Science.gov

Sample records for me49 strain experimentally

  1. Experimental infection with the Toxoplasma gondii ME-49 strain in the Brazilian BR-1 mini pig is a suitable animal model for human toxoplasmosis.

    PubMed

    Miranda, Farlen José Bebber; Souza, Diogo Benchimol de; Frazão-Teixeira, Edwards; Oliveira, Fábio Conceição de; Melo, João Cardoso de; Mariano, Carlos Magno Anselmo; Albernaz, Antonio Peixoto; Carvalho, Eulógio Carlos Queiróz de; Oliveira, Francisco Carlos Rodrigues de; Souza, Wanderley de; DaMatta, Renato Augusto

    2015-02-01

    Toxoplasma gondii causes toxoplasmosis, a worldwide disease. Experimentation with pigs is necessary for the development of new therapeutic approaches to human diseases. BR-1 mini pigs were intramuscularly infected with T. gondii with tachyzoites (RH strain) or orally infected with cysts (ME-49 strain). Haematology and serum biochemistry were analysed and buffy coat cells were inoculated in mice to determine tachyzoite circulation. No alterations were observed in erythrocyte and platelet values; however, band neutrophils increased seven days after infection with ME-49. Serology of the mice inoculated with pig blood leucocytes revealed circulating ME-49 or RH strain tachyzoites in the pigs' peripheral blood at two and seven or nine days post-infection. The tachyzoites were also directly observed in blood smears from the infected pigs outside and inside leucocytes for longer periods. Alanine-aminotransferase was high at days 21 and 32 in the RH infected pigs. After 90 days, the pigs were euthanised and their tissue samples were processed and inoculated into mice. The mice serology revealed the presence of parasites in the hearts, ileums and mesenteric lymph nodes of the pigs. Additionally, cysts in the mice were only observed after pig heart tissue inoculation. The infected pigs presented similar human outcomes with relatively low pathogenicity and the BR-1 mini pig model infected with ME-49 is suitable to monitor experimental toxoplasmosis. PMID:25742268

  2. Experimental infection with the Toxoplasma gondii ME-49 strain in the Brazilian BR-1 mini pig is a suitable animal model for human toxoplasmosis

    PubMed Central

    Miranda, Farlen José Bebber; de Souza, Diogo Benchimol; Frazão-Teixeira, Edwards; de Oliveira, Fábio Conceição; de Melo, João Cardoso; Mariano, Carlos Magno Anselmo; Albernaz, Antonio Peixoto; de Carvalho, Eulógio Carlos Queiróz; de Oliveira, Francisco Carlos Rodrigues; de Souza, Wanderley; DaMatta, Renato Augusto

    2015-01-01

    Toxoplasma gondii causes toxoplasmosis, a worldwide disease. Experimentation with pigs is necessary for the development of new therapeutic approaches to human diseases. BR-1 mini pigs were intramuscularly infected with T. gondii with tachyzoites (RH strain) or orally infected with cysts (ME-49 strain). Haematology and serum biochemistry were analysed and buffy coat cells were inoculated in mice to determine tachyzoite circulation. No alterations were observed in erythrocyte and platelet values; however, band neutrophils increased seven days after infection with ME-49. Serology of the mice inoculated with pig blood leucocytes revealed circulating ME-49 or RH strain tachyzoites in the pigs' peripheral blood at two and seven or nine days post-infection. The tachyzoites were also directly observed in blood smears from the infected pigs outside and inside leucocytes for longer periods. Alanine-aminotransferase was high at days 21 and 32 in the RH infected pigs. After 90 days, the pigs were euthanised and their tissue samples were processed and inoculated into mice. The mice serology revealed the presence of parasites in the hearts, ileums and mesenteric lymph nodes of the pigs. Additionally, cysts in the mice were only observed after pig heart tissue inoculation. The infected pigs presented similar human outcomes with relatively low pathogenicity and the BR-1 mini pig model infected with ME-49 is suitable to monitor experimental toxoplasmosis. PMID:25742268

  3. An experimental evaluation of apparent strain from foil strain gauges attached to carbon composite substrates

    NASA Technical Reports Server (NTRS)

    Scott, B. R.; Lanius, S. J.; Auer, C. W.

    1987-01-01

    An experimental evaluation of apparent thermal strains is conducted using various combinations of substrate/gauge/attachment structure and redundant high temperature extensometry. It is found that the extensometry could either confirm independent measurements of the substrate's thermal expansion, or quantify nonzero mechanical strains resulting from uncertain material behavior and boundary conditions. Apparent strain and thermal expansion behavior data can then be used to modify the raw strain measurements in order to determine either stress producing or total strains. Limitation of the correction procedure for the three selected strain gauges is noted which is due to relatively large gauge/attachment variability.

  4. Experimental qualification by extensive evaluation of fibre optic strain sensors

    NASA Astrophysics Data System (ADS)

    Schilder, Constanze; Kusche, Nadine; Schukar, Vivien G.; Münzenberger, Sven; Habel, Wolfgang R.

    2013-09-01

    Fibre optic strain sensors used in practical applications have to provide reliable measurements. Therefore, the applied sensor and the sensor systems must be validated experimentally. This can be achieved with facilities which use physically independent measurement systems in order to avoid the influences caused by the application of a reference sensor. This paper describes the testing methods of the specially developed validation facility KALFOS for the qualification and evaluation of surface-applied strain sensors. For reliable sensor results, the performance of fibre optic strain patches with and without FBG under combined thermal and mechanical loading was investigated. Additionally, the strain gauge factor of the fibre optic strain patches with FBG was determined experimentally and compared to the specified strain gauge factor. These results will be the basis for the development of guidelines and standards concerning the application of the sensors.

  5. An experimental/analytical comparison of strains in encapsulated assemblies

    SciTech Connect

    Guess, T.R.; Burchett, S.N.

    1991-11-01

    A combined experimental and analytical study of strains developed in encapsulated assemblies during casting, curing and thermal excursions is described. The experimental setup, designed to measure in situ strains, consisted of thin, closed-end, Kovar tubes that were instrumented with strain gages and thermocouples before being over-cast with a polymeric encapsulant. Four bisphenol A (three diethanolamine cured and one anhydride cured) epoxy-based materials and one urethane elastomeric material were studied. After cure of the encapsulant, tube strains were measured over the temperature range of {minus}55{degrees}C to 90{degrees}C. The thermal excursion experiments were then numerically modeled using finite element analyses and the computed strains were compared to the experimental strains. The predicted strains were over estimated (conservative) when a linear, elastic, temperature-dependent material model was assumed for the encapsulant and the stress free temperature T{sub i} was assumed to correspond to the cure temperature {Tc} of the encapsulant. Very good agreement was obtained with linear elastic calculations provided that the stress free temperature corresponded to the onset of the glassy-to-rubbery transition range of the encapsulant. Finally, excellent agreement was obtained in one of the materials (828/DEA) when a viscoelastic material model was utilized and a stress free temperature corresponding to the cure temperature was assumed. 13 refs., 20 figs., 3 tabs.

  6. An experimental/analytical study of strains in encapsulated assemblies

    NASA Astrophysics Data System (ADS)

    Guess, T. R.; Burchett, S. N.

    1991-12-01

    A combined experimental and analytical study of strains that develop in encapsulated assemblies during casting, curing and thermal excursions is described. The experimental setup, designed to measure in situ strains, consisted of thin, closed-end, metal tubes that were instrumented with strain gages and thermocouples before being over-potted with an encapsulant. Three epoxy-based materials were studied. After cure of the encapsulant, tube strains were measured over the temperature range of minus 55 C to 90 C. The thermal excursion experiments were then numerically modeled using finite element analyses and the results were compared to the experimental results. The predicted strains are overestimated (conservative) when a linear, elastic, temperature-dependent material model was assumed for the encapsulant and the stress free temperature was assumed to correspond to the cure temperature of the encapsulant. Very good agreement was obtained with the linear elastic calculations provided that the stress free temperature corresponds to the onset of the glassy-to-rubbery transition range of the encapsulant. Finally, very good agreement was obtained when a viscoelastic material model was utilized and a stress free temperature corresponding to the cure temperature was assumed.

  7. Experimental study on the mechanical strain of corneal collagen.

    PubMed

    Avetisov, S E; Bubnova, I A; Novikov, I A; Antonov, A A; Siplivyi, V I

    2013-06-21

    Currently, investigations of biomechanical properties of the fibrous tunic are becoming even more topical, especially for diagnosis of corneal ectatic disease, as well as correct interpretation of intraocular pressure (IOP) parameters, particularly in patients with prior surgery on cornea. The study principle is based on the ability of substances to change optical anisotropy depending on mechanical strain applied to them. An experimental set-up was constructed which allows assessment of polarization degree of light which is emitted during luminescence of strained collagen. The study was performed on 18 corneoscleral discs of chinchilla rabbit eyes at 15 and 50mm Hg pressure, among them in 6 cases before and after making radial incisions, and in 6 cases before and after conducting the mechanical cornea abrasions that were asymmetrical by depth until reaching the local zone of iatrogenic keratectasia. Corneal collagen mechanical strain mappings were formed on 3 experimental models (intact cornea, cornea post radial keratotomy and keratectasia) under intra-chamber pressure of 15 and 50mm Hg. Corneal collagen mechanical strain is evenly allocated in the intact cornea. After radial keratotomy the main mechanical loading was concentrated over the middle part of corneal periphery, particularly in the bottom of keratotomic incisions. The increased intra-chamber pressure made the strain rise in those models. Upon cornea abrasion the main straining is distributed within the thinning zone, and the increase of intra-chamber pressure only increases the load over residual stroma. A new principle of corneal biomechanical properties investigation based on assessment of degree of light polarization emitted during luminescence of strained collagen, has been proposed and experimentally tested. PMID:23680349

  8. Perceptual strain index for heat strain assessment in an experimental study: an application to construction workers.

    PubMed

    Yang, Y; Chan, Albert P C

    2015-02-01

    Although the physiological strain index (PhSI) is universal and comprehensive, its restrictions are recognized in terms of invasive on-site measurements and the requirement of accurate instruments. The perceptual strain index (PeSI) has been proposed as a user-friendly and practical indicator for heat strain. However, the application of this index in assessing the heat strain of construction workers has yet to be examined and documented. This study aims to ascertain the reliability and applicability of PeSI in an experimental setting that simulates a stressful working environment (i.e., environment, work uniform, and work pace) experienced by construction workers. Ten males and two females performed intermittent exercise on a treadmill while wearing a summer work uniform at 34.5 °C and 75% relative humidity in a climatic chamber. Physiological parameters (core temperature, heart rate) and perceptual variables (thermal sensation, perceived exertion) were collated synchronously at 3 min intervals. The results of two-way repeated measures analysis of variance (clothing×time) revealed that the PeSI was useful in differentiating the heat strain levels between different work uniforms. Not only did the PeSI change in the same general manner with the PhSI, but it was also powerful in reflecting different levels of physiological strain. Thus, the PeSI offers considerable promise for heat strain assessment under simulated working conditions. PMID:25660626

  9. Validation of Perceptual Strain Index to Evaluate the Thermal Strain in Experimental Hot Conditions

    PubMed Central

    Dehghan, Habibollah; Ghanbary Sartang, Ayoub

    2015-01-01

    Background: The incidence of heat stress is one of the most common problems in workplaces and industries. Many heat stress indices have been developed, and these indices have some disadvantages. The purpose of this study is to validate the perceptual strain index (PeSI) in experimental hot conditions. Methods: This study is of cross-sectional carried out on 15 men at five different thermal conditions (35°C, 30°C, 27°C, 24°C, and 21°C) in a climate chamber and on a treadmill at three levels of light (2.4 kph), medium (4.8 kph) and heavy activity (6.3 kph). Heart rate and oral temperature were respectively measured to calculate the physiological strain index. Also, thermal sensation and rate perceive exertion were respectively measured to calculate the PeSI. Finally, the correlation between the indices was analyzed using Pearson correlation test and regression analysis. Results: Pearson correlation test showed a high correlation (r = 0.94) between the PeSI and physiological strain index (P = 0/001). It was also observed a high correlation between the PeSI and the oral temperature (r = 0.78, P = 0/001) and the heart rate (r = 0.90, P = 0/001). In addition, there was found a moderate correlation (r = 0.71) between the PeSI and the wet bulb glob temperature (P = 0/001). However, there was no correlation between the PeSI and the body mass index (r = 0.0009, P = 0.79). Conclusions: The research findings showed when there is no access to other forms of methods to evaluate the heat stress, it can be used the PeSI in evaluating the strain because of its favorable correlation with the thermal strain. PMID:26425333

  10. Experimental Anelastic Strain Recovery Compliance of Three Typical Rocks

    NASA Astrophysics Data System (ADS)

    Gao, Lu; Lin, Weiren; Sun, Dongsheng; Wang, Hongcai

    2014-11-01

    The experimental determination of anelastic strain recovery (ASR) compliances for three types of rocks (granite, marble, and sandstone) was performed in the laboratory. Preloading of specimens for uniaxial compression creep tests was at 50 % of the uniaxial compressive strength (UCS) for each rock type. We obtained the shear mode Jas( t) and volumetric mode Jav( t) ASR compliances and calculated the ratio of Jas( t) to Jav( t). The Kelvin model for rock rheology was then applied in numerical simulations and the results were in good agreement with the measured data for Jas( t) and Jav( t). These results showed that both the magnitude and rate of increase of the ASR compliances are strongly dependent on the rock type, and the values of the Jas( t)/Jav( t) ratio for a loading of 50 % of the UCS showed a trend leading to different constants for each of the three rock types. Further experimental and numerical analyses showed approximate power-law relationships between the ASR compliances at 50 % of UCS, and both the UCS and the tangential Young's modulus at 50 % of UCS ( E t50). These relationships may be useful for the preliminary estimation of ASR compliances.

  11. Experimental study of cancellous bone under large strains and a constitutive probabilistic model.

    PubMed

    Kefalas, V; Eftaxiopoulos, D A

    2012-02-01

    Experimental study of bovine cancellous bone up to compaction under uniaxial compression and up to fracture under tension, has been pursued in this article. Compression experiments have revealed the known three stages of the constitutive response, namely the initial increasing and softening branches at moderate strains, the plateau region at large strains and the hardening part at very large strains under compaction. Tension tests have quantified the increasing and softening branches of the stress-strain curve up to fracture. Subsequently, a constitutive mechanical model, for the simulation of the experimental findings up to very large strains (75% engineering strain under compression), is proposed. The model is based on the statistical description of (a) the failure process of the trabecular structure at small and moderate strains and (b) the compaction process of the trabecular mass at very large strains under compression. Several fitting cases indicated that the presented constitutive law can capture the evolution of the experimental results. PMID:22301172

  12. Design and application of FBG strain experimental apparatus in high temperature

    NASA Astrophysics Data System (ADS)

    Xia, Zhongcheng; Liu, Yueming; Gao, Xiaoliang

    2014-09-01

    Fiber Bragg Grating (FBG) sensing technology has many applications, and it's widely used in detection of temperature, strain and etc. Now the application of FBG sensor is limited to the temperature below 200°C owing to the so called High Temperature Erasing Phenomenon. Strain detection over 200°C is still an engineering challenge since high temperature has a bad influence on the sensor, testing equipment and test data, etc, thus effective measurement apparatus are needed to ensure the accuracy of the measurement over 200°C, but there are no suitable FBG strain experimental apparatus in high temperature to date. In this paper a high temperature FBG strain experimental apparatus has been designed to detect the strain in high temperature. In order to verify working condition of the high temperature FBG strain, an application of FBG strain sensing experiment was given in this paper. The high temperature FBG strain sensor was installed in the apparatus, the internal temperature of experimental apparatus was controlled from -20 to 300°C accurately, and strain loading was given by the counterweight, then the data was recorded through electrical resistance strain measurement and optical sensing interrogator. Experimental data result shows that the high temperature FBG strain experimental apparatus can work properly over 200°C. The design of the high temperature FBG strain experimental apparatus are demonstrated suitable for high temperature strain gauges and FBG strain sensors , etc, which can work under the temperature of -20 ~ 300°C, the strain of -1500 ~ +1500μepsilon and the wavelength resolution of 1pm.

  13. Free edge strain concentrations in real composite laminates: Experimental-theoretical correlation

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Post, D.; Buczek, M. B.; Czarnek, R.

    1984-01-01

    The magnitude of the maximum shear strain at the free edge of axially loaded theta (2)/-theta(2)(s) and (+ or - theta(2) (s) composite laminates was investigated experimentally and numerically to ascertain the actual value of strain concentration in resin matrix laminates and to determine the accuracy of finite element results. Experimental results using moire interferometry show large, but finite, shear strain concentrations at the free edge of graphite-epoxy and graphite-polyimide laminates. Comparison of the experimental results with those obtained using several different finite element representations showed that a four node isoparametric finite element provided the best and most trouble free numerical results. The results indicate that the ratio of maxium shear strain at the free edge to applied axial strain varies with fiber orientation and does not exceed nine for the most critical angle which is 15 deg.

  14. Experimental Evaluation of White Light Fabry-Perot Interferometry Fiber-Optic Strain Gages when Measuring Small Strains

    NASA Technical Reports Server (NTRS)

    St.Cyr, William; Figueroa, Fernando; VanDyke, David; McVay, Greg; Mitchell, Mark

    2002-01-01

    An experimental study was conducted to evaluate whether fiber optic strain gages (FOSG) are "better" sensors than typical foil gages. A particularly attractive feature of FOSG was their specified resolution of 0.01% of full-scale (0.1 micro strain for 1000 micro strain full-scale). This feature would make FOSG practical tank level sensors, by measuring very small strains on the support structure of a tank. A specific application in mind was to measure liquid oxygen tank level, with support beams that were predicted to contract approximately 11 micro strain as the tank goes from empty to full. Among various fiber optic technologies currently available, Fabry-Perot Interferometry using white light was selected. This technology exhibits highly desirable feature such as absolute strain measurement, linearity over its full-scale, and temperature compensation. However, experiment results suggest that the resolution is 0.8 micro strain, at best, calibration from one sensor to another can be off by 2.4 - 11.2%, and that temperature compensation is not fully predictable, with errors of up to 3.5 micro strain over an 11C range. Hence, when compared with classic foil gages, FOSG possess less accuracy, similar resolution and repeatability (precision), and superior linearity over their entire operating range. They are immune to EMI and their signals suffer minimal degradation over long distances. It is also expected that drift with time will be minimal in FOSG whereas the gage factor of foil sensors changes over time when exposed to varying environmental conditions. In conclusion, FOSG are "better" than foil gages as long as the application allows calibration of individual units as installed for operation.

  15. Experimental Investigations of Woven Textile Tape as Strain Sensor

    NASA Astrophysics Data System (ADS)

    Kannaian, T.; Naveen, V. S.; Muthukumar, N.; Thilagavathi, G.

    2015-10-01

    In this article, a strain sensitive textile based elastomeric tape sensor has been developed and process parameters for sensor development are optimized. Polyester yarns are used as base threads and rubber threads are used as elastomer for the sensor development. The sensor has been developed with the help of narrow width tape loom by introducing the silver coated nylon yarn in the middle of the tape structure. The influence of weave structure, number of conductive threads and rubber thread tension on sensor development has been optimized by using the Box-Behnken method and the results are analyzed using the Design expert software. From the results, it is found that six numbers of conductive threads in a plain weave structure with rubber thread tension of 750 g is suitable for the sensor to give high gauge factor of 1.626.

  16. Experimental determination of the strain and strain rate dependence of the fraction of plastic work converted to heat

    SciTech Connect

    Hodowany, J.; Ravichandran, G.; Rosakis, A.J.

    1995-12-31

    When metals are deformed dynamically, there is insufficient time for heat generated by plastic deformation to be conducted to the surroundings. Thus, the conversion of plastic work into heat at high strain rates can result in significant temperature increases, which contribute to thermal softening, thereby altering a material`s constitutive response. The fraction of plastic work converted to heat represents the strength of the coupling term between temperature and mechanical fields in thermalmechanical problems involving plastic flow. The experimental determination of this constitutive function is important since it is an integral part of the formulation of coupled thermomechanical field equations. This fraction also plays an important role in failure mode characterization for metals deforming at high rates of strain, such as the formation of adiabatic shear bands. This investigation systematically examines the rate of conversion of plastic work to heat in metals under dynamic loading. Temperature was measured in-situ using an array of high speed In-Sb infrared detectors. The plastic work rate and the heat generation rate were determined directly from experimental data. The ratio of heat generation rate to plastic work rate, i.e., the relative rate at which plastic work is converted to heat, was calculated from this data. The functional dependence of this quantity upon strain and strain rate is reported for 1020 steel, 2024 aluminum, Ti-6Al-4V titanium alloy, and C300 maraging steel.

  17. Characterization of experimentally induced, nonaflatoxigenic variant strains of Aspergillus parasiticus.

    PubMed Central

    Kale, S P; Cary, J W; Bhatnagar, D; Bennett, J W

    1996-01-01

    Six previously isolated, nonaflatoxigenic variants of Aspergillus parasiticus, designated sec mutants, were characterized morphologically by electron microscopy, biochemically by biotransformation studies with an aflatoxin precursor, and genetically by Northern (RNA) hybridization analysis of aflatoxin biosynthetic gene transcripts. Scanning electron micrographs clearly demonstrated that compared with the parental sec+ forms, the variant sec forms had an abundance of vegetative mycelia, orders of magnitude reduced number of conidiophores and conidia, and abnormal metulae. Conidiospores were detected in sec cultures only at higher magnifications (x 500), in contrast to the sec+ (wild-type) strain, in which abundant conidiospores (masking the vegetative mycelia) were observed at even lower magnifications (x 300). All sec+ forms, but none of the sec forms, showed bioconversion of sterigmatocystin to aflatoxins. Northern blots probed with pathway genes demonstrated lack of expression of both the aflatoxin biosynthetic pathway structural (nor-1 and omtA) and regulatory (aflR) genes in the sec forms; PCR and Southern hybridization analysis confirmed the presence of the genes in the sec genomes. Thus, the loss of aflatoxigenic capabilities in the sec form is correlated with alterations in the conidial morphology of the fungus, suggesting that the regulation of aflatoxin synthesis and conidiogenesis may be interlinked. PMID:8795232

  18. Development of intermediate and high strain rate experimentation and material modeling for viscoplastic metals

    NASA Astrophysics Data System (ADS)

    Whittington, Wilburn Ray

    This work presents a combined theoretical-experimental study of strain rate behavior in metals. The method is to experimentally calibrate and validate an Internal State Variable (ISV) constitutive model with a wide range of strain rate sensitivity. Therefore a practical apparatus and methodology for performing highly sought-after intermediate strain rate experimentation was created. For the first time in reported literature, the structure-property relations of Rolled Homogeneous Armor is quantified at the microscale and modeled with varying strain rates, temperatures, and stress states to capture plasticity and damage with a single set of constants that includes intermediate strain rates. A rolled homogeneous armor (RHA) was used as a material system to prove the methodology. In doing so, a newly implemented strain rate dependent nucleation parameter for RHA was implemented to transition the dominant damage mechanism from void growth to void nucleation as strain rate increased. The ISVs were utilized in finite element analysis for robust predictability of mechanical performance as well as predictability of microstructural evolution with regards to void size and number distribution. For intermediate strain rate experiments, robust load acquisition was achieved using a novel serpentine transmittal bar that allowed for long stress waves to traverse a short bar system; this system eliminated load- ringing that plagues servo-hydraulic systems. A direct hydraulic loading apparatus was developed to provide uniform strain rates throughout intermediate rate tests to improve on the current limitations of the state-of-the-art. Key recommendations on the advancement of predictive modeling of dynamic materials, as well as performing advanced dynamic experimentation, are elucidated.

  19. Experimental and numerical study on tensile strength of concrete under different strain rates.

    PubMed

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10(-7) s(-1) to 10(-4) s(-1) in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  20. Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

    PubMed Central

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  1. Experimental examination of strain field within GP zone in an Al-Zn-Mg-Cu alloy

    NASA Astrophysics Data System (ADS)

    Bai, P. C.; Liu, F.; Hou, X. H.; Zhao, C. W.; Xing, Y. M.

    2012-11-01

    The strain field of GP zone plays a very important role in strengthening of the precipitation-hardened aluminum alloys by prohibiting movement of dislocations; however, quantitative analysis about the strain field of the GP zone in the aluminum alloys has been seldom reported elsewhere. In this paper, the microstructure of GP zone in an Al-Zn-Mg-Cu alloy was explored by using high-resolution transmission electron microscopy (HRTEM), and the displacement field of lattice planes within the GP zone was experimentally measured by geometric phase analysis (GPA) technique; then, the quantitative results about strains of the distorted lattice planes within the GP zone were also obtained. It is found that the GP zone core is convergence region of the strains, and the maximum value of the compressive strains within the GP zone is about 7.6%.

  2. Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: II. Experimental validation

    NASA Astrophysics Data System (ADS)

    Voet, E.; Luyckx, G.; De Waele, W.; Degrieck, J.

    2010-10-01

    Embedded optical fibre sensors are considered in numerous applications for structural health monitoring purposes. Since the optical fibre and the host material in which it is embedded have different material properties, the strain in both materials will not be equal when external load is applied. Therefore, the strain transfer from the host material to the embedded sensor (optical fibre) was studied in more detail in the first part of the paper. This second part presents an experimental evaluation of the response of uni-axial fibre Bragg grating sensors embedded in small cross-ply composite laminates subjected to out-of-plane transverse loading. This loading case induces high birefringence effects in the core of the optical fibre. Using the numerically determined strain transfer coefficients (Luyckx et al 2010 Smart. Mater. Struct. 19 105017) together with multi-axial strain formulations, the authors were able to measure with reasonable accuracy the total strain field inside a carbon fibre reinforced plastic specimen.

  3. Strain localization in carbonate rocks experimentally deformed in the ductile field

    NASA Astrophysics Data System (ADS)

    Rybacki, E.; Morales, L. F. G.; Dresen, G.

    2012-04-01

    The deformation of rocks in the Earth's crust is often localized, varying from brittle fault gauges in shallow environments to mylonites in ductile shear zones at greater depth. A number of theoretical, experimental, and field studies focused on the evolution and extend of brittle fault zones, but little is known so far about initiation of ductile shear zones. Strain localization in rocks deforming at high temperature and pressure may be induced by several physical, chemical, or structurally-related mechanisms. We performed simple and pure shear deformation experiments on carbonate rocks containing structural inhomogenities in the ductile deformation regime. The results may help to gain insight into the evolution of high temperature shear zones. As starting material we used cylindrical samples of coarse-grained Carrara marble containing one or two 1 mm thin artificially prepared sheets of fine-grained Solnhofen limestone, which act as soft inclusions under the applied experimental conditions. Length and diameter of the investigated solid and hollow cylinders were 10-20 mm and 10-15 mm, respectively. Samples were deformed in a Paterson-type gas deformation apparatus at 900° C temperature and confining pressures of 300 and 400 MPa. Three samples were deformed in axial compression at a bulk strain rate of 8x10-5 s-1to axial strains between 0.02 and 0.21 and 15 samples were twisted in torsion at a bulk shear strain rate of 2x10-4 s-1 to shear strains between 0.01 and 3.74. At low strain, specimens deformed axially and in torsion show minor strain hardening that is replaced by strain weakening at shear strains in excess of about 0.2. Peak shear stress at the imposed condition is about 20 MPa. Strain localized strongly within the weak inclusions as indicated by inhomogeneous bending of initially straight strain markers on sample jackets. Maximum strain concentration within inclusions with respect to the adjacent matrix was between 4 and 40, depending on total strain and

  4. Experimental Study on Tensile Behavior of Carbon Fiber and Carbon Fiber Reinforced Aluminum at Different Strain Rate

    NASA Astrophysics Data System (ADS)

    Zhou, Yuanxin; Wang, Ying; Jeelani, Shaik; Xia, Yuanming

    2007-01-01

    In this study, dynamic and quasi-static tensile behaviors of carbon fiber and unidirectional carbon fiber reinforced aluminum composite have been investigated. The complete stress strain curves of fiber bundles and the composite at different strain rates were obtained. The experimental results show that carbon fiber is a strain rate insensitive material, but the tensile strength and critical strain of the Cf/Al composite increased with increasing of strain rate because of the strain rate strengthening effect of aluminum matrix. Based on experimental results, a fiber bundles model has been combined with Weibull strength distribution function to establish a one-dimensional damage constitutive equation for the Cf/Al composite.

  5. Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates

    NASA Astrophysics Data System (ADS)

    Salvo, Maxime; Sercombe, Jérôme; Ménard, Jean-Claude; Julien, Jérôme; Helfer, Thomas; Désoyer, Thierry

    2015-01-01

    This work presents an experimental characterization of uranium dioxide (UO2) in compression under Reactivity Initiated Accident (RIA) conditions. Pellet samples were tested at four temperatures (1100, 1350, 1550 and 1700 °C) and at a strain rate varying over 4 decades (10-4-10-3-10-2-10-1 /s). The experimental results show that the stress-strain curves cannot be fitted with a unique power law as it is the case at smaller strain rates (10-9-10-5 /s). A strain-hardening also appears in most of the tests. The microstructural observations show a pronounced evolution of the porosity at the pellet center during the tests. A hyperbolic sine model which accounts for volume variations (pore compressibility) was therefore proposed to describe the behavior of UO2 on a large range of temperatures (1100 - 1700 °C) and strain rates (10-9-10-1 /s). The Finite Element simulations of the compression tests lead to results (maximum stress, axial and hoop strain distribution, porosity distribution) in good agreement with the measurements. The model was then assessed on a database of more than two hundred creep tests.

  6. Correlations between local strains and tissue phenotypes in an experimental model of skeletal healing.

    PubMed

    Morgan, Elise F; Salisbury Palomares, Kristy T; Gleason, Ryan E; Bellin, Daniel L; Chien, Karen B; Unnikrishnan, Ginu U; Leong, Pui L

    2010-08-26

    Defining how mechanical cues regulate tissue differentiation during skeletal healing can benefit treatment of orthopaedic injuries and may also provide insight into the influence of the mechanical environment on skeletal development. Different global (i.e., organ-level) mechanical loads applied to bone fractures or osteotomies are known to result in different healing outcomes. However, the local stimuli that promote formation of different skeletal tissues have yet to be established. Finite element analyses can estimate local stresses and strains but require many assumptions regarding tissue material properties and boundary conditions. This study used an experimental approach to investigate relationships between the strains experienced by tissues in a mechanically stimulated osteotomy gap and the patterns of tissue differentiation that occur during healing. Strains induced by the applied, global mechanical loads were quantified on the mid-sagittal plane of the callus using digital image correlation. Strain fields were then compared to the distribution of tissue phenotypes, as quantified by histomorphometry, using logistic regression. Significant and consistent associations were found between the strains experienced by a region of the callus and the tissue type present in that region. Specifically, the probability of encountering cartilage increased, and that of encountering woven bone decreased, with increasing octahedral shear strain and, to a lesser extent, maximum principal strain. Volumetric strain was the least consistent predictor of tissue type, although towards the end of the four-week stimulation timecourse, cartilage was associated with increasingly negative volumetric strains. These results indicate that shear strain may be an important regulator of tissue fate during skeletal healing. PMID:20546756

  7. Growth Parameter of Wild and Selected Strains of Atlantic Salmon (Salmo salar) on Two Experimental Diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atlantic salmon parr from Penobscot (wild) and St. John’s River (selected) strains were cultured in 0.265m3 tanks filled with 2-3 ppt salinity well water and connected to a common bio-filter system. Salmon parr were stocked at 100 fish/tank and fed one of two experimental diets in a 2 x 2 factorial...

  8. Basic theory and experimental techniques of the strain-gradient method

    SciTech Connect

    Hecker, F.W.; Pindera, J.T.

    1987-09-01

    The theories of presently used experimental methods of stress and deformation analysis which employ radiant energy as a detector are based on the assumption that light propagates rectilinearly within both undeformed and deformed bodies which are initially homogeneous and isotropic when diffraction phenomena are negligible. This assumption is not correct: light propagation within deformed bodies is nonrectilinear in a general case. Although this has already been observed and applied practically by some researchers in photoelasticity, it has not so far been generally acknowledged and accepted in experimental mechanics. On the basis of empirical data produced in the period 1948-1983, theories and foundations are presented for a new experimental method which is based on the relations between stress/strain gradients and curvatures of light beams. This method is called the strain-gradient method or, less rigorously, gradient photoelasticity. 39 references.

  9. Strain and micromotion in intact and resurfaced composite femurs: experimental and numerical investigations.

    PubMed

    Pal, Bidyut; Gupta, Sanjay; New, Andrew M R; Browne, Martin

    2010-07-20

    Understanding the load transfer within a resurfaced femur is necessary to determine the influence of mechanical factors on potential failure mechanisms such as early femoral neck fractures and stress shielding. In this study, an attempt has been made to measure the stem-bone micromotion and implant cup-bone relative displacements (along medial-lateral and anterior-posterior direction), in addition to surface strains at different locations and orientations on the proximal femur and to compare these measurements with those predicted by equivalent FE models. The loading and the support conditions of the experiment were closely replicated in the FE models. A new experimental set-up has been developed, with specially designed fixtures and load application mechanism, which can effectively impose bending and deflection of the tested femurs, almost in any direction. High correlation coefficient (0.92-0.95), low standard error of the estimate (170-379 muepsilon) and low percentage error in regression slope (12.8-17.5%), suggested good agreement between the numerical and measured strains. The effect of strain shielding was observed in two (out of eight) strain gauges located on the posterior side. A pronounced strain increase occurred in strain gauges located on the anterior head and neck regions after implantation. Experimentally measured stem-bone micromotion and implant cup-bone relative displacements (0-13.7 microm) were small and similar in trends predicted by the FE models (0-25 microm). Despite quantitative deviations in the measured and numerical results, it appears that the FE model can be used as a valid predictor of the actual strain and stem-bone micromotion. PMID:20392448

  10. Strain-Related Differences after Experimental Traumatic Brain Injury in Rats

    PubMed Central

    Rolfe, Andrew; Register, David; Levasseur, Joseph E.; Churn, Severn B.; Sun, Dong

    2010-01-01

    Abstract The present study directly compares the effects of experimental brain injury in two commonly used rat strains: Fisher 344 and Sprague-Dawley. We previously found that Fisher rats have a higher mortality rate and more frequent seizure attacks at the same injury level than Sprague-Dawley rats. Although strain differences in rats are commonly accepted as contributing to variability among studies, there is a paucity of literature addressing strain influence in experimental neurotrauma. Therefore this study compares outcome measures in two rat strains following lateral fluid percussion injury. Fisher 344 and Sprague-Dawley rats were monitored for changes in physiological measurements, intracranial pressure, and electroencephalographic activity. We further analyzed neuronal degeneration and cell death in the injured brain using Fluoro-Jade-B (FJB) histochemistry and caspase-3 immunostaining. Behavioral studies using the beam walk and Morris water maze were conducted to characterize strain differences in both motor and cognitive functional recovery following injury. We found that Fisher rats had significantly higher intracranial pressure, prolonged seizure activity, increased FJB-positive staining in the injured cortex and thalamus, and increased caspase-3 expression than Sprague-Dawley rats. On average, Fisher rats displayed a greater amount of total recording time in seizure activity and had longer ictal durations. The Fisher rats also had increased motor deficits, correlating with the above results. In spite of these results, Fisher rats performed better on cognitive tests following injury. The results demonstrate that different rat strains respond to injury differently, and thus in preclinical neurotrauma studies strain influence is an important consideration when evaluating outcomes. PMID:20392137

  11. Virulent Properties of Russian Bovine Viral Diarrhea Virus Strains in Experimentally Infected Calves.

    PubMed

    Glotov, Alexander G; Glotova, Tatyana I; Koteneva, Svetlana V; Semenova, Olga V; Sergeev, Alexander A; Titova, Ksenya A; Morozova, Anastasia A; Sergeev, Artemiy A

    2016-01-01

    The results of experimental study of three noncytopathic and two cytopathic bovine viral diarrhea virus (BVDV) strains isolated from cattle in the Siberian region and belonging to the type 1 (subtypes 1a, 1b, and 1d) have been presented. All investigated strains caused the development of infectious process in the seronegative 4-6-month-old calves after aerosol challenge with the dose of 6 log10 TCID50. The greatest virulence had noncytopathic strain and cytopathic strain related to the subtypes 1d and 1b, respectively. All strains in infected calves caused some signs of moderate acute respiratory disease and diarrhea: depression 3-5 days postinfection (p.i.), refusal to food, severe hyperthermia to 41.9°С, serous exudate discharges from the nasal cavity and eyes, transient diarrhea with blood, leukopenia (up to 2700 cells/mm(3)), and macroscopic changes in the respiratory organs and intestine. The infected animals recovered from 12 to 15 days p.i. and in 90% cases formed humoral immune response 25 days p.i. (antibody titers to BVDV: 1 : 4-1 : 16). Our results confirmed the presence of virulent BVDV1 strains and showed the need for researches on the molecular epidemiology of the disease, development of more effective diagnostic systems, and optimization of control programs with use of vaccines. PMID:27190687

  12. Virulent Properties of Russian Bovine Viral Diarrhea Virus Strains in Experimentally Infected Calves

    PubMed Central

    Koteneva, Svetlana V.; Semenova, Olga V.; Sergeev, Alexander A.; Titova, Ksenya A.; Morozova, Anastasia A.

    2016-01-01

    The results of experimental study of three noncytopathic and two cytopathic bovine viral diarrhea virus (BVDV) strains isolated from cattle in the Siberian region and belonging to the type 1 (subtypes 1a, 1b, and 1d) have been presented. All investigated strains caused the development of infectious process in the seronegative 4–6-month-old calves after aerosol challenge with the dose of 6 log10 TCID50. The greatest virulence had noncytopathic strain and cytopathic strain related to the subtypes 1d and 1b, respectively. All strains in infected calves caused some signs of moderate acute respiratory disease and diarrhea: depression 3–5 days postinfection (p.i.), refusal to food, severe hyperthermia to 41.9°С, serous exudate discharges from the nasal cavity and eyes, transient diarrhea with blood, leukopenia (up to 2700 cells/mm3), and macroscopic changes in the respiratory organs and intestine. The infected animals recovered from 12 to 15 days p.i. and in 90% cases formed humoral immune response 25 days p.i. (antibody titers to BVDV: 1 : 4–1 : 16). Our results confirmed the presence of virulent BVDV1 strains and showed the need for researches on the molecular epidemiology of the disease, development of more effective diagnostic systems, and optimization of control programs with use of vaccines. PMID:27190687

  13. Experimenter effects on behavioral test scores of eight inbred mouse strains under the influence of ethanol

    PubMed Central

    Bohlen, Martin; Hayes, Erika R.; Bohlen, Benjamin; Bailoo, Jeremy; Crabbe, John C.; Wahlsten, Douglas

    2016-01-01

    Eight standard inbred mouse strains were evaluated for ethanol effects on a refined battery of behavioral tests in a study that was originally designed to assess the influence of rat odors in the colony on mouse behaviors. As part of the design of the study, two experimenters conducted the tests, and the study was carefully balanced so that equal numbers of mice in all groups and times of day were tested by each experimenter. A defect in airflow in the facility compromised the odor manipulation, and in fact the different odor exposure groups did not differ in their behaviors. The two experimenters, however, obtained markedly different results for three of the tests. Certain of the experimenter effects arose from the way they judged behaviors that were not automated and had to be rated by the experimenter, such as slips on the balance beam. Others were not evident prior to ethanol injection but had a major influence after the injection. For several measures, the experimenter effects were notably different for different inbred strains. Methods to evaluate and reduce the impact of experimenter effects in future research are discussed. PMID:24933191

  14. Experimental study on structural defect detection by monitoring distributed dynamic strain

    NASA Astrophysics Data System (ADS)

    Liu, R. M.; Babanajad, S. K.; Taylor, T.; Ansari, F.

    2015-11-01

    A defect detection method of civil structures is studied. In order to complete the task, the proposed detection method is based on the analysis of distributed dynamic strains using Brillouin scattering based fiber optic sensors along large span structures. The current challenges in the detection of localized damage fundamentally include monitoring the dynamic strain as well as eliminating the system noise and the distortion of the changing distributed strain. Due to the capability of Brillouin scattering based methods in distributed monitoring of large structures, Brillouin optical time-domain analysis approach is implemented for assessing damage. In order to highlight the singularity at the damage location, Fourier as well as dual tree complex wavelet transform approaches were conducted. During the processing, the dynamic distributed strain in the time domain was transformed into the frequency domain for extraction of natural and forced frequencies. Then, the data was decomposed, filtered for extraction of crack features and reconstructed. The feasibility of the proposed method is evaluated through an experimental program involving the use of pulse-pre-pump Brillouin optical time domain analysis for the distributed measurement of dynamic strain with 13 Hz sampling speed and detection of simulated cracks in a 15 m long steel beam. The beam mimics a bridge girder with two artificial cracks along its length subjected to free and forced vibrations. The results indicate that the method based on the discontinuities in the strain distribution is applicable in the detection of very small damage as small as 40 micro strains. A crack gauge independently monitored the crack opening displacements during the experiments, and the limit of detected crack openings based on the first appearance of strain singularities was 30 μm.

  15. Experimental studies on the effect of coherency strains on coarsening kinetics: Current status and future outlook

    SciTech Connect

    Muralidharan, G.; Epperson, J.E.; Chen, H.

    1994-03-01

    The effect of coherency strains on the coarsening rate constant in Ostwald ripening is an area that is not well understood. We briefly review the extant experimental data on the effect of coherency strains on coarsening rates and explain the need to account for variations in coarsening rates due to composition and diffusivity effects before drawing any conclusions on the dependence of coarsening rates on the misfit parameter. Using the preexisting theories for coarsening rates in multi-component systems, we suggest a simple method to account for the composition dependence of coarsening rates arising from factors unrelated to coherency strain effects. We then present some of the results from our on-going work in the Ni-Al-Si system and explain the relevance of this study to our understanding of coarsening in internally-stressed systems. We conclude the presentation with our views on the direction of future research in this aspect of coarsening.

  16. New fluorescence markers to distinguish co-infecting Trypanosoma brucei strains in experimental multiple infections.

    PubMed

    Balmer, Oliver; Tostado, Cristóbal

    2006-01-01

    Multiple-genotype infections are increasingly recognized as important factors in disease evolution, parasite transmission dynamics, and the evolution of drug resistance. However, the distinction of co-infecting parasite genotypes and the tracking of their dynamics have been difficult with traditional methods based on various genotyping techniques, leaving most questions unaddressed. Here we report new fluorescence markers of various colours that are inserted into the genome of Trypanosoma brucei to phenotypically label live parasites of all life cycle stages. If different parasite strains are labelled with different colours they can be easily distinguished from each other in experimental studies. A total of 10 T. brucei strains were successfully transfected with different fluorescence markers and were monitored in culture, tsetse flies and mice, to demonstrate stability of marker expression. The use of fluorescence activated cell sorting (FACS) allowed rapid and accurate identification of parasite strains labelled with different markers. Cell counts by FACS were virtually identical to counts by traditional microscopy (n=75, Spearman's rho: 0.91, p<0.0001) but were considerably faster and had a significantly lower sampling error (66% lower, d.f.=73, t=-17.1, p<0.0001). Co-infecting strains transfected with fluorescence genes of different colour were easily distinguished by eye and their relative and absolute densities were reliably counted by FACS in experimental multiple infections in mice. Since the FACS can simultaneously determine the population sizes of differently labelled T. brucei strains or subspecies it allows detailed and efficient tracking of multiple-genotype infections within a single host or vector individual, enabling more powerful studies on parasite dynamics. In addition, it also provides a simple way to separate genotypes after experimental mixed infections, to measure responses of the single strains to an applied treatment, thus eliminating the

  17. A phase-field model for ductile fracture at finite strains and its experimental verification

    NASA Astrophysics Data System (ADS)

    Ambati, Marreddy; Kruse, Roland; De Lorenzis, Laura

    2016-01-01

    In this paper, a phase-field model for ductile fracture previously proposed in the kinematically linear regime is extended to the three-dimensional finite strain setting, and its predictions are qualitatively and quantitatively compared with several experimental results, both from ad-hoc tests carried out by the authors and from the available literature. The proposed model is based on the physical assumption that fracture occurs when a scalar measure of the accumulated plastic strain reaches a critical value, and such assumption is introduced through the dependency of the phase-field degradation function on this scalar measure. The proposed model is able to capture the experimentally observed sequence of elasto-plastic deformation, necking and fracture phenomena in flat specimens; the occurrence of cup-and-cone fracture patterns in axisymmetric specimens; the role played by notches and by their size on the measured displacement at fracture; and the sequence of distinct cracking events observed in more complex specimens.

  18. Behavior of spinning laminated composite plates with initial twist-experimental vibrations, strain, and deflection results

    NASA Technical Reports Server (NTRS)

    Lapid, A. J.; Kosmatka, J. B.; Mehmed, O.

    1993-01-01

    The experimental behavior of spinning, pre-twisted laminated composite plates was investigated. The purpose of these experiments was to establish an experimental database consisting of strain, deflections, and natural frequencies as a function of rotational velocity. Six different plate sets were tested, that included three different stacking sequences (two symmetric, one asymmetric), two different initial twist levels (0 deg, 30 deg), and two different initial twist axis locations (midchord, quarter-chord). The plates were spin tested at four different combinations of pitch and sweep. It was observed that the location of the pretwist axis and the level of pretwist greatly affects the strain and deflections of the spinning plate, while only the pretwist level affects the measured natural frequencies.

  19. Hyperinducibility of Ia antigen on astrocytes correlates with strain-specific susceptibility to experimental autoimmune encephalomyelitis

    SciTech Connect

    Massa, P.T.; ter Meulen, V.; Fontana, A.

    1987-06-01

    In search of a phenotypic marker determining genetically controlled susceptibility to delayed-type hypersensitivity (DTH) reactions in the brain-in particular, experimental autoimmune encephalomyelitis (EAE)- the authors have compared the ..gamma..-interferon (IFN-..gamma..) induction of Ia molecules on astrocytes and macrophages from rat and mouse strains that are susceptible or resistant to this disease. They focused on Ia expression because DTH reactions to self or foreign antigens are largely mediated by lymphocytes restricted by class II (Ia) antigens of the major histocompatibility complex (MHC). The data demonstrate that Lewis (fully susceptible) and Brown Norway (BN) (fully resistant) rats are very different in that Lewis astrocytes express much higher levels of Ia than BN astrocytes. Similar data were obtained from an analysis of EAE-susceptible and -resistant mouse strains (SJL and BALB/c, respectively), which suggest that this phenomenon may be universal and not limited to only one mammalian species. At least one gene responsible for Ia hyperinduction is located outside the rat RT-1 or the mouse MHC locus. Animals congenic at the RT-1 or MHC locus of the resistant strain but with background genes of the susceptible strain exhibit intermediate levels of Ia compared to fully resistant and susceptible rodents, which fits well with the reduced EAE susceptibility of these congenic animals. Furthermore, hyperinduction of Ia is astrocyte specific, since peritoneal macrophages of susceptible and resistant strains exhibit identical profiles of Ia induction. Thus, astrocyte Ia hyperinducibility may be a major strain- and tissue-specific factor that contributes to Ia-restricted DTH reactions in the brain.

  20. Compaction fabrics of pelites: experimental consolidation of kaolinite and implications for analysis of strain in slate

    NASA Astrophysics Data System (ADS)

    Baker, David W.; Chawla, Kanwarjit S.; Krizek, Raymond J.

    1993-09-01

    Compaction of clay and shale results in large reductions in volume as pore water is expelled. Preferred orientation of the platy minerals increases with compaction strain and loss of porosity according to the March-Owens model. This relationship has been studied quantitatively by experimentally consolidating kaolinite clay from slurries and analyzing the resulting fabrics with the X-ray pole figure goniometer and scanning electron microscope (SEM). 'Initial' porosity corresponds to the onset of the strain recorded by the preferred orientation; and the values of 0.78 for dispersed slurries and 0.76 for flocculated slurries reflect the electrostatic forces between the clay platelets. 'Initial' porosities of recently deposited fine silt and clay are in the range of 0.60-0.90 and are a function of grain size and mineralogy. Loss of this 'initial' porosity has a large effect on the subsequent development of slaty cleavage. Matrix methods were used to model deformation paths for slates in the Welsh slate belt. Preferred orientation of mica and ellipsoidal shapes of 'reduction' spots were simulated for one locality by loss of a 0.60 'initial' porosity, a 6° tilt of the beds and horizontal shortening involving plane strain. Strain determinations for shales and slates should include the large reduction in volume.

  1. Ultrastructural and Associated Studies on Experimental Mastitis in the Mouse Produced by Three Strains of Streptococcus

    PubMed Central

    Chandler, R. L.

    1973-01-01

    Ultrastructural studies were made on mastitis produced experimentally in the mouse by 3 different strains of streptococcus. The first strain of Str. agalactiae produced cellular changes detectable by electron microscopy as early as 6 hours after inoculation and at 48 hours alterations to secretory epithelium, lumenal contents and subepithelial tissue were very evident; later samplings showed more advanced changes. Cocci were seen in the lumens and within secretory cells; at later stages they showed degenerative changes themselves. A second strain of Str. agalactiae produced similar general changes; milk protein masses were common in the lumens, and rod-shaped crystals were observed. Cocci were seen free in the lumens, in lumenal macrophages, within secretory cells and, in later stages, in the subepithelial tissue. The possibility of their penetrating the epithelium either through the epithelial cell substance or through the intercellular space is discussed. Studies with a strain of Str. uberis indicated a lower level of pathogenicity but electron microscopy showed a variety of cellular changes. It was clear from comparative studies, including the use of heat-killed cocci, that very large numbers of bacteria must be present in a given specimen for their identification in ultrathin sections of mammary gland. ImagesFigs. 5-8Figs. 1-4 PMID:4736957

  2. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens

    PubMed Central

    Carrasco, Adriano de Oliveira Torres; Seki, Meire Christina; Benevenute, Jyan Lucas; Ikeda, Priscila; Pinto, Aramis Augusto

    2016-01-01

    This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia) and chickens (Gallus gallus) in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota), developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti) and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil. PMID:26887250

  3. Experimental infection with Brazilian Newcastle disease virus strain in pigeons and chickens.

    PubMed

    Carrasco, Adriano de Oliveira Torres; Seki, Meire Christina; Benevenute, Jyan Lucas; Ikeda, Priscila; Pinto, Aramis Augusto

    2016-01-01

    This study was designed with the goal of adding as much information as possible about the role of pigeons (Columba livia) and chickens (Gallus gallus) in Newcastle disease virus epidemiology. These species were submitted to direct experimental infection with Newcastle disease virus to evaluate interspecies transmission and virus-host relationships. The results obtained in four experimental models were analyzed by hemagglutination inhibition and reverse transcriptase polymerase chain reaction for detection of virus shedding. These techniques revealed that both avian species, when previously immunized with a low pathogenic Newcastle disease virus strain (LaSota), developed high antibody titers that significantly reduced virus shedding after infection with a highly pathogenic Newcastle disease virus strain (São Joao do Meriti) and that, in chickens, prevent clinical signs. Infected pigeons shed the pathogenic strain, which was not detected in sentinel chickens or control birds. When the presence of Newcastle disease virus was analyzed in tissue samples by RT-PCR, in both species, the virus was most frequently found in the spleen. The vaccination regimen can prevent clinical disease in chickens and reduce viral shedding by chickens or pigeons. Biosecurity measures associated with vaccination programs are crucial to maintain a virulent Newcastle disease virus-free status in industrial poultry in Brazil. PMID:26887250

  4. Experimental infection of two South American reservoirs with four distinct strains of Trypanosoma cruzi.

    PubMed

    Roellig, Dawn M; McMillan, Katherine; Ellis, Angela E; Vandeberg, John L; Champagne, Donald E; Yabsley, Michael J

    2010-05-01

    Trypanosoma cruzi (Tc), the causative agent of Chagas disease, is a diverse species with 2 primary genotypes, TcI and TcII, with TcII further subdivided into 5 subtypes (IIa-e). This study evaluated infection dynamics of 4 genetically and geographically diverse T. cruzi strains in 2 South American reservoirs, degus (Octodon degus) and grey short-tailed opossums (Monodelphis domestica). Based on prior suggestions of a genotype-host association, we hypothesized that degus (placental) would more readily become infected with TcII strains while short-tailed opossums (marsupial) would be a more competent reservoir for a TcI strain. Individuals (n=3) of each species were intraperitoneally inoculated with T. cruzi trypomastigotes of TcIIa [North America (NA)-raccoon (Procyon lotor) origin], TcI [NA-Virginia opossum (Didelphis virginiana)], TcIIb [South America (SA)-human], TcIIe (SA-Triatoma infestans), or both TcI and TcIIa. Parasitaemias in experimentally infected degus peaked earlier (7-14 days post-inoculation (p.i.)) compared with short-tailed opossums (21-84 days p.i.). Additionally, peak parasitaemias were higher in degus; however, the duration of detectable parasitaemias for all strains, except TcIIa, was greater in short-tailed opossums. Infections established in both host species with all genotypes, except for TcIIa, which did not establish a detectable infection in short-tailed opossums. These results indicate that both South American reservoirs support infections with these isolates from North and South America; however, infection dynamics differed with host and parasite strain. PMID:20128943

  5. Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects

    NASA Technical Reports Server (NTRS)

    Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.

    1999-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe

  6. Experimental Clocking of Nanomagnets with Strain for Ultralow Power Boolean Logic.

    PubMed

    D'Souza, Noel; Salehi Fashami, Mohammad; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    2016-02-10

    Nanomagnetic implementations of Boolean logic have attracted attention because of their nonvolatility and the potential for unprecedented overall energy-efficiency. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque severely compromise the energy-efficiency. Recently, there have been experimental reports of utilizing the Spin Hall effect for switching magnets, and theoretical proposals for strain induced switching of single-domain magnetostrictive nanomagnets, that might reduce the dissipative losses significantly. Here, we experimentally demonstrate, for the first time that strain-induced switching of single-domain magnetostrictive nanomagnets of lateral dimensions ∼200 nm fabricated on a piezoelectric substrate can implement a nanomagnetic Boolean NOT gate and steer bit information unidirectionally in dipole-coupled nanomagnet chains. On the basis of the experimental results with bulk PMN-PT substrates, we estimate that the energy dissipation for logic operations in a reasonably scaled system using thin films will be a mere ∼1 aJ/bit. PMID:26744913

  7. Virulence Differences among Melissococcus plutonius Strains with Different Genetic Backgrounds in Apis mellifera Larvae under an Improved Experimental Condition.

    PubMed

    Nakamura, Keiko; Yamazaki, Yuko; Shiraishi, Akiyo; Kobayashi, Sota; Harada, Mariko; Yoshiyama, Mikio; Osaki, Makoto; Okura, Masatoshi; Takamatsu, Daisuke

    2016-01-01

    European foulbrood (EFB) caused by Melissococcus plutonius is an important bacterial disease of honeybee larvae. M. plutonius strains can be grouped into three genetically distinct groups (CC3, CC12 and CC13). Because EFB could not be reproduced in artificially reared honeybee larvae by fastidious strains of CC3 and CC13 previously, we investigated a method to improve experimental conditions using a CC3 strain and found that infection with a potassium-rich diet enhanced proliferation of the fastidious strain in larvae at the early stage of infection, leading to the appearance of clear clinical symptoms. Further comparison of M. plutonius virulence under the conditions revealed that the representative strain of CC12 was extremely virulent and killed all tested bees before pupation, whereas the CC3 strain was less virulent than the CC12 strain, and a part of the infected larvae pupated. In contrast, the tested CC13 strain was avirulent, and as with the non-infected control group, most of the infected brood became adult bees, suggesting differences in the insect-level virulence among M. plutonius strains with different genetic backgrounds. These strains and the improved experimental infection method to evaluate their virulence will be useful tools for further elucidation of the pathogenic mechanisms of EFB. PMID:27625313

  8. Design, Evaluation and Experimental Effort Toward Development of a High Strain Composite Wing for Navy Aircraft

    NASA Technical Reports Server (NTRS)

    Bruno, Joseph; Libeskind, Mark

    1990-01-01

    This design development effort addressed significant technical issues concerning the use and benefits of high strain composite wing structures (Epsilon(sub ult) = 6000 micro-in/in) for future Navy aircraft. These issues were concerned primarily with the structural integrity and durability of the innovative design concepts and manufacturing techniques which permitted a 50 percent increase in design ultimate strain level (while maintaining the same fiber/resin system) as well as damage tolerance and survivability requirements. An extensive test effort consisting of a progressive series of coupon and major element tests was an integral part of this development effort, and culminated in the design, fabrication and test of a major full-scale wing box component. The successful completion of the tests demonstrated the structural integrity, durability and benefits of the design. Low energy impact testing followed by fatigue cycling verified the damage tolerance concepts incorporated within the structure. Finally, live fire ballistic testing confirmed the survivability of the design. The potential benefits of combining newer/emerging composite materials and new or previously developed high strain wing design to maximize structural efficiency and reduce fabrication costs was the subject of subsequent preliminary design and experimental evaluation effort.

  9. Experimental Results of High Pressure and High Strain Rate Tantalum Flow Stress on Omega and NIF

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Arsenlis, A.; Barton, N.; Benedetti, L.; Huntington, C.; McNaney, J.; Orlikowski, D.; Prisbrey, S.; Remington, B.; Rudd, R.; Swift, D.; Weber, S.; Wehrenberg, C.; Comley, A.

    2015-11-01

    Understanding the high pressure, high strain rate plastic deformation dynamics of materials is an area of research of high interest to planetary formation dynamics, meteor impact dynamics, and inertial confinement fusion designs. Developing predictive theoretical and computational descriptions of such systems, however, has been a difficult undertaking. We have performed many experiments on Omega, LCLS and NIF to test Ta strength models at high pressures (~ up to 4 Mbar), high strain rates (~ 107 s-1) and high strains (>30%) under ramped compression conditions using Rayleigh-Taylor and Richtmyer-Meshkov instability properties. These experiments use plasma drive to ramp compress the sample to higher pressure without shock-melting. We also studied lattice level strength mechanisms under shocked compression using a diffraction-based technique. Our studies show that the strength mechanisms from macro to micro scales are different from the traditional strength model predictions and that they are loading path dependent. We will report the experimental results. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA273.

  10. Experimental measurement of lattice strain pole figures using synchrotron x rays

    SciTech Connect

    Miller, M.P.; Bernier, J.V.; Park, J.-S.; Kazimirov, A.

    2005-11-15

    This article describes a system for mechanically loading test specimens in situ for the determination of lattice strain pole figures and their evolution in multiphase alloys via powder diffraction. The data from these experiments provide insight into the three-dimensional mechanical response of a polycrystalline aggregate and represent an extremely powerful material model validation tool. Relatively thin (0.5 mm) iron/copper specimens were axially strained using a mechanical loading frame beyond the macroscopic yield strength of the material. The loading was halted at multiple points during the deformation to conduct a diffraction experiment using a 0.5x0.5 mm{sup 2} monochromatic (50 keV) x ray beam. Entire Debye rings of data were collected for multiple lattice planes ({l_brace}hkl{r_brace}'s) in both copper and iron using an online image plate detector. Strain pole figures were constructed by rotating the loading frame about the specimen transverse direction. Ideal powder patterns were superimposed on each image for the purpose of geometric correction. The chosen reference material was cerium (IV) oxide powder, which was spread in a thin layer on the downstream face of the specimen using petroleum jelly to prevent any mechanical coupling. Implementation of the system at the A2 experimental station at the Cornell High Energy Synchrotron Source (CHESS) is described. The diffraction moduli measured at CHESS were shown to compare favorably to in situ data from neutron-diffraction experiments conducted on the same alloys.

  11. Genetic Vaccination against Experimental Infection with Myotropic Parasite Strains of Trypanosoma cruzi

    PubMed Central

    Araújo, Adriano Fernando; de Oliveira, Gabriel; Vasconcelos, Juliana Fraga; Ersching, Jonatan; Dominguez, Mariana Ribeiro; Vasconcelos, José Ronnie; Machado, Alexandre Vieira; Gazzinelli, Ricardo Tostes; Bruna-Romero, Oscar; Soares, Milena Botelho; Rodrigues, Mauricio Martins

    2014-01-01

    In earlier studies, we reported that a heterologous prime-boost regimen using recombinant plasmid DNA followed by replication-defective adenovirus vector, both containing Trypanosoma cruzi genes encoding trans-sialidase (TS) and amastigote surface protein (ASP) 2, provided protective immunity against experimental infection with a reticulotropic strain of this human protozoan parasite. Herein, we tested the outcome of genetic vaccination of F1 (CB10XBALB/c) mice challenged with myotropic parasite strains (Brazil and Colombian). Initially, we determined that the coadministration during priming of a DNA plasmid containing the murine IL-12 gene improved the immune response and was essential for protective immunity elicited by the heterologous prime-boost regimen in susceptible male mice against acute lethal infections with these parasites. The prophylactic or therapeutic vaccination of resistant female mice led to a drastic reduction in the number of inflammatory infiltrates in cardiac and skeletal muscles during the chronic phase of infection with either strain. Analysis of the electrocardiographic parameters showed that prophylactic vaccination reduced the frequencies of sinus arrhythmia and atrioventricular block. Our results confirmed that prophylactic vaccination using the TS and ASP-2 genes benefits the host against acute and chronic pathologies caused by T. cruzi and should be further evaluated for the development of a veterinary or human vaccine against Chagas disease. PMID:25061263

  12. Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist

    SciTech Connect

    Holleis, S.; Hoinkes, T.; Wuttke, C.; Schneeweiss, P.; Rauschenbeutel, A.

    2014-04-21

    We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on the well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.

  13. Pathogenicity of different strains of Histophilus somni in the experimental induction of ovine epididymitis

    PubMed Central

    Díaz-Aparicio, Efrén; Tenorio-Gutiérrez, Víctor R.; Arellano-Reynoso, Beatriz; Enríquez-Verdugo, Idalia; Aguilar-Romero, Francisco

    2009-01-01

    The purpose of this study was to determine any differences in pathogenicity when sheep are experimentally infected with different Histophilus somni isolates: a) 2336 bovine origin strain; b) an isolate from ram orchitis and epididymitis; c) an isolate from the brain of a sheep with neurological signs; d) an isolate from the vagina of a clinically healthy ewe. A total of 20 rams divided in groups of 5 animals each were inoculated in the epididymis with 1 × 107 CFU/mL of H. somni; a negative control group of 5 rams was used. All groups inoculated with H. somni showed some epididymitis, but the most pathology was caused by the epididymitis isolate, followed by the vaginal isolate. It was demonstrated that there is a difference in experimental infection capacity among isolates from different origins, as epididymitis occurred and the bacteria was recovered only from groups inoculated with isolates originating from epididymitis and vaginal exudate. PMID:19436586

  14. Complete Genome Sequences of Five Bluetongue Virus (BTV) Vaccine Strains from a Commercial Live Attenuated Vaccine, a BTV-4 Field Strain from South Africa, and a Reassortant Strain Isolated from Experimentally Vaccinated Cattle

    PubMed Central

    Coetzee, Peter; le Grange, Misha; Venter, Estelle H.

    2016-01-01

    This is a report of the complete genome sequences of plaque-selected isolates of each of the five virus strains included in a South African commercial trivalent bluetongue virus (BTV) attenuated live virus vaccine, a BTV-4 field strain isolated from Rustenburg, South Africa, in 2011, and a bluetongue reassortant (bluetongue virus 4 strain 4/O. aries-tc/ZAF/11/OBP-115) isolated from experimentally vaccinated cattle. Full-genome sequencing and phylogenetic analyses show that the bluetongue virus 9 strain 9/B. taurus-tc/ZAF/15/Onderstepoort_B02b is a reassortant virus containing segments from both BTV-9 and BTV-8. PMID:27340051

  15. Experimental induced avian E. coli salpingitis: Significant impact of strain and host factors on the clinical and pathological outcome.

    PubMed

    Olsen, Rikke Heidemann; Thøfner, Ida Cecilie Naundrup; Pors, Susanne Elisabeth; Pires Dos Santos, Teresa; Christensen, Jens Peter

    2016-05-30

    Several types of Escherichia coli have been associated with extra-intestinal infections in poultry, however, they may vary significantly in their virulence potential. The aim of the present study was to investigate the virulence of five strains of E. coli obtained from different disease manifestations or from the cloacae of a healthy chicken. The virulence potential of the strains were evaluated in an avian experimental model for ascending infections, and experiments were conducted in both layers and broiler breeders. The clinical outcome of infection was highly depending on the challenge strain, however, not significantly reflecting the origin of the strain. In general, broiler breeders had a more severe clinical outcomes of infection compared to layers, but major with-in group diversity was observed for all challenge strains of clinical origin. A single strain of ST95 (phylogroup B2) had a distinct ability to cause disease. Results of the study shows major differences in virulence of different strains of E. coli in ascending infections; however, there was no indication of tissue-specific adaptation, since strains obtained from lesions unrelated to the reproductive system were fully capable of causing experimental infection. In conclusion, the study provides evidence for the clinical outcome of infection with E. coli in poultry is largely influenced by the specific strain as well as individual host factors. PMID:27139030

  16. Prediction of the Strain Response of Poly-AlN/(100)Si Surface Acoustic Wave Resonator and Experimental Analysis

    PubMed Central

    Chen, Shuo; You, Zheng

    2016-01-01

    The strain sensitivity of the Aluminum Nitride (AlN)/Silicon (Si) surface acoustic wave resonator (SAWR) is predicted based on a modeling method introduced in this work, and further compared with experimental results. The strain influence on both the period of the inter-digital transducer (IDT) and the sound velocity is taken into consideration when modeling the strain response. From the modeling results, AlN and Si have opposite responses to strain; hence, for the AlN/Si-based SAWR, both a positive and a negative strain coefficient factor can be achieved by changing the thickness of the AlN layer, which is confirmed by strain response testing based on a silicon cantilever structure with two AlN configurations (1 μm and 3 μm in thickness, respectively). PMID:27128922

  17. Prediction of the Strain Response of Poly-AlN/(100)Si Surface Acoustic Wave Resonator and Experimental Analysis.

    PubMed

    Chen, Shuo; You, Zheng

    2016-01-01

    The strain sensitivity of the Aluminum Nitride (AlN)/Silicon (Si) surface acoustic wave resonator (SAWR) is predicted based on a modeling method introduced in this work, and further compared with experimental results. The strain influence on both the period of the inter-digital transducer (IDT) and the sound velocity is taken into consideration when modeling the strain response. From the modeling results, AlN and Si have opposite responses to strain; hence, for the AlN/Si-based SAWR, both a positive and a negative strain coefficient factor can be achieved by changing the thickness of the AlN layer, which is confirmed by strain response testing based on a silicon cantilever structure with two AlN configurations (1 μm and 3 μm in thickness, respectively). PMID:27128922

  18. Experimental infection of duck origin virulent Newcastle disease virus strain in ducks

    PubMed Central

    2014-01-01

    Background Newcastle disease (ND) caused by virulent Newcastle disease virus (NDV) is an acute, highly contagious and fatal viral disease affecting most species of birds. Ducks are generally considered to be natural reservoirs or carriers of NDV while being resistant to NDV strains, even those most virulent for chickens; however, natural ND cases in ducks have been gradually increasing in recent years. In the present study, ducks of different breeds and ages were experimentally infected with duck origin virulent NDV strain duck/Jiangsu/JSD0812/2008 (JSD0812) by various routes to investigate the pathogenicity of NDV in ducks. Results Six breeds (mallard, Gaoyou, Shaoxing, Jinding, Shanma, and Pekin ducks) were infected intramuscularly (IM) with JSD0812 strain at the dose of 5 × 108 ELD50. Susceptibility to NDV infection among breeds varied, per morbidity and mortality. Mallard ducks were the most susceptible, and Pekin ducks the most resistant. Fifteen-, 30-, 45-, 60-, and 110-day-old Gaoyou ducks were infected with JSD0812 strain at the dose of 5 × 108 ELD50 either IM or intranasally (IN) and intraocularly (IO), and their disease development, viral shedding, and virus tissue distribution were determined. The susceptibility of ducks to NDV infection decreased with age. Most deaths occurred in 15- and 30-day-old ducklings infected IM. Ducks infected IN and IO sometimes exhibited clinical signs, but seldom died. Clinical signs were primarily neurologic. Infected ducks could excrete infectious virus from the pharynx and/or cloaca for a short period, which varied with bird age or inoculation route; the longest period was about 7 days. The rate of virus isolation in tissues from infected ducks was generally low, even in those from dead birds, and it appeared to be unrelated to bird age and infection route. Conclusions The results confirmed that some of the naturally occurring NDV virulent strains can cause the disease in ducks, and that ducks play an important

  19. Experimental deformation of partially molten granite and implications for strain localization

    NASA Astrophysics Data System (ADS)

    Goncalves, L.; Hirth, G.; Alkmim, F.; Pedrosa-Soares, A.; Goncalves, C.

    2011-12-01

    To improve our understanding of partially molten systems we conducted a set of hydrostatic, general shear and axial compression experiments on sintered aggregates composed of equal amounts by weight of quartz, albite and microcline (grain size of 37-53μm). All experiments were conducted using a Griggs solid medium apparatus at T=900°C, P=1.5GPa and strain rates from 10-4/s to 10-6/s. Previous hydrostatic and axial compression experiments conducted on partial molten granitic rocks have shown that the initial grain size, amount of melt and strain rate are important parameters for the development of distinct microstructures, LPO, and melt distribution. In addition, some of these studies demonstrated that the strength of granite and aplite decrease significantly for melt contents up to 15%, when compared to similar melt-free rocks. The rock's strength deep within the Earth decreases owing to partial melting which brings up some questions: would strain localization take place when partial melt affects rheology? Would brittle and/or ductile shear zones act as potential regions for concentration of partial melt? Is there a critical fraction of melt responsible for strain localization? How is melt distribution influenced by deformation? How does the kinematics of deformation (i.e., axial compression versus general shear) affect melt distribution? The purpose of our experiments is to investigate the role of melting on the rheological properties of crustal rocks. In addition, we seek to provide new constraints on the grain scale processes that control the properties of partially molten rocks and the importance of these processes in understanding shear localization in the lithosphere. Samples were made from crushed Amelia albite (Ab97Or2An1), Hugo Microcline (Or90) and Black Hills quartzite, which have all been used in previous experimental deformation studies. The albite is essentially pure; the microcline contains ~ 1% of muscovite. The Black Hills quartzite contains < 1

  20. Strain Partitioning and Crystallographic Textures of Experimentally Deformed Olivine + Orthopyroxene Aggregates

    NASA Astrophysics Data System (ADS)

    Sundberg, M.; Cooper, R. F.

    2005-12-01

    lineation oriented ~35o antithetic to the shear plane. Samples of identical composition deformed at a shear strain-rate of 10-4s-1 do not display this behavior. Samples with greater than 50 vol% olivine do not display an olivine or orthopyroxene lineation regardless of strain-rate. Olivine LPOs created in our two-phase aggregates are not consistent with patterns found in experimentally deformed, pure olivine aggregates. In samples with 65 vol% olivine deformed to γ=2, the [100] axes align in the shear plane perpendicular to the shear direction, while the [010] planes rotate 10-20° below the shear direction. In aggregates composed of 50 vol% or more pyroxene deformed to similar strains, the [100] axis lineation is identical, however the [010] planes back-rotate 10-20° from the shear plane.

  1. Construction, Verification and Experimental Use of Two Epitope-Tagged Collections of Budding Yeast Strains

    PubMed Central

    Howson, Russell; Huh, Won-Ki; Ghaemmaghami, Sina; Falvo, James V.; Bower, Kiowa; Belle, Archana; Dephoure, Noah; Wykoff, Dennis D.; Weissman, Jonathan S.

    2005-01-01

    A major challenge in the post-genomic era is the development of experimental approaches to monitor the properties of proteins on a proteome-wide level. It would be particularly useful to systematically assay protein subcellular localization, post-translational modifications and protein–protein interactions, both at steady state and in response to environmental stimuli. Development of new reagents and methods will enhance our ability to do so efficiently and systematically. Here we describe the construction of two collections of budding yeast strains that facilitate proteome-wide measurements of protein properties. These collections consist of strains with an epitope tag integrated at the C-terminus of essentially every open reading frame (ORF), one with the tandem affinity purification (TAP) tag, and one with the green fluorescent protein (GFP) tag. We show that in both of these collections we have accurately tagged a high proportion of all ORFs (approximately 75% of the proteome) by confirming expression of the fusion proteins. Furthermore, we demonstrate the use of the TAP collection in performing high-throughput immunoprecipitation experiments. Building on these collections and the methods described in this paper, we hope that the yeast community will expand both the quantity and type of proteome level data available. PMID:18629296

  2. Experimental investigation of stress and strain fields in a ductile matrix surrounding an elastic inclusion

    SciTech Connect

    Nugent, E.E.; Calhoun, R.B.; Mortensen, A.

    2000-04-19

    A method for measuring stress and strain distributions within a ductile material deforming by dislocational slip is developed. The method exploits the transparency and room-temperature ductility of silver chloride, and combines the techniques of photoelasticity and marker tracking. This method is used to investigate the deformation of an elasto-plastic ductile matrix surrounding an isolated stiff fiber, the grain size of the material being slightly smaller than the fiber length. The data are compared to predictions of finite element calculations which take the matrix to be an isotropic elasto-plastic von Mises continuum. It is found that this model does not fully capture all of the features of the experimental data. Data suggest that the cause for observed discrepancies is the strong influence exerted by grain boundaries and grain orientation on the distribution of stress and strain within the matrix. A comparison is also made between the data and predictions of the Eshelby equivalent inclusion calculation, to show that a far higher level of discrepancy results than with the finite element calculations; this is caused by the fact that the Eshelby equivalent inclusion calculation is essentially elastic and thus allows significant stress concentrations.

  3. Experimental and Theoretical X-Ray Absorption Studies of Strain Effects in Films

    NASA Astrophysics Data System (ADS)

    Tyson, Trevor A.; Qian, Qing; Kao, Chi-Chang; Prellier, Wilfred

    2000-03-01

    From the pioneering work of Jin et al. [1], is was realized that the magnetoresistance of CMR films exhibits a strong thickness dependence. Recent theoretical work by Millis et al.[2], revealed that the Curie temperature of manganites is extremely sensitive to biaxial strain. The atomic details of the correlations between strain and magnetic properties present an area which has not been thoroughly explored. We find that the Mn K-Edge x-ray absorption near edge spectra (XANES) are strongly modified by local structural distortions such as Jahn-Teller (JT) distortions. We find that the measured asymmetry (JT induced) in the polarized XANES of Nd_0.5Sr_0.5MnO3 films correlates with the transition from charge ordering to metallic behavior [3]. Combined experimental and theoretical XANES and XAFS studies can be used to identify the structural phases present in films as a function of thickness. This work is supported by National Science Foundation Career Grant DMR-9733862 and by DOE Grant DE-FG02-97ER45665. [1] S. Jin et al., Appl. Phys. Lett. 67, 557 (1995)., [2] A. J. Millis et al., J. Appl. Phys. 83, 1588 (1998), [3] W. Prellier et al., Appl. Phys. Lett. 75, 397 (1999).

  4. Experimental research on strain monitoring in composite plates using embedded SMA wires

    NASA Astrophysics Data System (ADS)

    Qiu, Zi-xue; Yao, Xing-tian; Yuan, Jiang; Soutis, Costas

    2006-08-01

    Shape memory alloy (SMA) materials possess complete superelasticity or pseudoelasticity above the austenite finish temperature (Af) and many unique mechanical, thermal, thermal-mechanical and electrical properties compared with other conventional materials. Many studies have reported that the superelastic and hysteresis properties of SMA materials can absorb energies coming from external excitations or sudden impacts. In addition, due to the special electrical properties of NiTi superelastic wires, they can also be used as a strain-sensing element to monitor structural health conditions. In this paper, composite laminated specimens embedded with SMA wire sensors were fabricated and a detailed testing system was designed, for example for multi-parameter measuring for impact and weak signal processing for SMA sensors. A low-velocity impact test shows that SMA wire sensors embedded in fibre-reinforced plastic (FRP) laminate can be used to monitor impact responses, such as the location of impact damage, impact degree, and strain distribution. Experimental results and theoretical predictions reveal almost the same results. Compared with other methods, the research provides a simple, economic and reliable technique for monitoring important engineering structures online.

  5. Evidence for distinct chronic wasting disease (CWD) strains in experimental CWD in ferrets

    PubMed Central

    Perrott, Matthew R.; Sigurdson, Christina J.; Mason, Gary L.

    2012-01-01

    Chronic wasting disease (CWD) is an evolving prion disease of cervids (deer, elk and moose) that has been recognized in North America and Korea. Infection of non-cervid reservoir or transport species in nature is not reported. However, the ferret (Mustela putorius furo) is susceptible to CWD after experimental inoculation. Here, we report that infection of ferrets with either of two ferret CWD isolates by various routes of exposure has revealed biologically distinct strain-like properties distinguished by different clinical progression and survival period. The isolates of ferret CWD were also differentiated by the distribution of the infectious prion protein (PrPCWD) in the brain and periphery, and by the proteinase K sensitivity of PrPCWD. These findings suggest that diversity in prion conformers exists in CWD-infected cervids. PMID:21918005

  6. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    SciTech Connect

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  7. Experimental method of determining the stress-strain state of bodies on the basis of the absorption of light

    SciTech Connect

    Myl`nikov, A.V.; Rudyak, Yu.A.

    1995-11-01

    Various analytical and experimental methods have been devised for determining stresses and strains in solids [1,2,4,5,6,7]. Among the experimental methods are optical methods based on the refraction and interference of light, polarization (photoelasticity), moire fringes, holographic effects, and other phenomena. All of these methods are based on changes in the index of refraction of electromagnetic waves as a result if the manifestation of optical anisotropy in loaded specimens made of special materials. They also rely on precise measurements of strains of loaded objects obtained by holographic techniques.

  8. Strain induced in the condyle by self-tapping screws in the Biomet alloplastic temporomandibular joint: a preliminary experimental study.

    PubMed

    Ramos, A; Duarte, R J; Mesnard, M

    2015-11-01

    The main aim of this study was to analyze how screws affect the strain concentration induced on the mandibular condyle during implantation, screwing, and drilling, as well as after condylar loading. A clean cadaveric mandible was analyzed experimentally in the intact state and was then implanted with a Biomet/Lorenz Microfixation temporomandibular joint (TMJ) implant with seven bicortical self-tapping screws. The external surface of the mandible was instrumented with three strain gauges. A load of 500N on the TMJ was applied to the condyle before and after implantation. The results showed a strain concentration of -1500μɛ near the screws due to their implantation on the external surface of the mandible. The drilling process induced up to 80μɛ near the hole. The strain concentration did not change when there were more than six screws. Loading on the TMJ before and after implantation presented only a 10% difference in maximum principal strain. This study demonstrates the importance of the strain concentration induced by the screws. The process of implanting screws shows the importance of lateral surface preparation for a good fit in the condyle. Strain distribution after implantation and loading of the Biomet implant was found to be similar to that in the intact condyle. PMID:26194773

  9. Experimental research on the effect of Young's modulus on optical fiber microbend strain sensor

    NASA Astrophysics Data System (ADS)

    Tao, Ruichen; Li, Min

    2010-11-01

    By investigation of the theoretical model of fiber microbend sensor, and derivative of the basic function of microbend with respect to applied external force F then Young's modulus E, we get an expression of sensor's output signal as a function of E which shows that the output of the microbend sensor decreases with the Young's modulus of the gripper increasing, and the change is nonlinear. To verify the accuracy of the theoretical derivation, we design and make four optical fiber microbend grippers of different materials, including stainless steel, Polyvinyl Chloride (PVC), polypropylene (PPR) and bamboo, with the same geometric parameters of grippers such as a mechanical period derived for the maximal sensitivity from the well-known microbend interval equation, and carry out the demonstration experiments under the same initial testing conditions. The initial testing condition has been adjusted during the process of manufacturing and installing the fiber microbend gripper. The experimental data based on our design testing systems showed that the outputs of the microbend sensors match our theoretical simulation curves well to the applied external force F. The conclusion might be useful for future reference of microbend strain sensors design.

  10. Experimental infection of cows with newly isolated Akabane virus strain (AKAV-7) causing encephalomyelitis.

    PubMed

    Lee, Hyeyeoun; Jeong, Hansol; Park, Surim; Yang, Myeon-Sik; Kim, Jongwon; Bae, Jaehyun; Kwon, Yonghwan; Kim, Min-Su; Oem, Jae-Ku; Lee, Myoung-Heon; Lim, Chae-Woong; Kim, Bumseok

    2016-01-01

    Akabane virus (AKAV), an arthropod-transmitted bunyavirus, is a major cause of congenital abnormalities and encephalomyelitis in ruminants. In 2010, there was a major outbreak of encephalomyelitis in Korea and fifteen AKAV strains, including AKAV-7, were isolated from cows. To identify the neuropathogenicity of AKAV-7, we performed experimental infection of cows. Six-month-old female Korean Holstein dairy cattle were inoculated with AKAV-7 by various routes, including intracerebral (IC), intrasubarachnoid space (IS), subcutaneous (SC) and intravenous (IV); a separate group was vaccinated before intravenous infection. Five of the six cows in the IC group and two of the six cows in the IS group showed clinical signs such as locomotor ataxia and paralysis of the hind limbs. Three of six cows died after IC infection 9-12 days post infection (dpi). Histopathologic changes such as nonsuppurative encephalomyelitis were confirmed in various parts of the central nervous system in the IC, IS and SC groups. Early onset of neutralizing antibodies in the serum and lower viral mRNA levels in the peripheral blood mononuclear cells (PBMCs) and various tissues in the vaccinated group was noticeable compared to the unvaccinated group (IV group). We suggest that the AKAV vaccine currently used in Korea may be partially effective for protection against AKAV-7 in cows. PMID:27287214

  11. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis.

    PubMed

    Breser, Maria L; Lino, Andreia C; Motrich, Ruben D; Godoy, Gloria J; Demengeot, Jocelyne; Rivero, Virginia E

    2016-01-01

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792

  12. Comparison of abortion and infection after experimental challenge of pregnant bison and cattle with Brucella abortus strain 2308

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A comparative study was conducted using data from naive bison (n=45) and cattle (n=46) from 8 and 6 studies, respectively, in which a standardized Brucella abortus strain 2308 experimental challenge was administered. The incidence of abortion, fetal infection, uterine or mammary infection, or infec...

  13. Infection of Broilers with Two Virulent Strains of Infectious Laryngotracheitis Virus: Criteria for Evaluation of Experimental Infections.

    PubMed

    Vagnozzi, Ariel; Riblet, Sylva M; Williams, Susan M; Zavala, Guillermo; García, Maricarmen

    2015-09-01

    Infectious laryngotracheitis (ILT) is a highly contagious disease of chickens and is responsible for significant economic losses in the poultry industry worldwide; it is caused by Gallid herpesvirus-1 (GaHV-1), commonly known as infectious laryngotracheitis virus (ILTV). Experimental evaluation of ILTV strains is fundamental to identify changes in virulence that can contribute to the severity and spread of outbreaks and consequently influence the efficacy of vaccination. Several criteria had been utilized to determine the degree of virulence associated with ILTV strains. The objectives of this study were to compare the levels of virulence of the standard United States Department of Agriculture (USDA) challenge strain with a contemporary outbreak-related strain (63140) and to evaluate the efficacy of individual criteria to identify changes in virulence. Broilers were inoculated with increasing infectious doses of each strain. The criteria utilized to evaluate virulence were clinical signs of the disease, mortality, microscopic tracheal lesions, trachea genome viral loads, and antibody titers. Clinical signs scores were a useful parameter to define the peak of clinical disease but did not reveal differences in virulence between strains. Similarly, trachea microscopic lesion scores or levels of serum antibody titers were parameters that did not reveal obvious differences in virulence between strains. However, mortalities and increased viral genome loads in trachea of chickens inoculated with lower (log10 1 to 2) infectious doses clearly differentiated 63140 as a more-virulent ILTV strain. This study provides the framework to compare the virulence level of emerging ILTV isolates to the now-characterized USDA and 63140 strains. PMID:26478158

  14. Experimental infection of lambs with C and S-type strains of Mycobacterium avium subspecies paratuberculosis: immunological and pathological findings

    PubMed Central

    2014-01-01

    The two main genotypes of recognized isolates of Mycobacterium avium subsp. paratuberculosis (Map) are cattle (C) and sheep (S) strains. An experimental infection was conducted to establish the effect of Map strain on the pathogenesis of ovine paratuberculosis. Twenty-four out of thirty 1.5-month-old Assaf lambs were divided into 4 groups of 6 and infected orally with three low passage field isolates, two of S- (22G and the pigmented Ovicap49) and one of C– (764) type, and the reference K-10 strain (C type). The remaining six animals were unchallenged controls. Animals were euthanized at 150 and 390 days post-infection (dpi). Throughout the experiment, the peripheral immune response was assessed and histological and molecular (PCR) studies were conducted on samples of intestine and related lymphoid tissue. Specific antibody and IFN-γ production was significantly higher in animals infected with the C strains, while no consistent IFN- γ responses were observed in the S-type strain infected groups. A positive intradermal skin test response was detected in all infected groups. Lambs infected with S-type strains had granulomatous lesions restricted to the lymphoid tissue with no differences in the lesion intensity over time. In both C–type strain groups, lesions were more severe at 150 dpi while at 390 dpi lesions, characterized by well-demarcated granulomas with fibrosis, decreased in severity. Only infected lambs were positive to PCR. These results suggest that the strain of Map has a strong influence over the immune and pathological responses developed by the host. Lesions induced by C–type strains in lambs show a regressive character and tend to decrease as the infection progresses. PMID:24428881

  15. Experimental study of a further attenuated live measles vaccine of the Sugiyama strain in Iran

    PubMed Central

    Mirchamsy, H.; Shafyi, A.; Rafyi, M. R.; Bahrami, S.; Nazari, P.; Fatemie, S.

    1974-01-01

    After encouraging results of the mass vaccination programme in Iran, in which 5 million children in rural areas were vaccinated with the Japanese Sugiyama strain at its 82nd passage in baby calf kidney, and a progressive decrease in the incidence of measles as well as a reduction of excessive infant mortality, a further attenuated vaccine, produced with the same strain, cloned in Japan, was compared in a field trial with the parent vaccine. The new strain caused fewer reactions than the original strain. Seroconversion with a geometric mean antibody titre of 6·1 was observed in 95% of susceptible children. PMID:4522721

  16. Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection.

    PubMed

    Haolla, Filipe A; Claser, Carla; de Alencar, Bruna C G; Tzelepis, Fanny; de Vasconcelos, José Ronnie; de Oliveira, Gabriel; Silvério, Jaline C; Machado, Alexandre V; Lannes-Vieira, Joseli; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; dos Santos, Ricardo Ribeiro; Soares, Milena B P; Rodrigues, Mauricio M

    2009-09-18

    Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development. PMID:19635607

  17. Experimental Study of Highly Sensitive Sensor Using a Surface Acoustic Wave Resonator for Wireless Strain Detection

    NASA Astrophysics Data System (ADS)

    Bao; Zhongqing; Hara, Motoaki; Mitsui, Misato; Sano, Koji; Nagasawa, Sumito; Kuwano, Hiroki

    2012-07-01

    We developed a highly sensitive strain sensor employing a surface acoustic wave (SAW) resonator for a wireless sensing system. The aim of this study is to monitor the distribution of the strain in the earth crust or giant infrastructures, such as bridges, skyscrapers and power plants, for disaster prevention. A SAW strain sensor was fabricated using LiNbO3 and a quartz substrate, and applied in a tensile test by attaching the steel specimen based on Japanese Industrial Standards (JIS Z2441-1). The results confirmed that the developed sensor could detect a strain of 10-6 order with linearity.

  18. An experimental and numerical study of the effects of heat loss and unsteadiness on laminar strained flames

    NASA Astrophysics Data System (ADS)

    Zhang, Hai

    A combined experimental and detailed numerical study was conducted on the effects of heat loss and unsteadiness on strained laminar flames at normal- and microgravity. Results are of interest to a variety of fundamental combustion phenomena including flammability limits. Furthermore, valuable information is provided in the context of turbulent combustion for conditions under which the flamelet concept is applicable. The majority of previous studies on flamelets have been focused on steady and adiabatic conditions, even though unsteadiness and heat loss are inherently present in any realistic flowfield. The experiments included the use of the opposed-jet and single-jet configurations in which the strain rate is a well-defined and well-controlled parameter. Velocity measurements were conducted through the use of laser Doppler velocimetry at normal-gravity and extinction strain rates. The counterflow technique was also introduced in micro-gravity through an involved experimental apparatus that allowed for the study of extinction of near-limit flames under conditions that could not be assessed in normal-gravity. The C-shape response of the extinction strain rate vs equivalence ratio was quantified for Le < 1 flames by assuring that upstream heat losses were not present. For Le > 1 flames, a monotonic response was found. Experiments were also conducted at normal-gravity on the effect of downstream heat loss on the propagation and extinction of laminar strained premixed flames. The effect of monochromatic velocity unsteadiness was experimentally studied for non-premixed strained flames and theoretically derived scaling arguments were confirmed. Furthermore, the flames were found to resist to extinction at high frequencies, confirming again theoretical predictions. The experiments were modeled by using detailed description of chemical kinetics, molecular transport, and thermal radiation. The effect of various radiation models on the flame response was assessed. Such

  19. Effect of experimental exposure to differently virulent Aphanomyces astaci strains on the immune response of the noble crayfish Astacus astacus.

    PubMed

    Becking, Thomas; Mrugała, Agata; Delaunay, Carine; Svoboda, Jiří; Raimond, Maryline; Viljamaa-Dirks, Satu; Petrusek, Adam; Grandjean, Frédéric; Braquart-Varnier, Christine

    2015-11-01

    European crayfish are sensitive to the crayfish plague pathogen, Aphanomyces astaci, carried by North American crayfish species due to their less effective immune defence mechanisms against this disease. During a controlled infection experiment with a susceptible crayfish species Astacus astacus using three A. astaci strains (representing genotype groups A, B, and E), we investigated variation in their virulence and in crayfish immune defence indicators (haemocyte density, phenoloxidase activity, and production of reactive oxygen species). Experimental crayfish were exposed to two dosages of A. astaci spores (1 and 10 spores mL(-1)). The intensity and timing of the immune response differed between the strains as well as between the spore concentrations. Stronger and faster change in each immune parameter was observed in crayfish infected with two more virulent strains, indicating a relationship between crayfish immune response and A. astaci virulence. Similarly, the immune response was stronger and was observed earlier for the higher spore concentration. For the first time, the virulence of a strain of the genotype group E (isolated from Orconectes limosus) was experimentally tested. Total mortality was reached after 10 days for the two higher spore dosages (10 and 100 spores mL(-1)), and after 16 days for the lowest (1 spore mL(-1)), revealing equally high and rapid mortality as caused by the genotype group B (from Pacifastacus leniusculus). No mortality occurred after infection with genotype group A during 60 days of the experimental trial. PMID:26410255

  20. Fly's proprioception-inspired micromachined strain-sensing structure: idea, design, modeling and simulation, and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Wicaksono, D. H. B.; Zhang, L.-J.; Pandraud, G.; French, P. J.; Vincent, J. F. V.

    2006-04-01

    A new strain-sensing structure inspired from insect's (especially the Fly) propricoception sensor is devised. The campaniform sensillum is a strain-sensing microstructure with very high sensitivity despite its small dimension (diameter ~10 µm in a relatively stiff material of insect's exocuticle (E = ~109 Pa). Previous work shows that the high sensitivity of this structure towards strain is due to its membrane-in-recess- and strainconcentrating- hole- features. Based on this inspiration, we built similar structure using silicon micromachining technology. Then a simple characterisation setup was devised. Here, we present briefly, finite-element modeling and simulation based on this actual sample preparation for the characterisation. As comparison and also to understand mechanical features responsible for the strain-sensitivity, we performed the modeling on different mechanical structures: bulk chunk, blind-hole, thorugh-hole, surface membrane, and membrane-in-recess. The actual experimental characterisation was performed previously using optical technique to membranein- recess micromachined Si structure. The FEM simulation results confirm that the bending stress and strain are concentrated in the hole-vicinity. The membrane inside the hole acts as displacement transducer. The FEM is in conformity with previous analytical results, as well as the optical characterisation result. The end goal is to build a new type MEMS strain sensor.

  1. The Brazilian Zika virus strain causes birth defects in experimental models.

    PubMed

    Cugola, Fernanda R; Fernandes, Isabella R; Russo, Fabiele B; Freitas, Beatriz C; Dias, João L M; Guimarães, Katia P; Benazzato, Cecília; Almeida, Nathalia; Pignatari, Graciela C; Romero, Sarah; Polonio, Carolina M; Cunha, Isabela; Freitas, Carla L; Brandão, Wesley N; Rossato, Cristiano; Andrade, David G; Faria, Daniele de P; Garcez, Alexandre T; Buchpigel, Carlos A; Braconi, Carla T; Mendes, Erica; Sall, Amadou A; Zanotto, Paolo M de A; Peron, Jean Pierre S; Muotri, Alysson R; Beltrão-Braga, Patricia C B

    2016-06-01

    Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys. Until the twentieth century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the Yap Island in Micronesia. Patients experienced fever, skin rash, arthralgia and conjunctivitis. From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America. In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain-Barré syndrome. Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKV(BR)) strain causes birth defects remains absent. Here we demonstrate that ZIKV(BR) infects fetuses, causing intrauterine growth restriction, including signs of microcephaly, in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. We also report that the infection of human brain organoids results in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKV(BR) crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, and impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKV(BR) outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKV(BR) in human neurodevelopment. PMID:27279226

  2. Experimental infection of gnotobiotic piglets with Escherichia coli strains positive for EAST1 and AIDA.

    PubMed

    Zajacova, Zuzana Sramkova; Faldyna, Martin; Kulich, Pavel; Kummer, Vladimir; Maskova, Jarmila; Alexa, Pavel

    2013-03-15

    The virulence factors EAST1 and AIDA are often detected in ETEC/VTEC strains isolated from pigs and their role in diarrhoeal infections is discussed. In order to elucidate the pathogenesis of AIDA, the colonisation patterns of F4 positive and AIDA positive strains were investigated. Two wild-type Escherichia coli strains AIDA/EAST1 and F4/EAST1 isolated from diarrhoeal piglets were used for animal experiment to evaluate the ability of the EAST1 toxin to be involved in induction of diarrhoea. Gnotobiotic piglets were supplemented with normal porcine serum and orally inoculated with the strains. Faecal bacterial shedding of the challenge strains was observed during the experiment. Light microscopy and scanning electron microscopy were used to detect the colonisation pattern of both challenge strains. Although bacterial isolation demonstrated shedding of the challenge strains until the end of the experiment, diarrhoea did not develop in any piglet. Based on histological examination, piglets were more heavily colonised in the case of infection with E. coli O149/F4/EAST1 strain. Scanning electron microscopy showed bacterial cells of F4/EAST1 E. coli adhering to enterocytes, in contrast to AIDA/EAST1 which were poorly present on the intestinal surface. The EAST1 toxin alone was not able to induce diarrhoea in animals. Therefore our results demonstrate that the function/role of EAST1 and AIDA in colibacillosis of pigs remains to be elucidated. PMID:23068274

  3. Experimental determination of strain partitioning among individual grains in the bulk of an aluminium multicrystal

    SciTech Connect

    Haldrup, K.

    2008-07-15

    A recently developed marker-based technique for mapping of the displacement gradient tensor and the strain throughout the bulk of optically opaque specimens is presented and applied to an aluminium alloy multicrystal. Through investigations at 4%, 10% and 14% axial strains, the internal strain field is observed to be non-homogenous with the observed patterns present throughout the range of strains investigated. The morphology of the strain field is visualized with a resolution better than 50{mu}m and variations are tentatively associated with the grain structure as recorded by EBSD. Future applications of the technique in combination with other 3-dimensional approaches are discussed with respect to comparison with Finite Element modelling approaches.

  4. Experimental Modal Analysis and Dynaic Strain Fiber Bragg Gratings for Structural Health Monitoring of Composite Aerospace Structures

    NASA Astrophysics Data System (ADS)

    Panopoulou, A.; Fransen, S.; Gomez Molinero, V.; Kostopoulos, V.

    2012-07-01

    The objective of this work is to develop a new structural health monitoring system for composite aerospace structures based on dynamic response strain measurements and experimental modal analysis techniques. Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of vibration testing. The hypothesis of all vibration tests was that actual damage in composites reduces their stiffness and produces the same result as mass increase produces. Thus, damage was simulated by slightly varying locally the mass of the structure at different zones. Experimental modal analysis based on the strain responses was conducted and the extracted strain mode shapes were the input for the damage detection expert system. A feed-forward back propagation neural network was the core of the damage detection system. The features-input to the neural network consisted of the strain mode shapes, extracted from the experimental modal analysis. Dedicated training and validation activities were carried out based on the experimental results. The system showed high reliability, confirmed by the ability of the neural network to recognize the size and the position of damage on the structure. The experiments were performed on a real structure i.e. a lightweight antenna sub- reflector, manufactured and tested at EADS CASA ESPACIO. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on the structure with optimum topology. Numerical simulation of both structures was used as a support tool at all the steps of the work. Potential applications for the proposed system are during ground qualification extensive tests of space structures and during the mission as modal analysis tool on board, being able via the FBG responses to identify a potential failure.

  5. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens

    PubMed Central

    Pei, Yanlong; Parreira, Valeria R.; Roland, Kenneth L.; Curtiss, Roy; Prescott, John F.

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors. PMID:24396177

  6. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens.

    PubMed

    Pei, Yanlong; Parreira, Valeria R; Roland, Kenneth L; Curtiss, Roy; Prescott, John F

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors. PMID:24396177

  7. Experimental Study on the Anisotropic Stress-Strain Behavior of Polycrystalline Ni-Mn-Ga in Directional Solidification

    NASA Astrophysics Data System (ADS)

    Teng, Yao; Shi, Tao; Zhu, Yuping; Li, Zongbin; Deng, Tao; Bai, Guonan

    2016-03-01

    A polycrystalline Ni-Mn-Ga ferromagnetic shape memory alloy produced by directional solidification is the subject of this research paper. The compressive stress-strain curves of the material for different cutting angles to the solidification direction are tested. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress are analyzed experimentally. The results show that mechanical behaviors in the loading-unloading cycle of the material present nonlinear and anisotropic characteristics, which are all closely related to the material's orientation to the solidification direction. The martensite Young's modulus, macroscopic reorientation strain, and phase transition critical stress achieve maximum values in the solidification direction. A 50° orientation to the solidification direction is the cut-off direction of the mechanical properties, where the martensite Young's modulus and reorientation start critical stress reach minimum values. The present study is expected to provide sound guidance for practical applications.

  8. Numerical and Experimental Studies on Strain Distribution and Weld Line Movement in Stretch Forming of Tailor Welded Blanks

    SciTech Connect

    Panda, Sushanta Kumar; Kumar, D. Ravi

    2007-05-17

    Use of laser welded blanks of multiple sheets of material which are referred to as Tailor Welded Blanks (TWB) is one of the current interests for automotive industries as it reduces manufacturing cost, weight of the vehicle and also improves the quality of the component. As the varieties of TWB applications are increasing, the effects of the difference in material properties, surface properties, weld and its orientation on blank formability have become important both in deep-drawing and stretch forming. In this work, formability of two types of TWBs has been studied experimentally by performing out-of-plane stretch forming tests using a 101.6 mm diameter hemispherical punch. The materials used in this study were Interstitial-Free (IF) steel sheet samples of different thickness (1.0mm and 1.5 mm) and samples of same thickness (1.5 mm) but with different surface characteristics (galvanized and ungalvanized). In the stretch forming experiments, the limiting dome height (LDH) and strain distribution were measured. The influence of weld orientation with respect to major surface strain on formability was studied by conducting experiments in or close to plane strain condition. It has been found that thickness ratio and difference in properties have significant influence on major and minor strain distributions and weld line movement, but the difference in surface characteristics has a minor effect. The simulations results agreed well with the observations from the experimental work conducted on stretch forming of TWBs.

  9. Experimental investigation of the behaviour of tungsten and molybdenum alloys at high strain-rate and temperature

    NASA Astrophysics Data System (ADS)

    Scapin, Martina; Fichera, Claudio; Carra, Federico; Peroni, Lorenzo

    2015-09-01

    The introduction in recent years of new, extremely energetic particle accelerators such as the Large Hadron Collider (LHC) gives impulse to the development and testing of refractory metals and alloys based on molybdenum and tungsten to be used as structural materials. In this perspective, in this work the experimental results of a tests campaign on Inermet® IT180 and pure Molybdenum (sintered by two different producers) are presented. The investigation of the mechanical behaviour was performed in tension varying the strain-rates, the temperatures and both of them. Overall six orders of magnitude in strain-rate (between 10-3 and 103 s-1) were covered, starting from quasi-static up to high dynamic loading conditions. The high strain-rate tests were performed using a direct Hopkinson Bar setup. Both in quasi-static and high strain-rate conditions, the heating of the specimens was obtained with an induction coil system, controlled in feedback loop, based on measurements from thermocouples directly welded on the specimen. The temperature range varied between 25 and 1000°C. The experimental data were, finally, used to extract the parameters of the Zerilli-Armstrong model used to reproduce the mechanical behaviour of the investigated materials.

  10. Experimental studies the evolution of stress-strain state in structured rock specimens under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Oparin, Viktor; Tsoy, Pavel; Usoltseva, Olga; Semenov, Vladimir

    2014-05-01

    The aim of this study was to analyze distribution and development of stress-stress state in structured rock specimens subject to uniaxial loading to failure. Specific attention was paid to possible oscillating motion of structural elements of the rock specimens under constraints (pre-set stresses at the boundaries of the specimens) and the kinetic energy fractals. The detailed studies into the micro-level stress-strain state distribution and propagation over acting faces of rock specimens subject to uniaxial loading until failure, using automated digital speckle photography analyzer ALMEC-tv, have shown that: • under uniaxial stiff loading of prismatic sandstone, marble and sylvinite specimens on the Instron-8802 servohydraulic testing machine at the mobile grip displacement rate 0.02-0.2 mm/min, at a certain level of stressing, low-frequency micro-deformation processes originate in the specimens due to slow (quasi-static) force; • the amplitude of that deformation-wave processes greatly depends on the micro-loading stage: — at the elastic deformation stage, under the specimen stress lower than half ultimate strength of the specimen, there are no oscillations of microstrains; —at the nonlinearly elastic deformation stage, under stress varied from 0.5 to 1 ultimate strength of the specimens, the amplitudes of microstrains grow, including the descending stage 3; the oscillation frequency f=0.5-4 Hz; —at the residual strength stage, the amplitudes of the microstrains drop abruptly (3-5 times) as against stages 2 and 3; • in the elements of the scanned specimen surface in the region with the incipient crack, the microstrain rate amplitudes are a few times higher than in the undamged surface region of the same specimen. Sometimes, deformation rate greatly grows with increase in the load. The authors have used the energy scanning function of the deformation-wave processes in processing experimental speckle-photography data on the surface of the test specimen

  11. Simulation and experimental characterization of polymer/carbon nanotubes composites for strain sensor applications

    NASA Astrophysics Data System (ADS)

    De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V.; Vertuccio, L.; Vittoria, V.

    2014-08-01

    In this paper, a numerical model is presented in order to analyze the electrical characteristics of polymer composites filled by carbon nanotubes (CNTs) subject to tensile stress and investigate the possible usage of such materials as innovative sensors for small values of strain. The simulated mechano-electrical response of the nanocomposite is obtained through a multi-step approach which, through different modeling stages, provides a simple and effective tool for material analysis and design. In particular, at first, the morphological structures of the composites are numerically simulated by adopting a previously presented model based on a Monte Carlo procedure in which uniform distributions of the CNTs, approximated as of solid cylinders and ensuring some physical constraints, are dispersed inside a cubic volume representing the polymer matrix. Second, a geometrical analysis allows to obtain the percolation paths detected in the simulated structures. Suitable electrical networks composed by resistors and capacitors associated to the complex charge transport and polarization mechanisms occurring in the percolation paths are then identified. Finally, the variations of these circuit parameters, which are differently affected by the mechanical stresses applied to the composites, are considered to analyze the electromechanical characteristics of the composites and hence their performances as stress sensors. The proposed approach is used to investigate the impact on the electro-mechanical response of some physical properties of the base materials, such as the type of carbon nanotube, the height of energy barrier of polymer resin, as well as characteristics of the composite, i.e., the volume fraction of the filler. The tunneling effect between neighboring nanotubes is found to play a dominant role in determining the composite sensitivity to mechanical stresses. The simulation results are also compared with the experimental data obtained by performing stress tests on

  12. Acid-adapted strains of Escherichia coli K-12 obtained by experimental evolution.

    PubMed

    Harden, Mark M; He, Amanda; Creamer, Kaitlin; Clark, Michelle W; Hamdallah, Issam; Martinez, Keith A; Kresslein, Robert L; Bush, Sean P; Slonczewski, Joan L

    2015-03-01

    Enteric bacteria encounter a wide range of pHs throughout the human intestinal tract. We conducted experimental evolution of Escherichia coli K-12 to isolate clones with increased fitness during growth under acidic conditions (pH 4.5 to 4.8). Twenty-four independent populations of E. coli K-12 W3110 were evolved in LBK medium (10 g/liter tryptone, 5 g/liter yeast extract, 7.45 g/liter KCl) buffered with homopiperazine-N,N'-bis-2-(ethanosulfonic acid) and malate at pH 4.8. At generation 730, the pH was decreased to 4.6 with HCl. By 2,000 generations, all populations had achieved higher endpoint growth than the ancestor at pH 4.6 but not at pH 7.0. All evolving populations showed a progressive loss of activity of lysine decarboxylase (CadA), a major acid stress enzyme. This finding suggests a surprising association between acid adaptation and moderation of an acid stress response. At generation 2,000, eight clones were isolated from four populations, and their genomes were sequenced. Each clone showed between three and eight missense mutations, including one in a subunit of the RNA polymerase holoenzyme (rpoB, rpoC, or rpoD). Missense mutations were found in adiY, the activator of the acid-inducible arginine decarboxylase (adiA), and in gcvP (glycine decarboxylase), a possible acid stress component. For tests of fitness relative to that of the ancestor, lacZ::kan was transduced into each strain. All acid-evolved clones showed a high fitness advantage at pH 4.6. With the cytoplasmic pH depressed by benzoate (at external pH 6.5), acid-evolved clones showed decreased fitness; thus, there was no adaptation to cytoplasmic pH depression. At pH 9.0, acid-evolved clones showed no fitness advantage. Thus, our acid-evolved clones showed a fitness increase specific to low external pH. PMID:25556191

  13. An experimentally verified finite element study of the stress-strain response of crack geometries experiencing large-scale yielding

    SciTech Connect

    Panontin, T.L.; Sheppard, S.D.

    1997-12-01

    Large-strain, 3-D finite element analyses with incremental plasticity were performed for a variety of crack geometries to study local crack-tip stress-strain fields and associated global fracture parameters under conditions of large-scale yielding. The geometries analyzed include thin, single-edge crack tension, single-edge crack bending, and center-crack tension fracture specimens with varying crack depth (a/W) ratios. Two materials were investigated: a high-hardening, low-strength steel and a moderate-hardening, high-strength steel. Mesh refinement studies were performed to ensure convergence of the finite element predictions. The studies examine the effects of in-plane crack-tip element size, initial crack-tip radius size, and number of through-thickness layers on predicted distributions of crack-tip stress and plastic strain and predicted values of the J-integral and CTOD. In addition, the finite element predictions of specimen behavior were verified experimentally by direct measurements, namely load displacement, load longitudinal strain, and load CTOS, made during and following testing of the fracture specimens. Representative results of the finite element analyses are presented and compared to previously published data where pertinent. Results from the mesh refinement studies and the verification testing are shown. Predicted trends among the specimens and materials in local distributions of crack-tip plastic strain, triaxiality, and opening stress as well as in global parameters, J-integral and m-factor, are discussed.

  14. Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains.

    PubMed

    De Groef, Lies; Dekeyster, Eline; Geeraerts, Emiel; Lefevere, Evy; Stalmans, Ingeborg; Salinas-Navarro, Manuel; Moons, Lieve

    2016-04-01

    Mouse disease models have proven indispensable in glaucoma research, yet the complexity of the vast number of models and mouse strains has also led to confusing findings. In this study, we evaluated baseline intraocular pressure, retinal histology, and retinofugal projections in three mouse strains commonly used in glaucoma research, i.e. C57Bl/6, C57Bl/6-Tyr(c), and CD-1 mice. We found that the mouse strains under study do not only display moderate variations in their intraocular pressure, retinal architecture, and retinal ganglion cell density, also the retinofugal projections to the dorsal lateral geniculate nucleus and the superior colliculus revealed striking differences, potentially underlying diverging optokinetic tracking responses and visual acuity. Next, we reviewed the success rate of three models of (glaucomatous) optic neuropathies (intravitreal N-methyl-d-aspartic acid injection, optic nerve crush, and laser photocoagulation-induced ocular hypertension), looking for differences in disease susceptibility between these mouse strains. Different genetic backgrounds and albinism led to differential susceptibility to experimentally induced retinal ganglion cell death among these three mouse strains. Overall, CD-1 mice appeared to have the highest sensitivity to retinal ganglion cell damage, while the C57Bl/6 background was more resistant in the three models used. PMID:26791081

  15. A musculoskeletal model of the equine forelimb for determining surface stresses and strains in the humerus-part II. Experimental testing and model validation.

    PubMed

    Pollock, Sarah; Stover, Susan M; Hull, M L; Galuppo, Larry D

    2008-08-01

    The first objective of this study was to experimentally determine surface bone strain magnitudes and directions at the donor site for bone grafts, the site predisposed to stress fracture, the medial and cranial aspects of the transverse cross section corresponding to the stress fracture site, and the middle of the diaphysis of the humerus of a simplified in vitro laboratory preparation. The second objective was to determine whether computing strains solely in the direction of the longitudinal axis of the humerus in the mathematical model was inherently limited by comparing the strains measured along the longitudinal axis of the bone to the principal strain magnitudes and directions. The final objective was to determine whether the mathematical model formulated in Part I [Pollock et al., 2008, ASME J. Biomech. Eng., 130, p. 041006] is valid for determining the bone surface strains at the various locations on the humerus where experimentally measured longitudinal strains are comparable to principal strains. Triple rosette strain gauges were applied at four locations circumferentially on each of two cross sections of interest using a simplified in vitro laboratory preparation. The muscles included the biceps brachii muscle in addition to loaded shoulder muscles that were predicted active by the mathematical model. Strains from the middle grid of each rosette, aligned along the longitudinal axis of the humerus, were compared with calculated principal strain magnitudes and directions. The results indicated that calculating strains solely in the direction of the longitudinal axis is appropriate at six of eight locations. At the cranial and medial aspects of the middle of the diaphysis, the average minimum principal strain was not comparable to the average experimental longitudinal strain. Further analysis at the remaining six locations indicated that the mathematical model formulated in Part I predicts strains within +/-2 standard deviations of experimental strains at

  16. Experimental validation of a numerically determined multi-axial strain transfer from CFRP-laminates to embedded Bragg sensors

    NASA Astrophysics Data System (ADS)

    Luyckx, G.; Voet, E.; Lammens, N.; De Waele, W.; Degrieck, J.

    2011-05-01

    Embedded optical fibre sensors are considered in numerous applications for structural health monitoring purposes. Since the optical fibre and the host material in which it is embedded, have different material properties, strain in both materials will not be equal when external load is applied. In this paper, an experimental evaluation of the response of uni-axial fibre Bragg grating sensors embedded in small cross-ply composite laminates subjected to out-of-plane transverse loading is discussed.

  17. The electronic structure peculiarities of a strained silicon layer in silicon-on-insulator: Experimental and theoretical data

    NASA Astrophysics Data System (ADS)

    Terekhov, V. A.; Nesterov, D. N.; Domashevskaya, E. P.; Geraskina, E. V.; Manyakin, M. D.; Kurganskii, S. I.; Kamayev, G. N.; Antonenko, A. H.; Turishchev, S. Yu.

    2016-09-01

    The electronic structure of SOI (silicon-on-insulator) with strained and unstrained silicon layers was theoretically calculated and experimentally investigated by means of Ultrasoft X-ray Emission and Absorption Spectroscopy. According to the experimental results, an additional spectral feature occurs in the strained silicon layer density of states near the bottom of the conduction band (Ec). The shift of Ec towards the top of the valence band, as well as smoothing of the density of states and disappearance of the degenerate minimum between L`2v and L1v valence band states was also observed. The theoretical calculations have been performed by full potential linearized augmented plane-wave method and show that straining of silicon lattice leads to a slight shifting of the conduction band bottom towards the top of the valence band and causes an increase in the density of states between L`2v and L1v. The theoretical shift of the conduction band bottom is substantially less than the experimental one.

  18. Experimental Infection of Calves by Two Genetically-Distinct Strains of Rift Valley Fever Virus.

    PubMed

    Wilson, William C; Davis, A Sally; Gaudreault, Natasha N; Faburay, Bonto; Trujillo, Jessie D; Shivanna, Vinay; Sunwoo, Sun Young; Balogh, Aaron; Endalew, Abaineh; Ma, Wenjun; Drolet, Barbara S; Ruder, Mark G; Morozov, Igor; McVey, D Scott; Richt, Juergen A

    2016-01-01

    Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously, we developed a reliable challenge model for sheep that improves the evaluation of existing and novel vaccines in sheep. This sheep model demonstrated differences in the pathogenesis of Rift Valley fever virus (RVFV) infection between two genetically-distinct wild-type strains of the virus, Saudi Arabia 2001 (SA01) and Kenya 2006 (Ken06). Here, we evaluated the pathogenicity of these two RVFV strains in mixed breed beef calves. There was a transient increase in rectal temperatures with both virus strains, but this clinical sign was less consistent than previously reported with sheep. Three of the five Ken06-infected animals had an early-onset viremia, one day post-infection (dpi), with viremia lasting at least three days. The same number of SA01-infected animals developed viremia at 2 dpi, but it only persisted through 3 dpi in one animal. The average virus titer for the SA01-infected calves was 1.6 logs less than for the Ken06-infected calves. Calves, inoculated with either strain, seroconverted by 5 dpi and showed time-dependent increases in their virus-neutralizing antibody titers. Consistent with the results obtained in the previous sheep study, elevated liver enzyme levels, more severe liver pathology and higher virus titers occurred with the Ken06 strain as compared to the SA01 strain. These results demonstrate the establishment of a virulent challenge model for vaccine evaluation in calves. PMID:27223298

  19. Experimental Infection of Calves by Two Genetically-Distinct Strains of Rift Valley Fever Virus

    PubMed Central

    Wilson, William C.; Davis, A. Sally; Gaudreault, Natasha N.; Faburay, Bonto; Trujillo, Jessie D.; Shivanna, Vinay; Sunwoo, Sun Young; Balogh, Aaron; Endalew, Abaineh; Ma, Wenjun; Drolet, Barbara S.; Ruder, Mark G.; Morozov, Igor; McVey, D. Scott; Richt, Juergen A.

    2016-01-01

    Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously, we developed a reliable challenge model for sheep that improves the evaluation of existing and novel vaccines in sheep. This sheep model demonstrated differences in the pathogenesis of Rift Valley fever virus (RVFV) infection between two genetically-distinct wild-type strains of the virus, Saudi Arabia 2001 (SA01) and Kenya 2006 (Ken06). Here, we evaluated the pathogenicity of these two RVFV strains in mixed breed beef calves. There was a transient increase in rectal temperatures with both virus strains, but this clinical sign was less consistent than previously reported with sheep. Three of the five Ken06-infected animals had an early-onset viremia, one day post-infection (dpi), with viremia lasting at least three days. The same number of SA01-infected animals developed viremia at 2 dpi, but it only persisted through 3 dpi in one animal. The average virus titer for the SA01-infected calves was 1.6 logs less than for the Ken06-infected calves. Calves, inoculated with either strain, seroconverted by 5 dpi and showed time-dependent increases in their virus-neutralizing antibody titers. Consistent with the results obtained in the previous sheep study, elevated liver enzyme levels, more severe liver pathology and higher virus titers occurred with the Ken06 strain as compared to the SA01 strain. These results demonstrate the establishment of a virulent challenge model for vaccine evaluation in calves. PMID:27223298

  20. Dynamic Grain Growth in Forsterite Aggregates Experimentally Deformed to High Strain

    NASA Astrophysics Data System (ADS)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.; Drury, M.

    2004-12-01

    The dynamics of the outer Earth are largely controlled by olivine rheology. From previous work it has become clear that if olivine rocks are deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that were reduced in grain size during straining by grain size insensitive (dislocation) creep mechanisms. The aim of the present study was to investigate microstructure evolution of fine-grained olivine rocks that coarsen in grain size while deforming by grain size sensitive (GSS) creep. We used fine-grained (~1 μ m) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3). Two types of experiments were carried out: 1) Hot isostatic pressing (HIP) followed by axial compression to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C, 2) HIP treatment without axial deformation. Microstructures were characterized by analyzing full grain size distributions and texture using SEM/EBSD. Our stress-strain curves showed continuous hardening. When samples were temporally unloaded for short time intervals, no difference in flow stress was observed before and after the interruption in straining. Strain rate sensitivity analysis showed a low value of ~1.5 for the stress exponent n. Measured grain sizes show an increase with strain up to a value twice that of the starting value. HIP-only samples showed only minor increase in grain size. A random LPO combined with the low n ~1.5 suggests dominant GSS creep controlled by grain boundary sliding. These results indicate that dynamic grain growth occurs in forsterite aggregates deforming by GSS

  1. Reproduction of Mucohaemorrhagic Diarrhea and Colitis Indistinguishable from Swine Dysentery following Experimental Inoculation with “Brachyspira hampsonii” Strain 30446

    PubMed Central

    Rubin, Joseph E.; Costa, Matheus O.; Hill, Janet E.; Kittrell, Heather E.; Fernando, Champika; Huang, Yanyun; O’Connor, Brendan; Harding, John C. S.

    2013-01-01

    Background Mucohaemorrhagic diarrhea caused by Brachyspira hyodysenteriae, swine dysentery, is a severe production limiting disease of swine. Recently, pigs in western Canada with clinical signs indistinguishable from swine dysentery were observed. Despite the presence of spirochetes on fecal smears, recognized Brachyspira spp. including B. hyodysenteriae could not be identified. A phylogenetically distinct Brachyspira, called “B. hampsonii” strain 30446, however was isolated. The purpose of this study was to experimentally reproduce mucohaemorrhagic colitis and characterize strain 30446 shedding following inoculation. Methods and Findings Eighteen 13-week-old pigs were randomly assigned to inoculation (n = 12) or control (n = 6) groups in each of two trials. In trial 1, pigs were inoculated with a tissue homogenate collected from clinically affected field cases. In trial 2, pigs were inoculated with a pure broth culture of strain 30446. In both trials, mucohaemorrhagic diarrhea was significantly more common in inoculated pigs than controls, all of which remained healthy. In animals with mucohaemorrhagic diarrhea, significantly more spirochetes were observed on Gram stained fecal smears, and higher numbers of strain 30446 genome equivalents were detected by quantitative PCR (qPCR). Strain 30446 was cultured from colon and/or feces of all affected but no control animals at necropsy. Conclusions “Brachyspira hampsonii” strain 30446 causes mucohaemorrhagic diarrhea in pigs following a 4–9 day incubation period. Fecal shedding was detectable by day 4 post inoculation, and rarely preceded the onset of mucoid or haemorrhagic diarrhea by more than 2 days. Culture and 30446-specific qPCR are reliable methods of detection of this organism in feces and tissues of diarrheic pigs. The emergence of a novel Brachyspira spp., such as “B. hampsonii”, creates diagnostic challenges including higher risk of false negative diagnostic tests. We therefore recommend

  2. Comparison of Abortion and Infection after Experimental Challenge of Pregnant Bison and Cattle with Brucella abortus Strain 2308▿

    PubMed Central

    Olsen, S. C.; Johnson, C.

    2011-01-01

    A comparative study was conducted using data from naive bison (n = 45) and cattle (n = 46) from 8 and 6 studies, respectively, in which a standardized Brucella abortus strain 2308 experimental challenge was administered during midgestation. The incidence of abortion, fetal infection, uterine or mammary infection, or infection in maternal tissues after experimental challenge was greater (P < 0.05) in bison than in cattle. In animals that did abort, the time between experimental challenge and abortion was shorter (P < 0.05) for bison than for cattle. Brucella colonization of four target tissues and serologic responses on the standard tube agglutination test at the time of abortion did not differ (P > 0.05) between cattle and bison. The results of our study suggest that naive bison and cattle have similarities and differences after experimental exposure to a virulent B. abortus strain. Although our data suggest that bison may be more susceptible to infection with Brucella, some pathogenic characteristics of brucellosis were similar between bison and cattle. PMID:21976222

  3. Analytical and experimental studies on the strain rate effects in penetration of 10wt % ballistic gelatin

    NASA Astrophysics Data System (ADS)

    Liu, L.; Jia, Z.; Ma, X. L.; Fan, Y. R.

    2013-07-01

    This work concentrates on modeling the super-elastic behavior of 10wt% ballistic gelatin at 4°C and the mechanical responses at quasi-static and high-speed penetrations. Uniaxial compression and simple shearing experiments were carried out to determine the moduli in Mooney-Rivlin model describing the elastic behavior of gelatin at low strain rates. The failure mode is determined to be elastic fracture as the tensile stretch ratio exceeds a critical value. For high compression strain rates, the available results from the split Hopkinson pressure bar (SHPB) experiments for 10wt% gelatin were carefully examined and assessed. Linear relationship between the moduli and the strain rate is established. Based on these material parameters, an analytic solution of stress for the quasi-static and quasi-dynamic expansion of spherical cavity in gelatin is derived. As a consequence, the work needed to open unit volume of cavity, Ps, which is the key parameter in studying penetration problems, is linearly increasing with the characteristic strain rate. The application of Ps to our quasi-static and high-speed penetration experiments is discussed and assessed.

  4. Experimental studies with homologous subtype vaccines produced with multiple antigenically different seed strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the high antigenic variability of avian influenza virus, vaccines need to be continually updated to maintain adequate protection to evolving field strains. One possible approach, to mitigating the effects of antigenic change, is to use vaccines containing more than one isolate of the same su...

  5. Experimental Infection of Richardson's Ground Squirrels (Spermophilus richardsonii) with Attenuated and Virulent Strains of Brucella abortus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of non-target species to wildlife vaccines is an important concern when evaluating a candidate vaccine for use in the field. A previous investigation of the safety of Brucella abortus strain RB51 (sRB51) in various non-target species suggested that Richardson’s ground squirrels (Spermophil...

  6. Experimental Infection of Calves with Escherichia coli O104:H4 outbreak strain.

    PubMed

    Hamm, K; Barth, S A; Stalb, S; Geue, L; Liebler-Tenorio, E; Teifke, J P; Lange, E; Tauscher, K; Kotterba, G; Bielaszewska, M; Karch, H; Menge, C

    2016-01-01

    In 2011, a severe outbreak of hemolytic-uremic syndrome was caused by an unusual, highly virulent enterohemorrhagic E. coli (EHEC) O104:H4 strain, which possessed EHEC virulence traits in the genetic background of human-adapted enteroaggregative E. coli. To determine magnitude of fecal shedding and site of colonization of EHEC O104:H4 in a livestock host, 30 (ten/strain) weaned calves were inoculated with 10(10) CFU of EHEC O104:H4, EHEC O157:H7 (positive control) or E. coli strain 123 (negative control) and necropsied (4 or 28 d.p.i.). E. coli O157:H7 was recovered until 28 d.p.i. and O104:H4 until 24 d.p.i. At 4 d.p.i., EHEC O104:H4 was isolated from intestinal content and detected associated with the intestinal mucosa. These results are the first evidence that cattle, the most important EHEC reservoir, can also carry unusual EHEC strains at least transiently, questioning our current understanding of the molecular basis of host adaptation of this important E. coli pathovar. PMID:27600997

  7. Strains of Encephalitozoon cuniculi, Encephalitozoon intestinalis, and Encephalitozoon hellem fail to experimentally infect food animals.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the infectivity of strains of three most common species of Encephalitozoon spp. (E. intestinalis, E. hellem, and E. cuniculi) in food animals including pigs, cattle, chickens and turkeys. Animals were orally inoculated with spores and infections were determined by dete...

  8. Experimental Infection of Calves with Escherichia coli O104:H4 outbreak strain

    PubMed Central

    Hamm, K.; Barth, S. A.; Stalb, S.; Geue, L.; Liebler-Tenorio, E.; Teifke, J. P.; Lange, E.; Tauscher, K.; Kotterba, G.; Bielaszewska, M.; Karch, H.; Menge, C.

    2016-01-01

    In 2011, a severe outbreak of hemolytic-uremic syndrome was caused by an unusual, highly virulent enterohemorrhagic E. coli (EHEC) O104:H4 strain, which possessed EHEC virulence traits in the genetic background of human-adapted enteroaggregative E. coli. To determine magnitude of fecal shedding and site of colonization of EHEC O104:H4 in a livestock host, 30 (ten/strain) weaned calves were inoculated with 1010 CFU of EHEC O104:H4, EHEC O157:H7 (positive control) or E. coli strain 123 (negative control) and necropsied (4 or 28 d.p.i.). E. coli O157:H7 was recovered until 28 d.p.i. and O104:H4 until 24 d.p.i. At 4 d.p.i., EHEC O104:H4 was isolated from intestinal content and detected associated with the intestinal mucosa. These results are the first evidence that cattle, the most important EHEC reservoir, can also carry unusual EHEC strains at least transiently, questioning our current understanding of the molecular basis of host adaptation of this important E. coli pathovar. PMID:27600997

  9. Experimental infection of Richardson's ground squirrels (Spermophilus richardsonii) with attenuated and virulent strains of Brucella abortus.

    PubMed

    Nol, Pauline; Olsen, Steven C; Rhyan, Jack C

    2009-01-01

    A previous investigation of the safety of Brucella abortus strain RB51 (sRB51) in various nontarget species suggested that Richardson's ground squirrels (Spermophilus richardsonii) may develop persistent infections when orally inoculated with the vaccine. In the present study, sRB51, B. abortus strain 19 (s19), and virulent B. abortus strain 9941 (s9941) were administered orally to Richardson's ground squirrels to further characterize B. abortus infection in this species. Six groups of nongravid ground squirrels were orally inoculated with 6 x 10(8) colony forming units (cfu) sRB51 (n = 10), 2.5 x 10(4) cfu s19 (n = 10), 2.5 x 10(7) cfu s19 (n = 6), 1.3 x 10(6) cfu s9941 (n = 5), 2.1 x 10(8) cfu s9941 (n = 5), or vaccine diluent (control; n = 4). One of five animals in the lower-dose s19 group and two of three animals in the higher-dose s19 group showed persistence of bacteria in various tissues at 14 wk postinoculation (PI). At 18 wk PI, one of five animals in the sRB51 group and one of five animals in the high-dose s9941 group were culture positive. Although we did detect some persistence of B. abortus strains at 18 wk, we found no evidence of pathology caused by B. abortus strains in nonpregnant Richardson's ground squirrels based on clinical signs, gross lesions, and microscopic lesions. PMID:19204348

  10. Strain measurement of objects subjected to aerodynamic heating using digital image correlation: experimental design and preliminary results.

    PubMed

    Pan, Bing; Jiang, Tianyun; Wu, Dafang

    2014-11-01

    In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed. PMID:25430144

  11. An Experimental study of the initial volumetric strain rate effect on the creep behaviour of reconstituted clays

    NASA Astrophysics Data System (ADS)

    Bagheri, M.; Rezania, M.; Nezhad, M. M.

    2015-09-01

    Clayey soils tend to undergo continuous compression with time, even after excess pore pressures have substantially dissipated. The effect of time on deformation and mechanical response of these soft soils has been the subject of numerous studies. Based on these studies, the observed time-dependent behaviour of clays is mainly related to the evolution of soil volume and strength characteristics with time, which are classified as creep and/or relaxation properties of the soil. Apart from many empirical relationships that have been proposed in the literature to capture the rheological behaviour of clays, a number of viscid constitutive relationships have also been developed which have more attractive theoretical attributes. A particular feature of these viscid models is that their creep parameters often have clear physical meaning (e.g. coefficient of secondary compression, Cα). Sometimes with these models, a parameter referred to as initial/reference volumetric strain rate, has also been alluded as a model parameter. However, unlike Cα, the determination of and its variations with stress level is not properly documented in the literature. In an attempt to better understand , this paper presents an experimental investigation of the reference volumetric strain rate in reconstituted clay specimens. A long-term triaxial creep test, at different shear stress levels and different strain rates, was performed on clay specimen whereby the volumetric strain rate was measured. The obtained results indicated the stress-level dependency and non-linear variation of with time.

  12. Experimental characterization and modeling of UO2 grain boundary cracking at high temperatures and high strain rates

    NASA Astrophysics Data System (ADS)

    Salvo, Maxime; Sercombe, Jérôme; Helfer, Thomas; Sornay, Philippe; Désoyer, Thierry

    2015-05-01

    In this paper, the behavior of a dense UO2 (porosity less than 2%) was studied experimentally on a range of temperatures (1100-1700 °C) and strain rates (10-4-10-1 /s) representative of RIA loading conditions. The yield stress was found to increase with strain rate and to decrease with temperature. Macroscopic cracking of the samples was apparent after the tests at 1100 °C. Scanning Electron Microscopy (SEM) image analyses revealed a pronounced grain boundary cracking in the core of the samples tested at 10-1 /s and at 1550-1700 °C. A hyperbolic sine model for the viscoplastic strain rate with a clear dependency on porosity was first developed. It was completed by a Drucker-Prager yield criterion with associated plastic flow to account for the porosity increase induced by grain boundary cracking. Finite Elements simulations of the compression tests on the dense UO2 were then successfully compared to the stress-strain curves, post-test diameter profiles and porosities at the pellets' center, periphery and top extremity. The response of the grain boundary cracking model was then studied in biaxial compression, this condition being closer to that of the pellet during a RIA power transient.

  13. Experimental Techniques for Evaluating the Effects of Aging on Impact and High Strain Rate Properties of Triaxial Braided Composite Materials

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.; Ruggeri, Charles R.; Gilat, Amos; Matrka, Thomas

    2010-01-01

    An experimental program is underway to measure the impact and high strain rate properties of triaxial braided composite materials and to quantify any degradation in properties as a result of thermal and hygroscopic aging typically encountered during service. Impact tests are being conducted on flat panels using a projectile designed to induce high rate deformation similar to that experienced in a jet engine fan case during a fan blade-out event. The tests are being conducted on as-fabricated panels and panels subjected to various numbers of aging cycles. High strain rate properties are being measured using a unique Hopkinson bar apparatus that has a larger diameter than conventional Hopkinson bars. This larger diameter is needed to measure representative material properties because of the large unit cell size of the materials examined in this work. In this paper the experimental techniques used for impact and high strain rate testing are described and some preliminary results are presented for both as-fabricated and aged composites.

  14. Rheology of arc dacite lavas: experimental determination at low strain rates

    NASA Astrophysics Data System (ADS)

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that

  15. Predictions and Experimental Microstructural Characterization of High Strain Rate Failure Modes in Layered Aluminum Composites

    NASA Astrophysics Data System (ADS)

    Khanikar, Prasenjit

    Different aluminum alloys can be combined, as composites, for tailored dynamic applications. Most investigations pertaining to metallic alloy layered composites, however, have been based on quasi-static approaches. The dynamic failure of layered metallic composites, therefore, needs to be characterized in terms of strength, toughness, and fracture response. A dislocation-density based crystalline plasticity formulation, finite-element techniques, rational crystallographic orientation relations and a new fracture methodology were used to predict the failure modes associated with the high strain rate behavior of aluminum layered composites. Two alloy layers, a high strength alloy, aluminum 2195, and an aluminum alloy 2139, with high toughness, were modeled with representative microstructures that included precipitates, dispersed particles, and different grain boundary (GB) distributions. The new fracture methodology, based on an overlap method and phantom nodes, is used with a fracture criteria specialized for fracture on different cleavage planes. One of the objectives of this investigation, therefore, was to determine the optimal arrangements of the 2139 and 2195 aluminum alloys for a metallic layered composite that would combine strength, toughness and fracture resistance for high strain-rate applications. Different layer arrangements were investigated for high strain-rate applications, and the optimal arrangement was with the high toughness 2139 layer on the bottom, which provided extensive shear strain localization, and the high strength 2195 layer on the top for high strength resistance. The layer thickness of the bottom high toughness layer also affected the bending behavior of the roll-boned interface and the potential delamination of the layers. Shear strain localization, dynamic cracking and delamination were the mutually competing failure mechanisms for the layered metallic composite, and control of these failure modes can be optimized for high strain

  16. Integrated experimental and computational studies of deformation of single crystal copper at high strain rates

    NASA Astrophysics Data System (ADS)

    Rawat, S.; Chandra, S.; Chavan, V. M.; Sharma, S.; Warrier, M.; Chaturvedi, S.; Patel, R. J.

    2014-12-01

    Quasi-static (0.0033 s-1) and dynamic (103 s-1) compression experiments were performed on single crystal copper along ⟨100⟩ and ⟨110⟩ directions and best-fit parameters for the Johnson-Cook (JC) material model, which is an important input to hydrodynamic simulations for shock induced fracture, have been obtained. The deformation of single crystal copper along the ⟨110⟩ direction showed high yield strength, more strain hardening, and less strain rate sensitivity as compared to the ⟨100⟩ direction. Although the JC model at the macro-scale is easy to apply and describes a general response of material deformation, it lacks physical mechanisms that describe the influence of texture and initial orientation on the material response. Hence, a crystal plasticity model based on the theory of thermally activated motion of dislocations was used at the meso-scale, in which the evolution equations permit one to study and quantify the influence of initial orientation on the material response. Hardening parameters of the crystal plasticity model show less strain rate sensitivity along the ⟨110⟩ orientation as compared to the ⟨100⟩ orientation, as also shown by the JC model. Since the deformation process is inherently multiscale in nature, the shape changes observed in the experiments due to loading along ⟨100⟩ and ⟨110⟩ directions are also validated by molecular dynamics simulations at the nano-scale.

  17. On the influence of strain rate in acousto-elasticity : experimental results for Berea sandstone

    NASA Astrophysics Data System (ADS)

    Riviere, J. V.; Candela, T.; Scuderi, M.; Marone, C.; Guyer, R. A.; Johnson, P. A.

    2013-12-01

    Elastic nonlinear effects are pervasive in the Earth, including during strong ground motion, tidal forcing and earthquake slip processes. We study elastic nonlinear effects in the laboratory with the goal of developing new methods to probe elastic changes in the Earth, and to characterize and understand their origins. Here we report on nonlinear, frequency dispersion effects by applying a method termed dynamic acousto-elasticity (DAE), analogous to quasi-static acousto-elasticity. DAE allows one to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. We perform DAE on samples of Berea sandstone subject to 0.5 MPa uniaxial and biaxial loading conditions with oscillating loads at frequencies from 0.001 to 10 Hz and amplitudes of a few 100 kPa. We compare results to DAE measurements made in the kHz range. We observe that the average decrease in modulus due to nonlinear material softening increases with frequency, suggesting a frequency and/or a strain rate dependence. Previous quasi-static measurements (Claytor et al., GRL 2009) show that stress-strain nonlinear hysteretic behavior disappears when the experiment is performed at a very low strain-rate, implying that a rate dependent nonlinear elastic model would be useful (Gusev et al., PRB 2004). Our results also suggest that when elastic nonlinear Earth processes are studied, stress forcing frequency is an important consideration, and may lead to unexpected behaviors.

  18. Rapid multiple-level coevolution in experimental populations of yeast killer and nonkiller strains.

    PubMed

    Pieczynska, Magdalena D; Wloch-Salamon, Dominika; Korona, Ryszard; de Visser, J Arjan G M

    2016-06-01

    Coevolution between different biological entities is considered an important evolutionary mechanism at all levels of biological organization. Here, we provide evidence for coevolution of a yeast killer strain (K) carrying cytoplasmic dsRNA viruses coding for anti-competitor toxins and an isogenic toxin-sensitive strain (S) during 500 generations of laboratory propagation. Signatures of coevolution developed at two levels. One of them was coadaptation of K and S. Killing ability of K first increased quickly and was followed by the rapid invasion of toxin-resistant mutants derived from S, after which killing ability declined. High killing ability was shown to be advantageous when sensitive cells were present but costly when they were absent. Toxin resistance evolved via a two-step process, presumably involving the fitness-enhancing loss of one chromosome followed by selection of a recessive resistant mutation on the haploid chromosome. The other level of coevolution occurred between cell and killer virus. By swapping the killer viruses between ancestral and evolved strains, we could demonstrate that changes observed in both host and virus were beneficial only when combined, suggesting that they involved reciprocal changes. Together, our results show that the yeast killer system shows a remarkable potential for rapid multiple-level coevolution. PMID:27168531

  19. Time Domain Strain/Stress Reconstruction Based on Empirical Mode Decomposition: Numerical Study and Experimental Validation.

    PubMed

    He, Jingjing; Zhou, Yibin; Guan, Xuefei; Zhang, Wei; Zhang, Weifang; Liu, Yongming

    2016-01-01

    Structural health monitoring has been studied by a number of researchers as well as various industries to keep up with the increasing demand for preventive maintenance routines. This work presents a novel method for reconstruct prompt, informed strain/stress responses at the hot spots of the structures based on strain measurements at remote locations. The structural responses measured from usage monitoring system at available locations are decomposed into modal responses using empirical mode decomposition. Transformation equations based on finite element modeling are derived to extrapolate the modal responses from the measured locations to critical locations where direct sensor measurements are not available. Then, two numerical examples (a two-span beam and a 19956-degree of freedom simplified airfoil) are used to demonstrate the overall reconstruction method. Finally, the present work investigates the effectiveness and accuracy of the method through a set of experiments conducted on an aluminium alloy cantilever beam commonly used in air vehicle and spacecraft. The experiments collect the vibration strain signals of the beam via optical fiber sensors. Reconstruction results are compared with theoretical solutions and a detailed error analysis is also provided. PMID:27537889

  20. Experimental Induction of Paromomycin Resistance in Antimony-Resistant Strains of L. donovani: Outcome Dependent on In Vitro Selection Protocol

    PubMed Central

    Bhandari, Vasundhra; Kuypers, Kristel; Shaw, Craig D.; Lonchamp, Julien; Salotra, Poonam; Carter, Katharine; Sundar, Shyam; Rijal, Suman; Dujardin, Jean-Claude; Cos, Paul; Maes, Louis

    2012-01-01

    Paromomycin (PMM) has recently been introduced for treatment of visceral leishmaniasis in India. Although no clinical resistance has yet been reported, proactive vigilance should be warranted. The present in vitro study compared the outcome and stability of experimental PMM-resistance induction on promastigotes and intracellular amastigotes. Cloned antimony-resistant L. donovani field isolates from India and Nepal were exposed to stepwise increasing concentrations of PMM (up to 500 µM), either as promastigotes or intracellular amastigotes. One resulting resistant strain was cloned and checked for stability of resistance by drug-free in vitro passage as promastigotes for 20 weeks or a single in vivo passage in the golden hamster. Resistance selection in promastigotes took about 25 weeks to reach the maximal 97 µM inclusion level that did not affect normal growth. Comparison of the IC50 values between the parent and the selected strains revealed a 9 to 11-fold resistance for the Indian and 3 to 5-fold for the Nepalese strains whereby the resistant phenotype was also maintained at the level of the amastigote. Applying PMM pressure to intracellular amastigotes produced resistance after just two selection cycles (IC50 = 199 µM) compared to the parent strain (IC50 = 45 µM). In the amastigote-induced strains/clones, lower PMM susceptibilities were seen only in amastigotes and not at all in promastigotes. This resistance phenotype remained stable after serial in vitro passage as promastigote for 20 weeks and after a single in vivo passage in the hamster. This study clearly demonstrates that a different PMM-resistance phenotype is obtained whether drug selection is applied to promastigotes or intracellular amastigotes. These findings may have important relevance to resistance mechanism investigations and the likelihood of resistance development and detection in the field. PMID:22666513

  1. Experimental realization of coexisting states of rolled-up and wrinkled nanomembranes by strain and etching control

    NASA Astrophysics Data System (ADS)

    CendulaPresent Address: Institute Of Computational Physics, Zurich University Of Applied Sciences, Wildbachstr. 21, 8401 Winterthur, Switzerland. E. Mail: Peter. Cendula@Gmail. Com., P.; Malachias, A.; Deneke, Ch.; KiravittayaPresent Address: Department Of Electrical; Computer Engineering, Faculty Of Engineering, Naresuan University, Phitsanulok 65000, Thailand., S.; Schmidt, O. G.

    2014-11-01

    Self-positioned nanomembranes, such as rolled-up tubes and wrinkled thin films, have been potential systems for a variety of applications and basic studies on elastic properties of nanometer-thick systems. Although there is a clear driving force towards elastic energy minimization in each system, the exploration of intermediate states, in which specific characteristics could be chosen by a slight modification of a processing parameter, have not been experimentally realized. In this work, arrays of freestanding III-V nanomembranes (NM) supported on one edge and presenting a coexistence of these two main behaviors were obtained by design of strain conditions in the NMs and controlled selective etching of patterned substrates. As the etching process continues, a mixture of wrinkled and rolled-up states is achieved. For very long etching times an onset of plastic cracks was observed in the points with localized stress. The well-defined morphological periodicity of the relaxed NMs was compared with finite element simulations of their elastic relaxation. The evolution of strain in the NMs with etching time was directly evaluated by X-ray diffraction, providing a comprehensive scenario of transitions among competing and coexisting strain states.Self-positioned nanomembranes, such as rolled-up tubes and wrinkled thin films, have been potential systems for a variety of applications and basic studies on elastic properties of nanometer-thick systems. Although there is a clear driving force towards elastic energy minimization in each system, the exploration of intermediate states, in which specific characteristics could be chosen by a slight modification of a processing parameter, have not been experimentally realized. In this work, arrays of freestanding III-V nanomembranes (NM) supported on one edge and presenting a coexistence of these two main behaviors were obtained by design of strain conditions in the NMs and controlled selective etching of patterned substrates. As the

  2. Quantitative detection of Toxoplasma gondii in tissues of experimentally infected turkeys and in retail turkey products by magnetic-capture PCR.

    PubMed

    Koethe, Martin; Straubinger, Reinhard K; Pott, Susan; Bangoura, Berit; Geuthner, Anne-Catrin; Daugschies, Arwid; Ludewig, Martina

    2015-12-01

    Magnetic-capture PCR was applied for the quantitative detection of Toxoplasma gondii in tissues of experimentally infected turkeys and retail turkey meat products. For experimental infection, three T. gondii strains (ME49, CZ-Tiger, NED), varying infectious doses in different matrices (organisms in single mouse brains or 10(3), 10(5), or 10(6) oocysts in buffer) were used. From all animals, breast, thigh, and drumstick muscle tissues and for CZ-Tiger-infected animals additionally brains and hearts were analyzed. Using the magnetic-capture PCR large volumes of up to 100 g were examined. Our results show that most T. gondii parasites are present in brain and heart tissue. Of the three skeletal muscle types, drumsticks were affected at the highest and breast at the lowest level. Type III strain (NED) seems to be less efficient in infecting turkeys compared to type II strains, because only few tissues of NED infected animals contained T. gondii DNA. Furthermore, the number of detected parasitic stages increased with the level of infectious dose. Infection mode by either oocyst or tissue cyst stage did not have an effect on the amount of T. gondii present in tissues. In retail turkey meat products T. gondii DNA was not detectable although a contact with the parasite was inferred by serology. PMID:26338112

  3. Calomys callosus chronically infected by Toxoplasma gondii clonal type II strain and reinfected by Brazilian strains is not able to prevent vertical transmission

    PubMed Central

    Franco, Priscila S.; da Silva, Neide M.; de Freitas Barbosa, Bellisa; de Oliveira Gomes, Angelica; Ietta, Francesca; Shwab, E. K.; Su, Chunlei; Mineo, José R.; Ferro, Eloisa A. V.

    2015-01-01

    Considering that Toxoplasma gondii has shown high genetic diversity in Brazil, the aim of this study was to determine whether Calomys callosus chronically infected by the ME-49 strain might be susceptible to reinfection by these Brazilian strains, including vertical transmission of the parasite. Survival curves were analyzed in non-pregnant females chronically infected with ME-49 and reinfected with the TgChBrUD1 or TgChBrUD2 strain, and vertical transmission was analyzed after reinfection of pregnant females with these same strains. On the 19th day of pregnancy (dop), placentas, uteri, fetuses, liver, spleen, and lung were processed for detection of the parasite. Blood samples were collected for humoral and cellular immune response analyses. All non-pregnant females survived after reinfection and no changes were observed in body weight and morbidity scores. In pregnant females, parasites were detected in the placentas of ME-49 chronically infected females and reinfected females, but were only detected in the fetuses of reinfected females. TgChBrUD2 reinfected females showed more impaired pregnancy outcomes, presenting higher numbers of animals with fetal loss and a higher resorption rate, in parallel with higher levels of pro-inflammatory cytokines and IgG2a subclass antibodies. Vertical transmission resulting from chronic infection of immunocompetent C. callosus is considered a rare event, being attributed instead to either reactivation or reinfection. That is, the pregnancy may be responsible for reactivation of the latent infection or the reinfection may promote T. gondii vertical transmission. Our results clearly demonstrate that, during pregnancy, protection against T. gondii can be breached after reinfection with parasites belonging to different genotypes, particularly when non-clonal strains are involved in this process and in this case the reinfection promoted vertical transmission of both type II and Brazilian T. gondii strains. PMID:25806028

  4. Long-term immunity to lethal acute or chronic type II Toxoplasma gondii infection is effectively induced in genetically susceptible C57BL/6 mice by immunization with an attenuated type I vaccine strain.

    PubMed

    Gigley, Jason P; Fox, Barbara A; Bzik, David J

    2009-12-01

    C57BL/6 (B6) mice are genetically highly susceptible to chronic type II Toxoplasma gondii infections that invariably cause lethal toxoplasmic encephalitis. We examined the ability of an attenuated type I vaccine strain to elicit long-term immunity to lethal acute or chronic type II infections in susceptible B6 mice. Mice immunized with the type I cps1-1 vaccine strain were not susceptible to a lethal (100-cyst) challenge with the type II strain ME49. Immunized mice challenged with 10 ME49 cysts exhibited significant reductions in brain cyst and parasite burdens compared to naive mice, regardless of the route of challenge infection. Remarkably, cps1-1 strain-immunized B6 mice chronically infected with ME49 survived for at least 12 months without succumbing to the chronic infection. Potent immunity to type II challenge infections persisted for at least 10 months after vaccination. While the cps1-1 strain-elicited immunity did not prevent the establishment of a chronic infection or clear established brain cysts, cps1-1 strain-elicited CD8(+) immune T cells significantly inhibited recrudescence of brain cysts during chronic ME49 infection. In addition, we show that uracil starvation of the cps1-1 strain induces early markers of bradyzoite differentiation. Collectively, these results suggest that more effective immune control of chronic type II infection in the genetically susceptible B6 background is established by vaccination with the nonreplicating type I uracil auxotroph cps1-1 strain. PMID:19797073

  5. Lucilia sericata strain from Colombia: Experimental colonization, life tables and evaluation of two artificial diets of the blowfly Lucilia sericata (Meigen) (Diptera: Calliphoridae), Bogotá, Colombia strain.

    PubMed

    Rueda, Luis C; Ortega, Luis G; Segura, Nidya A; Acero, Víctor M; Bello, Felio

    2010-01-01

    The objective of this work was to establish, under experimental laboratory conditions, a colony of Lucilia sericata, Bogotá-Colombia strain, to build life tables and evaluate two artificial diets. This blowfly is frequently used in postmortem interval studies and in injury treatment. The parental adult insects collected in Bogotá were maintained in cages at 22°C±1 average temperature, 60%±5 relative humidity and 12 h photoperiodicity. The blowflies were fed on two artificial diets that were evaluated over seven continuous generations. Reproductive and population parameters were assessed. The life cycle of the species was expressed in the number of days of the different stages: egg = 0.8±0.1, larvae I = 1.1±0.02, larvae II = 1.94±0.16, larvae III = 3.5±0.54, pupae = 6.55±0.47, male adult = 28.7±0.83 and female adult = 33.5±1.0. Total survival from egg stage to adult stage was 91.2% for diet 1, while for diet 2 this parameter was 40.5%. The lifetime reproductive output was 184.51±11.2 eggs per female. The population parameters, as well as the reproductive output of the blowflies that were assessed, showed relatively high values, giving evidence of the continuous increase of the strain over the different generations and making possible its maintenance as a stable colony that has lasted for more than two years. PMID:21031265

  6. Comparative Fitness of a Parent Leishmania donovani Clinical Isolate and Its Experimentally Derived Paromomycin-Resistant Strain

    PubMed Central

    Hendrickx, Sarah; Leemans, Annelies; Mondelaers, Annelies; Rijal, Suman; Khanal, Basudha; Dujardin, Jean-Claude; Delputte, Peter; Cos, Paul; Maes, Louis

    2015-01-01

    Paromomycin has recently been introduced for the treatment of visceral leishmaniasis and emergence of drug resistance can only be appropriately judged upon its long term routine use in the field. Understanding alterations in parasite behavior linked to paromomycin-resistance may be essential to assess the propensity for emergence and spread of resistant strains. A standardized and integrated laboratory approach was adopted to define and assess parasite fitness of both promastigotes and amastigotes using an experimentally induced paromomycin-resistant Leishmania donovani strain and its paromomycin-susceptible parent wild-type clinical isolate. Primary focus was placed on parasite growth and virulence, two major components of parasite fitness. The combination of in vitro and in vivo approaches enabled detailed comparison of wild-type and resistant strains for which no differences could be demonstrated with regard to promastigote growth, metacyclogenesis, in vitro infectivity, multiplication in primary peritoneal mouse macrophages and infectivity for Balb/c mice upon infection with 2 x 107 metacyclic promastigotes. Monitoring of in vitro intracellular amastigote multiplication revealed a consistent decrease in parasite burden over time for both wild-type and resistant parasites, an observation that was subsequently also confirmed in a larger set of L. donovani clinical isolates. Though the impact of these findings should be further explored, the study results suggest that the epidemiological implications of acquired paromomycin-resistance may remain minimal other than the loss of one of the last remaining drugs effective against visceral leishmaniasis. PMID:26469696

  7. Experimental and analytical program to determine strains in 737 LAP splice joints subjected to normal fuselage pressurization loads

    SciTech Connect

    Roach, D.P.; Jeong, D.Y.

    1996-02-01

    The Federal Aviation Administration Technical Center (FAATC) has initiated several research projects to assess the structural integrity of the aging commercial aircraft fleet. One area of research involves the understanding of a phenomenon known as ``Widespread Fatigue Damage`` or WFD, which refers to a type of multiple element cracking that degrades the damage tolerance capability of an aircraft structure. Research on WFD has been performed both experimentally and analytically including finite element modeling of fuselage lap splice joints by the Volpe Center. Fuselage pressurization tests have also been conducted at the FAA`s Airworthiness Assurance NDI Validation Center (AANC) to obtain strain gage data from select locations on the FAA/AANC 737 Transport Aircraft Test Bed. One-hundred strain channels were used to monitor five different lap splice bays including the fuselage skin and substructure elements. These test results have been used to evaluate the accuracy of the analytical models and to support general aircraft analysis efforts. This paper documents the strain fields measured during the AANC tests and successfully correlates the results with analytical predictions.

  8. Experimental validation of applied strain sensors: importance, methods and still unsolved challenges

    NASA Astrophysics Data System (ADS)

    Habel, Wolfgang R.; Schukar, Vivien G.; Mewis, Franziska; Kohlhoff, Harald

    2013-09-01

    Fiber-optic strain sensors are increasingly used in very different technical fields. Sensors are provided with specifications defined by the manufacturer or ascertained by the interested user. If deformation sensors are to be used to evaluate the long-term behavior of safety-relevant structures or to monitor critical structure components, their performance and signal stability must be of high quality to enable reliable data recording. The measurement system must therefore be validated according to established technical rules and standards before its application and after. In some cases, not all details of the complex characteristic and performance of applied fiber-optic sensors are sufficiently understood, or can be validated because of a lack of knowledge and methods to check the sensors' behavior. This contribution focusses therefore on the importance of serious validation in avoiding a decrease or even deterioration of the sensors' function. Methods for validation of applied sensors are discussed and should reveal weaknesses in validation of embedded or integrated fiber-optic deformation and/or strain sensors. An outlook to some research work that has to be carried out to ensure a well-accepted practical use of fiber-optic sensors is given.

  9. Experimental study of steel welded joints localization with using fiber Bragg grating strain sensor

    NASA Astrophysics Data System (ADS)

    Harasim, Damian

    2015-12-01

    Optical sensing systems has a not weakening research and development in recent years. Because of its unique properties of being unsusceptible to electromagnetic interference, having wide range of operational temperature and having extreme small physical dimensions, optical fiber sensors has increasing acceptance. Fiber Bragg Gratings (FBG) is the most frequently used type of optical sensor types because of its huge multiplexing potential and potentiality of being embedded into composite material (e.g. in structural health monitoring) or attached into measured structure. Embedding or attaching FBG into an inhomogeneous environment, spectral characteristic of the sensing grating do not retain full symmetry, which is due to related differences in the distribution of the axial stress of the grating. When periodicity of the grating is constant, the peak of FBG reflection spectrum should be narrow and sharp. An inhomogeneous axial strain distribution will cause a distorsion in measured transmission or reflection spectrum. This paper shows an distorsions in FBG reflection spectrum measured from sensor attached on surface with welded joint. The sensor strain-to-wavelength shift processing characteristics obtained for homogeneous and welded steel samples were compared.

  10. Ductile damage evolution and experimental simulation under high rates of strain in 10100 copper.

    SciTech Connect

    Thissell, W. R.; McKirgan, J. B.; Chen, S. R.; Trujillo, C. P.; Macdougall, D. A. S.

    2001-01-01

    The high strain-rate damage evolution and Eracture behavior of half-hard 10 LOO Cu was investigated by experiments and computer simulations. Testing of uniaxial stress and axisymmetric notched bars of the Hancock-Mackenzie geometries were performetl using a momentum trapped tensile split Hopkinson pressure bar. Specimens were. tested to fracture and to several stages of incipient failure prior to fracture. Recovered specimens were sectioned and metallographically examined using image analysis and optical profilornelry to quantify the resulting damage. The quantified damage is described by spatially resolved porosity distributions, spatially resolved volumetric number densiries, and spatia Ily resolved void size distributions. Concurrent to mechanical testing, explicit finite element simulations of the tensile split Hopkinson pressure bar experiments were perfornicd to quantify the local stress-state and strain-state within the material and to determine the evolution of damage within the notch region. The coinpressive plasticity behavior of the material was fit to the mechanical threshold stress constitutive model, and was used in the simulations. The quantified damage was coniprued with damage model (TEPLA) predictions and used to refine model parameters and damage nucleation criteria. The simulation results also show that the maximum stress triaxiality in the specimens quickly enlarges after the onset of plastic flow or tensile instability to almost twice that of the Bridgman predicted levels.

  11. Influence of Drawbeads in Deep-Drawing of Plane-Strain Channel Sections: Experimental and FE Analysis

    NASA Astrophysics Data System (ADS)

    Oliveira, M. C.; Baptista, A. J.; Alves, J. L.; Menezes, L. F.; Green, D. E.; Ghaei, A.

    2007-05-01

    The main purpose of the "Numisheet'05 Benchmark♯3: Channel Draw/Cylindrical Cup" was to evaluate the forming characteristics of materials in multi-stage processes. The concept was to verify the strain fields achieved during the two stage forming process and also to test the ability of numerical models to predict both strain and stress fields. The first stage consisted of forming channel sections in an industrial-scale channel draw die. The material that flows through the drawbead and over the die radii into the channel sidewalls is prestrained by cyclic bending and unbending. The prestrained channel sidewalls are subsequently cut and subjected to near plane-strain Marciniak-style cup test. This study emphasizes the analysis of the first stage process, the Channel Draw, since accurate numerical results for the first stage forming and springback are essential to guarantee proper initial state variables for the subsequent stage simulation. Four different sheet materials were selected: mild steel AKDQ-HDG, high strength steel HSLA-HDG, dual phase steel DP600-HDG and an aluminium alloy AA6022-T43. The four sheet materials were formed in the same channel draw die, but with drawbead penetrations of 25%, 50% and 100%. This paper describes the testing and measurement procedures for the numerical simulation of these conditions with DD3IMP FE code. A comparison between experimental and numerical simulation results for the first stage is presented. The experimental results indicate that an increase in drawbead penetration is accompanied by a general decrease in springback, with both sidewall radius of curvature and the sidewall angle increasing with increasing drawbead penetration. An exception to this trend occurs at the shallowest bead penetration: the radius of curvature in the sidewall is larger than expected. The sequence of cyclic tension and compression is numerically studied for each drawbead penetration in order to investigate this phenomenon.

  12. Influence of Drawbeads in Deep-Drawing of Plane-Strain Channel Sections: Experimental and FE Analysis

    SciTech Connect

    Oliveira, M. C.; Baptista, A. J.; Menezes, L. F.; Alves, J. L.; Green, D. E.; Ghaei, A.

    2007-05-17

    The main purpose of the 'Numisheet'05 Benchmark no. 3: Channel Draw/Cylindrical Cup' was to evaluate the forming characteristics of materials in multi-stage processes. The concept was to verify the strain fields achieved during the two stage forming process and also to test the ability of numerical models to predict both strain and stress fields. The first stage consisted of forming channel sections in an industrial-scale channel draw die. The material that flows through the drawbead and over the die radii into the channel sidewalls is prestrained by cyclic bending and unbending. The prestrained channel sidewalls are subsequently cut and subjected to near plane-strain Marciniak-style cup test. This study emphasizes the analysis of the first stage process, the Channel Draw, since accurate numerical results for the first stage forming and springback are essential to guarantee proper initial state variables for the subsequent stage simulation. Four different sheet materials were selected: mild steel AKDQ-HDG, high strength steel HSLA-HDG, dual phase steel DP600-HDG and an aluminium alloy AA6022-T43. The four sheet materials were formed in the same channel draw die, but with drawbead penetrations of 25%, 50% and 100%. This paper describes the testing and measurement procedures for the numerical simulation of these conditions with DD3IMP FE code. A comparison between experimental and numerical simulation results for the first stage is presented. The experimental results indicate that an increase in drawbead penetration is accompanied by a general decrease in springback, with both sidewall radius of curvature and the sidewall angle increasing with increasing drawbead penetration. An exception to this trend occurs at the shallowest bead penetration: the radius of curvature in the sidewall is larger than expected. The sequence of cyclic tension and compression is numerically studied for each drawbead penetration in order to investigate this phenomenon.

  13. Experimental infection of budgerigars (Melopsittacus undulatus) with a low virulent K21 strain of Toxoplasma gondii.

    PubMed

    Kajerová, V; Literák, I; Bártová, E; Sedlák, K

    2003-10-30

    In total 53 budgerigars (Melopsittacus undulatus) were divided into six groups and orally infected with a suspension of oocysts of low virulent Toxoplasma gondii K21 strain in the doses of 10(2), 10(3), 10(4), 10(5) and 10(6), respectively. Blood was collected from the birds prior to the inoculation and then on days 10, 20 and 30 post infection. Latex-agglutination test (LAT) was used for the detection of antibodies in the inoculated birds. The infected birds showed no apparent signs of disease. The antibodies were found in all but two birds inoculated a dose of 10(2) oocysts. Haematological values remained unchanged after infection. T. gondii was isolated by bioassay in mice from all 37 birds fed 10(3) or more oocysts and 6 of 9 fed 10(2) oocysts. The results demonstrate that budgerigars are resistant to T. gondii infection. PMID:14580800

  14. Coherency strains and coarsening in Ni-Al-Si alloys: An experimental study

    SciTech Connect

    Muralidharan, G. |; Epperson, J.E.; Petri, M.; Chen, H.

    1994-07-01

    Coarsening rates have been measured in a series of alloys in the ternary Ni-Al-Si system using in-situ Small Angle Neutron Scattering, the alloys having a constant Ni content and their Si content varying from 4.0 at. % to 11.0 at. %. Using expressions available in the literature for describing coarsening in multi-component systems, it is shown that it is possible to account for the variation in coarsening rates due to chemical effects. It is observed that the quality of the fit is improved if the composition dependence of the diffusion coefficient is considered in the analysis. Finally, the possible contribution of coherence strains to the measured coarsening rates is discussed.

  15. Experimental verification of the Neuber relation at room and elevated temperatures. M.S. Thesis; [to predict stress-strain behavior in notched specimens of hastelloy x

    NASA Technical Reports Server (NTRS)

    Lucas, L. J.

    1982-01-01

    The accuracy of the Neuber equation at room temperature and 1,200 F as experimentally determined under cyclic load conditions with hold times. All strains were measured with an interferometric technique at both the local and remote regions of notched specimens. At room temperature, strains were obtained for the initial response at one load level and for cyclically stable conditions at four load levels. Stresses in notched members were simulated by subjecting smooth specimens to he same strains as were recorded on the notched specimen. Local stress-strain response was then predicted with excellent accuracy by subjecting a smooth specimen to limits established by the Neuber equation. Data at 1,200 F were obtained with the same experimental techniques but only in the cyclically stable conditions. The Neuber prediction at this temperature gave relatively accurate results in terms of predicting stress and strain points.

  16. Rotational knee strain resulting in patellar dislocation. An experimental study in rabbits.

    PubMed

    Finsterbush, A

    1982-09-01

    The right lower extremities of 64 young rabbits were immobilized by a plaster spica. The animals developed a gait pattern, which included internal tibial rotation and adduction of the left (unimmobilized) tibia. Twenty-one of the animals developed medial patellar dislocation in the unimmobilized lower extremity. The mechanism of the patellar dislocation in this experimental model was possibly overstretching of the lateral colateral ligament and the lateral side of the joint capsule, associated with medial rotation of the tibia and the tibial tubercle. The direction of patellar pull when gliding inferiorly during knee flexion was shifted medially, resulting in patellar dislocation and secondarily, in formation of an exostosis under the displaced patella. Hip arthrodesis in humans, as a course of rotational instability of the contralateral knee, resembles some aspects of this experimental condition. PMID:7105585

  17. Immunogenic and antigenic activity of an experimental oral rabies vaccine prepared from the strain Vnukovo-32/107.

    PubMed

    Svrcek, S; Durove, A; Ondrejka, R; Závadová, J; Süliová, J; Benísek, Z; Vrtiak, O J; Feketeová, J; Mad'ar, M

    1995-03-01

    The immunogenic and antigenic activity of an experimental live oral rabies vaccine prepared from the strain Vnukovo-32/107 was evaluated on the basis of results obtained in 3 sets of experiments. These were carried out as model experiments on white mice, then on target animals--red foxes (Vulpes vulpes) and a related species--farm-bred polar foxes (Alopex lagopus). For quantitative determination of the immunogenic activity of the orally or subcutaneously administered rabies vaccines in model experiments on mice a method was used that had been developed in our laboratory. Antibodies were detected and quantified by an ELISA kit that had also been developed in our lab. Tenacity of the experimental vaccine (infectious tissue culture medium after yolk addition) was verified at different temperatures; the effects of storage temperature upon virus titre and immunogenic activity were investigated. An important part of the experiments--evaluation of the antigenic and immunogenic activity of the live vaccine at oral vaccination (vaccination baits, conditions simulating field vaccination) was carried out in foxes. The immunogenic activity (challenge experiments with a street virus on day 180 and 360 after vaccination) was evaluated in common foxes (Vulpes vulpes). The results document a high immunogenic and antigenic activity of the experimental live oral rabies vaccine. The strain Vnukovo-32/107 is suitable for the industrial manufacturing of vaccination baits. In the target species--common foxes challenged on day 180 after primovaccination an 83% protection was observed. Challenge on day 180 after revaccination (or day 360 after primovaccination), the orally immunized foxes proved to be 100% protected. For parallel evaluation of the immunogenic activity of an oral vaccine and for antibody titration it is recommended to employ the quantitative mice test and an ELISA technique, respectively. PMID:7762124

  18. Pathobiology of human RH strain induced experimental toxoplasmosis in murine model.

    PubMed

    Sudan, Vikrant; Tewari, A K; Singh, Harkirat; Singh, R

    2016-09-01

    Of late, toxoplasmosis has gained immense importance as an opportunist parasite in immunocompromised patients. In immunocompromised subjects, the disease is supposed to occur in acute form and causes acute toxoplasmic encephalitis. However, the exact pathogenesis of other vital organs, particularly in acute form of infection, is still a matter of debate. Therefore, an attempt was made to study the pathogenesis of acute form of toxoplasmosis using cryopreserved human RH strain of the parasite in murine models. For this, 100 tachyzoites were given to individual mice and upon the setup of acute form of infection, the mice were euthanized and the organs were processed for histopathology. Histopathology revealed tachyzoites in liver only while severe necrosis due to multiplication of tachyzoites were visible in liver, spleen, lungs and brain. Kidneys and heart appeared more or less normal. Finally, the pathology of disease in these organs is described in detail. The present research has generated some vital information regarding necrotic changes in tissues due to acute toxoplasmosis and will defiantly help the researchers in the better understanding of disease particularly in humans and putting up of suitable treatment regime for human subjects infected with acute toxoplasmosis. PMID:27605794

  19. Experimental single-strain mobilomics reveals events that shape pathogen emergence.

    PubMed

    Schoeniger, Joseph S; Hudson, Corey M; Bent, Zachary W; Sinha, Anupama; Williams, Kelly P

    2016-08-19

    Virulence genes on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. Excision is an early step in GI mobilization, producing a circular GI and a deletion site in the chromosome; circular forms are also known for some bacterial insertion sequences (ISs). The recombinant sequence at the junctions of such circles and deletions can be detected sensitively in high-throughput sequencing data, using new computational methods that enable empirical discovery of mobile DNAs. For the rich mobilome of a hospital Klebsiella pneumoniae strain, circularization junctions (CJs) were detected for six GIs and seven IS types. Our methods revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21 Using the resistance of circular dsDNA molecules to exonuclease, internally calibrated with the native plasmids, showed that not all molecules bearing GI CJs were circular. Transpositions were also detected, revealing replicon preference (ISKpn18 prefers a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis) and IS polarity inversion. Efficient discovery and global characterization of numerous mobile elements per experiment improves accounting for the new gene combinations that arise in emerging pathogens. PMID:27378783

  20. Resistance of novel mouse strains different in MHC class I and the NKC domain to the development of experimental tumors.

    PubMed

    Fišerová, Anna; Richter, Jan; Čapková, Katarína; Bieblová, Jana; Mikyšková, Romana; Reiniš, Milan; Indrová, Marie

    2016-08-01

    To elucidate the immunological mechanisms critical for tumor progression, we bred novel mouse strains, different in the NKC and H-2D domains. We used inbreeding to generate hybrids of Balb/c and C57BL/6 of stable H-2Db+d-NK1.1neg and H-2Db-d+NK1.1high phenotypes. We analyzed the growth of three established MHC class I-deficient tumor cell lines: TC-1/A9 tumor (HPV-associated) and B16F10 melanoma, both syngeneic to C57BL/6, and the MCB8 (3-methycholanthrene-induced tumor) syngeneic to Balb/c. Furthermore, we induced colorectal carcinoma by azoxymethane-DSS treatment to test the susceptibility to chemically-induced primary cancer. We found that the novel strains spontaneously regressed the tumor transplants syngeneic to both Balb/c (MCB8) and C57BL/6 (B16F10 and TC-1/A9) mice. The H2-Db+d-NK1.1neg, but not the H2-Db-d+NK1.1high strain was also highly resistant to chemically-induced colorectal cancer in comparison to the parental mice. The immune changes during TC-1/A9 cancer development involved an increase of the NK cell distribution in the peripheral blood and spleen along with higher expression of NKG2D activation antigen; this was in correlation with the time-dependent rise of cytotoxic activity in comparison to C57BL/6 mice. The TC-1/A9 cancer regression was accompanied by higher proportion of B cells in the spleen and B220+/CD86+ activated antigen-presenting B cells distributed in the lymphoid organs, as well as in the periphery. The changes in the T-cell population were represented mainly by the prevalence of T helper cells reflected by grown CD4/CD8 ratio, most prominent in the b+d-NK1.1neg strain. The results of the present study imply usefulness of the two novel mouse strains as an experimental model for further studies of tumor resistance mechanisms. PMID:27279019

  1. Contributed Review: Experimental characterization of inverse piezoelectric strain in GaN HEMTs via micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bagnall, Kevin R.; Wang, Evelyn N.

    2016-06-01

    Micro-Raman thermography is one of the most popular techniques for measuring local temperature rise in gallium nitride (GaN) high electron mobility transistors with high spatial and temporal resolution. However, accurate temperature measurements based on changes in the Stokes peak positions of the GaN epitaxial layers require properly accounting for the stress and/or strain induced by the inverse piezoelectric effect. It is common practice to use the pinched OFF state as the unpowered reference for temperature measurements because the vertical electric field in the GaN buffer that induces inverse piezoelectric stress/strain is relatively independent of the gate bias. Although this approach has yielded temperature measurements that agree with those derived from the Stokes/anti-Stokes ratio and thermal models, there has been significant difficulty in quantifying the mechanical state of the GaN buffer in the pinched OFF state from changes in the Raman spectra. In this paper, we review the experimental technique of micro-Raman thermography and derive expressions for the detailed dependence of the Raman peak positions on strain, stress, and electric field components in wurtzite GaN. We also use a combination of semiconductor device modeling and electro-mechanical modeling to predict the stress and strain induced by the inverse piezoelectric effect. Based on the insights gained from our electro-mechanical model and the best values of material properties in the literature, we analyze changes in the E2 high and A1 (LO) Raman peaks and demonstrate that there are major quantitative discrepancies between measured and modeled values of inverse piezoelectric stress and strain. We examine many of the hypotheses offered in the literature for these discrepancies but conclude that none of them satisfactorily resolves these discrepancies. Further research is needed to determine whether the electric field components could be affecting the phonon frequencies apart from the inverse

  2. Contributed Review: Experimental characterization of inverse piezoelectric strain in GaN HEMTs via micro-Raman spectroscopy.

    PubMed

    Bagnall, Kevin R; Wang, Evelyn N

    2016-06-01

    Micro-Raman thermography is one of the most popular techniques for measuring local temperature rise in gallium nitride (GaN) high electron mobility transistors with high spatial and temporal resolution. However, accurate temperature measurements based on changes in the Stokes peak positions of the GaN epitaxial layers require properly accounting for the stress and/or strain induced by the inverse piezoelectric effect. It is common practice to use the pinched OFF state as the unpowered reference for temperature measurements because the vertical electric field in the GaN buffer that induces inverse piezoelectric stress/strain is relatively independent of the gate bias. Although this approach has yielded temperature measurements that agree with those derived from the Stokes/anti-Stokes ratio and thermal models, there has been significant difficulty in quantifying the mechanical state of the GaN buffer in the pinched OFF state from changes in the Raman spectra. In this paper, we review the experimental technique of micro-Raman thermography and derive expressions for the detailed dependence of the Raman peak positions on strain, stress, and electric field components in wurtzite GaN. We also use a combination of semiconductor device modeling and electro-mechanical modeling to predict the stress and strain induced by the inverse piezoelectric effect. Based on the insights gained from our electro-mechanical model and the best values of material properties in the literature, we analyze changes in the E2 high and A1 (LO) Raman peaks and demonstrate that there are major quantitative discrepancies between measured and modeled values of inverse piezoelectric stress and strain. We examine many of the hypotheses offered in the literature for these discrepancies but conclude that none of them satisfactorily resolves these discrepancies. Further research is needed to determine whether the electric field components could be affecting the phonon frequencies apart from the inverse

  3. Experimental single-strain mobilomics reveals events that shape pathogen emergence

    DOE PAGESBeta

    Schoeniger, Joseph S.; Hudson, Corey M.; Bent, Zachary W.; Sinha, Anupama; Williams, Kelly P.

    2016-07-04

    Virulence and resistance genes carried on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. An early step in the mobilization of GIs is their excision, which produces both a circular form of the GI and a deletion site in the chromosome; circular forms have also been described for some bacterial insertion sequences (ISs). We demonstrate that the recombinant sequence produced at the junction of such circles, and their corresponding deletion sites, can be detected sensitively in high throughput sequencing data, using new computational methods that enable empirical discovery of new mobile DNAs. Applied to themore » rich mobilome of a single strain (Kpn2146) of the emerging multidrug-resistant pathogen Klebsiella pneumoniae, our approach detected circular junctions for six GIs and seven IS types (several of the latter not previously known to circularize). Our methods further revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Exonuclease was used to enrich for circular dsDNA molecules, and internal calibration with the native Kpn2146 plasmids showed that not all molecules bearing GI and IS circular junctions were circular dsDNAs. Transposition events were also detected, revealing replicon preference (ISKpn18 preferring a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis), and left-right IS end swapping. Efficient discovery and global characterization of numerous mobile elements per experiment will allow detailed accounting of bacterial evolution, explaining the new gene combinations that arise in emerging pathogens.« less

  4. An experimental investigation of intermittent flow and strain burst scaling behavior in LiF crystals during microcompression testing

    NASA Astrophysics Data System (ADS)

    Dimiduk, D. M.; Nadgorny, E. M.; Woodward, C.; Uchic, M. D.; Shade, P. A.

    2010-09-01

    The first experimental statistical study is reported of intermittent plastic deformation of LiF microscopic samples having low initial dislocation densities, in both as-grown and gamma-irradiated conditions. The investigations used the microcompression testing method. Data sets were evaluated independently for the loading and flow deformation stages for each material. Investigations selectively examined evolution of the strain-burst response in both the spatial and temporal domains. A revised analysis technique provided advances in quantitative evaluations of the statistical experimental data relative to previous studies. Platen displacement event cumulative probability distributions exhibited both Gaussian regimes at small displacements and power law regimes for event displacement, duration and average velocity at larger sizes. However, the observed event size scaling exponents did not follow the expectation from mean-field theory, revealing scaling exponents in the range 1.8-2.9. Additionally, extraordinarily large displacement events were observed that exceeded the sizes of those found in previous studies by at least 10 times. Quantitative clarification of the power-law exponent values and their dependence on deforming sample conditions demands both further experimental studies with larger numbers of samples and a wider range of sample conditions. Such studies would benefit from better matching of the time scales of dislocation processes and observation and, still further improvements to the data analysis methods.

  5. Influence of the strain path on crash properties of a crash-box structure by experimental and numerical approaches

    NASA Astrophysics Data System (ADS)

    Durrenberger, L.; Even, D.; Molinari, A.; Rusinek, A.

    2006-08-01

    In order to reduce the gas emission without decreasing the passengers safety, the UHSS (Ultra High Strength Steel) steels are more and more used in the automotive industry. The very high mechanical characteristics of these steels allow to reduce the car weight thanks to the thickness reduction of the structure parts. The aim of this study is to analyse the plastic pre-strain effect (forming) on the crash properties of a crash-box structure. In order to achieve this goal, experimental rheological tests have been performed by combining quasi-static tensile tests followed by dynamic tensile test (8.10 - 3 s - 1 ≤ dot{\\varepsilon} ≤ 1000 s - 1) for a TRIP steel produced by ARCELOR. The combination of these results allows to obtain a better understanding of the steel behaviour in dynamic loading under different strain paths. All these information are necessary for an efficient simulation of crash test by including a pertinent material response. A special attention is given to the influence of the previous forming process on the dynamical response of crash boxes.

  6. [Estimation of the levels of radiation-induced P-element transposition in Drosophila melanogaster experimental populations and laboratory strains].

    PubMed

    Zainullin, V G; Iushkova, E A

    2012-04-01

    When experimental P + M populations were exposed to chronic gamma-irradiation (0.31 mGy/h), the highest instability level of the singed-weak (sn(w)) locus was observed in F3-F10 with a subsequent decrease and stabilization of the mutation rate. The sn(w) mutation rate was within the range of spontaneous variation in conditions of P-M hybrid dysgenesis and irradiation of males of the Harwich laboratory strain with active P elements at 1.61 mGy/h. The instability of the sn(w) locus was significantly higher at lower dose rates (0.23 and 0.31 mGy/h), suggesting a nonlinear dose-effect relationship. PMID:22730777

  7. Experimental infection of nontarget species of rodents and birds with Brucella abortus strain RB51 vaccine

    USGS Publications Warehouse

    Januszewski, M.C.; Olsen, S.C.; McLean, R.G.; Clark, L.; Rhyan, Jack C.

    2001-01-01

    The Brucella abortus vaccine strain RB51 (SRB51) is being considered for use in the management of bnucellosis in wild bison (Bison bison) and elk (Cervus elaphus) populations in the Greater Yellowstone Area (USA). Evaluation of the vaccines safety in non-target species was considered necessary prior to field use. Between June 1998 and December 1999, ground squirrels (Spermophilus richardsonii, n = 21), deer mice (Peromyscus maniculatus, n = 14), prairie voles (Microtus ochrogaster, n = 21), and ravens (Corvus corax, n = 13) were orally inoculated with SRB51 or physiologic saline. Oral and rectal swabs and blood samples were collected for bacteriologic evaluation. Rodents were necropsied at 8 to 10 wk and 12 to 21 wk post inoculation (PI), and ravens at 7 and 11 wk PI. Spleen, liver and reproductive tissues were collected for bacteriologic and histopathologic evaluation. No differences in clinical signs, appetite, weight loss or gain, or activity were observed between saline- and SRB51-inoculated animals in all four species. Oral and rectal swabs from all species were negative throughout the study. In tissues obtained from SRB51-inoculated animals, the organism was isolated from six of seven (86%) ground squirrels, one of six (17%) deer mice, none of seven voles, and one of five (20%) ravens necropsied at 8, 8, 10, and 7 wk PI, respectively. Tissues from four of seven (57%) SRB51-inoculated ground squirrels were culture positive for the organism 12 wk PI; SRB51 was not recovered from deer mice, voles. or ravens necropsied 12, 21, or 11 wk, respectively, PI. SRB51 was not recovered from saline-inoculated ground squirrels, deer mice, or voles at any time but was recovered from one saline-inoculated raven at necropsy, 7 wk PI, likely attributable to contact with SRB51-inoculated ravens in an adjacent aviary room. Spleen was time primary tissue site of colonization in ground squirrels, followed by the liver and reproductive organs. The results indicate oral exposure to

  8. Experimental exposure of pregnant mares to the asinine-94 strain of equine arteritis virus.

    PubMed

    Paweska, J T; Henton, M M; van der Lugt, J J

    1997-06-01

    Clinical, virological and serological responses were evaluated in 10 pregnant mares after different challenge exposures to the asinine-94 strain of equine arteritis virus (EAV). The outcome of maternal infection on the progeny was also investigated. Mares were inoculated intranasally (n = 4), intramuscularly (n = 2), intravenously (n = 1), or contract-exposed (n = 3). All inoculated mares developed pyrexia, 5 showed mild clinical signs related to EAV infection and 2 remained asymptomatic. Viraemia was detected in all the inoculated animals and shedding of virus from the respiratory tract occurred in 6. Five mares were re-challenged intranasally 7 and 15 weeks after inoculation. Clinical signs of the disease in these mares were limited to mild conjunctivitis. After re-challenge, virus was recovered from buffy coat cultures of 2 mares 2-6 days after re-infection. EAV was not recovered from colostrum and milk samples during the 1st week post partum. All inoculated mares seroconverted to EAV 8-12 days post inoculation and also seroconverted after re-challenge. No clinical signs of EAV infection were observed in the 3 mares kept in close contact during the post-inoculation and re-challenge periods. Serum neutralising antibody to the virus was detected in 1 in-contact mare only, while a detectable concentration of specific IgG was found by ELISA in the colostrum of 1 of the other in-contact mares. Eight of the mares gave birth to clinically normal foals, although 1 was born prematurely. Shortly after birth, 7 foals developed fever and variable clinical signs; 5 foals became septicaemic and 3 of them died 2-5 days after birth, while the remaining 2 were euthanased at 1 month of age. EAV was not recovered from the placenta, from buffy coat fractions of blood collected from foals immediately after birth and 1-3 days later, or from a range of tissues taken from the 3 foals that died and 2 that were euthanased. Virus was not isolated from tissues collected from 1 mare and her

  9. Recovery of Toxoplasma gondii DNA in experimentally mummified skin and bones: Prospects for paleoparasitological studies to unveil the origin of toxoplasmosis.

    PubMed

    Leles, Daniela; Lobo, Amanda; Rhodes, Taís; Millar, Patrícia Riddell; Amendoeira, Maria Regina Reis; Araújo, Adauto

    2016-09-01

    Paleoparasitology studies parasite infections by finding the parasites' remains in preserved organic remains such as natural or artificial mummy tissues, skeletons, teeth, and coprolites, among others. However, some currently important infections like toxoplasmosis have not been studied by paleoparasitology. The reasons include this parasite's complex life cycle, the resulting difficulties in locating this protozoan in the intermediate host tissues, and the limitation of coprolite studies to felines, the protozoan's definitive host. The current study thus aimed to produce an experimental model for molecular diagnosis of toxoplasmosis, prioritizing its study in bones and skin, the most abundant materials in archeological collections and sites. The study demonstrated the feasibility of recovering Toxoplasma gondii DNA from desiccated material, including bones and skin, in experimental models both with circulating tachyzoites (RH strain), characteristic of acute infection, and with cysts (ME49 cystogenic strain), characteristic of chronic infection. At present, most individuals with T. gondii infection are in the chronic phase, and the same was probably true in the past. The current study thus expands the odds of finding the parasite in archeological material, enhanced by the nature of the material in which the diagnosis was made. Finding the parasite may help answer questions that are widely debated in the literature on this protozoan's origin (Old World versus New World). In addition, when conditions do not allow ideal storage of samples for molecular tests, the methodology creates the possibility of testing oven-dried samples transported at room temperature. PMID:27292545

  10. A bovine viral diarrhea virus type 1a strain in China: isolation, identification, and experimental infection in calves

    PubMed Central

    2014-01-01

    Background Bovine viral diarrhea virus (BVDV) is one of the most important pathogens in cattle. Previously, BVDV sub-genotypes of 1b, 1c, 1d, and 1 m were detected in China. However, isolation of BVDV type 1a from cattle has not been reported in China. In 2010, twenty nasal swabs and blood samples were collected from the cattle suspected BVDV infection in Henan province, China. A BVDV isolate was isolated using cell culture, and the pathogenesis of the virus isolate was studied. Methods Virus isolation was performed on MDBK cells. The virus identification was conducted by RT-PCR, neutralization test and immunofluorescence assay. In order to determine the genotype of the newly isolated virus, the 5′ un-translated region (5′UTR) of the virus isolate was cloned, sequenced and phylogenetically analyzed. To evaluate the virulence of the virus isolate, four BVDV sero-negative calves were intranasally inoculated with the virus suspension. Rectal temperatures and clinical signs were recorded daily. Blood samples were analyzed for changes in white blood cell counts, and tissue samples were taken for histopathology analysis. Results A new isolate of bovine viral diarrhea virus (BVDV), named HN01, was isolated from the nasal swabs using MDBK cell culture. The HN01 strain caused cytopathic effect (CPE) in MDBK cell cultures after two passages. The virus specifically reacted to BVDV1-specific monoclonal antibody in an immunofluorescence assay. A fragment of 288 bp of genome from this isolate was amplified by the RT-PCR. Phylogenetic analysis of 5′UTR indicated that the virus was BVDV 1a. In the pathogenesis study, four calves experimentally infected with the BVDV strain developed depression, cough and other clinical signs. Calves showed high temperature over 40°C, and white blood cell counts dropped more than 40%. Conclusions A new subgenotype 1a strain of BVDV was firstly isolated from dairy cattle in China. The experimental infection showed that the virus was

  11. Protection Provided by an Encapsulated Live Attenuated ΔabcBA Strain of Brucella ovis against Experimental Challenge in a Murine Model.

    PubMed

    Silva, Ana Patrícia C; Macêdo, Auricélio A; Silva, Teane M A; Ximenes, Luana C A; Brandão, Humberto M; Paixão, Tatiane A; Santos, Renato L

    2015-07-01

    This study aimed to evaluate the Brucella ovis ΔabcBA strain as a vaccine candidate in the murine model. BALB/c mice were subcutaneously or intraperitoneally immunized with a single dose or three doses of the B. ovis ΔabcBA strain and then were challenged with wild-type B. ovis. Single or multiple immunizations provided only mild protection, with significantly smaller numbers of wild-type B. ovis CFU in the livers of immunized mice but not in the spleens. Encapsulation of B. ovis ΔabcBA significantly improved protection against experimental challenges in both BALB/c and C57BL/6 mice. Furthermore, immunization with encapsulated B. ovis ΔabcBA markedly prevented lesions in the spleens and livers of experimentally challenged mice. These results demonstrated that the encapsulated B. ovis ΔabcBA strain confers protection to mice; therefore, this strain has potential as a vaccine candidate for rams. PMID:25947146

  12. Protection Provided by an Encapsulated Live Attenuated ΔabcBA Strain of Brucella ovis against Experimental Challenge in a Murine Model

    PubMed Central

    Silva, Ana Patrícia C.; Macêdo, Auricélio A.; Silva, Teane M. A.; Ximenes, Luana C. A.; Brandão, Humberto M.; Paixão, Tatiane A.

    2015-01-01

    This study aimed to evaluate the Brucella ovis ΔabcBA strain as a vaccine candidate in the murine model. BALB/c mice were subcutaneously or intraperitoneally immunized with a single dose or three doses of the B. ovis ΔabcBA strain and then were challenged with wild-type B. ovis. Single or multiple immunizations provided only mild protection, with significantly smaller numbers of wild-type B. ovis CFU in the livers of immunized mice but not in the spleens. Encapsulation of B. ovis ΔabcBA significantly improved protection against experimental challenges in both BALB/c and C57BL/6 mice. Furthermore, immunization with encapsulated B. ovis ΔabcBA markedly prevented lesions in the spleens and livers of experimentally challenged mice. These results demonstrated that the encapsulated B. ovis ΔabcBA strain confers protection to mice; therefore, this strain has potential as a vaccine candidate for rams. PMID:25947146

  13. Experimental and Computational Study of the Shearing Resistance of Polyurea at High Pressures and High Strain Rates

    NASA Astrophysics Data System (ADS)

    Grujicic, Mica; Yavari, R.; Snipes, J. S.; Ramaswami, S.; Jiao, T.; Clifton, R. J.

    2015-02-01

    Mechanical response of polyurea, a nanophase segregated elastomeric co-polymer, is investigated using all-atom, equilibrium, molecular-dynamics methods and tools. Specifically, the effects of high pressure (1-30 GPa) and high strain rate (105-106 s-1) on the shearing resistance of polyurea are examined. Such loading conditions are encountered by polyurea coatings subjected to impact by high-velocity projectiles, shell shrapnel, and improvised explosive device fragments. Computed results are compared with their experimental counterparts obtained using the so-called pressure-shear plate impact experiments. Computed results have also been rationalized in terms of the nanosegregated polyurea microstructure consisting of rod-shaped, discrete, the so-called hard domains embedded in a highly compliant, the so-called soft matrix. By analyzing molecular-level microstructure and its evolution during high-rate deformation and under high imposed pressures, an attempt is made to identify and quantify main phenomena in viscous/inelastic deformation and microstructure-reorganization processes that are most likely responsible for the observed mechanical response of polyurea.

  14. RESPONSE OF CHICKENS FROM THREE COMMERCIAL BROILER BREEDERS AND TWO EXPERIMENTAL LINES TO INFECTION WITH A FIELD STRAIN OF SUBGROUP J AVIAN LEUKOSIS VIRUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chickens from three commercial broiler breeders and two experimental lines were inoculated as embryos with strain ADOL-6803 of subgroup J avian leukosis virus (ALV-J). At various ages, chickens were tested for ALV-J-induced viremia, antibody and cloacal shedding; chickens were also monitored for ALV...

  15. Optimization of Magnetosome Production and Growth by the Magnetotactic Vibrio Magnetovibrio blakemorei Strain MV-1 through a Statistics-Based Experimental Design

    PubMed Central

    Silva, Karen T.; Leão, Pedro E.; Abreu, Fernanda; López, Jimmy A.; Gutarra, Melissa L.; Farina, Marcos; Bazylinski, Dennis A.; Freire, Denise M. G.

    2013-01-01

    The growth and magnetosome production of the marine magnetotactic vibrio Magnetovibrio blakemorei strain MV-1 were optimized through a statistics-based experimental factorial design. In the optimized growth medium, maximum magnetite yields of 64.3 mg/liter in batch cultures and 26 mg/liter in a bioreactor were obtained. PMID:23396329

  16. STUDIES IN EXPERIMENTAL SYPHILIS : VII. REINOCULATION OF TREATED AND UNTREATED SYPHILITIC RABBITS WITH HETEROLOGOUS STRAINS OF TREPONEMA PALLIDUM.

    PubMed

    Chesney, A M; Halley, C R; Kemp, J E

    1927-07-31

    Syphilitic rabbits, whether untreated or treated after the 90th day of infection, were found to be more refractory to subsequent inoculation with the homologous strain of Treponema pallidum than to inoculation with heterologous strains of the same organism, when clinical criteria alone were employed in judging the outcome of reinoculation. The incidence of second infection with homologous strains was 5.4 per cent, as against 50 per cent with heterologous strains.(2) The resistance which develops in rabbits during the course of a syphilitic infection appears therefore to be strain-specific rather than species-specific. The protection afforded against homologous strains was found to persist for at least as long as 6 months after treatment was discontinued. A given strain may afford a higher degree of protection against some strains than against others, but whether this is to be explained upon the basis of biologic relationship or of differences in virulence, or possibly as the result of both of these factors was not disclosed by the experiments. Rabbits infected with a strain (Nichols) which had been adapted to this species for over a decade could be infected with strains which had been recovered recently from the human body. The previous existence of a syphilitic lesion in the testis which was used as the site for reinoculation did not seem to exert any influence upon the incidence of successful second infections obtained with heterologous strains of Treponema pallidum. Sometimes the course of the second infection produced by inoculation with heterologous strains was less pronounced than that observed in the controls, but in most instances no significant alteration was observed. In syphilitic rabbits treated late in the course of the disease and reinoculated with heterologous strains of Treponema pallidum no lesion may develop at the site of reinoculation but nevertheless the Wassermann reaction may become positive and remain so for weeks thereafter. It is suggested

  17. Experimental high strain-rate deformation products of carbonate-silicate rocks: Comparison with terrestrial impact materials

    NASA Astrophysics Data System (ADS)

    van der Bogert, C. H.; Schultz, P. H.; Spray, J. G.

    2008-09-01

    MgO with CO2. However, both CaO and MgO were also incorporated into secondary silicates, which reduced the total amount available to back-react with CO2. It appears that all CaO released from the dolomitic marble formed secondary minerals (carbonates and silicates), because it is not present as pure CaO. The MgO released from the dolomitic marble primarily formed secondary silicates, periclase, and minor secondary carbonate. As a result, the secondary carbonates cannot be a sink for all the CO2 gas released from the dolomitic marble, unless a much higher proportion of the huntite-like phase was present. Thus, there was a net release of CO2 gas from the original dolomitic marble. A portion of this CO2 remained trapped in vesicles, but CO2 gas also escaped from the shear zone. This is consistent with compositional measurements of the shear zone that suggest a release of at least 5 wt% CO2 relative to the original dolomitic marble. Comparison with terrestrial craters. Many of the descriptions of deformation features in carbonates at terrestrial craters, such as mechanical twinning and bent fractures [9-11], are similar to those seen in our experimental products. Carbonates that survive impact seem to accommodate both shock and shear deformation primarily through mechanical fracturing and twinning. Impact melts at craters in carbonate-rich targets have been found to contain both silicic and carbonatitic melts [e.g., 12], with mineral phases that are indicative of high temperature reactions between carbonate and silicate rocks [e.g., 9]. Our experiments also showed these characteristics, however, the mineral phases produced were slightly different and we have not observed silicate glass in our experimental products. The segregation of MgO from CaO has been observed, for example, at Haughton [12] and Popigai [13], and was also seen in our experimental products [6]. Implications. The products of high strain-rate deformation experiments with carbonate-silicate rocks are

  18. A comparative study of the local cytokine response in the lungs of pigs experimentally infected with different PRRSV-1 strains: upregulation of IL-1α in highly pathogenic strain induced lesions.

    PubMed

    Amarilla, Shyrley P; Gómez-Laguna, Jaime; Carrasco, Librado; Rodríguez-Gómez, Irene M; Caridad Y Ocerín, José M; Morgan, Sophie B; Graham, Simon P; Frossard, Jean-Pierre; Drew, Trevor W; Salguero, Francisco J

    2015-04-15

    Porcine reproductive and respiratory syndrome viruses (PRRSV) show high genetic differences both among and within genotypes. Recently, several highly pathogenic PRRSV (HP-PRRSV) strains have been described. This study compares and characterizes the production of cytokines by pulmonary macrophages in pigs experimentally infected with four different PRRSV-1 strains: two low-virulent strains, Lelystad (LV) and a British field strain (215-06); a HP strain (SU1-bel) from Belarus and the attenuated vaccine strain DV (Porcilis(®) PRRS). Animals were clinically monitored and post-mortem examinations were performed at 3, 7 and 35 days post-infection (dpi). Lung samples were processed for histopathological and immunohistochemical studies by using specific antibodies against PRRSV, IL1-α, IL-6, TNF-α, IL-10 and IFN-γ. SU1-bel infected animals presented the highest mean scores for clinical observations, gross and microscopic lesions as well as for PRRSV expression compared with the other infected groups (p≤0.027). These animals displayed the highest expression of IL1-α at 7dpi, together with the highest score for lung pathology, whereas LV, 215-06 and DV inoculated animals only showed a transient enhancement in some of these cytokines. SU1-bel-infected pigs showed a positive correlation between the amount of PRRSV antigen and IL-1α expression (r=0.645, p<0.001). The highest expression of IL-10 was detected in 215-06-infected animals (p≤0.004), with a positive correlation with the numbers of virus-infected cells (r=0.375, p≤0.013). In conclusion, the HP-PRRSV SU1-bel strain replicated more efficiently in the lung of infected animals and induced a higher expression of IL-1α than the other PRRSV-1-infected groups, which may have played a key role in the onset of the clinical signs and interstitial pneumonia. PMID:25739319

  19. Experimental Characterization and Modeling of the Anisotropy and Tension-Compression Asymmetry of Polycrystalline Molybdenum for Strain Rates Ranging from Quasi-static to Impact

    NASA Astrophysics Data System (ADS)

    Kleiser, Geremy; Revil-Baudard, Benoit; Cazacu, Oana; Pasiliao, Crystal L.

    2015-11-01

    A systematic experimental investigation of the room-temperature quasi-static behavior and dynamic mechanical response of polycrystalline commercially pure molybdenum is presented. It was established that the material has ductility in tension at 10-5/s and that the failure strain is strongly dependent on the orientation. A specimen taken along the rolling direction (RD) sustains large axial strains (20%), while a specimen taken at an angle of 45° to the RD could only sustain 5% strain. It was observed that irrespective of the loading orientation the yield stress in uniaxial compression is larger than in uniaxial tension. While in tension, the material has a strong anisotropy in Lankford coefficients, while in uniaxial compression, it displays weak strain-anisotropy. Due to the material's limited tensile ductility, successfully acquiring data for impact conditions is very challenging. For the first time, Taylor impact tests were successfully conducted on this material for impact velocities in the range 140-165 m/s. For impact velocities beyond this range, the very high tensile pressures generated in the specimen immediately after impact lead to failure. An elastic-plastic anisotropic model that accounts for all the specificities of the plastic deformation of the material was developed. Validation of the model was done through comparison with data on quasi-static notched specimens and Taylor impact specimens. Quantitative agreement with both global and local strain fields was obtained. In particular, the effect of loading orientation on the response was very well described for all strain rates.

  20. Experimental study of vorticity-strain rate interaction in turbulent partially-premixed jet flames using tomographic particle image velocimetry

    DOE PAGESBeta

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-16

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1¯-s2¯ plane and orthogonal to s3¯.« less

  1. Experimental study of vorticity-strain rate interaction in turbulent partially premixed jet flames using tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-01

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet with Reynolds number of approximately 13 000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. The production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1 ¯-s2 ¯ plane and orthogonal to s3 ¯.

  2. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis

    PubMed Central

    Alba-Fierro, Carlos A.; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response. PMID:27051673

  3. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; López-Romero, Everardo; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo; Ruiz-Baca, Estela

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response. PMID:27051673

  4. Immune Responses and Protection against Experimental Challenge after Vaccination of Bison with Brucella abortus Strain RB51 or RB51 Overexpressing Superoxide Dismutase and Glycosyltransferase Genes▿

    PubMed Central

    Olsen, S. C.; Boyle, S. M.; Schurig, G. G.; Sriranganathan, N. N.

    2009-01-01

    Vaccination is a tool that could be beneficial in managing the high prevalence of brucellosis in free-ranging bison in Yellowstone National Park. In this study, we characterized immunologic responses and protection against experimental challenge after vaccination of bison with Brucella abortus strain RB51 (RB51) or a recombinant RB51 strain overexpressing superoxide dismutase (sodC) and glycosyltransferase (wboA) genes (RB51+sodC,wboA). Bison were vaccinated with saline only or with 4.6 × 1010 CFU of RB51 or 7.4 × 1010 CFU of RB51+sodC,wboA (n = eight animals/treatment). Bison vaccinated with RB51 or RB51+sodC,wboA had greater (P < 0.05) antibody responses, proliferative responses, and production of gamma interferon to RB51 after vaccination than did nonvaccinates. However, bison vaccinated with RB51+sodC,wboA cleared the vaccine strain from draining lymph nodes faster than bison vaccinated with the parental RB51 strain. Immunologic responses of bison vaccinated with RB51+sodC,wboA were similar to responses of bison vaccinated with RB51. Pregnant bison were intraconjunctivally challenged in midgestation with 107 CFU of B. abortus strain 2308. Bison vaccinated with RB51, but not RB51+sodC,wboA vaccinates, had greater protection from abortion, fetal/uterine, mammary, or maternal infection than nonvaccinates. Our data suggest that the RB51+sodC,wboA strain is less efficacious as a calfhood vaccine for bison than the parental RB51 strain. Our data also suggest that the RB51 vaccine is a currently available management tool that could be utilized to help reduce brucellosis in free-ranging bison. PMID:19176693

  5. Experimental and theoretical analyses of the age-dependent large-strain behavior of Sylgard 184 (10:1) silicone elastomer.

    PubMed

    Hopf, R; Bernardi, L; Menze, J; Zündel, M; Mazza, E; Ehret, A E

    2016-07-01

    The commercial polydimethysiloxane elastomer Sylgard(®) 184 with mixing ratio 10:1 is in wide use for biomedical research or fundamental studies of mechanobiology. In this paper, a comprehensive study of the large strain mechanical behavior of this material under multiaxial monotonic and cyclic loads, and its change during the first 26 days after preparation is reported. The equibiaxial stress response studied in inflation experiments reveals a much stiffer and more nonlinear response compared to the uniaxial and pure shear characteristics. The polymer revealed remarkably elastic behavior, in particular, very little dependence on strain rates between 0.3%/s and 11%/s, and on the strain history in cyclic experiments. On the other hand, both the small-strain and large strain nonlinear mechanical characteristics of the elastomer are changing with sample age and the results suggest that this process has not ceased after 26 days. A recent re-interpretation of the well-known Ogden model for incompressible rubber-like materials was applied to rationalize the results and accurate agreement was obtained with the experimental data over all testing configurations and testing times. The change of a single parameter in this model is shown to govern the evolution of the nonlinear material characteristics with sample age, attributed to a continuation of the cross-linking process. Based on a kinetic relation to account for this process over time, the model provided successful predictions of the material behavior even after more than one year. PMID:26990071

  6. Changes in phenolic compounds and cellular ultrastructure of arctic and antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio.

    PubMed

    Pichrtová, Martina; Remias, Daniel; Lewis, Louise A; Holzinger, Andreas

    2013-01-01

    Ultraviolet (UV) radiation has become an important stress factor in polar regions due to anthropogenically induced ozone depletion. Although extensive research has been conducted on adaptations of polar organisms to this stress factor, few studies have focused on semi-terrestrial algae so far, in spite of their apparent vulnerability. This study investigates the effect of UV on two semi-terrestrial arctic strains (B, G) and one Antarctic strain (E) of the green alga Zygnema, isolated from Arctic and Antarctic habitats. Isolates of Zygnema were exposed to experimentally enhanced UV A and B (predominant UV A) to photosynthetic active radiation (PAR) ratio. The pigment content, photosynthetic performance and ultrastructure were studied by means of high-performance liquid chromatography (HPLC), chlorophyll a fluorescence and transmission electron microscopy (TEM). In addition, phylogenetic relationships of the investigated strains were characterised using rbcL sequences, which determined that the Antarctic isolate (E) and one of the Arctic isolates (B) were closely related, while G is a distinct lineage. The production of protective phenolic compounds was confirmed in all of the tested strains by HPLC analysis for both controls and UV-exposed samples. Moreover, in strain E, the content of phenolics increased significantly (p = 0.001) after UV treatment. Simultaneously, the maximum quantum yield of photosystem II photochemistry significantly decreased in UV-exposed strains E and G (p < 0.001), showing a clear stress response. The phenolics were most probably stored at the cell periphery in vacuoles and cytoplasmic bodies that appear as electron-dense particles when observed by TEM after high-pressure freeze fixation. While two strains reacted moderately on UV exposure in their ultrastructure, in strain G, damage was found in chloroplasts and mitochondria. Plastidal pigments and xanthophyll cycle pigments were investigated by HPLC analysis; UV A- and UV B

  7. A holistic numerical model to predict strain hardening and damage of UHMWPE under multiple total knee replacement kinematics and experimental validation.

    PubMed

    Willing, Ryan; Kim, Il Yong

    2009-11-13

    Experimental wear testing is an essential step in the evaluation of total knee replacement (TKR) design. Unfortunately, experiments can be prohibitively expensive and time consuming, which has made computational wear simulation a more desirable alternative for screening designs. While previous attempts have demonstrated positive results, few models have fully incorporated the affect of strain hardening (or cross shear), or tested the model under more than one loading condition. The objective of this study was to develop and evaluate the performance of a new holistic TKR damage model, capable of predicting damage caused by wear, including the effects of strain hardening and creep. For the first time, a frictional work-based damage model was compared against multiple sets of experimental TKR wear testing data using different input kinematics. The wear model was tuned using experimental measurements and was then able to accurately predict the volumetric polyethylene wear volume during experiments with different kinematic inputs. The size and shape of the damage patch on the surface of the polyethylene inserts were also accurately predicted under multiple input kinematics. The ability of this model to predict implant damage under multiple loading profiles by accounting for strain hardening makes it ideal for screening new implant designs, since implant kinematics are largely a function of the shape of the components. PMID:19647828

  8. Transplacental transmission of field and rescued strains of BTV-2 and BTV-8 in experimentally infected sheep

    PubMed Central

    2013-01-01

    Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28 days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought. PMID:24007601

  9. Efficacy of dart or booster vaccination with strain RB51 in protecting bison against experimental Brucella abortus challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination is an effective tool for reducing the prevalence of brucellosis in natural hosts. In this study, we characterized the efficacy of the Brucella abortus strain RB51 (RB51) vaccine in bison when delivered by single intramuscular vaccination (Hand RB51), single pneumatic dart delivery (Dart ...

  10. Experimental insight into the proximate causes of male persistence variation among two strains of the androdioecious Caenorhabditis elegans (Nematoda)

    PubMed Central

    Wegewitz, Viktoria; Schulenburg, Hinrich; Streit, Adrian

    2008-01-01

    Background In the androdioecious nematode Caenorhabditis elegans virtually all progeny produced by hermaphrodite self-fertilization is hermaphrodite while 50% of the progeny that results from cross-fertilization by a male is male. In the standard laboratory wild type strain N2 males disappear rapidly from populations. This is not the case in some other wild type isolates of C. elegans, among them the Hawaiian strain CB4856. Results We determined the kinetics of the loss of males over time for multiple population sizes and wild isolates and found significant differences. We performed systematic inter- and intra-strain crosses with N2 and CB4856 and show that the males and the hermaphrodites contribute to the difference in male maintenance between these two strains. In particular, CB4856 males obtained a higher number of successful copulations than N2 males and sired correspondingly more cross-progeny. On the other hand, N2 hermaphrodites produced a higher number of self-progeny, both when singly mated and when not mated. Conclusion These two differences have the potential to explain the observed variation in male persistence, since they should lead to a predominance of self-progeny (and thus hermaphrodites) in N2 and, at the same time, a high proportion of cross-progeny (and thus the presence of males as well as hermaphrodites) in CB4856. PMID:18620600

  11. Pathogenicity of three type 2 Porcine Reproductive and Respiratory Syndrome virus strains in experimentally inoculated pregnant gilts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanisms of reproductive failure resulting from infection with porcine reproductive and respiratory syndrome virus (PRRSv) are still poorly understood. The present study, a side-by-side evaluation of the pathogenicity of three type 2 PRRSv strains in a reproductive model, was used as a pilot study...

  12. Coherency strain and its effect on ionic conductivity and diffusion in solid electrolytes--an improved model for nanocrystalline thin films and a review of experimental data.

    PubMed

    Korte, C; Keppner, J; Peters, A; Schichtel, N; Aydin, H; Janek, J

    2014-11-28

    A phenomenological and analytical model for the influence of strain effects on atomic transport in columnar thin films is presented. A model system consisting of two types of crystalline thin films with coherent interfaces is assumed. Biaxial mechanical strain ε0 is caused by lattice misfit of the two phases. The conjoined films consist of columnar crystallites with a small diameter l. Strain relaxation by local elastic deformation, parallel to the hetero-interface, is possible along the columnar grain boundaries. The spatial extent δ0 of the strained hetero-interface regions can be calculated, assuming an exponential decay of the deformation-forces. The effect of the strain field on the local ionic transport in a thin film is then calculated by using the thermodynamic relation between (isostatic) pressure and free activation enthalpy ΔG(#). An expression describing the total ionic transport relative to bulk transport of a thin film or a multilayer as a function of the layer thickness is obtained as an integral average over strained and unstrained regions. The expression depends only on known material constants such as Young modulus Y, Poisson ratio ν and activation volume ΔV(#), which can be combined as dimensionless parameters. The model is successfully used to describe own experimental data from conductivity and diffusion studies. In the second part of the paper a comprehensive literature overview of experimental studies on (fast) ion transport in thin films and multilayers along solid-solid hetero-interfaces is presented. By comparing and reviewing the data the observed interface effects can be classified into three groups: (i) transport along interfaces between extrinsic ionic conductors (and insulator), (ii) transport along an open surface of an extrinsic ionic conductor and (iii) transport along interfaces between intrinsic ionic conductors. The observed effects in these groups differ by about five orders of magnitude in a very consistent way. The

  13. Vaccination of Elk (Cervus canadensis) with Brucella abortus Strain RB51 Overexpressing Superoxide Dismutase and Glycosyltransferase Genes Does Not Induce Adequate Protection against Experimental Brucella abortus Challenge.

    PubMed

    Nol, Pauline; Olsen, Steven C; Rhyan, Jack C; Sriranganathan, Nammalwar; McCollum, Matthew P; Hennager, Steven G; Pavuk, Alana A; Sprino, Phillip J; Boyle, Stephen M; Berrier, Randall J; Salman, Mo D

    2016-01-01

    In recent years, elk (Cervus canadensis) have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area. In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the development of effective disease management strategies for wild elk herds is of utmost importance, not only for the prevention of reintroduction of brucellosis to cattle, but also for the overall health of the Greater Yellowstone Area elk populations. In two studies, we evaluated the efficacy of B. abortus strain RB51 over-expressing superoxide dismutase and glycosyltransferase for protecting elk from infection and disease caused by B. abortus after experimental infection with a virulent B. abortus strain. Our data indicate that the recombinant vaccine does not protect elk against brucellosis. Further, work is needed for development of an effective brucellosis vaccine for use in elk. PMID:26904509

  14. Vaccination of Elk (Cervus canadensis) with Brucella abortus Strain RB51 Overexpressing Superoxide Dismutase and Glycosyltransferase Genes Does Not Induce Adequate Protection against Experimental Brucella abortus Challenge

    PubMed Central

    Nol, Pauline; Olsen, Steven C.; Rhyan, Jack C.; Sriranganathan, Nammalwar; McCollum, Matthew P.; Hennager, Steven G.; Pavuk, Alana A.; Sprino, Phillip J.; Boyle, Stephen M.; Berrier, Randall J.; Salman, Mo D.

    2016-01-01

    In recent years, elk (Cervus canadensis) have been implicated as the source of Brucella abortus infection for numerous cattle herds in the Greater Yellowstone Area. In the face of environmental and ecological changes on the landscape, the range of infected elk is expanding. Consequently, the development of effective disease management strategies for wild elk herds is of utmost importance, not only for the prevention of reintroduction of brucellosis to cattle, but also for the overall health of the Greater Yellowstone Area elk populations. In two studies, we evaluated the efficacy of B. abortus strain RB51 over-expressing superoxide dismutase and glycosyltransferase for protecting elk from infection and disease caused by B. abortus after experimental infection with a virulent B. abortus strain. Our data indicate that the recombinant vaccine does not protect elk against brucellosis. Further, work is needed for development of an effective brucellosis vaccine for use in elk. PMID:26904509

  15. Determining the mechanical constitutive properties of metals as a function of strain rate and temperature: A combined experimental and modeling approach

    SciTech Connect

    I. M. Robertson; A. Beaudoin; J. Lambros

    2004-01-05

    OAK-135 Development and validation of constitutive models for polycrystalline materials subjected to high strain rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions (foreign object damage, high-strain rate forging, high-speed sheet forming, deformation behavior during forming, response to extreme conditions, etc.). To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be closely coupled with precise and targeted experimental measurements that not only verify the predictions of the models, but also provide input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experimentation is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models, which will include dislocation-grain boundary interactions for polycrystalline systems. One aspect of the program will involve the dire ct

  16. Experimental Investigation of the Strain Rate Dependent Behaviour of 2D Biaxially and Triaxially Reinforced Braided Composites

    NASA Astrophysics Data System (ADS)

    Böhm, R.; Hornig, A.; Luft, J.; Becker, M.; Koch, I.; Grüber, B.; Hufenbach, W.

    2014-04-01

    The performance of 2D biaxially and triaxially reinforced braided carbon fibre composites under dynamic loading is evaluated in the presented study. The accurate manufacturing of tensile specimen made of braided sleeves is explained particularly with regard to efficiency and reproducibility. In order to determine reliable strain rate dependent properties, the high-speed testing procedure is discussed. Using five materials, the parameter identification is described and relevant material data is provided. The measured stiffnesses and strengths are used to predict the non-linear stress-strain behaviour with an earlier proposed phenomenological damage model for textile composites. The gained orthotropic property-profile provides the input parameters for a numerical analysis of braided composite components using the calibrated model.

  17. Experimental and theoretical studies of the superposition of intergranular and macroscopic strains in Ni-based industrial alloys

    SciTech Connect

    Holden, T.M.; Tome, C.N.; Holt, R.A.

    1998-12-01

    Measurements of the strain response to applied stress in polycrystalline MONEL-400 by neutron diffraction are modeled with the elastoplastic self-consistent (EPSC) theory. The strains in the different crystallographic orientations of grains, which are generated i the tensile test experiments, are shown to be caused by the anisotropy of elastic and plastic deformation with respect to crystallographic orientation. On the basis of the description of the results in the theory, the origin of a number of anomalies of a general nature in measurements by high neutron and X-ray diffraction can be understood. The theory is used to calculate which crystallographic reflections are least sensitive to intergranular effects under uniaxial tension.

  18. An experimental UHV AFM-STM device for characterizing surface nanostructures under stress/strain at variable temperature.

    PubMed

    Nahas, Y; Berneau, F; Bonneville, J; Coupeau, C; Drouet, M; Lamongie, B; Marteau, M; Michel, J; Tanguy, P; Tromas, C

    2013-10-01

    A compression setup fully integrated in an ultra high vacuum chamber is presented. The system has been designed to combine in situ mechanical test together with near field microscopy at variable temperature, from 90 to 600 K. Compressive stress can be applied on the samples up to 500 MPa at different strain rates ranging from 10(-6) s(-1) to 10(-2) s(-1). The setup performances are highlighted through investigations on Au and Ni3(Al,Ta) single crystals. In particular, it is demonstrated that the high mechanical stability of the original apparatus allows us to follow in situ the evolution of the same area of interest over a large range of temperature and to keep the high spatial resolution offered by near field microscopy, even at high strain levels. PMID:24182173

  19. Effects of nutritional supplementation with l-arginine on repair of injuries due to muscle strain: experimental study on rats☆

    PubMed Central

    Couto, Lauren Izabel Medeiros; Wuicik, William Luiz; Kuhn, Ivan; Capriotti, Juan Rodolfo Vilela; Repka, João Carlos

    2015-01-01

    Objective To evaluate the influence of oral supplementation with arginine on regeneration of injuries due to straining of the anterior tibial muscle of rats. Methods Twenty-four Wistar rats of weight 492.5 ± 50.45 g were used. Injuries were induced through straining the anterior tibial muscles. The rats were separated into three groups of eight rats each. In the untreated group (UTG), after induction of injuries, the rats were observed for 24 h. In the simulation group (SG) and the arginine group (AG) respectively, the rats received isotonic saline solution and arginine solution via direct gavage, over a seven-day period. At the end of the period, blood samples were collected for serum evaluations of creatine kinase (CK), lactic dehydrogenase (LDH), aspartate aminotransferase (AST) and C-reactive protein (CRP). The right and left anterior tibial muscles were resected for histopathological evaluations on the muscle injuries, investigating edema, hemorrhage and disorganization or morphometric alteration of the muscle fibers. The tissue repair was investigated in terms of proliferation of adipose tissue, angiogenesis and collagen fibers. The ANOVA and Student's t methods were used and p ≤ 0.05 was taken to be statistically significant. Results In the serum evaluations, the AG showed lower CK assay values and higher AST values. In the histopathological evaluation, the UTG presented edema and hemorrhage compatible with injuries due to strain; the SG presented edema and hemorrhage with proliferation of adipose tissue and collagen fibers; and the AG presented not only the findings of the SG but also, especially, intense angiogenesis. Conclusion Oral supplementation with arginine did not cause any significant metabolic alterations that would contraindicate its use and it induced angiogenesis during the repair of muscles injured due to strain. PMID:26401505

  20. Confirmation that “Brachyspira hampsonii” clade I (Canadian strain 30599) causes mucohemorrhagic diarrhea and colitis in experimentally infected pigs

    PubMed Central

    2014-01-01

    Background “Brachyspira hampsonii”, discovered in North America in 2010 associated with dysentery-like illness, is an economically relevant swine pathogen resulting in decreased feed efficiency and increased morbidity, mortality and medication usage. “B. hampsonii” clade II strain 30446 has been shown to be causally associated with mucohemorrhagic diarrhea and colitis. Our objectives were to determine if “Brachyspira hampsonii” clade I strain 30599 is pathogenic to pigs, and to evaluate the relative diagnostic performance of three ante mortem sampling methodologies (direct PCR on feces, PCR on rectal GenoTube Livestock swabs, Brachyspira culture from rectal swabs). Five-week old pigs were intragastrically inoculated thrice with 108 genomic equivalents "B. hampsonii" (n = 12), or served as sham controls (n = 6). Feces were sampled and consistency assessed daily. Necropsies were performed 24 h after peak clinical signs. Results One pig died due to unrelated illness. Nine of 11 inoculated pigs, but no controls, developed mucoid or mucohemorrhagic diarrhea (MHD). Characteristic lesions of swine dysentery were observed in large intestine. “B. hampsonii” strain 30599 DNA was detected by qPCR in feces of all inoculated pigs for up to 6 days prior to the onset of MHD. The organism was isolated from the feces and colons of pigs demonstrating MHD, but not from controls. B. intermedia was isolated from inoculated pigs without MHD, and from 5 of 6 controls. Conclusions We conclude that “Brachyspira hampsonii” clade I strain 30599 is pathogenic and causes mucohemorrhagic diarrhea and colitis in susceptible pigs. Moreover, the three sampling methodologies performed similarly. GenoTube Livestock, a forensic swab designed to preserve DNA during shipping is a useful tool especially in settings where timely transport of diagnostic samples is challenging. PMID:24917084

  1. A statistical model and experimental study of the strain rate and temperature dependence of the strength of fibers

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Xia, Yuanming; Yang, Baochang

    1996-03-01

    This paper proposes a statistical model for strain rate and temperature dependent fiber strength. The dependence of the parameters of the model on the mechanical quantities of fiber bundles under tensile impact at different temperatures is established. Test results have been performed on E-glass bundles, and these are discussed. They are in good correlation with the model. Hence, the model is reliable and the test method is feasible.

  2. Genetic studies on experimental autoimmune gastritis induced by neonatal thymectomy using recombinant inbred strains between a high-incidence strain, BALB/c, and a low-incidence strain, DBA/2.

    PubMed Central

    Mori, Y; Hosono, M; Murakami, K; Katoh, H; Yoshikawa, Y; Kuribayashi, K; Kannagi, R; Sakai, M; Okuma, M; Masuda, T

    1991-01-01

    Thymectomy on day 3 after birth induced autoimmune gastritis (AIG) at the age of 2 months in 51-73% of BALB/c mice, and in only 3-5% of DBA/2 mice. AIG was detected by histological and serological (immunofluorescence staining for detecting anti-parietal cell autoantibody) examination. However, autoantibody was weakly positive in almost all of these DBA/2 mice when measured by ELISA using extract of murine gastric mucosa as the antigen. To investigate genetically the mechanism controlling the incidence of AIG, II recombinant inbred strains established by brother-sister mating of (BALB/c x DBA/2) F2 mice (C x D2 strains) were used. Among 26 markers tested, the Mls-1 locus on BALB/c chromosome 1 and the Hc locus coding a complement component (C5) on BALB/c chromosome 2 were found to be associated with high susceptibility to AIG. However, if one or both of the loci were of DBA/2 origin, mice showed medium or low susceptibility to AIG. For further analysis, F1, F2 and back-cross generations of these two strains were tested, but segregation of a single susceptibility or insusceptibility gene was not obtained. Taken together, it seems probable that two or more genes are involved in the induction mechanism of AIG. We did not detect C5 deposition in AIG lesions, nor complement-dependent cytotoxic antibody to parietal cells in serum from AIG mice. However, injection of irradiated spleen cells of DBA/2 mice into BALB/c mice thymectomized on day 3 augmented the incidence of AIG from 71 to 100%, but not that of oophoritis (33%). A relationship between Mls-1a determinants and the pathogenesis of AIG was further suggested from the fact that V beta 6 TcR-expressing T cells increased in number in AIG-bearing compared with normal BALB/c mice. Images Fig. 1 PMID:1901777

  3. Experimental Challenge of Atlantic Cod (Gadus morhua) with a Brucella pinnipedialis Strain from Hooded Seal (Cystophora cristata)

    PubMed Central

    Nymo, Ingebjørg Helena; Seppola, Marit; Al Dahouk, Sascha; Bakkemo, Kathrine Ryvold; Jiménez de Bagüés, María Pilar; Godfroid, Jacques; Larsen, Anett Kristin

    2016-01-01

    Pathology has not been observed in true seals infected with Brucella pinnipedialis. A lack of intracellular survival and multiplication of B. pinnipedialis in hooded seal (Cystophora cristata) macrophages in vitro indicates a lack of chronic infection in hooded seals. Both epidemiology and bacteriological patterns in the hooded seal point to a transient infection of environmental origin, possibly through the food chain. To analyse the potential role of fish in the transmission of B. pinnipedialis, Atlantic cod (Gadus morhua) were injected intraperitoneally with 7.5 x 107 bacteria of a hooded seal field isolate. Samples of blood, liver, spleen, muscle, heart, head kidney, female gonads and feces were collected on days 1, 7, 14 and 28 post infection to assess the bacterial load, and to determine the expression of immune genes and the specific antibody response. Challenged fish showed an extended period of bacteremia through day 14 and viable bacteria were observed in all organs sampled, except muscle, until day 28. Neither gross lesions nor mortality were recorded. Anti-Brucella antibodies were detected from day 14 onwards and the expression of hepcidin, cathelicidin, interleukin (IL)-1β, IL-10, and interferon (IFN)-γ genes were significantly increased in spleen at day 1 and 28. Primary mononuclear cells isolated from head kidneys of Atlantic cod were exposed to B. pinnipedialis reference (NCTC 12890) and hooded seal (17a-1) strain. Both bacterial strains invaded mononuclear cells and survived intracellularly without any major reduction in bacterial counts for at least 48 hours. Our study shows that the B. pinnipedialis strain isolated from hooded seal survives in Atlantic cod, and suggests that Atlantic cod could play a role in the transmission of B. pinnipedialis to hooded seals in the wild. PMID:27415626

  4. Experimental infection of ectoparasitic arthropods with Rickettsia prowazekii (GvF-16 strain) and transmission to flying squirrels.

    PubMed

    Bozeman, F M; Sonenshine, D E; Williams, M S; Chadwick, D P; Lauer, D M; Elisberg, B L

    1981-01-01

    Epizootiologic studies conducted during the past few years showed the existence of widespread natural infection of the southern flying squirrel, Glaucomys volans, with epidemic typhus rickettsiae, Rickettsia prowazekii. The ecological findings strongly implicated transmission of the etiologic agent by an arthropod vector. Studies were conducted under controlled laboratory conditions to determine whether ectoparasites naturally associated with flying squirrels (squirrel fleas, lice, mites and ticks) were capable of acquiring, maintaining and transmitting the infection. Also studied were the cat flea, oriental rat flea and the human body louse. Flying squirrels inoculated with the GvF-16 strain of R. prowazekii circulated rickettsiae in their blood for 2-3 weeks, thus providing ample opportunity for arthropods feeding on them to become infected. The results with Dermacentor variabilis ticks indicated that the rickettsiae did not consistently survive in this insect and were not passed to the eggs of adult females that had been infected subcuticularly. Mites became infected by feeding on infectious blood but failed to sustain the infection. Also, mites fed on an infected flying squirrel did not transmit the infection to a normal squirrel. Squirrel, cat, and oriental rat fleas readily became infected by feeding on a rickettsemic host or on infectious blood through membranes, but failed to transmit the infection to susceptible flying squirrels. In the studies with flying squirrel lice, however, transmission of epidemic typhus from infected to uninfected flying squirrels was demonstrated. Infection of the human body louse with the GvF-16 flying squirrel strain of R. prowazekii was similar to that previously observed with classical human strains, viz., multiplication of the rickettsiae and excretion in the feces. PMID:6782900

  5. Oral Outbreak of Chagas Disease in Santa Catarina, Brazil: Experimental Evaluation of a Patient’s Strain

    PubMed Central

    Domingues, Carolina S.; Hardoim, Daiana J.; Souza, Celeste S. F.; Cardoso, Flávia O.; Mendes, Verônica G.; Previtalli-Silva, Henrique; Abreu-Silva, Ana L.; Pelajo-Machado, Marcelo; Gonçalves da Costa, Sylvio Celso; Calabrese, Kátia S.

    2015-01-01

    Chagas disease is a worldwide public health problem. Although the vectorial transmission of Chagas disease has been controlled in Brazil there are other ways of transmission, such as the ingestion of T. cruzi contaminated food, which ensures the continuation of this zoonosis. Here, we demonstrate the influence of the inoculation route on the establishment and development of the SC2005 T. cruzi strain infection in mice. Groups of Swiss mice were infected intragastrically (IG) or intraperitoneally (IP) with the T. cruzi SC2005 strain derived from an outbreak of oral Chagas disease. The results revealed that 100% of IP infected mice showed parasitemia, while just 36% of IG infected showed the presence of the parasite in blood. The parasitemia peaks were later and less intense in the IG infected mice. Mortality of the IP infected animals was more intense and earlier when compared to the IG infected mice. In the IP infected mice leucopenia occurred in the early infection followed by leucocytosis, correlating positively with the increase of the parasites. However, in the IG infected mice only an increase in monocytes was observed, which was positively correlated with the increase of the parasites. Histopathological analyses revealed a myotropic pattern of the SC2005 strain with the presence of inflammatory infiltrates and parasites in different organs of the animals infected by both routes as well as fibrosis foci and collagen redistribution. The flow cytometric analysis demonstrated a fluctuation of the T lymphocyte population in the blood, spleen and mesenteric lymph nodes of the infected animals. T. cruzi DNA associated with the presence of inflammatory infiltrates was detected by PCR in the esophagus, stomach and intestine of all infected mice. These findings are important for the understanding of the pathogenesis of T. cruzi infection by both inoculation routes. PMID:26469517

  6. Experimental Challenge of Atlantic Cod (Gadus morhua) with a Brucella pinnipedialis Strain from Hooded Seal (Cystophora cristata).

    PubMed

    Nymo, Ingebjørg Helena; Seppola, Marit; Al Dahouk, Sascha; Bakkemo, Kathrine Ryvold; Jiménez de Bagüés, María Pilar; Godfroid, Jacques; Larsen, Anett Kristin

    2016-01-01

    Pathology has not been observed in true seals infected with Brucella pinnipedialis. A lack of intracellular survival and multiplication of B. pinnipedialis in hooded seal (Cystophora cristata) macrophages in vitro indicates a lack of chronic infection in hooded seals. Both epidemiology and bacteriological patterns in the hooded seal point to a transient infection of environmental origin, possibly through the food chain. To analyse the potential role of fish in the transmission of B. pinnipedialis, Atlantic cod (Gadus morhua) were injected intraperitoneally with 7.5 x 107 bacteria of a hooded seal field isolate. Samples of blood, liver, spleen, muscle, heart, head kidney, female gonads and feces were collected on days 1, 7, 14 and 28 post infection to assess the bacterial load, and to determine the expression of immune genes and the specific antibody response. Challenged fish showed an extended period of bacteremia through day 14 and viable bacteria were observed in all organs sampled, except muscle, until day 28. Neither gross lesions nor mortality were recorded. Anti-Brucella antibodies were detected from day 14 onwards and the expression of hepcidin, cathelicidin, interleukin (IL)-1β, IL-10, and interferon (IFN)-γ genes were significantly increased in spleen at day 1 and 28. Primary mononuclear cells isolated from head kidneys of Atlantic cod were exposed to B. pinnipedialis reference (NCTC 12890) and hooded seal (17a-1) strain. Both bacterial strains invaded mononuclear cells and survived intracellularly without any major reduction in bacterial counts for at least 48 hours. Our study shows that the B. pinnipedialis strain isolated from hooded seal survives in Atlantic cod, and suggests that Atlantic cod could play a role in the transmission of B. pinnipedialis to hooded seals in the wild. PMID:27415626

  7. Comparison tests and experimental compliance calibration of the proposed standard round compact plane strain fracture toughness specimen

    NASA Technical Reports Server (NTRS)

    Fisher, D. M.; Buzzard, R. J.

    1979-01-01

    Standard round specimen fracture test results compared satisfactorily with results from standard rectangular compact specimens machined from the same material. The location of the loading pin holes was found to provide adequate strength in the load bearing region for plane strain fracture toughness testing. Excellent agreement was found between the stress intensity coefficient values obtained from compliance measurements and the analytic solution proposed for inclusion in the standard test method. Load displacement measurements were made using long armed displacement gages and hollow loading cylinders. Gage points registered on the loading hole surfaces through small holes in the walls of the loading cylinders.

  8. Phenotypes of Campylobacter jejuni luxS Mutants Are Depending on Strain Background, Kind of Mutation and Experimental Conditions

    PubMed Central

    Adler, Linda; Alter, Thomas; Sharbati, Soroush; Gölz, Greta

    2014-01-01

    Since the discovery that Campylobacter (C.) jejuni produces Autoinducer 2 (AI-2), various studies have been conducted to explore the function and role of AI-2 in C. jejuni. However, the interpretation of these analyses has been complicated by differences in strain backgrounds, kind of mutation and culture conditions used. Furthermore, all research on AI-2 dependent phenotypes has been conducted with AI-2 synthase (luxS) mutants. This mutation also leads to a disruption of the activated-methyl-cycle. Most studies lack sufficient complementation resulting in not knowing whether phenotypes of luxS mutants depend on disrupted metabolism or lack of AI-2. Additionally, no AI-2 receptor has been found yet. All this contributes to an intensive discussion about the exact role of AI-2 in C. jejuni. Therefore, we examined the impact of different experiment settings on three different C. jejuni luxS mutants on growth and motility (37°C and 42°C). Our study showed that differing phenotypes of C. jejuni luxS mutants depend on strain background, mutation strategy and culture conditions. Furthermore, we complemented experiments with synthetic AI-2 or homocysteine as well as the combination of both. Complementation with AI-2 and AI-2+homocysteine significantly increased the cell number of C. jejuni NCTC 11168ΔluxS in stationary phase compared to the non-complemented C. jejuni NCTC 11168ΔluxS mutant. Genetic complementation of both C. jejuni 81-176 luxS mutants resulted in wild type comparable growth curves. Also swarming ability could be partially complemented. While genetic complementation restored swarming abilities of C. jejuni 81-176ΔluxS, it did not fully restore the phenotype of C. jejuni 81-176::luxS, which indicates that compensatory mutations in other parts of the chromosome and/or potential polar effects may appear in this mutant strain. Also with neither synthetic complementation, the phenotype of the wild type-strains was achieved, suggesting yet another reason for

  9. Deciphering the Draft Genome of Toxoplasma gondii RH Strain

    PubMed Central

    Gudimella, Ranganath; Zhang, GuiPing; Ching, Xiao-Teng; Razali, Rozaimi; Aziz, Farhanah; Anwar, Arif; Fong, Mun-Yik

    2016-01-01

    Toxoplasmosis is a widespread parasitic infection by Toxoplasma gondii, a parasite with at least three distinct clonal lineages. This article reports the whole genome sequencing and de novo assembly of T. gondii RH (type I representative strain), as well as genome-wide comparison across major T. gondii lineages. Genomic DNA was extracted from tachyzoites of T. gondii RH strain and its identity was verified by PCR and LAMP. Subsequently, whole genome sequencing was performed, followed by sequence filtering, genome assembly, gene annotation assignments, clustering of gene orthologs and phylogenetic tree construction. Genome comparison was done with the already archived genomes of T. gondii. From this study, the genome size of T. gondii RH strain was found to be 69.35Mb, with a mean GC content of 52%. The genome shares high similarity to the archived genomes of T. gondii GT1, ME49 and VEG strains. Nevertheless, 111 genes were found to be unique to T. gondii RH strain. Importantly, unique genes annotated to functions that are potentially critical for T. gondii virulence were found, which may explain the unique phenotypes of this particular strain. This report complements the genomic archive of T. gondii. Data obtained from this study contribute to better understanding of T. gondii and serve as a reference for future studies on this parasite. PMID:27355363

  10. Deciphering the Draft Genome of Toxoplasma gondii RH Strain.

    PubMed

    Lau, Yee-Ling; Lee, Wenn-Chyau; Gudimella, Ranganath; Zhang, GuiPing; Ching, Xiao-Teng; Razali, Rozaimi; Aziz, Farhanah; Anwar, Arif; Fong, Mun-Yik

    2016-01-01

    Toxoplasmosis is a widespread parasitic infection by Toxoplasma gondii, a parasite with at least three distinct clonal lineages. This article reports the whole genome sequencing and de novo assembly of T. gondii RH (type I representative strain), as well as genome-wide comparison across major T. gondii lineages. Genomic DNA was extracted from tachyzoites of T. gondii RH strain and its identity was verified by PCR and LAMP. Subsequently, whole genome sequencing was performed, followed by sequence filtering, genome assembly, gene annotation assignments, clustering of gene orthologs and phylogenetic tree construction. Genome comparison was done with the already archived genomes of T. gondii. From this study, the genome size of T. gondii RH strain was found to be 69.35Mb, with a mean GC content of 52%. The genome shares high similarity to the archived genomes of T. gondii GT1, ME49 and VEG strains. Nevertheless, 111 genes were found to be unique to T. gondii RH strain. Importantly, unique genes annotated to functions that are potentially critical for T. gondii virulence were found, which may explain the unique phenotypes of this particular strain. This report complements the genomic archive of T. gondii. Data obtained from this study contribute to better understanding of T. gondii and serve as a reference for future studies on this parasite. PMID:27355363

  11. Experimental Evaluation of the Static Strain on the Clamping Bolt in the Structure of a Bolt-Clamped Langevin-Type Transducer

    NASA Astrophysics Data System (ADS)

    Takahashi, Toru; Adachi, Kazunari

    2008-06-01

    Bolt-clamped Langevin-type transducers (BLTs) used in high-power ultrasonics are required to realize various characteristics depending on the technical field where they are used. Specifically for high amplitude operation, the static prestress or bearing stress imposed on the piezoelectric elements in the transducer by clamping should be large enough to compensate for their low tensile strength. The authors previously calculated prestress by the finite element method (FEM), but the numerical results have not been experimentally confirmed yet because of the difficulty of directly measuring of the prestress. In this study, the authors measured the strain on the surface of the clamping bolt using strain gauges pasted on it and compared the results with those of the numerical analysis by FEM in order to confirm the validity of the calculation. The measurement has been conducted for three BLTs of identical shape. The results of the measurement show reasonable agreement with those of the numerical analysis, and thus the authors have found that the measurement of the strain on the clamping bolt gives us a practical method for indirect evaluation of the prestress actually imposed on the piezoelectric elements that changes with the turning angle of the metal block in the clamping.

  12. Immune Responses and Protection against Experimental Brucella suis Biovar 1 Challenge in Nonvaccinated or B. abortus Strain RB51-Vaccinated Cattle▿

    PubMed Central

    Olsen, S. C.; Hennager, S. G.

    2010-01-01

    Twenty Hereford heifers approximately 9 months of age were vaccinated with saline (control) or 2 × 1010 CFU of the Brucella abortus strain RB51 (RB51) vaccine. Immunologic responses after inoculation demonstrated significantly greater (P < 0.05) antibody and proliferative responses to RB51 antigens in cattle vaccinated with RB51 than in the controls. Pregnant cattle received a conjunctival challenge at approximately 6 months of gestation with 107 CFU of B. suis bv. 1 strains isolated from naturally infected cattle. The fluorescence polarization assay and the buffered acid plate agglutination test had the highest sensitivities in detecting B. suis-infected cattle between 2 and 12 weeks after experimental infection. Serologic responses and lymphocyte proliferative responses to B. suis antigens did not differ between control and RB51 vaccinees after experimental infection. No abortions occurred in cattle in either treatment group after challenge, although there appeared to be an increased incidence of retained placenta after parturition in both the control and the RB51 vaccination treatment groups. Our data suggest that the mammary gland is a preferred site for B. suis localization in cattle. Vaccination with RB51 did not reduce B. suis infection rates in maternal or fetal tissues. In conclusion, although B. suis is unlikely to cause abortions and fetal losses in cattle, our data suggest that RB51 vaccination will not protect cattle against B. suis infection after exposure. PMID:20943881

  13. Correlation of CT-based regional cardiac function (SQUEEZ) with myocardial strain calculated from tagged MRI: an experimental study.

    PubMed

    Pourmorteza, Amir; Chen, Marcus Y; van der Pals, Jesper; Arai, Andrew E; McVeigh, Elliot R

    2016-05-01

    The objective of this study was to investigate the correlation between local myocardial function estimates from CT and myocardial strain from tagged MRI in the same heart. Accurate detection of regional myocardial dysfunction can be an important finding in the diagnosis of functionally significant coronary artery disease. Tagged MRI is currently a reference standard for noninvasive regional myocardial function analysis; however, it has practical drawbacks. We have developed a CT imaging protocol and automated image analysis algorithm for estimating regional cardiac function from a few heartbeats. This method tracks the motion of the left ventricular (LV) endocardial surface to produce local function maps: we call the method Stretch Quantification of Endocardial Engraved Zones (SQUEEZ). Myocardial infarction was created by ligation of the left anterior descending coronary artery for 2 h followed by reperfusion in canine models. Tagged and cine MRI scans were performed during the reperfusion phase and first-pass contrast enhanced CT scans were acquired. The average delay between the CT and MRI scans was <1 h. Circumferential myocardial strain (Ecc) was calculated from the tagged MRI data. The agreement between peak systolic Ecc and SQUEEZ was investigated in 162 segments in the 9 hearts. Linear regression and Bland-Altman analysis was used to assess the correlation between the two metrics of local LV function. The results show good agreement between SQUEEZ and Ecc: (r = 0.71, slope = 0.78, p < 0.001). Furthermore, Bland-Altman showed a small bias of -0.02 with 95 % confidence interval of 0.1, and standard deviation of 0.05 representing ~6.5 % of the dynamic range of LV function. The good agreement between the estimates of local myocardial function obtained from CT SQUEEZ and tagged MRI provides encouragement to investigate the use of SQUEEZ for measuring regional cardiac function at a low clinical dose in humans. PMID:26706935

  14. Experimental and theoretical study of polarized photoluminescence caused by anisotropic strain relaxation in nonpolar a-plane textured ZnO grown by a low-pressure chemical vapor deposition

    SciTech Connect

    Lai, Chih-Ming; Huang, Yu-En; Feng, Shih-Wei; Kou, Kuang-Yang; Chen, Chien-Hsun; Tu, Li-Wei

    2015-07-13

    Anisotropic strain relaxation and the resulting degree of polarization of photoluminescence (PL) in nonpolar a-plane textured ZnO are experimentally and theoretically studied. A thicker nonpolar a-plane textured ZnO film enhances the anisotropic in-plane strain relaxation, resulting in a larger degree of polarization of PL and better sample quality. Anisotropic in-plane strains, sample quality, and degree of polarization of PL in nonpolar a-plane ZnO are consequences of the degree of anisotropic in-plane strain relaxation. By the k·p perturbation approach, simulation results of the variation of the degree of polarization for the electronic transition upon anisotropic in-plane strain relaxation agree with experimental results.

  15. Experimental infection of six North American fish species with the North Carolina strain of spring Viremia of Carp Virus

    USGS Publications Warehouse

    Emmenegger, Eveline J.; Sanders, George E.; Conway, Carla M.; Binkowski, Fred P.; Winton, James R.; Kurath, Gael

    2015-01-01

    Three salmonid species, rainbow and steelhead trout (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and sockeye salmon (O. nerka), were challenged by immersion or injection with the North Carolina SVCV isolate. Two cyprinid species, koi and fathead minnow (Pimephales promelas) and one percid species, yellow perch (Perca flavescens) were also challenged. Koi were highly susceptible to SVCV up to 11 months of age and fathead minnows had chronic disease expression with moderate mortality (29%). SVCV also induced moderate mortalities (33%) in yellow perch fry. Virus challenged salmonid fish had cumulative percent mortalities ranging from 0 to 100%, with sockeye salmon fry being the most vulnerable. A sub-sample of mortalities and survivors were screened for virus by plaque assay and reverse transcription polymerase chain reaction. In general, all mortalities tested positive for SVCV with high viral titers while survivors had variable persistence of SVCV with overall lower virus titers. Our SVCV challenges of multiple North American fish species suggested that host age is a key factor in determining disease outcome. Other factors, such as fish broodstock, virus strain, water temperature, and rearing conditions in association with the intrinsic level of species susceptibility may also impact infection dynamics. This is the first report of SVCV infecting a species (yellow perch) in the family Percidae and that sockeye salmon fry can suffer similarly high mortalities as the primary SVCV host species.

  16. Experimental infection of United States swine with a Chinese highly pathogenic strain of porcine reproductive and respiratory syndrome virus.

    PubMed

    Guo, Baoqing; Lager, Kelly M; Henningson, Jamie N; Miller, Laura C; Schlink, Sarah N; Kappes, Matthew A; Kehrli, Marcus E; Brockmeier, Susan L; Nicholson, Tracy L; Yang, Han-Chun; Faaberg, Kay S

    2013-01-20

    The pathogenesis of Type 2 highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) in 10-week old swine in the United States was investigated. rJXwn06, rescued from an infectious clone of Chinese HP-PRRSV, replicated in swine with at least 100-fold increased kinetics over U.S. strain VR-2332. rJXwn06 caused significant weight loss, exacerbated disease due to bacterial sepsis and more severe histopathological lung lesions in pigs exposed to HP-PRRSV than to those infected with VR-2332. Novel findings include identification of bacterial species present, the degree of thymic atrophy seen, and the inclusion of contact animals that highlighted the ability of HP-PRRSV to rapidly transmit between animals. Furthermore, comprehensive detailed cytokine analysis of serum, bronchoalveolar lavage fluid, and tracheobronchial lymph node tissue homogenate revealed a striking elevation in levels of cytokines associated with both innate and adaptive immunity in HP-PRRSV infected swine, and showed that contact swine differed in the degree of cytokine response. PMID:23079105

  17. Experimental Hamster Infection with a Strain of Leptospira borgpetersenii Ballum Isolated from a Reservoir Mouse in New Caledonia

    PubMed Central

    Matsui, Mariko; Roche, Louise; Soupé-Gilbert, Marie-Estelle; Roudier, Martine; Moniquet, Vincent; Goarant, Cyrille

    2015-01-01

    Leptospirosis is a neglected zoonosis caused by pathogenic Leptospira. In this study, we characterized the virulence of isolate B3-13S obtained from a wild mouse (Mus musculus) captured in New Caledonia, subsequently identified as a bacterium belonging to the L. borgpetersenii serogroup Ballum. Hamsters were infected with an intraperitoneal injection of 2 × 108 bacteria, resulting in severe histopathological organ damages consistent with tissue lesions previously observed with other strains. Hamsters were also injected with 1 × 108 or 5 × 107 bacteria and animals that recovered showed renal carriage of leptospires in concentrations similar to the bacterial load quantified in mouse kidneys, with urinary shedding of bacteria up to 4 weeks postinfection. The serogroup Ballum is increasingly reported in human leptospirosis, and these results highlight the use of the B3-13S isolate for the development of models resulting in either severe acute or chronic forms of the infection, allowing for better characterization of its pathogenesis. PMID:25758655

  18. Application of statistical experimental design for optimisation of bioinsecticides production by sporeless Bacillus thuringiensis strain on cheap medium

    PubMed Central

    Ben Khedher, Saoussen; Jaoua, Samir; Zouari, Nabil

    2013-01-01

    In order to overproduce bioinsecticides production by a sporeless Bacillus thuringiensis strain, an optimal composition of a cheap medium was defined using a response surface methodology. In a first step, a Plackett-Burman design used to evaluate the effects of eight medium components on delta-endotoxin production showed that starch, soya bean and sodium chloride exhibited significant effects on bioinsecticides production. In a second step, these parameters were selected for further optimisation by central composite design. The obtained results revealed that the optimum culture medium for delta-endotoxin production consists of 30 g L−1 starch, 30 g L−1 soya bean and 9 g L−1 sodium chloride. When compared to the basal production medium, an improvement in delta-endotoxin production up to 50% was noted. Moreover, relative toxin yield of sporeless Bacillus thuringiensis S22 was improved markedly by using optimised cheap medium (148.5 mg delta-endotoxins per g starch) when compared to the yield obtained in the basal medium (94.46 mg delta-endotoxins per g starch). Therefore, the use of optimised culture cheap medium appeared to be a good alternative for a low cost production of sporeless Bacillus thuringiensis bioinsecticides at industrial scale which is of great importance in practical point of view. PMID:24516462

  19. Determining the mechanical constitutive properties of metals as a function of strain rate and temperature: A combined experimental and modeling approach; Progress Report for 2004

    SciTech Connect

    I. Robertson; A. Beaudoin; J. Lambros

    2005-01-31

    Development and validation of constitutive models for polycrystalline materials subjected to high strain rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions (foreign object damage, high-strain rate forging, high-speed sheet forming, deformation behavior during forming, response to extreme conditions, etc.). To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be closely coupled with precise and targeted experimental measurements that not only verify the predictions of the models, but also provide input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experimentation is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models, which will include dislocation-grain boundary interactions for polycrystalline systems. One aspect of the program will involve the direct observation

  20. On the role of delocalization in benzene: Theoretical and experimental investigation of the effects of strained ring fusion

    SciTech Connect

    Faust, R.

    1993-04-01

    When an important compound`s discovery dates back as far as 1825, one would imagine that every facet of its chemical and physical properties has been illuminated in the meantime. Benzene, however, has not ceased to challenge the chemist`s notion of structure and bonding since its first isolation by Michael Faraday. This report is divided into the following six chapters: 1. Aromaticity -- Criteria, manifestations, structural limitations; 2. The role of delocalization in benzene; 3. The thermochemical properties of benzocyclobutadienologs; 4. Ab initio study of benzenes fused to four-membered rings; 5. Non-planar polycyclic aromatic hydrocarbons; and 6. Experimental details and input decks. 210 Refs.

  1. Experimental Evolution of Legionella pneumophila in Mouse Macrophages Leads to Strains with Altered Determinants of Environmental Survival

    PubMed Central

    Ensminger, Alexander W.; Yassin, Yosuf; Miron, Alexander; Isberg, Ralph R.

    2012-01-01

    The Gram-negative bacterium, Legionella pneumophila, is a protozoan parasite and accidental intracellular pathogen of humans. We propose a model in which cycling through multiple protozoan hosts in the environment holds L. pneumophila in a state of evolutionary stasis as a broad host-range pathogen. Using an experimental evolution approach, we tested this hypothesis by restricting L. pneumophila to growth within mouse macrophages for hundreds of generations. Whole-genome resequencing and high-throughput genotyping identified several parallel adaptive mutations and population dynamics that led to improved replication within macrophages. Based on these results, we provide a detailed view of the population dynamics of an experimentally evolving bacterial population, punctuated by frequent instances of transient clonal interference and selective sweeps. Non-synonymous point mutations in the flagellar regulator, fleN, resulted in increased uptake and broadly increased replication in both macrophages and amoebae. Mutations in multiple steps of the lysine biosynthesis pathway were also independently isolated, resulting in lysine auxotrophy and reduced replication in amoebae. These results demonstrate that under laboratory conditions, host restriction is sufficient to rapidly modify L. pneumophila fitness and host range. We hypothesize that, in the environment, host cycling prevents L. pneumophila host-specialization by maintaining pathways that are deleterious for growth in macrophages and other hosts. PMID:22693450

  2. Pathology of experimental Machupo virus infection, Chicava strain, in cynomolgus macaques (Macaca fascicularis) by intramuscular and aerosol exposure.

    PubMed

    Bell, T M; Shaia, C I; Bunton, T E; Robinson, C G; Wilkinson, E R; Hensley, L E; Cashman, K A

    2015-01-01

    Machupo virus, the causative agent of Bolivian hemorrhagic fever (BHF), is a highly lethal viral hemorrhagic fever of which little is known and for which no Food and Drug Administration-approved vaccines or therapeutics are available. This study evaluated the cynomolgus macaque as an animal model using the Machupo virus, Chicava strain, via intramuscular and aerosol challenge. The incubation period was 6 to 10 days with initial signs of depression, anorexia, diarrhea, mild fever, and a petechial skin rash. These were often followed by neurologic signs and death within an average of 18 days. Complete blood counts revealed leukopenia as well as marked thrombocytopenia. Serum chemistry values identified a decrease in total protein, marked increases in alanine aminotransferase and aspartate aminotransferase, and moderate increases in alkaline phosphatase. Gross pathology findings included a macular rash extending across the axillary and inguinal regions beginning at approximately 10 days postexposure as well as enlarged lymph nodes and spleen, enlarged and friable liver, and sporadic hemorrhages along the gastrointestinal mucosa and serosa. Histologic lesions consisted of foci of degeneration and necrosis/apoptosis in the haired skin, liver, pancreas, adrenal glands, lymph nodes, tongue, esophagus, salivary glands, stomach, small intestine, and large intestine. Lymphohistiocytic interstitial pneumonia was also present. Inflammation within the central nervous system (nonsuppurative encephalitis) was histologically apparent approximately 16 days postexposure and was generally progressive. This study provides insight into the course of Machupo virus infection in cynomolgus macaques and supports the usefulness of cynomolgus macaques as a viable model of human Machupo virus infection. PMID:24990481

  3. Transient rheological behavior of natural polysaccharide xanthan gum solutions in start-up shear flow fields: An experimental study using a strain-controlled rheometer

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Seok; Kim, Yong-Seok; Song, Ki-Won

    2015-08-01

    The objective of the present study is to experimentally investigate the transient rheological behavior of concentrated xanthan gum solutions in start-up shear flow fields. Using a strain-controlled rheometer, a number of constant shear rates were suddenly imposed to aqueous xanthan gum solutions with different concentrations and the resultant shear stress responses were measured with time. The main findings obtained from this study can be summarized as follows: (1) For all shear rates imposed, however low it may be, the shear stress is rapidly increased with time (stress overshoot) upon inception of steady shear flow before passing through the maximum stress value and then gradually decreased with time (stress decay) until reaching a steady state flow. (2) As the imposed shear rate is increased, a more pronounced stress overshoot takes place and the maximum stress value becomes larger, whereas both times at which the maximum stress is observed and needed to reach a steady state flow are shortened. (3) The maximum shear stress is linearly increased with shear rate in a double logarithmic scale and becomes larger with increasing concentration at equal shear rates. In addition, the time at which the maximum stress occurs exhibits a linear relationship with the inverse of shear rate in a double logarithmic scale for all xanthan gum solutions, regardless of their concentrations. (4) The shear stress is sharply increased with an increase in strain until reaching the maximum stress at small range of deformations. The maximum stress is observed at similar strain values, irrespective of the imposed shear rates lower than 10 1/s. (5) The Bird-Leider model can be successfully used with regard to quantitatively predicting the transient behavior of concentrated xanthan gum solutions. However, this model has a fatal weakness in terms of describing a decrease in shear stress (stress decay).

  4. Virological and serological findings in Rousettus aegyptiacus experimentally inoculated with vero cells-adapted hogan strain of Marburg virus.

    PubMed

    Paweska, Janusz T; Jansen van Vuren, Petrus; Masumu, Justin; Leman, Patricia A; Grobbelaar, Antoinette A; Birkhead, Monica; Clift, Sarah; Swanepoel, Robert; Kemp, Alan

    2012-01-01

    The Egyptian fruit bat, Rousettus aegyptiacus, is currently regarded as a potential reservoir host for Marburg virus (MARV). However, the modes of transmission, the level of viral replication, tissue tropism and viral shedding pattern remains to be described. Captive-bred R. aegyptiacus, including adult males, females and pups were exposed to MARV by different inoculation routes. Blood, tissues, feces and urine from 9 bats inoculated by combination of nasal and oral routes were all negative for the virus and ELISA IgG antibody could not be demonstrated for up to 21 days post inoculation (p.i.). In 21 bats inoculated by a combination of intraperitoneal/subcutaneous route, viremia and the presence of MARV in different tissues was detected on days 2-9 p.i., and IgG antibody on days 9-21 p.i. In 3 bats inoculated subcutaneously, viremia was detected on days 5 and 8 (termination of experiment), with virus isolation from different organs. MARV could not be detected in urine, feces or oral swabs in any of the 3 experimental groups. However, it was detected in tissues which might contribute to horizontal or vertical transmission, e.g. lung, intestines, kidney, bladder, salivary glands, and female reproductive tract. Viremia lasting at least 5 days could also facilitate MARV mechanical transmission by blood sucking arthropods and infections of susceptible vertebrate hosts by direct contact with infected blood. All bats were clinically normal and no gross pathology was identified on post mortem examination. This work confirms the susceptibility of R. aegyptiacus to infection with MARV irrespective of sex and age and contributes to establishing a bat-filovirus experimental model. Further studies are required to uncover the mode of MARV transmission, and to investigate the putative role of R. aegyptiacus as a reservoir host. PMID:23029039

  5. Virological and Serological Findings in Rousettus aegyptiacus Experimentally Inoculated with Vero Cells-Adapted Hogan Strain of Marburg Virus

    PubMed Central

    Paweska, Janusz T.; Jansen van Vuren, Petrus; Masumu, Justin; Leman, Patricia A.; Grobbelaar, Antoinette A.; Birkhead, Monica; Clift, Sarah; Swanepoel, Robert; Kemp, Alan

    2012-01-01

    The Egyptian fruit bat, Rousettus aegyptiacus, is currently regarded as a potential reservoir host for Marburg virus (MARV). However, the modes of transmission, the level of viral replication, tissue tropism and viral shedding pattern remains to be described. Captive-bred R. aegyptiacus, including adult males, females and pups were exposed to MARV by different inoculation routes. Blood, tissues, feces and urine from 9 bats inoculated by combination of nasal and oral routes were all negative for the virus and ELISA IgG antibody could not be demonstrated for up to 21 days post inoculation (p.i.). In 21 bats inoculated by a combination of intraperitoneal/subcutaneous route, viremia and the presence of MARV in different tissues was detected on days 2–9 p.i., and IgG antibody on days 9–21 p.i. In 3 bats inoculated subcutaneously, viremia was detected on days 5 and 8 (termination of experiment), with virus isolation from different organs. MARV could not be detected in urine, feces or oral swabs in any of the 3 experimental groups. However, it was detected in tissues which might contribute to horizontal or vertical transmission, e.g. lung, intestines, kidney, bladder, salivary glands, and female reproductive tract. Viremia lasting at least 5 days could also facilitate MARV mechanical transmission by blood sucking arthropods and infections of susceptible vertebrate hosts by direct contact with infected blood. All bats were clinically normal and no gross pathology was identified on post mortem examination. This work confirms the susceptibility of R. aegyptiacus to infection with MARV irrespective of sex and age and contributes to establishing a bat-filovirus experimental model. Further studies are required to uncover the mode of MARV transmission, and to investigate the putative role of R. aegyptiacus as a reservoir host. PMID:23029039

  6. Strain-dependent production of interleukin-17/interferon-γ and matrix remodeling–associated genes in experimental Candida albicans keratitis

    PubMed Central

    Zou, Yanli; Zhang, Hongbo; Li, Hongxia; Chen, Hao; Song, Wengang

    2012-01-01

    Purpose The aim of this study was to investigate the role of genetic background in determining the development or prognosis of experimental fungal keratitis by comparing the disease courses and related molecules of experimental Candida albicans in two common mouse strains. Methods After intrastromal inoculation of 1×105 C. albicans blastospores into corneas of Balb/c and C57BL/6 mice, all mice developed typical keratitis. The disease was monitored using a slit lamp microscope and scored for comparison of symptoms. At desired time points, blood was collected and corneal homogenates were prepared for enzyme-linked immunosorbent assay measurement of interferon (IFN)γ or interleukin (IL)17. Other corneas were processed for histological evaluation, pathogen load measurement, or total RNA extraction, the last of which was subjected to reverse transcription in conjunction with real-time PCR to measure genes of interest in terms of collagens, matrix metalloproteinases (MMPs), and the tissue inhibitors of MMPs (TIMPs). Results The infected corneas from the two strains presented different manifestations. Corneal transparency was less affected in Balb/c mice than in C57BL/6 mice, and Balb/c corneas contained fewer pathogens than C57BL/6 corneas during the measured period (10 days). In both strains, keratitis started to resolve around days 7–10, but C57BL/6 mice healed slower than Balb/c mice as indicated by disease presentation, histology, and pathogen burden assay. By day 7 post infection, pseudohyphae were rare but cellular infiltration remained intensive in both strains. The surface of the Balb/c corneas remained relatively intact and smooth, and C57BL/6 corneal lesions produced open erosion areas. Perforation was never seen in the current study setting. In both sera and corneas, IL17 expression increased earlier than IFNγ, and C57BL/6 mice produced higher IL17 levels and lower IFNγ levels than Balb/c mice. Compared with C57BL/6 mice, Balb/c corneas produced more MMP

  7. Failure to observe cross-fertilization between the Echinococcus granulosus G1 and G6 strains after an experimental mixed infection of the definitive host.

    PubMed

    Maillard, S; Benchikh-Elfegoun, M C; Kohil, K; Gottstein, B; Piarroux, R

    2011-01-10

    The classification within Echinococcus granulosus is currently under debate. To assess the reproductive potential between the G1 and G6 strains, an experimental double infection was carried out in a dog. First, two fertile hydatid cysts were collected in Algeria from a cow and a dromedary. They were identified as being G1 and G6 with the markers coxI and nadI. Subsequently, a dog was inoculated with protoscoleces from these two cysts. Sixty days after infection, 85 adult worms were recovered from the intestine of the dog. Then, the two cysts and each of these individual parasites were characterized with the multilocus microsatellite EmsB and compared. For all worms, the scolex and the gravid proglottids, separately analyzed, provided an identical profile: the G1 profile was observed in 70 adults, and the G6 profile in the 15 others. No single worm exhibited a hybrid G1/G6 profile. This result suggests the absence of cross-fertilizing between the two taxa under the given experimental conditions, and so, the presence of a strong cross-reproductive barrier. This observation corroborates with the recent reclassification of G1 and G6 within two distinct species. PMID:20965659

  8. Experimental and theoretical analysis of the temperature dependence of the two-dimensional electron mobility in a strained Si quantum well

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahisa; Tsuchiya, Go; Hoshi, Yusuke; Sawano, Kentarou; Shiraki, Yasuhiro; Itoh, Kohei M.

    2012-04-01

    The temperature dependence of the mobility of the two-dimensional electron gas (2DEG) in a silicon quantum well strained by Si0.7Ge0.3 relaxed buffer layer is determined precisely by a mobility spectrum analysis. The 2DEG mobility is 2780 cm2/V s at room temperature and, upon cooling, increases continuously to reach μ2DEG=7.4×104cm2/Vs at 7 K. A back gate installed on the sample changes the 2DEG concentration n successfully to establish μ2DEG∝n1.4 at the constant temperature T =10K, implying that the scattering at such low temperature is limited solely by the remote ionized impurity scattering. Based on this finding, theoretical analysis of the temperature dependence of μ2DEG is performed based on the relaxation time approximation using 2DEG wavefunctions and subband structures determined self-consistently and including three major scatterings; by intravalley acoustic phonons, intervalley g-processes of longitudinal optical (LO) phonons, and remote ionized impurities. The calculation included only three fitting parameters, the shear deformation potential (Ξu=9.5eV), LO phonon deformation potential for g-process scattering (D0=9.0×108eV/cm), and sheet density of remote ionized impurities that have been determined by quantitative comparison with our experimental results. The temperature dependence of μ2DEG calculated theoretically show excellent agreement with experimentally determined μ2DEG.

  9. Theoretical and Experimental Examination of the Intermediate-Band Concept for Strain-Balanced (In,Ga)As/Ga(As,P) Quantum Dot Solar Cells

    SciTech Connect

    Popescu, V.; Bester, G.; Hanna, M. C.; Norman, A. G.; Zunger, A.

    2008-11-01

    The intermediate-band solar cell (IBSC) concept has been recently proposed to enhance the current gain from the solar spectrum while maintaining a large open-circuit voltage. Its main idea is to introduce a partially occupied intermediate band (IB) between the valence band (VB) and conduction band (CB) of the semiconductor absorber, thereby increasing the photocurrent by the additional VB {yields} IB and IB {yields} CB absorptions. The confined electron levels of self-assembled quantum dots (QDs) were proposed as potential candidates for the implementation of such an IB. Here we report experimental and theoretical investigations on In{sub y}Ga{sub 1-y}As dots in a GaAs{sub 1-x}P{sub x} matrix, examining its suitability for acting as IBSCs. The system has the advantage of allowing strain symmetrization within the structure, thus enabling the growth of a large number of defect-free QD layers, despite the significant size mismatch between the dot material and the surrounding matrix. We examine the various conditions related to the optimum functionality of the IBSC, in particular those connected to the optical and electronic properties of the system. We find that the intensity of absorption between QD-confined electron states and host CB is weak because of their localized-to-delocalized character. Regarding the position of the IB within the matrix band gap, we find that, whereas strain symmetrization can indeed permit growth of multiple dot layers, the current repertoire of GaAs{sub 1-x}P{sub x} barrier materials, as well as In{sub y}Ga{sub 1-y} As dot materials, does not satisfy the ideal energetic locations for the IB. We conclude that other QD systems must be considered for QD-IBSC implementations.

  10. Escherichia coli Strain Nissle 1917 Ameliorates Experimental Colitis via Toll-Like Receptor 2- and Toll-Like Receptor 4-Dependent Pathways

    PubMed Central

    Grabig, A.; Paclik, D.; Guzy, C.; Dankof, A.; Baumgart, D. C.; Erckenbrecht, J.; Raupach, B.; Sonnenborn, U.; Eckert, J.; Schumann, R. R.; Wiedenmann, B.; Dignass, A. U.; Sturm, A.

    2006-01-01

    Toll-like receptors (TLRs) are key components of the innate immune system that trigger antimicrobial host defense responses. The aim of the present study was to analyze the effects of probiotic Escherichia coli Nissle strain 1917 in experimental colitis induced in TLR-2 and TLR-4 knockout mice. Colitis was induced in wild-type (wt), TLR-2 knockout, and TLR-4 knockout mice via administration of 5% dextran sodium sulfate (DSS). Mice were treated with either 0.9% NaCl or 107 E. coli Nissle 1917 twice daily, followed by the determination of disease activity, mucosal damage, and cytokine secretion. wt and TLR-2 knockout mice exposed to DSS developed acute colitis, whereas TLR-4 knockout mice developed significantly less inflammation. In wt mice, but not TLR-2 or TLR-4 knockout mice, E. coli Nissle 1917 ameliorated colitis and decreased proinflammatory cytokine secretion. In TLR-2 knockout mice a selective reduction of gamma interferon secretion was observed after E. coli Nissle 1917 treatment. In TLR-4 knockout mice, cytokine secretion was almost undetectable and not modulated by E. coli Nissle 1917, indicating that TLR-4 knockout mice do not develop colitis similar to the wt mice. Coculture of E. coli Nissle 1917 and human T cells increased TLR-2 and TLR-4 protein expression in T cells and increased NF-κB activity via TLR-2 and TLR-4. In conclusion, our data provide evidence that E. coli Nissle 1917 ameliorates experimental induced colitis in mice via TLR-2- and TLR-4-dependent pathways. PMID:16790781

  11. Experimental demonstration of strained Si nanowire GAA n-TFETs and inverter operation with complementary TFET logic at low supply voltages

    NASA Astrophysics Data System (ADS)

    Luong, G. V.; Strangio, S.; Tiedemannn, A.; Lenk, S.; Trellenkamp, S.; Bourdelle, K. K.; Zhao, Q. T.; Mantl, S.

    2016-01-01

    In this work, strained Si (sSi) nanowire array of n-TFETs with gates all around (GAA) yielding ON-currents of 5 μA/μm at a supply voltage Vdd = 0.5 V are presented. Tilted ion implantation with BF2+ into NiSi2 dopant has been used to form a highly doped pocket for the source to channel tunneling junction. These devices indicate sub-threshold slopes (SS) below 60 mV/dec for Id < 10-4 μA/μm at Vds = 0.1 V at room temperature. Common analog device characteristics have been determined at Vdd = 0.5 V resulting in a transconductance gm = 24 μS/μm, transconductance efficiency gm/Id = 23 V-1 and the conductance gd = 0.8 μS/μm normalized to the gate width. Based on the good saturation behavior in the output characteristic, an intrinsic gain of 188 is observed. In addition, we present operation of the first experimental sSi GAA NW C-TFET inverter. In spite of ambipolar behavior, the voltage transfer curves (VTC) indicate wide and constant noise margin levels with steep transitions offering a voltage gain of 25 at Vdd = 1 V.

  12. Non-Newtonian rheology of igneous melts at high stresses and strain rates: Experimental results for rhyolite, andesite, basalt, and nephelinite

    NASA Astrophysics Data System (ADS)

    Webb, Sharon L.; Dingwell, Donald B.

    1990-09-01

    The stress-strain rate relationships of four silicate melt compositions (high-silica rhyolite, andesite, tholeiitic basalt, and nephelinite) have been studied using the fiber elongation method. Measurements were conducted in a stress range of 10-400 MPa and a strain rate range of 10-6 to 10-3 s-1. The stress-strain rate relationships for all the melts exhibit Newtonian behavior at low strain rates, but non-Newtonian (nonlinear stress-strain rate) behavior at higher strain rates, with strain rate increasing faster than the applied stress. The decrease in calculated shear viscosity with increasing strain rate precedes brittle failure of the fiber as the applied stress approaches the tensile strength of the melt. The decrease in viscosity observed at the high strain rates of the present study ranges from 0.25 to 2.54 log10 Pa s. The shear relaxation times τ of these melts have been estimated from the low strain rate, Newtonian, shear viscosity, using the Maxwell relationship τ = ηs/G∞. Non-Newtonian shear viscosity is observed at strain rates (ɛ˙=time-1) equivalent to time scales that lie 3 log10 units of time above the calculated relaxation time. Brittle failure of the fibers occurs 2 log10 units of time above the relaxation time. This study illustrates that the occurrence of non-Newtonian viscous flow in geological melts can be predicted to within a log10 unit of strain rate. High-silica rhyolite melts involved in ash flow eruptions are expected to undergo a non-Newtonian phase of deformation immediately prior to brittle failure.

  13. Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes

    PubMed Central

    Hendrickx, Sarah; Eberhardt, Eline; Garcia-Hernandez, Raquel; Lachaud, Laurence; Cotton, James; Sanders, Mandy; Cuypers, Bart; Imamura, Hideo; Dujardin, Jean-Claude; Delputte, Peter; Cos, Paul; Caljon, Guy; Gamarro, Francisco; Castanys, Santiago

    2016-01-01

    During the last decade miltefosine (MIL) has been used as first-line treatment for visceral leishmaniasis in endemic areas with antimonial resistance, but a decline in clinical effectiveness is now being reported. While only two MIL-resistant Leishmania infantum strains from HIV co-infected patients have been documented, phenotypic MIL-resistance for L. donovani has not yet been identified in the laboratory. Hence, a better understanding of the factors contributing to increased MIL-treatment failure is necessary. Given the paucity of defined MIL-resistant L. donovani clinical isolates, this study used an experimental amastigote-selected MIL-resistant L. infantum isolate (LEM3323). In-depth exploration of the MIL-resistant phenotype was performed by coupling genomic with phenotypic data to gain insight into gene function and the mutant phenotype. A naturally MIL-resistant L. infantum clinical isolate (LEM5159) was included to compare both datasets. Phenotypically, resistance was evaluated by determining intracellular amastigote susceptibility in vitro and actual MIL-uptake. Genomic analysis provided supportive evidence that the resistance selection model on intracellular amastigotes can be a good proxy for the in vivo field situation since both resistant strains showed mutations in the same inward transporter system responsible for the acquired MIL-resistant phenotype. In line with previous literature findings in promastigotes, our data confirm a defective import machinery through inactivation of the LiMT/LiRos3 protein complex as the main mechanism for MIL-resistance also in intracellular amastigotes. Whole genome sequencing analysis of LEM3323 revealed a 2 base pair deletion in the LiMT gene that led to the formation an early stop codon and a truncation of the LiMT protein. Interestingly, LEM5159 revealed mutations in both the LiMT and LiRos3 genes, resulting in an aberrant expression of the LiMT protein. To verify that these mutations were indeed accountable for

  14. Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes.

    PubMed

    Mondelaers, Annelies; Sanchez-Cañete, Maria P; Hendrickx, Sarah; Eberhardt, Eline; Garcia-Hernandez, Raquel; Lachaud, Laurence; Cotton, James; Sanders, Mandy; Cuypers, Bart; Imamura, Hideo; Dujardin, Jean-Claude; Delputte, Peter; Cos, Paul; Caljon, Guy; Gamarro, Francisco; Castanys, Santiago; Maes, Louis

    2016-01-01

    During the last decade miltefosine (MIL) has been used as first-line treatment for visceral leishmaniasis in endemic areas with antimonial resistance, but a decline in clinical effectiveness is now being reported. While only two MIL-resistant Leishmania infantum strains from HIV co-infected patients have been documented, phenotypic MIL-resistance for L. donovani has not yet been identified in the laboratory. Hence, a better understanding of the factors contributing to increased MIL-treatment failure is necessary. Given the paucity of defined MIL-resistant L. donovani clinical isolates, this study used an experimental amastigote-selected MIL-resistant L. infantum isolate (LEM3323). In-depth exploration of the MIL-resistant phenotype was performed by coupling genomic with phenotypic data to gain insight into gene function and the mutant phenotype. A naturally MIL-resistant L. infantum clinical isolate (LEM5159) was included to compare both datasets. Phenotypically, resistance was evaluated by determining intracellular amastigote susceptibility in vitro and actual MIL-uptake. Genomic analysis provided supportive evidence that the resistance selection model on intracellular amastigotes can be a good proxy for the in vivo field situation since both resistant strains showed mutations in the same inward transporter system responsible for the acquired MIL-resistant phenotype. In line with previous literature findings in promastigotes, our data confirm a defective import machinery through inactivation of the LiMT/LiRos3 protein complex as the main mechanism for MIL-resistance also in intracellular amastigotes. Whole genome sequencing analysis of LEM3323 revealed a 2 base pair deletion in the LiMT gene that led to the formation an early stop codon and a truncation of the LiMT protein. Interestingly, LEM5159 revealed mutations in both the LiMT and LiRos3 genes, resulting in an aberrant expression of the LiMT protein. To verify that these mutations were indeed accountable for

  15. Low-dose benznidazole treatment results in parasite clearance and attenuates heart inflammatory reaction in an experimental model of infection with a highly virulent Trypanosoma cruzi strain.

    PubMed

    Cevey, Ágata Carolina; Mirkin, Gerardo Ariel; Penas, Federico Nicolás; Goren, Nora Beatriz

    2016-04-01

    Chagas disease, caused by Trypanosoma cruzi, is the main cause of dilated cardiomyopathy in the Americas. Antiparasitic treatment mostly relies on benznidazole (Bzl) due to Nifurtimox shortage or unavailability. Both induce adverse drug effects (ADE) of varied severity in many patients, leading to treatment discontinuation or abandonment. Since dosage may influence ADE, we aimed to assess Bzl efficacy in terms of parasiticidal and anti-inflammatory activity, using doses lower than those previously reported. BALB/c mice infected with the T. cruzi RA strain were treated with different doses of Bzl. Parasitaemia, mortality and weight change were assessed. Parasite load, tissue infiltrates and inflammatory mediators were studied in the heart. Serum creatine kinase (CK) activity was determined as a marker of heart damage. The infection-independent anti-inflammatory properties of Bzl were studied in an in vitro model of LPS-treated cardiomyocyte culture. Treatment with 25 mg/kg/day Bzl turned negative the parasitological parameters, induced a significant decrease in IL-1β, IL-6 and NOS2 in the heart and CK activity in serum, to normal levels. No mortality was observed in infected treated mice. Primary cultured cardiomyocytes treated with Bzl showed that inflammatory mediators were reduced via inhibition of the NF-κB pathway. A Bzl dose lower than that previously reported for treatment of experimental Chagas disease exerts adequate antiparasitic and anti-inflammatory effects leading to parasite clearance and tissue healing. This may be relevant to reassess the dose currently used for the treatment of human Chagas disease, aiming to minimize ADE. PMID:26862474

  16. Low-dose benznidazole treatment results in parasite clearance and attenuates heart inflammatory reaction in an experimental model of infection with a highly virulent Trypanosoma cruzi strain

    PubMed Central

    Cevey, Ágata Carolina; Mirkin, Gerardo Ariel; Penas, Federico Nicolás; Goren, Nora Beatriz

    2015-01-01

    Chagas disease, caused by Trypanosoma cruzi, is the main cause of dilated cardiomyopathy in the Americas. Antiparasitic treatment mostly relies on benznidazole (Bzl) due to Nifurtimox shortage or unavailability. Both induce adverse drug effects (ADE) of varied severity in many patients, leading to treatment discontinuation or abandonment. Since dosage may influence ADE, we aimed to assess Bzl efficacy in terms of parasiticidal and anti-inflammatory activity, using doses lower than those previously reported. BALB/c mice infected with the T. cruzi RA strain were treated with different doses of Bzl. Parasitaemia, mortality and weight change were assessed. Parasite load, tissue infiltrates and inflammatory mediators were studied in the heart. Serum creatine kinase (CK) activity was determined as a marker of heart damage. The infection-independent anti-inflammatory properties of Bzl were studied in an in vitro model of LPS-treated cardiomyocyte culture. Treatment with 25 mg/kg/day Bzl turned negative the parasitological parameters, induced a significant decrease in IL-1β, IL-6 and NOS2 in the heart and CK activity in serum, to normal levels. No mortality was observed in infected treated mice. Primary cultured cardiomyocytes treated with Bzl showed that inflammatory mediators were reduced via inhibition of the NF-κB pathway. A Bzl dose lower than that previously reported for treatment of experimental Chagas disease exerts adequate antiparasitic and anti-inflammatory effects leading to parasite clearance and tissue healing. This may be relevant to reassess the dose currently used for the treatment of human Chagas disease, aiming to minimize ADE. PMID:26862474

  17. Virulence for BALB/c mice and antigenic diversity of eight Toxoplasma gondii strains isolated from animals and humans in Brazil.

    PubMed

    Ferreira, A M; Martins, M S; Vitor, R W

    2001-06-01

    With the purpose of establishing alternative parameters to determine the virulence of Toxoplasma gondii strains, the antigenic diversity of eight strains of the parasite isolated in Brazil was evaluated. BALB/c mice were inoculated i.p. with 10(0), 10(1), 10(2) and 10(3) tachyzoites from each strain. The mortality and time to death of the animals showed that T. gondii strains may be divided in three groups: three strains resulted in 100% of mortality, 5-10 days post inoculation (DPI); three strains resulted in 100% of mortality, 7-19 DPI and brain cysts were observed in the mice which were inoculated; two strains resulted in 0% of mortality, 30 DPI. The analysis of the antigenic profile of different T. gondii strains through Western blotting, using rabbit antiserum to T. gondii, revealed that most antigens are similar to all strains. The mAb 4C3H4 recognized antigens only in the RH, N, AS28 and ME49 strains. PMID:11474987

  18. Experimental benznidazole treatment of Trypanosoma cruzi II strains isolated from children of the Jequitinhonha Valley, Minas Gerais, Brazil, with Chagas disease

    PubMed Central

    de Oliveira-Silva, Jaquelline Carla Valamiel; Machado-de-Assis, Girley Francisco; Oliveira, Maykon Tavares; Paiva, Nívia Carolina Noguieira; Araújo, Márcio Sobreira Silva; Carneiro, Cláudia Martins; Martins-Filho, Olindo Assis; Martins, Helen Rodrigues; de Lana, Marta

    2015-01-01

    Trypanosoma cruzi strains from distinct geographic areas show differences in drug resistance and association between parasites genetic and treatment response has been observed. Considering that benznidazole (BZ) can reduce the parasite burden and tissues damage, even in not cured animals and individuals, the goal is to assess the drug response to BZ of T. cruzi II strains isolated from children of the Jequitinhonha Valley, state of Minas Gerais, Brazil, before treatment. Mice infected and treated with BZ in both phases of infection were compared with the untreated and evaluated by fresh blood examination, haemoculture, polymerase chain reaction, conventional (ELISA) and non-conventional (FC-ALTA) serologies. In mice treated in the acute phase, a significant decrease in parasitaemia was observed for all strains. Positive parasitological and/or serological tests in animals treated during the acute and chronic (95.1-100%) phases showed that most of the strains were BZ resistant. However, beneficial effect was demonstrated because significant reduction (p < 0.05%) and/or suppression of parasitaemia was observed in mice infected with all strains (acute phase), associated to reduction/elimination of inflammation and fibrosis for two/eight strains. BZ offered some benefit, even in not cured animals, what suggest that BZ use may be recommended at least for recent chronic infection of the studied region. PMID:25742267

  19. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1997-01-01

    Logarithmic strain is the preferred measure of strain used by materials scientists, who typically refer to it as the "true strain." It was Nadai who gave it the name "natural strain," which seems more appropriate. This strain measure was proposed by Ludwik for the one-dimensional extension of a rod with length l. It was defined via the integral of dl/l to which Ludwik gave the name "effective specific strain." Today, it is after Hencky, who extended Ludwik's measure to three-dimensional analysis by defining logarithmic strains for the three principal directions.

  20. Accurate strain measurements in highly strained Ge microbridges

    NASA Astrophysics Data System (ADS)

    Gassenq, A.; Tardif, S.; Guilloy, K.; Osvaldo Dias, G.; Pauc, N.; Duchemin, I.; Rouchon, D.; Hartmann, J.-M.; Widiez, J.; Escalante, J.; Niquet, Y.-M.; Geiger, R.; Zabel, T.; Sigg, H.; Faist, J.; Chelnokov, A.; Rieutord, F.; Reboud, V.; Calvo, V.

    2016-06-01

    Ge under high strain is predicted to become a direct bandgap semiconductor. Very large deformations can be introduced using microbridge devices. However, at the microscale, strain values are commonly deduced from Raman spectroscopy using empirical linear models only established up to ɛ100 = 1.2% for uniaxial stress. In this work, we calibrate the Raman-strain relation at higher strain using synchrotron based microdiffraction. The Ge microbridges show unprecedented high tensile strain up to 4.9% corresponding to an unexpected Δω = 9.9 cm-1 Raman shift. We demonstrate experimentally and theoretically that the Raman strain relation is not linear and we provide a more accurate expression.

  1. Toxoplasma gondii: Effects of diphenyl diselenide in experimental toxoplasmosis on biomarkers of cardiac function.

    PubMed

    Machado, Vanessa S; Bottari, Nathieli B; Baldissera, Matheus D; Isabel de Azevedo, Maria; Rech, Virginia C; Ianiski, Francine R; Vaucher, Rodrigo A; Mendes, Ricardo E; Camillo, Giovana; Vogel, Fernanda F; de la Rue, Mario L; Carmo, Guilherme M; Tonin, Alexandre A; Da Silva, Aleksandro S

    2016-08-01

    This study aimed to investigate the effects of diphenyl diselenide (PhSe)2 to treat mice experimentally infected by Toxoplasma gondii on seric biomarkers of cardiac function (creatine kinase, creatine kinase MB, troponin, and myoglobin), and lactate dehydrogenase, as well as to evaluate the enzymatic activity of creatine kinase (CK) and adenylate kinase (AK) in heart tissue. For the study, 40 female mice were divided into four groups of 10 animals each: the group A (uninfected and untreated), the group B (uninfected and treated), the group C (infected and untreated) and the group D (infected and treated). The inoculation was performed with 50 cysts of T. gondii (ME-49 strain). Mice from groups B and D were treated at days 1 and 20 post-infection (PI) with 5 μmol kg(-1) of (PhSe)2 subcutaneously. On day 30 PI, the mice were anesthetized and euthanized for blood and heart collection. As a result, it was observed a decrease in AK activity (P < 0.01) in the heart samples of groups C and D compared to the group A. Cardiac CK increased in the group C compared to the group A (P < 0.01). CK levels increased in infected mice (the group C) compared to other groups (A and D). Regarding CK-MB level, there was a decrease in the group D compared to the group B, without statistical difference compared to control groups (A and C). It was observed an increase on myoglobin in groups C and D, differently of troponin, which did not show statistical difference (P < 0.05) between groups. Mice from the group C showed an increase in lactate dehydrogenase (LDH) levels compared to other groups (A, B, and D). Histopathological evaluation of heart samples revealed necrosis, hemorrhagic regions and inflammatory infiltrates in mice from the Group C, differently from the group D where animals showed only inflammatory infiltrates. Based on these results we conclude that the (PhSe)2 had a protective effect on the heart in experimental toxoplasmosis by modulating tissue and seric CK

  2. Natural Strain

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1995-01-01

    The purpose of this paper is to present a consistent and thorough development of the strain and strain-rate measures affiliated with Hencky. Natural measures for strain and strain-rate, as I refer to them, are first expressed in terms of of the fundamental body-metric tensors of Lodge. These strain and strain-rate measures are mixed tensor fields. They are mapped from the body to space in both the Eulerian and Lagrangian configurations, and then transformed from general to Cartesian fields. There they are compared with the various strain and strain-rate measures found in the literature. A simple Cartesian description for Hencky strain-rate in the Lagrangian state is obtained.

  3. Construction of the Inbred Strain.

    PubMed

    Shinya, Minori

    2016-01-01

    Genetically homogeneous populations such as inbred strains are valuable experimental tools in various fields of biomedical analyses. In many animals, inbred strains are established by consecutive sib-pair mating for a minimum of 20 generations. As the generation proceeds, fitness of the population reduces usually. Therefore, in order to establish inbred strains, the important point is the selection of pairs in good condition at each generation. Here, I describe the procedure and tips for generating inbred strains in zebrafish. PMID:27464804

  4. Experimental and analytical analysis of stress-strain behavior in a (90/0 deg)2s, SiC/Ti-15-3 laminate

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Melis, Matthew E.; Tong, Mike

    1991-01-01

    The nonlinear stress strain behavior of 90 degree/0 degree sub 2s, SiC/Ti-15-3 composite laminate was numerically investigated with a finite element, unit cell approach. Tensile stress-strain curves from room temperature experiments depicted three distinct regions of deformation, and these regions were predicted by finite element analysis. The first region of behavior, which was linear elastic, occurred at low applied stresses. As applied stresses increased, fiber/matrix debonding in the 90 degree plies caused a break in the stress-strain curve and initiated a second linear region. In this second region, matrix plasticity in the 90 degree plies developed. The third region, which was typified by nonlinear, stress-strain behavior occr red at high stresses. In this region, the onset of matrix plasticity in the 0 degree plies stiffened the laminate in the direction transverse to the applied load. Metallographic sections confirmed the existence of matrix plasticity in specific areas of the structure. Finite element analysis also predicted these locations of matrix slip.

  5. Comparison of the efficacy of Brucella suis strain 2 and Brucella melitensis Rev. 1 live vaccines against a Brucella melitensis experimental infection in pregnant ewes.

    PubMed

    Verger, J M; Grayon, M; Zundel, E; Lechopier, P; Olivier-Bernardin, V

    1995-02-01

    The comparative efficacy of Brucella suis strain 2 (S2) and Brucella melitensis strain Rev. 1 (Rev. 1) live vaccines in protecting sheep against B. melitensis infection was evaluated by clinical and bacteriological examination of ewes vaccinated conjunctivally with a dose of 1 x 10(9) c.f.u. when 4 months old and then challenged with 5 x 10(7) c.f.u. of the B. melitensis virulent strain 53H38 (H38) at the middle of the first or second pregnancy following vaccination. Animals were considered to be protected when no abortion, no excretion of the challenge strain and no infection at slaughter occurred. The percentages of protection in Rev. 1-vaccinated groups challenged during either first (80%) or second (62%) pregnancy were significantly different (p < 0.001 and p < 0.05, respectively) compared with those of the relevant unvaccinated control groups. In contrast no significant difference in protection was found between the S2-vaccinated and control groups. PMID:7625115

  6. Development and evaluation of an experimental vaccination program using a live avirulent Salmonella typhimurium strain to protect immunized chickens against challenge with homologous and heterologous Salmonella serotypes.

    PubMed Central

    Hassan, J O; Curtiss, R

    1994-01-01

    A stable live avirulent, genetically modified delta cya delta crp Salmonella typhimurium vaccine strain, chi 3985, was used in several vaccination strategies to evaluate its use in the control of Salmonella infection in chickens. Oral vaccination of chickens at 1 and at 14 days of age with 10(8) CFU of chi 3985 protected against invasion of spleen, ovary, and bursa of Fabricius and colonization of the ileum and cecum in chickens challenged with 10(6) CFU of virulent homologous Salmonella strains from group B. Chickens challenged with heterologous Salmonella strains from groups C, D, and E were protected against visceral invasion of spleen and ovary, while invasion of the bursa of Fabricius and colonization of ileum and cecum was reduced in vaccinated chickens. Oral vaccination at 2 and at 4 weeks of age induced an excellent protection against challenge with virulent group B Salmonella serotypes and very good protection against challenge with group D or E Salmonella serotypes, while protection against challenge with group C Salmonella serotypes was marginal but significant. Vaccination at 2 and at 4 weeks of age also protected vaccinated chickens against challenge with 10(8) CFU of highly invasive S. typhimurium or S. enteritidis strains. The protection of chickens vaccinated with chi 3985 against challenge with homologous and heterologous Salmonella serotypes is outstanding, and the complete protection against ovarian invasion in chickens challenged with 10(8) CFU of highly invasive S. typhimurium or S. enteritidis strains suggests that vaccination of chickens with chi 3985 can complement the present hygiene- and sanitation-based Salmonella control measures. This paper reports a breakthrough in the use of live avirulent vaccine to control Salmonella carriers in chickens. PMID:7960134

  7. Colonization of C57BL/6 Mice by a Potential Probiotic Bifidobacterium bifidum Strain under Germ-Free and Specific Pathogen-Free Conditions and during Experimental Colitis

    PubMed Central

    Grimm, Verena; Radulovic, Katarina; Riedel, Christian U.

    2015-01-01

    The effects of at least some probiotics are restricted to live, metabolically active bacteria at their site of action. Colonization of and persistence in the gastrointestinal tract is thus contributing to the beneficial effects of these strains. In the present study, colonization of an anti-inflammatory Bifidobacterium bifidum strain was studied in C57BL/6J mice under germ-free (GF) and specific pathogen-free (SPF) conditions as well as during dextran sulfate sodium (DSS)-induced colitis. B. bifidum S17/pMGC was unable to stably colonize C57BL/6J mice under SPF conditions. Mono-association of GF mice by three doses on consecutive days led to long-term, stable detection of up to 109 colony forming units (CFU) of B. bifidum S17/pMGC per g feces. This stable population was rapidly outcompeted upon transfer of mono-associated animals to SPF conditions. A B. animalis strain was isolated from the microbiota of these re-conventionalized mice. This B. animalis strain displayed significantly higher adhesion to murine CMT–93 intestinal epithelial cells (IECs) than to human Caco–2 IECs (p = 0.018). Conversely, B. bifidum S17/pMGC, i.e., a strain of human origin, adhered at significantly higher levels to human compared to murine IECs (p < 0.001). Disturbance of the gut ecology and induction of colitis by DSS-treatment did not promote colonization of the murine gastrointestinal tract (GIT) by B. bifidum S17/pMGC. Despite its poor colonization of the mouse GIT, B. bifidum S17/pMGC displayed a protective effect on DSS-induced colitis when administered as viable bacteria but not as UV-inactivated preparation. Collectively, these results suggest a selective disadvantage of B. bifidum S17/pMGC in the competition with the normal murine microbiota and an anti-inflammatory effect that requires live, metabolically active bacteria. PMID:26439388

  8. Lactobacillus reuteri strains reduce incidence and severity of experimental necrotizing enterocolitis via modulation of TLR4 and NF-κB signaling in the intestine.

    PubMed

    Liu, Yuying; Fatheree, Nicole Y; Mangalat, Nisha; Rhoads, Jon Marc

    2012-03-15

    Necrotizing enterocolitis (NEC) is the leading gastrointestinal cause of mortality and morbidity in the premature infant. Premature infants have a delay in intestinal colonization by commensal bacteria and colonization with potentially pathogenic organisms. Lactobacillus reuteri is a probiotic that inhibits enteric infections, modulates the immune system, and may be beneficial to prevent NEC. In previous studies, L. reuteri strains DSM 17938 and ATCC PTA 4659 differentially modulated inflammation in vitro; however, the strains had equivalent anti-inflammatory responses in LPS feeding-induced ileitis in neonatal rats in vivo. The impact of these two strains in the prevention of NEC has not been previously investigated. NEC was induced in newborn rats by orogastric formula feeding and exposure to hypoxia. L. reuteri was added to the formula to prevent NEC. NEC score, Toll-like receptor (TLR)-signaling genes, phospho-IκB activity, and cytokine levels in the intestine were examined. Both strains significantly increased survival rate and decreased the incidence and severity of NEC, with optimal effects from DSM 17938. In response to probiotic, mRNA expression of IL-6, TNF-α, TLR4, and NF-κB was significantly downregulated, while mRNA levels of anti-inflammatory cytokine IL-10 were significantly upregulated. In parallel, L. reuteri treatment led to decrease intestinal protein levels of TLR4 and cytokine levels of TNF-α and IL-1β in newborn rats with NEC. Both strains significantly inhibited not only intestinal LPS-induced phospho-IκB activity in an ex vivo study but also decreased the levels of phospho-IκB in the intestines of NEC rat model. Cow milk formula feeding produced a similar but milder proinflammatory profile in the intestine that was also ameliorated by 17938. Our studies demonstrate that each of the two L. reuteri strains has potential therapeutic value in our NEC model and in enteritis associated with cow milk feeding. These results support the

  9. Sandstone compaction under actively controlled uniaxial strain conditions - an experimental study on the causes of subsidence in the Dutch Wadden Area

    NASA Astrophysics Data System (ADS)

    Hol, Sander; Mossop, Antony; van der Linden, Arjan; Zuiderwijk, Pedro; Makurat, Axel; van Eijs, Rob

    2016-04-01

    In the Wadden Sea, a tidal-flat area located between the North Sea and the Dutch mainland shore, and UNESCO World Heritage site, subsidence could potentially impact the ecological system. To guide the licensing process governing gas extraction for the area by a solid understanding of the system's response to production, Nederlandse Aardolie Maatschappij (NAM) has carried out a study on the magnitudes, timing, and mechanisms of subsidence related to gas production. As part of this study program, we address the effect of production-induced reservoir compaction, using core samples from the Moddergat field located at the Wadden Sea coastline, from a depth of ~3800 m TVDSS, to assess the nature of the compaction mechanisms that operate. In this contribution, we focus on the uniaxial strain response of Permian, Aeolian sandstone to pore pressure depletion. As the majority of experiments reported in the literature are conducted under triaxial stress conditions, this data set is somewhat unique, and can help confirm the validity of micromechanical processes found for triaxial stress conditions. We report over 30 data sets of experiments carried out using 1.0 and 1.5 inch diameter plugs, sub-sampled from the extracted sandstone core material. The experiments start at in-situ conditions of pore pressure (Pf=~57 MPa), stress (Sv=~80 MPa, Sh=~67 MPa) and temperature (T up to 100 °C), and deplete to a pore pressure of 3 MPa, under actively controlled lateral constraint boundary conditions (i.e. uniaxial strain). Care was taken to systematically vary porosity and sample morphology to ensure representation of the intra-reservoir variability. Our laboratory data show that pressure-depletion results in a strain in the range of 5·10-3-1·10-2 over the total duration of the experiments of 5-12 weeks, with approximately 80% of the total strain response being close to instantaneous, and 20% developing over time. The total strain response develops during depletion as a result of

  10. Experimental infection of rock pigeons (Columba livia) with three West Nile virus lineage 1 strains isolated in Italy between 2009 and 2012.

    PubMed

    Spedicato, M; Carmine, I; Bellacicco, A L; Marruchella, G; Marini, V; Pisciella, M; Di Francesco, G; Lorusso, A; Monaco, F; Savini, G

    2016-04-01

    West Nile virus (WNV) circulation dynamics in the context of the urban environment is not yet elucidated. In this perspective, three groups of eight rock pigeons (Columbia livia) were inoculated with three WNV lineage 1 strains isolated in Italy between 2009 and 2012. The pigeons did not develop any clinical signs consistent with WNV acute infection. All animals seroconverted and shed virus up to 15 days post-infection by the oral or cloacal routes. In all infected groups viraemia lasted for 4 days post-infection. No WNV-specific gross or histological lesions were found in infected birds compared to control birds and immunohistochemistry remained constantly negative from all tissues. The reservoir competence index was also assessed and it ranged between 0·11 and 0·14. This study demonstrates that pigeons are competent reservoir hosts for Italian WNV lineage 1 circulating strains thus potentially posing a risk to the public health system. PMID:26493864

  11. In Vivo Effects of Cefazolin, Daptomycin, and Nafcillin in Experimental Endocarditis with a Methicillin-Susceptible Staphylococcus aureus Strain Showing an Inoculum Effect against Cefazolin

    PubMed Central

    Singh, Kavindra V.; Arias, Cesar A.; Murray, Barbara E.

    2013-01-01

    Several reports have implicated the inoculum effect that some strains of type A beta-lactamase (Bla)-producing, methicillin-susceptible Staphylococcus aureus (MSSA) show against cefazolin as the cause for clinical failures in certain serious deep-seated infections. Here, using a previously reported MSSA strain displaying this phenotype (TX0117), we obtained a Bla-cured derivative (TX0117c) with a combination of novobiocin and high temperature. Both isolates were then used in a rat endocarditis model and treated with cefazolin, nafcillin, and daptomycin, given to simulate human dosing. Animals were treated for 3 days and either sacrificed at 24 h after the last antibiotic dose (standard group) or left untreated for an additional 3 days (relapse group). With TX0117 in the standard treatment group, daptomycin and nafcillin were both significantly better than cefazolin in reducing CFU/g of vegetations, achieving mean log10 reductions compared to levels in untreated rats of 7.1, 5.3, and 1.8, respectively (cefazolin versus daptomycin, P < 0.0001; cefazolin versus nafcillin, P = 0.005; daptomycin versus nafcillin, P = 0.053). In addition, cefazolin was significantly more effective in reducing vegetation titers of TX0117c than of TX0117 (mean log10 reduction of 1.4 versus 5.5, respectively; P = 0.0001). Similar results were observed with animals in the relapse group. Thus, these data show that there can be an in vivo consequence of the in vitro inoculum effect that some MSSA strains display against cefazolin and indicate a specific role for Bla production using a Bla-cured derivative strain against which cefazolin regained both in vitro and in vivo activity. PMID:23796934

  12. Comparative genomics and experimental evolution of Escherichia coli BL21(DE3) strains reveal the landscape of toxicity escape from membrane protein overproduction

    PubMed Central

    Kwon, Soon-Kyeong; Kim, Seong Keun; Lee, Dae-Hee; Kim, Jihyun F.

    2015-01-01

    Achieving sufficient yields of proteins in their functional form represents the first bottleneck in contemporary bioscience and biotechnology. To accomplish successful overexpression of membrane proteins in a workhorse organism such as E. coli, defined and rational optimization strategies based on an understanding of the genetic background of the toxicity-escape mechanism are desirable. To this end, we sequenced the genomes of E. coli C41(DE3) and its derivative C43(DE3), which were developed for membrane protein production. Comparative analysis of their genomes with those of their ancestral strain E. coli BL21(DE3) revealed various genetic changes in both strains. A series of E. coli variants that are able to tolerate transformation with or overexpression of membrane proteins were generated by in vitro evolution. Targeted sequencing of the evolved strains revealed the mutational hotspots among the acquired genetic changes. By these combinatorial approaches, we found non-synonymous changes in the lac repressor gene of the lac operon as well as nucleotide substitutions in the lacUV5 promoter of the DE3 region, by which the toxic effect to the host caused by overexpression of membrane proteins could be relieved. A mutation in lacI was demonstrated to be crucial for conferring tolerance to membrane protein overexpression. PMID:26531007

  13. Comparative genomics and experimental evolution of Escherichia coli BL21(DE3) strains reveal the landscape of toxicity escape from membrane protein overproduction.

    PubMed

    Kwon, Soon-Kyeong; Kim, Seong Keun; Lee, Dae-Hee; Kim, Jihyun F

    2015-01-01

    Achieving sufficient yields of proteins in their functional form represents the first bottleneck in contemporary bioscience and biotechnology. To accomplish successful overexpression of membrane proteins in a workhorse organism such as E. coli, defined and rational optimization strategies based on an understanding of the genetic background of the toxicity-escape mechanism are desirable. To this end, we sequenced the genomes of E. coli C41(DE3) and its derivative C43(DE3), which were developed for membrane protein production. Comparative analysis of their genomes with those of their ancestral strain E. coli BL21(DE3) revealed various genetic changes in both strains. A series of E. coli variants that are able to tolerate transformation with or overexpression of membrane proteins were generated by in vitro evolution. Targeted sequencing of the evolved strains revealed the mutational hotspots among the acquired genetic changes. By these combinatorial approaches, we found non-synonymous changes in the lac repressor gene of the lac operon as well as nucleotide substitutions in the lacUV5 promoter of the DE3 region, by which the toxic effect to the host caused by overexpression of membrane proteins could be relieved. A mutation in lacI was demonstrated to be crucial for conferring tolerance to membrane protein overexpression. PMID:26531007

  14. Highly stretchable miniature strain sensor for large dynamic strain measurement

    DOE PAGESBeta

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages,more » as its gauge factor is 500 times of that of the conventional foil strain gages.« less

  15. Highly stretchable miniature strain sensor for large dynamic strain measurement

    SciTech Connect

    Song, Bo; Yao, Shurong; Nie, Xu; Yu, Xun; Blecke, Jill

    2016-01-01

    In this paper, a new type of highly stretchable strain sensor was developed to measure large strains. The sensor was based on the piezo-resistive response of carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite thin films. The piezo-resistive response of CNT composite gives accurate strain measurement with high frequency response, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measurement. Experimental results show that the CNT/PDMS sensor measures large strains (up to 8 %) with an excellent linearity and a fast frequency response. The new miniature strain sensor also exhibits much higher sensitivities than the conventional foil strain gages, as its gauge factor is 500 times of that of the conventional foil strain gages.

  16. Experimental study and mathematical modeling of the behavior of St.3, 20Kh13, and 08Kh18N10T steels in wide ranges of strain rates and temperatures

    NASA Astrophysics Data System (ADS)

    Bragov, A. M.; Igumnov, L. A.; Kaidalov, V. B.; Konstantinov, A. Yu.; Lapshin, D. A.; Lomunov, A. K.; Mitenkov, F. M.

    2015-11-01

    Results of an experimental study of the behavior of St.3, 20Kh13, and 08Kh18N10T steels under static and dynamic loading are reported. The influence of the strain rate and temperature on characteristics of strength and plasticity is studied. Based on the data obtained, the parameters of the Johnson-Cook model are determined. This model is used in commercial software to describe the yield surface radius as a function of loading parameters. The adequacy of the identified model is verified in a series of special test experiments.

  17. Increased number of intestinal villous M cells in levamisole -pretreated weaned pigs experimentally infected with F4ac+ enterotoxigenic Escherichia coli strain

    PubMed Central

    Valpotić, H.; Kovšca Janjatović, A.; Lacković, G.; Božić, F.; Dobranić, V.; Svoboda, D.; Valpotić, I.; Popović, M.

    2010-01-01

    Immunoprophylaxis of porcine postweaning colibacillosis (PWC) caused by enterotoxigenic Escherichia coli (ETEC) expressing F4 fimbriae is an unsolved problem. Just as ETEC strains can exploit intestinal microfold (M) cells as the entry portal for infection, their high transcytotic ability make them an attractive target for mucosally delivered vaccines, adjuvants and therapeutics. We have developed a model of parenteral/oral immunization of 4-weeks-old pigs with either levamisole or vaccine candidate F4ac+ non-ETEC strain to study their effects on de novo differentiation of antigen-sampling M cells. Identification, localization and morphometric quantification of cytokeratin 18 positive M cells in the ileal mucosa of 6-weeks-old pigs revealed that they were: 1) exclusively located within villous epithelial layer, 2) significantly numerous (P< 0.01) in levamisole pretreated/challenged pigs, and 3) only slightly, but not significantly numerous in vaccinated/challenged pigs compared with non-pretreated/challenged control pigs. The fact that levamisole may affect the M cells frequency by increasing their numbers, makes it an interesting adjuvant to study development of an effective M cell-targeted vaccine against porcine PWC. PMID:22073366

  18. Nanowires enabling strained photovoltaics

    SciTech Connect

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ∼5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  19. Insecticidal and sterilizing effect of Olyset Duo®, a permethrin and pyriproxyfen mixture net against pyrethroid-susceptible and -resistant strains of Anopheles gambiae s.s.: a release-recapture assay in experimental huts.

    PubMed

    Djènontin, Armel; Ahoua Alou, Ludovic P; Koffi, Alphonsine; Zogo, Barnabas; Duarte, Elves; N'Guessan, Raphael; Moiroux, Nicolas; Pennetier, Cédric

    2015-01-01

    In the context of the widespread distribution of pyrethroid resistance among malaria vectors, we did a release-recapture trial in experimental huts to investigate the insecticidal and sterilizing effects of a novel long-lasting net (LN), Olyset® Duo, incorporating a mixture of permethrin (PER) and the insect growth regulator (IGR), pyri-proxyfen (PPF). An LN containing PPF alone and a classic Olyset® Net were tested in parallel as positive controls. The effect of progressive number of holes (6, 30, or 150) that may accrue in nets over time was simulated. We used two laboratory Anopheles gambiae s.s. strains: the susceptible Kisumu strain and the pyrethroid-resistant VK-Per strain having solely kdr as resistance mechanism. The effect of these nets on the reproductive success of blood-fed females that survived the different LNs conditions was recorded. Regardless of the mosquito strain, the LNs containing PPF alone with as many as 30 holes drastically reduced the number of eggs laid by females succeeding in feeding, i.e. fecundity by 98% and egg hatching rate (fertility) by 93% relative to untreated control net. Very few of the resistant females blood fed and survived under the Olyset® Duo with similar number of holes (up to 30) but of these few, the inhibition of reproductive success was 100%. There was no evidence that the Olyset® Duo LN with 150 holes impacted fecundity or fertility of the resistant colony. The efficacy of Olyset® Duo is encouraging and clearly illustrates that this new net might be a promising tool for malaria transmission control and resistance management. PMID:26489479

  20. Insecticidal and sterilizing effect of Olyset Duo®, a permethrin and pyriproxyfen mixture net against pyrethroid-susceptible and -resistant strains of Anopheles gambiae s.s.: a release-recapture assay in experimental huts

    PubMed Central

    Djènontin, Armel; Ahoua Alou, Ludovic P.; Koffi, Alphonsine; Zogo, Barnabas; Duarte, Elves; N’Guessan, Raphael; Moiroux, Nicolas; Pennetier, Cédric

    2015-01-01

    In the context of the widespread distribution of pyrethroid resistance among malaria vectors, we did a release-recapture trial in experimental huts to investigate the insecticidal and sterilizing effects of a novel long-lasting net (LN), Olyset® Duo, incorporating a mixture of permethrin (PER) and the insect growth regulator (IGR), pyri-proxyfen (PPF). An LN containing PPF alone and a classic Olyset® Net were tested in parallel as positive controls. The effect of progressive number of holes (6, 30, or 150) that may accrue in nets over time was simulated. We used two laboratory Anopheles gambiae s.s. strains: the susceptible Kisumu strain and the pyrethroid-resistant VK-Per strain having solely kdr as resistance mechanism. The effect of these nets on the reproductive success of blood-fed females that survived the different LNs conditions was recorded. Regardless of the mosquito strain, the LNs containing PPF alone with as many as 30 holes drastically reduced the number of eggs laid by females succeeding in feeding, i.e. fecundity by 98% and egg hatching rate (fertility) by 93% relative to untreated control net. Very few of the resistant females blood fed and survived under the Olyset® Duo with similar number of holes (up to 30) but of these few, the inhibition of reproductive success was 100%. There was no evidence that the Olyset® Duo LN with 150 holes impacted fecundity or fertility of the resistant colony. The efficacy of Olyset® Duo is encouraging and clearly illustrates that this new net might be a promising tool for malaria transmission control and resistance management. PMID:26489479

  1. Background Strain and the Differential Susceptibility of Podocyte-Specific Deletion of Myh9 on Murine Models of Experimental Glomerulosclerosis and HIV Nephropathy

    PubMed Central

    Johnstone, Duncan B.; Ikizler, Omer; Zhang, Jidong; Holzman, Lawrence B.

    2013-01-01

    We previously reported that podocyte-specific deletion of Myh9 (conventional myosin heavy chain 2A) in C57BL/6 mice does not cause spontaneous kidney disease but instead results in a predisposition to glomerulosclerosis in response to a second model of glomerular injury. In contrast, other investigators reported that podocyte-specific deletion of Myh9 (PodΔMyh9) resulted in spontaneous glomerulosclerosis in mice on a mixed background, suggesting that the glomerulosclerosis is dependent on background strain. In order to elucidate the cause of this strain dependent effect Podocin::Cre and Myh9flox alleles were backcrossed to mouse strain FVB/N, which is highly susceptible to glomerulosclerosis, with the aim of intercrossing susceptible FVB/N and resistant C57BL/6 mice in subsequent congenic analyses. However, after backcrossing mice to FVB/N and aging mice to 28 weeks, we found no evidence of glomerular disease in PodΔMyh9 mice vs control littermates (urine MAC ratio all p>0.05). We also tested C57BL/6 PodΔMyh9 mice for a predisposition to injury from models other than Adriamycin including HIV nephropathy (HIVAN), puromycin nephropathy, and sheep nephrotoxic serum. In the Tg26 model of HIVAN, we found that podocyte-specific deletion of Myh9 resulted in a modest hypersensitivity in adults compared to Tg26+ control littermates (urine MAC ratio, p<0.05 or less). In contrast, we found that PodΔMyh9 mice were not predisposed to injury in response to other injury models including puromycin nephropathy and sheep nephrotoxic serum. While the mechanism of injury in these models is not fully understood, we conclude that PodΔMyh9 results in a variable susceptibility to glomerulosclerosis in response to different models of glomerular injury. In addition, based on the lack of a spontaneous phenotype of glomerulosclerosis in both C57BL/6 and FVB/N mice, we propose that Myh9 is not absolutely required in adult podocytes. PMID:23874454

  2. Immune responses and protection against experimental challenge after vaccination of bison with Brucella abortus strains RB51 or RB51 overexpressing superoxide dismutase and Glycosyltransferase genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccination is a tool that could be beneficial in managing the high prevalence of brucellosis in free-ranging bison in Yellowstone National Park. In this study, we characterized immunologic responses and protection against experimental challenge after vaccination of bison with Brucella abortus stra...

  3. Strain Gage

    NASA Technical Reports Server (NTRS)

    1995-01-01

    HITEC Corporation developed a strain gage application for DanteII, a mobile robot developed for NASA. The gage measured bending forces on the robot's legs and warned human controllers when acceptable forces were exceeded. HITEC further developed the technology for strain gage services in creating transducers out of "Indy" racing car suspension pushrods, NASCAR suspension components and components used in motion control.

  4. Escherichia coli strain Nissle 1917 ameliorates experimental colitis by modulating intestinal permeability, the inflammatory response and clinical signs in a faecal transplantation model.

    PubMed

    Souza, Éricka L; Elian, Samir D; Paula, Laís M; Garcia, Cristiana C; Vieira, Angélica T; Teixeira, Mauro M; Arantes, Rosa M; Nicoli, Jacques R; Martins, Flaviano S

    2016-03-01

    Inflammatory bowel diseases (IBDs) are a group of inflammatory conditions of the gut that include ulcerative colitis and Crohn's disease. Probiotics are live micro-organisms that may be used as adjuvant therapy for patients with IBD. The aim of this study was to evaluate the effect of prophylactic ingestion of Escherichia coli strain Nissle 1917 (EcN) in a murine model of colitis. For induction of colitis, mice were given a 3.5 % dextran sodium sulfate (DSS) solution for 7 days in drinking water. EcN administration to mice subjected to DSS-induced colitis resulted in significant reduction in clinical and histopathological signs of disease and preservation of intestinal permeability. We observed reduced inflammation, as assessed by reduced levels of neutrophils, eosinophils, chemokines and cytokines. We observed an increase in the number of regulatory T-cells in Peyer's patches. Germ-free mice received faecal content from control or EcN-treated mice and were then subjected to DSS-induced colitis. We observed protection from colitis in animals that were colonized with faecal content from EcN-treated mice. These results suggest that preventative oral administration of EcN or faecal microbiota transplantation with EcN-containing microbiota ameliorates DSS-induced colitis by modifying inflammatory responsiveness to DSS. PMID:26758971

  5. Evaluation of four DNA extraction protocols for Brucella abortus detection by PCR in tissues from experimentally infected cows with the 2308 strain.

    PubMed

    Vejarano, M P; Matrone, M; Keid, L B; Rocha, V C M; Ikuta, C Y; Rodriguez, C A R; Salgado, V R; Ferreira, F; Dias, R A; Telles, E O; Ferreira Neto, J S

    2013-04-01

    This study compared 4 protocols for DNA extraction from homogenates of 6 different organs of cows infected with the Brucella abortus 2308 strain. The extraction protocols compared were as follows: GT (guanidine isothiocyanate lysis), Boom (GT lysis with the carrying suspension diatomaceous earth), PK (proteinase K lysis), and Santos (lysis by boiling and freezing with liquid nitrogen). Positive and negative gold standard reference groups were generated by classical bacteriological methods. All samples were processed with the 4 DNA extraction protocols and amplified with the B4 and B5 primers. The number of positive samples in the placental cotyledons was higher than that in the other organs. The cumulated results showed that the Santos protocol was more sensitive than the Boom (p=0.003) and GT (p=0.0506) methods and was similar to the PK method (p=0.2969). All of the DNA extraction protocols resulted in false-negative results for PCR. In conclusion, despite the disadvantages of classical bacteriological methods, the best approach for direct diagnosis of B. abortus in organs of infected cows includes the isolation associated with PCR of DNA extracted from the cotyledon by the Santos or PK methods. PMID:23421881

  6. Evaluation of DNA extraction protocols for Brucella abortus pcr detection in aborted fetuses or calves born from cows experimentally infected with strain 2308

    PubMed Central

    Matrone, M.; Keid, L.B.; Rocha, V.C.M.; Vejarano, M.P.; Ikuta, C.Y.; Rodriguez, C.A.R.; Ferreira, F.; Dias, R.A.; Ferreira Neto, J.S

    2009-01-01

    The objective of the present study was to improve the detection of B. abortus by PCR in organs of aborted fetuses from infected cows, an important mechanism to find infected herds on the eradication phase of the program. So, different DNA extraction protocols were compared, focusing the PCR detection of B. abortus in clinical samples collected from aborted fetuses or calves born from cows challenged with the 2308 B. abortus strain. Therefore, two gold standard groups were built based on classical bacteriology, formed from: 32 lungs (17 positives), 26 spleens (11 positives), 23 livers (8 positives) and 22 bronchial lymph nodes (7 positives). All samples were submitted to three DNA extraction protocols, followed by the same amplification process with the primers B4 and B5. From the accumulated results for organ, the proportion of positives for the lungs was higher than the livers (p=0.04) or bronchial lymph nodes (p=0.004) and equal to the spleens (p=0.18). From the accumulated results for DNA extraction protocol, the proportion of positives for the Boom protocol was bigger than the PK (p< 0.0001) and GT (p=0.0004). There was no difference between the PK and GT protocols (p=0.5). Some positive samples from the classical bacteriology were negative to the PCR and vice-versa. Therefore, the best strategy for B. abortus detection in the organs of aborted fetuses or calves born from infected cows is the use, in parallel, of isolation by classical bacteriology and the PCR, with the DNA extraction performed by the Boom protocol. PMID:24031391

  7. Experimental Infection of Ornithodoros erraticus sensu stricto with Two Portuguese African Swine Fever Virus Strains. Study of Factors Involved in the Dynamics of Infection in Ticks.

    PubMed

    Ribeiro, Rita; Otte, Joachim; Madeira, Sara; Hutchings, Geoff H; Boinas, Fernando

    2015-01-01

    African swine fever (ASF) is a frequently devastating hemorrhagic disease of domestic pigs and wild boar and Ornithodoros erraticus sensu stricto argasid ticks are the only biological vectors of African swine fever virus (ASFV) known to occur in Europe. Recently this disease emerged in Eastern Europe and Russian Federation, showing a huge potential for a rapid spread between countries. There is some risk of re-emergence of ASF in the countries where these ticks exist, that can contribute for the persistence of infection and compromise control measures. In this study we aimed to identify factors that determine the probability of infection and its dynamics in the tick vector Ornithodoros erraticus sensu stricto, with two Portuguese strains of ASFV. Our results suggest that these ticks have a high likelihood of excreting the two haemadsorbing ASF viruses of different host origins and that, in field surveys, the analysis of adults and 5th nymphal stage can provide the best chance of detecting virus infection. The results also indicate that infection of pigs with highly virulent ASF viruses will promote higher rates of infection and a higher likelihood for virus excretion by ticks. Nevertheless, there is also a risk, although lower, that ticks can become infected on pigs that have overcome the acute phase of infection, which was simulated in our study by membrane feeding ticks with low titres of virus. We believe these results can be valuable in designing and interpreting the results of ASF control programmes, and future work can also be undertaken as our dataset is released under open access, to perform studies in risk assessment for ASFV persistence in a region where O. erraticus sensu stricto ticks are present. PMID:26366570

  8. Use of ampicillin-sulbactam for treatment of experimental meningitis caused by a beta-lactamase-producing strain of Escherichia coli K-1.

    PubMed

    Guerra-Romero, L; Kennedy, S L; Fournier, M A; Tureen, J H; Täuber, M G

    1991-10-01

    We evaluated the pharmacokinetics and therapeutic efficacy of ampicillin combined with sulbactam in a rabbit model of meningitis due to a beta-lactamase-producing strain of Escherichia coli K-1. Ceftriaxone was used as a comparison drug. The MIC and MBC were 32 and greater than 64 micrograms/ml (ampicillin), greater than 256 and greater than 256 micrograms/ml (sulbactam), 2.0 and 4.0 micrograms/ml (ampicillin-sulbactam [2:1 ratio, ampicillin concentration]) and 0.125 and 0.25 micrograms/ml (ceftriaxone). All antibiotics were given by intravenous bolus injection in a number of dosing regimens. Ampicillin and sulbactam achieved high concentrations in cerebrospinal fluid (CSF) with higher dose regimens, but only moderate bactericidal activity compared with that of ceftriaxone was obtained. CSF bacterial titers were reduced by 0.6 +/- 0.3 log10 CFU/ml/h with the highest ampicillin-sulbactam dose used (500 and 500 mg/kg of body weight, two doses). This was similar to the bactericidal activity achieved by low-dose ceftriaxone (10 mg/kg), while a higher ceftriaxone dose (100 mg/kg) produced a significant increase in bactericidal activity (1.1 +/- 0.4 log10 CFU/ml/h). It appears that ampicillin-sulbactam, despite favorable CSF pharmacokinetics in animals with meningitis, may be of limited value in the treatment of difficult-to-treat beta-lactamase-producing bacteria, against which the combination shows only moderate in vitro activity. PMID:1759824

  9. Experimental Infection of Ornithodoros erraticus sensu stricto with Two Portuguese African Swine Fever Virus Strains. Study of Factors Involved in the Dynamics of Infection in Ticks

    PubMed Central

    Madeira, Sara; Hutchings, Geoff H.; Boinas, Fernando

    2015-01-01

    African swine fever (ASF) is a frequently devastating hemorrhagic disease of domestic pigs and wild boar and Ornithodoros erraticus sensu stricto argasid ticks are the only biological vectors of African swine fever virus (ASFV) known to occur in Europe. Recently this disease emerged in Eastern Europe and Russian Federation, showing a huge potential for a rapid spread between countries. There is some risk of re-emergence of ASF in the countries where these ticks exist, that can contribute for the persistence of infection and compromise control measures. In this study we aimed to identify factors that determine the probability of infection and its dynamics in the tick vector Ornithodoros erraticus sensu stricto, with two Portuguese strains of ASFV. Our results suggest that these ticks have a high likelihood of excreting the two haemadsorbing ASF viruses of different host origins and that, in field surveys, the analysis of adults and 5th nymphal stage can provide the best chance of detecting virus infection. The results also indicate that infection of pigs with highly virulent ASF viruses will promote higher rates of infection and a higher likelihood for virus excretion by ticks. Nevertheless, there is also a risk, although lower, that ticks can become infected on pigs that have overcome the acute phase of infection, which was simulated in our study by membrane feeding ticks with low titres of virus. We believe these results can be valuable in designing and interpreting the results of ASF control programmes, and future work can also be undertaken as our dataset is released under open access, to perform studies in risk assessment for ASFV persistence in a region where O. erraticus sensu stricto ticks are present. PMID:26366570

  10. Annihilation of strained vortices

    NASA Astrophysics Data System (ADS)

    Kimura, Yoshifumi

    2014-11-01

    As an initial stage of vortex reconnection, approach of nearly anti-parallel vortices has often been observed experimentally and studied numerically. Inspired by the recent experiment by Kleckner and Irvine on the dynamics of knotted vortices, we have studied the motion of two anti-parellel Burgers vortices driven by an axisymmetric linear straining field. We first extend the Burgers vortex solution which is a steady exact solution of the Navier-Stokes equation to a time-dependent exact solution. Then by superposing two such solutions, we investigate the annihilation process analytically. We can demonstrate that during the annihilation process the total vorticity decays exponentially on a time-scale proportional to the inverse of the rate of strain, even as the kinematic viscosity tends to 0. The analytic results are compared with the numerical simulations of two strained vortices with the vortex-vortex nonlinear interaction by Buntine and Pullin.

  11. Inhomogeneous strains in small particles

    NASA Astrophysics Data System (ADS)

    Marks, L. D.

    1985-02-01

    This paper considers the evidence for strains in small particles. Firstly, the dynamical electron diffraction theory for dark field imaging of small particles is briefly reviewed, considering primarily the effects of strain on wedge crystals and identifying the fingerprint of strain contrast effects under strong beam conditions. Evidence included herein and from published papers by other authors clearly shows inhomogeneous strain effects in both multiply twinned particles and single crystals. Considering these results and earlier reports of lattice parameter changes, there are problems with the uniqueness of these analyses, and the strains in the small single crystals are thought more likely to be due to interfacial stresses or contaminants than any intrinsic particle effect; there are so many different origins of this type of strain that we cannot with confidence isolate a unique source. It is emphasised that the uniqueness of any interpretation of experimental results from small particles must be very carefully considered.

  12. The Stress-Strain Condition Estimation of Detail in Crack Tip by Integral Strain Gauges

    NASA Astrophysics Data System (ADS)

    Syzrantsev, V.; Syzrantseva, K.

    2016-04-01

    The paper considers the task of stress-strain condition calculation of experimental sample in fatigue crack tip on weld boundary at its cyclic deforming. For this task decision authors use the information obtained by original means of cyclic strains measurement: Integral Strain Gauges. The results of carried experimental researches are compared with data of stress-strain condition estimation of detail in crack tip calculated by Finish Element Method.

  13. Strain in silicon nanowire beams

    NASA Astrophysics Data System (ADS)

    Ureña, Ferran; Olsen, Sarah H.; Šiller, Lidija; Bhaskar, Umesh; Pardoen, Thomas; Raskin, Jean-Pierre

    2012-12-01

    In this work, strain in silicon free standing beams loaded in uniaxial tension is experimentally and theoretically investigated for strain values ranging from 0 to 3.6%. The fabrication method allows multiple geometries (and thus strain values) to be processed simultaneously on the same wafer while being studied independently. An excellent agreement of strain determined by two non-destructive characterization techniques, Raman spectroscopy and mechanical displacement using scanning electron microscopy (SEM) markers, is found for all the sample lengths and widths. The measured data also show good agreement with theoretical predictions of strain based upon continuum mechanical considerations, giving validity to both measurement techniques for the entire range of strain values. The dependence of Young's modulus and fracture strain on size has also been analyzed. The Young's modulus is determined using SEM and compared with that obtained by resonance-based methods. Both methods produced a Young's modulus value close to that of bulk silicon with values obtained by resonance-based methods being slightly lower. Fracture strain is analyzed in 40 sets of samples with different beam geometries, yielding values up to 3.6%. The increase in fracture strain with decreasing beam width is compared with previous reports. Finally, the role of the surface on the mechanical properties is analyzed using UV and visible lasers having different penetration depths in silicon. The observed dependence of Raman shift on laser wavelength is used to assess the thermal conductivity of deformed silicon.

  14. Strain flexibility identification of bridges from long-gauge strain measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Xia, Qi; Cheng, YuYao; Wu, ZhiShen

    2015-10-01

    Strain flexibility, defined as the strain response of a structure's element to a unit input force, is import for structural safety evaluation, but its identification is seldom investigated. A novel long-gauge fiber optic sensor has been developed to measure the averaged strain within a long gauge length. Its advantage of measuring both local and global information of the structure offers an excellent opportunity of developing the strain flexibility identification theory. In this article, the method to identify structural strain flexibility from long-gauge dynamic strain measurements is proposed. It includes the following main steps: (a) macro strain frequency response function (FRF) estimation from macro strain measurements and its feature characterization; (b) general strain modal parameter identification; (c) scaling factor calculation, and (d) strain flexibility identification. Numerical and experimental examples successfully verify the effectiveness of the proposed method.

  15. Hip flexor strain - aftercare

    MedlinePlus

    Pulled hip flexor - aftercare; Hip flexor injury - aftercare; Hip flexor tear - aftercare; Iliopsoas strain - aftercare; Strained iliopsoas muscle - aftercare; Torn iliopsoas muscle - aftercare; Psoas strain - aftercare

  16. Progress in optical strain measurement system development

    NASA Technical Reports Server (NTRS)

    Lant, Christian T.; Qaqish, Walid

    1987-01-01

    A laser speckle strain measurement system has been built and tested for the NASA Lewis Research Center. The system is based on a speckle shift technique, which automatically corrects for error due to rigid body motion, and provides a near real time measure of strain. The first stage of a multiphase effort to develop an optical strain gauge capable of mapping in two dimensions the strain on the surface of a hot specimen is discussed. The objectives of this first phase have been to provide a noncontact, one-dimensional, differential strain gauge for experimental purposes, and to determine the maximum open air temperature limit of the system.

  17. Strain Engineering of Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dadgar, Ali; Pasupathy, Abhay; Herman, Irving; Wang, Dennis; Kang, Kyungnam; Yang, Eui-Hyeok

    The application of strain to materials can cause changes to bandwidth, effective masses, degeneracies and even structural phases. In the case of the transition metal dichalcogenide (TMD) semiconductors, small strain (around 1 percent) is expected to change band gaps and mobilities, while larger strains are expected to cause phase changes from the triangular 2H phase to orthorhombic 1T' phases. We will describe experimental techniques to apply small and large (around 10 percent) strains to one or few layer samples of the TMD semiconductors, and describe the effect of the strain using optical (Raman, photoluminescence) and cryogenic transport techniques.

  18. High temperature strain gage apparent strain compensation

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K.; Moore, T. C., Sr.

    1992-01-01

    Once an installed strain gage is connected to a strain indicating device and the instrument is balanced, a subsequent change in temperature of the gage installation will generally produce a resistance change in the gage. This purely temperature-induced resistance will be registered by the indicating device as a strain and is referred to as 'apparent strain' to distinguish it from strain due to applied stress. One desirable technique for apparent strain compensation is to employ two identical gages with identical mounting procedures which are connected with a 'half bridge' configuration where gages see the same thermal environment but only one experiences a mechanical strain input. Their connection in adjacent arms of the bridge will then balance the thermally induced apparent strains and, in principle, only the mechanical strain remains. Two approaches that implement this technique are discussed.

  19. Mechanical strain and degradation of laser heterostructures

    NASA Astrophysics Data System (ADS)

    Ptashchenko, Alexander A.; Ptashchenko, Fedor A.; Maslejeva, Natalia V.; Sadova, Galina V.

    2001-02-01

    The effect of mechanical strain on degradation processes in GaAs-AlGaAs laser heterostructures (LHS) with stripe geometry and in light emitting diodes (LED) was experimentally studied. The strain was produced either by axial pressure or by indentation with a Wickers pyramid. We show that degradation affects the degree of polarization and the far-field distribution of laser emission. The effect of strain on the degradation intensity is estimated.

  20. Geobacteraceae strains and methods

    DOEpatents

    Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

    2015-07-07

    Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

  1. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Euaruksakul, Chanan; Liu, Zheng; Himpsel, F. J.; Liu, Feng; Lagally, Max G.

    2011-08-01

    Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate Δ valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both Δ and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.

  2. Strains and Sprains

    MedlinePlus

    ... Children's Sports Injuries Computer-Related Repetitive Stress Injuries Knee Injuries Broken Bones, Sprains, and Strains Strains and Sprains ... Pain Going to a Physical Therapist Hamstring Strain Knee Injuries Sports and Exercise Safety Dealing With Sports Injuries ...

  3. Muscle strain (image)

    MedlinePlus

    A muscle strain is the stretching or tearing of muscle fibers. A muscle strain can be caused by sports, exercise, a ... something that is too heavy. Symptoms of a muscle strain include pain, tightness, swelling, tenderness, and the ...

  4. Muscle strain treatment

    MedlinePlus

    Treatment - muscle strain ... Question: How do you treat a muscle strain ? Answer: Rest the strained muscle and apply ice for the first few days after the injury. Anti-inflammatory medicines or acetaminophen ( ...

  5. Straining graphene using thin film shrinkage methods.

    PubMed

    Shioya, Hiroki; Craciun, Monica F; Russo, Saverio; Yamamoto, Michihisa; Tarucha, Seigo

    2014-03-12

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  6. Straining Graphene Using Thin Film Shrinkage Methods

    PubMed Central

    2014-01-01

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  7. Predictions Of Fatigue Damage From Strain Histories

    NASA Technical Reports Server (NTRS)

    Sire, Robert A.; Besuner, Philip M.; Toomey, Tim

    1989-01-01

    Semiempirical mathematical model of fatigue damage in stressed objects uses experimental histories of strains in those objects to predict fatigue lives. Accounts for initiation and propagation of fatigue cracks on cycle-by-cycle basis. Measured strain history first digitized, then converted to history of turning-point strains for purposes of analysis. Data between turning points not used. When model calibrated against proper test data for each type of object characterized, its predictions of fatigue lives superior to statistical models as one based on root-mean-square strain.

  8. Fabrication and device characteristics of strained-Si-on-insulator (strained-SOI) CMOS

    NASA Astrophysics Data System (ADS)

    Takagi, Shin-ichi; Mizuno, Tomohisa; Tezuka, Tsutomu; Sugiyama, Naoharu; Numata, Toshinori; Usuda, Koji; Moriyama, Yoshihiko; Nakaharai, Shu; Koga, Junji; Tanabe, Akihito; Maeda, Tatsuro

    2004-03-01

    Strained-Si-on-insulator (strained-SOI) CMOS is a promising device structure for satisfying requirements of both high current drive and low supply voltage under sub-100 nm nodes, because of the combination of advantages of SOI MOSFETs and high mobility strained-Si channels. In this paper, we present the concept, the device structures and the fabrication techniques of strained-SOI CMOS. We introduce our original fabrication method of strained-SOI substrates, called the Ge condensation technique. It is experimentally shown that strained-SOI CMOS has higher electron and hole mobility and that strained-SOI CMOS ring oscillators successfully operate with the performance enhancement of 30-70% against conventional SOI CMOS ones.

  9. Program Calibrates Strain Gauges

    NASA Technical Reports Server (NTRS)

    Okazaki, Gary D.

    1991-01-01

    Program dramatically reduces personnel and time requirements for acceptance tests of hardware. Data-acquisition system reads output from Wheatstone full-bridge strain-gauge circuit and calculates strain by use of shunt calibration technique. Program nearly instantaneously tabulates and plots strain data against load-cell outputs. Modified to acquire strain data for other specimens wherever full-bridge strain-gauge circuits used. Written in HP BASIC.

  10. Superlattice strain gage

    DOEpatents

    Noel, Bruce W.; Smith, Darryl L.; Sinha, Dipen N.

    1990-01-01

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element.

  11. Superlattice strain gage

    DOEpatents

    Noel, B.W.; Smith, D.L.; Sinha, D.N.

    1988-06-28

    A strain gage comprising a strained-layer superlattice crystal exhibiting piezoelectric properties is described. A substrate upon which such a strained-layer superlattice crystal has been deposited is attached to an element to be monitored for strain. A light source is focused on the superlattice crystal and the light reflected from, passed through, or emitted from the crystal is gathered and compared with previously obtained optical property data to determine the strain in the element. 8 figs.

  12. Strain typing of U.S. scrapie strains using a panel of inbred mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion strains may vary in their ability to transmit to humans and animals. Few experimental studies have been done to provide evidence of differences between U.S. strains of scrapie, which can be distinguished by incubation times in inbred mice, microscopic lesions, immunoreactivity to various anti...

  13. Strain limit dependence on stress triaxiality for pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Deng, Y.-C.; Chen, G.; Yang, X.-F.; Xu, T.

    2009-08-01

    In this paper, the failure characteristics of pressure vessel materials were investigated, and measurement and analysis approaches for ductile fracture strains were studied. Based on uniaxial tensile tests of notched round bar specimens, combined with finite element analyses and microscopic observations of fracture surface, the relationships between the stress triaxiality factor and the ductile fracture strain are proposed for three typical Chinese pressure vessel steels, 16MnR, Q235 and 0Cr18Ni9. The comparison of experimental fracture strains with the multiaxial strain limit specified in ASME VIII-2 2007 shows that the strain limit criterion of ASME is suitable for carbon steels but not suitable for austenitic stainless steels for Chinese pressure vessel steels. To improve the calculation accuracy for fracture strain of materials and to develop the strain limit criterion for Chinese pressure vessel materials, more experimental studies and numerical analyses on fracture strain are necessary.

  14. Miniature biaxial strain transducer

    NASA Technical Reports Server (NTRS)

    Hoffman, I. S. (Inventor)

    1976-01-01

    A reusable miniature strain transducer for use in the measurement of static or quasi-static, high level, biaxial strain on the surface of test specimens or structures was studied. Two cantilever arms, constructed by machining the material to appropriate flexibility, are self-aligning and constitute the transducing elements of the device. Used in conjunction with strain gages, the device enables testing beyond normal gage limits for high strains and number of load cycles. The device does not require conversion computations since the electrical output of the strain gages is directly proportional to the strain measured.

  15. In vitro strain measurement in the porcine antrum using ultrasound doppler strain rate imaging.

    PubMed

    Ahmed, Aymen Bushra; Gilja, Odd Helge; Gregersen, Hans; Ødegaard, Svein; Matre, Knut

    2006-04-01

    Strain rate imaging (SRI) enables study of deformation in soft tissues. The aim of this study was to evaluate the accuracy of SRI in measuring strain in the porcine antral wall in vitro. An experimental set-up enabled controlled distension of a porcine stomach in a saline reservoir. Radial strain obtained by SRI was compared with radial strain calculated from B-mode ultrasonography. Circumferential strain obtained by SRI was compared with circumferential strain calculated from sonomicrometry. The agreement between radial strain values measured by SRI and B-mode, along and across several ultrasound (US) beams, using US frequency 6.7 MHz and strain length (SL) = 1.9 mm was = -1.0 +/- 12.1% and 0.5 +/- 13.4%, respectively (mean difference +/- 2SD%) and it was better than with SL 1.2 mm. Compared with sonomicrometry, SRI-determined circumferential strain using 6.7 MHz and SL = 1.9 mm was less accurate, whether averaging along or across several US beams (-9.2 +/- 46.7% and 13.8 +/- 51.2%, respectively). In conclusion, SRI gave accurate measurement of radial strain of the antral wall, but seemed to be less accurate for measurement of circumferential strain for this in vitro set-up. PMID:16616598

  16. Micro-scale strain mapping technique: a tool to quantify strain partitioning during creep deformation

    NASA Astrophysics Data System (ADS)

    Quintanilla-Terminel, Alejandra; Zimmerman, Mark; Evans, Brian; Kohlstedt, David

    2016-04-01

    Several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary for establishing a better link between observed microstructures and mechanical data, as well as to allow more confident extrapolation from laboratory to natural conditions. In this contribution, we present the experimental and computational technique involved in micro-scale strain mapping (MSSM). The MSSM technique relies on analyzing the relative displacement of initially regularly spaced markers after deformation. We present several microfabrication techniques that permit us to pattern various rocks with micrometric and nanometric metal markers, as well as the challenges faced in working at high temperatures and pressures. A Hough transform algorithm was used to detect the markers and automate as much as possible the strain analysis. The von Mises strain is calculated for a set of n-points and their relative displacements, which allow us to map the strain at different length scales. We applied the MSSM technique to study strain partitioning during deformation creep of Carrara marble and San Carlos olivine at a confining pressure, Pc, of 300 MPa and homologous temperatures of 0.3 to 0.6. We measured the local strain and strain heterogeneity produced during creep deformation of split cylinders of Carrara marble under conventional triaxial loading to inelastic strains of 11 to 36% at a strain rate of 3x10‑5s‑1, Pc = 300 MPa and 400o < T <700oC. We conclude that the evolution of deformation structures in marble takes place over a substantial interval in strain and that the duration of this interval depends on strain rate, temperature, and pressure. Our first results on strain mapping of olivine deformed at T = 1150oC and Pc = 300 MPa demonstrate promise for characterizing intragranular strain and better defining the contribution of grain boundary sliding to the total strain.

  17. Measurement of Sorption-Induced Strain

    SciTech Connect

    Eric P. Robertson; Richard L. Christiansen

    2005-05-01

    Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A. and high-volatile bituminous coal from east-central Utah, U.S.A. using an apparatus developed jointly at the Idaho National Laboratory (Idaho Falls, Idaho, U.S.A.) and Colorado School of Mines (Golden, Colorado, U.S.A.). The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain instead of the more common usage of strain gauges, which require larger samples and longer equilibration times. With this apparatus, we showed that the swelling and shrinkage processes were reversible and that accurate strain data could be obtained in a shortened amount of time. A suite of strain curves was generated for these coals using gases that included carbon dioxide, nitrogen, methane, helium, and various mixtures of these gases. A Langmuir-type equation was applied to satisfactorily model the strain data obtained for pure gases. The sorption-induced strain measured in the subbituminous coal was larger than the high-volatile bituminous coal for all gases tested over the range of pressures used in the experimentation, with the CO2-induced strain for the subbituminous coal over twice as great at the bituminous coal.

  18. HLA-DP, HLA-DQ, and HLA-DR-restricted epitopes in GRA5 of toxoplasma gondii strains

    NASA Astrophysics Data System (ADS)

    Haryati, S.; Sari, Y.; APrasetyo, A.; Sariyatun, R.

    2016-02-01

    The dense granular (GRA) proteins of Toxoplasma gondii(T. gondii) have been demonstrated as potential sources of T. gondii vaccine antigens. However, data of the GRA5 protein are limited. This study analyzed twenty-one complete GRA5 sequences of T. gondii GT1, RH, ME49, VEG, MAS, RUB, FOU, p89, VAND, and GAB2-2007-GAL-DOM2 strains to identify potential epitopes restricted by Major Histocompatibility Complex class II (MHC- II) molecules (human leukocyte antigen (HLA)-DP, HLA-DQ, and HLA-DR) in the protein. In all T. gondii strains, peptides positioned at amino acid (aa) 15-29, 16-30, 17-31, 18-32, 19-33, 83-97, 84-98, 86-100, 87-101, 89-103, and 90-104 were predicted to pose high affinity and binding with HLA-DRB1*0101, HLA-DRB1*0301 (DR17), HLA-DRB1*0401 (DR4Dw4), HLA-DRB1*0701, HLA-DRB1*1101, HLA-DRB1*1501 (DR2b), and/or HLA-DRB5*0101. Considering the epitope's affinity, ligation strength, and hydrophilicity, LRLLRRRRRRAIQEE sequence (aa 90-104) restricted by HLA-DRB1*0101, HlA- DRB1*0301 (DR17), and HLA-DRB1*0401 (DR4Dw4) was considered as the most potential MHC-II epitope in GRA5 of T. gondii. These results would be useful for studies concerning in developing T. gondii vaccine and diagnostic method.

  19. Strains and Sprains

    MedlinePlus

    ... move the injured part, and you might even think you have broken a bone. How Does a Strain or Sprain Happen? Strains often happen when you put a lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains may be more likely to happen if ...

  20. Sprains and Strains

    MedlinePlus

    ... happens. A strain is a stretched or torn muscle or tendon. Tendons are tissues that connect muscle to bone. Twisting or pulling these tissues can ... suddenly or develop over time. Back and hamstring muscle strains are common. Many people get strains playing ...

  1. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions

    PubMed Central

    Dubey, Jitender P.; Ferreira, Leandra R.; Alsaad, Mohammad; Verma, Shiv K.; Alves, Derron A.; Holland, Gary N.; McConkey, Glenn A.

    2016-01-01

    Background The protozoan parasite Toxoplasma gondii is one of the most widely distributed and successful parasites. Toxoplasma gondii alters rodent behavior such that infected rodents reverse their fear of cat odor, and indeed are attracted rather than repelled by feline urine. The location of the parasite encysted in the brain may influence this behavior. However, most studies are based on the highly susceptible rodent, the mouse. Methodology/Principal Findings Latent toxoplasmosis was induced in rats (10 rats per T. gondii strains) of the same age, strain, and sex, after oral inoculation with oocysts (natural route and natural stage of infection) of 11 T. gondii strains of seven genotypes. Rats were euthanized at two months post inoculation (p.i.) to investigate whether the parasite genotype affects the distribution, location, tissue cyst size, or lesions. Tissue cysts were enumerated in different regions of the brains, both in histological sections as well in saline homogenates. Tissue cysts were found in all regions of the brain. The tissue cyst density in different brain regions varied extensively between rats with many regions highly infected in some animals. Overall, the colliculus was most highly infected although there was a large amount of variability. The cerebral cortex, thalamus, and cerebellum had higher tissue cyst densities and two strains exhibited tropism for the colliculus and olfactory bulb. Histologically, lesions were confined to the brain and eyes. Tissue cyst rupture was frequent with no clear evidence for reactivation of tachyzoites. Ocular lesions were found in 23 (25%) of 92 rat eyes at two months p.i. The predominant lesion was focal inflammation in the retina. Tissue cysts were seen in the sclera of one and in the optic nerve of two rats. The choroid was not affected. Only tissue cysts, not active tachyzoite infections, were detected. Tissue cysts were seen in histological sections of tongue of 20 rats but not in myocardium and leg

  2. Dark field electron holography for strain measurement.

    PubMed

    Béché, A; Rouvière, J L; Barnes, J P; Cooper, D

    2011-02-01

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. PMID:21333860

  3. Tensile stress-strain behavior of boron/aluminum laminates

    NASA Technical Reports Server (NTRS)

    Sova, J. A.; Poe, C. C., Jr.

    1978-01-01

    The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.

  4. The Therapeutic Effect of Tigecycline, Unlike That of Ceftazidime, Is Not Influenced by whether the Klebsiella pneumoniae Strain Produces Extended-Spectrum β-Lactamases in Experimental Pneumonia in Rats

    PubMed Central

    Mouton, Johan W.; ten Kate, Marian T.; Sörgel, Fritz; Kinzig, Martina; Bakker-Woudenberg, Irma A. J. M.

    2013-01-01

    The efficacies of tigecycline and ceftazidime against fatal pneumonia in rats caused by an extended-spectrum β-lactamase (ESBL)-positive Klebsiella pneumoniae strain or its wild-type (WT) progenitor were compared. Ceftazidime at 12.5 or 50 mg/kg of body weight twice daily (b.i.d.) was effective (50% or 100% rat survival) in pneumonia caused by the WT isolate but unsuccessful (100% rat mortality) in pneumonia caused by the ESBL-positive variant. In contrast, tigecycline at 6.25, 12.5, or 25 mg/kg b.i.d. showed dosage-dependent efficacy up to 100% rat survival irrespective of the ESBL character of the infecting organism. PMID:23129049

  5. Strain-based fatigue data for Ti-6Al-4V ELI under fully-reversed and mean strain loads.

    PubMed

    Carrion, Patricio E; Shamsaei, Nima

    2016-06-01

    This article presents the experimental data supporting the study to obtain the mean strain/stress effects on the fatigue behavior of Ti-6Al-4V ELI. A series of strain-controlled fatigue experiments on Ti-6Al-4V ELI were performed at four strain ratios (-1, -0.5, 0, and 0.5). Two types of data are included for each specimen. These are the hysteresis stress-strain responses for the cycle in a log10 increment, and the maximum and minimum stress-strain responses for each cycle. Fatigue lives are also reported for all the experiments. PMID:26952022

  6. Fiber Bragg grating sensors for strain monitoring of steelwork

    NASA Astrophysics Data System (ADS)

    Wang, Tao; He, Dawei; Yang, Fan; Wang, Yongsheng

    2009-11-01

    Over the last few years, fiber Bragg grating (FBG) sensors have attracted a lot of interest and they are being used in various applications. This paper describes the FBG sensors used for strain monitoring of bogie and other steelworks. FBG sensors and resistance strain gauges are set on different position of steel girder, and weight is loaded on the steel girder. Strain value of the steel girder can be caught by two kinds of sensors when weight loaded is changed. Result of experiment shows that strain value obtained by resistance strain gauges and FBG sensor is coinciding. There is a linear correlation between value of strain and the weight loaded on the steel girder. FBG sensors with different encapsulations are set on bogie by acrylic plastic materials in order to monitor its dynamic strains. When sinusoidal load with its frequency from 0.15Hz to 2Hz was set on the bogie, FBG sensor system with data sampling rate of 20Hz were used to monitoring the dynamic strains. Strain data caught by FBG sensor system can offer accurate description of dynamic strain, and value of strain provided by FBG sensor suits theoretical values well. The experimental observations show that FBG sensors can be set on steelworks easily, and can monitor both static strain and dynamic strains well.

  7. Genomic Diversity of Enterotoxigenic Strains of Bacteroides fragilis

    PubMed Central

    Pierce, Jessica V.; Bernstein, Harris D.

    2016-01-01

    Enterotoxigenic (ETBF) strains of Bacteroides fragilis are the subset of strains that secrete a toxin called fragilysin (Bft). Although ETBF strains are known to cause diarrheal disease and have recently been associated with colorectal cancer, they have not been well characterized. By sequencing the complete genome of four ETBF strains, we found that these strains exhibit considerable variation at the genomic level. Only a small number of genes that are located primarily in the Bft pathogenicity island (BFT PAI) and the flanking CTn86 conjugative transposon are conserved in all four strains and a fifth strain whose genome was previously sequenced. Interestingly, phylogenetic analysis strongly suggests that the BFT PAI was acquired by non-toxigenic (NTBF) strains multiple times during the course of evolution. At the phenotypic level, we found that the ETBF strains were less fit than the NTBF strain NCTC 9343 and were susceptible to a growth-inhibitory protein that it produces. The ETBF strains also showed a greater tendency to form biofilms, which may promote tumor formation, than NTBF strains. Although the genomic diversity of ETBF strains raises the possibility that they vary in their pathogenicity, our experimental results also suggest that they share common properties that are conferred by different combinations of non-universal genetic elements. PMID:27348220

  8. Genomic Diversity of Enterotoxigenic Strains of Bacteroides fragilis.

    PubMed

    Pierce, Jessica V; Bernstein, Harris D

    2016-01-01

    Enterotoxigenic (ETBF) strains of Bacteroides fragilis are the subset of strains that secrete a toxin called fragilysin (Bft). Although ETBF strains are known to cause diarrheal disease and have recently been associated with colorectal cancer, they have not been well characterized. By sequencing the complete genome of four ETBF strains, we found that these strains exhibit considerable variation at the genomic level. Only a small number of genes that are located primarily in the Bft pathogenicity island (BFT PAI) and the flanking CTn86 conjugative transposon are conserved in all four strains and a fifth strain whose genome was previously sequenced. Interestingly, phylogenetic analysis strongly suggests that the BFT PAI was acquired by non-toxigenic (NTBF) strains multiple times during the course of evolution. At the phenotypic level, we found that the ETBF strains were less fit than the NTBF strain NCTC 9343 and were susceptible to a growth-inhibitory protein that it produces. The ETBF strains also showed a greater tendency to form biofilms, which may promote tumor formation, than NTBF strains. Although the genomic diversity of ETBF strains raises the possibility that they vary in their pathogenicity, our experimental results also suggest that they share common properties that are conferred by different combinations of non-universal genetic elements. PMID:27348220

  9. Elevated temperature strain gages

    NASA Technical Reports Server (NTRS)

    Brittain, J. O.; Geslin, D.; Lei, J. F.

    1986-01-01

    One of the goals of the HOST Program is the development of electrical resistance strain gages for static strain measurements at temperatures equal to or greater than 1273 K. Strain gage materials must have a reproducible or predictable response to temperature, time and strain. It is the objective of this research to investigate criteria for the selection of materials for such applications through electrical properties studies. The results of the investigation of two groups of materials, refractory compounds and binary alloy solid solutions are presented.

  10. Thin film strain transducer

    NASA Technical Reports Server (NTRS)

    Rand, J. L. (Inventor)

    1984-01-01

    A strain transducer system and process for making the same is disclosed. A beryllium copper ring having four strain gages is electrically connected in Wheatstone bridge fashion to the output instrumentation. Tabs are bonded to a balloon or like surface with strain on the surface causing bending of a ring which provides an electrical signal through the gages proportional to the surface strain. A photographic pattern of a one half ring segment as placed on a sheet of beryllium copper for chem-mill etch formation is illustrated.

  11. Can strain magnetize light?

    NASA Astrophysics Data System (ADS)

    2013-02-01

    Strain in photonic structures can induce pseudomagnetic fields and Landau levels. Nature Photonics spoke to Mordechai Segev, Mikael Rechtsman, Alexander Szameit and Julia Zeuner about their unique approach.

  12. A Methodology for Measuring Strain in Power Semiconductors

    NASA Astrophysics Data System (ADS)

    Avery, Seth M.

    The objective of this work is to develop a strain measurement methodology for use in power electronics during electrical operation; such that strain models can be developed and used as the basis of an active strain controller---improving the reliability of power electronics modules. This research involves developing electronic speckle pattern interferometry (ESPI) into a technology capable of measuring thermal-mechanical strain in electrically active power semiconductors. ESPI is a non-contact optical technique capable of high resolution (approx. 10 nm) surface displacement measurements. This work has developed a 3-D ESPI test stand, where simultaneous in- and out-of-plane measured components are combined to accurately determine full-field surface displacement. Two cameras are used to capture both local (interconnect level) displacements and strains, and global (device level) displacements. Methods have been developed to enable strain measurements of larger loads, while avoiding speckle decorrelation (which limits ESPI measurement of large deformations). A method of extracting strain estimates directly from unfiltered and wrapped phase maps has been developed, simplifying data analysis. Experimental noise measurements are made and used to develop optimal filtering using model-based tracking and determined strain noise characteristics. The experimental results of this work are strain measurements made on the surface of a leadframe of an electrically active IGBT. A model-based tracking technique has been developed to allow for the optimal strain solution to be extracted from noisy displacement results. Also, an experimentally validated thermal-mechanical FE strain model has been developed. The results of this work demonstrate that in situ strain measurements in power devices are feasible. Using the procedures developed in the work, strain measurements at critical locations of strain, which limit device reliability, at relevant power levels can be completed.

  13. Strain field of a buried oxide aperture

    NASA Astrophysics Data System (ADS)

    Kießling, F.; Niermann, T.; Lehmann, M.; Schulze, J.-H.; Strittmatter, A.; Schliwa, A.; Pohl, U. W.

    2015-02-01

    The strain field of an AlOx current aperture, fabricated by selective oxidation of an AlAs/GaAs layer buried in a circular GaAs mesa, is studied. Components of the strain tensor for a thin cross-section lamella cut out of such a structure are evaluated from dark-field electron holography, proving the validity of simulations based on linear elasticity. Simulation of the entire structure is utilized to prepare mesa surfaces with tailored strain fields for controlling the nucleation site of InGaAs quantum dots. The experimental proof of strain simulations allows estimating the magnitude of piezoelectricity, yielding for the studied mesa structures a piezoelectric potential up to 50 mV.

  14. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filtration theory does not include the potential influence of pore structure on colloid removal by straining. Conversely, previous research on straining has not considered the potential influence of chemical interactions. Experimental and theoretical studies were therefore undertaken to explore t...

  15. Strain mapping analysis of textile composites

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitry; Ivanov, Sergey; Lomov, Stepan; Verpoest, Ignaas

    2009-03-01

    The focus of the work is meso-scale analysis (scale level of the fabric unit cell) of textile composite deformation and failure. The surface strain measurement is used for: (1) experimental investigation, which includes study of strain distribution at various stages of deformation, plasticity detection, damage initiation; (2) numerical validation of the correspondent finite element (FE) models. Two examples are considered: carbon-epoxy triaxial-braided and glass polypropylene-woven composite. The surface strain measurement (by digital image correlation technique) accompanies the tensile tests, aiming at: (1) elastic anisotropic constants characterisation, (2) study of non-linear material behaviour (for the thermoplastic composite), (3) control of homogeneity of the macro-strain distribution, and (4) analysis of damage initiation in brittle composites. Validation of meso-FE models by strain measurements encounters difficulties arising from (1) resolution of the strain measurements, (2) irregularities of the initial structure such as random layer nesting, ply interaction, and deviation of yarns from their theoretical position, which affects the measured strain fields. The paper discusses these difficulties and demonstrates a qualitative agreement with the FE analysis of idealised composite configurations.

  16. Geodetic Strain Analysis Tool

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Baxter, Sean C.; Parker, Jay W.; Webb, Frank H.; Owen, Susan E.; Sibthorpe, Anthony J.; Dong, Danan

    2011-01-01

    A geodetic software analysis tool enables the user to analyze 2D crustal strain from geodetic ground motion, and create models of crustal deformation using a graphical interface. Users can use any geodetic measurements of ground motion and derive the 2D crustal strain interactively. This software also provides a forward-modeling tool that calculates a geodetic velocity and strain field for a given fault model, and lets the user compare the modeled strain field with the strain field obtained from the user s data. Users may change parameters on-the-fly and obtain a real-time recalculation of the resulting strain field. Four data products are computed: maximum shear, dilatation, shear angle, and principal components. The current view and data dependencies are processed first. The remaining data products and views are then computed in a round-robin fashion to anticipate view changes. When an analysis or display parameter is changed, the affected data products and views are invalidated and progressively re-displayed as available. This software is designed to facilitate the derivation of the strain fields from the GPS and strain meter data that sample it to facilitate the understanding of the strengths and weaknesses of the strain field derivation from continuous GPS (CGPS) and other geodetic data from a variety of tectonic settings, to converge on the "best practices" strain derivation strategy for the Solid Earth Science ESDR System (SESES) project given the CGPS station distribution in the western U.S., and to provide SESES users with a scientific and educational tool to explore the strain field on their own with user-defined parameters.

  17. Mechanical strain isolator mount

    NASA Technical Reports Server (NTRS)

    James, Gordon E. (Inventor)

    1991-01-01

    Certain devices such as optical instruments must preserve their alignmental integrity while being subjected to mechanical strain. A mechanical strain isolator mount is provided to preserve the alignmental integrity of an alignment sensitive instrument. An alignment sensitive instrument is mounted on a rectangular base. Flexural legs are connected at their proximal ends to the rectangular base. Flexural legs are also spaced parallel to the sides. Mounting pads are connected to the legs at the distal end and the mechanical strain isolator mount is attached to the substrate by means of threaded bolts. When a mounting pad and its respective leg is subjected to lateral strain in either the X or Y direction via the substrate, the respective leg relieves the strain by bending in the direction of the strain. An axial strain on a mounting pad in the Z direction is relieved by a rotational motion of the legs in the direction of the strain. When the substrate is stress free, the flexural legs return to their original condition and thus preserve the original alignment integrity of the alignment sensitive instrument.

  18. Light intensity strain analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. G. (Inventor)

    1973-01-01

    A process is described for the analysis of the strain field of structures subjected to large deformations involving a low modulus substrate having a high modulus, relatively thin coating. The optical properties of transmittance and reflectance are measured for the coated substrate while stressed and unstressed to indicate the strain field for the coated substrate.

  19. Path dependent high strain, strain-rate deformation of polymer toroidal elements

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Wei; Nesterenko, Vitali F.

    2014-08-01

    The dynamic behavior of toroidal elements (o-rings) is investigated at the range of global engineering strains up to 0.7 and strain rates about 100 s-1. It was observed that the corresponding average dynamic stiffness of rubber toroidal elements increases up to 3 times in comparison with their quasistatic compression. The viscoelastic dynamic model using linear strain-rate dependence and Hertz damped model did not satisfactory agree with experimental data in investigated range of strains and strain-rates. In order to reflect experimental results, a modified viscoelastic model with power-law strain-rate dependence was proposed. Path dependent deformation of o-rings with different levels of pre-compression was investigated under dynamic loading conditions. It was found that dynamic response of pre-compressed o-rings at the initial strain range of 0.04-0.25 is similar to the behavior of uncompressed o-rings, but further increasing pre-compression to 0.4 and 0.5 results in different force-strain curves demonstrating memory effect. This phenomenon is explained using a model incorporating dependence of dynamic force on initial pre-compression introducing critical level of dynamic strain, after which memory of initial pre-compression fades. This model predicts that force history of weakly compressed o-rings (initial strain 4%) on the stage of loading represents an envelope for all other data in agreement with experiments. In all cases, the dynamic behavior was characterized by stiffer force-displacement curves in comparison with quasistatic compression of o-rings.

  20. Resistance fail strain gage technology as applied to composite materials

    NASA Technical Reports Server (NTRS)

    Tuttle, M. E.; Brinson, H. F.

    1985-01-01

    Existing strain gage technologies as applied to orthotropic composite materials are reviewed. The bonding procedures, transverse sensitivity effects, errors due to gage misalignment, and temperature compensation methods are addressed. Numerical examples are included where appropriate. It is shown that the orthotropic behavior of composites can result in experimental error which would not be expected based on practical experience with isotropic materials. In certain cases, the transverse sensitivity of strain gages and/or slight gage misalignment can result in strain measurement errors.

  1. Mouse model of congenital infection with a non-virulent Toxoplasma gondii strain: Vertical transmission, "sterile" fetal damage, or both?

    PubMed

    Vargas-Villavicencio, J A; Cedillo-Peláez, C; Rico-Torres, C P; Besné-Mérida, A; García-Vázquez, F; Saldaña, J I; Correa, D

    2016-07-01

    Congenital transmission of Toxoplasma gondii may occur if the mother gets infected for the first time while pregnant. The risk of mother-to-child transmission depends on the gestation trimester at infection, being lowest in the first and highest in the last. Conversely, fetal damage is frequent and more severe at the beginning of pregnancy. The objective of this study was to evaluate congenital transmission and pathological aspects in the placenta and the fetus using a mouse model of congenital infection of the second gestation third. Forty-five female BALB/c mice were infected intravenously with 2.5-10.0 × 10(6) tachyzoites of the ME49 strain at middle gestation. Samples of maternal spleen and fetal/placental units were taken 72 h later. We determined parasite load and vertical transmission by qPCR, as well as damage macroscopically and by histopathology. With the lowest dose, 18% of the fetuses were infected. Also, 40% of fetuses/litter were altered, while this value was 10% in the control group (P < 0.05). These results are similar to those described in humans in terms of vertical transmission and fetal damage during the second third of gestation. The maternal spleen had 10-1000 times more tachyzoites than the placenta, and the later retained 90-99% of the parasites that could reach the fetus. Nevertheless, we found resorptions, abortions or fetal tissue damage in the presence but also in the absence of parasites. Our data indicate a strong protective effect of maternal organs and the placenta against fetal infection, but extensive damage of the later may led to resorption or abortion without vertical transmission. PMID:27068784

  2. Tuning Surface Properties of Low Dimensional Materials via Strain Engineering.

    PubMed

    Yang, Shengchun; Liu, Fuzhu; Wu, Chao; Yang, Sen

    2016-08-01

    The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi-two dimensional layered non-metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal-catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided. PMID:27376498

  3. Strain gauge installation tool

    DOEpatents

    Conard, Lisa Marie

    1998-01-01

    A tool and a method for attaching a strain gauge to a test specimen by maaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  4. Mechanochromic polyurethane strain sensor

    NASA Astrophysics Data System (ADS)

    Cellini, F.; Khapli, S.; Peterson, S. D.; Porfiri, M.

    2014-08-01

    In this Letter, we study the mechanical and optical response of a thermoplastic polyurethane blended with 0.5 wt. % of bis(benzoxazolyl)stilbene dye. The mechanochromic behavior of the material is characterized in a uniaxial stress-relaxation test by simultaneously acquiring the applied force, mechanical deformation, and fluorescence emission. To offer insight into the stress-strain response of the polymer-dye blend, we adapt a classical nonlinear constitutive behavior for elastomeric materials that accounts for stress-induced softening. We correlate the fluorescent response with the mechanical strain to demonstrate the possibility of accurate strain sensing for a broad range of deformations during both loading and unloading.

  5. Strain gauge installation tool

    SciTech Connect

    Conard, Lisa Marie

    1997-12-01

    A tool and a method for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool.

  6. Potential pitfalls in the nuclear medicine imaging: Experimental models to evaluate the effect of natural products on the radiolabeling of blood constituents, bioavailability of radiopharmaceutical and on the survival of Escherichia coli strains submitted to the treatment with stannous ion

    NASA Astrophysics Data System (ADS)

    Soares, Scheila F.; Brito, Lavínia C.; Souza, Deise E.; Bernardo, Luciana C.; Oliveira, Joelma F.; Bernardo-Filho, Mario

    2006-12-01

    Single photon emission computed tomography (SPECT) allows studies of physiological or pathological processes. Red blood cells labeled with technetium-99m ( 99mTc-RBC) are used as a radiopharmaceutical in several evaluations. The radiolabeling efficiency and bioavailability of radiopharmaceuticals can be altered by natural/synthetic drugs and may induce pitfalls in the analysis of the nuclear medicine imaging. The labeling with 99mTc requires a reducing agent and stannous chloride (SnCl 2) is widely utilized. However, SnCl 2 presents a citotoxic and/or genotoxic potential in Escherichia coli ( E. coli) strains. The aim of this work was to evaluate the influence of aqueous extracts of Baccharis genistelloides (BG), Terminalia chebula (TC), Maytenus ilicifolia (MI), Cassia angustifolia (CA) and Equisetum arvense (EA) on (i) radiolabeling of blood constituents, (ii) bioavailability of sodium pertechnetate(Na 99mTcO 4) radiopharmaceutical, (iii) survival of E. coli. In vitro labeling of RBC was performed with blood ( Wistar rats) incubated with each extract, SnCl 2 and Na 99mTcO 4. Plasma (P) and blood cells (BC) were isolated, another aliquots precipitated and soluble (SF) and insoluble (IF) fractions isolated and counted. In the bioavailability of Na 99mTcO 4, Wistar rats were treated (7 days) with aqueous extract or with 0.9%NaCl, the radiopharmaceutical was administered, the animals sacrificed, the organs isolated, weighted and radioactivity counted. To evaluate the effect on the bacterial survival, E. coli was treated with: (a) SnCl 2; (b) 0.9% NaCl; (c) vegetal extract; or (d) SnCl 2 and vegetal extract. Radiolabeling efficiency showed a significantly decrease (ANOVA/Tukey post-test, p<0.05) after treatment with BG, TC, MI and CA extracts. The bioavailability results showed that the uptake of Na 99mTcO 4 was altered significantly (unpaired t-student test, p<0.05) in blood, lungs (CA/TC extracts), bone, heart, ovary (EA /TC), spleen, kidney (TC) , pancreas, thyroid

  7. Microstructural changes, steady-state deformation and strain localisation during large strain deformation of rocks

    NASA Astrophysics Data System (ADS)

    Barnhoorn, A.

    2012-04-01

    Ductile deformation in the Earth's crust and mantle is often concentrated in narrow shear zones. These shear zones play a fundamental role in the deformation dynamics of the earth's lithosphere during mountain building, subduction and continental break-up. Shear zones exhibit large amounts of strain with an increase in strain from the edge to the center of the shear zone. Those large strains are often accompanied with large changes in microstructure due to processes such as dynamic recrystallization, grain size refinement, development of strong foliations, development of crystallographic preferred orientations, weakening of the rock as well as progressive localisation of the deformation into more and more concentrated zones. The interplay between all those different processes produce the various microstructures that are often studied in natural shear zones to assess the deformation conditions and history of plate tectonic processes. Experimental deformation studies under controlled conditions are used to produce relationships between the different processes active in shear zones (rheology, microstructural changes, and CPO development) in order to make those quantitative inferences on natural shear zones, Here I will present the outcomes from large strain torsion experiments at elevated temperatures and pressures on monophase calcitic rocks showing that very large strains are needed before true steady-state conditions in rocks are attained. Continuous changes in crystallographic preferred orientations and continuous dynamic recrystallization by grain boundary migration and subgrain rotation recrystallization occur up to the largest shear strains achieved in the study (shear strain of 50). Dynamic recrystallization from an undeformed coarse-grained calcite rock types towards a fine-grained ultramylonite is accompanied by a modest (~20%) weakening of the rock. However, this modest weakening never caused strain localisation in the samples. In contrast to the

  8. What Are Sprains and Strains?

    MedlinePlus

    ... sprain, one or more ligaments is stretched or torn. What Causes a Sprain? Where Do Sprains Usually ... strain, a muscle or tendon is stretched or torn. What Causes Strains? A strain is caused by ...

  9. Strain Tuning of Ferroelectric Thin Films *

    NASA Astrophysics Data System (ADS)

    Schlom, Darrell G.; Chen, Long-Qing; Eom, Chang-Beom; Rabe, Karin M.; Streiffer, Stephen K.; Triscone, Jean-Marc

    2007-08-01

    Predictions and measurements of the effect of biaxial strain on the properties of epitaxial ferroelectric thin films and superlattices are reviewed. Results for single-layer ferroelectric films of biaxially strained SrTiO3, BaTiO3, and PbTiO3 as well as PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices are described. Theoretical approaches, including first principles, thermodynamic analysis, and phase-field models, are applied to these biaxially strained materials, the assumptions and limitations of each technique are explained, and the predictions are compared. Measurements of the effect of biaxial strain on the paraelectric-to-ferroelectric transition temperature (TC) are shown, demonstrating the ability of percent-level strains to shift TC by hundreds of degrees in agreement with the predictions that predated such experiments. Along the way, important experimental techniques for characterizing the properties of strained ferroelectric thin films and superlattices, as well as appropriate substrates on which to grow them, are mentioned.

  10. Microstructural Analysis of Welding: Deformation and Strain

    NASA Astrophysics Data System (ADS)

    Quane, S. L.; Russell, K.

    2003-12-01

    Welding in pyroclastic deposits involves the sintering, compaction and flattening of hot glassy particles and is attended by systematic changes in physical properties. Welded materials contain implicit information regarding the total accumulated strain as well as the mechanisms of deformation. Here, we use detailed microstructural analysis of synthetic and natural welded materials to make quantitative estimates of strain and constrain the rheology of these materials during the welding process. Part one of our study comprises microstructural analysis of end products from unconfined high temperature deformation experiments on sintered cores of soda-lime silica glass spheres. This analogue material has relatively simple and well-characterized starting properties. Furthermore, the initially spherical shapes of particles provide excellent strain markers. Experiments were run at a variety of temperatures, strain rates and stresses resulting in end products with varying degrees of total strain. The nature of strain partitioning and accumulation are evaluated using image analysis techniques on scanned images and photomicrographs of thin sections cut perpendicular to the loading direction of each experimental product. Shapes of the individual deformed particles (e.g., oblate spheroids) were determined and the Scion image analysis program was used to create a best-fit ellipse for each particle. Statistics collected on each particle include: axial dimension (a), vertical dimension (c) and angle from the horizontal. The data are used to calculate the oblateness of each particle (1-c/a) and the angle of deformation induced foliation. Furthermore, the relative proportions of visible blue epoxy in the sample scans determine bulk porosity. The average oblateness of the particles is a direct, independent measure of the accumulated strain in each sample. Results indicate that these measured values are equal to calculated theoretical values of oblateness for spheroids undergoing the

  11. Sprains and Strains

    MedlinePlus

    ... people at risk for strains. Gymnastics, tennis, rowing, golf, and other sports that require extensive gripping can ... Trials and You was designed to help people learn more about clinical trials, why they matter, and ...

  12. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema

    None

    2015-01-09

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  13. Joint Actinide Shock Physics Experimental Research - JASPER

    SciTech Connect

    2014-10-31

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  14. CD19 LYMPHOCYTE PROLIFERATION INDUCED BY Bifidobacterium animalis subsp. lactis IN C57BL/6 MICE EXPERIMENTALLY INFECTED WITH Toxoplasma gondii

    PubMed Central

    RIBEIRO, Claudia de Mello; ZORGI, Nahiara Esteves; MEIRELES, Luciana Regina; GARCIA, João Luis; de ANDRADE, Heitor Franco

    2016-01-01

    Toxoplasmosis is frequently acquired through the oral route by the ingestion of cysts or oocysts of Toxoplasma gondii. Once ingested, the parasites penetrate the intestinal epithelial cells and rapidly disseminate to all organs in the host. During T. gondii infection, the intestinal microbiota plays an important role in stimulating a protective immune response against the parasite. In this sense the use of probiotics is worthy of note since they are live microorganisms that have beneficial effects on the host through stimulation of the immune response that can be important in the control of T. gondii proliferation and dissemination in the host. In the present study, the action of the probiotic Bifidobacterium animalis subsp. lactis was investigated in C57BL/6 mice infected with oocysts of ME49 strain of T. gondii. The probiotic had an immunomodulatory action, inducing CD19 lymphocyte proliferation and consequently increasing anti-T. gondii antibody level.Bifidobacterium animalis subsp. lactisprovided protection in supplemented mice, compared to the control group. In addition, supplemented animals had milder inflammatory process in the small intestine, indicating that the probiotic protects the intestinal mucosa during infection with T. gondii. It was concluded that the probioticB. animalis subsp. lactis induces humoral immune response capable of providing protection against T. gondii infection. PMID:27074320

  15. MEMS Graphene Strain Sensor

    NASA Astrophysics Data System (ADS)

    Young, Clinton Wen-Chieh

    Graphene is a two dimensional honeycomb structure of sp2 hybridized carbon atoms that has possibilities in many applications due to its excellent mechanical and electrical properties. One application for Graphene is in the field of sensors. Graphene's electronic properties do not degrade when it undergoes mechanical strain which is advantageous for strain sensors. In this thesis, certain properties, such as the piezo-resistivity and flexibility, of graphene will be explored to show how they can be utilized to make a strain sensing device. Our original fabrication process of patterning graphene and the transfer process of graphene onto a flexible substrate will be discussed. The development of a stretchable and flexible graphene based rosette strain sensor will also be detailed. Developing a novel, reliable patterning process for the graphene is the first step to manufacture a stretchable graphene based sensor. The graphene was patterned using a photolithography and etching process that was developed by our research team, then it was transferred to a flexible polymer substrate with the use of a combination of soft lithography and wet etching of the Ni foil with ferric chloride solution. Graphene patterning is an essential step in fabricating reliable and sensitive sensors. With this process, graphene can be consistently patterned into different shapes and sizes. To utilize the graphene as the sensing material it also needs to be transferred onto a flexible substrate. The innovative transfer process developed by our research team consistently adheres graphene to a flexible PDMS substrate while removing the original nickel substrate. In the end, the graphene was transferred from the metal substrate to the desired flexible substrate. This process was repeated multiple times to create a stack and multilayer device. While many graphene-based strain sensors have been developed, they are uni-directional and can only measure the strain applied on the sensor in a principle

  16. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment

    NASA Astrophysics Data System (ADS)

    Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.

  17. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    SciTech Connect

    Browning, R.V.; Scammon, R.J.

    1997-07-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-950l. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate the viscoelastic based model show that the observed characteristic behavior is captured by this model.

  18. Mechanical strength model for plastic bonded granular materials at high strain rates and large strains

    SciTech Connect

    Browning, R.V.; Scammon, R.J.

    1998-07-01

    Modeling impact events on systems containing plastic bonded explosive materials requires accurate models for stress evolution at high strain rates out to large strains. For example, in the Steven test geometry reactions occur after strains of 0.5 or more are reached for PBX-9501. The morphology of this class of materials and properties of the constituents are briefly described. We then review the viscoelastic behavior observed at small strains for this class of material, and evaluate large strain models used for granular materials such as cap models. Dilatation under shearing deformations of the PBX is experimentally observed and is one of the key features modeled in cap style plasticity theories, together with bulk plastic flow at high pressures. We propose a model that combines viscoelastic behavior at small strains but adds intergranular stresses at larger strains. A procedure using numerical simulations and comparisons with results from flyer plate tests and low rate uniaxial stress tests is used to develop a rough set of constants for PBX-9501. Comparisons with the high rate flyer plate tests demonstrate that the observed characteristic behavior is captured by this viscoelastic based model. {copyright} {ital 1998 American Institute of Physics.}

  19. Test load verification through strain data analysis

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1995-01-01

    A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Test may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.

  20. Modeling competition between yeast strains

    NASA Astrophysics Data System (ADS)

    de Gee, Maarten; van Mourik, Hilda; de Visser, Arjan; Molenaar, Jaap

    2016-04-01

    We investigate toxin interference competition between S. cerevisiae colonies grown on a solid medium. In vivo experiments show that the outcome of this competition depends strongly on nutrient availability and cell densities. Here we present a new model for S. cerevisiae colonies, calculating the local height and composition of the colonies. The model simulates yeast colonies that show a good fit to experimental data. Simulations of colonies that start out with a homogeneous mixture of toxin producing and toxin sensitive cells can display remarkable pattern formation, depending on the initial ratio of the strains. Simulations in which the toxin producing and toxin sensitive species start at nearby positions clearly show that toxin production is advantageous.

  1. The atomic strain tensor

    SciTech Connect

    Mott, P.H.; Argon, A.S. ); Suter, U.W. Massachusetts Institute of Technology, Cambridge, MA )

    1992-07-01

    A definition of the local atomic strain increments in three dimensions and an algorithm for computing them is presented. An arbitrary arrangement of atoms is tessellated in to Delaunay tetrahedra, identifying interstices, and Voronoi polyhedra, identifying atomic domains. The deformation gradient increment tensor for interstitial space is obtained from the displacement increments of the corner atoms of Delaunay tetrahedra. The atomic site strain increment tensor is then obtained by finding the intersection of the Delaunay tetrahedra with the Voronoi polyhedra, accumulating the individual deformation gradient contributions of the intersected Delaunay tetrahedra into the Voronoi polyhedra. An example application is discussed, showing how the atomic strain clarifies the relative local atomic movement for a polymeric glass treated at the atomic level. 6 refs. 10 figs.

  2. Strain gauge installation tool

    DOEpatents

    Conard, L.M.

    1998-06-16

    A tool and a method are disclosed for attaching a strain gauge to a test specimen by maintaining alignment of, and applying pressure to, the strain gauge during the bonding of the gauge to the specimen. The tool comprises rigid and compliant pads attached to a spring-loaded clamp. The pads are shaped to conform to the specimen surface to which the gauge is to be bonded. The shape of the pads permits the tool to align itself to the specimen and to maintain alignment of the gauge to the specimen during the bond curing process. A simplified method of attaching a strain gauge is provided by use of the tool. 6 figs.

  3. Diffusion on strained surfaces

    NASA Astrophysics Data System (ADS)

    Schroeder, M.; Wolf, D. E.

    1997-03-01

    The change of diffusion kinetics when elastic fields are present is discussed for diffusion on (001) surfaces of simple cubic, fcc and bcc lattices. All particles interact pairwise with a Lennard-Jones potential. The simple cubic lattice was stabilized by an anisotropic prefactor. It is found that generically compressive strain enhances diffusion whereas tensile strain increases the activation barrier. An approximately linear dependence of the barrier in a wide range of misfits is found. In heteroepitaxy, diffusion on top of large clusters is inhomogeneous and anisotropic. The kinetics close to edges and centers of islands are remarkably different. In many cases changes of binding energies are small compared to those of saddle point energies. Thermodynamic arguments (minimization of free energy) are not appropriate to describe diffusion on strained surfaces in these cases.

  4. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  5. Prediction of swelling rocks strain in tunneling

    NASA Astrophysics Data System (ADS)

    Parsapour, D.; Fahimifar, A.

    2016-05-01

    Swelling deformations leading to convergence of tunnels may result in significant difficulties during the construction, in particular for long term use of tunnels. By extracting an experimental based explicit analytical solution for formulating swelling strains as a function of time and stress, swelling strains are predicted from the beginning of excavation and during the service life of tunnel. Results obtained from the analytical model show a proper agreement with experimental results. This closed-form solution has been implemented within a numerical program using the finite element method for predicting time-dependent swelling strain around tunnels. Evaluating effects of swelling parameters on time-dependent strains and tunnel shape on swelling behavior around the tunnel according to this analytical solution is considered. The ground-support interaction and consequent swelling effect on the induced forces in tunnel lining is considered too. Effect of delay in lining installation on swelling pressure which acting on the lining and its structural integrity, is also evaluated. A MATLAB code of " SRAP" is prepared and applied to calculate all swelling analysis around tunnels based on analytical solution.

  6. High strain-rate magnetoelasticity in Galfenol

    NASA Astrophysics Data System (ADS)

    Domann, J. P.; Loeffler, C. M.; Martin, B. E.; Carman, G. P.

    2015-09-01

    This paper presents the experimental measurements of a highly magnetoelastic material (Galfenol) under impact loading. A Split-Hopkinson Pressure Bar was used to generate compressive stress up to 275 MPa at strain rates of either 20/s or 33/s while measuring the stress-strain response and change in magnetic flux density due to magnetoelastic coupling. The average Young's modulus (44.85 GPa) was invariant to strain rate, with instantaneous stiffness ranging from 25 to 55 GPa. A lumped parameters model simulated the measured pickup coil voltages in response to an applied stress pulse. Fitting the model to the experimental data provided the average piezomagnetic coefficient and relative permeability as functions of field strength. The model suggests magnetoelastic coupling is primarily insensitive to strain rates as high as 33/s. Additionally, the lumped parameters model was used to investigate magnetoelastic transducers as potential pulsed power sources. Results show that Galfenol can generate large quantities of instantaneous power (80 MW/m3 ), comparable to explosively driven ferromagnetic pulse generators (500 MW/m3 ). However, this process is much more efficient and can be cyclically carried out in the linear elastic range of the material, in stark contrast with explosively driven pulsed power generators.

  7. Strain intermittency in shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Balandraud, Xavier; Barrera, Noemi; Biscari, Paolo; Grédiac, Michel; Zanzotto, Giovanni

    2015-05-01

    We study experimentally the intermittent progress of the mechanically induced martensitic transformation in a Cu-Al-Be single crystal through a full-field measurement technique: the grid method. We utilize an in-house, specially designed gravity-based device, wherein a system controlled by water pumps applies a perfectly monotonic uniaxial load through very small force increments. The sample exhibits hysteretic superelastic behavior during the forward and reverse cubic-monoclinic transformation, produced by the evolution of the strain field of the phase microstructures. The in-plane linear strain components are measured on the sample surface during the loading cycle, and we characterize the strain intermittency in a number of ways, showing the emergence of power-law behavior for the strain avalanching over almost six decades of magnitude. We also describe the nonstationarity and the asymmetry observed in the forward versus reverse transformation. The present experimental approach, which allows for the monitoring of the reversible martensitic transformation both locally and globally in the crystal, proves useful and enhances our capabilities in the analysis and possible control of transition-related phenomena in shape-memory alloys.

  8. Effect of Coating on the Strain Transfer of Optical Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2011-01-01

    Optical fiber strain sensors with light weight, small dimensions and immunity to electromagnetic interference are widely used in structural health monitoring devices. As a sensor, it is expected that the strains between the optical fiber and host structure are the same. However, due to the shear deformation of the protective coating, the optical fiber strain is different from that of host structure. To improve the measurement accuracy, the strain measured by the optical fiber needs to be modified to reflect the influence of the coating. In this investigation, a theoretical model of the strain transferred from the host material to the optical fiber is developed to evaluate the interaction between the host material and coating. The theoretical predictions are validated with a numerical analysis using the finite element method. Experimental tests are performed to reveal the differential strains between the optical fiber strain sensor and test specimen. The Mach-Zehnder interferometric type fiber-optic sensor is adopted to measure the strain. Experimental results show that the strain measured at the optical fiber is lower than the true strain in the test specimen. The percentage of strain in the test specimen actually transferred to the optical fiber is dependent on the bonded length of the optical fiber and the protective coating. The general trend of the strain transformation obtained from both experimental tests and theoretical predictions shows that the longer the bonded length and the stiffer the coating the more strain is transferred to the optical fiber. PMID:22163993

  9. Benchmark cyclic plastic notch strain measurements

    NASA Technical Reports Server (NTRS)

    Sharpe, W. N., Jr.; Ward, M.

    1983-01-01

    Plastic strains at the roots of notched specimens of Inconel 718 subjected to tension-compression cycling at 650 C are reported. These strains were measured with a laser-based technique over a gage length of 0.1 mm and are intended to serve as 'benchmark' data for further development of experimental, analytical, and computational approaches. The specimens were 250 mm by 2.5 mm in the test section with double notches of 4.9 mm radius subjected to axial loading sufficient to cause yielding at the notch root on the tensile portion of the first cycle. The tests were run for 1000 cycles at 10 cpm or until cracks initiated at the notch root. The experimental techniques are described, and then representative data for the various load spectra are presented. All the data for each cycle of every test are available on floppy disks from NASA.

  10. Closure of fatigue cracks at high strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1985-01-01

    Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.

  11. Local Strain Evaluation of Strained-SOI Structures

    NASA Astrophysics Data System (ADS)

    Usuda, Koji; Mizuno, Tomohisa; Numata, Toshinori; Tezuka, Tsutomu; Sugiyama, Naoharu; Moriyama, Yoshihiko; Nakaharai, Shu; Takagi, Shin-Ichi

    The strain relaxation within a strained-Si on SiGe on insulator (SGOI) structure might be one of the key issues in development of strained-Si MOSFET devices for high-performance ULSIs. In order to investigate the strain relaxation within the thin strained-Si layers, a new characterization technique to directly evaluate a local strain variation in the layers is required. Hence, we have developed the nano-beam electron diffraction (NBD) method which has a lateral resolution of 10 nm and a strain resolution of 0.1%. In this paper, we discuss a detailed investigation of whether the NBD method could be utilized to clarify a strain in a strained-Si layer on the SGOI structures.

  12. ConStrains identifies microbial strains in metagenomic datasets

    PubMed Central

    Luo, Chengwei; Knight, Rob; Siljander, Heli; Knip, Mikael; Xavier, Ramnik J; Gevers, Dirk

    2015-01-01

    An important fraction of microbial diversity is harbored in strain individuality, so identification of conspecific bacterial strains is imperative for improved understanding of microbial community functions. Limitations in bioinformatics and sequencing technologies have to date precluded strain identification owing to difficulties in phasing short reads to faithfully recover the original strain-level genotypes, which have highly similar sequences. We present ConStrains, an open-source algorithm that identifies conspecific strains from metagenomic sequence data and reconstructs the phylogeny of these strains in microbial communities. The algorithm uses single-nucleotide polymorphism (SNP) patterns in a set of universal genes to infer within-species structures that represent strains. Applying ConStrains to simulated and host-derived data sets provides insights into microbial community dynamics. PMID:26344404

  13. ConStrains identifies microbial strains in metagenomic datasets.

    PubMed

    Luo, Chengwei; Knight, Rob; Siljander, Heli; Knip, Mikael; Xavier, Ramnik J; Gevers, Dirk

    2015-10-01

    An important fraction of microbial diversity is harbored in strain individuality, so identification of conspecific bacterial strains is imperative for improved understanding of microbial community functions. Limitations in bioinformatics and sequencing technologies have to date precluded strain identification owing to difficulties in phasing short reads to faithfully recover the original strain-level genotypes, which have highly similar sequences. We present ConStrains, an open-source algorithm that identifies conspecific strains from metagenomic sequence data and reconstructs the phylogeny of these strains in microbial communities. The algorithm uses single-nucleotide polymorphism (SNP) patterns in a set of universal genes to infer within-species structures that represent strains. Applying ConStrains to simulated and host-derived datasets provides insights into microbial community dynamics. PMID:26344404

  14. Strain measurements in a rotary engine housing

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.

    1989-01-01

    The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.

  15. Time-resolved local strain tracking microscopy for cell mechanics

    NASA Astrophysics Data System (ADS)

    Aydin, O.; Aksoy, B.; Akalin, O. B.; Bayraktar, H.; Alaca, B. E.

    2016-02-01

    A uniaxial cell stretching technique to measure time-resolved local substrate strain while simultaneously imaging adherent cells is presented. The experimental setup comprises a uniaxial stretcher platform compatible with inverted microscopy and transparent elastomer samples with embedded fluorescent beads. This integration enables the acquisition of real-time spatiotemporal data, which is then processed using a single-particle tracking algorithm to track the positions of fluorescent beads for the subsequent computation of local strain. The present local strain tracking method is demonstrated using polydimethylsiloxane (PDMS) samples of rectangular and dogbone geometries. The comparison of experimental results and finite element simulations for the two sample geometries illustrates the capability of the present system to accurately quantify local deformation even when the strain distribution is non-uniform over the sample. For a regular dogbone sample, the experimentally obtained value of local strain at the center of the sample is 77%, while the average strain calculated using the applied cross-head displacement is 48%. This observation indicates that considerable errors may arise when cross-head measurement is utilized to estimate strain in the case of non-uniform sample geometry. Finally, the compatibility of the proposed platform with biological samples is tested using a unibody PDMS sample with a well to contain cells and culture media. HeLa S3 cells are plated on collagen-coated samples and cell adhesion and proliferation are observed. Samples with adherent cells are then stretched to demonstrate simultaneous cell imaging and tracking of embedded fluorescent beads.

  16. The strained state cosmology

    NASA Astrophysics Data System (ADS)

    Tartaglia, Angelo

    2016-01-01

    Starting from some relevant facts concerning the behavior of the universe over large scale and time span, the analogy between the geometric approach of General Relativity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time reproduces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theories. The possible role of structure topological defects is also mentioned. The conclusion is that SSC is at least as good as the ΛCDM standard cosmology, giving a more intuitive interpretation of the physical nature of the phenomena.

  17. Strain gage barometric transmitter

    NASA Technical Reports Server (NTRS)

    Viton, P.

    1977-01-01

    A strain gage barometric transmitter for measuring the atmospheric pressure in severe environmental conditions is described. This equipment specifications are presented and its performance assessed. It is shown that this barometric sensor can measure the atmospheric pressure with a precision of 0.5 mb during a 6 month period.

  18. Burning Rate of Composite Propellants under the Conditions of Strain

    NASA Astrophysics Data System (ADS)

    Hu, Songqi; Chen, Jing; Wu, Guanjie; Liu, Yingji; Hua, Yijin

    2014-12-01

    In this work, a correlation between propellant burning rate and strain was established. In order to investigate the effects of strain and pressure, and to measure burning rate of composite propellants, a novel apparatus was designed and prepared. Burning rates of three formula composite propellants under different pressures and strains were measured using such device. Based on the measurements, a model for the analysis on the experimental results was proposed. It was demonstrated that the model corresponded with the experimental data if the propellant samples were under tensile strain increasing from 0 to 20%. Burning rate ratio and tensile strain obeyed the quadratic relationship, burning rate increased with strain, but there was no mutation in less than 20% deformation. Furthermore, burning rate ratio of composite propellants which had low Poisson ratio increased fast as tensile strain decreased. And the less binder component of composite propellants, the burning ratio changed more significantly under a given strain state. In addition, as the exposed area increased, the burning rate ratio became larger.

  19. Application of a Fiber Optic Distributed Strain Sensor System to Woven E-Glass Composite

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Lopatin, Craig

    2001-01-01

    A distributed strain sensing system utilizing a series of identically written Bragg gratings along an optical fiber is examined for potential application to Composite Armored Vehicle health monitoring. A vacuum assisted resin transfer molding process was used to fabricate a woven fabric E-glass/composite panel with an embedded fiber optic strain sensor. Test samples machined from the panel were mechanically tested in 4-point bending. Experimental results are presented that show the mechanical strain from foil strain gages comparing well to optical strain from the embedded sensors. Also, it was found that the distributed strain along the sample length was consistent with the loading configuration.

  20. On the use of optical fiber Bragg grating (FBG) sensor technology for strain modal analysis

    NASA Astrophysics Data System (ADS)

    Peeters, Bart; dos Santos, Fábio Luis Marques; Pereira, Andreia; Araujo, Francisco

    2014-05-01

    This paper discusses the use of optical fiber Bragg grating (FBG) strain sensors for structural dynamics measurements. For certain industrial applications, there is an interest to use strain sensors rather than or in combination with accelerometers for experimental modal analysis. Classical electrical strain gauges can be used hereto, but optical strain sensors are an interesting alternative with some very specific advantages. This paper gives an overview of dynamic strain measurements in industrial applications, discusses the benefits of FBG sensors and reviews their measurement principle. Finally, the concept of strain modal analysis is introduced and a helicopter main rotor blade vibration testing and analysis case study is presented.

  1. High Strain-Rate Compressive Behavior of Bulk Structural Adhesives: Epoxy and Methacrylate Adhesives

    NASA Astrophysics Data System (ADS)

    Yokoyama, Takashi; Nakai, Kenji; Yatim, Norfazrina Hayati Mohd

    The present paper describes the determination of high strain-rate compressive stress-strain loops for bulk specimens of two different epoxy and methacrylate structural adhesives on the standard split Hopkinson pressure bar with a tapered striker bar. The full compressive stress-strain data including unloading process are obtained over a wide range of strain rates from 10-3 to 103/s at room temperature. The effects of strain rate on the initial (secant) modulus, flow stress, dissipation energy and hysteresis loss ratio are studied. The experimental results show that both bulk structural adhesives exhibit highly strain-rate dependent viscoelastic behavior like polymeric materials.

  2. The Influence of Operating Loads on the State of Stress and Strain in Selected Load-Bearing Elements of a Tower-Type Headgear Structure in the Light of the Experimental Data / Wpływ Obciążeń Eksploatacyjnych Na Stan Naprężenia Oraz Przemieszczenia Elementów Nośnych Konstrukcji Basztowej Wieży Szybowej W Świetle Przeprowadzonych Eksperymentów

    NASA Astrophysics Data System (ADS)

    Wolny, Stanisław

    2012-12-01

    In order that the ultimate state method should be applied to the strength analysis of the tower-type headgear structure, it is required that the design loads and endurance parameters be first established. For that purpose the characteristics of loads experienced by structural elements of the headgear structure are required (Wolny, 2012) as well as the numerical analysis of stresses and strains. Thus obtained results are verified through stress (strain) measurements taken in structural elements subjected to highest loads found on the basis of the stress map derived from numerical analysis, being the subject matter of the present study. Strain (stress) measurements are taken on the beams located at the floor level +65.00 m on which the winding machines are positioned (drive shaft bearings, stators in the electric motors), as shown schematically in Fig. 2. The strength analysis by numerical methods is restricted to those elements of the load bearing structure in the headgear at the level (+65.00) where the strain (stress) and measurements are taken and where loads are measured that give rise to the maximal strain changes (Wolny, 2012). Alongside the strain (stress) measurements in the load-bearing elements of the headgear structure, measurements are taken of horizontal displacements at selected points of the structure with the use of an interferometric radar IBIS-S. Results of the repeated numerical analysis of the state of stress, restricted to those elements of the load bearing structure in the tower-type headgear where the maximal loads are registered (Wolny, 2010), agree well with experimental data obtained from tests done on a real object. Therefore, the numerical analyses of the state of stress and strain in the load-bearing elements of the headgear structures operated in the Polish collieries lead us to the assumption that when analysing the geometry of the driving systems in the winding gear, the structures on which the elements of the winder installation are

  3. Iodine-stress corrosion cracking of Zircaloy-2 cladding under near plane strain and localized stress-strain conditions

    SciTech Connect

    Nobrega, B.N.

    1984-01-01

    The segmented expanding mandrel test (SEMT) method is generally regarded as a good laboratory simulator of pellet-cladding interactions (PCI) in LWR fuel rods. Yet it does not reproduce the low strain failures in Zircaloy cladding typical of PCI-failed fuel elements and commonly observed in other types of laboratory specimens. This investigation addressed this apparent inconsistency. Iodine-stress corrosion cracking (I-SCC) of cold worked, unirradiated Zircaloy-2 cladding was induced in three different types of tubing specimens (known as regular, thin-wall, and chamfered) in a modified SEMT apparatus designed to test mechanical conditions that could lead to slow strain failures. Only the chamfered sample, which has been shown to be subjected to more nearly plane strain conditions than either of the other two specimen types, failed consistently at low (0.8%) total diametral strains in good agreement with in-reactor failure data. Such conditions were numerically and experimentally quantified by means of finite element calculational models and local strain measurements. The numerical analyses and strain measurements provide valuable insight into the PCI simulating power of the segmented expanding mandrel test and its experimental limitations. Failure-strain results for chamfered barrier claddings were obtained and compared with available literature data. The improved I-SCC resistance of this type of cladding was confirmed but the failure strains were significantly lower than reported for regular barrier tubes.

  4. The meaning of role strain.

    PubMed

    Ward, C R

    1986-01-01

    Explicating the meaning of the concept of role strain is important in role theory formulation, an area requiring further development to provide explanations and predictions for both patient and provider roles. In this analysis, the use of the term role strain is traced from the structural-functionalist and symbolic-interactionist perspectives. Descriptive, stipulative, and connotative definitions of role strain are derived, and necessary and relevant properties are proposed. Antecedent and intervening conditions for role strain are outlined from the literature. Role strain manifestations and empirical referents are presented, and an initial step is taken toward a theoretical formulation by defining role strain within the context of role stress. PMID:3079985

  5. Strained silicon: A dielectric-response calculation

    SciTech Connect

    Levine, Z.H.; Zhong, H.; Wei, S. ); Allan, D.C. Department of Physics, The Ohio State University, Columbus, Ohio 43210-1106 ); Wilkins, J.W. )

    1992-02-15

    Strain-induced birefringence is calculated with crystalline silicon for pressure applied along the (001) and (111) directions of the crystal. Results for the dielectric function and its change under hydrostatic strain are also given. The results are calculated for photon energies in the range 0--3.25 eV, i.e., below the direct band gap. We have made a fully-self-consistent Kohn-Sham local-density-approximation calculation, in the pseudopotential, plane-wave scheme, with a self-energy correction in the form of a rigid shift of the conduction bands of magnitude {Delta}=0.9 eV. Agreement with experiment is very good in the static limit, considering disagreements among the experimental values. Values of the photoelastic tensor for (001) strain are {ital p}{sub 11}{minus}{ital p}{sub 12}={minus}0.118 (theory) and {minus}0.111{plus minus}0.005, {minus}0.127{plus minus}0.005 (expt.). For (111) strain, we obtain {ital p}{sub 44}={minus}0.050 (theory) and {minus}0.051{plus minus}0.002, {minus}0.051{plus minus}0.002 (sic) (expt.); for hydrostatic distortions, {ital p}{sub 11}+2{ital p}{sub 12}={minus}0.067 (theory) and {minus}0.055{plus minus}0.006, {minus}0.070{plus minus}0.008 (expt.). For the static dielectric constant, we obtain 10.9, compared to 11.7 and 11.4 (0 K) (expt.). All experiments quoted are at room temperature, except as noted. Above 2 eV, the calculation predicts less dispersion than seen by the experiments. Thermal effects and electron-hole interactions are estimated to resolve some of the discrepancies with experiment. The experimental data for (001) strains is not consistent with a single-oscillator model, and is therefore suspect.

  6. Strain rate effects for spallation of concrete

    NASA Astrophysics Data System (ADS)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  7. Experimental Pi.

    ERIC Educational Resources Information Center

    Corris, G.

    1990-01-01

    Discusses the calculation of pi by means of experimental methods. Polygon circle ratios, Archimedes' method, Buffon's needles, a Monte Carlo method, and prime number approaches are used. Presents three BASIC programs for the calculations. (YP)

  8. Strain engineering of electronic properties of transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Maniadaki, Aristea E.; Kopidakis, Georgios; Remediakis, Ioannis N.

    2016-02-01

    We present Density Functional Theory (DFT) results for the electronic and dielectric properties of single-layer (2D) semiconducting transition metal dichalcogenides MX2 (M=Mo, W; X=S, Se, Te) under isotropic, uniaxial (along the zigzag and armchair directions), and shear strain. Electronic band gaps decrease while dielectric constants increase for heavier chalcogens X. The direct gaps of equilibrium structures often become indirect under certain types of strain, depending on the material. The effects of strain and of broken symmetry on the band structure are discussed. Gaps reach maximum values at small compressive strains or in equilibrium, and decrease with larger strains. In-plane dielectric constants generally increase with strain, reaching a minimum value at small compressive strains. The out-of-plane constants exhibit a similar behavior under shear strain but under isotropic and uniaxial strain they increase with compression and decrease with tension, thus exhibiting a monotonic behavior. These DFT results are theoretically explained using only structural parameters and equilibrium dielectric constants. Our findings are consistent with available experimental data.

  9. Strain transferring of embedded fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Li, Dong-Sheng; Li, Hong-Nan

    2005-05-01

    The relationship between the strains measured by a fiber Bragg grating sensor and the actual structural strains is deduced, then the average strain transfer rate computed by the formulation developed in this paper is compared with available experimental data. The critical adherence length of an optical fiber sensor is determined by a strain lag parameter, which contains both the effects of the geometry and the relative stiffness of the structural components. The analyses shows that the critical adherence length of a fiber sensing segment is the minimum length with which the fiber has to be tightly glued to a structure for adequate sensing. The strain transfer rate of an optical fiber sensor embedded in a multi-layered structure is developed in a similar way, and the factors that influence the efficiency of optical fiber sensor strain transferring are discussed. It is concluded that the strains, sensed by a fiber Bragg grating, have to be magnified by a factor (strain transfer rate) to equal exactly to the actual structural strains.

  10. Controllable spin-charge transport in strained graphene nanoribbon devices

    SciTech Connect

    Diniz, Ginetom S. Guassi, Marcos R.; Qu, Fanyao

    2014-09-21

    We theoretically investigate the spin-charge transport in two-terminal device of graphene nanoribbons in the presence of a uniform uniaxial strain, spin-orbit coupling, exchange field, and smooth staggered potential. We show that the direction of applied strain can efficiently tune strain-strength induced oscillation of band-gap of armchair graphene nanoribbon (AGNR). It is also found that electronic conductance in both AGNR and zigzag graphene nanoribbon (ZGNR) oscillates with Rashba spin-orbit coupling akin to the Datta-Das field effect transistor. Two distinct strain response regimes of electronic conductance as function of spin-orbit couplings magnitude are found. In the regime of small strain, conductance of ZGNR presents stronger strain dependence along the longitudinal direction of strain. Whereas for high values of strain shows larger effect for the transversal direction. Furthermore, the local density of states shows that depending on the smoothness of the staggered potential, the edge states of AGNR can either emerge or be suppressed. These emerging states can be determined experimentally by either spatially scanning tunneling microscope or by scanning tunneling spectroscopy. Our findings open up new paradigms of manipulation and control of strained graphene based nanostructure for application on novel topological quantum devices.

  11. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  12. Novel strained superjunction VDMOS

    NASA Astrophysics Data System (ADS)

    Naugarhiya, Alok; Dubey, Shashank; Kondekar, Pravin N.

    2015-09-01

    In this paper, we have proposed novel strained superjunction (s-SJ) vertical double diffused MOS (VDMOS). Through channel engineering, we have introduced strain effects in s-SJ device using thin separate p-type silicon-germanium (p-SiGe) layer over silicon p-pillar. Further, we have designed process flow for the possible fabrication of s-SJ VDMOS. The proposed s-SJ devices fitted with less input capacitance (Cin) and 1.2∼3 times higher output current density than conventional SJ VDMOS. Therefore, 40% less gate charge (Qg) is required to turn-on the s-SJ VDMOS and Ron A is optimized in between 12% and 46%.

  13. Strain Release Amination

    PubMed Central

    Gianatassio, Ryan; Lopchuk, Justin M.; Wang, Jie; Pan, Chung-Mao; Malins, Lara R.; Prieto, Liher; Brandt, Thomas A.; Collins, Michael R.; Gallego, Gary M.; Sach, Neal W.; Spangler, Jillian E.; Zhu, Huichin; Zhu, Jinjiang; Baran, Phil S.

    2015-01-01

    To optimize drug candidates, modern medicinal chemists are increasingly turning to an unconventional structural motif: small, strained ring systems. However, the difficulty of introducing substituents such as bicyclo[1.1.1]pentanes, azetidines, or cyclobutanes often outweighs the challenge of synthesizing the parent scaffold itself. Thus, there is an urgent need for general methods to rapidly and directly append such groups onto core scaffolds. Here we report a general strategy to harness the embedded potential energy of effectively spring-loaded C–C and C–N bonds with the most oft-encountered nucleophiles in pharmaceutical chemistry, amines. Strain release amination can diversify a range of substrates with a multitude of desirable bioisosteres at both the early and late-stages of a synthesis. The technique has also been applied to peptide labeling and bioconjugation. PMID:26816372

  14. Study of High Strain Rate Response of Composites

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2003-01-01

    The objective of the research was to continue the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, and to initiate a study of the effects of temperature by developing an elevated temperature test. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, rate dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Three types of epoxy resins were tested in tension and shear at various strain rates that ranges from 5 x 10(exp -5), to 1000 per second. Pilot shear experiments were done at high strain rate and an elevated temperature of 80 C. The results show that all, the strain rate, the mode of loading, and temperature significantly affect the response of epoxy.

  15. Interfacial residual thermal strain

    NASA Astrophysics Data System (ADS)

    Kasen, M.; Santoyo, R.

    A method has been developed for assessing the influence of polymer chemical composition and of processing parameters on the magnitude of residual stress developed in glass-fibre-reinforced composites subjected to various cure cycles and subsequently cooled to cryogenic temperatures. The test method was applied to nine resin types, including epoxy, vinyl ester, polyester, cyanate ester and phenolic formulations. Results suggest that polyester resin develops substantially less overall residual strain than do the other resin systems.

  16. Genealogies of mouse inbred strains.

    PubMed

    Beck, J A; Lloyd, S; Hafezparast, M; Lennon-Pierce, M; Eppig, J T; Festing, M F; Fisher, E M

    2000-01-01

    The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently. PMID:10615122

  17. Sports Hernia: Misdiagnosed Muscle Strain

    MedlinePlus

    ... Manipulative Treatment Becoming a DO Video Library Misdiagnosed Muscle Strain Can Be A Pain Page Content If ... speeds, sports hernias are frequently confused with common muscle strain ,” says Michael Sampson, DO, who practices in ...

  18. Development of a high temperature static strain sensor

    NASA Astrophysics Data System (ADS)

    Hulse, Charles O.; Bailey, Richard S.; Grant, Howard P.

    1986-10-01

    The goal of this program is to develop an electrical resistance strain gage system which will accurately measure the static strains of superalloy blades and vanes in gas turbine engines running on a test stand. Accurate knowledge of these strains is essential to reaching the goals of the HOST program in the selection and experimental verification of the various theoretical models developed to understand and improve the performance of these engines. The specific objective is to develop a complete system capable of making strain measurements of up to + or - 10 percent of full scale during a 50 hour period at temperatures as high as 1250 K. In addition to survival and stability, attaining a low temperature coefficient of resistance, of the order of 20 ppm/K or less, was a major goal. This requirement arises from the presently unavoidable uncertainties in measurement of the exact temperatures inside gas turbines for use in making corrections for apparent strain due to temperature.

  19. Strain Measurement Validation of Embedded Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Emmons, Michael C.; Karnani, Sunny; Trono, Stefano; Mohanchandra, Kotekar P.; Richards, W. Lance; Carman, Gregory P.

    2010-03-01

    This study investigates the influence of strain state distribution on the accuracy of embedded optical fiber Bragg gratings (FBGs) used as strain sensors. An optical fiber embedded parallel to adjacent structural fibers in a graphite epoxy quasi-isotropic [(90/ ±45/0)S]3 lay-up is evaluated with mechanical loading parallel to the fiber optic direction. Finite element analysis (FEA) is used to evaluate the fiber optic sensors' responses both in the far field and near field regions of the mechanical grips. Comparison between experimental fiber optic strains, strain gauges, and FEA provides good correlation in the far field with differences of less than 1%. However, in the near field region, some discrepancies are found and attributed to birefringence arising from complex strain states.

  20. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings

    PubMed Central

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors. PMID:27005493

  1. Development of a high temperature static strain sensor

    NASA Technical Reports Server (NTRS)

    Hulse, Charles O.; Bailey, Richard S.; Grant, Howard P.

    1986-01-01

    The goal of this program is to develop an electrical resistance strain gage system which will accurately measure the static strains of superalloy blades and vanes in gas turbine engines running on a test stand. Accurate knowledge of these strains is essential to reaching the goals of the HOST program in the selection and experimental verification of the various theoretical models developed to understand and improve the performance of these engines. The specific objective is to develop a complete system capable of making strain measurements of up to + or - 10 percent of full scale during a 50 hour period at temperatures as high as 1250 K. In addition to survival and stability, attaining a low temperature coefficient of resistance, of the order of 20 ppm/K or less, was a major goal. This requirement arises from the presently unavoidable uncertainties in measurement of the exact temperatures inside gas turbines for use in making corrections for apparent strain due to temperature.

  2. Nanoscale strain engineering of graphene and graphene-based devices

    NASA Astrophysics Data System (ADS)

    Yeh, N.-C.; Hsu, C.-C.; Teague, M. L.; Wang, J.-Q.; Boyd, D. A.; Chen, C.-C.

    2016-02-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simulations and nano-fabrication technology.

  3. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings.

    PubMed

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-01-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors. PMID:27005493

  4. Ultimate bending capacity of strain hardening steel pipes

    NASA Astrophysics Data System (ADS)

    Chen, Yan-fei; Zhang, Juan; Zhang, Hong; Li, Xin; Zhou, Jing; Cao, Jing

    2016-04-01

    Based on Hencky's total strain theory of plasticity, ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material, the simplified analytical solution is proposed as well. Good agreement is observed when ultimate bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes. Parametric study conducted as part of this paper indicates that the strain hardening effect has significant influence on the ultimate bending capacity of steel pipes. It is shown that pipe considering strain hardening yields higher bending capacity than that of pipe assumed as elastic-perfectly plastic material. Thus, the ignorance of strain hardening effect, as commonly assumed in current codes, may underestimate the ultimate bending capacity of steel pipes. The solutions proposed in this paper are applicable in the design of offshore/onshore steel pipes, supports of offshore platforms and other tubular structural steel members.

  5. Spall Response of Tantalum at Extreme Strain-Rates

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Germann, Tim; Meyers, Marc

    Strain-rate and microstructure play a significant role in the ultimate mechanical response of materials. Using non-equilibrium molecular dynamics simulations, we characterize the ductile tensile failure of single and nanocrystalline tantalum over multiple orders of magnitude of strain-rate. This comparison is extended to over nine orders of magnitude including experimental results from resent laser shock campaigns. Spall strength primarily follows a power law dependence with strain-rate over this extensive range. In all cases, voids nucleate heterogeneously at pre-existing defects. Predictions based on traditional theory suggest that, as strain-rate increases, tensile strength should increase. Alternatively, as grain size decreases, tensile strength may decrease due to an increased propensity to fail at a growing volume fraction of grain boundaries. Strain-rate and grain size dictate void nucleation sites by changing the type and density of available defects: vacancies, dislocations, twins, and grain boundaries.

  6. Nanoscale strain engineering of graphene and graphene-based devices

    NASA Astrophysics Data System (ADS)

    Yeh, N.-C.; Hsu, C.-C.; Teague, M. L.; Wang, J.-Q.; Boyd, D. A.; Chen, C.-C.

    2016-06-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simulations and nano-fabrication technology.

  7. Vectorial strain gauge method using single flexible orthogonal polydimethylsiloxane gratings

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Tang, Jun; Qian, Kun; Tsoukalas, Dimitris; Zhao, Miaomiao; Yang, Jiangtao; Zhang, Binzhen; Chou, Xiujian; Liu, Jun; Xue, Chenyang; Zhang, Wendong

    2016-03-01

    A vectorial strain gauge method using a single sensing element is reported based on the double-sided polydimethylsiloxane (PDMS) Fraunhofer diffraction gratings structures. Using O2 plasma treatment steps, orthogonal wrinkled gratings were fabricated on both sides of a pre-strained PDMS film. Diffracted laser spots from this structure have been used to experimentally demonstrate, that any applied strain can be quantitatively characterized in both the x and y directions with an error of less than 0.6% and with a gauge factor of approximately 10. This simple and low cost technology which is completely different from the traditional vectorial strain gauge method, can be applied to surface vectorial strain measurement and multi-axis integrated mechanical sensors.

  8. Noninvasive in vivo determination of residual strains and stresses.

    PubMed

    Donmazov, Samir; Piskin, Senol; Pekkan, Kerem

    2015-06-01

    Vascular growth and remodeling during embryonic development are associated with blood flow and pressure induced stress distribution, in which residual strains and stresses play a central role. Residual strains are typically measured by performing in vitro tests on the excised vascular tissue. In this paper, we investigated the possibility of estimating residual strains and stresses using physiological pressure-radius data obtained through in vivo noninvasive measurement techniques, such as optical coherence tomography or ultrasound modalities. This analytical approach first tested with in vitro results using experimental data sets for three different arteries such as rabbit carotid artery, rabbit thoracic artery, and human carotid artery based on Fung's pseudostrain energy function and Delfino's exponential strain energy function (SEF). We also examined residual strains and stresses in the human swine iliac artery using the in vivo experimental ultrasound data sets corresponding to the systolic-to-diastolic region only. This allowed computation of the in vivo residual stress information for loading and unloading states separately. Residual strain parameters as well as the material parameters were successfully computed with high accuracy, where the relative errors are introduced in the range of 0-7.5%. Corresponding residual stress distributions demonstrated global errors all in acceptable ranges. A slight discrepancy was observed in the computed reduced axial force. Results of computations performed based on in vivo experimental data obtained from loading and unloading states of the artery exhibited alterations in material properties and residual strain parameters as well. Emerging noninvasive measurement techniques combined with the present analytical approach can be used to estimate residual strains and stresses in vascular tissues as a precursor for growth estimates. This approach is also validated with a finite element model of a general two-layered artery

  9. Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

    NASA Astrophysics Data System (ADS)

    Gawedzki, Waclaw; Tarnowski, Jerzy

    2015-10-01

    Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

  10. The relationship between strain geometry and geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Hansen, Lars; Wallis, David

    2016-04-01

    The kinematics of past deformations are often a primary goal in structural analyses of strained rocks. Details of the strain geometry, in particular, can help distinguish hypotheses about large-scale tectonic phenomena. Microstructural indicators of strain geometry have been heavily utilized to investigate large-scale kinematics. However, many of the existing techniques require structures for which the initial morphology is known, and those structures must undergo the same deformation as imposed macroscopically. Many deformed rocks do not exhibit such convenient features, and therefore the strain geometry is often difficult (if not impossible) to ascertain. Alternatively, crystallographic textures contain information about the strain geometry, but the influence of strain geometry can be difficult to separate from other environmental factors that might affect slip system activity and therefore the textural evolution. Here we explore the ability for geometrically necessary dislocations to record information about the deformation geometry. It is well known that crystallographic slip due to the motion of dislocations yields macroscopic plastic strain, and the mathematics are established to relate dislocation glide on multiple slip systems to the strain tensor of a crystal. This theoretical description generally assumes that dislocations propagate across the entire crystal. However, at any point during the deformation, dislocations are present that have not fully transected the crystal, existing either as free dislocations or as dislocations organized into substructures like subgrain boundaries. These dislocations can remain in the lattice after deformation if the crystal is quenched sufficiently fast, and we hypothesize that this residual dislocation population can be linked to the plastic strain geometry in a quantitative manner. To test this hypothesis, we use high-resolution electron backscatter diffraction to measure lattice curvatures in experimentally deformed

  11. Strain calibration of optical FBG-based strain sensors

    NASA Astrophysics Data System (ADS)

    Roths, Johannes; Wilfert, Andre; Kratzer, Peter; Jülich, Florian; Kuttler, Rolf

    2010-09-01

    A facility for strain sensitivity calibration of optical FBG-based strain sensors according to the German VDI/VDE 2660 guideline was established and characterized. Statistical analysis of several calibration measurement series performed with one single type of FBG strain sensor and application technique showed a reproducibility of 0.15%. Strain sensitivities for FBGs inscribed in two different types of optical fibres (GF1B and PR2008) showed significantly different strain sensitivities of k = 0.7885+/-0.0026 and k = 0.7758+/-0.0024, respectively.

  12. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.

    PubMed

    Norman, Stephanie C; Wagner, David W; Beaupre, Gary S; Castillo, Alesha B

    2015-01-01

    Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges. PMID:25443882

  13. Origin of critical strain amplitude in periodically sheared suspensions

    NASA Astrophysics Data System (ADS)

    Pham, Phong; Butler, Jason E.; Metzger, Bloen

    2016-06-01

    The role of solid-solid contacts on the transition between reversible and irreversible dynamics occurring in periodically sheared suspensions is investigated experimentally by modifying the particle roughness. Smoother particles lead to a larger critical strain amplitude. A geometrical model based on the assumption that colliding particles produce irreversibility is derived. The model, which considers a quasiparticle having a strain- and roughness-dependent effective volume, successfully reproduces the measured values of the critical strain amplitude as functions of the volume fraction and particle roughness.

  14. Active and structural strain model for magnetostrictive transducers

    NASA Astrophysics Data System (ADS)

    Dapino, Marcelo J.; Smith, Ralph C.; Flatau, Alison B.

    1998-07-01

    We consider the modeling of strains generated by magnetostrictive materials in response to applied magnetic fields. The active or external component of the strain is due to the rotation of magnetic moments within the material to align with the applied field. This is characterized through consideration of the Jiles-Atherton mean field theory for ferromagnetic hysteresis in combination with a quadratic moment rotation model for magnetostriction. The second component of the strain reflects the passive or internal dynamics of the rod as it vibrates. This is modeled through force balancing which yields a wave equation with magnetostrictive inputs. The validity of a combined transducer model is illustrated through comparison with experimental data.

  15. [Genetic analysis of biochemical differences of Yersinia pestis strains].

    PubMed

    Eroshenko, G A; Odinokov, G N; Kukleva, L M; Kutyrev, V V

    2012-01-01

    Literature data and results of our experimental studies on genetic base of biochemical differentiation of Yersinia pestis strains of various subspecies and biovars are summarized in the review. Data on variability of genes coding biochemical features (sugar and alcohol fermentation, nitrate reduction), the differential development of which are the base of existing phenotypic schemes of Y. pestis strains classification, are presented. Variability of these genes was shown to have possible use for the development of genetic classification of Y. pestis strains of various subspecies and biovars. PMID:22830282

  16. Strain Analysis of the de Mattia Test

    NASA Astrophysics Data System (ADS)

    Feichter, C.; Vezer, S.; Reiter, M.; Major, Z.

    2010-06-01

    The de Mattia test is a well-known, standardized and widely used method in the rubber industry for characterizing the fatigue behaviour of rubbers. Due to the visual observation and classification of the crack initiated, high data scatter were usually observed in these tests. To improve the quality of the de Mattia test and to support the applicability of the test method in modern design procedures, two novel experimental methods were proposed. Full-field strain analysis experiments using digital image correlation technique were performed and the local strains at the notch tip determined in the first. A global displacement vs. local strain calibration curves makes the design and conduction of strain based Wöhler curves possible. The crack initiation and crack growth is detected by an image analysis system and the crack growth rate was determined in the second method. To gain more insight into the fatigue behaviour of rubbers, these two novel methods were combined and can efficiently be used for characterizing the fatigue behaviour of rubbers.

  17. On Boreholes and PBO Borehole Strain

    NASA Astrophysics Data System (ADS)

    Gladwin, M. T.; Mee, M. W.

    2003-12-01

    Borehole tensor strainmeters (GTSM) installed in Australia and California have established a baseline of data spanning more than twenty years. The current baseline of data allows characterisation of a moderate number of instruments in a range of very different environments in a way which defines reasonable performance expectations for the upcoming PBO deployments. A generic understanding of effects which result from the process of installation of the instrument in a stressed rock mass emerges. This indicates that, provided due allowance is made for experimentally determined borehole recovery effects, the contribution of borehole strain meters more than adequately fills the observational gap between high stability/long term geodetic measurements of strain and strain rates and high resolution/high frequency seismic observations of earth deformation processes. The various strain relief processes associated with the installation procedures and borehole recovery effects associated with pre-existing stress fields will be documented. Procedures for calibration of the total borehole inclusion and for progressive removal of effects due to rock anisotropy and visco-elastic creep of the grout and rock close to the borehole from far field tectonic effects will be defined and illustrated with examples. Observed deviations from these processes will be shown to be small and consistent with otherwise observed or implied fault motions. Full details of these borehole induced processes are, however, difficult to determine in the early years following installation, particularly if there is significant tectonic activity at the time. Once quantified for each site, the effects can be robustly removed from data streams.

  18. Progress Report on Alloy 617 Isochronous Stress-Strain Curves

    SciTech Connect

    Jill K. Wright; Richard N. Wright; Nancy J. Lybeck

    2014-03-01

    Isochronous stress-strain curves for Alloy 617 up to a temperature of 1000°C will be required to qualify the material for elevated temperature design in Section III, Division 1, Subsection NH of the ASME Boiler and Pressure Vessel Code. Several potential methods for developing these curves are reviewed in this report. It is shown that in general power-law creep is the rate controlling deformation mechanism for a wide range of alloy heats, test temperatures and stresses. Measurement of the strain rate sensitivity of Alloy 617 indicates that the material is highly strain rate sensitive in the tensile deformation range above about 750°C. This suggests that the concept of a hot tensile curve as a bounding case on the isochronous stress-strain diagrams is problematic. The impact of strain rate on the hot tensile curves is examined and it is concluded that incorporating such a curve is only meaningful if a single tensile strain rate (typically the ASTM standard rate of 0.5%/min) is arbitrarily defined. Current experimentally determined creep data are compared to isochronous stress-strain curves proposed previously by the German programs in the 1980s and by the 1990 draft ASME Code Case. Variability in how well the experimental data are represented by the proposed design curves that suggests further analysis is necessary prior to completing a new draft Code Case.

  19. Experimental philosophy.

    PubMed

    Knobe, Joshua; Buckwalter, Wesley; Nichols, Shaun; Robbins, Philip; Sarkissian, Hagop; Sommers, Tamler

    2012-01-01

    Experimental philosophy is a new interdisciplinary field that uses methods normally associated with psychology to investigate questions normally associated with philosophy. The present review focuses on research in experimental philosophy on four central questions. First, why is it that people's moral judgments appear to influence their intuitions about seemingly nonmoral questions? Second, do people think that moral questions have objective answers, or do they see morality as fundamentally relative? Third, do people believe in free will, and do they see free will as compatible with determinism? Fourth, how do people determine whether an entity is conscious? PMID:21801019

  20. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  1. Strain balanced quantum posts

    SciTech Connect

    Alonso-Alvarez, D.; Alen, B.; Ripalda, J. M.; Llorens, J. M.; Taboada, A. G.; Briones, F.; Roldan, M. A.; Hernandez-Saz, J.; Hernandez-Maldonado, D.; Herrera, M.; Molina, S. I.

    2011-04-25

    Quantum posts are assembled by epitaxial growth of closely spaced quantum dot layers, modulating the composition of a semiconductor alloy, typically InGaAs. In contrast with most self-assembled nanostructures, the height of quantum posts can be controlled with nanometer precision, up to a maximum value limited by the accumulated stress due to the lattice mismatch. Here, we present a strain compensation technique based on the controlled incorporation of phosphorous, which substantially increases the maximum attainable quantum post height. The luminescence from the resulting nanostructures presents giant linear polarization anisotropy.

  2. [Echinococcus and strain concepts].

    PubMed

    Utük, Armağan Erdem; Simsek, Sami

    2008-01-01

    Hydatid disease (echinococcosis) is one of the most important parasitic zoonoses and remains a public health and economic problem all over the world. Echinococcus granulosus includes a number of genetic variants and, up to date, analyses of mitochondrial DNA sequences have identified ten distinct genetic types (genotypes G1-10). This categorization follows closely the pattern of strain variation emerging based on biological characteristics. The extensive variation in E. granulosus may influence life-cycle patterns, host specificity, development rate, antigenicity, transmission dynamics, sensitivity to chemotherapeutic agents, and pathology. In this review, the recent genetic characterizations of Echinococcus genus have been summarized. PMID:18351549

  3. Compensated High Temperature Strain Gage

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A device for measuring strain in substrates at high temperatures in which the thermally induced apparent strain is nulled is described. Two gages are used, one active gage and one compensating gage. Both gages are placed on the substrate to be gaged; the active gage is attached such that it responds to mechanical and thermally induced apparent strain while the compensating gage is attached such that it does not respond to mechanical strain and and measures only thermally induced apparent strain. A thermal blanket is placed over the two gages to maintain the gages at the same temperature. The two gages are wired as adjacent arms of a wheatstone bridge which nulls the thermally induced apparent strain giving a true reading of the mechanical strain in the substrate.

  4. Zero-strain reductive intercalation in a molecular framework† †Electronic supplementary information (ESI) available: Synthesis, experimental methods, and sample characterisation; X-ray powder diffraction refinement details. See DOI: 10.1039/c4ce02364a Click here for additional data file.

    PubMed Central

    Hill, Joshua A.; Cairns, Andrew B.; Lim, Jared J. K.; Cassidy, Simon J.; Clarke, Simon J.

    2015-01-01

    Reductive intercalation of potassium within the molecular framework Ag3[Fe(CN)6] gives rise to a volume strain that is an order of magnitude smaller than is typical for common ion-storage materials. We suggest that framework flexibility might be exploited as a general strategy for reducing cycling strain in battery and ion-storage materials. PMID:25892969

  5. Strain gradient plasticity theory applied to machining

    SciTech Connect

    Royer, Raphael; Laheurte, Raynald; Darnis, Philippe; Gerard, Alain; Cahuc, Olivier

    2011-05-04

    Machining is the most common manufacturing process. A good behaviour law is necessary in the simulation of machining processes (analytical and finite element modeling). Usually, commonly used behaviour laws such as Jonhson-Cook can bring unsatisfactory results especially for high strain and large deformation processes. Significant differences can appear between experimental and simulation results. The aim of this paper is to present the choices made regarding the behaviour law in this context. This study develops a large deformation strain-gradient theoretical framework with hypothesis linked to metal cutting processes. The theoretical framework has the potential of expressing moments at the tool tip as they were observed in experiments. It will be shown that the theory has the capability of interpreting the complex phenomena found in machining and more particularly in high speed machining.

  6. Strain gradient plasticity theory applied to machining

    NASA Astrophysics Data System (ADS)

    Royer, Raphaël; Laheurte, Raynald; Darnis, Philippe; Gérard, Alain; Cahuc, Olivier

    2011-05-01

    Machining is the most common manufacturing process. A good behaviour law is necessary in the simulation of machining processes (analytical and finite element modeling). Usually, commonly used behaviour laws such as Jonhson-Cook can bring unsatisfactory results especially for high strain and large deformation processes. Significant differences can appear between experimental and simulation results. The aim of this paper is to present the choices made regarding the behaviour law in this context. This study develops a large deformation strain-gradient theoretical framework with hypothesis linked to metal cutting processes. The theoretical framework has the potential of expressing moments at the tool tip as they were observed in experiments. It will be shown that the theory has the capability of interpreting the complex phenomena found in machining and more particularly in high speed machining.

  7. Stress-strain experiments on individual collagen fibrils.

    PubMed

    Shen, Zhilei L; Dodge, Mohammad Reza; Kahn, Harold; Ballarini, Roberto; Eppell, Steven J

    2008-10-01

    Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils. Experimental data to guide the development of these models, however, are sparse and limited to small strain response. Using a microelectromechanical systems platform to test partially hydrated collagen fibrils under uniaxial tension, we obtained quantitative, reproducible mechanical measurements of the stress-strain curve of type I collagen fibrils, with diameters ranging from 150-470 nm. The fibrils showed a small strain (epsilon < 0.09) modulus of 0.86 +/- 0.45 GPa. Fibrils tested to strains as high as 100% demonstrated strain softening (sigma(yield) = 0.22 +/- 0.14 GPa; epsilon(yield) = 0.21 +/- 0.13) and strain hardening, time-dependent recoverable residual strain, dehydration-induced embrittlement, and susceptibility to cyclic fatigue. The results suggest that the stress-strain behavior of collagen fibrils is dictated by global characteristic dimensions as well as internal structure. PMID:18641067

  8. Stress-Strain Experiments on Individual Collagen Fibrils

    PubMed Central

    Shen, Zhilei L.; Dodge, Mohammad Reza; Kahn, Harold; Ballarini, Roberto; Eppell, Steven J.

    2008-01-01

    Collagen, a molecule consisting of three braided protein helices, is the primary building block of many biological tissues including bone, tendon, cartilage, and skin. Staggered arrays of collagen molecules form fibrils, which arrange into higher-ordered structures such as fibers and fascicles. Because collagen plays a crucial role in determining the mechanical properties of these tissues, significant theoretical research is directed toward developing models of the stiffness, strength, and toughness of collagen molecules and fibrils. Experimental data to guide the development of these models, however, are sparse and limited to small strain response. Using a microelectromechanical systems platform to test partially hydrated collagen fibrils under uniaxial tension, we obtained quantitative, reproducible mechanical measurements of the stress-strain curve of type I collagen fibrils, with diameters ranging from 150–470 nm. The fibrils showed a small strain (ɛ < 0.09) modulus of 0.86 ± 0.45 GPa. Fibrils tested to strains as high as 100% demonstrated strain softening (σyield = 0.22 ± 0.14 GPa; ɛyield = 0.21 ± 0.13) and strain hardening, time-dependent recoverable residual strain, dehydration-induced embrittlement, and susceptibility to cyclic fatigue. The results suggest that the stress-strain behavior of collagen fibrils is dictated by global characteristic dimensions as well as internal structure. PMID:18641067

  9. Strain evaluation of strengthened concrete structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Lau, Kin-tak; Zhou, Li-min; Ye, Lin

    1999-12-01

    Fibre-optic Bragg Grating (FBG) sensor presents a great deal of potential in monitoring the internal status of the concrete structures after repairing or strengthening by an external adhered reinforcement. It can be used in a variety of configurations ranging from pointwise to multi-point strain measurement in order to investigate the strain distribution of the structures. In this paper, an experimental investigation on the rectangular notched-concrete beam, which was strengthened by glass fibre composites with the embedment of multiplexing FBG sensors is presented. Three point bending test was performed to investigate the strain profile of the specimen. Frequency modulated continuous wave (FMCW) technique was used to measure the strain variation of the fibre-grating regions. The results give a good agreement with the electrical resistance strain gauge in early loading condition. The difference of the strain-measuring results between the strain-gauge and FBG sensor was increased when further increasing the applied load. It was suspected that the micro/marco cracks occurred on the concrete surface and that the externally bonded strain-measuring device cannot be detected.

  10. Strain evaluation of strengthened concrete structures using FBG sensors

    SciTech Connect

    Lau Kintak; Zhou Limin; Ye Lin

    1999-12-02

    Fibre-optic Bragg Grating (FBG) sensor presents a great deal of potential in monitoring the internal status of the concrete structures after repairing or strengthening by an external adhered reinforcement. It can be used in a variety of configurations ranging from pointwise to multi-point strain measurement in order to investigate the strain distribution of the structures. In this paper, an experimental investigation on the rectangular notched-concrete beam, which was strengthened by glass fibre composites with the embedment of multiplexing FBG sensors is presented. Three point bending test was performed to investigate the strain profile of the specimen. Frequency modulated continuous wave (FMCW) technique was used to measure the strain variation of the fibre-grating regions. The results give a good agreement with the electrical resistance strain gauge in early loading condition. The difference of the strain-measuring results between the strain-gauge and FBG sensor was increased when further increasing the applied load. It was suspected that the micro/marco cracks occurred on the concrete surface and that the externally bonded strain-measuring device cannot be detected.

  11. High strain rate properties of unidirectional composites, part 1

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1991-01-01

    Experimental methods were developed for testing and characterization of composite materials at strain rates ranging from quasi-static to over 500 s(sup -1). Three materials were characterized, two graphite/epoxies and a graphite/S-glass/epoxy. Properties were obtained by testing thin rings 10.16 cm (4 in.) in diameter, 2.54 cm (1 in.) wide, and six to eight plies thick under internal pressure. Unidirectional 0 degree, 90 degree, and 10 degree off-axis rings were tested to obtain longitudinal, transverse, and in-plane shear properties. In the dynamic tests internal pressure was applied explosively through a liquid and the pressure was measured with a calibrated steel ring. Strains in the calibration and specimen rings were recorded with a digital processing oscilloscope. The data were processed and the equation of motion solved numerically by the mini-computer attached to the oscilloscope. Results were obtained and plotted in the form of dynamic stress-strain curves. Longitudinal properties which are governed by the fibers do not vary much with strain rate with only a moderate (up to 20 percent) increase in modulus. Transverse modulus and strength increase sharply with strain rate reaching values up to three times the static values. The in-plane shear modulus and shear strength increase noticeably with strain rate by up to approximately 65 percent. In all cases ultimate strains do not vary significantly with strain rates.

  12. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions

    PubMed Central

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S.; Saeys, Mark; Yang, Hyunsoo

    2014-01-01

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices. PMID:25266219

  13. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S.; Saeys, Mark; Yang, Hyunsoo

    2014-09-01

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices.

  14. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment.

    PubMed

    Khademolhosseini, F; Liu, C-C; Lim, C J; Chiao, M

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells. PMID:27587150

  15. Towards quantification of the interplay between strain weakening and strain localisation in granular material

    NASA Astrophysics Data System (ADS)

    Ritter, Malte C.; Rosenau, Matthias; Leever, Karen; Oncken, Onno

    2014-05-01

    Strain weakening is the major agent of localisation of deformation into shear zones and faults at various scales in brittle media. Physical analogue models using granular material are especially apt to investigate both phenomena, because they are able to reproduce them without the need of any assumptions concerning the physics behind. Several attempts have been made to quantify either strain weakening (e. g. Lohrmann et al., 2003, using Ring-Shear tests) or strain localisation (e. g. Schrank et al., 2008, using a variation of the classical Riedel-experiment). While Ring-Shear tests yield excellent data on strain weakening through measuring shear stress during localisation, they do not allow monitoring the process of strain localisation in-situ because of experimental inaccessibility of the small scale kinematics. In Riedel-type strike-slip experiments, on the other hand, no direct measurements of shear stresses have been available so far. Furthermore, they contain a strong boundary condition in form of a pre-defined linear discontinuity at the base. This forces the formation of Riedel-Shears, i. e. a complex fault system, that makes it difficult to define strain localisation on single faults. We developed a new experimental set-up, in which the formation of a strike-slip shear zone in granular material is induced using an ndenter with stress and strain monitored at high accuracy and resolution. In a first set of experiments we used a horizontal sand layer indented by a vertical wall. The sand layer is laterally unconfined and rests on low-viscosity silicone oil in order to minimize basal shear strength. Compared to the Riedel experiments, this avoids the boundary condition of a pre-existing basal discontinuity allowing one single, hrough-going shear crack to form and propagate. The indenter moves at a constant rate and is equipped with a force sensor that measures the applied push, which integrates over shear stresses along the fault and the base of the sand pack

  16. Geodetic strain measurements in Washington.

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.; Prescott, W.H.

    1981-01-01

    Two new geodetic measurements of strain accumulation in the state of Washington for the interval 1972-1979 are reported. Near Seattle the average principal strain rates are 0.07 + or - 0.03 mu strain/yr N19oW and -0.13 + or - 0.02 mu strain/yr N71oE, and near Richland (south central Washington) the average principal strain rates are -0.02 + or - 0.01 mu strain/yr N36oW and -0.04 + or - 0.01 mu strain/yr N54oE. Extension is taken as positive, and the uncertainties quoted are standard deviations. A measurement of shear strain accumulation (dilation not determined) in the epoch 1914- 1966 along the north coast of Vancouver Island by the Geodetic Survey of Canada indicates a marginally significant accumulation of right-lateral shear (0.06 + or - 0.03 mu rad/yr) across the plate boundary (N40oW strike). Although there are significant differences in detail, these strain measurements are roughly consistent with a crude dislocation model that represents subduction of the Juan de Fuca plate. The observed accumulation of strain implies that large, shallow, thrust earthquakes should be expected off the coast of Washington and British Columbia. However, this conclusion is not easily reconciled with either observations of elevation change along the Washington coast or the focal mechanism solutions for shallow earthquakes in Washington. -Authors

  17. Animal experimentation.

    PubMed

    Kolar, Roman

    2006-01-01

    Millions of animals are used every year in often times extremely painful and distressing scientific procedures. Legislation of animal experimentation in modern societies is based on the supposition that this is ethically acceptable when certain more or less defined formal (e.g. logistical, technical) demands and ethical principles are met. The main parameters in this context correspond to the "3Rs" concept as defined by Russel and Burch in 1959, i.e. that all efforts to replace, reduce and refine experiments must be undertaken. The licensing of animal experiments normally requires an ethical evaluation process, often times undertaken by ethics committees. The serious problems in putting this idea into practice include inter alia unclear conditions and standards for ethical decisions, insufficient management of experiments undertaken for specific (e.g. regulatory) purposes, and conflicts of interest of ethics committees' members. There is an ongoing societal debate about ethical issues of animal use in science. Existing EU legislation on animal experimentation for cosmetics testing is an example of both the public will for setting clear limits to animal experiments and the need to further critically examine other fields and aspects of animal experimentation. PMID:16501652

  18. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    PubMed

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. PMID:24012934

  19. 3D strain measurement in electronic devices using through-focal annular dark-field imaging.

    PubMed

    Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum

    2014-11-01

    Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824

  20. Self-affine nature of the stress-strain behavior of thin fiber networks

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Susarrey, Orlando; Bravo, Armando

    2001-12-01

    The stress-strain behavior of toilet paper is studied. We find that the damaged parts of stress-strain curves possess a self-affine scaling invariance. Moreover, we find that the stress-strain behavior and the rupture line roughness are characterized by the same scaling (Hurst) exponent H, which is not universal: rather it changes from sample to sample. The variations on H are mainly due to fluctuations in the paper structure, which are larger than statistical errors within a sample. Furthermore, the same exponent governs the changes in the stress-strain curve as the strain rate increases. The fractal damage model is employed to explain experimental observations.

  1. Finite Element Modeling of the Behavior of Armor Materials Under High Strain Rates and Large Strains

    NASA Astrophysics Data System (ADS)

    Polyzois, Ioannis

    For years high strength steels and alloys have been widely used by the military for making armor plates. Advances in technology have led to the development of materials with improved resistance to penetration and deformation. Until recently, the behavior of these materials under high strain rates and large strains has been primarily based on laboratory testing using the Split Hopkinson Pressure Bar apparatus. With the advent of sophisticated computer programs, computer modeling and finite element simulations are being developed to predict the deformation behavior of these metals for a variety of conditions similar to those experienced during combat. In the present investigation, a modified direct impact Split Hopkinson Pressure Bar apparatus was modeled using the finite element software ABAQUS 6.8 for the purpose of simulating high strain rate compression of specimens of three armor materials: maraging steel 300, high hardness armor (HHA), and aluminum alloy 5083. These armor materials, provided by the Canadian Department of National Defence, were tested at the University of Manitoba by others. In this study, the empirical Johnson-Cook visco-plastic and damage models were used to simulate the deformation behavior obtained experimentally. A series of stress-time plots at various projectile impact momenta were produced and verified by comparison with experimental data. The impact momentum parameter was chosen rather than projectile velocity to normalize the initial conditions for each simulation. Phenomena such as the formation of adiabatic shear bands caused by deformation at high strains and strain rates were investigated through simulations. It was found that the Johnson-Cook model can accurately simulate the behavior of body-centered cubic (BCC) metals such as steels. The maximum shear stress was calculated for each simulation at various impact momenta. The finite element model showed that shear failure first occurred in the center of the cylindrical specimen and

  2. Strain Engineering in Graphene

    NASA Astrophysics Data System (ADS)

    Castro Neto, Antonio

    2011-03-01

    Graphene is a unique example of a one atom thick metallic membrane. Hence, graphene brings together properties of soft and hard condensed matter systems. The elementary electronic excitations in graphene, the Dirac quasiparticles, couple in a singular way to structural distortions in the form of scalar and vector potentials. Therefore, graphene has an effective electrodynamics where structural deformations couple to the Dirac particles at equal footing to electric and magnetic fields. This so-called strain engineering of the electronic properties of graphene opens doors for a new paradigm in terms of electronic devices, where electronic properties can be manipulated at will using its membrane-like properties. I thank partial support from from DOE Grant DE-FG02-08ER46512 and ONR Grant MURI N00014-09-1-1063.

  3. Strain Engineering for Transition Metal Dichalcogenides Based Field Effect Transistors.

    PubMed

    Shen, Tingting; Penumatcha, Ashish V; Appenzeller, Joerg

    2016-04-26

    Using electrical characteristics from three-terminal field-effect transistors (FETs), we demonstrate substantial strain induced band gap tunability in transition metal dichalcogenides (TMDs) in line with theoretical predictions and optical experiments. Devices were fabricated on flexible substrates, and a cantilever sample holder was used to apply uniaxial tensile strain to the various multilayer TMD FETs. Analyzing in particular transfer characteristics, we argue that the modified device characteristics under strain are clear evidence of a band gap reduction of 100 meV in WSe2 under 1.35% uniaxial tensile strain at room temperature. Furthermore, the obtained device characteristics imply that the band gap does not shrink uniformly under strain relative to a reference potential defined by the source/drain contacts. Instead, the band gap change is only related to a change of the conduction band edge of WSe2, resulting in a decrease in the Schottky barrier (SB) for electrons without any change for hole injection into the valence band. Simulations of SB device characteristics are employed to explain this point and to quantify our findings. Last, our experimental results are compared with DFT calculations under strain showing excellent agreement between theoretical predictions and the experimental data presented here. PMID:27043387

  4. Inbreeding Ratio and Genetic Relationships among Strains of the Western Clawed Frog, Xenopus tropicalis

    PubMed Central

    Igawa, Takeshi; Watanabe, Ai; Suzuki, Atsushi; Kashiwagi, Akihiko; Kashiwagi, Keiko; Noble, Anna; Guille, Matt; Simpson, David E.; Horb, Marko E.; Fujii, Tamotsu; Sumida, Masayuki

    2015-01-01

    The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB), Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts. PMID:26222540

  5. Strain-dependent electronic and magnetic properties of Au-doped WS2 monolayer

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Zhao, Xu; Wang, Tianxing; Dai, Xianqi; Xia, Congxin

    2016-03-01

    Using first-principles calculations, we investigated electronic and magnetic properties of Au-doped WS2 monolayer with strain from -10% to 10%. The results show that the band gap gradually decreases with increasing isotropic strain including compressive and tensile strain. Moreover, the tensile strain appears to be more effective in reducing the band gap of Au-doped WS2 monolayer than the compressive strain. The magnetic moment under tensile strain is enhanced from 0.813 to 1.167μB. But when the compressive strain is beyond -5%, the net magnetic moment is greatly enhanced, the maximum magnetic moment comes to 3.736 μB at -9% strain, nearly five times of the original moment 0.813 μB. The compressive strain is more effective on the magnetic moment in Au-doped WS2 monolayer than the tensile strain. Strain changes the redistribution of charges, and the hybridization of between the d orbital of Au atom, d orbital of W atom and p orbital of S atom, induces to magnetic moment. Moreover, the formation energy is lower under S-rich conditions, which indicates that it is energy favorable and relatively easier to incorporate Au atom into WS2 monolayer under S-rich experimental conditions. Our calculation show that the strain-induced Au-doped WS2 monolayer can be a two dimension Diluted magnetic semiconductor (DMS) at -9% strain.

  6. In vivo characterization of two additional Leishmania donovani strains using the murine and hamster model.

    PubMed

    Kauffmann, F; Dumetz, F; Hendrickx, S; Muraille, E; Dujardin, J-C; Maes, L; Magez, S; De Trez, C

    2016-05-01

    Leishmania donovani is a protozoan parasite causing the neglected tropical disease visceral leishmaniasis. One difficulty to study the immunopathology upon L. donovani infection is the limited adaptability of the strains to experimental mammalian hosts. Our knowledge about L. donovani infections relies on a restricted number of East African strains (LV9, 1S). Isolated from patients in the 1960s, these strains were described extensively in mice and Syrian hamsters and have consequently become 'reference' laboratory strains. L. donovani strains from the Indian continent display distinct clinical features compared to East African strains. Some reports describing the in vivo immunopathology of strains from the Indian continent exist. This study comprises a comprehensive immunopathological characterization upon infection with two additional strains, the Ethiopian L. donovani L82 strain and the Nepalese L. donovani BPK282 strain in both Syrian hamsters and C57BL/6 mice. Parameters that include parasitaemia levels, weight loss, hepatosplenomegaly and alterations in cellular composition of the spleen and liver, showed that the L82 strain generated an overall more virulent infection compared to the BPK282 strain. Altogether, both L. donovani strains are suitable and interesting for subsequent in vivo investigation of visceral leishmaniasis in the Syrian hamster and the C57BL/6 mouse model. PMID:27012562

  7. Inbreeding Ratio and Genetic Relationships among Strains of the Western Clawed Frog, Xenopus tropicalis.

    PubMed

    Igawa, Takeshi; Watanabe, Ai; Suzuki, Atsushi; Kashiwagi, Akihiko; Kashiwagi, Keiko; Noble, Anna; Guille, Matt; Simpson, David E; Horb, Marko E; Fujii, Tamotsu; Sumida, Masayuki

    2015-01-01

    The Western clawed frog, Xenopus tropicalis, is a highly promising model amphibian, especially in developmental and physiological research, and as a tool for understanding disease. It was originally found in the West African rainforest belt, and was introduced to the research community in the 1990s. The major strains thus far known include the Nigerian and Ivory Coast strains. However, due to its short history as an experimental animal, the genetic relationship among the various strains has not yet been clarified, and establishment of inbred strains has not yet been achieved. Since 2003 the Institute for Amphibian Biology (IAB), Hiroshima University has maintained stocks of multiple X. tropicalis strains and conducted consecutive breeding as part of the National BioResource Project. In the present study we investigated the inbreeding ratio and genetic relationship of four inbred strains at IAB, as well as stocks from other institutions, using highly polymorphic microsatellite markers and mitochondrial haplotypes. Our results show successive reduction of heterozygosity in the genome of the IAB inbred strains. The Ivory Coast strains clearly differed from the Nigerian strains genetically, and three subgroups were identified within both the Nigerian and Ivory Coast strains. It is noteworthy that the Ivory Coast strains have an evolutionary divergent genetic background. Our results serve as a guide for the most effective use of X. tropicalis strains, and the long-term maintenance of multiple strains will contribute to further research efforts. PMID:26222540

  8. Thermal strain imaging: a review

    PubMed Central

    Seo, Chi Hyung; Shi, Yan; Huang, Sheng-Wen; Kim, Kang; O'Donnell, Matthew

    2011-01-01

    Thermal strain imaging (TSI) or temporal strain imaging is an ultrasound application that exploits the temperature dependence of sound speed to create thermal (temporal) strain images. This article provides an overview of the field of TSI for biomedical applications that have appeared in the literature over the past several years. Basic theory in thermal strain is introduced. Two major energy sources appropriate for clinical applications are discussed. Promising biomedical applications are presented throughout the paper, including non-invasive thermometry and tissue characterization. We present some of the limitations and complications of the method. The paper concludes with a discussion of competing technologies. PMID:22866235

  9. Hydrogen production from microbial strains

    DOEpatents

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  10. Strain variation in corrugated graphene

    NASA Astrophysics Data System (ADS)

    Wang, Xuanye; Tantiwanichapan, Khwanchai; Christopher, Jason; Paiella, Roberto; Swan, Anna

    2015-03-01

    Raman spectroscopy is a powerful non-destructive technique for analyzing strain in graphene. Recently there has been interest in making corrugated graphene devices with varying spatial wavelengths Λ for plasmonic and THz applications. Transferring graphene onto corrugated substrates introduces strain, which if there was perfect clamping (high fraction) would cause a periodic strain variation. However, the strain variation for pattern size smaller than the diffraction limit λ makes it hard to precisely model the strain distribution. Here we present a detailed study on how strain varies in corrugated graphene with sub-diffraction limit periodicity Λ < λ. Mechanically exfoliated graphene was deposited onto sinusoidal shape silicon dioxide gratings with Λ=400 nm period using the pick and place transfer technique. We observed that the graphene is not rigidly clamped, but partially slides to relieve the strain. We model the linewidth variation to extract the local strain variation as well as the sliding in the presence of charge puddling in graphene. The method gives us a better understanding on graphene slippage and strain distribution in graphene on a corrugated substrate with sub-diffraction limit spatial period.

  11. Experimental macroevolution†

    PubMed Central

    Bell, Graham

    2016-01-01

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. PMID:26763705

  12. Experimental macroevolution.

    PubMed

    Bell, Graham

    2016-01-13

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. PMID:26763705

  13. Quantifying strain variability in modeling growth of Listeria monocytogenes.

    PubMed

    Aryani, D C; den Besten, H M W; Hazeleger, W C; Zwietering, M H

    2015-09-01

    Prediction of microbial growth kinetics can differ from the actual behavior of the target microorganisms. In the present study, the impact of strain variability on maximum specific growth rate (μmax) (h(-1)) was quantified using twenty Listeria monocytogenes strains. The μmax was determined as function of four different variables, namely pH, water activity (aw)/NaCl concentration [NaCl], undissociated lactic acid concentration ([HA]), and temperature (T). The strain variability was compared to biological and experimental variabilities to determine their importance. The experiment was done in duplicate at the same time to quantify experimental variability and reproduced at least twice on different experimental days to quantify biological (reproduction) variability. For all variables, experimental variability was clearly lower than biological variability and strain variability; and remarkably, biological variability was similar to strain variability. Strain variability in cardinal growth parameters, namely pHmin, [NaCl]max, [HA]max, and Tmin was further investigated by fitting secondary growth models to the μmax data, including a modified secondary pH model. The fitting results showed that L. monocytogenes had an average pHmin of 4.5 (5-95% prediction interval (PI) 4.4-4.7), [NaCl]max of 2.0mM (PI 1.8-2.1), [HA]max of 5.1mM (PI 4.2-5.9), and Tmin of -2.2°C (PI (-3.3)-(-1.1)). The strain variability in cardinal growth parameters was benchmarked to available literature data, showing that the effect of strain variability explained around 1/3 or less of the variability found in literature. The cardinal growth parameters and their prediction intervals were used as input to illustrate the effect of strain variability on the growth of L. monocytogenes in food products with various characteristics, resulting in 2-4 logCFU/ml(g) difference in growth prediction between the most and least robust strains, depending on the type of food product. This underlined the importance

  14. An exponential scaling law for the strain dependence of the Nb3Sn critical current density

    NASA Astrophysics Data System (ADS)

    Bordini, B.; Alknes, P.; Bottura, L.; Rossi, L.; Valentinis, D.

    2013-07-01

    The critical current density of the Nb3Sn superconductor is strongly dependent on the strain applied to the material. In order to investigate this dependence, it is a common practice to measure the critical current of Nb3Sn strands for different values of applied axial strain. In the literature, several models have been proposed to describe these experimental data in the reversible strain region. All these models are capable of fitting the measurement results in the strain region where data are collected, but tend to predict unphysical trends outside the range of data, and especially for large strain values. In this paper we present a model of a new strain function, together with the results obtained by applying the new scaling law on relevant datasets. The data analyzed consisted of the critical current measurements at 4.2 K that were carried out under applied axial strain at Durham University and the University of Geneva on different strand types. With respect to the previous models proposed, the new scaling function does not present problems at large strain values, has a lower number of fitting parameters (only two instead of three or four), and is very stable, so that, starting from few experimental points, it can estimate quite accurately the strand behavior in a strain region where there are no data. A relationship is shown between the proposed strain function and the elastic strain energy, and an analogy is drawn with the exponential form of the McMillan equation for the critical temperature.

  15. Micro-electromechanical Systems for Probing Novel Strain Physics and Innovative Strain Devices in 2D Materials

    NASA Astrophysics Data System (ADS)

    Christopher, Jason; Vutukuru, Mounika; Bishop, David; Swan, Anna; Goldberg, Bennett

    Straining 2D materials can dramatically change electrical, thermal and optical properties and can even cause unconventional behavior such as generating pseudo-magnetic fields. However attempts at probing these effects have been hindered by the difficulty involved with precisely straining these materials. Here we present micro-electromechanical systems (MEMS) as an ideal platform for straining 2D materials because they are readily compatible with existing electronics and their size makes them compatible with 2D materials. Additionally the MEMS platform does more than facilitate experimentation; by freeing us to think of strain as dynamical it makes a whole new class of devices practical for next generation technology. To demonstrate the power of this platform we have for the first time measured the strain response of the Raman and photoluminescence spectra of suspended MoS2, and measured the friction force between MoS2 and the MEMS structure. This talk will touch on the basics of designing MEMS structures for straining 2D materials, how to transfer 2D materials onto MEMS without break either, proof of concept experimental results, and next steps in developing the MEMS platform. This work is supported by NSF DMR Grant 1411008, and author J. Christopher thanks the NDSEG program for its support.

  16. Reversible Modulation of Spontaneous Emission by Strain in Silicon Nanowires

    PubMed Central

    Shiri, Daryoush; Verma, Amit; Selvakumar, C. R.; Anantram, M. P.

    2012-01-01

    We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct mechanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires. PMID:22708056

  17. Ultrasound Strain Measurements for Evaluating Local Pulmonary Ventilation

    PubMed Central

    Rubin, Jonathan M.; Horowitz, Jeffrey C.; Sisson, Thomas H.; Kim, Kang; Ortiz, Luis A.; Hamilton, James D.

    2015-01-01

    Local lung function is difficult to evaluate, because most lung function estimates are either global in nature, e.g. pulmonary function tests, or require equipment that cannot be used at a patient's bedside, such as computed tomograms. Yet, local function measurements would be highly desirable for many reasons. In a recent publication [1], we were able to track displacements of the lung surface during breathing. We have now extended these results to measuring lung strains during respiration as a means of assessing local lung ventilation. We studied two normal human volunteers and 12 mice with either normal lung function or experimentally induced pulmonary fibrosis. The difference in strains between the control, normal mice and those with pulmonary fibrosis was significant (p < 0.02), while the strains measured in the human volunteers closely matched linear strains predicted from the literature. Ultrasonography may be able to assess local lung ventilation. PMID:26635917

  18. Rabbit Ileal Loop Response to Strains of Clostridium perfringens1

    PubMed Central

    Duncan, Charles L.; Sugiyama, H.; Strong, Dorothy H.

    1968-01-01

    The ligated loop of the rabbit intestine was investigated as a possible experimental model for the study of Clostridium perfringens food poisoning. The method of preparation of the challenge inoculum was important in determining whether a given strain would provoke a response. When cultures were grown for 4 hr at 37 C in Skim Milk (Difco), 14 of 29 type A strains isolated from food-poisoning outbreaks consistently produced exudation of fluid and consequent dilation of the ileal segments. In contrast, 15 of the 18 strains derived from other sources failed to elicit a response. By use of different inoculum preparations, nearly all strains could be made to give at least an occasional positive loop reaction. Diarrhea was not obtained in rabbits by intraluminal injection into the normal ileum or by per os administration of the cultures. Lecithinase, purified and in concentrated culture supernatant fractions, failed to produce a response in the isolated ileal loops. Images PMID:4297020

  19. Effects of strain rate on PMMA failure behavior

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Zhou, Zhiwei; Shu, Xuefeng; Wang, Zhihua; Wu, Guiying; Liu, Zhenguo

    2016-01-01

    Quasi-static and dynamic loading tests were conducted on three types of polymethyl methacrylate (PMMA) specimens using a universal material testing machine and a split Hopkinson pressure bar to examine the effects of strain rate on PMMA failure behavior. Three types of PMMA specimens, i.e., a cylinder specimen with no beveled ends, a hat specimen, and cylinder specimens with beveled ends of different angles were applied to obtain the PMMA compression, shear, and combined shear-compression strengths. Results showed that PMMA failure stresses increased with the strain rate. Furthermore, the dynamic failure loci in the shear-normal stress space could be well described by an elliptical macroscopic failure criterion and expansion became nearly isotropic as the strain rate increased. The compression tests applied to the three types of PMMA specimens were effective methods to investigate the yield surface of PMMA experimentally over a wide range of strain rates.

  20. Raman study of strained Ge1-xSnx alloys

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Chen, Robert; Huo, Yijie; Kamins, Theodore I.; Harris, James S.

    2011-06-01

    The Ge-Ge longitudinal optical Raman peak has been measured in strained Ge1-xSnx alloy layers grown on top of relaxed InyGa1-yAs buffer layers on GaAs substrates by molecular beam epitaxy. The experimental result shows that the peak frequency shift increases linearly from the value for bulk Ge with the Sn fraction x and the strain ɛ, Δω = ω - ωGe = ax + bɛ. In these experiments alloy and strain contributions are decoupled and measured separately, and a and b are determined to be a = - 82 ± 4 cm-1 and b = - 563 ± 34 cm-1, over the entire composition and strain range investigated.

  1. Strain localization and damage development in 2060 alloy during bending

    NASA Astrophysics Data System (ADS)

    Jin, Xiao; Fu, Bao-qin; Zhang, Cheng-lu; Liu, Wei

    2015-12-01

    The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.

  2. Strain Rate Dependent Modeling of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Stouffer, Donald C.

    1999-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Strain rate dependent inelastic constitutive equations have been developed to model the polymer matrix, and have been incorporated into a micromechanics approach to analyze polymer matrix composites. The Hashin failure criterion has been implemented within the micromechanics results to predict ply failure strengths. The deformation model has been implemented within LS-DYNA, a commercially available transient dynamic finite element code. The deformation response and ply failure stresses for the representative polymer matrix composite AS4/PEEK have been predicted for a variety of fiber orientations and strain rates. The predicted results compare favorably to experimentally obtained values.

  3. Strain rate effects on soot evolution in turbulent nonpremixed flames

    NASA Astrophysics Data System (ADS)

    Lew, Jeffry K.; Mueller, Michael E.; Mahmoud, Saleh; Alwahabi, Zeyad T.; Dally, Bassam B.; Nathan, Graham J.

    2015-11-01

    Large Eddy Simulations (LES) of turbulent nonpremixed ethylene/hydrogen/nitrogen (2/2/1 by volume) jet flames are conducted to investigate the effects of global strain rate on soot evolution. The exit strain rate is varied by fixing the Reynolds number as the burner diameter and exit velocity are altered. A detailed integrated LES approach is employed that includes a nonpremixed flamelet model that accounts for heat losses from radiation, a transport equation model to account for unsteadiness in polycyclic aromatic hydrocarbon (PAH) evolution, a detailed soot model based on the Hybrid Method of Moments, and a novel presumed subfilter PDF model for soot-turbulence interactions. As the strain rate increases, the maximum soot volume fraction decreases due to the suppression of PAH formation. This trend with increasing strain rate is validated against experimental measurements conducted at The University of Adelaide.

  4. Opening and closing of cracks at high cyclic strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1986-01-01

    The closure behavior of cracks of different length and at different cyclic strain levels (ranging from predominantly elastic to grossly plastic strains) was studied to observe the effect of residual crack-tip plasticity on crack closure. Cracks were initiated either naturally or artificially (from electric discharge machining pits) in uniaxial test specimens of strengthened alloy steel AISI 4340 with a grain size of 0.016 mm. It was found that, at high strains, cracks closed only when the lowest stress level in the cycle was approached. The stress or the strain opening level depended upon the exact point along the crack length where the observations were made. As the plastic deformation increased, the relative crack opening level was found to decrease and approach the value of stress ratio R. The experimental results were compared with those of three analytical models of crack closure and opening, demonstrating the limitations of the currently available elastic-plastic crack growth analysis.

  5. Comparison Testings between Two High-temperature Strain Measurement Systems

    NASA Technical Reports Server (NTRS)

    Lei, J.-F.; Castelli, M. G.; Androjna, D.; Blue, C.; Blue, R.; Lin, R. Y.

    1996-01-01

    An experimental evaluation was conducted at NASA Lewis Research Center to compare and contrast the performance of a newly developed resistance strain gage, the PdCr temperature-compensated wire strain gage, to that of a conventional high-temperature extensometry. The evaluation of the two strain measurement systems was conducted through the application of various thermal and mechanical loading spectra using a high-temperature thermomechanical uniaxial testing system equipped with quartz lamp heating. The purpose of the testing was not only to compare and contrast the two strain sensors but also to investigate the applicability of the PdCr strain gage to the testing environment typically employed when characterizing the high-temperature mechanical behavior of structural materials. Strain measurement capabilities to 8OO C were investigated with a nickel base superalloy IN100 substrate material, and application to titanium matrix composite (TMC) materials was examined with the SCS-6/Ti-15-3 08 system. PdCr strain gages installed by three attachment techniques, namely, flame spraying, spot welding and rapid infrared joining were investigated.

  6. Flexible carbon nanotube films for high performance strain sensors.

    PubMed

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  7. Flexible Carbon Nanotube Films for High Performance Strain Sensors

    PubMed Central

    Kanoun, Olfa; Müller, Christian; Benchirouf, Abderahmane; Sanli, Abdulkadir; Dinh, Trong Nghia; Al-Hamry, Ammar; Bu, Lei; Gerlach, Carina; Bouhamed, Ayda

    2014-01-01

    Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon nanomaterials as conductive filler can be deposited on a flexible substrate of choice and this leads to mechanically flexible layers. Such sensors allow the strain measurement for both integral measurement on a certain surface and local measurement at a certain position depending on the sensor geometry. Strain sensors based on carbon nanostructures can overcome several limitations of conventional strain sensors, e.g., sensitivity, adjustable measurement range and integral measurement on big surfaces. The novel technology allows realizing strain sensors which can be easily integrated even as buried layers in material systems. In this review paper, we discuss the dependence of strain sensitivity on different experimental parameters such as composition of the carbon nanomaterial/polymer layer, type of polymer, fabrication process and processing parameters. The insights about the relationship between film parameters and electromechanical properties can be used to improve the design and fabrication of CNT strain sensors. PMID:24915183

  8. High-Strain-Rate Compression Testing of Ice

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Lerch, Bradley A.

    2006-01-01

    In the present study a modified split Hopkinson pressure bar (SHPB) was employed to study the effect of strain rate on the dynamic material response of ice. Disk-shaped ice specimens with flat, parallel end faces were either provided by Dartmouth College (Hanover, NH) or grown at Case Western Reserve University (Cleveland, OH). The SHPB was adapted to perform tests at high strain rates in the range 60 to 1400/s at test temperatures of -10 and -30 C. Experimental results showed that the strength of ice increases with increasing strain rates and this occurs over a change in strain rate of five orders of magnitude. Under these strain rate conditions the ice microstructure has a slight influence on the strength, but it is much less than the influence it has under quasi-static loading conditions. End constraint and frictional effects do not influence the compression tests like they do at slower strain rates, and therefore the diameter/thickness ratio of the samples is not as critical. The strength of ice at high strain rates was found to increase with decreasing test temperatures. Ice has been identified as a potential source of debris to impact the shuttle; data presented in this report can be used to validate and/or develop material models for ice impact analyses for shuttle Return to Flight efforts.

  9. Cockroach aggregation: discrimination between strain odours in Blattella germanica

    PubMed

    Rivault; Cloarec

    1998-01-01

    Behavioural experiments on gregariousness in larval German cockroaches, Blattella germanica (L.), confirmed that this species deposits an aggregation pheromone by body contact. Choice tests with groups of larvae indicated that they were preferentially attracted to papers conditioned by the odour of their conspecifics, although they were able to aggregate on clean paper in the absence of cockroach odour. Individual larvae were able to recognize the odour of their own population or strain in the absence of conspecifics. The odour was produced and perceived by larvae at all developmental stages. We report, for the first time, experiments comparing the relative attractiveness of odours of strains from different locations: larval cockroaches were able to discriminate and recognize the odour of members of their own strain. Our results showed that different strains have variations of a specific odour. All experimental strains had similar discriminatory capacities and all preferred the odour of their own strain. When larvae were presented with a choice between odours from two unfamiliar strains, they appeared to avoid these odours. Copyright 1998 The Association for the Study of Animal Behaviour. PMID:9480684

  10. Thermal conductivity of graphene mediated by strain and size

    DOE PAGESBeta

    Kuang, Youdi; Shi, Sanqiang; Wang, Xinjiang; Huang, Baoling; Lindsay, Lucas

    2016-06-09

    Based on first-principles calculations and full iterative solution of the linearized Boltzmann–Peierls transport equation for phonons, we systematically investigate effects of strain, size and temperature on the thermal conductivity k of suspended graphene. The calculated size-dependent and temperature-dependent k for finite samples agree well with experimental data. The results show that, contrast to the convergent room-temperature k = 5450 W/m-K of unstrained graphene at a sample size ~8 cm, k of strained graphene diverges with increasing the sample size even at high temperature. Out-of-plane acoustic phonons are responsible for the significant size effect in unstrained and strained graphene due tomore » their ultralong mean free path and acoustic phonons with wavelength smaller than 10 nm contribute 80% to the intrinsic room temperature k of unstrained graphene. Tensile strain hardens the flexural modes and increases their lifetimes, causing interesting dependence of k on sample size and strain due to the competition between boundary scattering and intrinsic phonon–phonon scattering. k of graphene can be tuned within a large range by strain for the size larger than 500 μm. These findings shed light on the nature of thermal transport in two-dimensional materials and may guide predicting and engineering k of graphene by varying strain and size.« less

  11. Deformation twinning: Influence of strain rate

    SciTech Connect

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  12. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  13. Advanced high temperature static strain sensor development

    NASA Technical Reports Server (NTRS)

    Hulse, C. O.; Stetson, K. A.; Grant, H. P.; Jameikis, S. M.; Morey, W. W.; Raymondo, P.; Grudkowski, T. W.; Bailey, R. S.

    1986-01-01

    An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K.

  14. High Strain Rate Behavior of Polyurea Compositions

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Milby, Christopher

    2011-06-01

    Polyurea has been gaining importance in recent years due to its impact resistance properties. The actual compositions of this viscoelastic material must be tailored for specific use. It is therefore imperative to study the effect of variations in composition on the properties of the material. High-strain-rate response of three polyurea compositions with varying molecular weights has been investigated using a Split Hopkinson Pressure Bar arrangement equipped with titanium bars. The polyurea compositions were synthesized from polyamines (Versalink, Air Products) with a multi-functional isocyanate (Isonate 143L, Dow Chemical). Amines with molecular weights of 1000, 650, and a blend of 250/1000 have been used in the current investigation. The materials have been tested up to strain rates of 6000/s. Results from these tests have shown interesting trends on the high rate behavior. While higher molecular weight composition show lower yield, they do not show dominant hardening behavior. On the other hand, the blend of 250/1000 show higher load bearing capability but lower strain hardening effects than the 600 and 1000 molecular weight amine based materials. Refinement in experimental methods and comparison of results using aluminum Split Hopkinson Bar is presented.

  15. Time-resolved local strain tracking microscopy for cell mechanics.

    PubMed

    Aydin, O; Aksoy, B; Akalin, O B; Bayraktar, H; Alaca, B E

    2016-02-01

    A uniaxial cell stretching technique to measure time-resolved local substrate strain while simultaneously imaging adherent cells is presented. The experimental setup comprises a uniaxial stretcher platform compatible with inverted microscopy and transparent elastomer samples with embedded fluorescent beads. This integration enables the acquisition of real-time spatiotemporal data, which is then processed using a single-particle tracking algorithm to track the positions of fluorescent beads for the subsequent computation of local strain. The present local strain tracking method is demonstrated using polydimethylsiloxane (PDMS) samples of rectangular and dogbone geometries. The comparison of experimental results and finite element simulations for the two sample geometries illustrates the capability of the present system to accurately quantify local deformation even when the strain distribution is non-uniform over the sample. For a regular dogbone sample, the experimentally obtained value of local strain at the center of the sample is 77%, while the average strain calculated using the applied cross-head displacement is 48%. This observation indicates that considerable errors may arise when cross-head measurement is utilized to estimate strain in the case of non-uniform sample geometry. Finally, the compatibility of the proposed platform with biological samples is tested using a unibody PDMS sample with a well to contain cells and culture media. HeLa S3 cells are plated on collagen-coated samples and cell adhesion and proliferation are observed. Samples with adherent cells are then stretched to demonstrate simultaneous cell imaging and tracking of embedded fluorescent beads. PMID:26931864

  16. How reliable do fibre Bragg grating patches perform as strain sensors?

    NASA Astrophysics Data System (ADS)

    Schlüter, Vivien Gisela; Kusche, Nadine; Habel, Wolfgang R.

    2010-09-01

    In Germany, the first guideline for the use of fibre Bragg grating strain sensors, "Optical Strain Sensor based on Fibre Bragg Grating" [1], has been developed by the GESA guideline group of VDI "The Association of German Engineers" and published by Beuth Verlag. This guideline provides the basic specifications of these sensor types and the sensor characteristics which have to be known for a reliable sensor performance. In conformity to this guideline, experimental investigations on the strain transfer characteristics of fibre Bragg grating patches have been carried out. A comparison between patches and resistance strain gauges during tensile tests and combined temperature and tensile loading was carried out. The evaluated strain gauge factor and the temperature sensitivity of the strain gauge factor have been compared to the manufacturer's data. The overall performance of the patches has been evaluated. The experimental investigations showed that there are partial disagreements between the manufacturer's specifications and the observed characteristics.

  17. Large strain dynamic compression for soft materials using a direct impact experiment

    NASA Astrophysics Data System (ADS)

    Meenken, T.; Hiermaier, S.

    2006-08-01

    Measurement of strain rate dependent material data of low density low strength materials like polymeric foams and rubbers still poses challenges of a different kind to the experimental set up. For instance, in conventional Split Hopkinson Pressure Bar tests the impedance mismatch between the bars and the specimen makes strain measurement almost impossible. Application of viscoelastic bars poses new problems with wave dispersion. Also, maximum achievable strains and strain rates depend directly on the bar lengths, resulting in large experimental set ups in order to measure relevant data for automobile crash applications. In this paper a modified SHPB will be presented for testing low impedance materials. High strains can be achieved with nearly constant strain rate. A thin film stress measurement has been applied to the specimen/bar interfaces to investigate the initial sample ring up process. The process of stress homogeneity within the sample was investigated on EPDM and PU rubber.

  18. Experimental melioidosis in hens.

    PubMed

    Vesselinova, A; Najdenski, H; Nikolova, S; Kussovski, V

    1996-08-01

    Experimental intramuscular infection of hens with Pseudomonas pseudomallei, strain 2796 (1 x 10(9) CFU from a 24-h culture) was reproduced. Clinical, paraclinical and pathomorphological findings were followed from 1 to 30 days after challenge. Haemagglutinin titre, bacterial dissemination in the viscera, number of leucocytes, alveolar (aMa) and peritoneal (pMa) macrophages and their phagocytic activity in vitro were studied. During the course of infection a leucocytosis as well as an increased haemagglutinin titre (1:256) were established. The number of bacteria per gram tissue in the spleen and liver was highest at 1 day post-infection (p.i.). Melioidose bacteria from egg yolk were isolated at 15 and 30 days p.i. Leucocyte and pMa phagocytic activity was maximal at 3 days p.i. unlike the activity of aMa which increased gradually until the end of the study. Inflammatory-necrotic changes were found in the viscera and brain at 3 and 15 days p.i. The investigation of experimental melioidosis infection in hens showed that they are susceptible to P. pseudomallei and this disease takes a generalized subacute course. PMID:8794700

  19. Experimental tectonophysics

    SciTech Connect

    Handin, J.; Logan, J.M.

    1981-07-01

    Because virtually all tectonophysical processes are marked by the overburden, or occur to slowly for adequate observation in anthropocentric time, or both, they must be studied in carefully controlled laboratory experiments that simulate the natural environment as realistically as is practicable. Extrapolations of laboratory data in space and time are invalid unless the experimental and natural phenomenologies are essentially the same. The size of conventional specimens is of the order of 10 cm, whereas the discontinuities (defects in a continuum) in real rock-masses are often much larger, of the order of 1 m or more. Furthermore, such discontinuities as macrofractures (joints) may well dominate the mechanical and fluid-transport properties in nature. Adequate sampling of rock-mass properties will probably always require in-situ testing, but testing machines much larger than any now available could provide useful data at least at intermediate scale.

  20. Hypothetical strain-free oligoradicals

    PubMed Central

    Hoffmann, Roald; Eisenstein, Odile; Balaban, Alexandru T.

    1980-01-01

    Several new classes of oligoradicals free of angle strain are suggested and examined by means of molecular orbital calculations. The collapse products of these hypothetical radicals are highly strained molecules. Various electronic strategies for the stabilization of these oligoradicals have been explored. PMID:16592882

  1. Emerging Enteropathogenic Escherichia coli Strains?

    PubMed Central

    Irino, Kinue; Girão, Dennys M.; Girão, Valéria B.C.; Guth, Beatriz E.C.; Vaz, Tânia M.I.; Moreira, Fabiana C.; Chinarelli, Silvia H.; Vieira, Mônica A.M.

    2004-01-01

    Escherichia coli strains of nonenteropathogenic serogroups carrying eae but lacking the enteropathogenic E. coli adherence factor plasmid and Shiga toxin DNA probe sequences were isolated from patients (children, adults, and AIDS patients) with and without diarrhea in Brazil. Although diverse in phenotype and genotype, some strains are potentially diarrheagenic. PMID:15504277

  2. Difference Between Strain and Sprain.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Provided in this description of the differences between a strain (damage to the muscle or tendon) and a sprain (damage to the ligament) are definitions of mild, moderate, and severe (first, second, and third degree) strains and sprains. A final caution is given that these are two separate and distinct problems and should be treated as such. (DC)

  3. Ultrasonic Sensitivity of Strain-Insensitive Fiber Bragg Grating Sensors and Evaluation of Ultrasound-Induced Strain

    PubMed Central

    Tsuda, Hiroshi; Kumakura, Kenji; Ogihara, Shinji

    2010-01-01

    In conventional ultrasound detection in structures, a fiber Bragg grating (FBG) is glued on or embedded in the structure. However, application of strain to the structure can influence the sensitivity of the FBG toward ultrasound and can prevent its effective detection. An FBG can work as a strain-insensitive ultrasound sensor when it is not directly glued to the monitored structure, but is instead applied to a small thin plate to form a mobile sensor. Another possible configuration is to affix an FBG-inscribed optical fiber without the grating section attached to the monitored structure. In the present study, sensitivity to ultrasound propagated through an aluminum plate was compared for a strain-insensitive FBG sensor and an FBG sensor installed in a conventional manner. Strains induced by ultrasound from a piezoelectric transducer and by quasi-acoustic emission of a pencil lead break were also quantitatively evaluated from the response amplitude of the FBG sensor. Experimental results showed that the reduction in the signal-to-noise ratio for ultrasound detection with strain-insensitive FBG sensors, relative to traditionally-installed FBG sensors, was only 6 dB, and the ultrasound-induced strain varied within a range of sub-micron strains. PMID:22163523

  4. Prior Inoculation with Type B Strains of Francisella tularensis Provides Partial Protection against Virulent Type A Strains in Cottontail Rabbits

    PubMed Central

    Brown, Vienna R.; Adney, Danielle R.; Olea-Popelka, Francisco; Bowen, Richard A.

    2015-01-01

    Francisella tularensis is a highly virulent bacterium that is capable of causing severe disease (tularemia) in a wide range of species. This organism is characterized into two distinct subspecies: tularensis (type A) and holarctica (type B) which vary in several crucial ways, with some type A strains having been found to be considerably more virulent in humans and laboratory animals. Cottontail rabbits have been widely implicated as a reservoir species for this subspecies; however, experimental inoculation in our laboratory revealed type A organisms to be highly virulent, resulting in 100% mortality following challenge with 50–100 organisms. Inoculation of cottontail rabbits with the same number of organisms from type B strains of bacteria was found to be rarely lethal and to result in a robust humoral immune response. The objective of this study was to characterize the protection afforded by a prior challenge with type B strains against a later inoculation with a type A strain in North American cottontail rabbits (Sylvilagus spp). Previous infection with a type B strain of organism was found to lengthen survival time and in some cases prevent death following inoculation with a type A2 strain of F. tularensis. In contrast, inoculation of a type A1b strain was uniformly lethal in cottontail rabbits irrespective of a prior type B inoculation. These findings provide important insight about the role cottontail rabbits may play in environmental maintenance and transmission of this organism. PMID:26474413

  5. [Repetition Strain Injury

    PubMed

    Ribeiro

    1997-01-01

    Muscular-skeletal disorders of the upper limbs resulting from work involving repetition strain (RSI) are now the most frequent work-related diseases in early or late industrialized countries. The author maintains that in addition to being work-related diseases, RSIs are symbolic illnesses revealing the contradictions and social pathogenesis of the new cycle of development and crisis in capitalist production. Discussing the social and historical dimensions of this process, the author insists that the low efficacy of technical interventions by labor engineering, ergonomics, and clinical medicine in the prevention, early and adequate diagnosis, and treatment of such post-modern illnesses and the difficulty in rehabilitating and reincorporating such workers reflect precisely a broader determination of health and illness, since the appropriation, incorporation, and use of technological innovations and the new forms of work management are defined according to the exclusive interests of capital. Thus, a growing contingent of young workers (mainly females) from different labor categories are losing or under threat of losing their health and work capacity, two essential and closely linked public values. The solution to the SRI issue must be political and collective. PMID:10886940

  6. Wing Shape Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2015-01-01

    A new two-step theory is investigated for predicting the deflection and slope of an entire structure using strain measurements at discrete locations. In the first step, a measured strain is fitted using a piecewise least-squares curve fitting method together with the cubic spline technique. These fitted strains are integrated twice to obtain deflection data along the fibers. In the second step, computed deflection along the fibers are combined with a finite element model of the structure in order to interpolate and extrapolate the deflection and slope of the entire structure through the use of the System Equivalent Reduction and Expansion Process. The theory is first validated on a computational model, a cantilevered rectangular plate wing. The theory is then applied to test data from a cantilevered swept-plate wing model. Computed results are compared with finite element results, results using another strain-based method, and photogrammetry data. For the computational model under an aeroelastic load, maximum deflection errors in the fore and aft, lateral, and vertical directions are -3.2 percent, 0.28 percent, and 0.09 percent, respectively; and maximum slope errors in roll and pitch directions are 0.28 percent and -3.2 percent, respectively. For the experimental model, deflection results at the tip are shown to be accurate to within 3.8 percent of the photogrammetry data and are accurate to within 2.2 percent in most cases. In general, excellent matching between target and computed values are accomplished in this study. Future refinement of this theory will allow it to monitor the deflection and health of an entire aircraft in real time, allowing for aerodynamic load computation, active flexible motion control, and active induced drag reduction..

  7. Quantifying the uncertainty of synchrotron-based lattice strain measurements

    SciTech Connect

    Schuren, J.C.; Miller, M.P.

    2012-04-02

    Crystallographic lattice strains - measured using diffraction techniques - are the same magnitude as typical macroscopic elastic strains. From a research perspective, the main interest is in measuring changes in lattice strains induced during in-situ loading: either from one macroscopic stress level to another or from one cycle to the next. The hope is to link these measurements to deformation-induced changes in the internal structure of crystals, possibly related to inelastic deformation and damage. These measurements are relatively new - little experimental intuition exists and it is difficult to discern whether observed differences are due to actual micromechanical evolution or to random experimental fluctuations. If the measurements are linked to material evolution on the size scale of the individual crystal, they have the potential to change the ideas about grain scale deformation partitioning processes and can be used to validate crystal-based simulation frameworks. Therefore, understanding the uncertainty associated with the lattice strain experiments is a crucial step in their continued development. If the measured lattice strains are of the same order as the random fluctuations that are part of the measurement process, documenting the strains can create more confusion than understanding. Often lattice strain error is quoted as {+-}1 x 10{sup -4}. This simple value fails to account for the range of factors that contribute to the experimental uncertainty - which, if not properly accounted for, may lead to a false confidence in the measurements. The focus of this paper is the development of a lattice strain uncertainty expression that delineates the contributing factors into terms that vary independently: (i) the contribution from the instrument and (ii) the contribution from the material under investigation. These aspects of uncertainty are described, and it is then possible to employ a calibrant powder method (diffraction from an unstrained material with

  8. Impact of lens distortions on strain measurements obtained with 2D digital image correlation

    NASA Astrophysics Data System (ADS)

    Lava, P.; Van Paepegem, W.; Coppieters, S.; De Baere, I.; Wang, Y.; Debruyne, D.

    2013-05-01

    The determination of strain fields based on displacements obtained via digital image correlation (DIC) at the micro-strain level (≤1000 μm/m) is still a cumbersome task. In particular when high-strain gradients are involved, e.g. in composite materials with multidirectional fibre reinforcement, uncertainties in the experimental setup and errors in the derivation of the displacement fields can substantially hamper the strain identification process. In this contribution, the aim is to investigate the impact of lens distortions on strain measurements. To this purpose, we first perform pure rigid body motion experiments, revealing the importance of precise correction of lens distortions. Next, a uni-axial tensile test on a textile composite with spatially varying high strain gradients is performed, resulting in very accurately determined strains along the fibers of the material.

  9. Static and dynamic load measurements in aerospace decelerator canopy fabrics with metal foil strain gages.

    NASA Technical Reports Server (NTRS)

    Hoffman, I. S.

    1971-01-01

    A test program was conducted to determine the feasibility of using conventional metal foil strain gages to measure load-time relationships on thin fabric membranes while these membranes were loaded under simulated aerodynamic decelerator conditions. Uniaxial and biaxial tests were made at fabric strain levels up to about 10%. Loadings were made both statically and dynamically, with the fastest load time being 0.015 second for zero to full load on uniaxial test specimens. For the biaxial tests, plane strain conditions were assumed, and by using experimentally determined strain-load relationships, principal loads were determined from the perpendicularly oriented strain-gage pairs. Although the complex stress-strain behavior of decelerator fabrics prevents the attainment of normally expected strain-gage accuracy, utilization of the techniques described can lead to meaningful measurements for the decelerator stress analyst.

  10. Effect of strain on the electronic transport properties of mono- and bilayer graphene

    NASA Astrophysics Data System (ADS)

    Guan, Fen; Du, Xu

    It has been theoretically proposed that strain can have a significant impact on the electronic and charge transport properties of mono- and bilayer graphene. Experimental study of such ''strain engineering'' in field effect devices has been limited, mainly due to the challenge in creating an effective tuning knob of strain. Here we report the fabrication and characterization of suspended graphene field effect transistor (FET) on a Polyimide substrate, where uniaxial strain is applied by bending the substrate. Magnetotransport measurement of both mono- and bilayer graphene FETs are carried out with variable strain, from compressive to tensile, over wide range of temperature (4.2-300K). The impact of the strain on the conductivity of graphene will be discussed and compared to the theoretical predictions on strain-induced gauge field and flexural phonon scatterings.

  11. Engineering the quantum anomalous Hall effect in graphene with uniaxial strains

    SciTech Connect

    Diniz, G. S. Guassi, M. R.; Qu, F.

    2013-12-28

    We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of the exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.

  12. The Influence of Elastic Strain on Catalytic Activity in the Hydrogen Evolution Reaction.

    PubMed

    Yan, Kai; Maark, Tuhina Adit; Khorshidi, Alireza; Sethuraman, Vijay A; Peterson, Andrew A; Guduru, Pradeep R

    2016-05-17

    Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of externally applied elastic strain on the catalytic activity of metal films in the hydrogen evolution reaction (HER). We show that elastic strain tunes the catalytic activity in a controlled and predictable way. Both theory and experiment show strain controls reactivity in a controlled manner consistent with the qualitative predictions of the HER volcano plot and the d-band theory: Ni and Pt's activities were accelerated by compression, while Cu's activity was accelerated by tension. By isolating the elastic strain effect from the ligand effect, this study provides a greater insight into the role of elastic strain in controlling electrocatalytic activity. PMID:27079940

  13. High temperature strain measurement with a resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  14. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  15. Thermal Output of WK-Type Strain Gauges on Various Materials at Cryogenic and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Kowalkowski, Matthew K.; Rivers, H. Kevin; Smith, Russell W.

    1998-01-01

    Strain gage apparent strain (thermal output) is one of the largest sources of error associated with the measurement of strain when temperatures and mechanical loads are varied. In this paper, experimentally determined apparent strains of WK-type strain gages, installed on both metallic and composite-laminate materials of various lay-ups and resin systems for temperatures ranging from -450 F to 230 F are presented. For the composite materials apparent strain in both the 0 ply orientation angle and the 90 ply orientation angle were measured. Metal specimens tested included: aluminum-lithium alloy (Al-LI 2195-T87), aluminum alloy (Al 2219-T87), and titanium alloy. Composite materials tested include: graphite-toughened-epoxy (IM7/997- 2), graphite-bismaleimide (IM7/5260), and graphite-K3 (IM7/K3B). The experimentally determined apparent strain data are curve fit with a fourth-order polynomial for each of the materials studied. The apparent strain data and the polynomials that are fit to the data are compared with those produced by the strain gage manufacturer, and the results and comparisons are presented. Unacceptably high errors between the manufacture's data and the experimentally determined data were observed (especially at temperatures below - 270-F).

  16. A Back Face Strain Compliance Expression for the Compact Tension Specimen

    NASA Technical Reports Server (NTRS)

    Riddell, William T.; Piascik, Robert S.

    1998-01-01

    A numerically generated expression to determine crack length in a compact tension specimen from back face strain compliance is presented. The numerically generated back face strain expression is bounded by two experimentally determined expressions previously published in the literature. Additionally, stress intensity factor and crack mouth opening expressions are determined. These expressions agree well with previously published results.

  17. Prediction of thermal strains in fibre reinforced plastic matrix by discretisation of the temperature exposure history

    NASA Astrophysics Data System (ADS)

    Ngoy, E. K.

    2016-07-01

    Prediction of environmental effects on fibre reinforced plastics habitually is made difficult due to the complex variability of the natural service environment. This paper suggests a method to predict thermal strain distribution over the material lifetime by discretisation of the exposure history. Laboratory results show a high correlation between predicted and experimentally measured strain distribution

  18. Ferroelastic dynamics and strain compatibility

    NASA Astrophysics Data System (ADS)

    Lookman, T.; Shenoy, S. R.; Rasmussen, K. Ø.; Saxena, A.; Bishop, A. R.

    2003-01-01

    We derive underdamped evolution equations for the order-parameter (OP) strains of a proper ferroelastic material undergoing a structural transition, using Lagrangian variations with Rayleigh dissipation, and a free energy as a polynomial expansion in the N=n+Nop symmetry-adapted strains. The Nop strain equations are structurally similar in form to the Lagrange-Rayleigh one-dimensional strain dynamics of Bales and Gooding (BG), with “strain accelerations” proportional to a Laplacian acting on a sum of the free-energy strain derivative and frictional strain force assuming geometric linearity. The tensorial St. Venant’s elastic compatibility constraints that forbid defects, are used to determine the n non-order-parameter strains in terms of the OP strains, generating anisotropic and long-range OP contributions to the free energy, friction, and noise. The same OP equations are obtained by either varying the displacement vector components, or by varying the N strains subject to the Nc compatibility constraints. A Fokker-Planck equation, based on the BG dynamics in more than one dimension with noise terms, is set up. The BG dynamics corresponds to a set of nonidentical nonlinear (strain) oscillators labeled by wave vector k→, with competing short- and long-range couplings. The oscillators have different “strain-mass” densities ρ(k)˜1/k2 and dampings ˜1/ρ(k)˜k2, so the lighter large-k oscillators equilibrate first, corresponding to earlier formation of smaller-scale oriented textures. This produces a sequential-scale scenario for post-quench nucleation, elastic patterning, and hierarchical growth. Neglecting inertial effects yields a late-time dynamics for identifying extremal free-energy states, that is, of the time-dependent Ginzburg-Landau form, with nonlocal, anisotropic Onsager coefficients that become constants for special parameter values. We consider in detail the two-dimensional (2D) unit-cell transitions from a triangular to a centered

  19. Experimental Tachyons

    NASA Astrophysics Data System (ADS)

    Soli, George

    2008-05-01

    In the physics of potential superluminal information transfer, causality is preserved by the experimental identification of the CMB (Cosmic Microwave Background) rest frame, as the preferred inertial frame in which potential superluminal information transfer is isotropic [Rembielinski] (http://arxiv.org/PScache/quant-ph/pdf/0010/0010026v2.pdf). Potential superluminal information transfer is engineered by tunneling through two successive barriers [Olkhovsky] (http://arxiv.org/PScache/quant-ph/pdf/0002/0002022v5.pdf). In our experiment we use two meter wavelength photons tunneling through two water-tank barriers, separated by an air-gap length [Soli] (http://www.siderealdilaton.com/). The data presented in this talk demonstrates that if the air-gap length is adjusted for subluminal information transfer, then the democracy of inertial frames is recovered, and no preferred frame is measured. The one-way subluminal tunneling group velocity of light is shown to be isotropic to accuracy below the CMB rest frame velocity. It has already been argued in the literature that Einstein's special relativity with tachyons predicts the existence of antimatter [Recami] (http://arxiv.org/PScache/arxiv/pdf/0709/0709.2453v1.pdf). We conjecture that the dilaton scalar particle is discovered by any sidereal data producible by this instrument.

  20. Strain mapping of tensiley strained silicon transistors with embedded Si1-yCy source and drain by dark-field holography

    NASA Astrophysics Data System (ADS)

    Hüe, Florian; Hÿtch, Martin; Houdellier, Florent; Bender, Hugo; Claverie, Alain

    2009-08-01

    Dark-field holography, a new transmission electron microscopy technique for mapping strain distributions at the nanoscale, is used to characterize strained-silicon n-type transistors with a channel width of 65 nm. The strain in the channel region, which enhances electron mobilities, is engineered by recessed Si0.99C0.01 source and drain stressors. The strain distribution is measured across an array of five transistors over a total area of 1.6 μm wide. The longitudinal tensile strain reaches a maximum of 0.58%±0.02% under the gate oxide. Theoretical strain maps obtained by finite element method agree well with the experimental results.

  1. Experimental Deformation of Magnetite

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Rybacki, E.; Morales, L. F. G.

    2015-12-01

    Magnetite is an important iron ore mineral and the most prominent Fe-oxide phase in the Earth's crust. The systematic occurrence of magnetite in zones of intense deformation in oceanic core complexes suggests that it may play a role in strain localization in some silicate rocks. We performed a series of high-temperature deformation experiments on synthetic magnetite aggregates and natural single crystals to characterize the rheological behavior of magnetite. As starting material, we used fine-grained magnetite powder that was hot isostatically pressed at 1100°C for several hours, resulting in polycrystalline material with a mean grain size of around 40 μm and containing 3-5% porosity. Samples were deformed to 15-20% axial strain under constant load (approximating constant stress) conditions in a Paterson-type gas apparatus for triaxial deformation at temperatures between 900 and 1100°C and 300 MPa confining pressure. The aggregates exhibit typical power-law creep behavior. At high stresses, samples deformed by dislocation creep exhibit stress exponents close to 3, revealing a transition to near-Newtonian creep with stress exponents around 1.3 at lower stresses. Natural magnetite single crystals deformed at 1 atm pressure and temperatures between 950°C and 1150 °C also exhibit stress exponents close to 3, but with lower flow stresses and a lower apparent activation energy than the aggregates. Such behavior may result from the different oxygen fugacity buffers used. Crystallographic-preferred orientations in all polycrystalline samples are very weak and corroborate numerical models of CPO development, suggesting that texture development in magnetite may be inherently slow compared with lower symmetry phases. Comparison of our results with experimental deformation data for various silicate minerals suggests that magnetite should be weaker than most silicates during ductile creep in dry igneous rocks.

  2. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  3. Examination of a Rock Failure Criterion Based on Circumferential Tensile Strain

    NASA Astrophysics Data System (ADS)

    Fujii, , Y.; Kiyama, , T.; Ishijima, Y.; Kodama, J.

    Uniaxial compression, triaxial compression and Brazialian tests were conducted on several kinds of rock, with particular attention directed to the principal tensile strain. In this paper we aim to clarify the effects of the experimental environment-such as confining pressure, loading rate, water content and anisotropy-on the critical tensile strain, i.e., the measured principal tensile strain at peak load.It was determined that the chain-type extensometer is a most suitable method for measuring the critical tensile strain in uniaxial compression tests. It is also shown that the paper-based strain gage, whose effective length is less than or equal to a tenth of the specimen's diameter and glued on with a rubber-type adhesive, can be effectively used in the Brazilian tests.The effect of confining pressure PC on the critical tensile strain ɛTC in the brittle failure region was between -0.02 × 10-10 Pa-1 and 0.77 × 10-10 Pa-1. This pressure sensitivity is small compared to the critical tensile strain values of around -0.5 × 10-2. The strain rate sensitivities ∂ɛTC/∂{log(d|ɛ|/dt)} were observed in the same way as the strength constants in other failure criteria. They were found to be from -0.10 × 10-3 to -0.52 × 10-3 per order of magnitude in strain rate in the triaxial tests. The average magnitude of the critical tensile strain ɛTC increased due to the presence of water by 4% to 20% for some rocks, and decreased by 22% for sandstone. It can at least be said that the critical tensile strain is less sensitive to water content than the uniaxial compressive strength under the experimental conditions reported here. An obvious anisotropy was observed in the P-wave velocity and in the uniaxial compressive strength of Pombetsu sandstone. It was not observed, however, in the critical tensile strain, although the data do show some variation.A "tensile strain criterion" was proposed, based on the above experimental results. This criterion signifies that stress begins

  4. High-temperature capacitive strain measurement system

    NASA Technical Reports Server (NTRS)

    Wilson, E. J.; Egger, R. L.

    1975-01-01

    Capacitive strain gage and signal conditioning system measures stress-induced strain and cancels thermal expansion strain at temperatures to 1,500 F (815 C). Gage does not significantly restrain or reinforce specimen.

  5. Porphyromonas gingivalis Peptidylarginine Deiminase, a Key Contributor in the Pathogenesis of Experimental Periodontal Disease and Experimental Arthritis

    PubMed Central

    Gully, Neville; Bright, Richard; Marino, Victor; Marchant, Ceilidh; Cantley, Melissa; Haynes, David; Butler, Catherine; Dashper, Stuart; Reynolds, Eric; Bartold, Mark

    2014-01-01

    Objectives To investigate the suggested role of Porphyromonas gingivalis peptidylarginine deiminase (PAD) in the relationship between the aetiology of periodontal disease and experimentally induced arthritis and the possible association between these two conditions. Methods A genetically modified PAD-deficient strain of P. gingivalis W50 was produced. The effect of this strain, compared to the wild type, in an established murine model for experimental periodontitis and experimental arthritis was assessed. Experimental periodontitis was induced following oral inoculation with the PAD-deficient and wild type strains of P. gingivalis. Experimental arthritis was induced via the collagen antibody induction process and was monitored by assessment of paw swelling and micro-CT analysis of the radio-carpal joints. Experimental periodontitis was monitored by micro CT scans of the mandible and histological assessment of the periodontal tissues around the mandibular molars. Serum levels of anti-citrullinated protein antibodies (ACPA) and P. gingivalis were assessed by ELISA. Results The development of experimental periodontitis was significantly reduced in the presence of the PAD-deficient P. gingivalis strain. When experimental arthritis was induced in the presence of the PAD-deficient strain there was less paw swelling, less erosive bone damage to the joints and reduced serum ACPA levels when compared to the wild type P. gingivalis inoculated group. Conclusion This study has demonstrated that a PAD-deficient strain of P. gingivalis was associated with significantly reduced periodontal inflammation. In addition the extent of experimental arthritis was significantly reduced in animals exposed to prior induction of periodontal disease through oral inoculation of the PAD-deficient strain versus the wild type. This adds further evidence to the potential role for P. gingivalis and its PAD in the pathogenesis of periodontitis and exacerbation of arthritis. Further studies are now

  6. Cross-protection between experimental anti-leptospirosis bacterins.

    PubMed

    Dib, Cristina Corsi; Gonçales, Amane Paldês; de Morais, Zenaide Maria; de Souza, Gisele Oliveira; Miraglia, Fabiana; Abreu, Patricia Antonia Estima; Vasconcellos, Silvio Arruda

    2014-01-01

    We investigated the existence of cross-protection between two anti-leptospirosis monovalent experimental bacterins produced with two strains of Leptospira serogroup Pomona: Fromm strain of serovar Kennewicky, isolated from pigs in the United States, and strain GR6 of serovar Pomona isolated from pigs in Brazil. Both were added of aluminum hydroxide as an adjuvant. Experimental bacterins were tested with the hamster potency test in order to assess protection provided against the disease and against the establishment of kidney infection. Controls were polyvalent commercial vaccine produced with Leptospira strains isolated outside Brazil, which included a representative of Pomona serovar, or Sorensen solution added of aluminum hydroxide adjuvant. The challenge was performed with cross-strains of serogroup Pomona tested in accordance with international standards established for the potency test. After 21 days of the challenge, survivors were killed to evaluate the condition of Leptospira renal carrier. Experimental bacterins protected hamsters against homologous and heterologous strains, demonstrating the existence of cross-protection. The commercial vaccine protected the hamsters challenged with both strains, but there was a high proportion of animals diagnosed as renal carriers when the challenge was performed with strain GR6, isolated from pigs in Brazil. PMID:25477946

  7. Cross-protection between experimental anti-leptospirosis bacterins

    PubMed Central

    Dib, Cristina Corsi; Gonçales, Amane Paldês; de Morais, Zenaide Maria; de Souza, Gisele Oliveira; Miraglia, Fabiana; Abreu, Patricia Antonia Estima; Vasconcellos, Silvio Arruda

    2014-01-01

    We investigated the existence of cross-protection between two anti-leptospirosis monovalent experimental bacterins produced with two strains of Leptospira serogroup Pomona: Fromm strain of serovar Kennewicky, isolated from pigs in the United States, and strain GR6 of serovar Pomona isolated from pigs in Brazil. Both were added of aluminum hydroxide as an adjuvant. Experimental bacterins were tested with the hamster potency test in order to assess protection provided against the disease and against the establishment of kidney infection. Controls were polyvalent commercial vaccine produced with Leptospira strains isolated outside Brazil, which included a representative of Pomona serovar, or Sorensen solution added of aluminum hydroxide adjuvant. The challenge was performed with cross-strains of serogroup Pomona tested in accordance with international standards established for the potency test. After 21 days of the challenge, survivors were killed to evaluate the condition of Leptospira renal carrier. Experimental bacterins protected hamsters against homologous and heterologous strains, demonstrating the existence of cross-protection. The commercial vaccine protected the hamsters challenged with both strains, but there was a high proportion of animals diagnosed as renal carriers when the challenge was performed with strain GR6, isolated from pigs in Brazil. PMID:25477946

  8. Temperature affects the morphology and calcification of Emiliania huxleyi strains

    NASA Astrophysics Data System (ADS)

    Rosas-Navarro, Anaid; Langer, Gerald; Ziveri, Patrizia

    2016-05-01

    The global warming debate has sparked an unprecedented interest in temperature effects on coccolithophores. The calcification response to temperature changes reported in the literature, however, is ambiguous. The two main sources of this ambiguity are putatively differences in experimental setup and strain specificity. In this study we therefore compare three strains isolated in the North Pacific under identical experimental conditions. Three strains of Emiliania huxleyi type A were grown under non-limiting nutrient and light conditions, at 10, 15, 20 and 25 °C. All three strains displayed similar growth rate versus temperature relationships, with an optimum at 20-25 °C. Elemental production (particulate inorganic carbon (PIC), particulate organic carbon (POC), total particulate nitrogen (TPN)), coccolith mass, coccolith size, and width of the tube element cycle were positively correlated with temperature over the sub-optimum to optimum temperature range. The correlation between PIC production and coccolith mass/size supports the notion that coccolith mass can be used as a proxy for PIC production in sediment samples. Increasing PIC production was significantly positively correlated with the percentage of incomplete coccoliths in one strain only. Generally, coccoliths were heavier when PIC production was higher. This shows that incompleteness of coccoliths is not due to time shortage at high PIC production. Sub-optimal growth temperatures lead to an increase in the percentage of malformed coccoliths in a strain-specific fashion. Since in total only six strains have been tested thus far, it is presently difficult to say whether sub-optimal temperature is an important factor causing malformations in the field. The most important parameter in biogeochemical terms, the PIC : POC ratio, shows a minimum at optimum growth temperature in all investigated strains. This clarifies the ambiguous picture featuring in the literature, i.e. discrepancies between PIC : POC

  9. Nephrotoxicity of mild analgesics in the Gunn strain of rat

    PubMed Central

    Axelsen, Roy A.

    1980-01-01

    1 Homozygous members of the Gunn strain of rat, mutant Wistars jaundiced from lack of the enzyme uridine diphosphate glucuronyl transferase, are highly susceptible to analgesic-induced renal papillary necrosis. 2 A single oral dose of aspirin, phenacetin or paracetamol will produce the lesion, a circumstance which does not occur in other strains. 3 The reasons for this susceptibility have not been determined, but the experimental model should prove useful in further studies of the nephrotoxicity of analgesic drugs. ImagesFigure 1 PMID:6776978

  10. Alignment of the diamond nitrogen vacancy center by strain engineering

    SciTech Connect

    Karin, Todd; Dunham, Scott; Fu, Kai-Mei

    2014-08-04

    The nitrogen vacancy (NV) center in diamond is a sensitive probe of magnetic field and a promising qubit candidate for quantum information processing. The performance of many NV-based devices improves by aligning the NV(s) parallel to a single crystallographic direction. Using ab initio theoretical techniques, we show that NV orientation can be controlled by high-temperature annealing in the presence of strain under currently accessible experimental conditions. We find that (89 ± 7)% of NVs align along the [111] crystallographic direction under 2% compressive biaxial strain (perpendicular to [111]) and an annealing temperature of 970 °C.

  11. Newcastle Disease Strain F. Virus — A Review

    PubMed Central

    Lancaster, J. E.

    1962-01-01

    Strain F Newcastle disease virus is a virus of low virulence originally reported by Asplin (1952) in England. Since that date, the use of this virus as an immunizing agent in the form of a live vaccine, has been studied. As a result, Strain F Newcastle disease vaccine has been used in national and experimental control programs in several countries in Europe, Africa and Asia. The published literature is reviewed under the following headings: properties, viability, clinical effects of vaccination, duration of immunity and a simultaneous Newcastle disease fowl pox vaccination. This review includes 24 reports published outside North America. PMID:17649410

  12. High temperature strain gage technology for hypersonic aircraft development applications

    NASA Technical Reports Server (NTRS)

    Anderson, W. L.; Grant, H. P.

    1992-01-01

    An experimental evaluation of Pd 13 percent Cr and of BCL-3 alloy wire strain gages was conducted on IN100 and Cu 0.15 percent Zr alloy substrates. Testing included apparent strain, drift, gage factor, and creep. Maximum test temperature was 1144 K (1600 F). The PdCr gages incorporated Pt temperature compensation elements. The PdCr gages were found to have good resistance stability below 866 K (1100 F). The BCL 3 gages were found to have good resistance stability above 800 K (981 F), but high drift around 700 K (800 F).

  13. Electrical properties of materials for high temperature strain gage applications

    NASA Technical Reports Server (NTRS)

    Brittain, John O.

    1989-01-01

    A study was done on the electrical resistance of materials that are potentially useful as resistance strain gages at high temperatures under static strain conditions. Initially a number of binary alloys were investigated. Later, third elements were added to these alloys, all of which were prepared by arc melting. Several transition metals were selected for experimentation, most prepared as thin films. Difficulties with electrical contacts thwarted efforts to extend measurements to the targeted 1000 C, but results obtained did suggest ways of improving the electrical resistance characteristics of certain materials.

  14. Anelastic Strain Recovery Analysis Code

    Energy Science and Technology Software Center (ESTSC)

    1995-04-05

    ASR4 is a nonlinear least-squares regression of Anelastic Strain Recovery (ASR) data for the purpose of determining in situ stress orientations and magnitudes. ASR4 fits the viscoelastic model of Warpinski and Teufel to measure ASR data, calculates the stress orientations directly, and stress magnitudes if sufficient input data are available. The code also calculates the stress orientation using strain-rosette equations, and it calculates stress magnitudes using Blanton''s approach, assuming sufficient input data are available.

  15. Bacterial Strain Diversity Within Wounds

    PubMed Central

    Kirkup, Benjamin C.

    2015-01-01

    Significance: Rare bacterial taxa (taxa of low relative frequency) are numerous and ubiquitous in virtually any sample—including wound samples. In addition, even the high-frequency genera and species contain multiple strains. These strains, individually, are each only a small fraction of the total bacterial population. Against the view that wounds contain relatively few kinds of bacteria, this newly recognized diversity implies a relatively high rate of migration into the wound and the potential for diversification during infection. Understanding the biological and medical importance of these numerous taxa is an important new element of wound microbiology. Recent Advances: Only recently have these numerous strains been discovered; the technology to detect, identify, and characterize them is still in its infancy. Multiple strains of both gram-negative and gram-positive bacteria have been found in a single wound. In the few cases studied, the distribution of the bacteria suggests microhabitats and biological interactions. Critical Issues: The distribution of the strains, their phenotypic diversity, and their interactions are still largely uncharacterized. The technologies to investigate this level of genomic detail are still developing and have not been largely deployed to investigate wounds. Future Directions: As advanced metagenomics, single-cell genomics, and advanced microscopy develop, the study of wound microbiology will better address the complex interplay of numerous individually rare strains with both the host and each other. PMID:25566411

  16. Local, submicron, strain gradients as the cause of Sn whisker growth

    NASA Astrophysics Data System (ADS)

    Sobiech, M.; Wohlschlögel, M.; Welzel, U.; Mittemeijer, E. J.; Hügel, W.; Seekamp, A.; Liu, W.; Ice, G. E.

    2009-06-01

    It has been shown experimentally that local in-plane residual strain gradients occur around the root of spontaneously growing Sn whiskers on the surface of Sn coatings deposited on Cu. The strain distribution has been determined with synchrotron white beam micro Laue diffraction measurements. The observed in-plane residual strain gradients in combination with recently revealed out-of-plane residual strain-depth gradients [M. Sobiech et al., Appl. Phys. Lett. 93, 011906 (2008)] provide the driving forces for whisker growth.

  17. Evaluation of static and dynamic contact stresses in simulated granular particles using strain gages

    SciTech Connect

    Xu, Y.; Shukla, A. )

    1993-01-01

    The application of strain gages for the determination of static and dynamic contact loads in granular particles is demonstrated. For experimental convenience, the granular particles are simulated by circular disks fabricated from Homalite-100, a brittle polyester material. Stress field equations in the vicinity of the contact points are carefully evaluated to optimize the relative position of strain gages. The results obtained from strain gages were compared with those obtained using the optical technique of photoelasticity for both static and dynamic problems. Finally, as an example, strain gages are used to study wave propagation in a single chain assembly of disks.

  18. Fatigue Life Prediction Based on Local Strain Energy for Healed Copper Film by Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Feng-Zhu; Shang, De-Guang; Ren, Chong-Gang; Sun, Yu-Juan

    2016-04-01

    Changes of total cyclic strain energy at the notch for copper film specimen were analyzed before and after laser irradiation treatment. The results showed that laser irradiation can increase total cyclic strain energy and the effect of increase is more evident for the damaged copper specimen. Based on the damage-healing mechanism, an enhancement parameter and a healing parameter were defined by the local cyclic strain energy. A new model based on local strain energy was proposed to predict residual fatigue life for the damaged copper film specimen after laser irradiation. The predicted results by the proposed model agree well with the experimental lives.

  19. Effects of drying conditions, admixtures and specimen size on shrinkage strains

    SciTech Connect

    Al-Saleh, Saleh A. . E-mail: alsaleh@dr.com; Al-Zaid, Rajeh Z.

    2006-10-15

    The paper presents the results of an experimental investigation on the effects of drying conditions, specimen size and presence of plasticizing admixture on the development of shrinkage strains. The measurements are taken in a harsh (50 deg. C and 5% R.H.) and a moderate environment (28 deg. C and 50% R.H.). The results include strain development at various levels of cross sections of concrete prisms. The drying conditions are found to be the dominant parameter affecting the shrinkage strain development particularly in specimens of smaller sizes. The effect of plasticizing admixture on shrinkage strains is negligible.

  20. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity

    PubMed Central

    Zingales, Bianca; Miles, Michael A; Moraes, Carolina B; Luquetti, Alejandro; Guhl, Felipe; Schijman, Alejandro G; Ribeiro, Isabela

    2014-01-01

    This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape. PMID:25317712

  1. HRXRD studies of strain relaxation in ion-implanted strained Si on relaxed Si 1- xGe x

    NASA Astrophysics Data System (ADS)

    Phen, M. S.; Craciun, V.; Jones, K. S.; Hansen, J. L.; Larsen, A. N.

    2006-12-01

    The relaxation process of ion-implanted strained silicon films grown on silicon-rich relaxed Si 1- xGe x alloys was studied to determine the critical strain regime necessary for the breakdown of solid phase epitaxial recrystallization. Experimental structures were grown via molecular beam epitaxy (MBE) and contained a 50 nm strained silicon capping layer on relaxed Si 1- xGe x. The relaxed Si 1- xGe x alloy compositions range from 0 to 30 at.% germanium. A 12 keV Si + implant at a fluence of 1 × 10 15 atoms/cm 2 was used to generate an amorphous layer ˜30 nm thick, confining it to the strained silicon cap. The degree of relaxation of the silicon cap layer was quantified by high-resolution X-ray diffraction (HRXRD) omega-2theta rocking curves and reciprocal space maps. Maps were acquired for the (0 0 4) and (1 1 3) reflections to obtain the in and out-of-plane lattice parameter of the layers. Upon annealing, the solid phase regrowth (SPER) process broke down for the highest level of strain. Additionally, regrowth related defects were observed in these samples using cross-sectional transmission electron microscopy (XTEM). These results indicate a reduction of strain in the Si 0.7Ge 0.3 samples occur as a result of SPER breakdown that generated dislocations and stacking faults throughout the silicon capping layer.

  2. Compression of polypropylene across a wide range of strain rates

    NASA Astrophysics Data System (ADS)

    Okereke, M. I.; Buckley, C. P.; Siviour, C. R.

    2012-11-01

    Three grades of polypropylene were tested in uniaxial compression at room temperature, across a wide range of strain rate: 10-4 s-1 to 104 s-1. One grade is a conventional polypropylene homopolymer. The two other grades are the polypropylene forming the matrix phase of a continuous glass fibre-reinforced thermoplastic composite prepreg, with and without blending with a carbon-black master batch. Tests at the highest strain rates were performed using a compression split Hopkinson pressure bar. The test specimens, for all the three rates, were imaged using appropriate digital cameras in order to observe the deformation process. In addition, the images obtained were analysed digitally to obtain true strain measurements for the medium rates category. All three grades of polypropylene showed pronounced strain-rate dependence of compressive yield stress, increasing by factors of up to 4 across the range of rates. At the lowest rates, there was close agreement between the yield stresses for all three materials, and also close agreement with the Eyring theory. Considering the highest strain rates, however, yield stresses increased more rapidly with log(strain-rate) than would be expected from a linear Eyring prediction and values for the three materials diverged. This was attributed to the contributions made in each material by both alpha and beta relaxation processes. Also prominent in the medium- and high-rate experimental results was pronounced post-yield strain softening, greatest at the highest strain-rates. This resulted from a combination of thermal softening from adiabatic heating, and structural rejuvenation as often seen in glassy polymers in quasi-static tests.

  3. Wireless Zigbee strain gage sensor system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  4. Effects of airplane flexibility on wing bending strains in rough air

    NASA Technical Reports Server (NTRS)

    Coleman, Thomas L; Press, Harry; Shufflebarger, C C

    1957-01-01

    Some results on the effects of wing flexibility on wing bending strains as determined from flight tests of a Boeing B-29 and a Boeing B-47A airplane in rough air are presented. Results from an analytical study of the flexibility effects on the B-29 wing strains are compared with the experimental results. Both the experimental and calculated results are presented as frequency-response functions of the bending strains at various spanwise wing stations to gust disturbances. In addition, some indirect evidence of the effect of spanwise variations in turbulence on the response of the B-47A airplane is presented.

  5. Thin-film light-intensity measurement strain-analysis technique.

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1972-01-01

    The optical response to loading of a thin metallic film deposited on a low-modulus structural substrate is studied theoretically and experimentally. Two types of optical properties called total and central-image transmittance (or reflectance) are shown to be related to the mechanical state of the substrate. Empirical optical-mechanical relationships are proposed between these optical properties and the substrate strain field of a general plane-stress problem. A technique based on wrinkle and microfracture patterns is described for determining principal directions of strain. Experimental results for uniaxially loaded specimens show that it is possible to obtain a nearly linear relationship between transmittance and strain for certain materials combinations.

  6. Time-based fractional longitudinal-transverse strain model for viscoelastic solids

    NASA Astrophysics Data System (ADS)

    Yin, Deshun; Duan, Xiaomeng; Zhou, Xuanji; Li, Yanqing

    2014-02-01

    Using a simple model to represent the complex relationship between longitudinal and transverse deformation is of much importance for a correct modelization of mechanical behaviors in viscoelastic solids. In this paper, a time-based fractional longitudinal-transverse strain model is presented based on the analogy with fractional stress-strain equation. Experimental results of a series of uniaxial compression and tension tests under strain-relaxation and constant longitudinal strain rate are employed to validate the proposed model. It is shown that the fractional longitudinal-transverse strain model can accurately describe the experimental response, and the fractional order may be positive or negative, which is helpful to characterize the complicated longitudinal-transverse deformation relationship.

  7. Calorimetric thermobarometry of experimentally shocked quartz

    NASA Technical Reports Server (NTRS)

    Ocker, Katherine D.; Gooding, James L.; Hoerz, Friedrich

    1994-01-01

    Structural damage in experimentally shock-metamorphosed, granular quartz is quantitatively measurable by differential scanning calorimetry (DSC). Shock-induced loss of crystallinity is witnessed by disappearance of the alpha/beta phase transformation and evolution of a broad endoenthalpic strain peak at 650-900 K. The strain-energy peak grows rapidly at less than 10 GPa but declines with increasing shock pressure; it approaches zero at 32 GPa where vitrification is extensive. Effects of grain size and post-shock thermal history must be better understood before calorimetric thermobarometry of naturally shocked samples becomes possible.

  8. A spin model for strain glass

    SciTech Connect

    Lookman, Turab; Vasseur, Romain

    2009-01-01

    We demonstrate that a strain pseudo-spin model for martensitic alloys predicts a glass phase in the presence of disorder, consistent with recent experiments on binary and temary alloys that have established the existence of such a phase above a critical composition. We find that the glass phase, as characterized by the Edwards-Andersen order parameter, exists even in the absence of elastic long-range interactions which compete with the disorder to shift the glass transition to higher values of disorder. Our model predicts a second order phase transition between the martensite and strain glass phases as a function of the disorder. Together with the cusp in the susceptibility and the history dependence in the glass phase in zero-field-cooling and field-cooling curves, these predictions may be tested experimentally by varying the alloy composition. Our approach using mean-field analysis and Monte Carlo simulations may be generalized to the study of glassy behavior in more complex structural transformations in two and three dimensions.

  9. Compressive strain limits for buried pipelines

    SciTech Connect

    Zimmerman, T.J.E.; Stephens, M.J.; DeGeer, D.D.; Chen, Q.

    1995-12-31

    Buried pipelines subjected to large differential ground movements experience deformation-induced stresses and strains that can cause local buckling, or pipe wrinkling. Severe wrinkling is a structural integrity concern, as it can lead to pipeline rupture. To assess this situation, current practice takes a conservative approach that suggests that compressive strains in a pipeline should be limited in order to avoid local buckle initiation. The research project discussed in this paper has developed an alternative approach that recognizes the ability of a pipe to plastically deform and wrinkle without being functionally impaired, provided a rational limit is set on the amount of wrinkling that is allowed to take place. This paper presents and discusses selected results from the four phases of this research work: (1) an assessment of existing data and analytical methods; (2) a large-scale experimental testing program; (3) development of a non-linear finite element model; and (4) development of new design criteria and semi-empirical prediction methods.

  10. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

    PubMed Central

    Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua

    2011-01-01

    In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667

  11. Dynamic and static strain gauge using superimposed fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ma, Y. C.; Yang, Y. H.; Li, J. M.; Yang, M. W.; Tang, J.; Liang, T.

    2012-10-01

    This paper demonstrates a simple and fast interrogation method for the dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to decrease nonequidistant space of generated a sensing pulse train in a time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A four times increase in the interrogation speed of dynamic strain, by generating a 2 kHz optical sensing pulse train from a 500 Hz scanning frequency, is demonstrated experimentally. The interrogation uncertainty and total harmonic distortion characterization of superimposed FBGs are tested and less than 4 pm standard deviation is obtained.

  12. Interferometric strain measurements with a fiber-optic probe

    NASA Astrophysics Data System (ADS)

    Burnham-Fay, E. D.; Jacobs-Perkins, D. W.; Ellis, J. D.

    2015-09-01

    Experience at the Laboratory for Laser Energetics has shown that broadband base vibrations make it difficult to position cryogenic inertial confinement fusion targets. These effects must be mitigated for National Ignition Facility-scale targets; to this end an active vibration stabilization system is proposed. A single-mode optical fiber strain probe and a novel fiber contained heterodyne interferometer have been developed as a position feedback sensor for the vibration control system. A resolution limit of 54.5 nƐ; is measured with the optical strain gauge, limited by the lock-in amplifier. Experimental measurements of the sensor that show good agreement with reference resistive strain gauge measurements are presented.

  13. Magnetite deformation mechanism maps for better prediction of strain partitioning

    NASA Astrophysics Data System (ADS)

    Till, J. L.; Moskowitz, Bruce

    2013-02-01

    Abstract A meta-analysis of existing <span class="hlt">experimental</span> deformation data for magnetite and other spinel-structured ferrites reveals that previously published flow laws are inadequate to describe the general deformation behavior of magnetite. Using updated rate equations for oxygen diffusion in magnetite, we present new flow laws that closely predict creep rates similar to those found in deformation experiments and that can be used to predict <span class="hlt">strain</span> partitioning between cubic Fe oxides and other phases in the Earth's crust. New deformation mechanism maps for magnetite have been constructed as functions of temperature and grain size. Using the revised creep parameters, estimates of <span class="hlt">strain</span> partitioning between magnetite, ilmenite, and plagioclase indicate that concentrated zones of Fe-Ti oxides in oceanic crust near slow-spreading ridges could accommodate significant amounts of <span class="hlt">strain</span> at moderate temperatures and may contribute to aseismic creep along spreading-segment faults.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050196804','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050196804"><span id="translatedtitle">High <span class="hlt">Strain</span> Rate Behavior of Polymer Matrix Composites Analyzed</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goldberg, Robert K.; Roberts, Gary D.</p> <p>2001-01-01</p> <p>Procedures for modeling the high-speed impact of composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with <span class="hlt">strain</span> rate. To characterize and validate material models that could be used in the design of impactresistant engine cases, researchers must obtain material data over a wide variety of <span class="hlt">strain</span> rates. An <span class="hlt">experimental</span> program has been carried out through a university grant with the Ohio State University to obtain deformation data for a representative polymer matrix composite for <span class="hlt">strain</span> rates ranging from quasi-static to high rates of several hundred per second. This information has been used to characterize and validate a constitutive model that was developed at the NASA Glenn Research Center.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/servlets/purl/10189802','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/servlets/purl/10189802"><span id="translatedtitle">High <span class="hlt">strain</span> rate superplasticity in metals and composites</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Nieh, T.G.; Wadsworth, J.; Higashi, K.</p> <p>1993-07-01</p> <p>Superplastic behavior at very high <span class="hlt">strain</span> rates (at or above 1 s{sup {minus}1}) in metallic-based materials is an area of increasing interest. The phenomenon has been observed quite extensively in metal alloys, metal-matrix composites (MMC), and mechanically-alloyed (MA) materials. In the present paper, <span class="hlt">experimental</span> results on high <span class="hlt">strain</span> rate behavior in 2124 Al-based materials, including Zr-modified 2124, SiC-reinforced 2124, MA 2124, and MA 2124 MMC, are presented. Except for the required fine grain size, details of the structural requirements of this phenomenon are not yet understood. Despite this, a systematic approach to produce high <span class="hlt">strain</span> rate superplasticity (HSRS) in metallic materials is given in this paper. Evidences indicate that the presence of a liquid phase, or a low melting point region, at boundary interfaces is responsible for HSRS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/22398995','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/22398995"><span id="translatedtitle">Linking <span class="hlt">strain</span> anisotropy and plasticity in copper metallization</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Murray, Conal E. Jordan-Sweet, Jean; Priyadarshini, Deepika; Nguyen, Son</p> <p>2015-05-04</p> <p>The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based <span class="hlt">strain</span> measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which <span class="hlt">strain</span> anisotropy can be quantified. <span class="hlt">Experimental</span> values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of <span class="hlt">strain</span> anisotropy and its dependence on plastic deformation induced during in-situ and ex-situ thermal treatments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ncbi.nlm.nih.gov/pubmed/22346667','PUBMED'); return false;" href="http://www.ncbi.nlm.nih.gov/pubmed/22346667"><span id="translatedtitle">Piezoresistive <span class="hlt">strain</span> sensors made from carbon nanotubes based polymer nanocomposites.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alamusi; Hu, Ning; Fukunaga, Hisao; Atobe, Satoshi; Liu, Yaolu; Li, Jinhua</p> <p>2011-01-01</p> <p>In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive <span class="hlt">strain</span> sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive <span class="hlt">strain</span> sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent <span class="hlt">experimental</span>, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of <span class="hlt">strain</span> sensors and to demonstrate some possible key factors for improving the sensor sensitivity. PMID:22346667</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740006477','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740006477"><span id="translatedtitle">Finite element stress analysis of polymers at high <span class="hlt">strains</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Durand, M.; Jankovich, E.</p> <p>1973-01-01</p> <p>A numerical analysis is presented for the problem of a flat rectangular rubber membrane with a circular rigid inclusion undergoing high <span class="hlt">strains</span> due to the action of an axial load. The neo-hookean constitutive equations are introduced into the general purpose TITUS program by means of equivalent hookean constants and initial <span class="hlt">strains</span>. The convergence is achieved after a few iterations. The method is not limited to any specific program. The results are in good agreement with those of a company sponsored photoelastic stress analysis. The theoretical and <span class="hlt">experimental</span> deformed shapes also agree very closely with one another. For high <span class="hlt">strains</span> it is demonstrated that using the conventional HOOKE law the stress concentration factor obtained is unreliable in the case of rubberlike material.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7499E..0US','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7499E..0US"><span id="translatedtitle">Reflectance difference laser measurements applied to the study of the stress/<span class="hlt">strain</span> state in materials</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saucedo-Zárate, Carlos H.; López-López, Maximo; Sánchez-López, Carlos; Correa-Figueroa, Jose Luis; Huerta-Ruelas, Jorge A.</p> <p>2009-09-01</p> <p>Development of <span class="hlt">experimental</span> setup to study <span class="hlt">strain</span>/stress state in materials emerges from a need to evaluate by a nondestructive and non-invasive technique the performance in new materials like semiconductor heterostructures, composite materials and alloys. The system was designed and built to be used as a multi-functional <span class="hlt">experimental</span> setup. The main purpose is to characterize materials in elastic and plastic regime by reflectance difference laser measurements and <span class="hlt">strain</span> gages. This system allows the generalization of results obtained from a theoretical model based in Finite Element Model and <span class="hlt">experimental</span> measurements taken in finite specific points with <span class="hlt">strain</span> gages. A NI™ platform is used for signal conditioning and processing. System built is described which includes an optical setup to measure reflectance difference laser (RDL), and a flexor which applies deformation in a link, with a micrometer. A correlation bigger than 0.95 was found between optical signal, <span class="hlt">strain</span> gage signal, and finite element modeling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/scitech/biblio/1036944','SCIGOV-STC'); return false;" href="http://www.osti.gov/scitech/biblio/1036944"><span id="translatedtitle">Internal <span class="hlt">strain</span> gradients quantified in bone under load using high-energy X-ray scattering.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p>Stock, S.R.; Yuan, F.; Brinson, L.C.; Almer, J.D.</p> <p>2011-01-01</p> <p>High-energy synchrotron X-ray scattering (>60 keV) allows noninvasive quantification of internal <span class="hlt">strains</span> within bone. In this proof-of-principle study, wide angle X-ray scattering maps internal <span class="hlt">strain</span> vs position in cortical bone (murine tibia, bovine femur) under compression, specifically using the response of the mineral phase of carbonated hydroxyapatite. The technique relies on the response of the carbonated hydroxyapatite unit cells and their Debye cones (from nanocrystals correctly oriented for diffraction) to applied stress. Unstressed, the Debye cones produce circular rings on the two-dimensional X-ray detector while applied stress deforms the rings to ellipses centered on the transmitted beam. Ring ellipticity is then converted to <span class="hlt">strain</span> via standard methods. <span class="hlt">Strain</span> is measured repeatedly, at each specimen location for each applied stress. <span class="hlt">Experimental</span> <span class="hlt">strains</span> from wide angle X-ray scattering and an attached <span class="hlt">strain</span> gage show bending of the rat tibia and agree qualitatively with results of a simplified finite element model. At their greatest, the apatite-derived <span class="hlt">strains</span> approach 2500 {micro}{var_epsilon} on one side of the tibia and are near zero on the other. <span class="hlt">Strains</span> maps around a hole in the femoral bone block demonstrate the effect of the stress concentrator as loading increased and agree qualitatively with the finite element model. <span class="hlt">Experimentally</span>, residual <span class="hlt">strains</span> of approximately 2000 {micro}{var_epsilon} are present initially, and <span class="hlt">strain</span> rises to approximately 4500 {micro}{var_epsilon} at 95 MPa applied stress (about 1000 {micro}{var_epsilon} above the <span class="hlt">strain</span> in the surrounding material). The <span class="hlt">experimental</span> data suggest uneven loading which is reproduced qualitatively with finite element modeling.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <center> <div class="footer-extlink text-muted"><small>Some links on this page may take you to non-federal websites. Their policies may differ from this site.</small> </div> </center> <div id="footer-wrapper"> <div class="footer-content"> <div id="footerOSTI" class=""> <div class="row"> <div class="col-md-4 text-center col-md-push-4 footer-content-center"><small><a href="http://www.science.gov/disclaimer.html">Privacy and Security</a></small> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center col-md-pull-4 footer-content-left"> <img src="http://www.osti.gov/images/DOE_SC31.png" alt="U.S. Department of Energy" usemap="#doe" height="31" width="177"><map style="display:none;" name="doe" id="doe"><area shape="rect" coords="1,3,107,30" href="http://www.energy.gov" alt="U.S. Deparment of Energy"><area shape="rect" coords="114,3,165,30" href="http://www.science.energy.gov" alt="Office of Science"></map> <a ref="http://www.osti.gov" style="margin-left: 15px;"><img src="http://www.osti.gov/images/footerimages/ostigov53.png" alt="Office of Scientific and Technical Information" height="31" width="53"></a> <div class="visible-sm visible-xs push_footer"></div> </div> <div class="col-md-4 text-center footer-content-right"> <a href="http://www.osti.gov/nle"><img src="http://www.osti.gov/images/footerimages/NLElogo31.png" alt="National Library of Energy" height="31" width="79"></a> <a href="http://www.science.gov"><img src="http://www.osti.gov/images/footerimages/scigov77.png" alt="science.gov" height="31" width="98"></a> <a href="http://worldwidescience.org"><img src="http://www.osti.gov/images/footerimages/wws82.png" alt="WorldWideScience.org" height="31" width="90"></a> </div> </div> </div> </div> </div> <p><br></p> </div><!-- container --> </body> </html>