxic activity of cell death of curcumin and nanocurcumin on human breast adenocarcinoma cell line (MDA-MB231). Cytotoxicity and viability of curcumin and nanocurcumin were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dye exclusion assay. Transmission electron microscopy confirmed the particle diameter was between 150 to 200 nm. Proliferation of MDA-MB231 cells was significantly inhibited by curcumin and nanocurcumin in a concentration-dependent manner in defined times. There were significant differences in IC50 curcumin and nanocurcumin. curcumin -loaded nanoparticles proved more effective compared to TQ solution. The high drug-targeting potential and efficiency demonstrates the significant role of the anticancer properties of curcumin -loaded nanoparticles. PMID:27610163

  20. Bisphenol A Induces Migration through a GPER-, FAK-, Src-, and ERK2-Dependent Pathway in MDA-MB-231 Breast Cancer Cells.

    PubMed

    Castillo Sanchez, Rocio; Gomez, Rocio; Perez Salazar, Eduardo

    2016-03-21

    Bisphenol A (BPA) is an industrial synthetic chemical utilized in the production of numerous products including food and beverage containers. Humans are exposed to BPA during ingestion of contaminated water and food because it can leach from polycarbonate containers, beverage cans, and epoxy resins. BPA has been related with the development of several diseases including breast cancer. However, the signal transduction pathways mediated by BPA and its role as a promoter of migration and invasion in breast cancer cells remain to be investigated. Here, we demonstrate that BPA promotes migration, invasion, and an increase in the number of focal contacts in MDA-MB-231 breast cancer cells. Moreover, MDA-MB-231 cells express GPER, and BPA promotes migration through a GPER-dependent pathway. BPA also induces activation of FAK, Src, and ERK2, whereas migration induced by BPA requires the activity of these kinases. In addition, BPA induces an increase on AP-1- and NFκB-DNA binding activity through an Src- and ERK2-dependent pathway. In conclusion, our findings demonstrate, that BPA induces the activation of signal transduction pathways, which mediate migration, AP-1/NFκB-DNA binding activity, and an invasion process in MDA-MB-231 breast cancer cells. PMID:26914403

  1. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells

    PubMed Central

    Park, Sung-Bin; Kim, Byungtak; Bae, Hansol; Lee, Hyunkyung; Lee, Seungyeon; Choi, Eun H.; Kim, Sun Jung

    2015-01-01

    Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05) by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified “cellular movement, connective tissue development and function, tissue development” and “cell-to-cell signaling and interaction, cell death and survival, cellular development” as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option. PMID:26042423

  2. Medium Renewal Blocks Anti-Proliferative Effects of Metformin in Cultured MDA-MB-231 Breast Cancer Cells

    PubMed Central

    Rajh, Maruša; Dolinar, Klemen; Miš, Katarina; Pavlin, Mojca; Pirkmajer, Sergej

    2016-01-01

    Epidemiological studies indicate that metformin, a widely used type 2 diabetes drug, might reduce breast cancer risk and mortality in patients with type 2 diabetes. Metformin might protect against breast cancer indirectly by ameliorating systemic glucose homeostasis. Alternatively, it might target breast cancer cells directly. However, experiments using MDA-MB-231 cells, a standard in vitro breast cancer model, produced inconsistent results regarding effectiveness of metformin as a direct anti-cancer agent. Metformin treatments in cultured MDA-MB-231 cells are usually performed for 48–96 hours, but protocols describing renewal of cell culture medium during these prolonged treatments are rarely reported. We determined whether medium renewal protocol might alter sensitivity of MDA-MB-231 cells treated with metformin. Using the MTS assay, BrdU incorporation and Hoechst staining we found that treatment with metformin for 48–72 hours failed to suppress viability and proliferation of MDA-MB-231 cells if low-glucose (1 g/L) medium was renewed every 24 hours. Conversely, metformin suppressed their viability and proliferation if medium was not renewed. Without renewal glucose concentration in the medium was reduced to 0.1 g/L in 72 hours, which likely explains increased sensitivity to metformin under these conditions. We also examined whether 2-deoxy-D-glucose (2-DG) reduces resistance to metformin. In the presence of 2-DG metformin reduced viability and proliferation of MDA-MB-231 cells with or without medium renewal, thus demonstrating that 2-DG reduces their resistance to metformin. In sum, we show that medium renewal blocks anti-proliferative effects of metformin during prolonged treatments in low-glucose medium. Differences in medium renewal protocols during prolonged treatments might therefore lead to apparently inconsistent results as regards effectiveness of metformin as a direct anti-cancer agent. Finally, our results indicate that co-therapy with 2-DG and

  3. Medium Renewal Blocks Anti-Proliferative Effects of Metformin in Cultured MDA-MB-231 Breast Cancer Cells.

    PubMed

    Rajh, Maruša; Dolinar, Klemen; Miš, Katarina; Pavlin, Mojca; Pirkmajer, Sergej

    2016-01-01

    Epidemiological studies indicate that metformin, a widely used type 2 diabetes drug, might reduce breast cancer risk and mortality in patients with type 2 diabetes. Metformin might protect against breast cancer indirectly by ameliorating systemic glucose homeostasis. Alternatively, it might target breast cancer cells directly. However, experiments using MDA-MB-231 cells, a standard in vitro breast cancer model, produced inconsistent results regarding effectiveness of metformin as a direct anti-cancer agent. Metformin treatments in cultured MDA-MB-231 cells are usually performed for 48-96 hours, but protocols describing renewal of cell culture medium during these prolonged treatments are rarely reported. We determined whether medium renewal protocol might alter sensitivity of MDA-MB-231 cells treated with metformin. Using the MTS assay, BrdU incorporation and Hoechst staining we found that treatment with metformin for 48-72 hours failed to suppress viability and proliferation of MDA-MB-231 cells if low-glucose (1 g/L) medium was renewed every 24 hours. Conversely, metformin suppressed their viability and proliferation if medium was not renewed. Without renewal glucose concentration in the medium was reduced to 0.1 g/L in 72 hours, which likely explains increased sensitivity to metformin under these conditions. We also examined whether 2-deoxy-D-glucose (2-DG) reduces resistance to metformin. In the presence of 2-DG metformin reduced viability and proliferation of MDA-MB-231 cells with or without medium renewal, thus demonstrating that 2-DG reduces their resistance to metformin. In sum, we show that medium renewal blocks anti-proliferative effects of metformin during prolonged treatments in low-glucose medium. Differences in medium renewal protocols during prolonged treatments might therefore lead to apparently inconsistent results as regards effectiveness of metformin as a direct anti-cancer agent. Finally, our results indicate that co-therapy with 2-DG and

  4. Anti-angiogenesis therapy and gap junction inhibition reduce MDA-MB-231 breast cancer cell invasion and metastasis in vitro and in vivo

    PubMed Central

    Zibara, Kazem; Awada, Zahraa; Dib, Leila; El-Saghir, Jamal; Al-Ghadban, Sara; Ibrik, Aida; El-Zein, Nabil; El-Sabban, Marwan

    2015-01-01

    Cancer cells secrete VEGF, which plays a key role in their growth, invasion, extravasation and metastasis. Direct cancer cell-endothelial cell interaction, mediated by gap junctions, is of critical importance in the extravasation process. In this study, we evaluated avastin (Av), an anti-VEGF antibody; and oleamide (OL), a gap junction inhibitor, using MDA-MB-231 human breast cancer cells in vitro and a xenograft murine model in vivo. Results showed that Av/OL significantly decreased proliferation, induced cell cycle arrest and decreased migration and invasion of MDA-MB-231 cells in vitro. In addition, Av/OL significantly decreased homo and hetero-cellular communication interaction between MDA-MDA and MDA-endothelial cells, respectively. The expression levels of several factors including VEGF, HIF1α, CXCR4, Cx26, Cx43, and MMP9 were attenuated upon Av/OL treatment in vitro. On the other hand, avastin, but not oleamide, reduced tumor size of NSG mice injected subdermally (s.d.) with MDA-MB-231 cells, which was also associated with increased survival. Furthermore, Av but also OL, separately, significantly increased the survival rate, and reduced pulmonary and hepatic metastatic foci, of intravenously (i.v.) injected mice. Finally, OL reduced MMP9 protein expression levels, better than Av and in comparisons to control, in the lungs of MDA-MB-231 i.v. injected NSG mice. In conclusion, while avastin has anti-angiogenic, anti-tumor and anti-metastatic activities, oleamide has anti-metastatic activity, presumably at the extravasation level, providing further evidence for the role of gap junction intercellular communication (GJIC) in cancer cell extravasation. PMID:26218768

  5. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231.

    PubMed

    Sharaf, Hana; Matou-Nasri, Sabine; Wang, Qiuyu; Rabhan, Zaki; Al-Eidi, Hamad; Al Abdulrahman, Abdulkareem; Ahmed, Nessar

    2015-03-01

    Diabetic patients have increased likelihood of developing breast cancer. Advanced glycation endproducts (AGEs) underlie the pathogenesis of diabetic complications but their impact on breast cancer cells is not understood. This study aims to determine the effects of methylglyoxal-derived bovine serum albumin AGEs (MG-BSA-AGEs) on the invasive MDA-MB-231 breast cancer cell line. By performing cell counting, using wound-healing assay, invasion assay and zymography analysis, we found that MG-BSA-AGEs increased MDA-MB-231 cell proliferation, migration and invasion through Matrigel™ associated with an enhancement of matrix metalloproteinase (MMP)-9 activities, in a dose-dependent manner. Using Western blot and flow cytometry analyses, we demonstrated that MG-BSA-AGEs increased expression of the receptor for AGEs (RAGE) and phosphorylation of key signaling protein extracellular signal-regulated kinase (ERK)-1/2. Furthermore, in MG-BSA-AGE-treated cells, phospho-protein micro-array analysis revealed enhancement of phosphorylation of the ribosomal protein 70 serine S6 kinase beta 1 (p70S6K1), which is known to be involved in protein synthesis, the signal transducer and activator of transcription (STAT)-3 and the mitogen-activated protein kinase (MAPK) p38, which are involved in cell survival. Blockade of MG-BSA-AGE/RAGE interactions using a neutralizing anti-RAGE antibody inhibited MG-BSA-AGE-induced MDA-MB-231 cell processes, including the activation of signaling pathways. Throughout the study, non-modified BSA had a negligible effect. In conclusion, AGEs might contribute to breast cancer development and progression partially through the regulation of MMP-9 activity and RAGE signal activation. The up-regulation of RAGE and the concomitant increased phosphorylation of p70S6K1 induced by AGEs may represent promising targets for drug therapy to treat diabetic patients with breast cancer. PMID:25514746

  6. TRIM21, a negative modulator of LFG in breast carcinoma MDA-MB-231 cells in vitro.

    PubMed

    Müller, Judith; Maurer, Viktor; Reimers, Kerstin; Vogt, Peter M; Bucan, Vesna

    2015-11-01

    Lifeguard (LFG) is a transmembrane protein which is highly expressed in tissues of the hippocampus and the cerebellum, especially during postnatal development. This protein is responsible for the protection of neurons against Fas-induced apoptosis, and the same effect can be seen in tumor cells derived from mastocarcinoma. However, the molecular function of LFG and its regulation in the carcinogenesis of human breast cells remains to be elucidated. In the present study, we investigated the connection of the interaction of LFG within an array analysis of over 9,000 different proteins. Results showed an interaction between the proteins tripartite motif-containing 21 (TRIM21) and LFG and a negative regulatory effect of TRIM21 towards LFG on the protein level. Furthermore, Fas-induced apoptosis decreased upon the addition of TRIM21 to the cultured cells. These results revealed TRIM21 to be a negative modulator of LFG in cells of mastocarcinoma in vitro. For all analyses, MDA-MB-231 cells were used. The interaction of TRIM21 and LFG was analyzed by co-immunoprecipitation. To examine changes in regulatory processes, western blot analyses, real-time PCR, activity of apoptotic process and flow cytometric analyses were carried out. PMID:26398169

  7. In vitro activity studies of hyperthermal near-infrared nanoGUMBOS in MDA-MB-231 breast cancer cells.

    PubMed

    Dumke, Jonathan C; Qureshi, Ammar; Hamdan, Suzana; Rupnik, Kresimir; El-Zahab, Bilal; Hayes, Daniel J; Warner, Isiah M

    2014-09-01

    A new kind of material called nanoGUMBOS, comprised entirely of cations and anions, has been developed by pairing various functional ions that exhibit fluorescence activity with biocompatible ions, in a process very much akin to that employed in ionic liquid chemistry. In the present study, spectral and biological properties of NIR absorbing nanoGUMBOS were evaluated using electron microscopy, dynamic light scattering, absorbance, thermal imaging, and live/dead fluorescence assays in conjunction with malignant MDA-MB-231 and non-malignant HS-578-BST epithelial human breast cells. The primary focus of this study was to maximize heat generation using NIR laser irradiation and minimize non-specific cytotoxicity using biocompatible constituent ions (e.g. amino acids, vitamins, or organic acids). Concurrently, in order to generate highly responsive nanomaterials for NIR-laser-triggered hyperthermia, optimization of the nanoparticle size, shape, and uniformity was carried out. Evaluation of data from hyperthermal studies of NIR absorbing nanoGUMBOS shows that these materials can achieve temperatures above the threshold for killing cancerous cells. Additionally, in vitro cell based assays demonstrated their promising hyperthermal effects on cancer derived epithelial cells. PMID:24976521

  8. TRIM21, a negative modulator of LFG in breast carcinoma MDA-MB-231 cells in vitro

    PubMed Central

    MÜLLER, JUDITH; MAURER, VIKTOR; REIMERS, KERSTIN; VOGT, PETER M.; BUCAN, VESNA

    2015-01-01

    Lifeguard (LFG) is a transmembrane protein which is highly expressed in tissues of the hippocampus and the cerebellum, especially during postnatal development. This protein is responsible for the protection of neurons against Fas-induced apoptosis, and the same effect can be seen in tumor cells derived from mastocarcinoma. However, the molecular function of LFG and its regulation in the carcinogenesis of human breast cells remains to be elucidated. In the present study, we investigated the connection of the interaction of LFG within an array analysis of over 9,000 different proteins. Results showed an interaction between the proteins tripartite motif-containing 21 (TRIM21) and LFG and a negative regulatory effect of TRIM21 towards LFG on the protein level. Furthermore, Fas-induced apoptosis decreased upon the addition of TRIM21 to the cultured cells. These results revealed TRIM21 to be a negative modulator of LFG in cells of mastocarcinoma in vitro. For all analyses, MDA-MB-231 cells were used. The interaction of TRIM21 and LFG was analyzed by co-immunoprecipitation. To examine changes in regulatory processes, western blot analyses, real-time PCR, activity of apoptotic process and flow cytometric analyses were carried out. PMID:26398169

  9. A synthetic chalcone derivative, 2-hydroxy-3',5,5'-trimethoxychalcone (DK-139), suppresses the TNFα-induced invasive capability of MDA-MB-231 human breast cancer cells by inhibiting NF-κB-mediated GROα expression.

    PubMed

    Lee, Da Young; Lee, Da Hyun; Jung, Jung You; Koh, Dongsoo; Kim, Geum-Soog; Ahn, Young-Sup; Lee, Young Han; Lim, Yoongho; Shin, Soon Young

    2016-01-01

    2-Hydroxy-3',5,5'-trimenthoxyochalcone (DK-139) is a synthetic chalcone-derived compound. This study evaluated the biological activity of DK-139 on the inhibition of tumor metastasis. Growth-regulated oncogene-alpha (GROα) plays an important role in the progression of tumor development by stimulating angiogenesis and metastasis. In this study, DK-139 inhibited tumor necrosis factor alpha (TNFα)-induced GROα gene promoter activity by inhibiting of IκB kinase (IKK) in MDA-MB231 cells. In addition, DK-139 prevented the TNFα-induced cell migration, F-actin formation, and invasive capability of MDA-MB-231 cells. These findings suggest that DK-139 is a potential drug candidate for the inhibition of tumor cell locomotion and invasion via the suppression of NF-κB-mediated GROα expression. PMID:26602275

  10. Docosahexaenoic acid inhibits the invasion of MDA-MB-231 breast cancer cells through upregulation of cytokeratin-1.

    PubMed

    Blanckaert, Vincent; Kerviel, Vincent; Lépinay, Alexandra; Joubert-Durigneux, Vanessa; Hondermarck, Hubert; Chénais, Benoît

    2015-01-01

    Docosahexaenoic acid (DHA), the main member of the omega-3 essential fatty acid family, has been shown to reduce the invasion of the triple-negative breast cancer cell line MDA-MB-231, but the mechanism involved remains unclear. In the present study, a proteomic approach was used to define changes in protein expression induced by DHA. Proteins from crude membrane preparations of MDA-MB-231 cells treated with 100 µM DHA were separated by two-dimensional electrophoresis (2-DE) and differentially expressed proteins were identified using MALDI-TOF mass spectrometry. The main changes observed were the upregulation of Keratin, type Ⅱ cytoskeletal 1 (KRT1), catalase and lamin-A/C. Immunocytochemistry analyses confirmed the increase in KRT1 induced by DHA. Furthermore, in vitro invasion assays showed that siRNA against KRT1 was able to reverse the DHA-induced inhibition of breast cancer cell invasion. In conclusion, KRT1 is involved in the anti-invasive activity of DHA in breast cancer cells. PMID:25825023

  11. The combined treatment with novel platinum(II) complex and anti-MUC1 increases apoptotic response in MDA-MB-231 breast cancer cells.

    PubMed

    Gornowicz, Agnieszka; Bielawska, Anna; Czarnomysy, Robert; Gabryel-Porowska, Halina; Muszyńska, Anna; Bielawski, Krzysztof

    2015-10-01

    New strategy of cancer's targeting treatment is combining monoclonal antibodies with chemotherapeutic agents. An important goal of targeted therapy appears to be a transmembrane glycoprotein type I-mucin 1 (MUC1), which is overexpressed in tumors of epithelial origin, especially in breast cancer. The goal of the study was to check the effect of monoclonal antibody against MUC1 with novel platinum(II) complex (Pt12) on selected aspects of apoptosis in human MDA-MB-231 breast cancer cells. The number of apoptotic and necrotic cells was measured using annexin V binding assay. The decrease of mitochondrial membrane potential (MMP) and DNA fragmentation was analyzed. Finally, the influence of novel platinum(II) complex (Pt12) used with anti-MUC1 on the concentration of selected markers of apoptosis such as Bax, caspase-8, -9, and caspase-3 was performed using ELISA. The results from combined treatment were compared with those obtained using monotherapy. In our study, we proved that anti-MUC1 used in combination with Pt12 strongly induced apoptosis in MDA-MB-231 breast cancer cell line. The effect was stronger than treatment with Pt12, cisplatin, anti-MUC1, and anti-MUC1 used with cisplatin. We also observed the highest decrease of MMP and the strongest DNA fragmentation after such a combined treatment. The results obtained from ELISA showed increased concentration of Bax, caspases-8, -9, -3 compared to monotherapy. Our study proved that Pt12 together with anti-MUC1 strongly induced apoptosis in estrogen-negative breast cancer cell line (MDA-MB-231). The apoptosis may go through extrinsic pathway associated with caspase-8 as well as intrinsic pathway connected with caspase-9. PMID:26112902

  12. Data on cell cycle in breast cancer cell line, MDA-MB-231 with ferulic acid treatment.

    PubMed

    Park, Eunmi

    2016-06-01

    Inhibition to repair DNA metabolism to respond to damaged DNA can lead to genetic instability, resulting in cancer cell death (Audeh et al., 2010; Bryant et al., 2005; Farmer et al., 2005; Lukas et al., 2003; Tutt et al., 2010) [1], [2], [6], [8], [11]. Despite of various studies demonstrating efficiency of combination therapy through down-regulation of DNA repair pathway, the suppression effects of DNA repair pathway by chemotherapeutic agents from natural bioactive compounds are less understood (Eitsuka et al., 2014; Kastan et al., 2004; Kawabata et al., 2000; Mancuso et al., 2014) [5], [7], [9]. Here, the data shows that ferulic acid reduced the S-phases post to UV treatment in breast cancer cells and was hypersensitive in breast cancer cells, MDA-MB-231. PMID:26958638

  13. Data on cell cycle in breast cancer cell line, MDA-MB-231 with ferulic acid treatment

    PubMed Central

    Park, Eunmi

    2016-01-01

    Inhibition to repair DNA metabolism to respond to damaged DNA can lead to genetic instability, resulting in cancer cell death (Audeh et al., 2010; Bryant et al., 2005; Farmer et al., 2005; Lukas et al., 2003; Tutt et al., 2010) [1], [2], [6], [8], [11]. Despite of various studies demonstrating efficiency of combination therapy through down-regulation of DNA repair pathway, the suppression effects of DNA repair pathway by chemotherapeutic agents from natural bioactive compounds are less understood (Eitsuka et al., 2014; Kastan et al., 2004; Kawabata et al., 2000; Mancuso et al., 2014) [5], [7], [9]. Here, the data shows that ferulic acid reduced the S-phases post to UV treatment in breast cancer cells and was hypersensitive in breast cancer cells, MDA-MB-231. PMID:26958638

  14. Cannabidiolic acid, a major cannabinoid in fiber-type cannabis, is an inhibitor of MDA-MB-231 breast cancer cell migration

    PubMed Central

    Takeda, Shuso; Okajima, Shunsuke; Miyoshi, Hiroko; Yoshida, Kazutaka; Okamoto, Yoshiko; Okada, Tomoko; Amamoto, Toshiaki; Watanabe, Kazuhito; Omiecinski, Curtis J.; Aramaki, Hironori

    2014-01-01

    Cannabidiol (CBD), a major non-psychotropic constituent of fiber-type cannabis plant, has been reported to possess diverse biological activities, including anti-proliferative effect on cancer cells. Although CBD is obtained from non-enzymatic decarboxylation of its parent molecule, cannabidiolic acid (CBDA), few studies have investigated whether CBDA itself is biologically active. Results of the current investigation revealed that CBDA inhibits migration of the highly invasive MDA-MB-231 human breast cancer cells, apparently through a mechanism involving inhibition of cAMP-dependent protein kinase A, coupled with an activation of the small GTPase, RhoA. It is established that activation of the RhoA signaling pathway leads to inhibition of the mobility of various cancer cells, including MDA-MB-231 cells. The data presented in this report suggest for the first time that as an active component in the cannabis plant, CBDA offers potential therapeutic modality in the abrogation of cancer cell migration, including aggressive breast cancers. PMID:22963825

  15. Cannabidiolic acid, a major cannabinoid in fiber-type cannabis, is an inhibitor of MDA-MB-231 breast cancer cell migration.

    PubMed

    Takeda, Shuso; Okajima, Shunsuke; Miyoshi, Hiroko; Yoshida, Kazutaka; Okamoto, Yoshiko; Okada, Tomoko; Amamoto, Toshiaki; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2012-11-15

    Cannabidiol (CBD), a major non-psychotropic constituent of fiber-type cannabis plant, has been reported to possess diverse biological activities, including anti-proliferative effect on cancer cells. Although CBD is obtained from non-enzymatic decarboxylation of its parent molecule, cannabidiolic acid (CBDA), few studies have investigated whether CBDA itself is biologically active. Results of the current investigation revealed that CBDA inhibits migration of the highly invasive MDA-MB-231 human breast cancer cells, apparently through a mechanism involving inhibition of cAMP-dependent protein kinase A, coupled with an activation of the small GTPase, RhoA. It is established that activation of the RhoA signaling pathway leads to inhibition of the mobility of various cancer cells, including MDA-MB-231 cells. The data presented in this report suggest for the first time that as an active component in the cannabis plant, CBDA offers potential therapeutic modality in the abrogation of cancer cell migration, including aggressive breast cancers. PMID:22963825

  16. Breast cancer cell line MDA-MB-231 miRNA profile expression after BIK interference: BIK involvement in autophagy.

    PubMed

    Ruiz Esparza-Garrido, Ruth; Torres-Márquez, María Eugenia; Viedma-Rodríguez, Rubí; Velázquez-Wong, Ana Claudia; Salamanca-Gómez, Fabio; Rosas-Vargas, Haydeé; Velázquez-Flores, Miguel Ángel

    2016-05-01

    B-cell lymphoma 2 (BCL2)-interacting killer (apoptosis inducing) (BIK) has been proposed as a tumor suppressor in diverse types of cancers. However, BIK's overexpression in breast cancer (BC) and in non-small lung cancer cells (NSCLCs), associated with a poor prognosis, suggests its participation in tumor progression. In this study, we evaluated the global expression pattern of microRNAs (miRNAs), messenger RNA (mRNA) expression changes in autophagy, and autophagic flux after BIK interference. BIK gene expression was silenced by small interfering RNA (siRNA) in BC cell MDA-MB-231, and BIK interference efficiency was tested by real-time PCR and by Western blotting. BIK expression levels decreased by 75 ± 18 % in the presence of 600 nM siRNA, resulting in the abolishment of BIK expression by 94 ± 30 %. BIK interference resulted in the overexpression of 17 miRNAs that, according to the DIANA-miRPath v3.0 database, are mainly implied in the control of cell signaling, gene expression, and autophagy. The autophagy array revealed downregulation of transcripts which participate in autophagy, and their interactome revealed a complex network, where hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), α-synuclein (SNCA), unc-51-like autophagy activating kinase 1/2 (ULK1/2), and mitogen-activated protein kinase 3 (MAPK3) were shown to be signaling hubs. LC3-II expression-an autophagy marker-was increased by 169 ± 25 % after BIK interference, which indicates the involvement of BIK in autophagy. Altogether, our results indicate-for the first time-that BIK controls the expression of miRNAs, as well as the autophagic flux in MDA-MB-231 cells. PMID:26662110

  17. Blueberry Phytochemicals Inhibit Growth and Metastatic Potential of MDA-MB-231 Breast Cancer Cells Through Modulation of the Phosphatidylinositol 3-Kinase Pathway

    PubMed Central

    Adams, Lynn S.; Phung, Sheryl; Yee, Natalie; Seeram, Navindra P.; Li, Liya; Chen, Shiuan

    2010-01-01

    Dietary phytochemicals are known to exhibit a variety of anti-carcinogenic properties. This study investigated the chemopreventive activity of blueberry extract in triple negative breast cancer cell lines in vitro and in vivo. Blueberry decreased cell proliferation in HCC38, HCC1937 and MDA-MB-231 cells with no effect on the non-tumorigenic MCF-10A cell line. Decreased metastatic potential of MDA-MB-231 cells by blueberry was shown through inhibition of cell motility using wound healing assays and migration through a PET membrane. Blueberry treatment decreased the activity of matrix metalloproteinase 9 and the secretion of urokinase-type plasminogen activator while increasing tissue inhibitor of metalloproteinase-1 and plasminogen activator inhibitor-1 secretion in MDA-MB-231 conditioned medium as shown by western blotting. Cell signaling pathways that control the expression/activation of these processes were investigated via western blotting and reporter gene assay. Treatment with blueberry decreased phosphatidylinositol 3-kinase (PI3K)/AKT and nuclear factor kappa-B (NFκB) activation in MDA-MB-231 cells where protein kinase C (PKC) and extracellular regulated kinase (ERK) were not affected. In vivo, the efficacy of blueberry to inhibit triple negative breast tumor growth was evaluated using the MDA-MB-231 xenograft model. Tumor weight and proliferation (Ki-67 expression) were decreased in blueberry treated mice, where apoptosis (caspase-3 expression) was increased compared to controls. Immunohistochemical analysis of tumors from blueberry-fed mice showed decreased activation of AKT and p65 NFκB signaling proteins with no effect on the phosphorylation of ERK. These data illustrate the inhibitory effect of blueberry phytochemicals on the growth and metastatic potential of MDA-MB-231 cells through modulation of the PI3K/AKT/NFκB pathway. PMID:20388778

  18. Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells

    PubMed Central

    You, Mi-Kyoung; Kim, Min-Sook; Jeong, Kyu-Shik; Kim, Eun; Kim, Yong-Jae

    2016-01-01

    BACKGROUND/OBJECTIVES The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. MATERIALS/METHODS Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. RESULTS Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. CONCLUSION Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion. PMID:27087896

  19. EPHA7 and EPHA10 Physically Interact and Differentially Co-localize in Normal Breast and Breast Carcinoma Cell Lines, and the Co-localization Pattern Is Altered in EPHB6-expressing MDA-MB-231 Cells.

    PubMed

    Johnson, Candace; Segovia, Briana; Kandpal, Raj P

    Erythropoietin-producing hepatocellular carcinoma cell (EPH) receptors comprise the most abundant receptor tyrosine kinase family characterized to date in mammals including humans. These proteins are involved in axon guidance, tissue organization, vascular development and the intricate process of various diseases including cancer. These diverse functions of EPH receptors are attributed, in part, to their abilities for heterodimerization. While the interacting partners of kinase-deficient EPHB6 receptor have been characterized, the interaction of the kinase-dead EPHA10 with any other receptor has not been identified. By using co-immunoprecipitation, we demonstrated physical interaction between kinase-deficient EPHA10 with kinase-sufficient EPHA7 receptor. Immunocytochemical analyses have revealed that these two receptors co-localize on the cell surface, and soluble portions of the receptors exist as a complex in the cytoplasm as well as the nuclei. While EPHA7 and EPHA10 co-localize similarly on the membrane in MCF10A and MCF7 cells, they were differentially co-localized in MDA-MB-231 cells stably transfected with empty pcDNA vector (MDA-MB-231-PC) or an expression construct of EPHB6 (MDA-MB-231-B6). The full-length isoforms of these receptors were co-localized on the cell surface, and the soluble forms were present as a complex in the cytoplasm as well as the nucleus in MDA-MB-231-PC cells. MDA-MB-231-B6 cells, on the other hand, were distinguished by the absence of any signal in the nuclei. Our results represent the first demonstration of physical interaction between EPHA10 and EPHA7 and their cellular co-localization. Furthermore, these observations also suggest gene-regulatory functions of the complex of the soluble forms of these receptors in breast carcinoma cells of differential invasiveness. PMID:27566654

  20. The cytoprotective role of gemcitabine-induced autophagy associated with apoptosis inhibition in triple-negative MDA-MB-231 breast cancer cells.

    PubMed

    Chen, Ming; He, Mengye; Song, Yinjing; Chen, Luoquan; Xiao, Peng; Wan, Xiaopeng; Dai, Feng; Shen, Peng

    2014-07-01

    Triple-negative breast cancer (TNBC), which is estrogen receptor (ER)-negative, progesterone receptor‑negative and is also negative for HER2 expression, remains a great clinical challenge due to its strong resistance to chemotherapy at the late stage of treatment and relatively unfavorable prognosis. Gemcitabine has been approved by the FDA/SFDA for use as a first-line therapeutic drug against advanced or metastatic breast cancer. Therefore, the clarification of the mechanisms underlying gemcitabine-acquired resistance is of particular importance for the optimal management of TNBC. A number of studies have revealed that autophagy, which has been found to protect cancer cells from anti-cancer drug-induced death, may contribute to the development of drug resistance. However, the association between autophagy and gemcitabine treatment in TNBC cells has yet to be defined. Our study clearly demonstrates that gemcitabine is able to induce mTOR-independent autophagy in human triple‑negative MDA-MB-231 breast cancer cells. In addition, we demonstrate that autophagy protects MDA-MB-231 cells from gemcitabine-induced cell growth inhibition and apoptosis, indicating that gemcitabine can activate autophagy to impair the sensitivity of MDA-MB‑231 cells. Furthermore, as shown by our results, the inhibition of gemcitabine-induced autophagy by chloroquine shifts the expression of the p53 protein, Bcl-2 family proteins and the relative Bax/Bcl-xL ratio in favor of promoting apoptosis. These results reveal that the inhibition of apoptosis may be one of the mechanisms of autophagy-induced cytoprotection in gemcitabine-treated MDA-MB-231 cells. The apoptotic and autophagic processes constitute a mutual inhibition system and jointly seal the fate of TNBC cells that are exposed to gemcitabine. Thus, our study suggests that the combination of an autophagic inhibitor and gemcitabine as a therapeutic strategy may represent a promising approach with greater clinical efficacy for

  1. Promotion of breast cancer cells MDA-MB-231 invasion by di(2-ethylhexyl)phthalate through matrix metalloproteinase-2/-9 overexpression.

    PubMed

    Zhang, Shuya; Ma, Jiehua; Fu, Ziyi; Zhang, Zhilei; Cao, Jian; Huang, Lei; Li, Wenqu; Xu, Pengfei; Cao, Xin

    2016-05-01

    Di(2-ethylhexyl)phthalate (DEHP) is an estrogenic chemical that is widely used in polyvinyl products. We aimed to determine the mechanisms behind the effects of DEHP on ERα-negative breast cancer cells MDA-MB-231 invasion and matrix metalloproteinases-2/-9 (MMP-2/-9) up-regulation in this study. Transwell assay indicated that DEHP exposure (>50 μg/ml) significantly enhanced the invasion ability of MDA-MB-231 cells. Quantitative real-time PCR (qPCR) and western blotting revealed that MMP-2/-9 is overexpressed in mRNA and protein levels after DEHP treatment. Gelatin zymography consistently demonstrated that DEHP exposure also enhances the activity of MMP-2/-9. Immunofluorescence assay showed that DEHP could accelerate NF-kappaB (NF-κB) subunits-p65 translocation into the nucleus, which is confirmed by western blotting assay, suggesting that the ratio of nuclear/cytosolic level of p65 was significantly increased. Furthermore, the invasion and MMP-2/-9 overexpression of MDA-MB-231 cells after DEHP-treated were reversed by the NF-κB chemical inhibitor JSH-23 via drug inhibition assay. This study suggested that DEHP could promote ERα-negative breast cancer cells MDA-MB-231 invasion through activating NF-κB and MMP-2/-9 overexpression. PMID:26850096

  2. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    NASA Astrophysics Data System (ADS)

    K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-05-01

    Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  3. Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation.

    PubMed

    Guan, Feng; Ding, Youming; Zhang, Yemin; Zhou, Yu; Li, Mingxin; Wang, Changhua

    2016-01-01

    Previous studies have evidenced that the anticancer potential of curcumin (diferuloylmethane), a main yellow bioactive compound from plant turmeric was mediated by interfering with PI3K/Akt signaling. However, the underlying molecular mechanism is still poorly understood. This study experimentally revealed that curcumin treatment reduced Akt protein expression in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells, along with an activation of autophagy and suppression of ubiquitin-proteasome system (UPS) function. The curcumin-reduced Akt expression, cell proliferation, and migration were prevented by genetic and pharmacological inhibition of autophagy but not by UPS inhibition. Additionally, inactivation of AMPK by its specific inhibitor compound C or by target shRNA-mediated silencing attenuated curcumin-activated autophagy. Thus, these results indicate that curcumin-stimulated AMPK activity induces activation of the autophagy-lysosomal protein degradation pathway leading to Akt degradation and the subsequent suppression of proliferation and migration in breast cancer cell. PMID:26752181

  4. Cytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class I histone deacetylase inhibitor, on triple-negative MDA-MB231 breast cancer cells.

    PubMed

    Librizzi, Mariangela; Longo, Alessandra; Chiarelli, Roberto; Amin, Jahanghir; Spencer, John; Luparello, Claudio

    2012-11-19

    The histone deacetylase inhibitors (HDACis) are a class of chemically heterogeneous anticancer agents of which suberoylanilide hydroxamic acid (SAHA) is a prototypical member. SAHA derivatives may be obtained by three-dimensional manipulation of SAHA aryl cap, such as the incorporation of a ferrocene unit like that present in Jay Amin hydroxamic acid (JAHA) and homo-JAHA [ Spencer , et al. ( 2011 ) ACS Med. Chem. Lett. 2 , 358 - 362 ]. These metal-based SAHA analogues have been tested for their cytotoxic activity toward triple-negative MDA-MB231 breast cancer cells. The results obtained indicate that of the two compounds tested, only JAHA was prominently active on breast cancer cells with an IC(50) of 8.45 μM at 72 h of treatment. Biological assays showed that exposure of MDA-MB231 cells to the HDACi resulted in cell cycle perturbation with an alteration of S phase entry and a delay at G(2)/M transition and in an early reactive oxygen species production followed by mitochondrial membrane potential (MMP) dissipation and autophagy inhibition. No annexin binding was observed after short- (5 h) and longer (24 and 48 h) term incubation with JAHA, thereby excluding the promotion of apoptosis by the HDACi. Although caution must be exercised in extrapolation of in vitro results to the in vivo situation for which research on animals and human trials are needed, nevertheless JAHA treatment possesses the potential for its development as an agent for prevention and/or therapy of "aggressive" breast carcinoma, thus prompting us to get more insight into the molecular basis of its antibreast cancer activity. PMID:23094795

  5. Distinct effects of β1 integrin on cell proliferation and cellular signaling in MDA-MB-231 breast cancer cells

    PubMed Central

    Hou, Sicong; Isaji, Tomoya; Hang, Qinglei; Im, Sanghun; Fukuda, Tomohiko; Gu, Jianguo

    2016-01-01

    An aberrant expression of integrin β1 has been implicated in breast cancer progression. Here, we compared the cell behaviors of wild-type (WT), β1 gene deleted (KO), and β1 gene restored (Res) MDA-MB-231 cells. Surprisingly, the expression of β1 exhibited opposite effects on cell proliferation. These effects were dependent on cell densities, and they showed an up-regulation of cell proliferation when cells were cultured under sparse conditions, and a down-regulation of cell growth under dense conditions. By comparison with WT cells, the phosphorylation levels of ERK in KO cells were consistently suppressed under sparse culture conditions, but consistently up-regulated under dense culture conditions. The phosphorylation levels of EGFR were increased in the KO cells. By contrast, the phosphorylation levels of AKT were decreased in the KO cells. The abilities for both colony and tumor formation were significantly suppressed in the KO cells, suggesting that β1 plays an important role in cell survival signaling for tumorigenesis. These aberrant phenotypes in the KO cells were rescued in the Res cells. Taken together, these results clearly showed the distinct roles of β1 in cancer cells: the inhibition of cell growth and the promotion of cell survival, which may shed light on cancer therapies. PMID:26728650

  6. Quantification of Malignant Breast Cancer Cell MDA-MB-231 Transmigration Across Brain and Lung Microvascular Endothelium.

    PubMed

    Fan, Jie; Fu, Bingmei M

    2016-07-01

    Tumor cell extravasation through the endothelial barrier forming the microvessel wall is a crucial step during tumor metastasis. However, where, how and how fast tumor cells transmigrate through endothelial barriers remain unclear. Using an in vitro transwell model, we performed a transmigration assay of malignant breast tumor cells (MDA-MB-231) through brain and lung microvascular endothelial monolayers under control and pathological conditions. The locations and rates of tumor cell transmigration as well as the changes in the structural components (integrity) of endothelial monolayers were quantified by confocal microscopy. Endothelial monolayer permeability to albumin P (albumin) was also quantified under the same conditions. We found that about 98% of transmigration occurred at the joints of endothelial cells instead of cell bodies; tumor cell adhesion and transmigration degraded endothelial surface glycocalyx and disrupted endothelial junction proteins, consequently increased P (albumin); more tumor cells adhered to and transmigrated through the endothelial monolayer with higher P (albumin); P (albumin) and tumor transmigration were increased by vascular endothelial growth factor, a representative of cytokines, and lipopolysaccharides, a typical systemic inflammatory factor, but reduced by adenosine 3',5'-cyclic monophosphate. These results suggest that reinforcing endothelial structural integrity is an effective approach for inhibiting tumor extravasation. PMID:26603751

  7. Biodegradable Eri silk nanoparticles as a delivery vehicle for bovine lactoferrin against MDA-MB-231 and MCF-7 breast cancer cells.

    PubMed

    Roy, Kislay; Patel, Yogesh S; Kanwar, Rupinder K; Rajkhowa, Rangam; Wang, Xungai; Kanwar, Jagat R

    2016-01-01

    This study used the Eri silk nanoparticles (NPs) for delivering apo-bovine lactoferrin (Apo-bLf) (~2% iron saturated) and Fe-bLf (100% iron saturated) in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm) showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR)-positive MDA-MB-231 cells, while transferrin receptor (TfR) and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+) cells when compared to MCF-7 (EGFR-) cells. The expression of a prominent anticancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer. PMID:26730188

  8. Biodegradable Eri silk nanoparticles as a delivery vehicle for bovine lactoferrin against MDA-MB-231 and MCF-7 breast cancer cells

    PubMed Central

    Roy, Kislay; Patel, Yogesh S; Kanwar, Rupinder K; Rajkhowa, Rangam; Wang, Xungai; Kanwar, Jagat R

    2016-01-01

    This study used the Eri silk nanoparticles (NPs) for delivering apo-bovine lactoferrin (Apo-bLf) (~2% iron saturated) and Fe-bLf (100% iron saturated) in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm) showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR)-positive MDA-MB-231 cells, while transferrin receptor (TfR) and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+) cells when compared to MCF-7 (EGFR−) cells. The expression of a prominent anticancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer. PMID:26730188

  9. Glycerol-3-phosphate acyltranferase-2 behaves as a cancer testis gene and promotes growth and tumorigenicity of the breast cancer MDA-MB-231 cell line.

    PubMed

    Pellon-Maison, Magali; Montanaro, Mauro A; Lacunza, Ezequiel; Garcia-Fabiani, Maria B; Soler-Gerino, Mercedes C; Cattaneo, Elizabeth R; Quiroga, Ivana Y; Abba, Martin C; Coleman, Rosalind A; Gonzalez-Baro, Maria R

    2014-01-01

    The de novo synthesis of glycerolipids in mammalian cells begins with the acylation of glycerol-3-phosphate, catalyzed by glycerol-3-phosphate acyltransferase (GPAT). GPAT2 is a mitochondrial isoform primarily expressed in testis under physiological conditions. Because it is aberrantly expressed in multiple myeloma, it has been proposed as a novel cancer testis gene. Using a bioinformatics approach, we found that GPAT2 is highly expressed in melanoma, lung, prostate and breast cancer, and we validated GPAT2 expression at the protein level in breast cancer by immunohistochemistry. In this case GPAT2 expression correlated with a higher histological grade. 5-Aza-2' deoxycytidine treatment of human cells lines induced GPAT2 expression suggesting epigenetic regulation of gene expression. In order to evaluate the contribution of GPAT2 to the tumor phenotype, we silenced its expression in MDA-MB-231 cells. GPAT2 knockdown diminished cell proliferation, anchorage independent growth, migration and tumorigenicity, and increased staurosporine-induced apoptosis. In contrast, GPAT2 over-expression increased cell proliferation rate and resistance to staurosporine-induced apoptosis. To understand the functional role of GPAT2, we performed a co-expression analysis in mouse and human testis and found a significant association with semantic terms involved in cell cycle, DNA integrity maintenance, piRNA biogenesis and epigenetic regulation. Overall, these results indicate the GPAT2 would be directly associated with the control of cell proliferation. In conclusion, we confirm GPAT2 as a cancer testis gene and that its expression contributes to the tumor phenotype of MDA-MB-231 cells. PMID:24967918

  10. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    SciTech Connect

    Curry, Merril C.; Peters, Amelia A.; Kenny, Paraic A.; Roberts-Thomson, Sarah J.; Monteith, Gregory R.

    2013-05-10

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  11. Mass spectrometry images acylcarnitines, phosphatidylcholines, and sphingomyelin in MDA-MB-231 breast tumor models.

    PubMed

    Chughtai, Kamila; Jiang, Lu; Greenwood, Tiffany R; Glunde, Kristine; Heeren, Ron M A

    2013-02-01

    The lipid compositions of different breast tumor microenvironments are largely unknown due to limitations in lipid imaging techniques. Imaging lipid distributions would enhance our understanding of processes occurring inside growing tumors, such as cancer cell proliferation, invasion, and metastasis. Recent developments in MALDI mass spectrometry imaging (MSI) enable rapid and specific detection of lipids directly from thin tissue sections. In this study, we performed multimodal imaging of acylcarnitines, phosphatidylcholines (PC), a lysophosphatidylcholine (LPC), and a sphingomyelin (SM) from different microenvironments of breast tumor xenograft models, which carried tdTomato red fluorescent protein as a hypoxia-response element-driven reporter gene. The MSI molecular lipid images revealed spatially heterogeneous lipid distributions within tumor tissue. Four of the most-abundant lipid species, namely PC(16:0/16:0), PC(16:0/18:1), PC(18:1/18:1), and PC(18:0/18:1), were localized in viable tumor regions, whereas LPC(16:0/0:0) was detected in necrotic tumor regions. We identified a heterogeneous distribution of palmitoylcarnitine, stearoylcarnitine, PC(16:0/22:1), and SM(d18:1/16:0) sodium adduct, which colocalized primarily with hypoxic tumor regions. For the first time, we have applied a multimodal imaging approach that has combined optical imaging and MALDI-MSI with ion mobility separation to spatially localize and structurally identify acylcarnitines and a variety of lipid species present in breast tumor xenograft models. PMID:22930811

  12. Infrared imaging of MDA-MB-231 breast cancer cell line phenotypes in 2D and 3D cultures.

    PubMed

    Smolina, Margarita; Goormaghtigh, Erik

    2015-04-01

    One current challenge in the field of breast cancer infrared imaging is the identification of carcinoma cell subtypes in the tissue. Neither sequencing nor immunochemistry is currently able to provide a cell by cell thorough classification. The latter is needed to build accurate statistical models capable of recognizing the diversity of breast cancer cell lines that may be present in a tissue section. One possible approach for overcoming this problem is to obtain the IR spectral signature of well-characterized tumor cell lines in culture. Cultures in three-dimensional matrices appear to generate an environment that mimics better the in vivo environment. There are, at present, series of breast cancer cell lines that have been thoroughly characterized in two- and three-dimensional (2D and 3D) cultures by full transcriptomics analyses. In this work, we describe the methods used to grow, to process, and to characterize a triple-negative breast cancer cell line, MDA-MB-231, in 3D laminin-rich extracellular matrix (lrECM) culture and compare it with traditional monolayer cultures and tissue sections. While unsupervised analyses did not completely separate spectra of cells grown in 2D from 3D lrECM cultures, a supervised statistical analysis resulted in an almost perfect separation. When IR spectral responses of epithelial tumor cells from clinical triple-negative breast carcinoma samples were added to these data, a principal component analysis indicated that they cluster closer to the spectra of 3D culture cells than to the spectra of cells grown on a flat plastic substrata. This result is encouraging because of correlating well-characterized cell line features with clinical biopsies. PMID:25568895

  13. Fangchinoline inhibits cell proliferation via Akt/GSK-3beta/ cyclin D1 signaling and induces apoptosis in MDA-MB-231 breast cancer cells.

    PubMed

    Wang, Chang-Dong; Yuan, Cheng-Fu; Bu, You-Quan; Wu, Xiang-Mei; Wan, Jin-Yuan; Zhang, Li; Hu, Ning; Liu, Xian-Jun; Zu, Yong; Liu, Ge-Li; Song, Fang-Zhou

    2014-01-01

    Fangchinoline (Fan) inhibits cell proliferation and induces apoptosis in several cancer cell lines. The effects of Fan on cell growth and proliferation in breast cancer cells remain to be elucidated. Here, we show that Fan inhibited cell proliferation in the MDA-MB-231 breast cancer cell line through suppression of the AKT/Gsk- 3beta/cyclin D1 signaling pathway. Furthermore, Fan induced apoptosis by increasing the expression of Bax (relative to Bcl-2), active caspase 3 and cytochrome-c. Fan significantly inhibited cell proliferation of MDA- MB-231 cells in a concentration and time dependent manner as determined by MTT assay. Flow cytometry analysis demonstrated that Fan treatment of MDA-MB-231 cells resulted in cell cycle arrest at the G1 phase, which correlated with apparent downregulation of both mRNA and protein levels of both PCNA and cyclin D1. Further analysis demonstrated that Fan decreased the phosphorylation of AKT and GSK-3beta. In addition, Fan up-regulated active caspase3, cytochrome-c protein levels and the ratio of Bax/Bcl-2, accompanied by apoptosis. Taken together, these results suggest that Fan is a potential natural product for the treatment of breast cancer. PMID:24568493

  14. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231 Breast Cancer Cells Using a Global Metabolomic Approach.

    PubMed

    Uifălean, Alina; Schneider, Stefanie; Gierok, Philipp; Ionescu, Corina; Iuga, Cristina Adela; Lalk, Michael

    2016-01-01

    Despite substantial research, the understanding of the chemopreventive mechanisms of soy isoflavones remains challenging. Promising tools, such as metabolomics, can provide now a deeper insight into their biochemical mechanisms. The purpose of this study was to offer a comprehensive assessment of the metabolic alterations induced by genistein, daidzein and a soy seed extract on estrogen responsive (MCF-7) and estrogen non-responsive breast cancer cells (MDA-MB-231), using a global metabolomic approach. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all test compounds induced a biphasic effect on MCF-7 cells and only a dose-dependent inhibitory effect on MDA-MB-231 cells. Proton nuclear magnetic resonance (¹H-NMR) profiling of extracellular metabolites and gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites confirmed that all test compounds shared similar metabolic mechanisms. Exposing MCF-7 cells to stimulatory concentrations of isoflavones led to increased intracellular levels of 6-phosphogluconate and ribose 5-phosphate, suggesting a possible upregulation of the pentose phosphate pathway. After exposure to inhibitory doses of isoflavones, a significant decrease in glucose uptake was observed, especially for MCF-7 cells. In MDA-MB-231 cells, the glutamine uptake was significantly restricted, leading to alterations in protein biosynthesis. Understanding the metabolomic alterations of isoflavones represents a step forward in considering soy and soy derivates as functional foods in breast cancer chemoprevention. PMID:27589739

  15. The Genome-Wide Expression Profile of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose-Treated MDA-MB-231 Breast Cancer Cells: Molecular Target on Cancer Metabolism

    PubMed Central

    Yu, Woo Sik; Jeong, Soo-Jin; Kim, Ji-Hyun; Lee, Hyo-Jung; Song, Hyo Sook; Kim, Min-Seok; Ko, Eunjung; Lee, Hyo-Jeong; Khil, Jae-Ho; Jang, Hyeung-Jin; Kim, Young Chul; Bae, Hyunsu; Chen, Chang Yan; Kim, Sung-Hoon

    2011-01-01

    1,2,3,4,6-penta-O-galloyl-beta-D-glucose (PGG), a polyphenolic compound isolated from Rhus chinensis Mill. PGG has been known to have anti-tumor, anti-angiogenic and anti-diabetic activities. The present study revealed another underlying molecular target of PGG in MDA-MB-231 breast cancer cells by using Illumina Human Ref-8 expression BeadChip assay. Through the Beadstudio v3 micro assay program to compare the identified genes expressed in PGG-treated MDA-MB-231 cells with untreated control, we found several unique genes that are closely associated with pyruvate metabolism, glycolysis/gluconeogenesis and tyrosine metabolism, including PC, ACSS2, ACACA, ACYP2, ALDH3B1, FBP1, PRMT2 and COMT. Consistent with microarray data, real-time RT-PCR confirmed the significant down-regulation of these genes at mRNA level in PGG-treated MDA-MB-231 cells. Our findings suggest the potential of PGG as anticancer agent for breast cancer cells by targeting cancer metabolism genes. PMID:21614488

  16. Mid-region parathyroid hormone-related protein (PTHrP) binds chromatin of MDA-MB231 breast cancer cells and isolated oligonucleotides "in vitro".

    PubMed

    Sirchia, Rosalia; Priulla, Marcella; Sciandrello, Giulia; Caradonna, Fabio; Barbata, Giuseppa; Luparello, Claudio

    2007-09-01

    We have previously shown that PTHrP(38-94)-amide restrains growth and invasion "in vitro", causes striking toxicity and accelerates death of some breast cancer cell lines, the most responsive being MDA-MB231 whose tumorigenesis was also attenuated "in vivo". PTHrP(38-94)-amide contains the domain implicated in the nuclear import of PTHrP. Although the nucleus was identified as a destination for mid-region PTHrP, evidence for direct DNA-binding capability is lacking to date. Here, we examined the localization of PTHrP(38-94)-amide within MDA-MB231 cells and within metaphase spread preparations and characterized its DNA-binding properties, employing a combination of immunocytochemical, cytogenetic, "whole genome"/conventional PCR, EMSA and DNase footprinting techniques. The results obtained: (i) show that PTHrP(38-94)-amide gains access to the nuclear compartment of MDA-MB231 cell; (ii) demonstrate that PTHrP(38-94)-amide is a DNA-binding peptide; and, (iii) represent the first data to date on the potential molecular targets in both cellular chromatin and isolated oligonucleotides "in vitro". PMID:17124555

  17. Guggulsterone and bexarotene induce secretion of exosome-associated breast cancer resistance protein and reduce doxorubicin resistance in MDA-MB-231 cells.

    PubMed

    Kong, Ji Na; He, Qian; Wang, Guanghu; Dasgupta, Somsankar; Dinkins, Michael B; Zhu, Gu; Kim, Austin; Spassieva, Stefka; Bieberich, Erhard

    2015-10-01

    Many breast cancer cells acquire multidrug resistance (MDR) mediated by ABC transporters such as breast cancer resistance protein (BCRP/ABCG2). Here we show that incubation of human breast cancer MDA-MB-231 cells with farnesoid X receptor antagonist guggulsterone (gug) and retinoid X receptor agonist bexarotene (bex) elevated ceramide, a sphingolipid known to induce exosome secretion. The gug+bex combination reduced cellular levels of BCRP to 20% of control cells by inducing its association and secretion with exosomes. Exogenous C6 ceramide also induced secretion of BCRP-associated exosomes, while siRNA-mediated knockdown or GW4869-mediated inhibition of neutral sphingomyelinase 2 (nSMase2), an enzyme generating ceramide, restored cellular BCRP. Immunocytochemistry showed that ceramide elevation and concurrent loss of cellular BCRP was prominent in Aldefluor-labeled breast cancer stem-like cells. These cells no longer excluded the BCRP substrate Hoechst 33342 and showed caspase activation and apoptosis induction. Consistent with reduced BCRP, ABC transporter assays showed that gug+bex increased doxorubicin retention and that the combination of gug+bex with doxorubicin enhanced cell death by more than fivefold. Taken together, our results suggest a novel mechanism by which ceramide induces BCRP secretion and reduces MDR, which may be useful as adjuvant drug treatment for sensitizing breast cancer cells and cancer stem cells to chemotherapy. PMID:25833198

  18. The alkaloid Berberine inhibits the growth of Anoikis-resistant MCF-7 and MDA-MB-231 breast cancer cell lines by inducing cell cycle arrest.

    PubMed

    Kim, J B; Yu, J-H; Ko, E; Lee, K-W; Song, A K; Park, S Y; Shin, I; Han, W; Noh, D Y

    2010-05-01

    Berberine is a pure phenanthren alkaloid isolated from the roots and bark of herbal plants such as Berberis, Hydrastis canadensis and Coptis chinensis. Berberine has been established to inhibit the growth of breast cancer cells, but its effects on the drug resistance and anoikis-resistance of breast cancer cells have yet to be elucidated. Anoikis, or detachment-induced apoptosis, may prevent cancer progression and metastasis by blocking signals necessary for survival of localized cancer cells. Resistance to anoikis is regarded as a prerequisite for metastasis; however, little is known about the role of berberine in anoikis-resistance. We established anoikis-resistant cells from the breast cancer cell lines MCF-7 and MDA-MB-231 by culturing them on a Poly-Hema substratum. We then investigated the effects of berberine on the growth of these cells. The anoikis-resistant cells had a reduced growth rate and were more invasive than their respective adherent cell lines. The effect of berberine on growth was compared to that of doxorubicine, which is a drug commonly used to treat breast cancer, in both the adherent and anoikis-resistant cell lines. Berberine promoted the growth inhibition of anoikis-resistant cells to a greater extent than doxorubicine treatment. Treatment with berberine-induced cell cycle arrest at G0/G1 in the anoikis-resistant MCF-7 and MDA-MB-231 cells as compared to untreated control cells. In summary, these results revealed that berberine can efficiently inhibit growth by inducing cell cycle arrest in anoikis-resistant MCF-7 and MDA-MB-231 cells. Further analysis of these phenotypes is essential for understanding the effect of berberine on anoikis-resistant breast cancer cells, which would be relevant for the therapeutic targeting of breast cancer metastasis. PMID:19800775

  19. Eribulin upregulates miR-195 expression and downregulates Wnt3a expression in non-basal-like type of triple-negative breast cancer cell MDA-MB-231.

    PubMed

    Furuya, Kanji; Sasaki, Akiko; Tsunoda, Yuko; Tsuji, Mayumi; Udaka, Yuko; Oyamada, Hideto; Tsuchiya, Hiromichi; Oguchi, Katsuji

    2016-04-01

    Triple-negative breast cancer (TNBC), which does not show hormone sensitivity, is a poor prognosis disease without an established targeted treatment, so that establishing a therapeutic target for each subtype is desired. In addition, microRNA (miRNA), a non-cording RNA 19-25 nucleotide-longs in length, is known to be involved in regulating gene expression. We examined miRNA expression after exposure to eribulin, MDA-MB-231 cells, non-basal-like type of TNBC cell lines, and HCC1143 cells, basal-like type of TNBC cell lines. The activity of caspase-3 significantly increased compared to the control in MDA-MB-231, whereas no significant difference was observed in HCC1143. The expression level of 20-miRNAs significantly increased compared to the control in MDA-MB-231 after exposure to eribulin. The expression level of 6-miRNAs also significantly increased compared to the control in HCC1143. In these 2 cell types, miR-125b-1 and miR-195 were commonly expressed. While the expression level of miR-125b-1 decreased in both cells, the expression level of miR-195 increased in MDA-MB-231 and decreased in HCC1143. The expression level of miR-195 targeting Wnt3a significantly decreased compared to the control in MDA-MB-231, whereas it significantly increased in HCC1143. These results showed that exposure to eribulin highly increased the expression of miR-195 while it decreased the expression of Wnt3a in non-basal-like type of TNBC. Some miRNAs are known to regulate other signaling pathways involved in human pathogenesis by regulating the Wnt signaling pathway, and miRNA can act as a tumor-suppressing gene; therefore, miR-195 may serve as a therapeutic target in non-basal-like type of TNBC. PMID:26573286

  20. Immunotherapy with dendritic cells and cytokine-induced killer cells for MDA-MB-231 breast cancer stem cells in nude mice

    PubMed Central

    Chen, Qiang; Cui, Xiao-Xu; Liang, Pei-Fen; Dou, Jin-Xia; Liu, Zi-Yan; Sun, Wen-Wen

    2016-01-01

    Objective: To compare the effects and safety of immunotherapy using different methods to load DC-CIK cells for MDA-MB-231 breast cancer stem cells. Methods: A breast cancer model was established in BALB/c nude mice using breast cancer stem cells. All mice were randomly divided into six groups, and each group had three nude mice: the blank control group, the DC-CIK group (group D), the MDA-MB-231 CSC whole-cell lysate DC-CIK group (group L-D), the MDA-MB-231 CSC RNA DC-CIK group (group R-D), the THP DC-CIK group (group T-D) and group THP. Nude mice in groups D, L-D, R-D and T-D were injected with CSCs; 4 days later, the mice were inoculated with 1 × 106 DC-CIK cells via the tail vein. This injection was repeated 2 times a week for three weeks. The mice in groups THP and T-D were injected with a 5 mg/Kg dose of THP chemotherapeutic agents via the tail vein the day before DC-CIK injection, which was repeated one time a week for three weeks. Nude mice in the blank control group were injected with normal saline. The weights and sizes of the tumors were measured after the mice were euthanized. The expression of c-Myc, a key proto-oncogene associated with the Akt signaling pathway, was detected with RT-PCR. Results: The tumor growth rates in each group were as follows: group L-D < group R-D < group D < group T-D < blank control group < group THP. The nude mice in groups L-D, R-D and D were normal, active and had a healthy appetite. The mice in groups T-D and THP were lethargic, less active and showed loss of appetite, and their caudal vein was easy to stimulate. The mice in the blank control group were sacrificed during the third week or when their tumors developed ulceration. Compared with the blank control group, c-Myc gene expression was reduced in the tumors of the five experimental groups. Conclusion: The results showed that DC-CIK cells stimulated by different methods were highly effect against MDA-MB-231 breast cancer stem cells in nude mice in all groups

  1. Small molecule inhibition of arylamine N-acetyltransferase Type I inhibits proliferation and invasiveness of MDA-MB-231 breast cancer cells

    SciTech Connect

    Tiang, Jacky M.; Butcher, Neville J.; Minchin, Rodney F.

    2010-02-26

    Arylamine N-acetyltransferase 1 is a phase II metabolizing enzyme that has been associated with certain breast cancer subtypes. While it has been linked to breast cancer risk because of its role in the metabolic activation and detoxification of carcinogens, recent studies have suggested it may be important in cell growth and survival. To address the possible importance of NAT1 in breast cancer, we have used a novel small molecule inhibitor (Rhod-o-hp) of the enzyme to examine growth and invasion of the breast adenocarcinoma line MDA-MB-231. The inhibitor significantly reduced cell growth by increasing the percent of cells in G2/M phase of the cell cycle. Rhod-o-hp also reduced the ability of the MDA-MB-231 cells to grow in soft agar. Using an in vitro invasion assay, the inhibitor significantly reduced the invasiveness of the cells. To test whether this effect was due to inhibition of NAT1, the enzyme was knocked down using a lentivirus-based shRNA approach and invasion potential was significantly reduced. Taken together, the results of this study demonstrate that NAT1 activity may be important in breast cancer growth and metastasis. The study suggests that NAT1 is a novel target for breast cancer treatment.

  2. Whole Blueberry Powder Modulates the Growth and Metastasis of MDA-MB-231 Triple Negative Breast Tumors in Nude Mice123

    PubMed Central

    Adams, Lynn S.; Kanaya, Noriko; Phung, Sheryl; Liu, Zheng; Chen, Shiuan

    2011-01-01

    Previous studies in our laboratory demonstrated that blueberry (BB) extract exhibited antitumor activity against MDA-MB-231 triple negative breast cancer (TNBC) cells and decreased metastatic potential in vitro. The current study tested 2 doses of whole BB powder, 5 and 10% (wt:wt) in the diet, against MDA-MB-231 tumor growth in female nude mice. In this study, tumor volume was 75% lower in mice fed the 5% BB diet and 60% lower in mice fed the 10% BB diet than in control mice (P ≤ 0.05). Tumor cell proliferation (Ki-67) was lower in the 5 and 10% BB-fed mice and cell death (Caspase 3) was greater in the 10% BB-fed mice compared to control mice (P ≤ 0.05). Gene analysis of tumor tissues from the 5% BB-fed mice revealed significantly altered expression of genes important to inflammation, cancer, and metastasis, specifically, Wnt signaling, thrombospondin-2, IL-13, and IFNγ. To confirm effects on Wnt signaling, analysis of tumor tissues from 5% BB-fed mice revealed lower β-catenin expression and glycogen synthase kinase-3β phosphorylation with greater expression of the β-catenin inhibitory protein adenomatous polyposis coli compared to controls. A second study tested the ability of the 5% BB diet to inhibit MDA-MB-231-luc-D3H2LN metastasis in vivo. In this study, 5% BB-fed mice developed 70% fewer liver metastases (P = 0.04) and 25% fewer lymph node metastases (P = 0.09) compared to control mice. This study demonstrates the oral antitumor and metastasis activity of whole BB powder against TNBC in mice. PMID:21880954

  3. Activated human mesenchymal stem/stromal cells suppress metastatic features of MDA-MB-231 cells by secreting IFN-β.

    PubMed

    Yoon, N; Park, M S; Shigemoto, T; Peltier, G; Lee, R H

    2016-01-01

    Our recent study showed that human mesenchymal stem/stromal cells (hMSCs) are activated to express tumor necrosis factor (TNF)-α-related apoptosis-inducing ligand (TRAIL) by exposure to TNF-α and these activated hMSCs effectively induce apoptosis in triple-negative breast cancer MDA-MB-231 (MDA) cells in vitro and in vivo. Here, we further demonstrated that activated hMSCs not only induced apoptosis of MDA cells but also reduced metastatic features in MDA cells. These activated hMSC-exposed MDA cells showed reduced tumorigenicity and suppressed formation of lung metastasis when implanted in the mammary fat pad. Surprisingly, the activated hMSC-exposed MDA cells increased TRAIL expression, resulting in apoptosis in MDA cells. Interestingly, upregulation of TRAIL in MDA cells was mediated by interferon-beta (IFN-β) secreted from activated hMSCs. Furthermore, IFN-β in activated hMSCs was induced by RNA and DNA released from apoptotic MDA cells in absent in melanoma 2 (AIM2) and IFN induced with helicase C domain 1 (IFIH1)-dependent manners. These observations were only seen in the TRAIL-sensitive breast cancer cell lines but not in the TRAIL-resistant breast cancer cell lines. Consistent with these results, Kaplan-Meier survival analysis also showed that lack of innate sensors detecting DNA or RNA is strongly associated with poor survival in estrogen receptor-negative breast cancer patients. In addition, cancer-associated fibroblasts (CAF) isolated from a breast cancer patient were also able to express TRAIL and IFN-β upon DNA and RNA stimulation. Therefore, our results suggest that the crosstalk between TRAIL-sensitive cancer cells and stromal cells creates a tumor-suppressive microenvironment and further provide a novel therapeutic approach to target stromal cells within cancer microenvironment for TRAIL sensitive cancer treatment. PMID:27077807

  4. Activated human mesenchymal stem/stromal cells suppress metastatic features of MDA-MB-231 cells by secreting IFN-β

    PubMed Central

    Yoon, N; Park, M S; Shigemoto, T; Peltier, G; Lee, R H

    2016-01-01

    Our recent study showed that human mesenchymal stem/stromal cells (hMSCs) are activated to express tumor necrosis factor (TNF)-α-related apoptosis-inducing ligand (TRAIL) by exposure to TNF-α and these activated hMSCs effectively induce apoptosis in triple-negative breast cancer MDA-MB-231 (MDA) cells in vitro and in vivo. Here, we further demonstrated that activated hMSCs not only induced apoptosis of MDA cells but also reduced metastatic features in MDA cells. These activated hMSC-exposed MDA cells showed reduced tumorigenicity and suppressed formation of lung metastasis when implanted in the mammary fat pad. Surprisingly, the activated hMSC-exposed MDA cells increased TRAIL expression, resulting in apoptosis in MDA cells. Interestingly, upregulation of TRAIL in MDA cells was mediated by interferon-beta (IFN-β) secreted from activated hMSCs. Furthermore, IFN-β in activated hMSCs was induced by RNA and DNA released from apoptotic MDA cells in absent in melanoma 2 (AIM2) and IFN induced with helicase C domain 1 (IFIH1)-dependent manners. These observations were only seen in the TRAIL-sensitive breast cancer cell lines but not in the TRAIL-resistant breast cancer cell lines. Consistent with these results, Kaplan–Meier survival analysis also showed that lack of innate sensors detecting DNA or RNA is strongly associated with poor survival in estrogen receptor-negative breast cancer patients. In addition, cancer-associated fibroblasts (CAF) isolated from a breast cancer patient were also able to express TRAIL and IFN-β upon DNA and RNA stimulation. Therefore, our results suggest that the crosstalk between TRAIL-sensitive cancer cells and stromal cells creates a tumor-suppressive microenvironment and further provide a novel therapeutic approach to target stromal cells within cancer microenvironment for TRAIL sensitive cancer treatment. PMID:27077807

  5. Δ9-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: Possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells

    PubMed Central

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J.; Aramaki, Hironori

    2014-01-01

    We recently reported that Δ9-tetrahydrocannabinol (Δ9-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2 hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ9-THC treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA MB 231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ9-THC mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ9 THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ9-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ9-THC induced up regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ9 THC up-regulation of FA2H in MDA-MB-231 cells. PMID:25291031

  6. Δ(9)-THC modulation of fatty acid 2-hydroxylase (FA2H) gene expression: possible involvement of induced levels of PPARα in MDA-MB-231 breast cancer cells.

    PubMed

    Takeda, Shuso; Ikeda, Eriko; Su, Shengzhong; Harada, Mari; Okazaki, Hiroyuki; Yoshioka, Yasushi; Nishimura, Hajime; Ishii, Hiroyuki; Kakizoe, Kazuhiro; Taniguchi, Aya; Tokuyasu, Miki; Himeno, Taichi; Watanabe, Kazuhito; Omiecinski, Curtis J; Aramaki, Hironori

    2014-12-01

    We recently reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), a major cannabinoid component in Cannabis Sativa (marijuana), significantly stimulated the expression of fatty acid 2-hydroxylase (FA2H) in human breast cancer MDA-MB-231 cells. Peroxisome proliferator-activated receptor α (PPARα) was previously implicated in this induction. However, the mechanisms mediating this induction have not been elucidated in detail. We performed a DNA microarray analysis of Δ(9)-THC-treated samples and showed the selective up-regulation of the PPARα isoform coupled with the induction of FA2H over the other isoforms (β and γ). Δ(9)-THC itself had no binding/activation potential to/on PPARα, and palmitic acid (PA), a PPARα ligand, exhibited no stimulatory effects on FA2H in MDA-MB-231 cells; thus, we hypothesized that the levels of PPARα induced were involved in the Δ(9)-THC-mediated increase in FA2H. In support of this hypothesis, we herein demonstrated that; (i) Δ(9)-THC activated the basal transcriptional activity of PPARα in a concentration-dependent manner, (ii) the concomitant up-regulation of PPARα/FA2H was caused by Δ(9)-THC, (iii) PA could activate PPARα after the PPARα expression plasmid was introduced, and (iv) the Δ(9)-THC-induced up-regulation of FA2H was further stimulated by the co-treatment with L-663,536 (a known PPARα inducer). Taken together, these results support the concept that the induced levels of PPARα may be involved in the Δ(9)-THC up-regulation of FA2H in MDA-MB-231 cells. PMID:25291031

  7. The effect of seal oil on paclitaxel induced cytotoxicity and apoptosis in breast carcinoma MCF-7 and MDA-MB-231 cell lines.

    PubMed

    Wang, Zheyu; Butt, Krista; Wang, Lili; Liu, Hu

    2007-01-01

    Some studies have suggested that omega-3 polyunsaturated fatty acids (PUFAs) have an inhibitory effect on the growth of cancer cells and therefore have the potential to increase the efficacy of cancer chemotherapeutic drugs. Considering that omega-3 PUFAs are present abundantly in harp seal oil, we investigated the effect of seal oil on the cytotoxicity and apoptosis induced by paclitaxel in 2 breast cancer cell lines, MCF-7 and MDA-MB-231, respectively. Cytotoxicity evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that the concentration of paclitaxel that is required for 50% inhibition of cell growth in the presence of seal oil was significantly lower than that of paclitaxel alone. Apoptosis assessment based on morphological changes and DNA fragmentation results indicated that more cells treated with paclitaxel in combination with seal oil underwent apoptosis than with paclitaxel alone. Western blot analysis showed that the expression of B cell lymphoma-2 (Bcl-2) protein, an apoptosis inhibitory protein, in both cell lines was decreased more significant by paclitaxel in combination with seal oil than by paclitaxel alone. In addition, seal oil alone was found to induce apoptosis in both cell lines tested, which appeared to be due to the increased intracellular lipid peroxides produced. It is therefore concluded that paclitaxel in combination with seal oil demonstrated enhanced cytotoxicity and apoptosis in MCF-7 and MDA-MB-231 cells compared to paclitaxel alone, and the use of seal oil may be beneficial in the treatment of breast cancer. PMID:17640170

  8. Imaging Nuclei of MDA-MB-231 Breast Cancer Cells by Chiral Ruthenium(II) Complex Coordinated by 2-(4-Phenyacetylenephenyl)-1H-imidazo[4,5f][1,10]phenanthroline.

    PubMed

    Zeng, Zhi-Ping; Wu, Qiong; Sun, Fen-Yong; Zheng, Kang-Di; Mei, Wen-Jie

    2016-06-01

    A pair of chiral ruthenium(II) complexes, Λ- and Δ-[Ru(bpy)2(p-BEPIP)](ClO4)2 [Λ- and Δ-RM0627; bpy = 2,2-bipyridine; p-BEPIP = 2-(4-phenyacetylenephenyl)-1H-imidazo[4,5f][1,10]phenanthroline], were prepared using the Sonogashira coupling reaction under microwave irradiation. The study shows that Λ-RM0627 emitted strong phosphorescence in the range 500-700 nm with a maximum at 594 nm when excited at 365 nm (the Stokes shift is about 227 nm), which was mainly located in the cell nucleus with red phosphorescence. Further studies using real-time phosphorescence observation confirmed that Λ-RM0627 can be taken up quickly by MDA-MB-231 cells and enriched in the nucleus. The in vitro and in vivo toxicities of Λ-RM0627 were also evaluated, and it was found that Λ-RM0627 slightly inhibited the growth of MDA-MB-231 breast cancer cells and HaCaT normal human epidermal cells and had little influence on the development of Zebrafish embryos at low concentration. In conclusion, the levoisomer of chiral ruthenium complexes can act as a potential phosphorescent probe that targets nuclei of living cells with low toxicity. PMID:27191197

  9. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and {beta}4 integrin function in MDA-MB-231 breast cancer cells

    SciTech Connect

    Lee, W.-J.; Chen, W.-K.; Wang, C.-J.; Lin, W.-L.; Tseng, T.-H.

    2008-01-15

    Hepatocyte growth factor (HGF) and its receptor, Met, known to control invasive growth program have recently been shown to play crucial roles in the survival of breast cancer patients. The diet-derived flavonoids have been reported to possess anti-invasion properties; however, knowledge on the pharmacological and molecular mechanisms in suppressing HGF/Met-mediated tumor invasion and metastasis is poorly understood. In our preliminary study, we use HGF as an invasive inducer to investigate the effect of flavonoids including apigenin, naringenin, genistein and kaempferol on HGF-dependent invasive growth of MDA-MB-231 human breast cancer cells. Results show that apigenin presents the most potent anti-migration and anti-invasion properties by Boyden chamber assay. Furthermore, apigenin represses the HGF-induced cell motility and scattering and inhibits the HGF-promoted cell migration and invasion in a dose-dependent manner. The effect of apigenin on HGF-induced signaling activation involving invasive growth was evaluated by immunoblotting analysis, it shows that apigenin blocks the HGF-induced Akt phosphorylation but not Met, ERK, and JNK phosphorylation. In addition to MDA-MB-231 cells, apigenin exhibits inhibitory effect on HGF-induced Akt phosphorylation in hepatoma SK-Hep1 cells and lung carcinoma A549 cells. By indirect immunofluorescence microscopy assay, apigenin inhibits the HGF-induced clustering of {beta}4 integrin at actin-rich adhesive site and lamellipodia through PI3K-dependent manner. Treatment of apigenin inhibited HGF-stimulated integrin {beta}4 function including cell-matrix adhesion and cell-endothelial cells adhesion in MDA-MB-231 cells. By Akt-siRNA transfection analysis, it confirmed that apigenin inhibited HGF-promoted invasive growth involving blocking PI3K/Akt pathway. Finally, we evaluated the effect of apigenin on HGF-promoted metastasis by lung colonization of tumor cells in nude mice and organ metastasis of tumor cells in chick embryo. By

  10. Embelin Inhibits Invasion and Migration of MDA-MB-231 Breast Cancer Cells by Suppression of CXC Chemokine Receptor 4, Matrix Metalloproteinases-9/2, and Epithelial-Mesenchymal Transition.

    PubMed

    Lee, Hanwool; Ko, Jeong-Hyeon; Baek, Seung Ho; Nam, Dongwoo; Lee, Seok Geun; Lee, Junhee; Yang, Woong Mo; Um, Jae-Young; Kim, Sung-Hoon; Shim, Bum Sang; Ahn, Kwang Seok

    2016-06-01

    Embelin (EB) is a benzoquinone derivative isolated from Embelia ribes Burm plant. Recent scientific evidence shows that EB induces apoptosis and inhibits migration and invasion in highly metastatic human breast cancer cells. However, the exact mechanisms of EB in tumor metastasis and invasion have not been fully elucidated. Here, we investigated the underlying mechanisms of antimetastatic activities of EB in breast cancer cells. The EB downregulated the chemokine receptor 4 (CXCR4) as well as matrix metalloproteinase (MMP)-9/2 expression and upregulated the tissue inhibitor of metalloproteinase 1 expression in MDA-MB-231 cells under noncytotoxic concentrations but not in MCF-7 cells. Additionally, EB inhibited the CXC motif chemokine ligand 12 induced invasion and migration activities of MDA-MB-231 cells. A detailed study of underlying mechanisms revealed that the regulation of the downregulation of CXCR4 was at the transcriptional level, as indicated by the downregulation of mRNA expression and suppression of nuclear factor-kappa B (NF-κB) activation. It further reduced the binding of NF-κB to the CXCR4 promoter. Besides, EB downregulated mesenchymal marker proteins (neural cadherin and vimentin) and concurrently upregulated epithelial markers (epithelial cadherin and occludin). Overall, these findings suggest that EB can abrogate breast cancer cell invasion and metastasis by suppression of CXCR4, MMP-9/2 expressions, and inhibition of epithelial-mesenchymal transition and thus may have a great potential to suppress metastasis of breast cancer. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27030214

  11. Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells.

    PubMed

    Librizzi, Mariangela; Spencer, John; Luparello, Claudio

    2016-01-01

    We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation, and mitochondrial metabolic state in order to understand the cellular basis of the cytotoxic effect. Cell cycle analysis showed a perturbation of the rate of progression through the cycle, with aspects of redistribution of cells over different cycle phases for the two treatments. In addition, the results suggest that the two distinct classes of compounds under investigation could induce cell death by different preferential pathways, i.e., autophagy inhibition (the cocktail) or apoptosis promotion (the hybrid), thus confirming the enhanced potential of the hybrid approach vs. the combination approach in finely tuning the biological activities of target cells and also showing the hybrid compound as an additional promising drug-like molecule for the prevention or therapy of "aggressive" breast carcinoma. PMID:27483253

  12. Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells

    PubMed Central

    Librizzi, Mariangela; Spencer, John; Luparello, Claudio

    2016-01-01

    We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation, and mitochondrial metabolic state in order to understand the cellular basis of the cytotoxic effect. Cell cycle analysis showed a perturbation of the rate of progression through the cycle, with aspects of redistribution of cells over different cycle phases for the two treatments. In addition, the results suggest that the two distinct classes of compounds under investigation could induce cell death by different preferential pathways, i.e., autophagy inhibition (the cocktail) or apoptosis promotion (the hybrid), thus confirming the enhanced potential of the hybrid approach vs. the combination approach in finely tuning the biological activities of target cells and also showing the hybrid compound as an additional promising drug-like molecule for the prevention or therapy of “aggressive” breast carcinoma. PMID:27483253

  13. Platycodin D, a metabolite of Platycodin grandiflorum, inhibits highly metastatic MDA-MB-231 breast cancer growth in vitro and in vivo by targeting the MDM2 oncogene.

    PubMed

    Kong, Ya; Lu, Zong-Liang; Wang, Jia-Jia; Zhou, Rui; Guo, Jing; Liu, Jie; Sun, Hai-Lan; Wang, He; Song, Wei; Yang, Jian; Xu, Hong-Xia

    2016-09-01

    The objective of the present study was to explore the in vitro and in vivo anticancer effects of Platycodin D (PD), derived from Platycodin grandiflorum, on highly metastatic MDA-MB-231 breast cancer cells. Using the MTT assay, we found that PD inhibited MDA-MB-231 cell growth in a concentration-dependent manner, with an IC50 value of 7.77±1.86 µM. Further studies showed that PD had anti-proliferative effects and induced cell cycle arrest in the G0/G1 phase. To explore the detailed mechanism(s) by which PD suppressed MDA-MB-231 cell growth, western blot analyses were used to detect the expression levels of proteins related to cell proliferation and survival. The data showed that PD decreased the expression of proteins related to the G0/G1 phases, downregulated the protein expression of MDM2, MDMX, and mutant p53, and increased the expression levels of p21 and p27 in vitro. We verified the effects of PD on the expression of MDM2, MDMX, mutant p53, p21 and p27 using a pcDNA3-Flag-MDM2 plasmid and MDM2 siRNA transfection, and found that PD inhibited MDA-MB-231 cell viability by targeting MDM2 and mutant p53. Compared with the corresponding parental cells, the cells with siRNA-MDM2 transfection had a greater decrease in cell viability and proliferation, while those with pcDNA3-MDM2 plasmid transfection did not show any increase in the effects of PD. We also established a MDA-MB-231 xenograft model in BALB/c nude mice, and found that PD significantly inhibited the growth of MDA-MB-231 xenograft tumors in these mice. The expression levels of various proteins in the tumor tissue exhibited changes similar to those observed in vitro. These findings indicate that PD exerted in vitro and in vivo anticancer effects against MDA-MB-231 breast cancer cells, that PD is a potential MDM2/MDMX inhibitor, and that the anticancer effects of PD were likely associated with its inhibition of these proteins. Our observations help to identify a mechanism by which PD functions as

  14. ELK3 Expression Correlates With Cell Migration, Invasion, and Membrane Type 1-Matrix Metalloproteinase Expression in MDA-MB-231 Breast Cancer Cells.

    PubMed

    Heo, Sun-Hee; Lee, Je-Yong; Yang, Kyung-Min; Park, Kyung-Soon

    2015-01-01

    ELK3 is a member of the Ets family of transcription factors. Its expression is associated with angiogenesis, vasculogenesis, and chondrogenesis. ELK3 inhibits endothelial migration and tube formation through the regulation of MT1-MMP transcription. This study assessed the function of ELK3 in breast cancer (BC) cells by comparing its expression between basal and luminal cells in silico and in vitro. In silico analysis showed that ELK3 expression was higher in the more aggressive basal BC cells than in luminal BC cells. Similarly, in vitro analysis showed that ELK3 mRNA and protein expression was higher in basal BC cells than in normal cells and luminal BC cells. To investigate whether ELK3 regulates basal cell migration or invasion, knockdown was achieved by siRNA in the basal BC cell line MDA-MB-231. Inhibition of ELK3 expression decreased cell migration and invasion and downregulated MT1-MMP, the expression of which is positively correlated with tumor cell invasion. In silico analysis revealed that ELK3 expression was associated with that of MT1-MMP in several BC cell lines (0.98 Pearson correlation coefficient). Though MT1-MMP expression was upregulated upon ELK3 nuclear translocation, ELK3 did not directly bind to the 1.3-kb promoter region of the MT1-MMP gene. These results suggest that ELK3 plays a positive role in the metastasis of BC cells by indirectly regulating MT1-MMP expression. PMID:26637400

  15. Characterization of MNK1b DNA Aptamers That Inhibit Proliferation in MDA-MB231 Breast Cancer Cells.

    PubMed

    García-Recio, Eva M; Pinto-Díez, Celia; Pérez-Morgado, M Isabel; García-Hernández, Marta; Fernández, Gerónimo; Martín, M Elena; González, Víctor M

    2016-01-01

    Elevated expression levels of eukaryotic initiation factor 4E (eIF4E) promote cancer development and progression. MAP kinase interacting kinases (MNKs) modulate the function of eIF4E through the phosphorylation that is necessary for oncogenic transformation. Therefore, pharmacologic MNK inhibitors may provide a nontoxic and effective anticancer strategy. MNK1b is a truncated isoform of MNK1a that is active in the absence of stimuli. Using in vitro selection, high-affinity DNA aptamers to MNK1b were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Four groups of aptamers were identified, and the affinities of one representative for rMNK1b were determined using ELONA and quantitative polymerase chain reaction. Two aptamers, named apMNK2F and apMNK3R, had a lower Kd in the nmol/l range. The secondary structure of the selected aptamers was predicted using mFold, and the QGRS Mapper indicated the presence of potential G-quadruplex structures in both aptamers. The selected aptamers were highly specific against MNK1, showing higher affinity to MNK1b than to MNK1a. Interestingly, both aptamers were able to produce significant translation inhibition and prevent tumor cell proliferation and migration and colony formation in breast cancer cells. These results indicate that MNK1 aptamers have an attractive therapeutic potential. PMID:26730812

  16. Inhibition of endothelial nitric oxide synthase decreases breast cancer cell MDA-MB-231 adhesion to intact microvessels under physiological flows.

    PubMed

    Zhang, Lin; Zeng, Min; Fu, Bingmei M

    2016-06-01

    Nitric oxide (NO) at different concentrations may promote or inhibit tumor growth and metastasis under various conditions. To test the hypothesis that tumor cells prefer to adhere to the locations with a higher endothelial NO production in intact microvessels under physiological flows and to further test that inhibiting NO production decreases tumor cell adhesion, we used intravital fluorescence microscopy to measure NO production and tumor cell adhesion in postcapillary venules of rat mesentery under normal and reduced flow conditions, and in the presence of an endothelial nitric oxide synthase (eNOS) inhibitor, N(G)-monomethyl-l-arginine (l-NMMA). Rats (SD, 250-300 g) were anesthetized. A midline incision (∼2 inch) was made in the abdominal wall, and the mesentery was taken out from the abdominal cavity and spread over a coverslip for the measurement. An individual postcapillary venule (35-50 μm) was first loaded with 4,5-diaminofluorescein diacetate (DAF-2 DA), a fluorescent indictor for NO. Then the DAF-2 intensity was measured for 30 min under a normal or reduced flow velocity, with and without perfusion with MDA-MB-231 breast cancer cells, and in the presence of l-NMMA. We found that tumor cells prefer to adhere to the microvessel locations with a higher NO production such as curved portions. Inhibition of eNOS by l-NMMA attenuated the flow-induced NO production and reduced tumor cell adhesion. We also found that l-NMMA treatment for ∼40 min reduced microvessel permeability to albumin. Our results suggest that inhibition of eNOS is a good approach to preventing tumor cell adhesion to intact microvessels under physiological flows. PMID:27059076

  17. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines

    PubMed Central

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  18. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines.

    PubMed

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  19. Thymoquinone-Loaded Nanostructured Lipid Carrier Exhibited Cytotoxicity towards Breast Cancer Cell Lines (MDA-MB-231 and MCF-7) and Cervical Cancer Cell Lines (HeLa and SiHa)

    PubMed Central

    Ng, Wei Keat; Saiful Yazan, Latifah; Yap, Li Hua; Wan Nor Hafiza, Wan Abd Ghani; How, Chee Wun; Abdullah, Rasedee

    2015-01-01

    Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than −30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P < 0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells. PMID:25632388

  20. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231

    PubMed Central

    Mansara, Prakash P.; Deshpande, Rashmi A.; Vaidya, Milind M.; Kaul-Ghanekar, Ruchika

    2015-01-01

    Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer. PMID:26325577

  1. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    SciTech Connect

    Talhouk, Rabih S.; Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania; El-Sabban, Marwan E.

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  2. MEK2 controls the activation of MKK3/MKK6-p38 axis involved in the MDA-MB-231 breast cancer cell survival: Correlation with cyclin D1 expression.

    PubMed

    Huth, Hugo W; Albarnaz, Jonas D; Torres, Alice A; Bonjardim, Claudio A; Ropert, Catherine

    2016-09-01

    The Ras-Raf-MEK-ERK1/2 signaling pathway regulates fundamental processes in malignant cells. However, the exact contributions of MEK1 and MEK2 to the development of cancer remain to be established. We studied the effects of MEK small-molecule inhibitors (PD98059 and U0126) and MEK1 and MEK2 knock-down on cell proliferation, apoptosis and MAPK activation. We showed a diminution of cell viability that was associated with a downregulation of cyclin D1 expression and an increase of apoptosis marker in MEK2 silenced cells; by contrast, a slight increase of cell survival was observed in the absence of MEK1 that correlated with an augment of cyclin D1 expression. These data indicate that MEK2 but not MEK1 is essential for MDA-MB-231 cell survival. Importantly, the role of MEK2 in cell survival appeared independent on ERK1/2 phosphorylation since its absence did not alter the level of activated ERK1/2. Indeed, we have reported an unrevealed link between MEK2 and MKK3/MKK6-p38 MAPK axis where MEK2 was essential for the phosphorylation of MKK3/MKK6 and p38 MAPK that directly impacted on cyclin D1 expression. Importantly, the MEK1 inhibitor PD98059, like MEK1 silencing, induced an augment of cyclin D1 expression that correlated with an increase of MDA-MB-231 cell proliferation suggesting that MEK1 may play a regulatory role in these cells. In sum, the crucial role of MEK2 in MDA-MB-231 cell viability and the unknown relationship between MEK2 and MKK3/MKK6-p38 axis here revealed may open new therapeutic strategies for aggressive breast cancer. PMID:27181679

  3. Stereospecific ligands and their complexes. Part XII. Synthesis, characterization and in vitro antiproliferative activity of platinum(IV) complexes with some O,O‧-dialkyl esters of (S,S)-ethylenediamine-N,N‧-di-2-propanoic acid against colon cancer (HCT-116) and breast cancer (MDA-MB-231) cell lines

    NASA Astrophysics Data System (ADS)

    Stojković, Danijela Lj.; Jevtić, Verica V.; Radić, Gordana P.; Đačić, Dragana S.; Ćurčić, Milena G.; Marković, Snežana D.; Ðinović, Vesna M.; Petrović, Vladimir P.; Trifunović, Srećko R.

    2014-03-01

    Synthesis of three new platinum(IV) complexes C1-C3, with bidentate N,N‧-ligand precursors, O,O‧-dialkyl esters (alkyl = propyl, butyl and pentyl), of (S,S)-ethylenediamine-N,N‧-di-2-propanoic acid, H2-S,S-eddp were reported. The reported platinum(IV) complexes characterized by elemental analysis and their structures were discussed on the bases of their infrared, 1H and 13C NMR spectroscopy. In vitro antiproliferative activity was determined on tumor cell lines: human colon carcinoma HCT-116 and human breast carcinoma MDA-MB-231, using MTT test.

  4. Novel C-4 heteroaryl 13-cis-retinamide Mnk/AR degrading agents inhibit cell proliferation and migration and induce apoptosis in human breast and prostate cancer cells and suppress growth of MDA-MB-231 human breast and CWR22Rv1 human prostate tumor xenografts in mice.

    PubMed

    Mbatia, Hannah W; Ramalingam, Senthilmurugan; Ramamurthy, Vidya P; Martin, Marlena S; Kwegyir-Afful, Andrew K; Njar, Vincent C O

    2015-02-26

    The synthesis and in vitro and in vivo antibreast and antiprostate cancers activities of novel C-4 heteroaryl 13-cis-retinamides that modulate Mnk-eIF4E and AR signaling are discussed. Modifications of the C-4 heteroaryl substituents reveal that the 1H-imidazole is essential for high anticancer activity. The most potent compounds against a variety of human breast and prostate cancer (BC/PC) cell lines were compounds 16 (VNHM-1-66), 20 (VNHM-1-81), and 22 (VNHM-1-73). In these cell lines, the compounds induce Mnk1/2 degradation to substantially suppress eIF4E phosphorylation. In PC cells, the compounds induce degradation of both full-length androgen receptor (fAR) and splice variant AR (AR-V7) to inhibit AR transcriptional activity. More importantly, VNHM-1-81 has strong in vivo antibreast and antiprostate cancer activities, while VNHM-1-73 exhibited strong in vivo antibreast cancer activity, with no apparent host toxicity. Clearly, these lead compounds are strong candidates for development for the treatments of human breast and prostate cancers. PMID:25634130

  5. Phenotyping breast cancer cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis and affinity chromatography for glutathione-binding proteins

    PubMed Central

    2010-01-01

    Background Transformed phenotypes are common to cell lines derived from various cancers. Proteome profiling is a valuable tool that may reveal uncharacteristic cell phenotypes in transformed cells. Changes in expression of glutathione S-transferases (GSTs) and other proteins interacting with glutathione (GSH) in model cell lines could be of particular interest. Methods We compared the phenotypes of breast cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis (2-DE). We further separated GSH-binding proteins from the cell lines using affinity chromatography with GSH-Sepharose 4B, performed 2-DE analysis and identified the main protein spots. Results Correlation coefficients among 2-DE gels from the cell lines were lower than 0.65, pointing to dissimilarity among the cell lines. Differences in primary constituents of the cytoskeleton were shown by the 2-D protein maps and western blots. The spot patterns in gels of GSH-binding fractions from primary carcinoma-derived cell lines HCC1937 and EM-G3 were similar to each other, and they differed from the spot patterns of cell lines MCF7 and MDA-MB-231 that were derived from pleural effusions of metastatic mammary carcinoma patients. Major differences in the expression of GST P1-1 and carbonyl reductase [NADPH] 1 were observed among the cell lines, indicating differential abilities of the cell lines to metabolize xenobiotics. Conclusions Our results confirmed the applicability of targeted affinity chromatography to proteome profiling and allowed us to characterize the phenotypes of four breast cancer cell lines. PMID:20731849

  6. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction.

    PubMed

    Zhao, Fenglong; Li, Li; Guan, Liuyuan; Yang, Hong; Wu, Chunhui; Liu, Yiyao

    2014-03-01

    Adhesion of cancer cell to endothelial cells and the subsequent trans-endothelial migration are key steps in hematogenous metastasis. However, the molecular mechanisms of cancer cell/endothelial cell interaction under hemodynamic shear flow and how shear flow-induced cancer cell mechanotransduction are yet to be fully defined. In this study, we identified that the integrins of both platelet glycoprotein IIb/IIIa (GP IIb/IIIa) and αvβ3 were crucial for hematogenous metastasis of human breast carcinoma MDA-MB-231 cells. The cell migration and invasion were studied by using Millicell cell culture insert system. The numbers of invaded MDA-MB-231 cells significantly increased by thrombin-activated platelets and reduced by eptifibatide, a platelet inhibitor. Meanwhile, RGDWE peptides, a specific inhibitor of αvβ3 integrin, also inhibited MDA-MB-231 cell invasion. We further used a parallel-plate flow chamber to investigate MDA-MB-231 cell adhesion under flow conditions. Alike in static condition, the adhesion capability of MDA-MB-231 cells to endothelial monolayer was also significantly affected by GP IIb/IIIa and αvβ3 integrins. The expression of matrix metalloproteinase-2 (MMP-2), MMP-9 and αvβ3 integrin in MDA-MB-231 cells were up-regulated after low shear stress exposure (1.84 dynes/cm(2), 2 h). Moreover, we also demonstrated that low shear stress induced a sustained activation of p85 (a regulatory subunit of PI3K) and Akt. Pre-treating MDA-MB-231 cells with the specific PI3K inhibitor of LY294002 abolished the shear stress induced-Akt activation, and the expression of MMP-2, MMP-9, vascular endothelial growth factor (VEGF) and αvβ3 integrin were also down-regulated. Immunofluorescence assay showed that low shear stress also induced αvβ3 integrin clustering and nuclear factor-κB (NF-κB) activation. Interestingly, shear stress-induced activation of Akt and NF-κB was attenuated by LM609, a specific antibody of αvβ3 integrin. It suggests that αvβ3

  7. 12-O-Tetradecanoyl phorbol-13-acetate (TPA)-induced growth arrest is increased by silibinin by the down-regulation of cyclin B1 and cdc2 and the up-regulation of p21 expression in MDA-MB231 human breast cancer cells.

    PubMed

    Kim, Sangmin; Lee, Hye Sook; Lee, Se-Kyung; Kim, Sung Hoon; Hur, Sung Mo; Kim, Jee Soo; Kim, Jung-Han; Choe, Jun-Ho; Shin, Incheol; Yang, Jung-Hyun; Lee, Jeong Eon; Nam, Seok Jin

    2010-12-01

    TPA is a potent regulator of cell growth, including cell proliferation and differentiation. In this study, we determined the effect of silibinin on TPA-induced growth arrest in breast cancer cells. Silibinin increased growth arrest of the G2/M phase in a dose-dependent fashion. Silibinin decreased the basal level of cyclin B1 and cdc2 expression, which is involved in S phase and G2/M transition. In addition, TPA-induced G2/M phase arrest was increased by silibinin. Under the same conditions, TPA-induced down-regulation of cyclin B1 and cdc2 was decreased by silibinin. In contrast, TPA-induced p21 expression was further increased by silibinin. To determine the regulatory mechanism of TPA-induced growth arrest, we pretreated cells with various inhibitors, such as UO126, SB203580, and LY294002. Interestingly, TPA-induced growth arrest was significantly increased by LY294002, but not by UO126 and SB203580. In addition, TPA-induced down-regulation of cyclin B1 was inhibited by LY294002; however, the basal level of p21 was increased by TPA and TPA-induced p21 expression was further increased by LY294002. Finally, adenoviral constitutively active-Akt (Ad-CA-Akt) overexpression regulated the up-regulation of cyclin B1 and the down-regulation of p21. Therefore, we have demonstrated that silibinin has an additive effect on TPA-induced growth arrest through the PI-3-kinase/Akt-dependent pathway. PMID:20554189

  8. Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses.

    PubMed

    Coumans, Joëlle V F; Gau, David; Poljak, Anne; Wasinger, Valerie; Roy, Partha; Moens, Pierre D J

    2014-12-01

    Despite early screening programs and new therapeutic strategies, metastatic breast cancer is still the leading cause of cancer death in women in industrialized countries and regions. There is a need for novel biomarkers of susceptibility, progression, and therapeutic response. Global analyses or systems science approaches with omics technologies offer concrete ways forward in biomarker discovery for breast cancer. Previous studies have shown that expression of profilin-1 (PFN1), a ubiquitously expressed actin-binding protein, is downregulated in invasive and metastatic breast cancer. It has also been reported that PFN1 overexpression can suppress tumorigenic ability and motility/invasiveness of breast cancer cells. To obtain insights into the underlying molecular mechanisms of how elevating PFN1 level induces these phenotypic changes in breast cancer cells, we investigated the alteration in global protein expression profiles of breast cancer cells upon stable overexpression of PFN1 by a combination of three different proteome analysis methods (2-DE, iTRAQ, label-free). Using MDA-MB-231 as a model breast cancer cell line, we provide evidence that PFN1 overexpression is associated with alterations in the expression of proteins that have been functionally linked to cell proliferation (FKPB1A, HDGF, MIF, PRDX1, TXNRD1, LGALS1, STMN1, LASP1, S100A11, S100A6), survival (HSPE1, HSPB1, HSPD1, HSPA5 and PPIA, YWHAZ, CFL1, NME1) and motility (CFL1, CORO1B, PFN2, PLS3, FLNA, FLNB, NME2, ARHGDIB). In view of the pleotropic effects of PFN1 overexpression in breast cancer cells as suggested by these new findings, we propose that PFN1-induced phenotypic changes in cancer cells involve multiple mechanisms. Our data reported here might also offer innovative strategies for identification and validation of novel therapeutic targets and companion diagnostics for persons with, or susceptibility to, breast cancer. PMID:25454514

  9. Inhibition of MDA-MB-231 breast cancer cell migration and invasion activity by andrographolide via suppression of nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Zhai, Zanjing; Qu, Xinhua; Li, Haowei; Ouyang, Zhengxiao; Yan, Wei; Liu, Guangwang; Liu, Xuqiang; Fan, Qiming; Tang, Tingting; Dai, Kerong; Qin, An

    2015-02-01

    Breast cancer is one of the most common types of cancer worldwide. The majority of patients with cancer succumb to the disease as a result of distant metastases (for example, in the bones), which cause severe complications. Despite advancements in breast cancer treatment, chemotherapeutic outcomes remain far from satisfactory, prompting a search for effective natural agents with few side‑effects. Andrographolide (AP), a natural diterpenoid lactone isolated from Andrographis paniculata, inhibits cancer cell growth. The current study aimed to examine the effect of AP on breast cancer cell proliferation, survival and progression in vitro and also its inhibitory activity on breast cancer bone metastasis in vivo. To achieve this, CCK8, flow cytometry, migration, invasion, western blot, PCR and luciferase reporter assay analyses were performed in vitro as well as establishing intratibial xenograft model of breast cancer bone metastasis in vivo. The results demonstrated that AP inhibits the migration and invasion of the MBA‑MD‑231 aggressive breast cancer cell line at non‑lethal concentrations, in addition to suppressing proliferation and inducing apoptosis at high concentrations in vitro. In vivo, AP significantly inhibited the growth of tumors planted in bone and attenuated cancer‑induced osteolysis. Tartrate‑resistant acid phosphatase staining revealed osteoclast activation in tumor‑bearing mice and AP was observed to attenuate this activation. The anti‑tumor activity of AP in vitro and in vivo correlates with the downregulation of the nuclear factor κB signaling pathway and the inhibition of matrix metalloproteinase‑9 expression levels. These results indicate that AP may be an effective anti‑tumor agent for the treatment of breast cancer bone metastasis. PMID:25374279

  10. Polyamines modulate the roscovitine-induced cell death switch decision autophagy vs. apoptosis in MCF-7 and MDA-MB-231 breast cancer cells.

    PubMed

    Arisan, Elif Damla; Akkoç, Yunus; Akyüz, Kaan Gencer; Kerman, Ezgi Melek; Obakan, Pinar; Çoker-Gürkan, Ajda; Palavan Ünsal, Narçin

    2015-06-01

    Current clinical strategies against breast cancer mainly involve the use of anti‑hormonal agents to decrease estrogen production; however, development of resistance is a major problem. The resistance phenotype depends on the modulation of cell‑cycle regulatory proteins, cyclins and cyclin‑dependent kinases. Roscovitine, a selective inhibitor of cyclin‑dependent kinases, shows high therapeutic potential by causing cell‑cycle arrest in various cancer types. Autophagy is a type of cell death characterized by the enzymatic degradation of macromolecules and organelles in double‑ or multi‑membrane autophagic vesicles. This process has important physiological functions, including the degradation of misfolded proteins and organelle turnover. Recently, the switch between autophagy and apoptosis has been proposed to constitute an important regulator of cell death in response to chemotherapeutic drugs. The process is regulated by several proteins, such as the proteins of the Atg family, essential for the initial formation of the autophagosome, and PI3K, important at the early stages of autophagic vesicle formation. Polyamines (PAs) are small aliphatic amines that play major roles in a number of eukaryotic processes, including cell proliferation. The PA levels are regulated by ornithine decarboxylase (ODC), the rate‑limiting enzyme in PA biosynthesis. In this study, we aimed to investigate the role of PAs in roscovitine‑induced autophagic/apoptotic cell death in estrogen receptor‑positive MCF‑7 and estrogen receptor‑negative MDA‑MB‑231 breast cancer cells. We show that MDA‑MB‑231 cells are more resistant to roscovitine than MCF‑7 cells. This difference was related to the regulation of autophagic key molecules in MDA‑MB‑231 cells. In addition, we found that exogenous PAs have a role in the cell death decision between roscovitine‑induced apoptosis or autophagy in MCF‑7 and MDA‑MB‑231 breast cancer cells. PMID:25650699

  11. Phytochemicals of Salacia oblonga responsible for free radical scavenging and antiproliferative activity against breast cancer cell lines (MDA-MB-231).

    PubMed

    Musini, Anjaneyulu; Rao, Jayaram Prakash; Giri, Archana

    2015-10-01

    Salacia oblonga, an inhabitant of tropical regions has been used in traditional Indian medicinal systems. Phytochemicals were extracted in methanol from the plant and analyzed for various biological activities. The results of biochemical tests for total phenolics (297 ± 0.005 and 275 ± 0.006) and flavonoids (95 ± 0.004 and 61.6 ± 0.004) in the aerial and root parts were indicated as Gallic acid and quercetin equivalents respectively. The Aerial and root extracts showed strong reducing ability based on reducing power and FRAP assays. The extracts exhibited significant IC50 values in DPPH, super oxide and nitric oxide radical scavenging assays. The extracts displayed low IC50 values (<50 μg/ml) when assessed for antiproliferative activity against breast cancer cell lines using the MTT assay. GC-MS analysis of methanolic extracts have revealed the presence of compounds viz. n-Hexadecanoic acid, N-Methoxy-N-methylacetamide, Ursa-9(11), 12-dien-3-ol, Gamma-sitosterol etc., that might be potential candidates for the biological activity exhibited by the extract. PMID:26600684

  12. Novel Suppressive Effects of Ketotifen on Migration and Invasion of MDA-MB-231 and HT-1080 Cancer Cells

    PubMed Central

    Kim, Hyun Ji; Park, Mi Kyung; Kim, Soo Youl; Lee, Chang Hoon

    2014-01-01

    The high mortality rates associated with cancer reflect the metastatic spread of tumor cells from the site of their origin. Metastasis, in fact, is the cause of 90% of cancer deaths. Therefore, considerable effort is being made to inhibit metastasis. In the present study, we screened ketotifen for anti-migratory and anti-invasive activities against MDA-MB-231 breast cancer and HT-1080 fibrosarcoma cancer cells. Cancer cell migration and invasion were measured using multi-well chambers. Additionally, western blots were used to examine the effects of ketotifen on the expressions of CDC42, Rho, Rac, and matrix metalloproteinase 9 (MMP-9). The results showed that ketotifen dose-dependently suppressed the migration and invasion of MDA-MB-231 and HT-1080 cells. Ketotifen also suppressed the expressions of CDC42, Rac, and Rho, which, significantly, are involved in MDA-MB-231 and HT-1080 cancer cell migration. Moreover, ketotifen suppressed the expression and activity of MMP-9, which is involved in degradation of the extracellular matrix leading to invasion. The overall data suggested that ketotifen suppresses the migration and invasion of MDA-MB-231 and HT-1080 cancer cells via inhibition of CDC42, Rac, Rho, and MMP-9 expression. PMID:25489422

  13. Gamma secretase inhibitor enhances sensitivity to doxorubicin in MDA-MB-231 cells

    PubMed Central

    Li, Zhi-Lu; Chen, Chen; Yang, Yuan; Wang, Cheng; Yang, Ting; Yang, Xin; Liu, Sheng-Chun

    2015-01-01

    Deregulated expression of molecular of the Notch signaling pathway is observed in malignant tumor. Notch signaling pathway is activated by a series of catalytic cleavage of the Notch receptor by gamma secretase. Gamma secretase inhibitor (GSI) have demonstrated clinical activity in patients with solid tumor. Triple negative breast cancer (TNBC) is related to poor prognosis and a high probability of lung and brain metastases. As first line therapy for TNBC, doxorubicin is partially effective in TNBC control. An understanding of the mechanisms for enhancing sensitivity to doxorubicin would be significant for future drug development. We hypothesized that a combination of cytotoxic chemotherapy doxorubicin to inhibit cell proliferation, together with GSI, would result in more effective outcome than either monotherapy alone. We treated MDA-MB-231 cell lines with doxorubicin and evaluated the monotherapy efficacy and in combination with GSI in both vitro and vivo. GSI-induced proliferation inhibition and apoptosis was achieved with an induction of PTEN and pro-apoptotic protein Bax expression and suppression of Notch-1, HES-1, CyclinD1 and anti-apoptotic protein Bcl-2. These results indicate that MDA-MB-231 cells are susceptible to a GSI, whether alone or in combination with doxorubicin, are correlated with changing of some surrogate marker. This study demonstrates practicability of combined use of GSI and doxorubicin, and together these results encourage new therapeutic method in triple negative breast cancer. PMID:26191129

  14. Directional Migration of MDA-MB-231 Cells Under Oxygen Concentration Gradients.

    PubMed

    Yahara, D; Yoshida, T; Enokida, Y; Takahashi, E

    2016-01-01

    To elucidate the initial mechanism of hematogenous metastasis of cancer cells, we hypothesized that cancer cells migrate toward regions with higher oxygen concentration such as intratumor micro vessels along the oxygen concentration gradient. To produce gradients of oxygen concentration in vitro, we devised the gap cover glass (GCG). After placing a GCG onto cultured MDA-MB-231 cells (a metastatic breast cancer cell line), the migration of individual cells under the GCG was tracked up to 12 h at 3 % oxygen in the micro incubator. We quantified the migration of individual cells using forward migration index (FMI). The cell migration perpendicular to the oxygen gradients was random in the direction whereas FMIs of the cell located at 300, 500, 700, and 1500 μm from the oxygen inlet were positive (p < 0.05) indicating a unidirectional migration toward the oxygen inlet. Present results are consistent with our hypothesis that MDA-MB-231 cells migrate toward regions with higher oxygen concentration. PMID:27526134

  15. Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions

    SciTech Connect

    Gupta, Chanchal; Kaur, Jasmine; Tikoo, Kulbhushan

    2014-05-15

    Hyperglycemia is a critical risk factor for development and progression of breast cancer. We have recently reported that high glucose induces phosphorylation of histone H3 at Ser 10 as well as de-phosphorylation of GSK-3β at Ser 9 in MDA-MB-231 cells. Here, we elucidate the mechanism underlying hyperglycemia-induced proliferation in MDA-MB-231 breast cancer cells. We provide evidence that hyperglycemia led to increased DNA methylation and DNMT1 expression in MDA-MB-231 cells. High glucose condition led to significant increase in the expression of PCNA, cyclin D1 and decrease in the expression of PTPN 12, p21 and PTEN. It also induced hypermethylation of DNA at the promoter region of PTPN 12, whereas hypomethylation at Vimentin and Snail. Silencing of GSK-3β by siRNA prevented histone H3 phosphorylation and reduced DNMT1 expression. We show that chromatin obtained after immunoprecipitation with phospho-histone H3 was hypermethylated under high glucose condition, which indicates a cross-talk between DNA methylation and histone H3 phosphorylation. ChIP-qPCR analysis revealed up-regulation of DNMT1 and metastatic genes viz. Vimentin, Snail and MMP-7 by phospho-histone H3, which were down-regulated upon GSK-3β silencing. To the best of our knowledge, this is the first report which shows that interplay between GSK-3β activation, histone H3 phosphorylation and DNA methylation directs proliferation of breast cancer cells. - Highlights: • High glucose induces phosphorylation of histone H3 and dephosphorylation of GSK-3β. • Moreover, hyperglycemia also leads to increased DNA methylation in MDA-MB-231 cells. • Inhibition of GSK-3β prevented histone H3 phosphorylation and reduced DNMT1 levels. • Interplay exists between GSK-3β, histone H3 phosphorylation and DNA methylation.

  16. FV-429 induces apoptosis and inhibits glycolysis by inhibiting Akt-mediated phosphorylation of hexokinase II in MDA-MB-231 cells.

    PubMed

    Zhou, Yuxin; Lu, Na; Qiao, Chen; Ni, Ting; Li, Zhiyu; Yu, Boyang; Guo, Qinglong; Wei, Libin

    2016-09-01

    In this study, the anticancer effect of a newly synthesized flavonoid FV-429, against human breast cancer MDA-MB-231 cells, and the underlying mechanisms were investigated. FV-429 triggered the apoptosis and simultaneously inhibited the glycolysis of MDA-MB-231 cells. Both the HK II activity and its level in mitochondria were significantly down regulated by FV-429. Moreover, FV-429 weakened the interaction between HKII and VDAC, stimulated the detachment of HK II from the mitochondria, and resulted in the opening of the mitochondrial permeability transition pores. Thus FV-429 induced the mitochondrial-mediated apoptosis, showing increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (MMP) and activation of caspase-3 and -9, cytochrome c (Cyt c) release, and apoptosis inducing factor (AIF) transposition. Further research revealed that the phosphorylation of mitochondrial HKII via Akt was responsible for the dissociation of HKII and the decreased HKII activity induced by FV-429. Taken together, FV-429 inhibited the phosphorylation of HKII, down-regulated its activity, and stimulated the release of HKII from the mitochondria, resulting the inhibited glycolysis and mitochondrial-mediated apoptosis. The studies provide a molecular basis for the development of flavonoid compounds as novel anticancer agents for breast cancer. © 2015 Wiley Periodicals, Inc. PMID:26258875

  17. Ascofuranone suppresses EGF-induced HIF-1α protein synthesis by inhibition of the Akt/mTOR/p70S6K pathway in MDA-MB-231 breast cancer cells

    SciTech Connect

    Jeong, Yun-Jeong; Cho, Hyun-Ji; Magae, Junji; Lee, In-Kyu; Park, Keun-Gyu; Chang, Young-Chae

    2013-12-15

    Hypoxia-inducible factor (HIF)-1 plays an important role in tumor progression, angiogenesis and metastasis. In this study, we investigated the potential molecular mechanisms underlying the anti-angiogenic effect of ascofuranone, an isoprenoid antibiotic from Ascochyta viciae, in epidermal growth factor (EGF)-1 responsive human breast cancer cells. Ascofuranone significantly and selectively suppressed EGF-induced HIF-1α protein accumulation, whereas it did not affect the expression of HIF-1β. Furthermore, ascofuranone inhibited the transcriptional activation of vascular endothelial growth factor (VEGF) by reducing protein HIF-1α. Mechanistically, we found that the inhibitory effects of ascofuranone on HIF-1α protein expression are associated with the inhibition of synthesis HIF-1α through an EGF-dependent mechanism. In addition, ascofuranone suppressed EGF-induced phosphorylation of Akt/mTOR/p70S6 kinase, but the phosphorylation of ERK/JNK/p38 kinase was not affected by ascofuranone. These results suggest that ascofuranone suppresses EGF-induced HIF-1α protein translation through the inhibition of Akt/mTOR/p70S6 kinase signaling pathways and plays a novel role in the anti-angiogenic action. - Highlights: • Inhibitory effect of ascofuranone on HIF-1α expression is EGF-specific regulation. • Ascofuranone decreases HIF-1α protein synthesis through Akt/mTOR pathways. • Ascofuranone suppresses EGF-induced VEGF production and tumor angiogenesis.

  18. Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines

    PubMed Central

    Ravikumar, S; Fredimoses, M; Gnanadesigan, M

    2012-01-01

    Objective To investigate the anticancer property of marine sediment actinomycetes against two different breast cancer cell lines. Methods In vitro anticancer activity was carried out against breast (MCF-7 and MDA-MB-231) cancer cell lines. Partial sequences of the 16s rRNA gene, phylogenetic tree construction, multiple sequence analysis and secondary structure analysis were also carried out with the actinomycetes isolates. Results Of the selected five actinomycete isolates, ACT01 and ACT02 showed the IC50 value with (10.13±0.92) and (22.34±5.82) µg/mL concentrations, respectively for MCF-7 cell line at 48 h, but ACT01 showed the minimum (18.54±2.49 µg/mL) level of IC50 value with MDA-MB-231 cell line. Further, the 16s rRNA partial sequences of ACT01, ACT02, ACT03, ACT04 and ACT05 isolates were also deposited in NCBI data bank with the accession numbers of GQ478246, GQ478247, GQ478248, GQ478249 and GQ478250, respectively. The phylogenetic tree analysis showed that, the isolates of ACT02 and ACT03 were represented in group I and III, respectively, but ACT01 and ACT02 were represented in group II. The multiple sequence alignment of the actinomycete isolates showed that, the maximum identical conserved regions were identified with the nucleotide regions of 125 to 221st base pairs, 65 to 119th base pairs and 55, 48 and 31st base pairs. Secondary structure prediction of the 16s rRNA showed that, the maximum free energy was consumed with ACT03 isolate (-45.4 kkal/mol) and the minimum free energy was consumed with ACT04 isolate (-57.6 kkal/mol). Conclusions The actinomycete isolates of ACT01 and ACT02 (GQ478246 and GQ478247) which are isolated from sediment sample can be further used as anticancer agents against breast cancer cell lines. PMID:23569875

  19. Evaluation and Comparison of the In Vitro Cytotoxic Activity of Withania somnifera Methanolic and Ethanolic Extracts against MDA-MB-231 and Vero Cell Lines.

    PubMed

    Srivastava, A N; Ahmad, Rumana; Khan, Mohsin Ali

    2016-01-01

    Withania somnifera Dunal (WS), commonly known as Ashwagandha in India, belongs to the family Solanaceae. It is extensively used in most of the Indian herbal pharmaceuticals and nutraceuticals. In the current study, the in vitro cytotoxic activity of methanolic, ethanolic, and aqueous extracts of WS stems was evaluated using cytometry and the MTT assay against the MDA-MB-231 human breast cancer cell line. Methanolic and ethanolic extracts of WS showed potent anticancer activity on the MDA-MB-231 human breast cancer cell line, whereas the aqueous extract did not exhibit any significant activity at 100 µg/ml. The percentage viability of the cell lines was determined by using the Trypan blue dye exclusion method. Cell viability was reduced to 21% and 0% at 50 and 100 µg/ml of the methanolic extract, respectively, as compared to 19% and 0% at 50 and 100 µg/ml for the ethanolic extract and 37% at 100 µg/ml in sterile Milli-Q water after 48 hours of treatment. Methanolic and ethanolic extracts of WS were shown to possess IC50 values of 30 and 37 µg/ml, respectively, by the MTT assay and cytometer-based analysis, with the methanolic extract being more active than the other two. On the other hand, methanolic and ethanolic extracts of WS did not exhibit any significant in vitro activity against the normal epithelial cell line Vero at 50 µg/ml. HPLC was carried out for the analysis of its phytochemical profile and demonstrated the presence of the active component Withaferin A in both extracts. The methanolic and ethanolic extracts of Withania should be studied further for the isolation and characterization of the active components to lead optimization studies. PMID:27110497

  20. Evaluation and Comparison of the In Vitro Cytotoxic Activity of Withania somnifera Methanolic and Ethanolic Extracts against MDA-MB-231 and Vero Cell Lines

    PubMed Central

    Srivastava, A. N.; Ahmad, Rumana; Khan, Mohsin Ali

    2016-01-01

    Withania somnifera Dunal (WS), commonly known as Ashwagandha in India, belongs to the family Solanaceae. It is extensively used in most of the Indian herbal pharmaceuticals and nutraceuticals. In the current study, the in vitro cytotoxic activity of methanolic, ethanolic, and aqueous extracts of WS stems was evaluated using cytometry and the MTT assay against the MDA-MB-231 human breast cancer cell line. Methanolic and ethanolic extracts of WS showed potent anticancer activity on the MDA-MB-231 human breast cancer cell line, whereas the aqueous extract did not exhibit any significant activity at 100 µg/ml. The percentage viability of the cell lines was determined by using the Trypan blue dye exclusion method. Cell viability was reduced to 21% and 0% at 50 and 100 µg/ml of the methanolic extract, respectively, as compared to 19% and 0% at 50 and 100 µg/ml for the ethanolic extract and 37% at 100 µg/ml in sterile Milli-Q water after 48 hours of treatment. Methanolic and ethanolic extracts of WS were shown to possess IC50 values of 30 and 37 µg/ml, respectively, by the MTT assay and cytometer-based analysis, with the methanolic extract being more active than the other two. On the other hand, methanolic and ethanolic extracts of WS did not exhibit any significant in vitro activity against the normal epithelial cell line Vero at 50 µg/ml. HPLC was carried out for the analysis of its phytochemical profile and demonstrated the presence of the active component Withaferin A in both extracts. The methanolic and ethanolic extracts of Withania should be studied further for the isolation and characterization of the active components to lead optimization studies. PMID:27110497

  1. PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression.

    PubMed

    Mariano, Germano; Ricciardi, Maria Rosaria; Trisciuoglio, Daniela; Zampieri, Michele; Ciccarone, Fabio; Guastafierro, Tiziana; Calabrese, Roberta; Valentini, Elisabetta; Tafuri, Agostino; Del Bufalo, Donatella; Caiafa, Paola; Reale, Anna

    2015-06-20

    To overcome cancer cells resistance to pharmacological therapy, the development of new therapeutic approaches becomes urgent. For this purpose, the use of poly(ADP-ribose) polymerase (PARP) inhibitors in combination with other cytotoxic agents could represent an efficacious strategy. Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification that plays a well characterized role in the cellular decisions of life and death. Recent findings indicate that PARP-1 may control the expression of Snail, the master gene of epithelial-mesenchymal transition (EMT). Snail is highly represented in different resistant tumors, functioning as a factor regulating anti-apoptotic programmes. MDA-MB-231 is a Snail-expressing metastatic breast cancer cell line, which exhibits chemoresistance properties when treated with damaging agents. In this study, we show that the PARP inhibitor ABT-888 was capable to modulate the MDA-MB-231 cell response to doxorubicin, leading to an increase in the rate of apoptosis. Our further results indicate that PARP-1 controlled Snail expression at transcriptional level in cells exposed to doxorubicin. Given the increasing interest in the employment of PARP inhibitors as chemotherapeutic adjuvants, our in vitro results suggest that one of the mechanisms through which PARP inhibition can chemosensitize cancer cells in vivo, is targeting Snail expression thus promoting apoptosis. PMID:25938539

  2. PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression

    PubMed Central

    Mariano, Germano; Ricciardi, Maria Rosaria; Trisciuoglio, Daniela; Zampieri, Michele; Ciccarone, Fabio; Guastafierro, Tiziana; Calabrese, Roberta; Valentini, Elisabetta; Tafuri, Agostino; Del Bufalo, Donatella; Caiafa, Paola; Reale, Anna

    2015-01-01

    To overcome cancer cells resistance to pharmacological therapy, the development of new therapeutic approaches becomes urgent. For this purpose, the use of poly(ADP-ribose) polymerase (PARP) inhibitors in combination with other cytotoxic agents could represent an efficacious strategy. Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification that plays a well characterized role in the cellular decisions of life and death. Recent findings indicate that PARP-1 may control the expression of Snail, the master gene of epithelial-mesenchymal transition (EMT). Snail is highly represented in different resistant tumors, functioning as a factor regulating anti-apoptotic programmes. MDA-MB-231 is a Snail-expressing metastatic breast cancer cell line, which exhibits chemoresistance properties when treated with damaging agents. In this study, we show that the PARP inhibitor ABT-888 was capable to modulate the MDA-MB-231 cell response to doxorubicin, leading to an increase in the rate of apoptosis. Our further results indicate that PARP-1 controlled Snail expression at transcriptional level in cells exposed to doxorubicin. Given the increasing interest in the employment of PARP inhibitors as chemotherapeutic adjuvants, our in vitro results suggest that one of the mechanisms through which PARP inhibition can chemosensitize cancer cells in vivo, is targeting Snail expression thus promoting apoptosis. PMID:25938539

  3. PI3K/Akt/mTOR activation by suppression of ELK3 mediates chemosensitivity of MDA-MB-231 cells to doxorubicin by inhibiting autophagy.

    PubMed

    Park, Ji-Hoon; Kim, Keun Pil; Ko, Jeong-Jae; Park, Kyung-Soon

    2016-08-19

    Drug resistance in breast cancer remains a major obstacle of clinical therapy. We found that suppression of ELK3 in the triple negative breast cancer cell line MDA-MB-231 impaired autophagy and led to a hypersensitive response to doxorubicin treatment. In ELK3-knockdown MDA-MB-231 cells (ELK3 KD), autophagy was not activated under starvation conditions, which is a major stimulus of autophagy activation. We revealed that activation of the PI3K/Akt pathway was the main cause of impaired autophagy in ELK3 KD. Our results suggest that targeting ELK3 may be a potential approach to overcome doxorubicin resistance in breast cancer therapeutics. PMID:27301639

  4. Cinnamomum cassia Suppresses Caspase-9 through Stimulation of AKT1 in MCF-7 Cells but Not in MDA-MB-231 Cells

    PubMed Central

    Kianpour Rad, Sima; Kanthimathi, M. S.; Abd Malek, Sri Nurestri; Lee, Guan Serm; Looi, Chung Yeng; Wong, Won Fen

    2015-01-01

    Background Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated. Methodology/Principal Findings The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34±3.52 and 32.42 ±0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia). Conclusion Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study. PMID:26700476

  5. Analysis of protein-protein interactions in MCF-7 and MDA-MB-231 cell lines using phthalic acid chemical probes.

    PubMed

    Liang, Shih-Shin; Wang, Tsu-Nai; Tsai, Eing-Mei

    2014-01-01

    Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein-protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES). Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively. PMID:25402641

  6. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical Probes

    PubMed Central

    Liang, Shih-Shin; Wang, Tsu-Nai; Tsai, Eing-Mei

    2014-01-01

    Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES). Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively. PMID:25402641

  7. Tauroursodeoxycholic acid reduces the invasion of MDA-MB-231 cells by modulating matrix metalloproteinases 7 and 13

    PubMed Central

    Park, Ga-Young; Han, Yu Kyeong; Han, Jeong Yoon; Lee, Chang Geun

    2016-01-01

    Tauroursodeoxycholic acid (TUDCA) is a conjugated form of UDCA that modulates several signaling pathways and acts as a chemical chaperone to relieve endoplasmic reticulum (ER) stress. The present study showed that TUDCA reduced the invasion of the MDA-MB-231 metastatic breast cancer cell line under normoxic and hypoxic conditions using an in vitro invasion assay. Quantitative polymerase chain reaction assay revealed that the reduced invasion following TUDCA treatment was associated with a decreased expression of matrix metalloproteinase (MMP)-7 and −13, which play important roles in invasion and metastasis. Inhibitors and short hairpin RNAs were used to show that the effect of TUDCA in the reduction of invasion appeared to be dependent on the protein kinase RNA-like ER kinase pathway, a downstream ER stress signaling pathway. Thus, TUDCA is a candidate anti-metastatic agent to target the ER stress pathway. PMID:27602168

  8. Cytotoxicity enhancement in MDA-MB-231 cells by the combination treatment of tetrahydropalmatine and berberine derived from Corydalis yanhusuo W. T. Wang

    PubMed Central

    Zhao, Yan; Gao, Jian-Li; Ji, Jian-Wei; Gao, Min; Yin, Qiao-Shan; Qiu, Qiao-Li; Wang, Chuan; Chen, Shu-Zhan; Xu, Juan; Liang, Ren-Shang; Cai, Yan-Zi; Wang, Xia-Fei

    2014-01-01

    Aim: Our previous works have demonstrated that Chinese herb medicine yanhusuo (Corydalis yanhusuo W. T. Wang) has strong anti-cancer proliferation effect in MDA-MB-231 cells. The goal of this study was to find out the synergic cytotoxicity effect of three natural compounds, tetrahydropalmatine (THP), berberine (Ber), and dehydrocorydaline (DHC), isolated from C. yanhusuo W. T. Wang. Materials and Methods: The IC50 of THP Ber and DHC in single use, as well as in combination use at fixed ratios and doses was measured by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. Isobologram, combination index and modified coefficient of drug interaction (CDI) methods were used for evaluation the combination effects of THF! Ber, and DHC in different ratio and concentration. Results: The results indicated that the combination of THP and Ber shown the strongest anti-cancer cell proliferation effect at the ratio of 2:3 (Ber: THF the average CDI value was 0.5795). DHC and THP have additive cytotoxicity in MDA-MB-231 cells. However, there wasn’t any synergistic effect between Ber and DHC, and it even exhibited antagonistic effect when the percentage of DHC was >50%. Conclusion: Our findings suggested that the combination of THP and Ber might be beneficial for anti-proliferation of MDA-MB-231 breast cancer cells through a significant synergy effect. PMID:26401350

  9. Non-Muscle Myosin II Isoforms Have Different Functions in Matrix Rearrangement by MDA-MB-231 Cells

    PubMed Central

    Hindman, Bridget; Goeckeler, Zoe; Sierros, Kostas; Wysolmerski, Robert

    2015-01-01

    The role of a stiffening extra-cellular matrix (ECM) in cancer progression is documented but poorly understood. Here we use a conditioning protocol to test the role of nonmuscle myosin II isoforms in cell mediated ECM arrangement using collagen constructs seeded with breast cancer cells expressing shRNA targeted to either the IIA or IIB heavy chain isoform. While there are several methods available to measure changes in the biophysical characteristics of the ECM, we wanted to use a method which allows for the measurement of global stiffness changes as well as a dynamic response from the sample over time. The conditioning protocol used allows the direct measurement of ECM stiffness. Using various treatments, it is possible to determine the contribution of various construct and cellular components to the overall construct stiffness. Using this assay, we show that both the IIA and IIB isoforms are necessary for efficient matrix remodeling by MDA-MB-231 breast cancer cells, as loss of either isoform changes the stiffness of the collagen constructs as measured using our conditioning protocol. Constructs containing only collagen had an elastic modulus of 0.40 Pascals (Pa), parental MDA-MB-231 constructs had an elastic modulus of 9.22 Pa, while IIA and IIB KD constructs had moduli of 3.42 and 7.20 Pa, respectively. We also calculated the cell and matrix contributions to the overall sample elastic modulus. Loss of either myosin isoform resulted in decreased cell stiffness, as well as a decrease in the stiffness of the cell-altered collagen matrices. While the total construct modulus for the IIB KD cells was lower than that of the parental cells, the IIB KD cell-altered matrices actually had a higher elastic modulus than the parental cell-altered matrices (4.73 versus 4.38 Pa). These results indicate that the IIA and IIB heavy chains play distinct and non-redundant roles in matrix remodeling. PMID:26136073

  10. Protein-protein interaction between ezrin and p65 in human breast cancer cells.

    PubMed

    Tang, R; Li, F X; Shao, W F; Wen, Q S; Yu, X R; Xiong, J B

    2016-01-01

    Our study aimed to investigate the co-localization and protein-protein interactions between ezrin and p65 in human breast cancer cells. Liquid chromatography-mass spectrometry (LCMS) was used to uncover novel protein interactions with ezrin in MDA-MB-231 cells. Endogenous co-immunoprecipitation was used to validate protein-protein interactions between ezrin and p65 in MDA-MB-231. Exogenous interactions between ezrin and p65 were validated in MDA-MB-231 cells via Flag-ezrin and HA-p65 co-transfection and followed by co-immunoprecipitation. Immunofluorescence staining was used to visualize ezrin and p65 co-localization in MDA-MB-231. LCMS results showed that there were 1000 proteins interacting with ezrin in MDA-MB-231 cells. Ezrin and p65 interactions were confirmed with both endogenous and exogenous methods. We were also able to visualize ezrin and p65 co-localization in MDA-MB-231. In summary, we found protein-protein interactions between Ezrin and p65 in human breast cancer cells. PMID:27420986

  11. Comparison between sonodynamic and photodynamic effect on MDA-MB-231 cells.

    PubMed

    Wang, Haiping; Liu, Quanhong; Zhang, Kun; Wang, Pan; Xue, Qin; Li, Long; Wang, Xiaobing

    2013-10-01

    Photodynamic therapy (PDT) and sonodynamic therapy (SDT) are therapeutic modalities for tumors. In this study we investigated the combined cytotoxic effect of 0.36W/cm(2) and 0.72W/cm(2) ultrasound with various Ce6 concentrations (1, 2, 5, 10μg/ml), and that of 1μg/ml Ce6 with different laser light dose (650nm; 10.4mW/cm(2); 0.3, 0.6, 1.2 and 2.5J/cm(2)) on MDA-MB-231 cells. Both high reactive oxygen species (ROS) production and a decline in mitochondrial membrane potential (MMP) were detected with high Ce6 concentrations (5 and 10μg/ml) combined with 0.72W/cm(2) ultrasound and 1.2, 2.5J/cm(2) laser light with 1μg/ml Ce6. In addition, cell membrane integrity was evaluated by using propidium iodide (PI), revealing membrane damage was aggravated with the increasing ultrasound intensity, but no significant difference on cell membrane integrity could be observed after PDT treatment. These results suggest ROS may play an important role both in SDT and PDT. Besides, mitochondria may be an initial target in PDT while SDT can cause multi-site damages in MDA-MB-231 cells. PMID:24050992

  12. The dose dependent in vitro responses of MCF-7 and MDA-MB-231 cell lines to extracts of Vatica diospyroides symington type SS fruit include effects on mode of cell death

    PubMed Central

    Srisawat, Theera; Sukpondma, Yaowapa; Graidist, Potchanapond; Chimplee, Siriphon; Kanokwiroon, Kanyanatt

    2015-01-01

    Background: Vatica diospyroides type LS is a known source of valuable compounds for cancer treatment, however, in contrast little is known about therapeutic efficacy of type SS. Objective: This study focused on in vitro cytotoxicity of these fruit extracts, and the cell death mode they induce in breast cancer cells. Materials and Methods: Acetone extracts of fruit were tested for cytotoxicity against MCF-7 and MDA-MB-231 cell lines. The apoptosis and necrosis of these cells were quantified by fluorescence activated cell sorter (FACS) and western blot analyses. Results: After 72 h of treatment, the 50% growth inhibition concentrations (IC50) levels were 16.21 ± 0.13 µg/mL against MCF-7 and 30.0 ± 4.30 µg/mL against MDA-MB-231, indicating high and moderate cytotoxicity, respectively. From the FACS results, we estimate that the cotyledon extract at half IC50 produced 11.7% dead MCF-7 cells via apoptosis, whereas another concentrations both apoptosis and necrosis modes co-existed in a dose-dependent manner. In MDA-MB-231 cell line, only the apoptosis was induced by the pericarp extract in a dose-dependent manner. With the extracts at half IC50 concentration, in both cells, the expression of p21 decreased while that of Bax increased within 12–48 h of dosing, confirming apoptosis induced by time-dependent responses. Apoptosis dependent on p53 was found in MCF-7, whereas the mutant p53 of MDA-MB-231 cells was expressed. Conclusion: The results indicate that fruit extracts of V. diospyroides have cytotoxic effects against MCF-7 and MDA-MB-231 cells via apoptosis pathway in a dose-dependent manner. This suggests that the extracts could provide active ingredients for the development, targeting breast cancer therapy. PMID:26109760

  13. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  14. Enhancement of viability of radiosensitive (PBMC) and resistant (MDA-MB-231) clones in low-dose-rate cobalt-60 radiation therapy*

    PubMed Central

    Falcão, Patrícia Lima; Motta, Bárbara Miranda; de Lima, Fernanda Castro; Lima, Celso Vieira; Campos, Tarcísio Passos Ribeiro

    2015-01-01

    Objective In the present study, the authors investigated the in vitro behavior of radio-resistant breast adenocarcinoma (MDA-MB-231) cells line and radiosensitive peripheral blood mononuclear cells (PBMC), as a function of different radiation doses, dose rates and postirradiation time kinetics, with a view to the interest of clinical radiotherapy. Materials and Methods The cells were irradiated with Co-60, at 2 and 10 Gy and two different exposure rates, 339.56 cGy.min–1 and the other corresponding to one fourth of the standard dose rates, present over a 10-year period of cobalt therapy. Post-irradiation sampling was performed at pre-established kinetics of 24, 48 and 72 hours. The optical density response in viability assay was evaluated and a morphological analysis was performed. Results Radiosensitive PBMC showed decrease in viability at 2 Gy, and a more significant decrease at 10 Gy for both dose rates. MDAMB- 231 cells presented viability decrease only at higher dose and dose rate. The results showed MDA-MB-231 clone expansion at low dose rate after 48–72 hours post-radiation. Conclusion Low dose rate shows a possible potential clinical impact involving decrease in management of radio-resistant and radiosensitive tumor cell lines in cobalt therapy for breast cancer. PMID:26185342

  15. Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures

    NASA Astrophysics Data System (ADS)

    Ryle, James P.; Molony, Karen M.; McDonnell, Susan; Naughton, Thomas J.; Sheridan, John T.

    2009-08-01

    Digital holography is the process where an object's phase and amplitude information is retrieved from intensity images obtained using a digital camera (e.g. CCD or CMOS sensor). In-line digital holographic techniques offer full use of the recording device's sampling bandwidth, unlike off-axis holography where object information is not modulated onto carrier fringes. Reconstructed images are obscured by the linear superposition of the unwanted, out of focus, twin images. In addition to this, speckle noise degrades overall quality of the reconstructed images. The speckle effect is a phenomenon of laser sources used in digital holographic systems. Minimizing the effects due to speckle noise, removal of the twin image and using the full sampling bandwidth of the capture device aids overall reconstructed image quality. Such improvements applied to digital holography can benefit applications such as holographic microscopy where the reconstructed images are obscured with twin image information. Overcoming such problems allows greater flexibility in current image processing techniques, which can be applied to segmenting biological cells (e.g. MCF-7 and MDA-MB- 231) to determine their overall cell density and viability. This could potentially be used to distinguish between apoptotic and necrotic cells in large scale mammalian cell processes, currently the system of choice, within the biopharmaceutical industry.

  16. Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Triple Negative Breast Cancer Xenografts

    PubMed Central

    Rowan, Brian G.; Gimble, Jeffrey M.; Sheng, Mei; Anbalagan, Muralidharan; Jones, Ryan K.; Frazier, Trivia P.; Asher, Majdouline; Lacayo, Eduardo A.; Friedlander, Paul L.; Kutner, Robert; Chiu, Ernest S.

    2014-01-01

    Background Fat grafting is used to restore breast defects after surgical resection of breast tumors. Supplementing fat grafts with adipose tissue-derived stromal/stem cells (ASCs) is proposed to improve the regenerative/restorative ability of the graft and retention. However, long term safety for ASC grafting in proximity of residual breast cancer cells is unknown. The objective of this study was to determine the impact of human ASCs derived from abdominal lipoaspirates of three donors, on a human breast cancer model that exhibits early metastasis. Methodology/Principal Findings Human MDA-MB-231 breast cancer cells represents “triple negative” breast cancer that exhibits early micrometastasis to multiple mouse organs [1]. Human ASCs were derived from abdominal adipose tissue from three healthy female donors. Indirect co-culture of MDA-MB-231 cells with ASCs, as well as direct co-culture demonstrated that ASCs had no effect on MDA-MB-231 growth. Indirect co-culture, and ASC conditioned medium (CM) stimulated migration of MDA-MB-231 cells. ASC/RFP cells from two donors co-injected with MDA-MB-231/GFP cells exhibited a donor effect for stimulation of primary tumor xenografts. Both ASC donors stimulated metastasis. ASC/RFP cells were viable, and integrated with MDA-MB-231/GFP cells in the tumor. Tumors from the co-injection group of one ASC donor exhibited elevated vimentin, matrix metalloproteinase-9 (MMP-9), IL-8, VEGF and microvessel density. The co-injection group exhibited visible metastases to the lung/liver and enlarged spleen not evident in mice injected with MDA-MB-231/GFP alone. Quantitation of the total area of GFP fluorescence and human chromosome 17 DNA in mouse organs, H&E stained paraffin sections and fluorescent microscopy confirmed multi-focal metastases to lung/liver/spleen in the co-injection group without evidence of ASC/RFP cells. Conclusions Human ASCs derived from abdominal lipoaspirates of two donors stimulated metastasis of MDA-MB-231

  17. EIYMNVPV Motif is Essential for A1CF Nucleus Localization and A1CF (-8aa) Promotes Proliferation of MDA-MB-231 Cells via Up-Regulation of IL-6

    PubMed Central

    Zhou, Li; Hao, Jin; Yuan, Yue; Peng, Rui; Wang, Honglian; Ni, Dongsheng; Gu, Yuping; Huang, Liyuan; Mao, Zhaomin; Lyu, Zhongshi; Du, Yao; Liu, Zhicheng; Li, Yiman; Ju, Pan; Long, Yaoshui; Liu, Jianing; Zhou, Qin

    2016-01-01

    Apobec-1 complementation factor (A1CF) is a heterogeneous nuclear ribonuceloprotein (hnRNP) and mediates apolipoprotein-B mRNA editing. A1CF can promote the regeneration of the liver by post-transcriptionally stabilizing Interleukin-6 (IL-6) mRNA. It also contains two transcriptional variants-A1CF64 and A1CF65, distinguished by the appearance of a 24-nucleotide motif which contributes to the corresponding eight-amino acid motif of EIYMNVPV. For the first time, we demonstrated that the EIYMNVPV motif was essential for A1CF nucleus localization, A1CF deficient of the EIYMNVPV motif, A1CF (-8aa) showed cytoplasm distribution. More importantly, we found that A1CF (-8aa), but not its full-length counterpart, can promote proliferation of MDA-MB-231 cells accompanied with increased level of IL-6 mRNA. Furthermore, silencing of IL-6 attenuated A1CF (-8aa)-induced proliferation in MDA-MB-231 cells. In conclusion, notably, these findings suggest that A1CF (-8aa) promoted proliferation of MDA-MB-231 cells in vitro viewing IL-6 as a target. Thus, the EIYMNVPV motif could be developed as a potential target for basal-like breast cancer therapy. PMID:27231908

  18. EIYMNVPV Motif is Essential for A1CF Nucleus Localization and A1CF (-8aa) Promotes Proliferation of MDA-MB-231 Cells via Up-Regulation of IL-6.

    PubMed

    Zhou, Li; Hao, Jin; Yuan, Yue; Peng, Rui; Wang, Honglian; Ni, Dongsheng; Gu, Yuping; Huang, Liyuan; Mao, Zhaomin; Lyu, Zhongshi; Du, Yao; Liu, Zhicheng; Li, Yiman; Ju, Pan; Long, Yaoshui; Liu, Jianing; Zhou, Qin

    2016-01-01

    Apobec-1 complementation factor (A1CF) is a heterogeneous nuclear ribonuceloprotein (hnRNP) and mediates apolipoprotein-B mRNA editing. A1CF can promote the regeneration of the liver by post-transcriptionally stabilizing Interleukin-6 (IL-6) mRNA. It also contains two transcriptional variants-A1CF64 and A1CF65, distinguished by the appearance of a 24-nucleotide motif which contributes to the corresponding eight-amino acid motif of EIYMNVPV. For the first time, we demonstrated that the EIYMNVPV motif was essential for A1CF nucleus localization, A1CF deficient of the EIYMNVPV motif, A1CF (-8aa) showed cytoplasm distribution. More importantly, we found that A1CF (-8aa), but not its full-length counterpart, can promote proliferation of MDA-MB-231 cells accompanied with increased level of IL-6 mRNA. Furthermore, silencing of IL-6 attenuated A1CF (-8aa)-induced proliferation in MDA-MB-231 cells. In conclusion, notably, these findings suggest that A1CF (-8aa) promoted proliferation of MDA-MB-231 cells in vitro viewing IL-6 as a target. Thus, the EIYMNVPV motif could be developed as a potential target for basal-like breast cancer therapy. PMID:27231908

  19. Modulation of ABCC1 and ABCG2 proteins by ouabain in human breast cancer cells.

    PubMed

    DA Silva, Vanessa Amil; DA Silva, Karla Andreza Elizeu Pereira; Delou, João Marcos Azevedo; DA Fonseca, Leonardo Marques; Lopes, Anibal Gil; Capella, Márcia Alves Marques

    2014-03-01

    ABCC1 and ABCG2 are two transporters associated with multi-drug resistance to cancer chemotherapy. Ouabain is a cardiotonic steroid, currently considered as a hormone associated with arterial hypertension. Previous studies have suggested that ouabain can modulate ABCB1 and ABCC1 expression in cancer and renal cell lines. The present study investigated the effects of physiological concentrations of ouabain on the expression and activity of ABCC1 and ABCG2 in two human breast cancer cell lines, MCF7 and MDA-MB-231, the first known to be responsive to estrogens. Cell viability and proliferation assays showed that 1 μM ouabain reduced proliferation of MCF7, but not if MDA-MB-231 cells. On the other hand, 10 nM ouabain increased proliferation of MDA-MB-231, but not of MCF7 cells. Ouabain (10 nM) prevented the cytotoxic effects of doxorubicin in MCF7 cells, but not in MDA-MB-231 cells. Treatment of cells under different ouabain concentrations for 24 h did not cause any significant effects in the expression of ABCG2 or ABCC1 in either cell line. However, the activity of ABCC1 was increased when MCF7 and MDA-MB-231 cells were treated with 10 mM and 1 nM ouabain respectively. These results claim attention to the possibility that breast cancer patients with high levels of endogenous ouabain may have different responses to chemotherapy. PMID:24596392

  20. Suppression of Spry1 inhibits triple-negative breast cancer malignancy by decreasing EGF/EGFR mediated mesenchymal phenotype

    PubMed Central

    He, Qing; Jing, Hongyu; Liaw, Lucy; Gower, Lindsey; Vary, Calvin; Hua, Shucheng; Yang, Xuehui

    2016-01-01

    Sprouty (Spry) proteins have been implicated in cancer progression, but their role in triple-negative breast cancer (TNBC), a subtype of lethal and aggressive breast cancer, is unknown. Here, we reported that Spry1 is significantly expressed in TNBC specimen and MDA-MB-231 cells. To understand Spry1 regulation of signaling events controlling breast cancer phenotype, we used lentiviral delivery of human Spry1 shRNAs to suppress Spry1 expression in MDA-MB-231, an established TNBC cell line. Spry1 knockdown MDA-MB-231 cells displayed an epithelial phenotype with increased membrane E-cadherin expression. Knockdown of Spry1 impaired MDA-MB-231 cell migration, Matrigel invasion, and anchorage-dependent and -independent growth. Tumor xenografts originating from Spry1 knockdown MDA-MB-231 cells grew slower, had increased E-cadherin expression, and yielded fewer lung metastases compared to control. Furthermore, suppressing Spry1 in MDA-MB-231 cells impaired the induction of Snail and Slug expression by EGF, and this effect was associated with increased EGFR degradation and decreased EGFR/Grb2/Shp2/Gab1 signaling complex formation. The same phenotype was also observed in the TNBC cell line MDA-MB-157. Together, our results show that unlike in some tumors, where Spry may mediate tumor suppression, Spry1 plays a selective role in at least a subset of TNBC to promote the malignant phenotype via enhancing EGF-mediated mesenchymal phenotype. PMID:26976794

  1. Specific expression of the human voltage-gated proton channel Hv1 in highly metastatic breast cancer cells, promotes tumor progression and metastasis

    SciTech Connect

    Wang, Yifan; Li, Shu Jie; Pan, Juncheng; Che, Yongzhe; Yin, Jian; Zhao, Qing

    2011-08-26

    Highlights: {yields} Hv1 is specifically expressed in highly metastatic human breast tumor tissues. {yields} Hv1 regulates breast cancer cytosolic pH. {yields} Hv1 acidifies extracellular milieu. {yields} Hv1 exacerbates the migratory ability of metastatic cells. -- Abstract: The newly discovered human voltage-gated proton channel Hv1 is essential for proton transfer, which contains a voltage sensor domain (VSD) without a pore domain. We report here for the first time that Hv1 is specifically expressed in the highly metastatic human breast tumor tissues, but not in poorly metastatic breast cancer tissues, detected by immunohistochemistry. Meanwhile, real-time RT-PCR and immunocytochemistry showed that the expression levels of Hv1 have significant differences among breast cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, MDA-MB-453, T-47D and SK-BR-3, in which Hv1 is expressed at a high level in highly metastatic human breast cancer cell line MDA-MB-231, but at a very low level in poorly metastatic human breast cancer cell line MCF-7. Inhibition of Hv1 expression in the highly metastatic MDA-MB-231 cells by small interfering RNA (siRNA) significantly decreases the invasion and migration of the cells. The intracellular pH of MDA-MB-231 cells down-regulated Hv1 expression by siRNA is obviously decreased compared with MDA-MB-231 with the scrambled siRNA. The expression of matrix metalloproteinase-2 and gelatinase activity in MDA-MB-231 cells suppressed Hv1 by siRNA were reduced. Our results strongly suggest that Hv1 regulates breast cancer intracellular pH and exacerbates the migratory ability of metastatic cells.

  2. Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Mediated by Reactive Oxygen Species

    PubMed Central

    Hahm, Eun-Ryeong; Moura, Michelle B.; Kelley, Eric E.; Van Houten, Bennett; Shiva, Sruti; Singh, Shivendra V.

    2011-01-01

    Withaferin A (WA), a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS) production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC). The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak. PMID:21853114

  3. β3 integrin promotes chemoresistance to epirubicin in MDA-MB-231 through repression of the pro-apoptotic protein, BAD.

    PubMed

    Nair, Madhumathy G; Desai, Krisha; Prabhu, Jyothi S; Hari, P S; Remacle, Jose; Sridhar, T S

    2016-08-01

    Resistance to anthracycline based chemotherapy is a major limitation in the treatment of breast cancer, particularly of the triple negative sub-type that lacks targeted therapies. Resistance that arises from tumor-stromal interaction facilitated by integrins provides the possibility of targeted disruption. In the present study, we demonstrate that integrin β3 signaling inhibits apoptosis induced by a DNA-damaging chemotherapeutic agent, epirubicin, in MDA-MB-231 breast cancer cells. Drug efflux based mechanisms do not contribute to this effect. We show that integrin β3 employs the PI3K-Akt and the MAPK pathway for enabling cell survival and proliferation. Further, our results indicate that integrin β3 helps inhibit epirubicin induced cytotoxicity by repression of the pro-apoptotic protein BAD, thus promoting an anti-apoptotic response. Myristoylated RGT peptide and a monoclonal antibody against integrin β3 brought about a reversal of this effect and chemosensitized the cells. These results identify β3 integrin signaling via repression of BAD as an important survival pathway used by breast cancer cells to evade chemotherapy induced stress. PMID:27235542

  4. Epidermal growth factor promotes a mesenchymal over an amoeboid motility of MDA-MB-231 cells embedded within a 3D collagen matrix

    NASA Astrophysics Data System (ADS)

    Geum, Dongil T.; Kim, Beum Jun; Chang, Audrey E.; Hall, Matthew S.; Wu, Mingming

    2016-01-01

    The receptor of epidermal growth factor (EGFR) critically regulates tumor cell invasion and is a potent therapeutic target for treatment of many types of cancers, including carcinomas and glioblastomas. It is known that EGF regulates cell motility when tumor cells are embedded within a 3D biomatrix. However, roles of EGF in modulating tumor cell motility phenotype are largely unknown. In this article, we report that EGF promotes a mesenchymal over an amoeboid motility phenotype using a malignant breast tumor cell line, MDA-MB-231, embedded within a 3D collagen matrix. Amoeboid cells are rounded in shape, while mesenchymal cells are elongated, and their migrations are governed by a distinctly different set of biomolecules. Using single cell tracking analysis, we also show that EGF promotes cell dissemination through a significant increase in cell persistence along with a moderate increase of speed. The increase of persistence is correlated with the increase of the percentage of the mesenchymal cells within the population. Our work reveals a novel role of microenvironmental cue, EGF, in modulating heterogeneity and plasticity of tumor cell motility phenotype. In addition, it suggests a potential visual cue for diagnosing invasive states of breast cancer cells. This work can be easily extended beyond breast cancer cells.

  5. Salinomycin Promotes Anoikis and Decreases the CD44+/CD24- Stem-Like Population via Inhibition of STAT3 Activation in MDA-MB-231 Cells

    PubMed Central

    Oh, Eunhye; Lee, Nahyun; Cho, Youngkwan; Seo, Jae Hong

    2015-01-01

    Triple-negative breast cancer (TNBC) is an aggressive tumor subtype with an enriched CD44+/CD24- stem-like population. Salinomycin is an antibiotic that has been shown to target cancer stem cells (CSC); however, the mechanisms of action involved have not been well characterized. The objective of the present study was to investigate the effect of salinomycin on cell death, migration, and invasion, as well as CSC-like properties in MDA-MB-231 breast cancer cells. Salinomycin significantly induced anoikis-sensitivity, accompanied by caspase-3 and caspase-8 activation and PARP cleavage, during anchorage-independent growth. Salinomycin treatment also caused a marked suppression of cell migration and invasion with concomitant downregulation of MMP-9 and MMP-2 mRNA levels. Notably, salinomycin inhibited the formation of mammospheres and effectively reduced the CD44+/CD24- stem-like population during anchorage-independent growth. These observations were associated with the inhibition of STAT3 phosphorylation (Tyr705). Furthermore, interleukin-6 (IL-6)-induced STAT3 activation was strongly suppressed by salinomycin challenge. These findings support the notion that salinomycin may be potentially efficacious for targeting breast cancer stem-like cells through the inhibition of STAT3 activation. PMID:26528725

  6. Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy

    PubMed Central

    Tan, Qixing; Wang, Hongli; Hu, Yongliang; Hu, Meiru; Li, Xiaoguang;  , Aodengqimuge; Ma, Yuanfang; Wei, Changyuan; Song, Lun

    2015-01-01

    Chemotherapeutic resistance in breast cancer, whether acquired or intrinsic, remains a major clinical obstacle. Thus, increasing tumor cell sensitivity to chemotherapeutic agents will be helpful in improving the clinical management of breast cancer. In the present study, we found an induction of HO-1 expression in doxorubicin (DOX)-treated MDA-MB-231 human breast adenocarcinoma cells, which showed insensitivity to DOX treatment. Knockdown HO-1 expression dramatically upregulated the incidence of MDA-MB-231 cell death under DOX treatment, indicating that HO-1 functions as a critical contributor to drug resistance in MDA-MB-231 cells. We further observed that DOX exposure induced a cytoprotective autophagic flux in MDA-MB-231 cells, which was dependent on HO-1 induction. Moreover, upregulation of HO-1 expression required the activation of both signal transducer and activator of transcription (STAT)3 and its upstream regulator, protein kinase Src. Abrogating Src/STAT3 pathway activation attenuated HO-1 and autophagy induction, thus increasing the chemosensitivity of MDA-MB-231 cells. Therefore, we conclude that Src/STAT3-dependent HO-1 induction protects MDA-MB-231 breast cancer cells from DOX-induced death through promoting autophagy. In the following study, we further demonstrated the contribution of Src/STAT3/HO-1/autophagy pathway activation to DOX resistance in another breast cancer cell line, MDA-MB-468, which bears a similar phenotype to MDA-MB-231 cells. Therefore, activation of Src/STAT3/HO-1/autophagy signaling pathway might play a general role in protecting certain subtypes of breast cancer cells from DOX-induced cytotoxicity. Targeting this signaling event may provide a potential approach for overcoming DOX resistance in breast cancer therapeutics. PMID:26041409

  7. The differential expression of hCNT1 and hENT1 i n breast cancer and the possible impact on breast cancer therapy.

    PubMed

    Lane, Jane; Martin, Tracey A; McGuigan, Christopher; Mason, Malcolm D; Jiang, Wen G

    2010-01-01

    hCNT1 and hENT1, two members of the human nucleoside transporter families, expression levels were investigated, in normal and in breast tumour tissues, together with effects of gemcitabine cytotoxicity and in vivo tumour growth in MDA-MB-231 cells. hCNT1 and hENT1 levels were lower in tumour samples than in normal background tissue (p < 0.48). hENT1 levels decreased significantly with patient prognosis (disease free versus died from breast cancer, p = 0.047) although hCNT1 expression did not (disease free versus died from breast cancer, p = 0.97). Immunohistochemical staining of hCNT1 and hENT1 was stronger in normal than tumour tissue. hCNT1 knockdown caused MDA-MB-231 cells to be less sensitive to Gemcitabine compared with wild type and control plasmid cells (25% killed vs 88% and 90%). MDA MB-231 deltahENT1 (p = 0.139) and MDA MB-231deltahCNT1 (p = 0.033) tumours showed reduced growth compared with wild type, [71.99 +/- 39.81 mm3 MDA MB-231WT, 40.58 +/- 20.61 mm3 MDA MB-231 deltahCNT1 tumours, 51.58 +/- 49.29 mm3 MDA MB-231deltahENT1, 79.55 +/- 63.08 mm3 PEF and 57.92 +/- 21.67 mm3 GFP controls]. This study shows variability in hCNT1 and hENT1 expression in tumour and normal human breast tissue with different expression patterns related to patient prognosis and clinical outcome. The level of expression of CNT1 was closely linked to the cell's responsiveness to chemotherapeutic treatments. PMID:20734919

  8. Different apoptotic effects of saxifragifolin C in human breast cancer cells.

    PubMed

    Kim, Kyung-Ho; Kim, Ji-Yun; Kwak, Jong-Hwan; Kim, Byung Oh; Pyo, Suhkneung

    2016-04-01

    Breast cancer is currently the most common form of cancer affecting women. Recent studies have reported that triterpenoid saponins isolated from Androsace umbellata exhibit anti-proliferative effects in several types of cancer cells. However, the cytotoxic effect of saxifragifolin C (Saxi C) on breast cancer cells remains unclear. The purpose of this study is to evaluate the in vitro anti-tumor activity of Saxi C in human breast cancer cells. Our data indicated that MDA-MB-231 cells were more sensitive than MCF-7 cells to Saxi C treatment. In addition, Saxi C inhibited cell survival through the induction of reactive oxygen species and the caspase-dependent pathway in the MDA-MB-231 cells, whereas MCF-7 cells treated with Saxi C underwent the apoptotic cell death in a caspase-independent manner. Although Saxi C treatment resulted in the induction of activation of MAPKs in both types of human breast cancer cells, p38 MAPK and JNK, but not ERK1/2, appeared to be involved in Saxi C-induced apoptosis. Moreover, ERα-overexpressing MDA-MB-231 cells remained alive, whereas the survival of shERα-transfected MCF-7 cells decreased. Taken together, Saxi C induced apoptosis in MCF-7 cells and MDA-MB-231 cells via different regulatory mechanisms, and ERα status might be essential for regulating Saxi C-induced apoptosis in breast cancer cells. Thus, Saxi C is a potential chemotherapeutic agent in breast cancer. PMID:26965415

  9. Evaluation of anticancer potential of Bacopa monnieri L. against MCF-7 and MDA-MB 231 cell line

    PubMed Central

    Mallick, Md. Nasar; Akhtar, Md. Salman; Najm, Mohd. Zeeshan; Tamboli, E. T.; Ahmad, Sayeed; Husain, Syed Akhtar

    2015-01-01

    Background: The ethanolic extract of Bacopa monnieri contains bacoside A and B, brahmin, cucurbitacins, and betulinic acid. Currently, cucurbitacins have also been reported for their strong anti-tumorigenic and anti-proliferative activity by inducing cell cycle arrest at the G2/M phase and formation of multiplied cells. The present study was carried out to evaluate the in vitro cytotoxic activity of ethanolic extract of dichloromethane (DCM) fraction of B. monnieri on two different cell lines. Materials and Methods: The ethanolic extract of B. monnieri was prepared using soxhlet extraction method and different fractions (hexane, DCM, methanol, acetone, and water) of ethanolic extracts were prepared. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay of ethanolic extract and of all fractions was carried out on MCF-7 and MDA-MB 231 cell lines. The presence of cucurbitacins and betulinic acid in these fractions was confirmed by high-performance thin layer chromatography. Results: The IC50 values of ethanolic extract of B. monnieri in MCF-7 and MDA-MB 231 cell lines were 72.0 μg/mL and 75.0 μg/mL, respectively. The DCM fraction of B. monnieri showed maximum cytotoxic activity among all fraction upto 72 h and was found to be 57.0 μg/mL and 42.0 μg/mL, respectively. Conclusion: The results showed good cytotoxic activity in DCM fraction in both the cell lines may be due to the presence of cucurbitacins and betulinic acid in DCM fraction. PMID:26681894

  10. In vitro study on effect of germinated wheat on human breast cancer cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research investigated the possible anti-cancer effects of germinated wheat flours (GWF) on cell growth and apoptosis of human breast cancer cells. In a series of in vitro experiments, estrogen receptor-positive (MCF-7) and negative (MDA-MB-231) cells were cultured and treated with GWF that wer...

  11. Ablation of Akt2 Induces Autophagy through Cell Cycle Arrest, the Downregulation of p70S6K, and the Deregulation of Mitochondria in MDA-MB231 Cells

    PubMed Central

    Santi, Stacey A.; Lee, Hoyun

    2011-01-01

    Background Akt/PKB is a promising anticancer therapeutic target, since abnormally elevated Akt activity is directly correlated to tumor development, progression, poor prognosis and resistance to cancer therapies. Currently, the unique role of each Akt isoform and their relevance to human breast cancer are poorly understood. Methodology/Principal Findings We previously found that Akt1, 2 and 3 are localized at specific subcellular compartments (the cytoplasm, mitochondria and nucleus, respectively), raising the possibility that each isoform may have unique functions and employ different regulation mechanisms. By systematically studying Akt-ablated MDA-MB231 breast cancer cells with isoform-specific siRNA, we here show that Akt2 is the most relevant isoform to cell proliferation and survival in our cancer model. Prolonged ablation of Akt2 with siRNA resulted in cell-cycle arrest in G0/G1 by downregulating Cdk2 and cyclin D, and upregulating p27. The analysis of the Akt downstream signaling pathways suggested that Akt2 specifically targets and activates the p70S6K signaling pathway. We also found that Akt2 ablation initially resulted in an increase in the mitochondrial volume concomitantly with the upregulation of PGC-1α, a regulator of mitochondrial biogenesis. Prolonged ablation of Akt2, but not Akt1 or Akt3, eventually led to cell death by autophagy of the mitochondria (i.e., mitophagy). Conclusions/Significance Collectively, our data demonstrates that Akt2 augments cell proliferation by facilitating cell cycle progression through the upregulation of the cell cycle engine, and protects a cell from pathological autophagy by modulating mitochondrial homeostasis. Our data, thus, raises the possibility that Akt2 can be an effective anticancer target for the control of (breast) cancer. PMID:21297943

  12. Chrysin, Abundant in Morinda citrifolia Fruit Water-EtOAc Extracts, Combined with Apigenin Synergistically Induced Apoptosis and Inhibited Migration in Human Breast and Liver Cancer Cells.

    PubMed

    Huang, Cheng; Wei, Yu-Xuan; Shen, Ma-Ching; Tu, Yu-Hsuan; Wang, Chia-Chi; Huang, Hsiu-Chen

    2016-06-01

    The composition of Morinda citrifolia (M. citrifolia) was determined using high-performance liquid chromatography (HPLC), and the anticancer effects of M. citrifolia extract evaluated in HepG2, Huh7, and MDA-MB-231 cancer cells. M. citrifolia fruit extracts were obtained by using five different organic solvents, including hexane (Hex), methanol (MeOH), ethyl acetate (EtOAc), chloroform (CHCl3), and ethanol (EtOH). The water-EtOAc extracts from M. citrifolia fruits was found to have the highest anticancer activity. HPLC data revealed the predominance of chrysin in water-EtOAc extracts of M. citrifolia fruit. Furthermore, the combined effects of cotreatment with apigenin and chrysin on liver and breast cancer were investigated. Treatment with apigenin plus chrysin for 72-96 h reduced HepG2 and MDA-MB-231 cell viability and induced apoptosis through down-regulation of S-phase kinase-associated protein-2 (Skp2) and low-density lipoprotein receptor-related protein 6 (LRP6) expression. However, the combination treatment for 36 h synergistically decreased MDA-MB-231 cell motility but not cell viability through down-regulation of MMP2, MMP9, fibronectin, and snail in MDA-MB-231 cells. Additionally, chrysin combined with apigenin also suppressed tumor growth in human MDA-MB-231 breast cancer cells xenograft through down-regulation of ki-67 and Skp2 protein. The experimental results showed that chrysin combined with apigenin can reduce HepG2 and MDA-MB-231 proliferation and cell motility and induce apoptosis. It also offers opportunities for exploring new drug targets, and further investigations are underway in this regard. PMID:27137679

  13. Wharton's Jelly-Derived Mesenchymal Stromal Cells and Fibroblast-Derived Extracellular Matrix Synergistically Activate Apoptosis in a p21-Dependent Mechanism in WHCO1 and MDA MB 231 Cancer Cells In Vitro

    PubMed Central

    Dzobo, Kevin; Vogelsang, Matjaz; Thomford, Nicholas E.; Dandara, Collet; Kallmeyer, Karlien; Pepper, Michael S.; Parker, M. Iqbal

    2016-01-01

    The tumour microenvironment plays a crucial role in tumour progression and comprises tumour stroma which is made up of different cell types and the extracellular matrix (ECM). Mesenchymal stromal cells (MSCs) are part of the tumour stroma and may have conflicting effects on tumour growth. In this study we investigated the effect of Wharton's Jelly-derived MSCs (WJ-MSCs) and a fibroblast-derived ECM (fd-ECM) on esophageal (WHCO1) and breast (MDA MB 231) cancer cells in vitro. Both WJ-MSCs and the fd-ECM, alone or in combination, downregulate PCNA, cyclin D1, Bcl-2, Bcl-xL, and MMPs and upregulate p53 and p21. p21 induction resulted in G2 phase cell cycle arrest and induced apoptosis in vitro. Our data suggest that p21 induction is via p53-dependent and p53-independent mechanisms in WHCO1 and MDA MB 231 cells, respectively. Vascular endothelial growth factor, Akt, and Nodal pathways were downregulated in cancer cells cocultured with WJ-MSCs. We also demonstrate that WJ-MSCs effects on cancer cells appear to be short-lived whilst the fd-ECM effect is long-lived. This study shows the influence of tumour microenvironment on cancer cell behaviour and provides alternative therapeutic targets for potential regulation of tumour cells. PMID:26880967

  14. Algal sulfated carrageenan inhibits proliferation of MDA-MB-231 cells via apoptosis regulatory genes.

    PubMed

    Murad, Hossam; Ghannam, Ahmed; Al-Ktaifani, Mahmoud; Abbas, Assef; Hawat, Mohammad

    2015-03-01

    Marine algae are prolific sources of sulfated polysaccharides, which may explain the low incidence of certain cancers in countries that traditionally consume marine food. Breast cancer is one of the most common types of non‑skin cancer in females. In this study, extracted sulfated carrageenan (ESC), predominantly consisting of ι‑carrageenan extracted from the red alga Laurencia papillosa, was characterized using Fourier transform infrared spectrometry. The biological effects of the identified extract were investigated and its potential cytotoxic activity was tested against the MDA‑MB‑231 cancer cell line. The biological biometer of the inhibitory concentration of the polysaccharide‑treated MDA‑MB‑231 cells was determined as 50 µM. Treatment with 50 µM ESC inhibited cell proliferation and promptly induced cell death through nuclear condensation and DNA fragmentation. Characterization of polysaccharide‑treated MDA‑MB‑231 cell death revealed that induction of apoptosis occurred via the activation of the extrinsic apoptotic caspase‑8 gene. The apoptotic signaling pathway was regulated through caspase‑3, caspase‑9, p53, Bax and Bcl‑2 genes. These findings suggest that ESC may serve as a potential therapeutic agent to target breast cancer via prompting apoptosis. PMID:25384757

  15. Pepper seed extract suppresses invasion and migration of human breast cancer cells.

    PubMed

    Kim, Hyeon-A; Kim, Min-Sook; Kim, Sang-Hyun; Kim, Yoo Kyeong

    2014-01-01

    This study was performed to determine the antimetastatic activities of chili pepper seed on human breast cancer cells. The water extract of chili pepper seeds was prepared and it contained a substantial amount of phenols (131.12 mg%) and no capsaicinoids. Pepper seed extract (PSE) suppressed the proliferation of MDA-MB-231 and MCF-7 cells at the concentration of 10, 25, and 50 μg/ml (MDA-MB-231: IC50 = 20.1 μg/ml, MCF-7: IC50 = 14.7 μg/ml). PSE increased the expression level of E-cadherin up to 1.2-fold of the control in MCF-7 cells. PSE also decreased the secretion of matrix metalloproteinase (MMP)-2 and MMP-9 in MDA-MB-231 and MCF-7 cells at the concentration of 25 and 50 μg/ml. PSE treatment significantly suppressed the invasion of MDA-MB-231 and MCF-7 cells in a dose-dependent manner. The motility of cancer cells was apparently retarded in the wound healing assay by the PSE treatment. Although our data collectively demonstrate that PSE inhibits invasion and migration of breast cancer cells, further study is needed to identify specific mechanisms and bioactive components contributing to antimetastatic effects of chili pepper seed. PMID:24341783

  16. Structure-activity relationships of a-, ß1-, and d-Tomatines and Tomatidine Against Human Breast (MDA-MB-231), Gastric (KATO-III), and Prostate (PC3) Cancer Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial acid hydrolysis of the tetrasaccharide (lycotetraose) side chain of the tomato glycoalkaloid a-tomatine resulted in the formation of four products with three (ß1-tomatine), two ('-tomatine), one (d-tomatine), and zero (tomatidine) sugar residues. These compounds were isolated by chromatogra...

  17. Elevation of Soluble Guanylate Cyclase Suppresses Proliferation and Survival of Human Breast Cancer Cells

    PubMed Central

    Chen, Chen-Yu; Shiah, Shine-Gwo; Kung, Hsing-Jien; King, Kuang-Liang; Su, Liang-Chen; Chang, Shi-Chuan; Chang, Chung-Ho

    2015-01-01

    Nitric oxide (NO) is an essential signaling molecule in biological systems. Soluble guanylate cyclase (sGC), composing of α1 and β1 subunit, is the receptor for NO. Using radioimmunoassay, we discovered that activation of sGC by treatment with bradykinin or sodium nitroprusside (SNP) is impaired in MCF-7 and MDA-MB-231 breast cancer cells as compared to normal breast epithelial 184A1 cells. The 184A1 cells expressed both sGC α1 and sGCβ1 mRNAs. However, levels of sGCβ1 mRNAs were relatively lower in MCF-7 cells while both mRNA of sGC subunits were absent in MDA-MB-231 cells. Treatment with DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-aza-dC) increased mRNA levels of both sGCα1 and sGCβ1 in MDA-MB-231 cells but only sGCβ1 mRNAs in MCF-7 cells. The 5-aza-dC treatment increased the SNP-induced cGMP production in MCF-7 and MDA-MB-231, but not in 184A1 cells. Bisulfite sequencing revealed that the promoter of sGCα1 in MDA-MB-231 cells and promoter of sGCβ1 in MCF-7 cells were methylated. Promoter hypermethylation of sGCα1 and sGCβ1 was found in 1 out of 10 breast cancer patients. Over-expression of both sGC subunits in MDA-MB-231 cells induced apoptosis and growth inhibition in vitro as well as reduced tumor incidence and tumor growth rate of MDA-MB-231 xenografts in nude mice. Elevation of sGC reduced protein abundance of Bcl-2, Bcl-xL, Cdc2, Cdc25A, Cyclin B1, Cyclin D1, Cdk6, c-Myc, and Skp2 while increased protein expression of p53. Our study demonstrated that down-regulation of sGC, partially due to promoter methylation, provides growth and survival advantage in human breast cancer cells. PMID:25928539

  18. Adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel wall increases microvascular permeability via degradation of endothelial surface glycocalyx

    PubMed Central

    Cai, Bin; Fan, Jie; Zeng, Min; Zhang, Lin

    2012-01-01

    To investigate the effect of tumor cell adhesion on microvascular permeability (P) in intact microvessels, we measured the adhesion rate of human mammary carcinoma MDA-MB-231, the hydraulic conductivity (Lp), the P, and reflection coefficient (σ) to albumin of the microvessels at the initial tumor cell adhesion and after ∼45 min cell perfusion in the postcapillary venules of rat mesentery in vivo. Rats (Sprague-Dawley, 250–300 g) were anesthetized with pentobarbital sodium given subcutaneously. A midline incision was made in the abdominal wall, and the mesentery was gently taken out and arranged on the surface of a glass coverslip for the measurement. An individual postcapillary venule was perfused with cells at a rate of ∼1 mm/s, which is the mean blood flow velocity in this type of microvessels. At the initial tumor cell adhesion, which was defined as one adherent cell in ∼100- to 145-μm vessel segment, Lp was 1.5-fold and P was 2.3-fold of their controls, and σ decreased from 0.92 to 0.64; after ∼45-min perfusion, the adhesion increased to ∼5 adherent cells in ∼100- to 145-μm vessel segment, while Lp increased to 2.8-fold, P to 5.7-fold of their controls, and σ decreased from 0.92 to 0.42. Combining these measured data with the predictions from a mathematical model for the interendothelial transport suggests that tumor cell adhesion to the microvessel wall degrades the endothelial surface glycocalyx (ESG) layer. This suggestion was confirmed by immunostaining of heparan sulfate of the ESG on the microvessel wall. Preserving of the ESG by a plasma glycoprotein orosomucoid decreased the P to albumin and reduced the tumor cell adhesion. PMID:22858626

  19. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with

  20. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    SciTech Connect

    Pham, Anh; Bortolazzo, Anthony; White, J. Brandon

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  1. Targeting of sonic hedgehog-Gli signaling: A potential therapeutic target for patients with breast cancer

    PubMed Central

    Song, Lingqin; Wang, Weifeng; Liu, Di; Zhao, Yang; He, Jianjun; Wang, Xijing; Dai, Zhijun; Zhang, Huimin; Li, Xiao

    2016-01-01

    Breast cancer is the most common malignant cancer among women. The Hedgehog (Hh) signaling pathway serves a key role in malignant cancer cell growth and migration. However, little is known with regard to the specific function of the Hh signaling pathway in human breast cancer. The current study investigated the specific role of Hh signaling in the human breast cancer cell line MDA-MB-231. Expression of components of Shh-Gli signaling, as well as the Gli-responsive genes B-cell lymphoma 2 (Bcl-2) and cyclin D1, were investigated in MDA-MB-231 cells using western blotting. The effects of Shh-Gli signaling on MDA-MB-231 proliferation were analyzed by MTT assay. The role of E-cadherin in the epithelial-mesenchymal transition process was determined by western blot while matrix metalloproteinase (MMP)-9/MMP-2 secretion was studied by enzyme-linked immunosorbent assay. The results indicated that Shh-Gli signaling was activated in MDA-MB-231 cells, significantly enhancing cell viability. Overexpression of Gli positively regulated the transcription of Bcl-2 and cyclin D1 thereby regulating MDA-MB-231 cell proliferation and survival. Treatment of MDA-MB-231 cells with human sonic hedgehog, n-terminus for 72 h significantly reduced E-cadherin protein levels and enhanced secretion of MMP-9 and MMP-2. These findings suggest that Shh-Gli signaling is significantly activated in human breast cancer cells, and is accompanied by enhanced cell viability, proliferation and migration capacities. PMID:27446389

  2. Microwave-assisted synthesis of sec/tert-butyl 2-arylbenzimidazoles and their unexpected antiproliferative activity towards ER negative breast cancer cells.

    PubMed

    Abdul Rahim, Aisyah Saad; Salhimi, Salizawati Muhamad; Arumugam, Natarajan; Pin, Lim Chung; Yee, Ng Shy; Muttiah, Nithya Niranjini; Keat, Wong Boon; Abd Hamid, Shafida; Osman, Hasnah; Mat, Ishak b

    2013-12-01

    A new series of N-sec/tert-butyl 2-arylbenzimidazole derivatives was synthesised in 85-96% yields within 2-3.5 min by condensing ethyl 3-amino-4-butylamino benzoate with various substituted metabisulfite adducts of benzaldehyde under focused microwave irradiation. The benzimidazole analogues were characterised using (1)H NMR, (13)C NMR, high resolution MS and melting points. Evaluation of antiproliferative activity of the benzimidazole analogues against MCF-7 and MDA-MB-231 revealed several compounds with unexpected selective inhibitions of MDA-MB-231 in micromolar range. All analogues were found inactive towards MCF-7. The most potent inhibition against MDA-MB-231 human breast cancer cell line came from the unsubstituted 2-phenylbenzimidazole 10a. PMID:23061895

  3. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow

    PubMed Central

    Evani, Shankar J.; Prabhu, Rajesh G.; Gnanaruban, V.; Finol, Ender A.; Ramasubramanian, Anand K.

    2013-01-01

    Endothelial adhesion is necessary for the hematogenous dissemination of tumor cells. However, the metastatic breast tumor cell MDA-MB-231 does not bind to the endothelium under physiological flow conditions, suggesting alternate mechanisms of adhesion. Since monocytes are highly represented in the tumor microenvironment, and also bind to endothelium during inflammation, we hypothesized that the monocytes assist in the arrest of MDA-MB-231 on the endothelium. Using in vitro models of the dynamic shear environment of the vasculature, we show that TNF-α-activated THP1/primary human monocytes and MDA-MB-231 cells form stable aggregates, and that the monocytes in these aggregates mediate the adhesion of otherwise nonadherent MDA-MB-231 cells to inflamed endothelium under flow (55±2.4 vs. 1.7±0.82 at a shear stress of 0.5 dyn/cm2, P<0.01). We also show that the hydrodynamic forces determine the size and orientation of aggregates adhered to the endothelium, and strongly favor the attachment of small aggregates with tumor cells downstream of flow (74–86% doublets at 0.5–2 dyn/cm2, P<0.01). The 5-fold up-regulation of ICAM-1 on TNF-α-activated MDA-MB-231 cells through the Nf-κB pathway was found to be critical in MDA-MB-231–monocyte aggregation and endothelial adhesion. Our results demonstrate that, under inflammatory conditions, monocytes may serve to disseminate tumor cells through circulation, and the tumor–monocyte–endothelial axis may represent a new therapeutic target to reduce cancer metastasis.—Evani, S. J., Prabhu, R. G., Gnanaruban, V., Finol, E. A., Ramasubramanian, A. K. Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. PMID:23616566

  4. Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts.

    PubMed

    Al Marzouqi, Nadia; Iratni, Rabah; Nemmar, Abderrahim; Arafat, Kholoud; Ahmed Al Sultan, Mahmood; Yasin, Javed; Collin, Peter; Mester, Jan; Adrian, Thomas E; Attoub, Samir

    2011-10-01

    Breast cancer is a major challenge for pharmacologists to develop new drugs to improve the survival of cancer patients. Frondoside A is a triterpenoid glycoside isolated from the sea cucumber, Cucumaria frondosa. It has been demonstrated that Frondoside A inhibited the growth of pancreatic cancer cells in vitro and in vivo. We investigated the impact of Frondoside A on human breast cancer cell survival, migration and invasion in vitro, and on tumor growth in nude mice, using the human estrogen receptor-negative breast cancer cell line MDA-MB-231. The non-tumorigenic MCF10-A cell line derived from normal human mammary epithelium was used as control. Frondoside A (0.01-5 μM) decreased the viability of breast cancer cells in a concentration- and time-dependent manner, with 50%-effective concentration (EC50) of 2.5 μM at 24h. MCF10-A cells were more resistant to the cytotoxic effect of Frondoside A (EC50 superior to 5 μM at 24 h). In the MDA-MB-231 cells, Frondoside A effectively increased the sub-G1 (apoptotic) cell fraction through the activation of p53, and subsequently the caspases 9 and 3/7 cell death pathways. In addition, Frondoside A induced a concentration-dependent inhibition of MDA-MB-231 cell migration and invasion. In vivo, Frondoside A (100 μg/kg/dayi.p. for 24 days) strongly decreased the growth of MDA-MB-231 tumor xenografts in athymic mice, without manifest toxic side-effects. Moreover, we found that Frondoside A could enhance the killing of breast cancer cells induced by the chemotherapeutic agent paclitaxel. These findings identify Frondoside A as a promising novel therapeutic agent for breast cancer. PMID:21741966

  5. ADAM17 promotes breast cancer cell malignant phenotype through EGFR-PI3K-AKT activation

    PubMed Central

    Zheng, Xuguang; Jiang, Feng; Katakowski, Mark; Zhang, Zheng Gang; Lu, Qing-e; Chopp, Michael

    2009-01-01

    A disintegrin and metalloproteinase-17 (ADAM17) is involved in proteolytic ectodomain shedding of several membrane-bound growth factors and cytokines. The expression and activity of ADAM17 increase under some pathological conditions such as stroke and glioma. ADAM17 promotes neural progenitor cell migration and contributes to stroke-induced neurogenesis after stroke and brain tumor growth and invasion. In the present study, we sought to elucidate whether ADAM17 contributes to breast cancer progression and its mechanisms. To this end, we examined the role of ADAM17 in the proliferation, invasion, and tube formation of MDA-MB-231 breast cancer cells in vitro. Stable transfection of the MDA-MB-231 cell line with either a plasmid for over-expression of human ADAM17, or a siRNA to ADAM17 was employed in this study to establish high or low ADAM17 expression in breast cancer cells, respectively. For study of mechanism, the ADAM17 inhibitor TAPI-2 and the PI3K-AKT inhibitor LY294002 were used to counteract high ADAM17 expression or the activated PI3K-AKT pathway. Proliferation of MDA-MB-231 breast cancer cells were tested by MTT, Bromodeoxyuridine incorporation assay, growth curve, and sulforhodamine B assay. Matrigel invasion assays were used to assess the ability of MDA-MB-231 cells to penetrate the Extra Cellular Matrix. A Matrigel tube formation assay was performed to test capillary tube formation ability. EGFR-PI3K-Akt pathway activation in MDA-MB-231 cells under different ADAM17 expression levels were tested by Western blot and ELISA. Our data show that ADAM17 promotes the MDA-MB-231 malignant phenotype by increased proliferation, invasion and angiogenesis. TGF-α, VEGF secretion and VEGF expression was increasing by ADAM17 and counteracted by ADAM17 siRNA, TAPI-2, and LY294002 in MDA-MB-231 cells. ADAM17 activated, whereas ADAM17 siRNA, TAPI-2, and LY294002 deactivated the EGFR-PI3K-AKT signal pathway, which correlated with MDA-MB-231 cell malignant phenotype

  6. Hippuric acid nanocomposite enhances doxorubicin and oxaliplatin-induced cytotoxicity in MDA-MB231, MCF-7 and Caco2 cell lines

    PubMed Central

    Al Ali, Samer Hasan Hussein; Al-Qubaisi, Mothanna; Hussein, Mohd Zobir; Ismail, Maznah; Bullo, Saifullah

    2013-01-01

    Background The aim of the current study is to design a new nanocomposite for inducing cytotoxicity of doxorubicin and oxaliplatin toward MDA-MB231, MCF-7, and Caco2 cell lines. A hippuric acid (HA) zinc layered hydroxide (ZLH) nanocomposite was synthesized under an aqueous environment using HA and zinc oxide (ZnO) as the precursors. Methods The hippuric acid nanocomposite (HAN) was prepared by the direct reaction of a HA solution with an aqueous suspension of ZnO. Results The basal spacing of the nanocomposite was 21.3 Å, which is average of four harmonics at 2θ = 8.32°, 12.50°, 16.68°, and 20.84°. This result indicates that the hippurate anion was successfully intercalated into the interlayer space of ZLH. The combinations of HAN with chemotherapy (drugs) has inhibited the cell growth of the MDA-MB231, MCF-7, and Caco2 cancer cells when compared to drugs alone. An IC50 value for the combination of HAN with doxorubicin toward MCF-7 is 0.19 ± 0.15 μg/mL and toward MDA-MB231 is 0.13 ± 0.10 μg/mL. Similarly, the IC50 for the combination of HAN with oxaliplatin toward Caco2 is 0.24 ± 0.11 μg/mL. In the antiproliferative results, the equal combination of HAN (0.5 μg/mL) with doxorubicin (0.5 μg/mL) has reduced the cell proliferation in MCF-7 and MDA-MB-231 cells into 37.3% and 17.6%, respectively after 24 hours. Similarly, the antiproliferation percentage for equal combination HAN with oxaliplatin (5.00 μg/mL) toward Caco2 is 72.7% after 24 hours. Conclusion The resulting combination HAN with drugs has exhibited higher inhibition in cells growth in all cancer cell lines. PMID:23345969

  7. Decreased expression of ADAMTS-1 in human breast tumors stimulates migration and invasion

    PubMed Central

    2013-01-01

    Background ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a member of the ADAMTS family of metalloproteases. Here, we investigated mRNA and protein levels of ADAMTS-1 in normal and neoplastic tissues using qPCR, immunohistochemistry and immunoblot analyses, and we addressed the role of ADAMTS-1 in regulating migration, invasion and invadopodia formation in breast tumor cell lines. Results In a series of primary breast tumors, we observed variable levels of ADAMTS-1 mRNA expression but lower levels of ADAMTS-1 protein expression in human breast cancers as compared to normal tissue, with a striking decrease observed in high-malignancy cases (triple-negative for estrogen, progesterone and Her-2). This result prompted us to analyze the effect of ADAMTS-1 knockdown in breast cancer cells in vitro. MDA-MB-231 cells with depleted ADAMTS-1 expression demonstrated increased migration, invasion and invadopodia formation. The regulatory mechanisms underlying the effects of ADAMTS-1 may be related to VEGF, a growth factor involved in migration and invasion. MDA-MB-231 cells with depleted ADAMTS-1 showed increased VEGF concentrations in conditioned medium capable of inducing human endothelial cells (HUVEC) tubulogenesis. Furthermore, expression of the VEGF receptor (VEGFR2) was increased in MDA-MB-231 cells as compared to MCF7 cells. To further determine the relationship between ADAMTS-1 and VEGF regulating breast cancer cells, MDA-MB-231 cells with reduced expression of ADAMTS-1 were pretreated with a function-blocking antibody against VEGF and then tested in migration and invasion assays; both were partially rescued to control levels. Conclusions ADAMTS-1 expression was decreased in human breast tumors, and ADAMTS-1 knockdown stimulated migration, invasion and invadopodia formation in breast cancer cells in vitro. Therefore, this series of experiments suggests that VEGF is involved in the effects mediated by ADAMTS-1 in breast cancer cells. PMID

  8. Chemopreventive effects of Ginkgo biloba extract in estrogen-negative human breast cancer cells.

    PubMed

    Park, Yong Joo; Kim, Mi Jie; Kim, Ha Ryong; Yi, Min Sun; Chung, Kyu Hyuck; Oh, Seung Min

    2013-01-01

    Excessive level of estrogen is considered as a main cause of breast cancer, therefore, many studies have focused on estrogen receptor (ER)-positive breast cancer, even though ER-negative cancer has a poor prognosis than ER-positive breast cancer. We evaluated the anti-cancer effects of Ginkgo biloba extract (GBE) in estrogen-independent breast cancer. GBE has been traditionally used as a platelet activating factor, a circulatory stimulant, a tonic, and anti-asthmatic drug, and anti-cancer agent. However, anti-cancer effects of GBE on ER-negative breast cancer have not been proved yet. In this study, we tested chemotherapeutic potential of GBE in the MDA-MB-231 (ER-negative) human breast cancer cell line. Our results showed that cytotoxicity effects of GBE in MDA-MB-231 lead to DNA fragmentation at high concentrations (500 and 1,000 μg/ml). Caspase-3 was significantly activated and mRNA levels of apoptosis-related genes (Bcl-2 and Bax) were altered. These results indicate that GBE induces apoptosis in MDA-MB-231 cells. It is presumed that GBE has chemopreventive effects in ER-independent breast cancer through anti-proliferation and apoptosis-inducing activities. PMID:23335025

  9. VI-14, a novel flavonoid derivative, inhibits migration and invasion of human breast cancer cells

    SciTech Connect

    Li, Fanni; Li, Chenglin; Zhang, Haiwei; Lu, Zhijian; Li, Zhiyu; You, Qidong; Lu, Na; Guo, Qinglong

    2012-06-01

    It has been well characterized that flavonoids possess pronounced anticancer potentials including anti-angiogenesis, anti-metastasis, and pro-apoptosis. Herein, we report, for the first time, that VI-14, a novel flavonoid derivative, possesses anti-cancer properties. The purpose of this study is to investigate the anti-migration and anti-invasion activities of VI-14 in breast cancer cells. Our data indicate that VI-14 inhibits adhesion, migration and invasion of MDA-MB-231 and MDA-MB-435 human breast cancer cells. MDA-MB-231 cells treated with VI-14 display reduced activities and expressions of ECM degradation-associated proteins including matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) at both the protein and mRNA levels. Meanwhile, VI-14 treatment induces an up-regulated expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) and 2 (TIMP-2) in MDA-MB-231 cells. Western blotting results show that phosphorylation levels of critical components of the MAPK signaling pathway, including ERK, JNK and P38, are dramatically decreased in VI-14-treated MDA-MB-231 cells. Furthermore, treatment of VI-14 significantly decreases the nuclear levels and the binding ability of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). Taken together, our data suggest that VI-14 treatment suppresses migration and motility of breast cancer cells, and VI-14 may be a potential compound for cancer therapy. Highlights: ► We report for the first time that VI-14 possesses anti-cancer properties. ► VI-14 weakens the adhesion, migration and invasion of human breast cancer cells. ► VI-14 decreases the activities and expressions of MMP-2/9. ► VI-14 suppresses the phosphorylation levels of the MAPK signaling pathway. ► VI-14 decreases the nuclear levels and the binding ability of NF-κB and AP-1.

  10. Cytotoxicity and apoptosis induced by nanobacteria in human breast cancer cells

    PubMed Central

    Zhang, Ming-jun; Liu, Sheng-nan; Xu, Ge; Guo, Ya-nan; Fu, Jian-nan; Zhang, De-chun

    2014-01-01

    Background The existing evidence that nanobacteria (NB) are closely associated with human disease is overwhelming. However, their potential toxicity against cancer cells has not yet been reported. The objective of this study was to investigate the cytotoxic effects of NB and nanohydroxyapatites (nHAPs) against human breast cancer cells and to elucidate the mechanisms of action underlying their cytotoxicity. Methodology/principal findings NB were isolated from calcified placental tissue, and nHAPs were artificially synthesized. The viability of the MDA-MB-231 human breast cancer cell line was tested by using the Kit-8 cell counting kit assay. Apoptosis was examined by transmission electron microscopy and flow cytometry. The endocytosis of NB and nHAPs by MDA-MB-231 cells was initially confirmed by microscopy. Although both NB and nHAPs significantly decreased MDA-MB-231 cell viability and increased the population of apoptotic cells, NB were more potent than nHAPs. After 72 hours, NB also caused ultrastructural changes typical of apoptosis, such as chromatin condensation, nuclear fragmentation, nuclear dissolution, mitochondrial swelling, and the formation of apoptotic bodies. Conclusion/significance In MDA-MB-231 human breast cancer cells, NB and nHAPs exerted cytotoxic effects that were associated with the induction of apoptosis. The effects exerted by NB were more potent than those induced by nHAPs. NB cytotoxicity probably emerged from toxic metabolites or protein components, rather than merely the hydroxyapatite shells. NB divided during culturing, and similar to cells undergoing binary fission, many NB particles were observed in culture by transmission electron microscopy, suggesting they are live microorganisms. PMID:24403832

  11. Novel medicinal mushroom blend suppresses growth and invasiveness of human breast cancer cells.

    PubMed

    Jiang, Jiahua; Sliva, Daniel

    2010-12-01

    Mushrooms are an integral part of Traditional Chinese Medicine (TCM), and have been used for millennia to prevent or treat a variety of diseases. Currently mushrooms or their extracts are used globally in the form of dietary supplements. In the present study we have evaluated the anticancer effects of the dietary supplement, MycoPhyto® Complex (MC), a novel medicinal mushroom blend which consists of a blend of mushroom mycelia from the species Agaricus blazei, Cordyceps sinensis, Coriolus versicolor, Ganoderma lucidum, Grifola frondosa and Polyporus umbellatus, and β-1,3-glucan isolated from the yeast, Saccharomyces cerevisiae. Here, we show that MC demonstrates cytostatic effects through the inhibition of cell proliferation and cell cycle arrest at the G2/M phase of highly invasive human breast cancer cells MDA-MB-231. DNA-microarray analysis revealed that MC inhibits expression of cell cycle regulatory genes (ANAPC2, ANAPC2, BIRC5, Cyclin B1, Cyclin H, CDC20, CDK2, CKS1B, Cullin 1, E2F1, KPNA2, PKMYT1 and TFDP1). Moreover, MC also suppresses the metastatic behavior of MDA-MB-231 by the inhibition of cell adhesion, cell migration and cell invasion. The potency of MC to inhibit invasiveness of breast cancer cells is linked to the suppression of secretion of the urokinase plasminogen activator (uPA) from MDA-MB-231 cells. In conclusion, the MC dietary supplement could have potential therapeutic value in the treatment of invasive human breast cancer. PMID:21042722

  12. Changes in cell migration due to the combined effects of sonodynamic therapy and photodynamic therapy on MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Wang, Haiping; Wang, Pan; Zhang, Kun; Wang, Xiaobing; Liu, Quanhong

    2015-03-01

    Sono-photodynamic therapy is an emerging method with an increasing amount of research having demonstrated its anti-cancer efficacy. However, the impacts of cell migration ability after sono-photodynamic therapy have seldom been reported. In this study, we identified cell migration by wound healing and transwell assays. Significant inability of cell migration was observed in combined groups accompanied by the decline of cell adhesion. Cells in combined treatment groups showed serious microfilament network collapse as well as decreased expression of matrix metalloproteinases-9. These results suggested that sono-photodynamic therapy could inhibit MDA-MB-231 cell migration and that the microfilament and matrix metalloproteinases-9 disorder might be involved.

  13. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells.

    PubMed

    Pham, Anh; Bortolazzo, Anthony; White, J Brandon

    2012-10-19

    Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death. PMID:23000408

  14. pACC1 peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Kaliaperumal, Jagatheesh; Hari, Natarajan; Pavankumar, Padarthi; Elangovan, Namasivayam

    2015-06-01

    The development of formulations with therapeutic peptides has been restricted to poor cell penetration and in this attempt; we developed pACC1 peptide loaded chitosan nanoparticles. The prepared nanoparticles were characterized with FT-IR, XRD, SEM and TEM. In addition, the suitable formulation was evaluated for hemocompatibility, plasma stability and embryo toxicity using Danio rerio embryo model. The results showed that pACC1 peptide loaded chitosan nanoparticles were compatible with plasma. They possess sustained release pattern and also found to be safe up to 300 mg/L in embryo toxicity tests. Cytotoxicity assays with MDA-MB-231 cell lines suggested that, pACC1 peptide loaded chitosan nanoparticles were capable of enhanced cellular penetration and reduced palmitic acid content, which was confirmed by H1 NMR. Hence, these nanoparticles could be employed as excellent adjuvant therapeutics while treating solid tumors with multi-drug resistance.

  15. pACC1 peptide loaded chitosan nanoparticles induces apoptosis via reduced fatty acid synthesis in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Kaliaperumal, Jagatheesh; Hari, Natarajan; Pavankumar, Padarthi; Elangovan, Namasivayam

    2016-06-01

    The development of formulations with therapeutic peptides has been restricted to poor cell penetration and in this attempt; we developed pACC1 peptide loaded chitosan nanoparticles. The prepared nanoparticles were characterized with FT-IR, XRD, SEM and TEM. In addition, the suitable formulation was evaluated for hemocompatibility, plasma stability and embryo toxicity using Danio rerio embryo model. The results showed that pACC1 peptide loaded chitosan nanoparticles were compatible with plasma. They possess sustained release pattern and also found to be safe up to 300 mg/L in embryo toxicity tests. Cytotoxicity assays with MDA-MB-231 cell lines suggested that, pACC1 peptide loaded chitosan nanoparticles were capable of enhanced cellular penetration and reduced palmitic acid content, which was confirmed by H1 NMR. Hence, these nanoparticles could be employed as excellent adjuvant therapeutics while treating solid tumors with multi-drug resistance.

  16. Notch2 activation is protective against anticancer effects of zerumbone in human breast cancer cells.

    PubMed

    Sehrawat, Anuradha; Sakao, Kozue; Singh, Shivendra V

    2014-08-01

    We showed previously that zerumbone (ZER), a sesquiterpene isolated from subtropical ginger, inhibited in vitro (MCF-7 and MDA-MB-231cells) and in vivo (MDA-MB-231 cells) growth of human breast cancer cells in association with apoptosis induction. Here, we investigated the role of Notch receptors in anticancer effects of ZER (cell migration inhibition and apoptosis induction) using breast cancer cells. Western blotting was performed to determine protein expression changes. Effect of ZER on transcriptional activity of Notch was assessed by luciferase reporter assays. Transfection with small hairpin RNA or small interfering RNA was performed for knockdown of Notch2 or Presenilin-1 protein. Cell migration and apoptosis were quantitated by Boyden chamber assay and flow cytometry, respectively. Exposure of MDA-MB-231, MCF-7, and SUM159 cells to ZER resulted in increased cleavage of Notch2 in each cell line. On the other hand, levels of cleaved Notch1 and Notch4 proteins were decreased following ZER treatment. Increased cleavage of Notch2 in ZER-treated cells was accompanied by induction of Presenilin-1 protein and transcriptional activation of Notch. Inhibition of cell migration as well as apoptosis induction resulting from ZER exposure was significantly augmented by knockdown of Notch2 protein. ZER-mediated cleavage of Notch2 protein in MDA-MB-231 cells was markedly attenuated upon RNA interference of Presenilin-1. Knockdown of Presenilin-1 protein also resulted in escalation of ZER-induced apoptosis. The present study indicates that Notch2 activation by ZER inhibits its proapoptotic and anti-migratory response at least in breast cancer cells. PMID:25038880

  17. Growth inhibition and differentiation of human breast cancer cells by the PAFR antagonist WEB-2086

    PubMed Central

    Cellai, C; Laurenzana, A; Vannucchi, A M; Caporale, R; Paglierani, M; Di Lollo, S; Pancrazzi, A; Paoletti, F

    2006-01-01

    WEB-2086 – an antagonist of platelet-activating factor receptor (PAFR) with known anti-inflammatory, antiangiogenic and antileukaemic properties – also proved to inhibit the proliferation in human solid tumour cell lines of different histology, and with much higher efficacy than in normal fibroblasts. A detailed analysis of WEB-2086 anticancer activity was then performed focusing on breast adenocarcinoma MCF-7 and MDA-MB-231 cells. WEB-2086-treated cells, either expressing (MCF-7) or unexpressing (MDA-MB-231) the oestrogen receptor (ER)α, underwent a dose-dependent growth arrest (IC50=0.65±0.09 and 0.41±0.07 mM, respectively) and accumulation in G0–G1 phase. WEB-2086 also induced morphological and functional changes typical of mature mammary phenotype including (i) cell enlargement and massive neutral lipid deposition (best accomplished in MCF-7 cells); (ii) decrease in motility and active cathepsin D levels (mainly observed in highly invasive MDA-MB-231 cells). The expression of ERα was neither increased nor reactivated in treated MCF-7 or MDA-MB-231 cells, respectively. WEB-2086-induced differentiation in breast cancer cells involved the upregulation of PTEN, a key tumour suppressor protein opposing tumorigenesis, and was apparently independent of p53, PAFR, peripheral benzodiazepine receptor and ERα status. Overall, WEB-2086 can be proposed as an effective antiproliferative and differentiative agent with interesting translational opportunities to treat breast cancers in support to conventional chemotherapy. PMID:16721373

  18. Insights on the antitumor effects of kahweol on human breast cancer: Decreased survival and increased production of reactive oxygen species and cytotoxicity

    SciTech Connect

    Cárdenas, Casimiro; Quesada, Ana R.; Medina, Miguel Ángel

    2014-05-09

    Highlights: • Kahweol inhibits growth and attachment-independent proliferation of tumor cells. • Kahweol induces apoptosis in MDA-MB231 human breast cancer cells. • Kahweol-induced apoptosis involves caspase activation and cytochrome c release. • Kahweol does not protect against hydrogen peroxide cytotoxicity. • Kahweol increases hydrogen peroxide production by human breast cancer cells. - Abstract: The present study aims to identify the modulatory effects of kahweol, an antioxidant diterpene present in coffee beans, on a panel of human tumor cell lines. Kahweol inhibits tumor cell proliferation and clonogenicity and induces apoptosis in several kinds of human tumor cells. In the estrogen receptor-negative MDA-MB231 human breast cancer, the mentioned effects are accompanied by caspases 3/7 and 9 activation and cytochrome c release. On the other hand, kahweol increases the production of reactive oxygen species and their cytotoxicity in human breast cancer cells but not in normal cells. Taken together, our data suggest that kahweol is an antitumor compound with inhibitory effects on tumor cell growth and survival, especially against MDA-MB231 breast cancer cells.

  19. Selective cytotoxicity, inhibition of cell cycle progression, and induction of apoptosis in human breast cancer cells by sesquiterpenoids from Inula lineariifolia Turcz.

    PubMed Central

    Huang, Ying; Zhang, Shou-De; Shan, Lei; Voruganti, Sukesh; Nag, Subhasree; Wang, Wei; Zhang, Wei-Dong; Zhang, Ruiwen

    2013-01-01

    Four new sesquiterpenoid dimers (lineariifolianoids E–H, 1–4), five new sesquiterpenoids (5–9), and seven known sesquiterpenoids (10–16) were isolated from the aerial parts of Inula lineariifolia Turcz. Their structures were determined by spectroscopic data analysis and X-ray diffraction studies. The compounds were then evaluated for their in vitro cytotoxicity against two human breast cancer cell lines (MCF-7 and MDA-MB-231) and one normal breast cell line (MCF-10A). Lineariifolianoid E (1) showed IC50 values of 1.56 μM and 2.75 μM against MCF-7 and MDA-MB-231, respectively. However, lineariifolianoid E demonstrated low toxicity to MCF-10A cells, which indicated a selective cytotoxicity for tumor cells. Further studies also presented that lineariifolianoid E had significant, dose-dependent effects on cell cycle progression and apoptosis in breast cancer cells. PMID:24044895

  20. Induction of apoptosis and growth arrest in human breast carcinoma cells by a snake (Walterinnesia aegyptia) venom combined with silica nanoparticles: crosstalk between Bcl2 and caspase 3.

    PubMed

    Al-Sadoon, Mohamed K; Abdel-Maksoud, Mostafa A; Rabah, Danny M; Badr, Gamal

    2012-01-01

    We recently demonstrated that the snake venom extracted from Walterinnesia aegyptia (WEV) either alone or combined with silica nanoparticles (WEV+NP) enhanced the proliferation of mice immune cells and simultaneously decreased the proliferation of human breast carcinoma cell line (MDA-MB-231). However, the molecular mechanism of how this venom induced growth arrest of breast cancer cells has not been studied. In this context, we extended our study to evaluate the anti-tumor potential of WEV and WEV+NP on the human breast carcinoma cell lines MDA-MB-231 and MCF-7, as well as their effects on non-tumorigenic normal breast epithelial cells (MCF-10). The IC(50 )values of WEV alone and WEV+NP in these cell lines were determined to be 50 ng/ml and 20 ng/ml, respectively. Interestingly, at these concentrations, the venom did not affect the viability of normal MCF-10 cells and treatment of all these cell lines with NP alone did not affect their viability. Using annexin-V binding assay followed by flow cytometry analysis, we found that combination of WEV with NP strongly induced apoptosis in MDA-MB-231 and MCF-7 cancer cells without significant effect on normal MCF-10 cells. Furthermore, we found that WEV+NP decreased the expression of Bcl2 and enhanced the activation of caspase 3 in MDA-MB-231 and MCF-7 cells. Most importantly, WEV+NP-treated breast cancer cells, but not normal MCF-10 cells, exhibited a significant (P<0.05) reduction in actin polymerization and cytoskeletal rearrangement in response to CXCL12. Our data reveal biological effects of WEV or WEV+NP and the underlying mechanisms to fight breast cancer cells. PMID:22854437

  1. Ganoderma lucidum inhibits proliferation of human breast cancer cells by down-regulation of estrogen receptor and NF-kappaB signaling.

    PubMed

    Jiang, Jiahua; Slivova, Veronika; Sliva, Daniel

    2006-09-01

    Ganoderma lucidum, an oriental medical mushroom, has been used in Asia for the prevention and treatment of a variety of diseases, including cancer. We have previously demonstrated that G. lucidum inhibits growth and induces cell cycle arrest at G0/G1 phase through the inhibition of Akt/NF-kappaB signaling in estrogen-independent human breast cancer cells. However, the molecular mechanism(s) responsible for the inhibitory effects of G. lucidum on the proliferation of estrogen-dependent (MCF-7) and estrogen-independent (MDA-MB-231) breast cancer cells remain to be elucidated. Here, we show that G. lucidum inhibited the proliferation of breast cancer MCF-7 and MDA-MB-231 cells by the modulation of the estrogen receptor (ER) and NF-kappaB signaling. Thus, G. lucidum down-regulated the expression of ERalpha in MCF-7 cells but did not effect the expression of ERbeta in MCF-7 and MDA-MB-231 cells. In addition, G. lucidum inhibited estrogen-dependent as well as constitutive transactivation activity of ER through estrogen response element (ERE) in a reporter gene assay. G. lucidum decreased TNF-alpha-induced (MCF-7) as well as constitutive (MDA-MB-231) activity of NF-kappaB. The inhibition of ER and NF-kappaB pathways resulted in the down-regulation of expression of c-myc, finally suppressing proliferation of estrogen-dependent as well as estrogen-independent cancer cells. Collectively, these results suggest that G. lucidum inhibits proliferation of human breast cancer cells and contain biologically active compounds with specificity against estrogen receptor and NF-kappaB signaling, and implicate G. lucidum as a suitable herb for chemoprevention and chemotherapy of breast cancer. PMID:16865287

  2. The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells

    SciTech Connect

    Kang, Hyereen; Ko, Jesang; Jang, Sung-Wuk

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We evaluated the effect of ANXA1 on promoting migration and invasion in MDA-MB-231 cells. Black-Right-Pointing-Pointer ANXA1 siRNA inhibits invasion and migration. Black-Right-Pointing-Pointer ANXA1 regulates MMP-9 expression and activity. Black-Right-Pointing-Pointer ANX-1 siRNA inhibits the activation of NF-{kappa}B in MDA-MB-231 cells. -- Abstract: Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. However, the regulatory mechanism of MMP-9 expression and its biological effects on breast cancer development remain obscure. In the current study, we examined the potential role of annexin A1 (ANXA1) in regulating migration and invasion in breast cancer cell lines. Both ANXA1 mRNA and protein are expressed in the highly invasive, hormone-insensitive human breast cancer cell lines MDA-MB-231 and SKBr3, but not in the hormone-responsive cell lines MCF-7 and T47D. Downregulation of ANXA1 expression with specific small interfering RNAs (ANXA1 siRNA) in MDA-MB-231 cells resulted in decreased cancer cell migration and invasion. Ablation of ANXA1 expression decreases the expression of MMP-9 at both the mRNA and protein levels and also reduces the proteolytic activity of MMP-9 in MDA-MB-231 cells. Moreover, silencing ANXA1 also decreases the transcriptional activity of MMP-9 by the suppression of nuclear factor kappa-B (NF-{kappa}B) activity. Collectively, these results indicate that ANXA1 functions as a positive regulator of MMP-9 expression and invasion of breast cancer cells through specific activation of the NF-{kappa}B signaling pathway.

  3. 5′-AMP-activated Protein Kinase (AMPK) Supports the Growth of Aggressive Experimental Human Breast Cancer Tumors*

    PubMed Central

    Laderoute, Keith R.; Calaoagan, Joy M.; Chao, Wan-ru; Dinh, Dominc; Denko, Nicholas; Duellman, Sarah; Kalra, Jessica; Liu, Xiaohe; Papandreou, Ioanna; Sambucetti, Lidia; Boros, Laszlo G.

    2014-01-01

    Rapid tumor growth can establish metabolically stressed microenvironments that activate 5′-AMP-activated protein kinase (AMPK), a ubiquitous regulator of ATP homeostasis. Previously, we investigated the importance of AMPK for the growth of experimental tumors prepared from HRAS-transformed mouse embryo fibroblasts and for primary brain tumor development in a rat model of neurocarcinogenesis. Here, we used triple-negative human breast cancer cells in which AMPK activity had been knocked down to investigate the contribution of AMPK to experimental tumor growth and core glucose metabolism. We found that AMPK supports the growth of fast-growing orthotopic tumors prepared from MDA-MB-231 and DU4475 breast cancer cells but had no effect on the proliferation or survival of these cells in culture. We used in vitro and in vivo metabolic profiling with [13C]glucose tracers to investigate the contribution of AMPK to core glucose metabolism in MDA-MB-231 cells, which have a Warburg metabolic phenotype; these experiments indicated that AMPK supports tumor glucose metabolism in part through positive regulation of glycolysis and the nonoxidative pentose phosphate cycle. We also found that AMPK activity in the MDA-MB-231 tumors could systemically perturb glucose homeostasis in sensitive normal tissues (liver and pancreas). Overall, our findings suggest that the contribution of AMPK to the growth of aggressive experimental tumors has a critical microenvironmental component that involves specific regulation of core glucose metabolism. PMID:24993821

  4. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Berny-Lang, M. A.; Aslan, J. E.; Tormoen, G. W.; Patel, I. A.; Bock, P. E.; Gruber, A.; McCarty, O. J. T.

    2011-02-01

    The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer, and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thromobogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions.

  5. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells

    PubMed Central

    Berny-Lang, MA; Aslan, JE; Tormoen, GW; Patel, IA; Bock, PE; Gruber, A

    2011-01-01

    The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thromobogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently-labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions. PMID:21301066

  6. Baicalein suppresses metastasis of breast cancer cells by inhibiting EMT via downregulation of SATB1 and Wnt/β-catenin pathway

    PubMed Central

    Ma, Xingcong; Yan, Wanjun; Dai, Zhijun; Gao, Xiaoyan; Ma, Yinan; Xu, Quntao; Jiang, Jiantao; Zhang, Shuqun

    2016-01-01

    Background The flavonoid baicalein, a historically used Chinese herbal medicine, shows a wide range of biological and pharmaceutical effects, among which its potent antitumor activity has raised great interest in recent years. However, the molecular mechanism involved in the antimetastatic effect of baicalein remains poorly understood. This study aimed to verify the inhibitory effects of baicalein on metastasis of MDA-MB-231 human breast cancer cells both in vitro and in vivo, as well as to investigate the related mechanisms. Methods MTT assay was used to examine the inhibition of baicalein on proliferation of MDA-MB-231 cells. Wound healing assay and the in vitro invasion assay was carried out to investigate the effects of baicalein on migration and invasion of MDA-MB-231 cells, respectively. In order to explore the effects of baicalein on tumor metastasis in vivo, xenograft nude mouse model of MDA-MB-231 cells was established. Animals were randomly divided into four groups (control, therapy group, and low-dose and high-dose prevention group, n=6), and treated with baicalein as designed. Following sacrifice, their lungs and livers were collected to examine the presence of metastases. qRT-PCR and Western blot were performed to study the effects of baicalein on expression of SATB1, EMT-related molecules, and Wnt/β-catenin signaling components of MDA-MB-231 cells as well as the metastatic tissue. Effects of baicalein on the expression of target proteins in vivo were also analyzed by immunohistochemistry. Results Our results indicated that baicalein suppressed proliferation, migration, and invasion of MDA-MB-231 cells in a time- and dose-dependent manner. Based on assays carried out in xenograft nude mouse model, we found that baicalein inhibited tumor metastasis in vivo. Furthermore, baicalein significantly decreased the expression of SATB1 in MDA-MB-231 cells. It suppressed the expression of vimentin and SNAIL while enhancing the expression of E-cadherin. Baicalein

  7. Expression of estrogen receptor α in human breast cancer cells regulates mitochondrial oxidative stress under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Zheng, Hong-xia; Tian, Wei-ming; Yan, Hong-ji; Jiang, Hua-dong; Liu, Shan-shan; Yue, Lei; Han, Fang; Wei, Li-jun; Chen, Xiong-biao; Li, Yu

    2012-05-01

    This study investigated intracellular oxidative stress and its underlying mechanisms in a rotary cell culture system used to achieve a simulated microgravity (SMG) environment. Experiments were conducted with human breast cancer cell lines MCF-7 (an estrogen receptor (ER) α positive cell line) and MDA-MB-231 (an ERα negative cell line) encapsulated in alginate/collagen carriers. After 48 h, SMG led to oxidative stress and DNA damage in the MDA-MB-231 cells but a significant increase in mitochondrial activity and minimal DNA damage in the MCF-7 cells. The activity of superoxide dismutase (SOD) significantly increased in the MCF-7 cells and decreased in MDA-MB-231 cells in the SMG environment compared with a standard gravity control. Moreover, SMG promoted expression of ERα and protein kinase C (PKC) epsilon in MCF-7 cells treated with PKC inhibitor Gö6983. Overall, exposure to SMG increased mitochondrial activity in ERα positive cells but induced cellular oxidative damage in ERα negative cells. Thus, ERα may play an important role in protecting cells from oxidative stress damage under simulated microgravity.

  8. miRNA-10b sponge: An anti-breast cancer study in vitro.

    PubMed

    Liang, Ai-Ling; Zhang, Ting-Ting; Zhou, Ning; Wu, Cui Yun; Lin, Man-Hua; Liu, Yong-Jun

    2016-04-01

    Breast cancer is a malignant tumor with the highest incidence among women. Breast cancer metastasis is the major cause of treatment failure and mortality among such patients. MicroRNAs (miRNAs) are a class of small molecular non-coding regulatory RNAs, which act as oncogenes or tumor suppressors in breast cancer. miRNA-10b has been found to exhibit a high expression level in advanced and metastatic breast cancer, and is closely related to breast cancer metastasis. An miRNA sponge is an mRNA with several repeated sequences of complete or incomplete complementarity to the natural miRNA in its 3' non-translating region. It acts as a sponge adsorbing miRNAs and ensures their separation from their targets and inhibits their function. The present study designed a sponge plasmid against miRNA-10b and transiently transfected it into high and low metastatic human breast cancer cell lines MDA-MB-231 and MCF-7, and analyzed the effects of the miRNA-10b sponge on the growth and proliferation, migration and invasion in these cell lines. qRT-PCR results found that the sponge plasmid effectively inhibited the expression of miRNA-10b, and upregulated the expression of the miRNA‑10b target protein HOXD-10. The results from the CCK-8 assay found that the miRNA-10b sponge inhibited the growth of breast cancer cell lines MDA-MB-231 and MCF-7. Results of the plate cloning experiments indicated that the miRNA-10b sponge suppressed the colony formation of the MDA-MB-231 and MCF-7 cells. The results of wound healing and Transwell assays showed that the miRNA-10b sponge inhibited the migration and invasion of the breast cancer cell lines MDA-MB-231 and MCF-7. Our results demonstrated that the miRNA-10b sponge effectively inhibited the growth and proliferation of breast cancer MDA-MB-231 and MCF-7 cells. In addition, it also restrained the migration and invasion of human highly metastatic breast cancer MDA-MB-231 cells. PMID:26820121

  9. miRNA-10b sponge: An anti-breast cancer study in vitro

    PubMed Central

    LIANG, AI-LING; ZHANG, TING-TING; ZHOU, NING; WU, CUI YUN; LIN, MAN-HUA; LIU, YONG-JUN

    2016-01-01

    Breast cancer is a malignant tumor with the highest incidence among women. Breast cancer metastasis is the major cause of treatment failure and mortality among such patients. MicroRNAs (miRNAs) are a class of small molecular non-coding regulatory RNAs, which act as oncogenes or tumor suppressors in breast cancer. miRNA-10b has been found to exhibit a high expression level in advanced and metastatic breast cancer, and is closely related to breast cancer metastasis. An miRNA sponge is an mRNA with several repeated sequences of complete or incomplete complementarity to the natural miRNA in its 3′ non-translating region. It acts as a sponge adsorbing miRNAs and ensures their separation from their targets and inhibits their function. The present study designed a sponge plasmid against miRNA-10b and transiently transfected it into high and low metastatic human breast cancer cell lines MDA-MB-231 and MCF-7, and analyzed the effects of the miRNA-10b sponge on the growth and proliferation, migration and invasion in these cell lines. qRT-PCR results found that the sponge plasmid effectively inhibited the expression of miRNA-10b, and upregulated the expression of the miRNA-10b target protein HOXD-10. The results from the CCK-8 assay found that the miRNA-10b sponge inhibited the growth of breast cancer cell lines MDA-MB-231 and MCF-7. Results of the plate cloning experiments indicated that the miRNA-10b sponge suppressed the colony formation of the MDA-MB-231 and MCF-7 cells. The results of wound healing and Transwell assays showed that the miRNA-10b sponge inhibited the migration and invasion of the breast cancer cell lines MDA-MB-231 and MCF-7. Our results demonstrated that the miRNA-10b sponge effectively inhibited the growth and proliferation of breast cancer MDA-MB-231 and MCF-7 cells. In addition, it also restrained the migration and invasion of human highly metastatic breast cancer MDA-MB-231 cells. PMID:26820121

  10. Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors.

    PubMed

    Lee, Joomin; Hahm, Eun-Ryeong; Marcus, Adam I; Singh, Shivendra V

    2015-06-01

    We have shown previously that withaferin A (WA), a bioactive component of the medicinal plant Withania somnifera, inhibits growth of cultured and xenografted human breast cancer cells and prevents breast cancer development and pulmonary metastasis incidence in a transgenic mouse model. The present study was undertaken to determine if the anticancer effect of WA involved inhibition of epithelial-mesenchymal transition (EMT). Experimental EMT induced by exposure of MCF-10A cells to tumor necrosis factor-α (TNF-α) and transforming growth factor-β1 (TGF-β) was partially reversed by treatment with WA but not by its structural analogs withanone or withanolide A. Combined TNF-α and TGF-β treatments conferred partial protection against MCF-10A cell migration inhibition by WA. Inhibition of TNF-α and TGF-β-induced MCF-10A cell migration by WA exposure was modestly attenuated by knockdown of E-cadherin protein. MCF-7 and MDA-MB-231 cells exposed to WA exhibited sustained (MCF-7) or transient (MDA-MB-231) induction of E-cadherin protein. On the other hand, the level of vimentin protein was increased markedly after 24 h treatment of MDA-MB-231 cells with WA. WA-induced apoptosis was not affected by vimentin protein knockdown in MDA-MB-231 cells. Protein level of vimentin was significantly lower in the MDA-MB-231 xenografts as well as in MMTV-neu tumors from WA-treated mice compared with controls. The major conclusions of the present study are that (a) WA treatment inhibits experimental EMT in MCF-10A cells, and (b) mammary cancer growth inhibition by WA administration is associated with suppression of vimentin protein expression in vivo. PMID:24293234

  11. Human breast cancer bone metastasis in vitro and in vivo: a novel 3D model system for studies of tumour cell-bone cell interactions.

    PubMed

    Holen, I; Nutter, F; Wilkinson, J M; Evans, C A; Avgoustou, P; Ottewell, Penelope D

    2015-10-01

    Bone is established as the preferred site of breast cancer metastasis. However, the precise mechanisms responsible for this preference remain unidentified. In order to improve outcome for patients with advanced breast cancer and skeletal involvement, we need to better understand how this process is initiated and regulated. As bone metastasis cannot be easily studied in patients, researchers have to date mainly relied on in vivo xenograft models. A major limitation of these is that they do not contain a human bone microenvironment, increasingly considered to be an important component of metastases. In order to address this shortcoming, we have developed a novel humanised bone model, where 1 × 10(5) luciferase-expressing MDA-MB-231 or T47D human breast tumour cells are seeded on viable human subchaodral bone discs in vitro. These discs contain functional osteoclasts 2-weeks after in vitro culture and positive staining for calcine 1-week after culture demonstrating active bone resorption/formation. In vitro inoculation of MDA-MB-231 or T47D cells colonised human bone cores and remained viable for <4 weeks, however, use of matrigel to enhance adhesion or a moving platform to increase diffusion of nutrients provided no additional advantage. Following colonisation by the tumour cells, bone discs pre-seeded with MDA-MB-231 cells were implanted subcutaneously into NOD SCID mice, and tumour growth monitored using in vivo imaging for up to 6 weeks. Tumour growth progressed in human bone discs in 80 % of the animals mimicking the later stages of human bone metastasis. Immunohistochemical and PCR analysis revealed that growing MDA-MB-231 cells in human bone resulted in these cells acquiring a molecular phenotype previously associated with breast cancer bone metastases. MDA-MB-231 cells grown in human bone discs showed increased expression of IL-1B, HRAS and MMP9 and decreased expression of S100A4, whereas, DKK2 and FN1 were unaltered compared with the same cells grown in

  12. MOLECULAR EXPRESSION AND FUNCTIONAL ACTIVITY OF VITAMIN C SPECIFIC TRANSPORT SYSTEM (SVCT2) IN HUMAN BREAST CANCER CELLS

    PubMed Central

    Khurana, Varun; Kwatra, Deep; Pal, Dhananjay; Mitra, Ashim K.

    2014-01-01

    The main goal of this study is to investigate the expression of sodium dependent vitamin C transport system (SVCT2). Moreover this investigation has been carried out to define uptake mechanism and intracellular regulation of ascorbic acid (AA) in human breast cancer cells (MDA-MB231, T47D and ZR-75-1). Uptake of [14C] AA was studied in MDA-MB231, T47D and ZR-75-1 cells. Functional parameters of [14C] AA uptake were delineated in the presence of different concentrations of unlabeled AA, pH, temperature, metabolic inhibitors, substrates and structural analogs. Molecular identification of SVCT2 was carried out with reverse transcription–polymerase chain reaction (RT-PCR). Uptake of [14C] AA was studied and found to be sodium, chloride, temperature, pH and energy dependent in all breast cancer cell lines. [14C] AA uptake was found to be saturable, with Km values of 53.85±6.24, 49.69±2.83 and 45.44±3.16 μM and Vmax values of 18.45±0.50, 32.50±0.43 and 33.25±0.53 pmol/min/mg protein, across MDA-MB231, T47D and ZR-75-1, respectively. The process is inhibited by structural analogs (L-AA and D-Iso AA) but not by structurally unrelated substrates (glucose and PAHA). Ca++/calmodulin and protein kinase pathways appeared to play a crucial role in modulating AA uptake. A 626 bp band corresponding to a vitamin C transporter (SVCT2) based on the primer design was detected by RT-PCR analysis in all breast cancer cell lines. This research article describes AA uptake mechanism, kinetics, and regulation by sodium dependent vitamin C transporter (SVCT2) in MDA-MB231, T47D and ZR-75-1 cells. Also, MDA-MB231, T47D and ZR-75-1 cell lines can be utilized as a valuable in vitro model to investigate absorption and permeability of AA-conjugated chemotherapeutics. PMID:25102111

  13. Molecular expression and functional activity of vitamin C specific transport system (SVCT2) in human breast cancer cells.

    PubMed

    Khurana, Varun; Kwatra, Deep; Pal, Dhananjay; Mitra, Ashim K

    2014-10-20

    The main goal of this study is to investigate the expression of sodium dependent vitamin C transport system (SVCT2). Moreover, this investigation has been carried out to define uptake mechanism and intracellular regulation of ascorbic acid (AA) in human breast cancer cells (MDA-MB231, T47D and ZR-75-1). Uptake of [(14)C] AA was studied in MDA-MB231, T47D and ZR-75-1 cells. Functional parameters of [(14)C] AA uptake were delineated in the presence of different concentrations of unlabeled AA, pH, temperature, metabolic inhibitors, substrates and structural analogs. Molecular identification of SVCT2 was carried out with reverse transcription-polymerase chain reaction (RT-PCR). Uptake of [(14)C] AA was studied and found to be sodium, chloride, temperature, pH and energy dependent in all breast cancer cell lines. [(14)C] AA uptake was found to be saturable, with Km values of 53.85 ± 6.24, 49.69 ± 2.83 and 45.44 ± 3.16 μM and Vmax values of 18.45 ± 0.50, 32.50 ± 0.43 and 33.25 ± 0.53 pmol/min/mg protein, across MDA-MB231, T47D and ZR-75-1, respectively. The process is inhibited by structural analogs (l-AA and d-iso AA) but not by structurally unrelated substrates (glucose and PAHA). Ca(++)/calmodulin and protein kinase pathways appeared to play a crucial role in modulating AA uptake. A 626 bp band corresponding to a vitamin C transporter (SVCT2) based on the primer design was detected by RT-PCR analysis in all breast cancer cell lines. This research article describes AA uptake mechanism, kinetics, and regulation by sodium dependent vitamin C transporter (SVCT2) in MDA-MB231, T47D and ZR-75-1 cells. Also, MDA-MB231, T47D and ZR-75-1 cell lines can be utilized as a valuable in vitro model to investigate absorption and permeability of AA-conjugated chemotherapeutics. PMID:25102111

  14. Morphine Promotes Tumor Angiogenesis and Increases Breast Cancer Progression

    PubMed Central

    Bimonte, Sabrina; Barbieri, Antonio; Palma, Giuseppe; Luciano, Antonio; Cuomo, Arturo; Arra, Claudio; Izzo, Francesco

    2015-01-01

    Morphine is considered a highly potent analgesic agent used to relieve suffering of patients with cancer. Several in vitro and in vivo studies showed that morphine also modulates angiogenesis and regulates tumour cell growth. Unfortunately, the results obtained by these studies are still contradictory. In order to better dissect the role of morphine in cancer cell growth and angiogenesis we performed in vitro studies on ER-negative human breast carcinoma cells, MDA.MB231 and in vivo studies on heterotopic mouse model of human triple negative breast cancer, TNBC. We demonstrated that morphine in vitro enhanced the proliferation and inhibited the apoptosis of MDA.MB231 cells. In vivo studies performed on xenograft mouse model of TNBC revealed that tumours of mice treated with morphine were larger than those observed in other groups. Moreover, morphine was able to enhance the neoangiogenesis. Our data showed that morphine at clinical relevant doses promotes angiogenesis and increases breast cancer progression. PMID:26064880

  15. Modulation of the insulin-like growth factor-I system by N-(4-hydroxyphenyl)-retinamide in human breast cancer cell lines.

    PubMed Central

    Favoni, R. E.; de Cupis, A.; Bruno, S.; Yee, D.; Ferrera, A.; Pirani, P.; Costa, A.; Decensi, A.

    1998-01-01

    The potent mitogenic activity of insulin-like growth factor I (IGF-I) on breast epithelium is inhibited by retinoic acid in oestrogen receptor-positive (ER+) breast cancer cell lines. We studied and compared the effects of N-(4-hydroxyphenyl)-retinamide (4-HPR) in terms of growth inhibition and modulation of the IGF-I system in ER+ (MCF-7) and oestrogen receptor-negative (ER-) (MDA-MB231) breast cancer cell lines. Treatment with 1-10 microM 4-HPR for up to 96 h induced a dose- and time-dependent inhibition of proliferation in both breast cancer cell lines. Induction of apoptosis was much more evident in MCF-7 than in MDA-MB231 cells (30-40% compared with 0-5% respectively at 5 microM for 48 h). Exogenous human recombinant IGF-I (hr-IGF-I)-stimulated cell proliferation was abolished by 1 microM 4-HPR in MCF-7 cells. Immunoreactive IGF-I-like protein concentration in conditioned medium was reduced by 38% in MCF-7 and by 90% in MDA-MB231 cell lines following treatment for 48 h with 5 microM 4-HPR. Western ligand blot analysis showed a reduction of IGF-binding protein 4 (BP4) and BP5 by 67% and 87%, respectively, in MCF-7, whereas IGF-BP4 and -BP1 were reduced by approximately 20% in MDA-MB231 cells. Exposure to 5 microM 4-HPR for 48 h inhibited [125I]IGF-I binding and Scatchard analysis revealed a decrease of more than 50% in maximum binding capacity (Bmax) and a reduced receptor number/cell in both cancer cell lines. Steady-state type I IGF-receptor mRNA levels were reduced by approximately 30% in both tumour cell lines. We conclude that 4-HPR induces a significant down-regulation of the IGF-I system in both ER+ (MCF-7) and ER- (MDA-MB231) breast cancer cell lines. These findings suggest that, in our model, interference with the ER signalling pathway is not the only mechanism of breast cancer growth inhibition by 4-HPR. Images Figure 6 Figure 8 PMID:9649125

  16. Paclitaxel-Loaded TPGS-b-PCL Nanoparticles: In Vitro Cytotoxicity and Cellular Uptake in MCF-7 and MDA-MB-231 Cells versus mPEG-b-PCL Nanoparticles and Abraxane®.

    PubMed

    Bernabeu, Ezequiel; Gonzalez, Lorena; Legaspi, Maria J; Moretton, Marcela A; Chiappetta, Diego A

    2016-01-01

    Nanomedicines have become an attractive platform for the development of novel drug delivery systems in cancer chemotherapy. Polymeric nanoparticles (NPs) represent one of the best well-investigated nanosized carriers for delivery of antineoplastic compounds. The "Pegylation strategy" of drug delivery systems has been used in order to improve carrier biodistribution, however, some nanosized systems with PEG on their surface have exhibited poorly-cellular drug internalization. In this context, the purpose of the present study was to compare in vitro performance of two paclitaxel (PTX)-loaded NPs systems based on two biocompatible copolymers of alpha tocopheryl polyethylene glycol 1000 succinate-block-poly(ε-caprolactone) (TPGS-b-PCL) and methoxyPEG- block-poly(ε-caprolactone) (mPEG-b-PCL) in terms of citotoxicity and PTX cellular uptake. Fur- thermore, TPGS-b-PCL NPs were also copared with the commercially available PTX nano-sized formulation Abraxane®. Both TPGS-b-PCL and mPEG-b-PCL derivates were synthesized by ring opening polymerization of ε-caprolactone employing microwaved radiation. NPs were obtained by a solvent evaporation technique where the PTX content was determined by reverse-phase HPLC. The resulting NPs had an average size between 200 and 300 nm with a narrow size distribution. Also both NPs systems showed a spherical shape. The in vitro PTX release profile from the NPs was characterized employing the dialysis membrane method where all drug-loaded formulations showed a sustained and slow release of PTX. Finally, in vitro assays demonstrated that PTX-loaded TPGS- b-PCL exhibited a significant higher antitumor activity than PTX-loaded mPEG-b-PCL NPs and Abraxane® against an estrogen-dependent (MCF-7) and an estrogen independent (MDA-MB-231) breast cancer cells lines. Furthermore TPGS-b-PCL NPs showed a significant increase on PTX cellular uptake, for both breast cell lines, in comparison with mPEG-b-PCL NPs and Abraxane®. Overall findings confirmed

  17. A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells

    PubMed Central

    Robles-Escajeda, Elisa; Das, Umashankar; Ortega, Nora M.; Parra, Karla; Francia, Giulio; Dimmock, Jonathan R.; Varela-Ramirez, Armando; Aguilera, Renato J.

    2016-01-01

    Purpose According to the World Health Organization (WHO), breast cancer is the most common cancer affecting women worldwide. In the USA ~12.3 % of all women are expected to be diagnosed with various types of breast cancer, exhibiting varying degrees of therapeutic response rates. Therefore, the identification of novel anti-breast cancer drugs is of paramount importance. Methods The 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore was incorporated into a number of cytotoxins. Three of the resulting dienones, 2a, 2b and 2c, were tested for their antineoplastic potencies in a variety of human breast cancer-derived cell lines, including the triple negative MDA-MB-231 cell line and its metastatic variant, using a live-cell bio-imaging method. Special emphasis was put on dienone 2c, since its anti-cancer activity and its mode of inflicting cell death have so far not been reported. Results We found that all three dienones exhibited potent cytotoxicities towards the breast cancer-derived cell lines tested, whereas significantly lower toxicities were observed towards the non-cancerous human breast cell line MCF-10A. The dienones 2b and 2c exhibited the greatest selective cytotoxicity at submicromolar concentration levels. We found that these two dienones induced phosphatidylserine externalization in MDA-MB-231 cells in a concentration-dependent manner, suggesting that their cytotoxic effect might be mediated by apoptosis. This possibility was confirmed by our observation that the dienone 2c can induce mitochondrial depolarization, caspase-3 activation, cell cycle disruption and DNA fragmentation in MDA-MB-231 cells. Conclusion Our findings indicate that dienone 2c uses the mitochondrial/intrinsic pathway to inflict apoptosis in triple negative MDA-MB-231 breast cancer-derived cells. This observation warrants further assessment of dienone 2c as a potential anti-breast cancer drug. PMID:26920032

  18. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    SciTech Connect

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  19. Ultrasound-guided photoacoustic imaging for the selective detection of EGFR-expressing breast cancer and lymph node metastases.

    PubMed

    Zhang, Meihua; Kim, Hoe Suk; Jin, Tiefeng; Yi, Ann; Moon, Woo Kyung

    2016-05-01

    We assessed the use of ultrasound (US)-guided photoacoustic imaging (PAI) and anti-EGFR antibody-conjugated gold nanorods (anti-EGFR-GNs) to non-invasively detect EGFR-expressing primary tumor masses and regional lymph node (LN) metastases in breast tumor mice generated by injecting MCF-7 (EGFR-negative) or MDA-MB-231 (EGFR-positive) human breast cells using a preclinical Vevo 2100 LAZR Imaging system. Anti-EGFR-GNs provided a significant enhancement in the PA signal in MDA-MB-231 tumor and the axillary LN metastases relative to MCF-7 tumor and non-LN metastases. We demonstrated that US-guided PAI using anti-EGFR-GNs is highly sensitive for the selective visualization of EGFR-expressing breast primary tumors as well as LN micrometastases. PMID:27231631

  20. Ultrasound-guided photoacoustic imaging for the selective detection of EGFR-expressing breast cancer and lymph node metastases

    PubMed Central

    Zhang, Meihua; Kim, Hoe Suk; Jin, Tiefeng; Yi, Ann; Moon, Woo Kyung

    2016-01-01

    We assessed the use of ultrasound (US)-guided photoacoustic imaging (PAI) and anti-EGFR antibody-conjugated gold nanorods (anti-EGFR-GNs) to non-invasively detect EGFR-expressing primary tumor masses and regional lymph node (LN) metastases in breast tumor mice generated by injecting MCF-7 (EGFR-negative) or MDA-MB-231 (EGFR-positive) human breast cells using a preclinical Vevo 2100 LAZR Imaging system. Anti-EGFR-GNs provided a significant enhancement in the PA signal in MDA-MB-231 tumor and the axillary LN metastases relative to MCF-7 tumor and non-LN metastases. We demonstrated that US-guided PAI using anti-EGFR-GNs is highly sensitive for the selective visualization of EGFR-expressing breast primary tumors as well as LN micrometastases. PMID:27231631

  1. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    SciTech Connect

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  2. Synthesis and Biological Activity of 3-N-Substituted Estrogen Derivatives as Breast Cancer Agents

    PubMed Central

    Wan, Zhongliang; Musa, Musiliyu A; Joseph, Patrick; Cooperwood, John S.

    2013-01-01

    3-N-substituted-estrogen derivatives were synthesized and characterized. Their antiproliferative activities against human ER (+) MCF-7 (Breast), ER (−) MDA-MB-231 (breast) and Ishikawa (endometrial) cancer cell lines were determined after 72 hours drug exposure employing CellTiter-Glo assay at concentrations ranging from (0.01-100,000 nM). The antiproliferative activities of these compounds were compared to tamoxifen (TAM), 4-hydroxytamoxifen (4-OHT, active metabolite of tamoxifen) and raloxifene (RAL). In vitro results indicated that compound 5 (IC50 = 12μM) displayed comparable antiproliferative activity against MDA-MB 231 cell line; while compounds 6, 7 and 13 (IC50 = 12μM) displayed higher activity against MCF-7 and Ishikawa cell lines, in comparison to TAM activity (19-33μM). PMID:22876946

  3. COX-2 dependent regulation of mechanotransduction in human breast cancer cells

    PubMed Central

    Yoon, A-Rum; Stasinopoulos, Ioannis; Kim, Jae Hun; Yong, Hwan Mee; Kilic, Onur; Wirtz, Denis; Bhujwalla, Zaver M; An, Steven S

    2015-01-01

    The ability of living cells to exert physical forces upon their surrounding is a necessary prerequisite for diverse biological processes, such as local cellular migrations in wound healing to metastatic-invasion of cancer. How forces are coopted in metastasis has remained unclear, however, because the mechanical interplay between cancer cells and the various stromal components has not been experimentally accessible. Current dogma implicates inflammation in these mechanical processes. Using Fourier transform traction microscopy, we measured the force-generating capacity of human breast cancer cells occupying a spectrum of invasiveness as well as basal and inducible COX-2 expression (MCF-7MDA-MB-231). Compared with non-invasive MCF-7 and moderately-invasive SUM-149, poorly-differentiated MDA-MB-231 cells showed increased cellular dispersion on collagen matrix that was accompanied by emergent distribution of contractile stresses at the interface between the adherent cell and its substrate, defined herein as the traction field. In metastatic MDA-MB-231 cells, the local tractions were precisely tuned to the surrounding matrix rigidity in a physiologic range with the concomitant expression of mechanosensitive integrin β1. These discrete responses at the single-cell resolution were correlated with PGE2 secretion and were ablated by shRNA-mediated knockdown of COX-2. Both COX-2-silenced and COX-2-expressing cells expressed EP2 and EP4 receptors, but not EP1 and EP3. Exogenous addition of PGE2 increased cell tractions and stiffened the underlying cytoskeletal network. To our knowledge this is the first report linking the expression of COX-2 with mechanotransduction of human breast cancer cells, and the regulation of COX-2-PGE2-EP signaling with physical properties of the tumor microenvironment. Drug treatments aimed at reducing this mechanical interplay may have therapeutic potential in the treatment of breast cancer. PMID:25701047

  4. Flavonoid-induced autophagy in hormone sensitive breast cancer cells.

    PubMed

    Brunelli, Elisa; Pinton, Giulia; Bellini, Paolo; Minassi, Alberto; Appendino, Giovanni; Moro, Laura

    2009-09-01

    The activity of 8-prenylapigenin (8-PA) and its 3'-methoxylated analogue isocannflavin B (IsoB) was investigated in estrogen-dependent T47-D and estrogen-independent MDA-MB-231 human breast cancer cell lines. 8-PA showed a biphasic effect on T47-D cell proliferation, while no significant effect was observed on MDA-MB-231 cells. Conversely, IsoB exhibited only an inhibitory effect on T47-D cell proliferation, accompanied by the appearance of an intense intracytoplasmic vacuolization of autophagic origin. Moreover, biochemical analysis showed that IsoB reduced Akt phosphorylation and p21(Cip1) expression in T47-D cells. These data show that the prenylflavone moiety is a versatile platform for the induction and modulation of bioactivity. PMID:19371773

  5. Systemic Delivery of an Oncolytic Adenovirus Expressing Decorin for the Treatment of Breast Cancer Bone Metastases.

    PubMed

    Yang, Yuefeng; Xu, Weidong; Neill, Thomas; Hu, Zebin; Wang, Chi-Hsiung; Xiao, Xianghui; Stock, Stuart R; Guise, Theresa; Yun, Chae-Ok; Brendler, Charles B; Iozzo, Renato V; Seth, Prem

    2015-12-01

    The development of novel therapies for breast cancer bone metastasis is a major unmet medical need. Toward that end, we have constructed an oncolytic adenovirus, Ad.dcn, and a nonreplicating adenovirus, Ad(E1-).dcn, both containing the human decorin gene. Our in vitro studies showed that Ad.dcn produced high levels of viral replication and the decorin protein in the breast tumor cells. Ad(E1-).dcn-mediated decorin expression in MDA-MB-231 cells downregulated the expression of Met, β-catenin, and vascular endothelial growth factor A, all of which are recognized decorin targets and play pivotal roles in the progression of breast tumor growth and metastasis. Adenoviral-mediated decorin expression inhibited cell migration and induced mitochondrial autophagy in MDA-MB-231 cells. Mice bearing MDA-MB-231-luc skeletal metastases were systemically administered with the viral vectors, and skeletal tumor growth was monitored over time. The results of bioluminescence imaging and X-ray radiography indicated that Ad.dcn and Ad(E1-).dcn significantly inhibited the progression of bone metastases. At the terminal time point, histomorphometric analysis, micro-computed tomography, and bone destruction biomarkers showed that Ad.dcn and Ad(E1-).dcn reduced tumor burden and inhibited bone destruction. A nonreplicating adenovirus Ad(E1-).luc expressing the luciferase 2 gene had no significant effect on inhibiting bone metastases, and in several assays, Ad.dcn and Ad(E1-).dcn were better than Ad.luc, a replicating virus expressing the luciferase 2 gene. Our data suggest that adenoviral replication coupled with decorin expression could produce effective antitumor responses in a MDA-MB-231 bone metastasis model of breast cancer. Thus, Ad.dcn could potentially be developed as a candidate gene therapy vector for treating breast cancer bone metastases. PMID:26467629

  6. Ethyl gallate suppresses proliferation and invasion in human breast cancer cells via Akt-NF-κB signaling.

    PubMed

    Cui, Hongxia; Yuan, Jiaxin; Du, Xiaohui; Wang, Ming; Yue, Liling; Liu, Jicheng

    2015-03-01

    Euphorbia fischeriana Steud is a traditional Chinese Medicine that is known to possess a variety of anticarcinogenic properties. However, the bioactive constituents in Euphorbia fischeriana Steud and molecular mechanisms underlying this action in cancer treatment remain poorly understood. The present study investigated the chemotherapy activity and molecular targets of Ethyl gallate, which is identified as the major constituent extracted from the roots of Euphorbia fischeriana Steud in breast cancer cell lines in vitro. The results showed Ethyl gallate obviously decreased cell proliferation in MDA-MB-231 and MCF-7 cells in a dose- and time-dependent manner. Highly invasive MDA-MB-231 cells were found to be highly sensitive to treatment. Furthermore, significantly decreased metastatic potential of highly metastatic MDA-MB‑231 cells by Ethyl gallate was identified via the inhibition of cell motility using invasion and migration through a polyethylene terephthalate membrane. Ethyl gallate treatment decreased the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9 by the downregulation of mRNA levels using RT-PCR, enzymes that are critical to tumor invasion. Treatment with Ethyl gallate decreased phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-κB (NF-κB) activation in MDA-MB-231 cells. These results indicate that Ethyl gallate suppresses proliferation and invasion in human breast cancer cells by modulating the PI3K/Akt pathway, which may contribute to inhibiting their downstream targets such as NF-κB p-65, Bcl-2/Bax, and mRNA levels of MMP-2 and MMP-9 in breast cancer cells. Thus, the present study shed new light on Ethyl gallate, an important bioactive constituent of Euphorbia fischeriana Steud, in human breast cancer treatment. The findings may provide basal theories for wide therapeutic application in human breast cancer. PMID:25522911

  7. Deferoxamine-induced increase in the intracellular iron levels in highly aggressive breast cancer cells leads to increased cell migration by enhancing TNF-α-dependent NF-κB signaling and TGF-β signaling.

    PubMed

    Liu, Ping; He, Kun; Song, Hongjiao; Ma, Zhufeng; Yin, Weihai; Xu, Lisa X

    2016-07-01

    Recent studies have suggested that excess iron accumulation may be a risk factor for breast cancer. However the role of iron in breast cancer metastasis has remained unclear. The major goal of our study is to investigate the roles of iron in breast cancer metastasis. We modulated the intracellular iron levels of human breast cancer cells, including the aggressive MDA-MB-231 cells and non-aggressive MCF-7 cells, by using Deferoxamine (DFO) - a most widely used iron chelator. We found that DFO treatment could deplete intracellular iron in MCF-7 cells. In contrast, DFO treatment led to a significant increase in the intracellular iron level in MDA-MB-231 cells. The MDA-MB-231 cells with the increased intracellular iron level exhibited increases in both mesenchymal markers and cell migration. Furthermore, the DFO-treated MDA-MB-231 cells showed increases in both tumor necrosis factor α (TNF-α)-induced nuclear factor kappa B (NF-κB) signaling and transforming growth factor-β (TGF-β) signaling, which could contribute to the enhanced cell migration. Collectively, our study has provided the first evidence suggesting that increased intracellular iron levels could lead to enhanced migration of aggressive breast cancer cells by increasing TNF-α-dependent NF-κB signaling and TGF-β signaling. Our study has also suggested that caution should be taken when DFO is applied for treating breast cancer cells, since DFO could produce differential effects on the intracellular iron levels for aggressive breast cancer cells and non-aggressive breast cancer cells. PMID:27138103

  8. Recombinant epoetins do not stimulate tumor growth in erythropoietin receptor-positive breast carcinoma models.

    PubMed

    LaMontagne, Kenneth R; Butler, Jeannene; Marshall, Deborah J; Tullai, Jennifer; Gechtman, Ze'ev; Hall, Chassidy; Meshaw, Alan; Farrell, Francis X

    2006-02-01

    We investigated the significance of erythropoietin receptor (EPOR) expression following treatment with recombinant human erythropoietin (rHuEPO; epoetin alpha) and the effect of recombinant epoetins (epoetin alpha, epoetin beta, and darbepoetin alpha) alone or in combination with anticancer therapy on tumor growth in two well-established preclinical models of breast carcinoma (MDA-MB-231 and MCF-7 cell lines). Expression and localization of EPOR under hypoxic and normoxic conditions in MDA-MB-231 and MCF-7 cells were evaluated by immunoblotting, flow cytometry, and immunohistochemistry. EPOR binding was evaluated using [125I]rHuEPO. Proliferation, migration, and signaling in MDA-MB-231 and MCF-7 cells following treatment with rHuEPO were evaluated. Tumor growth was assessed following administration of recombinant epoetins alone and in combination with paclitaxel (anticancer therapy) in orthotopically implanted MDA-MB-231 and MCF-7 breast carcinoma xenograft models in athymic mice. EPOR expression was detected in both tumor cell lines. EPOR localization was found to be exclusively cytosolic and no specific [125I]rHuEPO binding was observed. There was no stimulated migration, proliferation, or activation of mitogen-activated protein kinase and AKT following rHuEPO treatment. In mice, treatment with recombinant epoetins alone and in combination with paclitaxel resulted in equivalent tumor burdens compared with vehicle-treated controls. Results from our study suggest that although EPOR expression was observed in two well-established breast carcinoma cell lines, it was localized to a cytosolic distribution and did not transduce a signaling cascade in tumors that leads to tumor growth. The addition of recombinant epoetins to paclitaxel did not affect the outcome of paclitaxel therapy in breast carcinoma xenograft models. These results show that recombinant epoetins do not evoke a physiologic response on EPOR-bearing tumor cells as assessed by numerous variables

  9. Ni(II), Cu(II), and Zn(II) Diethyldithiocarbamate Complexes Show Various Activities Against the Proteasome in Breast Cancer Cells

    PubMed Central

    Cvek, Boris; Milacic, Vesna; Taraba, Jan; Dou, Q. Ping

    2008-01-01

    A series of three complexes with diethyldithiocarbamate ligand and three different metals (Ni, Cu, Zn) was prepared, confirmed by X-ray crystallography, and tested in human breast cancer MDA-MB-231 cells. Zinc and copper complexes, but not nickel complex, were found to be more active against cellular 26S proteasome than against purified 20S proteasome core particle. One of the possible explanations is inhibition of JAMM domain in the 19S proteasome lid. PMID:18816109

  10. Discovery of novel osthole derivatives as potential anti-breast cancer treatment.

    PubMed

    You, Lisha; An, Rui; Wang, Xinhong; Li, Yimin

    2010-12-15

    Osthole, an ingredient of Traditional Chinese Medicine (TCM) from natural product Cnidium monnieri (L.) Cusson, was used as a lead compound for structural modification. A series of osthole derivatives bearing aryl substituents at 3-position of coumarin, has been prepared and evaluated for their growth inhibitory activity against human breast cancer cell lines MCF-7 and MDA-MB-231. Interestingly, some derivatives exhibited good inhibition, among them compound 8e was found to be the most potent compound with IC(50) values of 0.24 μM, 0.31 μM against MCF-7 and MDA-MB-231, respectively, which was improved more than 100-folds compared with its parent compound osthole. PMID:21051232