NASA Astrophysics Data System (ADS)
Dankova, T. S.; Rosensteel, G.
1998-10-01
Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.
Relativistic mean-field theory
NASA Astrophysics Data System (ADS)
Meng, Jie; Ring, Peter; Zhao, Pengwei
In this chapter, the covariant energy density functional is constructed with both the meson-exchange and the point-coupling pictures. Several widely used functionals with either nonlinear or density-dependent effective interactions are introduced. The applications of covariant density functional theory are demonstrated for infinite nuclear matter and finite nuclei with spherical symmetry, axially symmetric quadrupole deformation, and triaxial quadrupole shapes. Finally, a relativistic description of the nuclear landscape has been discussed, which is not only important for nuclear structure, but also important for nuclear astrophysics, where we are facing the problem of a reliable extrapolation to the very neutron-rich nuclei.
The Mean-Field Flux Pinning Theory
NASA Astrophysics Data System (ADS)
Stejic, George
We develop the Mean-Field Flux Pinning Theory, designed to model the flux line lattice (FLL) as it interacts with itself, the flux pinning centers and the geometry of the superconductor. Like other mean-field theories, the mean-field flux pinning theory does not attempt to model the FLL completely. Instead, it utilizes a simplified model for the FLL, termed the mean-field FLL, in which the FLL is modelled as a continuous vector field rather than as discrete fluxons as in other theories. By so doing, the interactions of the FLL are greatly simplified and more easily modelled. One application of the mean-field flux pinning theory is to predict J_{c} from microstructural data, which we use to determine the optimal Nb-Ti microstructures with (1) alpha -Ti pinning centers and (2) Nb pinning centers. The microstructure is modelled on a grid in which the local values of T_{c} and kappa reflect the spatial distribution of the pinning centers and the superconductor. Using this model, we solve the G-L equations and calculate the pinning potential defined as the vortex free energy as a function of position. We conclude that the ideal Nb-Ti microstructure with alpha-Ti pinning centers would require 40 volume percent of alpha -Ti and have 6nm thick pinning centers. In the Nb pinning center case, the ideal microstructure requires 50 volume percent of Nb and would have 6nm pinning centers. Another application for the mean-field flux pinning theory is to model the FLL as it interacts with the penetrating magnetic fields within lambda of the superconducting surface. Using this theory, we study the effects of sample geometry on the FLL and J _{c} for the thin film geometry. We find that the FLL becomes increasingly distorted as the film thickness is reduced and that J_{c } increases sharply for dimensions less that lambda. These predictions are experimentally evaluated in Nb-Ti thin films. Our results show that J_{c} values as high as 1/3 of J_{d} and a strong orientational
Beyond mean field theory: statistical field theory for neural networks
Buice, Michael A; Chow, Carson C
2014-01-01
Mean field theories have been a stalwart for studying the dynamics of networks of coupled neurons. They are convenient because they are relatively simple and possible to analyze. However, classical mean field theory neglects the effects of fluctuations and correlations due to single neuron effects. Here, we consider various possible approaches for going beyond mean field theory and incorporating correlation effects. Statistical field theory methods, in particular the Doi–Peliti–Janssen formalism, are particularly useful in this regard. PMID:25243014
Machine Learning for Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Arsenault, Louis-Francois; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; Littlewood, P. B.; Millis, Andy
2014-03-01
Machine Learning (ML), an approach that infers new results from accumulated knowledge, is in use for a variety of tasks ranging from face and voice recognition to internet searching and has recently been gaining increasing importance in chemistry and physics. In this talk, we investigate the possibility of using ML to solve the equations of dynamical mean field theory which otherwise requires the (numerically very expensive) solution of a quantum impurity model. Our ML scheme requires the relation between two functions: the hybridization function describing the bare (local) electronic structure of a material and the self-energy describing the many body physics. We discuss the parameterization of the two functions for the exact diagonalization solver and present examples, beginning with the Anderson Impurity model with a fixed bath density of states, demonstrating the advantages and the pitfalls of the method. DOE contract DE-AC02-06CH11357.
Mean field theory for long chain molecules
NASA Astrophysics Data System (ADS)
Pereira, Gerald G.
1996-06-01
We provide a mathematical formalism for a self-consistent mean field treatment of long chain molecules. The formalism is applied to the case of a neutral polymer under the excluded volume interaction. Upon scaling the problem in the N→∞ limit we find the natural scaling length RN, of the polymer, which is made up of (N+1) monomers or beads, is RN˜N3/5, the well known Flory result. The asymptotics of the problem is dominated by the neighborhood of the turning point, so that a uniformly valid Green's function solution of the differential equations is necessary. In the neighborhood of a point y* the scaled polymer density fN(x), is found to decay sharply. If we let x denote the scaled distance from one end of the chain to a point in space we obtain, for y*-x≳O(N-2/15), a closed form expression for the polymer density viz., fN(x)˜{1/2x2[fN(x)-fN(y*)]1/2} while for x-y*≳O(N-2/15) the density is shown to be, to leading order, zero. Although our results imply the rate of decay of the density at y* is O(N1/5) we are unable to verify this explicitly by calculating fN'(y*). We believe this is due to the inability of the WKB theory to correctly approximate solutions in regions of rapid variation. We suggest remedies for this, so that a complete self-consistent solution may be obtained.
Mean Field Theory for Nonequilibrium Network Reconstruction
NASA Astrophysics Data System (ADS)
Roudi, Yasser; Hertz, John
2011-01-01
There has been recent progress on inferring the structure of interactions in complex networks when they are in stationary states satisfying detailed balance, but little has been done for nonequilibrium systems. Here we introduce an approach to this problem, considering, as an example, the question of recovering the interactions in an asymmetrically coupled, synchronously updated Sherrington-Kirkpatrick model. We derive an exact iterative inversion algorithm and develop efficient approximations based on dynamical mean-field and Thouless-Anderson-Palmer equations that express the interactions in terms of equal-time and one-time-step-delayed correlation functions.
Mean-field theory of echo state networks
NASA Astrophysics Data System (ADS)
Massar, Marc; Massar, Serge
2013-04-01
Dynamical systems driven by strong external signals are ubiquitous in nature and engineering. Here we study “echo state networks,” networks of a large number of randomly connected nodes, which represent a simple model of a neural network, and have important applications in machine learning. We develop a mean-field theory of echo state networks. The dynamics of the network is captured by the evolution law, similar to a logistic map, for a single collective variable. When the network is driven by many independent external signals, this collective variable reaches a steady state. But when the network is driven by a single external signal, the collective variable is non stationary but can be characterized by its time averaged distribution. The predictions of the mean-field theory, including the value of the largest Lyapunov exponent, are compared with the numerical integration of the equations of motion.
Mean-field theory of echo state networks.
Massar, Marc; Massar, Serge
2013-04-01
Dynamical systems driven by strong external signals are ubiquitous in nature and engineering. Here we study "echo state networks," networks of a large number of randomly connected nodes, which represent a simple model of a neural network, and have important applications in machine learning. We develop a mean-field theory of echo state networks. The dynamics of the network is captured by the evolution law, similar to a logistic map, for a single collective variable. When the network is driven by many independent external signals, this collective variable reaches a steady state. But when the network is driven by a single external signal, the collective variable is non stationary but can be characterized by its time averaged distribution. The predictions of the mean-field theory, including the value of the largest Lyapunov exponent, are compared with the numerical integration of the equations of motion. PMID:23679475
Development of mean-field electrical double layer theory
NASA Astrophysics Data System (ADS)
Yike, Huang; Xiaohong, Liu; Shu, Li; Tianying, Yan
2016-01-01
In order to understand the electric interfacial behavior, mean field based electric double layer (EDL) theory has been continuously developed over the past 150 years. In this article, we briefly review the development of the EDL model, from the dimensionless Gouy-Chapman model to the symmetric Bikerman-Freise model, and finally toward size-asymmetric mean field theory models. We provide the general derivations within the framework of Helmholtz free energy of the lattice-gas model, and it can be seen that the above-mentioned models are consistent in the sense that the interconversion among them can be achieved by reducing the basic assumptions. Project supported by the National Natural Science Foundation of China (Grant Nos. 21421001, 21373118, and 21203100), the Natural Science Foundation of Tianjin, China (Grant No. 13JCQNJC06700), the MOE Innovation Team of China (Grant No. IRT13022), and NFFTBS (Grant No. J1103306).
Advanced mean-field theory of the restricted Boltzmann machine
NASA Astrophysics Data System (ADS)
Huang, Haiping; Toyoizumi, Taro
2015-05-01
Learning in restricted Boltzmann machine is typically hard due to the computation of gradients of log-likelihood function. To describe the network state statistics of the restricted Boltzmann machine, we develop an advanced mean-field theory based on the Bethe approximation. Our theory provides an efficient message-passing-based method that evaluates not only the partition function (free energy) but also its gradients without requiring statistical sampling. The results are compared with those obtained by the computationally expensive sampling-based method.
Mean-field theory of a recurrent epidemiological model
NASA Astrophysics Data System (ADS)
Nagy, Viktor
2009-06-01
Our purpose is to provide a mean-field theory for the discrete time-step susceptible-infected-recovered-susceptible (SIRS) model on uncorrelated networks with arbitrary degree distributions. The effect of network structure, time delays, and infection rate on the stability of oscillating and fixed point solutions is examined through analysis of discrete time mean-field equations. Consideration of two scenarios for disease contagion demonstrates that the manner in which contagion is transmitted from an infected individual to a contacted susceptible individual is of primary importance. In particular, the manner of contagion transmission determines how the degree distribution affects model behavior. We find excellent agreement between our theoretical results and numerical simulations on networks with large average connectivity.
Mean-field theory of a recurrent epidemiological model.
Nagy, Viktor
2009-06-01
Our purpose is to provide a mean-field theory for the discrete time-step susceptible-infected-recovered-susceptible (SIRS) model on uncorrelated networks with arbitrary degree distributions. The effect of network structure, time delays, and infection rate on the stability of oscillating and fixed point solutions is examined through analysis of discrete time mean-field equations. Consideration of two scenarios for disease contagion demonstrates that the manner in which contagion is transmitted from an infected individual to a contacted susceptible individual is of primary importance. In particular, the manner of contagion transmission determines how the degree distribution affects model behavior. We find excellent agreement between our theoretical results and numerical simulations on networks with large average connectivity. PMID:19658562
Spin and orbital exchange interactions from Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.
2016-02-01
We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.
Mean-field theory of planar absorption of RNA molecules
NASA Astrophysics Data System (ADS)
Nguyen, Toan; Bruinsma, Robijn; Gelbart, William
2006-03-01
Interaction between the viral RNA and the protective protein capsid plays a very important role in the cell infection and self-assembly process of a virus. To better understand this interaction, we study a similar problem of absorption of RNA on an attractive wall. It is known that the secondary structure of a folded RNA molecules without pseudo-knots has the same topology as that of a branched polymer. We use a mean-field theory for branched polymers to analytically calculate the RNA concentration profile. The results are compared to known exact scaling calculations and computer simulations.
Applicability of self-consistent mean-field theory
Guo Lu; Sakata, Fumihiko; Zhao Enguang
2005-02-01
Within the constrained Hartree-Fock (CHF) theory, an analytic condition is derived to estimate whether a concept of the self-consistent mean field is realized in the level repulsive region. The derived condition states that an iterative calculation of the CHF equation does not converge when the quantum fluctuations coming from two-body residual interaction and quadrupole deformation become larger than a single-particle energy difference between two avoided crossing orbits. By means of numerical calculation, it is shown that the analytic condition works well for a realistic case.
The application of mean field theory to image motion estimation.
Zhang, J; Hanauer, G G
1995-01-01
Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates. PMID:18289956
The effectiveness of mean-field theory for avalanche distributions
NASA Astrophysics Data System (ADS)
Lee, Edward; Raju, Archishman; Sethna, James
We explore the mean-field theory of the pseudogap found in avalanche systems with long-range anisotropic interactions using analytical and numerical tools. The pseudogap in the density of low-stability states emerges from the competition between stabilizing interactions between spins in an avalanche and the destabilizing random movement towards the threshold caused by anisotropic couplings. Pazmandi et al. have shown that for the Sherrington-Kirkpatrick model, the pseudogap scales linearly and produces a distribution of avalanche sizes with exponent t=1 in contrast with that predicted from RFIM t=3/2. Lin et al. have argued that the scaling exponent ? of the pseudogap depends on the tail of the distribution of couplings and on non-universal values like the strain rate and the magnitude of the coupling strength. Yet others have argued that the relationship between the pseudogap scaling and the distribution of avalanche sizes is dependent on dynamical details. Despite the theoretical arguments, the class of RFIM mean-field models is surprisingly good at predicting the distribution of avalanche sizes in a variety of different magnetic systems. We investigate these differences with a combination of theory and simulation.
Cluster dynamical mean field theory of the Mott transition.
Park, H; Haule, K; Kotliar, G
2008-10-31
We address the nature of the Mott transition in the Hubbard model at half-filling using cluster dynamical mean field theory (DMFT). We compare cluster-DMFT results with those of single-site DMFT. We show that inclusion of the short-range correlations on top of the on-site correlations does not change the order of the transition between the paramagnetic metal and the paramagnetic Mott insulator, which remains first order. However, the short range correlations reduce substantially the critical U and modify the shape of the transition lines. Moreover, they lead to very different physical properties of the metallic and insulating phases near the transition point. Approaching the transition from the metallic side, we find an anomalous metallic state with very low coherence scale. The insulating state is characterized by the narrow Mott gap with pronounced peaks at the gap edge. PMID:18999845
More is the Same; Phase Transitions and Mean Field Theories
NASA Astrophysics Data System (ADS)
Kadanoff, Leo P.
2009-12-01
This paper is the first in a series that will look at the theory of phase transitions from the perspectives of physics and the philosophy of science. The series will consider a group of related concepts derived from condensed matter and statistical physics. The key technical ideas go under the names of "singularity", "order parameter", "mean field theory", "variational method", "correlation length", "universality class", "scale changes", and "renormalization". The first four of these will be considered here. In a less technical vein, the question here is how can matter, ordinary matter, support a diversity of forms. We see this diversity each time we observe ice in contact with liquid water or see water vapor (steam) come up from a pot of heated water. Different phases can be qualitatively different in that walking on ice is well within human capacity, but walking on liquid water is proverbially forbidden to ordinary humans. These differences have been apparent to humankind for millennia, but only brought within the domain of scientific understanding since the 1880s. A phase transition is a change from one behavior to another. A first order phase transition involves a discontinuous jump in some statistical variable. The discontinuous property is called the order parameter. Each phase transition has its own order parameter. The possible order parameters range over a tremendous variety of physical properties. These properties include the density of a liquid-gas transition, the magnetization in a ferromagnet, the size of a connected cluster in a percolation transition, and a condensate wave function in a superfluid or superconductor. A continuous transition occurs when the discontinuity in the jump approaches zero. This article is about statistical mechanics and the development of mean field theory as a basis for a partial understanding of phase transition phenomena. Much of the material in this review was first prepared for the Royal Netherlands Academy of Arts and
Multiagent model and mean field theory of complex auction dynamics
NASA Astrophysics Data System (ADS)
Chen, Qinghua; Huang, Zi-Gang; Wang, Yougui; Lai, Ying-Cheng
2015-09-01
Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena.
Effects of δ mesons in relativistic mean field theory
NASA Astrophysics Data System (ADS)
Singh, Shailesh K.; Biswal, S. K.; Bhuyan, M.; Patra, S. K.
2014-04-01
The effect of δ- and ω-ρ-meson cross couplings on asymmetry nuclear systems are analyzed in the framework of an effective field theory motivated relativistic mean field formalism. The calculations are done on top of the G2 parameter set, where these contributions are absent. To show the effect of δ meson on the nuclear system, we split the isospin coupling into two parts: (i) gρ due to ρ meson and (ii) gδ for δ meson. Thus, our investigation is based on varying the coupling strengths of the δ and ρ mesons to reproduce the binding energies of the nuclei Ca48 and Pb208. We calculate the root mean square radius, binding energy, single particle energy, density, and spin-orbit interaction potential for some selected nuclei and evaluate the Lsym and Esym coefficients for nuclear matter as function of δ- and ω-ρ-meson coupling strengths. As expected, the influence of these effects are negligible for the symmetric nuclear system, but substantial for the contribution with large isospin asymmetry.
Real-space renormalized dynamical mean field theory
NASA Astrophysics Data System (ADS)
Kubota, Dai; Sakai, Shiro; Imada, Masatoshi
2016-05-01
We propose real-space renormalized dynamical mean field theory (rr-DMFT) to deal with large clusters in the framework of a cluster extension of the DMFT. In the rr-DMFT, large clusters are decomposed into multiple smaller clusters through a real-space renormalization. In this work, the renormalization effect is taken into account only at the lowest order with respect to the intercluster coupling, which nonetheless reproduces exactly both the noninteracting and atomic limits. Our method allows us large cluster-size calculations which are intractable with the conventional cluster extensions of the DMFT with impurity solvers, such as the continuous-time quantum Monte Carlo and exact diagonalization methods. We benchmark the rr-DMFT for the two-dimensional Hubbard model on a square lattice at and away from half filling, where the spatial correlations play important roles. Our results on the spin structure factor indicate that the growth of the antiferromagnetic spin correlation is taken into account beyond the decomposed cluster size. We also show that the self-energy obtained from the large-cluster solver is reproduced by our method better than the solution obtained directly for the smaller cluster. When applied to the Mott metal-insulator transition, the rr-DMFT is able to reproduce the reduced critical value for the Coulomb interaction comparable to the large cluster result.
Mean-field theory of four species in cyclic competition
NASA Astrophysics Data System (ADS)
Durney, C. H.; Case, S. O.; Pleimling, M.; Zia, R. K. P.
2011-03-01
We consider a simple model of cyclic competition of M species: When a pair of individuals from species k and k + 1 interact, the latter transforms into the former. Even with no spatial structure, such systems often display interesting and counterintuitive behavior. With possible applications in both biological systems (e.g., Min proteins, E. Coli, lizards) and game theory (e.g., rock-paper-scissors), the M = 3 case has attracted considerable recent attention. We study a M = 4 system (with no spatial structure) and find major differences, e.g., (1) the presence of macroscopically many absorbing states, (2) coexistence of species, and (3) violation of the ``law'' of survival of the weakest - a central theme in the M = 3 case. Like the game of Bridge, the system typically ends with ``partner pairs.'' After describing the full stochastic model and its master equation, we present the mean-field approximation. Several exact, analytic predictions will be shown. Their limitations and implications for the stochastic system will also be discussed. Supported in part by NSF-DMR-0705152, 0904999, 1005417.
Hot and dense matter beyond relativistic mean field theory
NASA Astrophysics Data System (ADS)
Zhang, Xilin; Prakash, Madappa
2016-05-01
Properties of hot and dense matter are calculated in the framework of quantum hadrodynamics by including contributions from two-loop (TL) diagrams arising from the exchange of isoscalar and isovector mesons between nucleons. Our extension of mean field theory (MFT) employs the same five density-independent coupling strengths which are calibrated using the empirical properties at the equilibrium density of isospin-symmetric matter. Results of calculations from the MFT and TL approximations are compared for conditions of density, temperature, and proton fraction encountered in the study of core-collapse supernovae, young and old neutron stars, and mergers of compact binary stars. The TL results for the equation of state (EOS) of cold pure neutron matter at sub- and near-nuclear densities agree well with those of modern quantum Monte Carlo and effective field-theoretical approaches. Although the high-density EOS in the TL approximation for cold and β -equilibrated neutron-star matter is substantially softer than its MFT counterpart, it is able to support a 2 M⊙ neutron star required by recent precise determinations. In addition, radii of 1.4 M⊙ stars are smaller by ˜1 km than those obtained in MFT and lie in the range indicated by analysis of astronomical data. In contrast to MFT, the TL results also give a better account of the single-particle or optical potentials extracted from analyses of medium-energy proton-nucleus and heavy-ion experiments. In degenerate conditions, the thermal variables are well reproduced by results of Landau's Fermi-liquid theory in which density-dependent effective masses feature prominently. The ratio of the thermal components of pressure and energy density expressed as Γth=1 +(Pth/ɛth) , often used in astrophysical simulations, exhibits a stronger dependence on density than on proton fraction and temperature in both MFT and TL calculations. The prominent peak of Γth at supranuclear density found in MFT is, however, suppressed in
Dynamical mean-field theory for transition metal dioxide molecules
NASA Astrophysics Data System (ADS)
Lin, Nan; Zgid, Dominika; Marianetti, Chris; Reichman, David; Millis, Andrew
2012-02-01
The utility of the dynamical mean-field approximation in quantum chemistry is investigated in the context of transition metal dioxide molecules including TiO2 and CrO2. The choice of correlated orbitals and correlations to treat dynamically is discussed. The dynamical mean field solutions are compared to state of the art quantum chemical calculations. The dynamical mean-field method is found to capture about 50% of the total correlation energy, and to produce very good results for the d-level occupancies and magnetic moments. We also present the excitation spectrum in these molecules which is inaccessible in many wave-function based methods. Conceptual and technical difficulties will be outlined and discussed.
Mean field theory for scale-free random networks
NASA Astrophysics Data System (ADS)
Barabási, Albert-László; Albert, Réka; Jeong, Hawoong
1999-10-01
Random networks with complex topology are common in Nature, describing systems as diverse as the world wide web or social and business networks. Recently, it has been demonstrated that most large networks for which topological information is available display scale-free features. Here we study the scaling properties of the recently introduced scale-free model, that can account for the observed power-law distribution of the connectivities. We develop a mean-field method to predict the growth dynamics of the individual vertices, and use this to calculate analytically the connectivity distribution and the scaling exponents. The mean-field method can be used to address the properties of two variants of the scale-free model, that do not display power-law scaling.
Calorimetric glass transition in a mean-field theory approach
Mariani, Manuel Sebastian; Parisi, Giorgio; Rainone, Corrado
2015-01-01
The study of the properties of glass-forming liquids is difficult for many reasons. Analytic solutions of mean-field models are usually available only for systems embedded in a space with an unphysically high number of spatial dimensions; on the experimental and numerical side, the study of the properties of metastable glassy states requires thermalizing the system in the supercooled liquid phase, where the thermalization time may be extremely large. We consider here a hard-sphere mean-field model that is solvable in any number of spatial dimensions; moreover, we easily obtain thermalized configurations even in the glass phase. We study the 3D version of this model and we perform Monte Carlo simulations that mimic heating and cooling experiments performed on ultrastable glasses. The numerical findings are in good agreement with the analytical results and qualitatively capture the features of ultrastable glasses observed in experiments. PMID:25675523
Small-World Network Spectra in Mean-Field Theory
NASA Astrophysics Data System (ADS)
Grabow, Carsten; Grosskinsky, Stefan; Timme, Marc
2012-05-01
Collective dynamics on small-world networks emerge in a broad range of systems with their spectra characterizing fundamental asymptotic features. Here we derive analytic mean-field predictions for the spectra of small-world models that systematically interpolate between regular and random topologies by varying their randomness. These theoretical predictions agree well with the actual spectra (obtained by numerical diagonalization) for undirected and directed networks and from fully regular to strongly random topologies. These results may provide analytical insights to empirically found features of dynamics on small-world networks from various research fields, including biology, physics, engineering, and social science.
Avalanche shape and exponents beyond mean-field theory
NASA Astrophysics Data System (ADS)
Dobrinevski, Alexander; Le Doussal, Pierre; Jörg Wiese, Kay
2014-12-01
Elastic systems, such as magnetic domain walls, density waves, contact lines, and cracks, are pinned by substrate disorder. When driven, they move via avalanches, with power law distributions of size, duration and velocity. Their exponents, and the shape of an avalanche, defined as its mean velocity as a function of time, were studied. They are known approximatively from experiments and simulations, and were predicted from mean-field models, such as the Brownian force model (BFM), where each point of the elastic interface sees a force field which itself is a random walk. As we showed in EPL, 97 (2012) 46004, the BFM is the starting point for an \\varepsilon = d\\text{c}-d expansion around the upper critical dimension, with d\\text{c}=4 for short-ranged elasticity, and d\\text{c}=2 for long-ranged elasticity. Here we calculate analytically the O}(\\varepsilon) , i.e. 1-loop, correction to the avalanche shape at fixed duration T, for both types of elasticity. The exact expression, though different from the phenomenological form presented by Laurson et al. in Nat. Commun., 4 (2013) 2927, is well approximated by ≤ft< \\dot u(t=x T)\\right>_T≃ [ Tx(1-x)]γ-1 \\exp≤ft( A}≤ft[\\frac12-x\\right]\\right) , 0 < x < 1. The asymmetry A}≈ - 0.336 (1-d/d\\text{c}) is negative for d close to d\\text{c} , skewing the avalanche towards its end, as observed in numerical simulations in d = 2 and 3. The exponent γ=(d+\\zeta)/z is given by the two independent exponents at depinning, the roughness ζ and the dynamical exponent z. We propose a general procedure to predict other avalanche exponents in terms of ζ and z. We finally introduce and calculate the shape at fixed avalanche size, not yet measured in experiments or simulations.
Comparisons and connections between mean field dynamo theory and accretion disc theory
NASA Astrophysics Data System (ADS)
Blackman, E. G.
2010-01-01
The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi-analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha-accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory.
Mean-Field Theory of the Solar Dynamo
NASA Astrophysics Data System (ADS)
Schmitt, D.
The generation of the solar magnetic field is generally ascribed to dynamo processes in the convection zone. The dynamo effects, differential rotation (Omega-effect) and helical turbulence (alpha-effect) are explained, and the basic properties of the mean-field dynamo equations are discussed in view of the observed properties of the solar cycle. Problems of the classical picture of a dynamo in the convection zone (fibril state of magnetic flux, field strength, magnetic buoyancy, polarity rules, differential rotation and butterfly diagram) are addressed and some alternatives to overcome these problems are presented. A possibility to make up for the missing radial gradient of rotation in the convection zone is an alpha^2-Omega-dynamo with an anisotropic alpha-tensor. Dynamo solutions then might have the characteristics of the butterfly diagram. Another approach involves meridional circulation as the cause of the migration of a dynamo wave. Another suggestion is that the solar dynamo operates in the overshoot region at the base of the convection zone where strong fields, necessary to explain the polarity rules, can be stored and radial gradients in the angular velocity occur. As an alternative to the turbulent alpha-effect a dynamic alpha-effect based on magnetostrophic waves driven by a magnetic buoyancy instability of a magnetic flux layer is introduced. Model calculations which use the internal rotation of the Sun as deduced from helioseismology only show solar cycle behaviour if the turbulent diffusivity is reduced in the layer and the alpha-effect is concentrated near the equator. Another possibility is a combined model. The non-uniform rotation and most of the azimuthal magnetic flux are confined to a thin layer at the bottom of the convection zone where turbulent diffusion is greatly reduced, with the convective region above containing only weak fields for which the alpha-effect and turbulent diffusion operate in the conventional manner. The dynamo takes on the
Mean-field theory of the solar dynamo
NASA Astrophysics Data System (ADS)
Schmitt, Dieter
The generation of the solar magnetic field is generally ascribed to dynamo processes in the convection zone. The dynamo effects, differential rotation (Ω-effect and helical turbulence (α-effect are explained, and the basic properties of the mean-field dynamo equations are discussed in view of the observed properties of the solar cycle. Problems of the classical picture of a dynamo in the convection zone (fibril state of magnetic flux, field strength, magnetic buoyancy, polarity rules, differential rotation and butterfly diagram) are addressed and some alternatives to overcome these problems are presented. A possibility to make up for the missing radial gradient of rotation in the convection zone is an α2 Ω-dynamo with an anisotropic a-tensor. Dynamo solutions then might have the characteristics of the butterfly diagram. Another approach involves meridional circulation as the cause of the migration of a dynamo wave. Another suggestion is that the solar dynamo operates in the overshoot region at the base of the convection zone where strong fields, necessary to explain the polarity rules, can be stored and radial gradients in the angular velocity occur. As an alternative to the turbulent α-effect a dynamic α-effect based on magnetostrophic waves driven by a magnetic buoyancy instability of a magnetic flux layer is introduced. Model calculations which use the internal rotation of the Sun as deduced from helioseismology only show solar cycle behaviour if the turbulent diffusivity is reduced in the layer and the a-effect is concentrated near the equator. Another possibility is a combined model. The non-uniform rotation and most of the azimuthal magnetic flux are confined to a thin layer at the bottom of the convection zone where turbulent diffusion is greatly reduced, with the convective region above containing only weak fields for which the α-effect and turbulent diffusion operate in the conventional manner. The dynamo takes on the character of a surface wave at
Mean-field theory for Bose-Hubbard model under a magnetic field
Oktel, M. Oe.; Tanatar, B.; Nita, M.
2007-01-15
We consider the superfluid-insulator transition for cold bosons under an effective magnetic field. We investigate how the applied magnetic field affects the Mott transition within mean-field theory and find that the critical hopping strength (t/U){sub c} increases with the applied field. The increase in the critical hopping follows the bandwidth of the Hofstadter butterfly at the given value of the magnetic field. We also calculate the magnetization and superfluid density within mean-field theory.
Field Theory On the World Sheet: Mean Field Expansion And Cutoff Dependence
Bardakci, Korkut; Bardakci, Korkut
2007-01-10
Continuing earlier work, we apply the mean field method to the world sheet representation of a simple field theory. In particular, we study the higher order terms in the mean field expansion, and show that their cutoff dependence can be absorbed into a running coupling constant. The coupling constant runs towards zero in the infrared, and the model tends towards a free string. One cannot fully reach this limit because of infrared problems, however, one can still apply the mean field method to the high energy limit (high mass states) of the string.
Existence of a solution to an equation arising from the theory of Mean Field Games
NASA Astrophysics Data System (ADS)
Gangbo, Wilfrid; Święch, Andrzej
2015-12-01
We construct a small time strong solution to a nonlocal Hamilton-Jacobi equation (1.1) introduced in [48], the so-called master equation, originating from the theory of Mean Field Games. We discover a link between metric viscosity solutions to local Hamilton-Jacobi equations studied in [2,19,20] and solutions to (1.1). As a consequence we recover the existence of solutions to the First Order Mean Field Games equations (1.2), first proved in [48], and make a more rigorous connection between the master equation (1.1) and the Mean Field Games equations (1.2).
On the gap problem for the Mott--Hubbard transition within Dynamical Mean-Field Theory
NASA Astrophysics Data System (ADS)
Noack, Reinhard M.; Gebhard, Florian
1998-03-01
Within the Dynamical Mean-Field Theory, the zero temperature Mott-Hubbard metal-to-insulator transition has been proposed to be discontinuous in the sense that the gap jumps to a finite value at the transition.(A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68), 13 (1996). We use the Random Dispersion Approximation to the Hubbard model,(F. Gebhard, The Mott Metal-Insulator Transition), Springer Tracts in Modern Physics 137 (Springer, Berlin, 1997). which becomes equivalent to the Dynamical Mean-Field Theory in the thermodynamic limit, to show that the charge gap opens continuously at the critical interaction strength which is of the size of the bandwidth. Therefore, our results support the idea^2 that the Dynamical Mean Field Theory provides a generic description of the Mott--Hubbard transition as a continuous quantum phase transition.
NASA Astrophysics Data System (ADS)
Go, Ara; Millis, Andrew J.
2013-03-01
The configuration interaction technique has been widely used in quantum chemistry to solve quantum many body systems with lower computational costs than exact diagonalization and was introduced by Dominika Zgid, Emanuel Gull, and Garnet Kin-Lic Chan [Phys. Rev. B 86, 165128 (2012)] as a solver for the impurity models of dynamical mean field theory. We extend their work, demonstrating for the one and two dimensional Hubbard model how the method reproduces the known results and allows convergence with bath size to be studied in cluster dynamical mean field theory. As an example of the power of the method, cluster dynamical mean field studies of the three band copper-oxygen model are presented. This work was supported by the CMCSN program of the US Department of Energy.
Mean-field theory of spin-glasses with finite coordination number
NASA Technical Reports Server (NTRS)
Kanter, I.; Sompolinsky, H.
1987-01-01
The mean-field theory of dilute spin-glasses is studied in the limit where the average coordination number is finite. The zero-temperature phase diagram is calculated and the relationship between the spin-glass phase and the percolation transition is discussed. The present formalism is applicable also to graph optimization problems.
Phase transition studies of BiMnO{sub 3}: Mean field theory approximations
Lakshmi Priya, K. B.; Natesan, Baskaran
2015-06-24
We studied the phase transition and magneto-electric coupling effect of BiMnO{sub 3} by employing mean field theory approximations. To capture the ferromagnetic and ferroelectric transitions of BiMnO{sub 3}, we construct an extended Ising model in a 2D square lattice, wherein, the magnetic (electric) interactions are described in terms of the direct interactions between the localized magnetic (electric dipole) moments of Mn ions with their nearest neighbors. To evaluate our model, we obtain magnetization, magnetic susceptibility and electric polarization using mean field approximation calculations. Our results reproduce both the ferromagnetic and the ferroelectric transitions, matching very well with the experimental reports. Furthermore, consistent with experimental observations, our mean field results suggest that there is indeed a coupling between the magnetic and electric ordering in BiMnO{sub 3}.
Time-odd mean fields in covariant density functional theory: Rotating systems
NASA Astrophysics Data System (ADS)
Afanasjev, A. V.; Abusara, H.
2010-09-01
Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.
Mean-field theory of atomic self-organization in optical cavities
NASA Astrophysics Data System (ADS)
Jäger, Simon B.; Schütz, Stefan; Morigi, Giovanna
2016-08-01
Photons mediate long-range optomechanical forces between atoms in high-finesse resonators, which can induce the formation of ordered spatial patterns. When a transverse laser drives the atoms, the system undergoes a second-order phase transition that separates a uniform spatial density from a Bragg grating maximizing scattering into the cavity and is controlled by the laser intensity. Starting from a Fokker-Planck equation describing the semiclassical dynamics of the N -atom distribution function, we systematically develop a mean-field model and analyze its predictions for the equilibrium and out-of-equilibrium dynamics. The validity of the mean-field model is tested by comparison with the numerical simulations of the N -body Fokker-Planck equation and by means of a Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. The mean-field theory predictions well reproduce several results of the N -body Fokker-Planck equation for sufficiently short times and are in good agreement with existing theoretical approaches based on field-theoretical models. The mean field, on the other hand, predicts thermalization time scales which are at least one order of magnitude shorter than the ones predicted by the N -body dynamics. We attribute this discrepancy to the fact that the mean-field ansatz discards the effects of the long-range incoherent forces due to cavity losses.
Time-odd mean fields in covariant density functional theory: Rotating systems
Afanasjev, A. V.; Abusara, H.
2010-09-15
Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.
Xu, Wenhu; Haule, Kristjan; Kotliar, Gabriel
2013-07-19
We investigate the transport properties of a correlated metal within dynamical mean-field theory. Canonical Fermi liquid behavior emerges only below a very low temperature scale T(FL). Surprisingly the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures and crosses over to saturated behavior around a temperature scale T(sat). We identify these quasiparticles as constituents of the hidden Fermi liquid. The non-Fermi-liquid transport above T(FL), in particular the linear-in-T resistivity, is shown to be a result of a strongly temperature dependent band dispersion. We derive simple expressions for the resistivity, Hall angle, thermoelectric power and Nernst coefficient in terms of a temperature dependent renormalized band structure and the quasiparticle scattering rate. We discuss possible tests of the dynamical mean-field theory picture of transport using ac measurements. PMID:23909344
Mean field theory of the linear sigma-model: chiral solitons
Kahana, S.; Ripka, G.
1983-01-01
The mean field theory of the chiral invariant sigma-model is outlined. bound states (solitons) of valence quarks are obtained self-consistently using a hedgehog shape for the pion field. A schematic model for the coupled fermion-boson fields is presented. Renormalization is worked out for the fermion one-loop corrections and numerical results presented for the purely scalar-field case. The interpretation of the baryon number of the perturbed vacuum is considered.
From effective field theories to effective density functionals in and beyond the mean field
NASA Astrophysics Data System (ADS)
Grasso, M.; Lacroix, D.; van Kolck, U.
2016-06-01
Since the 1975 Nobel Prize in Physics, nuclear theory has evolved along two main directions. On the one hand, the energy–density functional (EDF) theory was established, which presently encompasses (by enlarging the EDF framework) all the mean-field and beyond-mean-field theories based on energy functionals produced by effective phenomenological interactions. Highly sophisticated structure and reaction models are currently available for the treatment of medium-mass and heavy nuclei. On the other hand, effective field theories (EFTs) have rendered possible the formulation of QCD as a low-energy hadronic theory. Ab initio methods have recently achieved remarkable success in the application of EFT or EFT-inspired potentials to structure analyses of light nuclei. Different but complementary competences have been developed during the past few decades in the EDF and EFT communities. Bridges and connections have in some cases been identified and constructed. We review here some of the developments that have been performed within the EDF theory and the EFT during recent years, with some emphasis on analogies and connections that may one day provide a unified picture of the two theories. Illustrations are given for infinite matter and finite nuclei.
Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory
Wohlfeld, K.; Chen, Cheng-Chien; van Veenendaal, M. ; Devereaux, T. P.
2015-02-01
Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation [Phys. Rev. B 91, 165102 (2015)], we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N=2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstances be regarded as more complex than the physics of a spin-orbital chain.
Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory
Wohlfeld, K.; Chen, Cheng-Chien; van Veenendaal, M.; Devereaux, T. P.
2015-02-01
Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation [Phys. Rev. B 91, 165102 (2015)], we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N=2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstancesmore » be regarded as more complex than the physics of a spin-orbital chain.« less
The D-D¯ mesons matter in Walecka's mean field theory
NASA Astrophysics Data System (ADS)
de Farias Freire, M. L.; Rodrigues da Silva, R.
2010-11-01
We study the D-D¯ mesons matter in the framework of σ and ω meson exchange model using Walecka's mean field theory. We choose the equal number of D and anti-D meson then we get <ω0> = 0 and the <σ> field exhibits a critical temperature around 1.2 GeV. We investigate effective mass and pressure. We conclude that this matter is a gas and these results are not favorable for the existence of D-D¯ bound state.
Proton and neutron skins of light nuclei within the relativistic mean field theory
NASA Astrophysics Data System (ADS)
Geng, L. S.; Toki, H.; Ozawa, A.; Meng, J.
2004-01-01
The relativistic mean field (RMF) theory is applied to the analysis of ground-state properties of Ne, Na, Cl and Ar isotopes. In particular, we study the recently established proton skin in Ar isotopes and neutron skin in Na isotopes as a function of the difference between the proton and the neutron separation energy. We use the TMA effective interaction in the RMF Lagrangian, and describe pairing correlation by the density-independent delta-function interaction. We calculate single neutron and proton separation energies, quadrupole deformations, nuclear matter radii and differences between proton radii and neutron radii, and compare these results with the recent experimental data.
Simple Mean-Field Theory for a Zero-Temperature Fermionic Gas at a Feshbach Resonance
Javanainen, Juha; Kostrun, Marijan; Carmichael, Andrew; Mackie, Matt
2005-09-09
We present a simple two-channel mean-field theory for a zero-temperature two-component Fermi gas in the neighborhood of a Feshbach resonance. Our results agree with recent experiments on the bare-molecule fraction as a function of magnetic field [Partridge et al., Phys. Rev. Lett. 95, 020404 (2005)]. Even in this strongly coupled gas of {sup 6}Li, the experimental results depend on the structure of the molecules formed in the Feshbach resonance and, therefore, are not universal.
Two-color spectroscopy of fermions in mean-field BCS-BEC crossover theory
Kostrun, Marijan; Cote, Robin
2006-04-15
We calculate two-photon Raman spectra for fermionic atoms with interactions described by a single-mode mean-field BCS-BEC crossover theory. We compare calculated spectra of interacting and noninteracting systems and find that interactions lead to the appearance of correlated atomic pair signal due to Cooper pairs; splitting of peaks in the spectroscopic signal due to the gap in fermionic dispersion; and attenuation of signal due to the partial conversion of fermions into the corresponding single-mode dimer. By exploring the behavior of these effects, one can obtain quantitative estimates of the BCS parameters from the spectra.
Double occupancy in dynamical mean-field theory and the dual boson approach
NASA Astrophysics Data System (ADS)
van Loon, Erik G. C. P.; Krien, Friedrich; Hafermann, Hartmut; Stepanov, Evgeny A.; Lichtenstein, Alexander I.; Katsnelson, Mikhail I.
2016-04-01
We discuss the calculation of the double occupancy using dynamical mean-field theory in finite dimensions. The double occupancy can be determined from the susceptibility of the auxiliary impurity model or from the lattice susceptibility. The former method typically overestimates, whereas the latter underestimates the double occupancy. We illustrate this for the square-lattice Hubbard model. We propose an approach for which both methods lead to identical results by construction and which resolves this ambiguity. This self-consistent dual boson scheme results in a double occupancy that is numerically close to benchmarks available in the literature.
Mean field theory of ionic free energy using scaled binding energies
NASA Astrophysics Data System (ADS)
Bhattacharya, Chandrani; Menon, S. V. G.
2009-03-01
A mean field model for ionic free energy is developed using the scaled binding energy formula. The model is evaluated using experimental data on Hugoniot, phase diagrams, melting curves, and other thermodynamic parameters of several solids. Predictions of the model are also compared with the Debye-Gruneisen theory, which is also based on the same binding energy formula. The binding energy formulation employs just four parameters, all corresponding to ambient condition—density, bulk modulus, its pressure derivative, and cohesive energy. These are obtained either from experiments or electronic structure theory. The Debye-Gruneisen theory compares better with available data for the phase diagrams of iron, zirconium, and titanium. However, the Hugoniot and melting curves obtained using both models yield similar results.
Active matter beyond mean-field: Ring-kinetic theory for self-propelled particles
NASA Astrophysics Data System (ADS)
Chou, Yen-Liang; Ihle, Thomas
2015-02-01
Recently, Hanke et al. [Phys. Rev. E 88, 052309 (2013), 10.1103/PhysRevE.88.052309] showed that mean-field kinetic theory fails to describe collective motion in soft active colloids and that correlations must not be neglected. Correlation effects are also expected to be essential in systems of biofilaments driven by molecular motors and in swarms of midges. To obtain correlations in an active matter system from first principles, we derive a ring-kinetic theory for Vicsek-style models of self-propelled agents from the exact N -particle evolution equation in phase space. The theory goes beyond mean-field and does not rely on Boltzmann's approximation of molecular chaos. It can handle precollisional correlations and cluster formation, which are both important to understand the phase transition to collective motion. We propose a diagrammatic technique to perform a small-density expansion of the collision operator and derive the first two equations of the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. An algorithm is presented that numerically solves the evolution equation for the two-particle correlations on a lattice. Agent-based simulations are performed and informative quantities such as orientational and density correlation functions are compared with those obtained by ring-kinetic theory. Excellent quantitative agreement between simulations and theory is found at not-too-small noises and mean free paths. This shows that there are parameter ranges in Vicsek-like models where the correlated closure of the BBGKY hierarchy gives correct and nontrivial results. We calculate the dependence of the orientational correlations on distance in the disordered phase and find that it seems to be consistent with a power law with an exponent around -1.8 , followed by an exponential decay. General limitations of the kinetic theory and its numerical solution are discussed.
Bose-Hubbard models in confining potentials: Inhomogeneous mean-field theory
NASA Astrophysics Data System (ADS)
Pai, Ramesh V.; Kurdestany, Jamshid Moradi; Sheshadri, K.; Pandit, Rahul
2012-06-01
We present an extensive study of Mott insulator (MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with harmonic traps. For this we apply the inhomogeneous mean-field theory developed by Sheshadri [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.75.4075 75, 4075 (1995)]. Our results for the BH model with one type of spinless bosons agree quantitatively with quantum Monte Carlo simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also extend our inhomogeneous mean-field theory to study BH models with harmonic traps and (a) two species of bosons or (b) spin-1 bosons. With two species of bosons, we obtain rich phase diagrams with a variety of SF and MI phases and associated shells when we include a quadratic confining potential. For the spin-1 BH model, we show, in a representative case, that the system can display alternating shells of polar SF and MI phases, and we make interesting predictions for experiments in such systems.
NASA Astrophysics Data System (ADS)
Dang, Hung
2015-03-01
Recently, the combination of density functional theory (DFT) and dynamical mean-field theory (DMFT) has become a widely-used beyond-mean-field approach for strongly correlated materials. However, not only is the correlation treated in DMFT but also in DFT to some extent, a problem arises as the correlation is counted twice in the DFT+DMFT framework. The correction for this problem is still not well-understood. To gain more understanding of this ``double counting'' problem, I provide a detailed study of the metal-insulator transition in transition metal oxides in the subspace of oxygen p and transition metal correlated d orbitals using DFT+DMFT. I will show that the fully charge self-consistent DFT+DMFT calculations with the standard ``fully-localized limit'' (FLL) double counting correction fail to predict correctly materials such as LaTiO3, LaVO3, YTiO3 and SrMnO3 as insulators. Investigations in a wide range of the p- d splitting, the d occupancy, the lattice structure and the double counting correction itself will be presented to understand the reason behind this failure. I will also show that if the double counting correction is chosen to reproduce the p- d splitting consistent with experimental data, the DFT+DMFT approach can still give reasonable results in comparison with experiments.
Implementing the density matrix embedding theory with the hierarchical mean-field approach
NASA Astrophysics Data System (ADS)
Qin, Jingbo; Jie, Quanlin; Fan, Zhuo
2016-07-01
We show an implementation of density matrix embedding theory (DMET) for the spin lattice of infinite size. It is indeed a special form of hierarchical mean-field (HMF) theory. In the method, we divide the lattice into a small part and a large part. View the small part as an impurity, embedding in the large part, which is viewed as the environment. We deal the impurity with a high accuracy method. But treat the environment with a low-level method: the states of the environment nearby the impurity are expressed by a set of multiple block product states, while the distant parts are treated by mean-field consideration. Our method allows for the computation of the ground state of the infinite two-dimensional quantum spin systems. In the text, we take the frustrated Heisenberg model as an example to test our method. The ground state energy we calculated can reach a high accuracy. We also calculate the magnetization, and the fidelity to study the quantum phase transitions.
Criterion for DNA melting in the mean-field modified self-consistent phonon theory
NASA Astrophysics Data System (ADS)
Feng, Y.; Prohofsky, E. W.
1991-04-01
We have examined the validity of the first-order-perturbation method in calculating eigenfunctions and the criterion for helix melting of mean-field polymers in the modified self-consistent phonon approach (MSPA) theory. It is found that the instability in the self-consistent solution is due to the breakdown of the first-order perturbation. The instability as a criterion for helix melting is therefore techniquely inappropriate. However, the breakdown of the perturbation is due to facts that are directly related to the onset of softening. Previously predicted melting temperatures for various sequence DNA polymers may still represent good estimates to the actual melting temperatures. An alternative criterion is required to define the melting temperature of the polymer DNA double helix in the MSPA theory.
Compression induced phase transition of nematic brush: A mean-field theory study
NASA Astrophysics Data System (ADS)
Tang, Jiuzhou; Zhang, Xinghua; Yan, Dadong
2015-11-01
Responsive behavior of polymer brush to the external compression is one of the most important characters for its application. For the flexible polymer brush, in the case of low grafting density, which is widely studied by the Gaussian chain model based theory, the compression leads to a uniform deformation of the chain. However, in the case of high grafting density, the brush becomes anisotropic and the nematic phase will be formed. The normal compression tends to destroy the nematic order, which leads to a complex responsive behaviors. Under weak compression, chains in the nematic brush are buckled, and the bending energy and Onsager interaction give rise to the elasticity. Under deep compression, the responsive behaviors of the nematic polymer brush depend on the chain rigidity. For the compressed rigid polymer brush, the chains incline to re-orientate randomly to maximize the orientational entropy and its nematic order is destroyed. For the compressed flexible polymer brush, the chains incline to fold back to keep the nematic order. A buckling-folding transition takes place during the compressing process. For the compressed semiflexible brush, the chains are collectively tilted to a certain direction, which leads to the breaking of the rotational symmetry in the lateral plane. These responsive behaviors of nematic brush relate to the properties of highly frustrated worm-like chain, which is hard to be studied by the traditional self-consistent field theory due to the difficulty to solve the modified diffusion equation. To overcome this difficulty, a single chain in mean-field theory incorporating Monte Carlo simulation and mean-field theory for the worm-like chain model is developed in present work. This method shows high performance for entire region of chain rigidity in the confined condition.
Compression induced phase transition of nematic brush: A mean-field theory study
Tang, Jiuzhou; Zhang, Xinghua; Yan, Dadong
2015-11-28
Responsive behavior of polymer brush to the external compression is one of the most important characters for its application. For the flexible polymer brush, in the case of low grafting density, which is widely studied by the Gaussian chain model based theory, the compression leads to a uniform deformation of the chain. However, in the case of high grafting density, the brush becomes anisotropic and the nematic phase will be formed. The normal compression tends to destroy the nematic order, which leads to a complex responsive behaviors. Under weak compression, chains in the nematic brush are buckled, and the bending energy and Onsager interaction give rise to the elasticity. Under deep compression, the responsive behaviors of the nematic polymer brush depend on the chain rigidity. For the compressed rigid polymer brush, the chains incline to re-orientate randomly to maximize the orientational entropy and its nematic order is destroyed. For the compressed flexible polymer brush, the chains incline to fold back to keep the nematic order. A buckling-folding transition takes place during the compressing process. For the compressed semiflexible brush, the chains are collectively tilted to a certain direction, which leads to the breaking of the rotational symmetry in the lateral plane. These responsive behaviors of nematic brush relate to the properties of highly frustrated worm-like chain, which is hard to be studied by the traditional self-consistent field theory due to the difficulty to solve the modified diffusion equation. To overcome this difficulty, a single chain in mean-field theory incorporating Monte Carlo simulation and mean-field theory for the worm-like chain model is developed in present work. This method shows high performance for entire region of chain rigidity in the confined condition.
Quantum correlated cluster mean-field theory applied to the transverse Ising model
NASA Astrophysics Data System (ADS)
Zimmer, F. M.; Schmidt, M.; Maziero, Jonas
2016-06-01
Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.
Coagulation kinetics beyond mean field theory using an optimised Poisson representation
NASA Astrophysics Data System (ADS)
Burnett, James; Ford, Ian J.
2015-05-01
Binary particle coagulation can be modelled as the repeated random process of the combination of two particles to form a third. The kinetics may be represented by population rate equations based on a mean field assumption, according to which the rate of aggregation is taken to be proportional to the product of the mean populations of the two participants, but this can be a poor approximation when the mean populations are small. However, using the Poisson representation, it is possible to derive a set of rate equations that go beyond mean field theory, describing pseudo-populations that are continuous, noisy, and complex, but where averaging over the noise and initial conditions gives the mean of the physical population. Such an approach is explored for the simple case of a size-independent rate of coagulation between particles. Analytical results are compared with numerical computations and with results derived by other means. In the numerical work, we encounter instabilities that can be eliminated using a suitable "gauge" transformation of the problem [P. D. Drummond, Eur. Phys. J. B 38, 617 (2004)] which we show to be equivalent to the application of the Cameron-Martin-Girsanov formula describing a shift in a probability measure. The cost of such a procedure is to introduce additional statistical noise into the numerical results, but we identify an optimised gauge transformation where this difficulty is minimal for the main properties of interest. For more complicated systems, such an approach is likely to be computationally cheaper than Monte Carlo simulation.
Multisite mean-field theory for cold bosonic atoms in optical lattices
NASA Astrophysics Data System (ADS)
McIntosh, T.; Pisarski, P.; Gooding, R. J.; Zaremba, E.
2012-07-01
We present a detailed derivation of a multisite mean-field theory (MSMFT) used to describe the Mott-insulator to superfluid transition of bosonic atoms in optical lattices. The approach is based on partitioning the lattice into small clusters which are decoupled by means of a mean-field approximation. This approximation invokes local superfluid order parameters defined for each of the boundary sites of the cluster. The resulting MSMFT grand potential has a nontrivial topology as a function of the various order parameters. An understanding of this topology provides two different criteria for the determination of the Mott insulator superfluid phase boundaries. We apply this formalism to d-dimensional hypercubic lattices in one, two, and three dimensions and demonstrate the improvement in the estimation of the phase boundaries when MSMFT is utilized for increasingly larger clusters, with the best quantitative agreement found for d=3. The MSMFT is then used to examine a linear dimer chain in which the onsite energies within the dimer have an energy separation of Δ. This system has a complicated phase diagram within the parameter space of the model, with many distinct Mott phases separated by superfluid regions.
The electronic mean-field configuration interaction method. I. Theory and integral formulas
NASA Astrophysics Data System (ADS)
Cassam-Chenaï, Patrick
2006-05-01
In this article, we introduce a new method for solving the electronic Schrödinger equation. This new method follows the same idea followed by the mean-field configuration interaction method already developed for molecular vibrations; i.e., groups of electronic degrees of freedom are contracted together in the mean field of the other degrees. If the same partition of electronic degrees of freedom is iterated, a self-consistent field method is obtained. Making coarser partitions (i.e., including more degrees in the same groups) and discarding the high energy states, the full configuration interaction limit can be approached. In contrast with the usual group function theory, no strong orthogonality condition is enforced. We have made use of a generalized version of the fundamental formula defining a Hopf algebra structure to derive Hamiltonian and overlap matrix element expressions which respect the group structure of the wave function as well as its fermionic symmetry. These expressions are amenable to a recursive computation.
Atomically flat superconducting nanofilms: multiband properties and mean-field theory
NASA Astrophysics Data System (ADS)
Shanenko, A. A.; Aguiar, J. Albino; Vagov, A.; Croitoru, M. D.; Milošević, M. V.
2015-05-01
Recent progress in materials synthesis enabled fabrication of superconducting atomically flat single-crystalline metallic nanofilms with thicknesses down to a few monolayers. Interest in such nano-thin systems is attracted by the dimensional 3D-2D crossover in their coherent properties which occurs with decreasing the film thickness. The first fundamental aspect of this crossover is dictated by the Mermin-Wagner-Hohenberg theorem and concerns frustration of the long-range order due to superconductive fluctuations and the possibility to track its impact with an unprecedented level of control. The second important aspect is related to the Fabri-Pérot modes of the electronic motion strongly bound in the direction perpendicular to the nanofilm. The formation of such modes results in a pronounced multiband structure that changes with the nanofilm thickness and affects both the mean-field behavior and superconductive fluctuations. Though the subject is very rich in physics, it is scarcely investigated to date. The main obstacle is that there are no manageable models to study a complex magnetic response in this case. Full microscopic consideration is rather time consuming, if practicable at all, while the standard Ginzburg-Landau theory is not applicable. In the present work we review the main achievements in the subject to date, and construct and justify an efficient multiband mean-field formalism which allows for numerical and even analytical treatment of nano-thin superconductors in applied magnetic fields.
Stability of inhomogeneous superstructures from renormalized mean-field theory of the t-J model
NASA Astrophysics Data System (ADS)
Poilblanc, Didier
2005-08-01
Using the t-J model (which can also include Coulomb repulsion) and the “plain vanilla” renormalized mean-field theory of Zhang, [Supercond. Sci. Technol. 1, 36 (1988)], stability of inhomogeneous 4a×4a superstructures, such as those observed in cuprates superconductors around 1/8 hole doping is investigated. We find a nonuniform 4a×4a bond order wave involving simultaneously small (˜10-2t) inhomogeneous staggered plaquette currents as well as a small charge-density modulation similar to pair density wave order. On the other hand, no supersolid phase involving a decoupling in the superconducting particle-particle channel is found.
Temperature Dependence of the Molar Heat Capacity for Ferromagnets Within the Mean Field Theory
NASA Astrophysics Data System (ADS)
Fernández Rodríguez, J.; Blanco, J. A.
2005-01-01
We describe, using the Mean Field Theory, a detailed analysis of the magnetic contribution to the molar heat capacity Cmag for ferromagnetic systems. This calculation is designed to be used as a teaching homework problem for physics undergraduates. The description emphasises that Cmag at the transition temperature TC is characterised by the existence of a simple jump discontinuity anomaly, but when the temperature is lowered down to 0 K the shape of Cmag depends strongly on the magnitude of the spin S. In fact, the appearance of a shoulder in Cmag for S > 3/2 is expected. The origin of this shoulder could be understood as a Schottky-like anomaly in the ordered state. These physical results are in good agreement with those from real systems, and give the student a valuable insight into the behaviour of the thermodynamical response of a ferromagneticmaterial.
NASA Astrophysics Data System (ADS)
Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.
2010-12-01
In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for Ca40,42,44,48 with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+Ca40,42,44,48 systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.
Bhuyan, M.; Panda, R. N.; Routray, T. R.; Patra, S. K.
2010-12-15
In the framework of relativistic mean field (RMF) theory, we have calculated the density distribution of protons and neutrons for {sup 40,42,44,48}Ca with NL3 and G2 parameter sets. The microscopic proton-nucleus optical potentials for p+{sup 40,42,44,48}Ca systems are evaluated from the Dirac nucleon-nucleon scattering amplitude and the density of the target nucleus using relativistic-Love-Franey and McNeil-Ray-Wallace parametrizations. We have estimated the scattering observables, such as the elastic differential scattering cross section, analyzing power and the spin observables with the relativistic impulse approximation (RIA). The results have been compared with the experimental data for a few selective cases and we find that the use of density as well as the scattering matrix parametrizations are crucial for the theoretical prediction.
The mean field theory in EM procedures for blind Markov random field image restoration.
Zhang, J
1993-01-01
A Markov random field (MRF) model-based EM (expectation-maximization) procedure for simultaneously estimating the degradation model and restoring the image is described. The MRF is a coupled one which provides continuity (inside regions of smooth gray tones) and discontinuity (at region boundaries) constraints for the restoration problem which is, in general, ill posed. The computational difficulty associated with the EM procedure for MRFs is resolved by using the mean field theory from statistical mechanics. An orthonormal blur decomposition is used to reduce the chances of undesirable locally optimal estimates. Experimental results on synthetic and real-world images show that this approach provides good blur estimates and restored images. The restored images are comparable to those obtained by a Wiener filter in mean-square error, but are most visually pleasing. PMID:18296192
Strange hadronic stars in relativistic mean-field theory with the FSUGold parameter set
Wu Chen; Ren Zhongzhou
2011-02-15
Relativistic mean-field theory with parameter set FSUGold that includes the isoscalar-isovector cross interaction term is extended to study the properties of neutron star matter in {beta} equilibrium by including hyperons. The influence of the attractive and repulsive {Sigma} potential on the properties of neutron star matter and the maximum mass of neutron stars is examined. We also investigate the equations of state for pure neutron matter and for nonstrange hadronic matter for comparison. For a pure neutron star, the maximum mass is about 1.8M{sub sun}, while for a strange (nonstrange) hadronic star in {beta} equilibrium, the maximum mass is around 1.35M{sub sun} (1.7M{sub sun}).
Mean-Field Theory of Intra-Molecular Charge Ordering in (TTM--TTP)I3
NASA Astrophysics Data System (ADS)
Omori, Yukiko; Tsuchiizu, Masahisa; Suzumura, Yoshikazu
2011-02-01
We examine an intra-molecular charge-ordered (ICO) state in the multi-orbital molecular compound (TTM--TTP)I3 on the basis of an effective two-orbital model derived from ab initio calculations. Representing the model in terms of the fragment molecular-orbital (MO) picture, the ICO state is described as the charge disproportionation on the left and right fragment MOs. By applying the mean-field theory, the phase diagram of the ground state is obtained as a function of the inter-molecular Coulomb repulsion and the intra-molecular transfer integral. The ICO state is stabilized by large inter-fragment Coulomb interactions, and the small intra-molecular transfer energy between two fragment MOs. Furthermore, we examine the finite-temperature phase diagram. The relevance to the experimental observations in the molecular compound of (TTM--TTP)I3 is also discussed.
Green's function method for single-particle resonant states in relativistic mean field theory
NASA Astrophysics Data System (ADS)
Sun, T. T.; Zhang, S. Q.; Zhang, Y.; Hu, J. N.; Meng, J.
2014-11-01
Relativistic mean field theory is formulated with the Green's function method in coordinate space to investigate the single-particle bound states and resonant states on the same footing. Taking the density of states for free particles as a reference, the energies and widths of single-particle resonant states are extracted from the density of states without any ambiguity. As an example, the energies and widths for single-neutron resonant states in 120Sn are compared with those obtained by the scattering phase-shift method, the analytic continuation in the coupling constant approach, the real stabilization method, and the complex scaling method. Excellent agreements with these methods are found for the energies and widths of single-neutron resonant states.
Mean-Field Theory of the Symmetry Breaking Model for X Chromosome Inactivation
NASA Astrophysics Data System (ADS)
Scialdone, A.; Barbieri, M.; Pallotti, D.; Nicodemi, M.
X Chromosome Inactivation (XCI) is the process in mammal femalecells whereby one of the X chromosomes is silenced to compensate dosage with respect to males. It is still mysterious how precisely one X chromosome is randomly chosen for inactivation. We discuss here a mean-field theory of the Symmetry Breaking (SB) model of XCI, a Statistical Mechanics model introduced to explain that process. The SB model poses that a single regulatory factor, an aggregate of molecules, is produced which acts to preserve from inactivation one of the X's. The model illustrates a physical mechanism, originating from a thermodynamic phase transition, for the self-assembling of such a single super-molecular aggregate which can spontaneously break the binding symmetry of equivalent targets. This results in a sharp, yet stochastic, regulatory mechanism of XCI. In particular, we focus here on how the model can predict the effects of genetic deletions.
A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes
NASA Astrophysics Data System (ADS)
Han, Yining; Huang, Shanghui; Yan, Tianying
2014-07-01
The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory.
A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes.
Han, Yining; Huang, Shanghui; Yan, Tianying
2014-07-16
The size of ions significantly influences the electric double layer structure of room temperature ionic liquid (IL) electrolytes and their differential capacitance (Cd). In this study, we extended the mean-field theory (MFT) developed independently by Kornyshev (2007J. Phys. Chem. B 111 5545-57) and Kilic, Bazant, and Ajdari (2007 Phys. Rev. E 75 021502) (the KKBA MFT) to take into account the asymmetric 1:1 IL electrolytes by introducing an additional parameter ξ for the anion/cation volume ratio, besides the ionic compressibility γ in the KKBA MFT. The MFT of asymmetric ions becomes KKBA MFT upon ξ = 1, and further reduces to Gouy-Chapman theory in the γ → 0 limit. The result of the extended MFT demonstrates that the asymmetric ILs give rise to an asymmetric Cd, with the higher peak in Cd occurring at positive polarization for the smaller anionic size. At high potential, Cd decays asymptotically toward KKBA MFT characterized by γ for the negative polarization, and characterized by ξγ for the positive polarization, with inverse-square-root behavior. At low potential, around the potential of zero charge, the asymmetric ions cause a higher Cd, which exceeds that of Gouy-Chapman theory. PMID:24920102
State-of-the-art of beyond mean field theories with nuclear density functionals
NASA Astrophysics Data System (ADS)
Egido, J. Luis
2016-07-01
We present an overview of different beyond mean field theories (BMFTs) based on the generator coordinate method (GCM) and the recovery of symmetries used in many body nuclear physics with effective forces. In a first step a short reminder of the Hartree–Fock–Bogoliubov (HFB) theory is given. A general discussion of the shortcomings of any mean field approximation (MFA), stemming either from the lack of the elementary symmetries (like particle number and angular momentum) or the absence of fluctuations around the mean values, is presented. The recovery of the symmetries spontaneously broken in the HFB approach, in particular the angular momentum, is necessary, among others, to describe excited states and transitions. Particle number projection is also needed to guarantee the right number of protons and neutrons. Furthermore a projection before the variation prevents the pairing collapse in the weak pairing regime. A whole chapter is devoted to illustrate with examples the convenience of recovering symmetries and the differences between the projection before and after the variation. The lack of fluctuations around the average values of the MFA is a big shortcoming inherent to this approach. To build in correlations in BMFT one selects the relevant degrees of freedom of the atomic nucleus. In the low energy part of the spectrum these are the quadrupole, octupole and the pairing vibrations as well as the single particle degrees of freedom. In the GCM the operators representing these degrees of freedom are used as coordinates to generate, by the constrained (projected) HFB theory, a collective subspace. The highly correlated GCM wave function is finally written as a linear combination of a projected basis of this space. The variation of the coefficients of the linear combination leads to the Hill–Wheeler equation. The flexibility of the GCM Ansatz allows to describe a whole palette of physical situations by conveniently choosing the generator coordinates. We
Coagulation kinetics beyond mean field theory using an optimised Poisson representation
Burnett, James; Ford, Ian J.
2015-05-21
Binary particle coagulation can be modelled as the repeated random process of the combination of two particles to form a third. The kinetics may be represented by population rate equations based on a mean field assumption, according to which the rate of aggregation is taken to be proportional to the product of the mean populations of the two participants, but this can be a poor approximation when the mean populations are small. However, using the Poisson representation, it is possible to derive a set of rate equations that go beyond mean field theory, describing pseudo-populations that are continuous, noisy, and complex, but where averaging over the noise and initial conditions gives the mean of the physical population. Such an approach is explored for the simple case of a size-independent rate of coagulation between particles. Analytical results are compared with numerical computations and with results derived by other means. In the numerical work, we encounter instabilities that can be eliminated using a suitable “gauge” transformation of the problem [P. D. Drummond, Eur. Phys. J. B 38, 617 (2004)] which we show to be equivalent to the application of the Cameron-Martin-Girsanov formula describing a shift in a probability measure. The cost of such a procedure is to introduce additional statistical noise into the numerical results, but we identify an optimised gauge transformation where this difficulty is minimal for the main properties of interest. For more complicated systems, such an approach is likely to be computationally cheaper than Monte Carlo simulation.
NASA Astrophysics Data System (ADS)
Adam, C.; Naya, C.; Sanchez-Guillen, J.; Vazquez, R.; Wereszczynski, A.
2015-08-01
Using a solitonic model of nuclear matter, the Bogomol'nyi-Prasad-Sommerfield (BPS) Skyrme model, we compare neutron stars obtained in the full field theory, where gravitational backreaction is completely taken into account, with calculations in a mean-field approximation using the Tolman-Oppenheimer-Volkoff approach. In the latter case, a mean-field-theory equation of state is derived from the original BPS field theory. We show that in the full field theory, where the energy density is nonconstant even at equilibrium, there is no universal and coordinate-independent equation of state of nuclear matter, in contrast to the mean-field approximation. We also study how neutron star properties are modified by going beyond mean-field theory and find that the differences between mean-field theory and exact results can be considerable. Further, we compare both exact and mean-field results with some theoretical and phenomenological constraints on neutron star properties, demonstrating thus the relevance of our model even in its most simple version.
Macromolecular Stabilization by Excluded Cosolutes: Mean Field Theory of Crowded Solutions.
Sapir, Liel; Harries, Daniel
2015-07-14
We propose a mean field theory to account for the experimentally determined temperature dependence of protein stabilization that emerges in solutions crowded by preferentially excluded cosolutes. Based on regular solution theory and employing the Flory-Huggins approximation, our model describes cosolutes in terms of their size, and two temperature-dependent microscopic parameters that correspond to macromolecule-cosolute and bulk solution interactions. The theory not only predicts a "depletion force" that can account for the experimentally observed stabilization of protein folding or association in the presence of excluded cosolutes but also predicts the full range of associated entropic and enthalpic components. Remarkably, depending on cosolute identity and in accordance with experiments, the theory describes entropically as well as enthalpically dominated depletion forces, even those disfavored by entropy. This emerging depletion attraction cannot be simply linked to molecular volumes. Instead, the relevant parameter is an effective volume that represents an interplay between solvent, cosolute, and macromolecular interactions. We demonstrate that the apparent depletion free energy is often accompanied by significant yet compensating entropy and enthalpy terms that, although having a net zero contribution to stabilization, can obscure the underlying molecular mechanism. This study underscores the importance of including often-neglected free energy terms that correspond to solvent-cosolute and cosolute-macromolecule interactions, which for most typical cosolutes are expected to be temperature dependent. We propose that experiments specifically aimed at resolving the temperature-dependence of cosolute exclusion from macromolecular surfaces should help reveal the full range of the underlying molecular mechanisms of the depletion force. PMID:26575781
Higgs-Yukawa model with higher dimension operators via extended mean field theory
NASA Astrophysics Data System (ADS)
Akerlund, Oscar; de Forcrand, Philippe
2016-02-01
Using extended mean field theory (EMFT) on the lattice, we study properties of the Higgs-Yukawa model as an approximation of the standard model Higgs sector, and the effect of higher dimension operators. We remark, as has been noted before, that the discussion of vacuum stability is completely modified in the presence of a ϕ6 term, and that the Higgs mass no longer appears fine tuned. We also study the finite temperature transition. Without higher dimension operators the transition is found to be second order (crossover with gauge fields) for the experimental value of the Higgs mass Mh=125 GeV . By taking a ϕ6 interaction in the Higgs potential as a proxy for a UV completion of the standard model, the transition becomes stronger and turns first order if the scale of new physics, i.e., the mass of the lightest mediator particle, is around 1.5 TeV. This implies that electroweak baryogenesis may be viable in models which introduce new particles around that scale.
Mean field theory for biology inspired duplication-divergence network model
NASA Astrophysics Data System (ADS)
Cai, Shuiming; Liu, Zengrong; Lee, H. C.
2015-08-01
The duplication-divergence network model is generally thought to incorporate key ingredients underlying the growth and evolution of protein-protein interaction networks. Properties of the model have been elucidated through numerous simulation studies. However, a comprehensive theoretical study of the model is lacking. Here, we derived analytic expressions for quantities describing key characteristics of the network—the average degree, the degree distribution, the clustering coefficient, and the neighbor connectivity—in the mean-field, large-N limit of an extended version of the model, duplication-divergence complemented with heterodimerization and addition. We carried out extensive simulations and verified excellent agreement between simulation and theory except for one partial case. All four quantities obeyed power-laws even at moderate network size ( N ˜104 ), except the degree distribution, which had an additional exponential factor observed to obey power-law. It is shown that our network model can lead to the emergence of scale-free property and hierarchical modularity simultaneously, reproducing the important topological properties of real protein-protein interaction networks.
Analytic models of regularly branched polymer brushes using the self-consistent mean field theory
NASA Astrophysics Data System (ADS)
LeSher, Daniel
2015-10-01
Polymer brushes consist of multiple monomers connected together with one of the polymer chain's ends attached to a surface. Polymer brushes have shown great promise for a wide variety of applications including drug delivery dendrimer systems and as tunable brushes that can change their shape and physical properties in response to changes in their environment. Regularly branched polymer brushes which are structured as a function of their chemical indices are investigated here using the self-consistent mean field theory for electrically neutral polymers. The brushes were described using weighting functions, f(n), were n was the fewest number of monomers from a specified location to a free end. Brushes with weighting functions of the form f(n)=nb, f(n)=ebn, as well as f(n)=dan when d 2 and alpha > 2 were found to match the parabolic free chain end profile expected, while it was determined that polymer brushes described using f(n)=n b must be very small in order to remain in equilibrium. However, brushes described by f(n)=2G(N-n) N and f(n)2n were found to be unstable for real, positive values of the potential of the system.
Diffuse phase transition in ferroelectrics with mesoscopic heterogeneity: Mean-field theory
Li, S.; Eastman, J.A.; Newnham, R.E.; Cross, L.E.
1997-05-01
The diffuse phase transition in ferroelectrics with mesoscopic heterogeneity has been discussed within the context of a superparaelectric model by using the Ginzburg-Landau formalism. In the Curie region ferroelectrics with mesoscopic heterogeneity are treated as {open_quotes}superparaelectrics{close_quotes} consisting of a mass of polar clusters, each of which has Ising character. Based on the mean-field theory, the influence of the finite-size effects of polar clusters on their structural instability has been discussed by considering a coherent lattice coupling between two structurally different regions. In particular, we have analytically derived the explicit solutions of the distribution of local polarizations. In turn, the processes of polar nanophase precipitation and coarsening have been also discussed in conjunction with the local chemical or structural inhomogeneity. Moreover, we have also analyzed the relationship between the local polarization distribution and the static dielectric susceptibility in ferroelectrics with the nanometric scale heterogeneity. The width of the Curie region is dependent upon the distribution of the sum of localized correlation length, which reflects the size distribution of heterogeneity. The presented analysis reveals that the diffuse phase transition is closely associated with the existence of nanometric polar clusters and their physical size distribution. Intriguingly, our theoretical results bear a very close resemblance to most experimental observations. {copyright} {ital 1997} {ital The American Physical Society}
Mean field theory for biology inspired duplication-divergence network model.
Cai, Shuiming; Liu, Zengrong; Lee, H C
2015-08-01
The duplication-divergence network model is generally thought to incorporate key ingredients underlying the growth and evolution of protein-protein interaction networks. Properties of the model have been elucidated through numerous simulation studies. However, a comprehensive theoretical study of the model is lacking. Here, we derived analytic expressions for quantities describing key characteristics of the network-the average degree, the degree distribution, the clustering coefficient, and the neighbor connectivity-in the mean-field, large-N limit of an extended version of the model, duplication-divergence complemented with heterodimerization and addition. We carried out extensive simulations and verified excellent agreement between simulation and theory except for one partial case. All four quantities obeyed power-laws even at moderate network size ( N∼10(4)), except the degree distribution, which had an additional exponential factor observed to obey power-law. It is shown that our network model can lead to the emergence of scale-free property and hierarchical modularity simultaneously, reproducing the important topological properties of real protein-protein interaction networks. PMID:26328557
On the Connection Between Mean Field Dynamo Theory and Flux Tubes
NASA Astrophysics Data System (ADS)
Choudhuri, Arnab Rai
2003-07-01
Mean field dynamo theory deals with various mean quantities and does not directly throw any light on the question of existence of flux tubes. We can, however, draw important conclusions about flux tubes in the interior of the Sun by combining additional arguments with the insights gained from solar dynamo solutions. The polar magnetic field of the Sun is of order 10 G, whereas the toroidal magnetic field at the bottom of the convection zone has been estimated to be 100000 G. Simple order-of-magnitude estimates show that the shear in the tachocline is not sufficient to stretch a 10 G mean radial field into a 100000 G mean toroidal field. We argue that the polar field of the Sun must get concentrated into intermittent flux tubes before it is advected to the tachocline. We estimate the strengths and filling factors of these flux tubes. Stretching by shear in the tachocline is then expected to produce a highly intermittent magnetic configuration at the bottom of the convection zone. The meridional flow at the bottom of the convection zone should be able to carry this intermittent magnetic field equatorward, as suggested recently by Nandy and Choudhuri (2002). When a flux tube from the bottom of the convection zone rises to a region of pre-existing poloidal field at the surface, we point out that it picks up a twist in accordance with the observations of current helicities at the solar surface.
NASA Astrophysics Data System (ADS)
Petocchi, Francesco; Capone, Massimo
2016-06-01
We study layered systems and heterostructures of s -wave superconductors by means of a suitable generalization of dynamical mean-field theory. In order to reduce the computational effort, we consider an embedding scheme in which a relatively small number of active layers is embedded in an effective potential accounting for the effect of the rest of the system. We introduce a feedback of the active layers on the embedding potential that improves on previous approaches and essentially eliminates the effects of the finiteness of the active slab allowing for cheap computation of very large systems. We extend the method to the superconducting state, and we benchmark the approach by means of simple paradigmatic examples showing some examples on how an interface affects the superconducting properties. As examples, we show that superconductivity can penetrate from an intermediate coupling superconductor into a weaker coupling one for around ten layers, and that the first two layers of a system with repulsive interaction can turn superconducting by proximity effects even when charge redistribution is inhibited.
Kurita, Yasunari; Kobayashi, Michikazu; Ishihara, Hideki; Tsubota, Makoto
2010-11-15
We formulate particle-creation phenomena in Bose-Einstein condensates in terms of conserving gapless mean-field theory for weakly interacting Bose gases. The particle-creation spectrum is calculated by rediagonalizing the Bogoliubov-de Gennes (BdG) Hamiltonian in mean-field theory. The conservation implies that quasiparticle creation is accompanied by quantum back reaction to the condensates. Particle creation in this mean-field theory is found to be equivalent to that in quantum field theory (QFT) in curved space-time. An expression is obtained for an effective metric affected by quantum back reaction. The formula for the particle-creation spectrum obtained in terms of QFT in curved space-time is shown to be the same as that given by rediagonalizing the BdG Hamiltonian.
Singh, BirBikram; Patra, S. K.; Gupta, Raj K.
2010-07-15
We have studied the (ground-state) cluster radioactive decays within the preformed cluster model (PCM) of Gupta and collaborators [R. K. Gupta, in Proceedings of the 5th International Conference on Nuclear Reaction Mechanisms, Varenna, edited by E. Gadioli (Ricerca Scientifica ed Educazione Permanente, Milano, 1988), p. 416; S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989)]. The relativistic mean-field (RMF) theory is used to obtain the nuclear matter densities for the double folding procedure used to construct the cluster-daughter potential with M3Y nucleon-nucleon interaction including exchange effects. Following the PCM approach, we have deduced empirically the preformation probability P{sub 0}{sup emp} from the experimental data on both the alpha- and exotic cluster-decays, specifically of parents in the trans-lead region having doubly magic {sup 208}Pb or its neighboring nuclei as daughters. Interestingly, the RMF-densities-based nuclear potential supports the concept of preformation for both the alpha and heavier clusters in radioactive nuclei. P{sub 0}{sup a}lpha{sup (emp)} for alpha decays is almost constant (approx10{sup -2}-10{sup -3}) for all the parent nuclei considered here, and P{sub 0}{sup c(emp)} for cluster decays of the same parents decrease with the size of clusters emitted from different parents. The results obtained for P{sub 0}{sup c(emp)} are reasonable and are within two to three orders of magnitude of the well-accepted phenomenological model of Blendowske-Walliser for light clusters.
General model of phospholipid bilayers in fluid phase within the single chain mean field theory
Guo, Yachong; Baulin, Vladimir A.; Pogodin, Sergey
2014-05-07
Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.
Revival of oscillation from mean-field-induced death: Theory and experiment.
Ghosh, Debarati; Banerjee, Tanmoy; Kurths, Jürgen
2015-11-01
The revival of oscillation and maintaining rhythmicity in a network of coupled oscillators offer an open challenge to researchers as the cessation of oscillation often leads to a fatal system degradation and an irrecoverable malfunctioning in many physical, biological, and physiological systems. Recently a general technique of restoration of rhythmicity in diffusively coupled networks of nonlinear oscillators has been proposed in Zou et al. [Nat. Commun. 6, 7709 (2015)], where it is shown that a proper feedback parameter that controls the rate of diffusion can effectively revive oscillation from an oscillation suppressed state. In this paper we show that the mean-field diffusive coupling, which can suppress oscillation even in a network of identical oscillators, can be modified in order to revoke the cessation of oscillation induced by it. Using a rigorous bifurcation analysis we show that, unlike other diffusive coupling schemes, here one has two control parameters, namely the density of the mean-field and the feedback parameter that can be controlled to revive oscillation from a death state. We demonstrate that an appropriate choice of density of the mean field is capable of inducing rhythmicity even in the presence of complete diffusion, which is a unique feature of this mean-field coupling that is not available in other coupling schemes. Finally, we report the experimental observation of revival of oscillation from the mean-field-induced oscillation suppression state that supports our theoretical results. PMID:26651763
Revival of oscillation from mean-field-induced death: Theory and experiment
NASA Astrophysics Data System (ADS)
Ghosh, Debarati; Banerjee, Tanmoy; Kurths, Jürgen
2015-11-01
The revival of oscillation and maintaining rhythmicity in a network of coupled oscillators offer an open challenge to researchers as the cessation of oscillation often leads to a fatal system degradation and an irrecoverable malfunctioning in many physical, biological, and physiological systems. Recently a general technique of restoration of rhythmicity in diffusively coupled networks of nonlinear oscillators has been proposed in Zou et al. [Nat. Commun. 6, 7709 (2015), 10.1038/ncomms8709], where it is shown that a proper feedback parameter that controls the rate of diffusion can effectively revive oscillation from an oscillation suppressed state. In this paper we show that the mean-field diffusive coupling, which can suppress oscillation even in a network of identical oscillators, can be modified in order to revoke the cessation of oscillation induced by it. Using a rigorous bifurcation analysis we show that, unlike other diffusive coupling schemes, here one has two control parameters, namely the density of the mean-field and the feedback parameter that can be controlled to revive oscillation from a death state. We demonstrate that an appropriate choice of density of the mean field is capable of inducing rhythmicity even in the presence of complete diffusion, which is a unique feature of this mean-field coupling that is not available in other coupling schemes. Finally, we report the experimental observation of revival of oscillation from the mean-field-induced oscillation suppression state that supports our theoretical results.
Mean-Field Theory is Exact for the Random-Field Model with Long-Range Interactions
NASA Astrophysics Data System (ADS)
Tsuda, Junichi; Nishimori, Hidetoshi
2014-07-01
We study the classical spin model in random fields with long-range interactions and show the exactness of the mean-field theory under certain mild conditions. This is a generalization of the result of Mori for the non-random and spin-glass cases. To treat random fields, we evoke the self-averaging property of a function of random fields, without recourse to the replica method. The result is that the mean-field theory gives the exact expression of the canonical free energy for systems with power-decaying interactions if the power is smaller than or equal to the spatial dimension.
Scattering from a two-dimensional array of flux tubes: A study of the validity of mean field theory
NASA Astrophysics Data System (ADS)
Kiers, Ken; Weiss, Nathan
1994-02-01
Mean field theory has been extensively used in the study of systems of anyons in two spatial dimensions. In this paper we study the physical grounds for the validity of this approximatoion by considering the quantum mechanical scattering of a charged particle from a two-dimensional array of magnetic flux tubes. The flux tubes are arranged on a regular lattice which is infinitely long in the y direction but which has a (small) finite number of columns in the x direction. Their physical size is assumed to be infinitesimally small. We develop a method for computing the scattering angle as well as the reflection and transmission coefficients to lowest order in the Aharonov-Bohm interaction. The results of our calculation are compared to the scattering of the same particle from a region of constant magnetic field whose magnitude is equal to the mean field of all the flux tubes. For an incident plane wave, the mean field approximation is shown to be valid provided the flux in each tube is much less than a single flux quantum. This is precisely the regime in which mean field theory for anyons is expected to be valid. When the flux per tube becomes of order 1, mean field theory is no longer valid.
Kelly, Aaron; Markland, Thomas E.; Brackbill, Nora
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Costa, R. S.; Duarte, S. B.; Oliveira, J. C. T.; Chiapparini, M.
2010-05-21
We study the nuclear matter properties in the regime of high temperatures using a relativistic mean-field theory. Contrasting with the usual linear Walecka model, we include the sigma-omega meson coupling in order to investigate the role of this interaction in the nucleon effective mass behavior. Some numerical results are presented and discussed.
Phase Transitions in Social Sciences:. Two-Population Mean Field Theory
NASA Astrophysics Data System (ADS)
Contucci, Pierluigi; Gallo, Ignacio; Menconi, Giulia
A new mean field statistical mechanics model of two interacting groups of spins is introduced, and the phase transition is studied in terms of their relative size. A jump of the average magnetization is found for large values of the mutual interaction when the relative percentage of the two populations crosses a critical threshold. It is shown how the critical percentage depends on internal interactions and on the initial magnetizations. The model is interpreted as a prototype of resident-immigrant cultural interaction, and conclusions from the social sciences perspectives are drawn.
Quantum de Finetti theorems and mean-field theory from quantum phase space representations
NASA Astrophysics Data System (ADS)
Trimborn, F.; Werner, R. F.; Witthaut, D.
2016-04-01
We introduce the number-conserving quantum phase space description as a versatile tool to address fundamental aspects of quantum many-body systems. Using phase space methods we prove two alternative versions of the quantum de Finetti theorem for finite-dimensional bosonic quantum systems, which states that a reduced density matrix of a many-body quantum state can be approximated by a convex combination of product states where the error is proportional to the inverse particle number. This theorem provides a formal justification for the mean-field description of many-body quantum systems, as it shows that quantum correlations can be neglected for the calculation of few-body observables when the particle number is large. Furthermore we discuss methods to derive the exact evolution equations for quantum phase space distribution functions as well as upper and lower bounds for the ground state energy. As an important example, we consider the Bose-Hubbard model and show that the mean-field dynamics is given by a classical phase space flow equivalent to the discrete Gross-Pitaevskii equation.
NASA Astrophysics Data System (ADS)
Dickman, Ronald
1989-07-01
A recently devised method for determining the pressure in lattice simulations is applied to two-dimensional, athermal chains of 40, 80, and 160 segments, over the full range of fluid densities, from dilute solution to dense melt. The results are used to test Bawendi and Freed's correction to Flory-Huggins mean-field theory, and the des Cloizeaux scaling law. The scaling of the mean-square end-to-end distance with density is also discussed.
Afanasjev, A. V.; Abusara, H.
2008-07-15
The systematic investigation of hyperdeformation (HD) at high spin in the Z=40-58 region of the nuclear chart was performed in the framework of the cranked relativistic mean-field theory. The properties of the moments of inertia of the HD bands, the role of the single-particle and necking degrees of freedom at HD, the spins at which the HD bands become yrast, the possibility to observe discrete HD bands, and so on are discussed in detail.
MEAN-FIELD THEORY AND COMPUTATION OF ELECTROSTATICS WITH IONIC CONCENTRATION DEPENDENT DIELECTRICS *
LI, BO; WEN, JIAYI; ZHOU, SHENGGAO
2015-01-01
We construct a mean-field variational model to study how the dependence of dielectric coefficient (i.e., relative permittivity) on local ionic concentrations affects the electrostatic interaction in an ionic solution near a charged surface. The electrostatic free-energy functional of ionic concentrations, which is the key object in our model, consists mainly of the electrostatic potential energy and the ionic ideal-gas entropy. The electrostatic potential is determined by Poisson’s equation in which the dielectric coefficient depends on the sum of concentrations of individual ionic species. This dependence is assumed to be qualitatively the same as that on the salt concentration for which experimental data are available and analytical forms can be obtained by the data fitting. We derive the first and second variations of the free-energy functional, obtain the generalized Boltzmann distributions, and show that the free-energy functional is in general nonconvex. To validate our mathematical analysis, we numerically minimize our electrostatic free-energy functional for a radially symmetric charged system. Our extensive computations reveal several features that are significantly different from a system modeled with a dielectric coefficient independent of ionic concentration. These include the non-monotonicity of ionic concentrations, the ionic depletion near a charged surface that has been previously predicted by a one-dimensional model, and the enhancement of such depletion due to the increase of surface charges or bulk ionic concentrations. PMID:26877718
LETTER TO THE EDITOR: Mean-field dynamical density functional theory
NASA Astrophysics Data System (ADS)
Dzubiella, J.; Likos, C. N.
2003-02-01
We examine the out-of-equilibrium dynamical evolution of density profiles of ultrasoft particles under time-varying external confining potentials in three spatial dimensions. The theoretical formalism employed is the dynamical density functional theory (DDFT) of Marini, Bettolo, Marconi and Tarazona (1999 J. Chem. Phys. 110 8032), supplied by an equilibrium excess free energy functional that is essentially exact. We complement our theoretical analysis by carrying out extensive Brownian dynamics simulations. We find excellent agreement between theory and simulations for the whole time evolution of density profiles, demonstrating thereby the validity of the DDFT when an accurate equilibrium free energy functional is employed.
Edison, J R; Monson, P A
2010-01-01
We study the dynamics of evaporation for lattice gas models of fluids in porous materials using a recently developed dynamic mean field theory. The theory yields a description of the dynamics that is consistent with the mean field theory of the thermodynamics at equilibrium. The nucleation processes associated with phase changes in the pore are emergent features of the dynamics. Our focus is on situations where there is partial drying or drying in the system, associated with weakly attractive or repulsive interactions between the fluid and the pore walls. We consider two systems in this work: (i) a two-dimensional slit pore geometry relevant to the study of adsorption/desorption or intrusion/extrusion dynamics for fluids in porous materials and (ii) a three dimensional slit pore modeling a pair of square plates in a bath of liquid as used in recent theoretical studies of dewetting processes between hydrophobic surfaces. We assess the theory by comparison with a higher order approximation to the dynamics that yields the Bethe-Peierls or quasi-chemical approximation at equilibrium. PMID:21043421
NASA Astrophysics Data System (ADS)
Capone, Massimo
2015-03-01
Multiferroic materials, in which ferroelectricity and long-range magnetic ordering coexist, are natural candidates for applications. In this perspective, the most promising compounds are those in which the two phenomena do not simply coexist, but they influence each other through a magnetoelectric coupling. We present different applications of Density Functional Theory combined with Dynamical Mean-Field Theory in which electron-electron correlation effects are crucial in the stabilization of multiferroic behavior and in the magnetoelectric coupling. Within this wide family we can distinguish different cases. In Sr0.5Ba0.5MnO3 the multiferroic behavior is associated with a Mott insulating state in which the Mn half-filled t2g orbitals are responsible of the magnetic properties and the value of the polarization is strongly affected by the magnetic state. LiOsO3 shares the same electronic configuration with half-filled Os t2g orbitals. Despite this configuration enhances the effect of electron-electron interactions, the material remains metallic and represents a peculiar ferroelectric metal. We propose however how to turn this non-magnetic polar metal into a multiferroic through the design of a superlattice, which increases the degree of correlation, leading to Mott localization of the Os orbitals. In completely different systems, such as organic crystals like (TMTTF)2-X, strong correlations can lead to multiferroicity in organic crystals such as (TMTTF)2-X, where charge ordering promotes a polarization which is favored by an antiferromagnetic ordering. We finally discuss how strong correlations can play a major role away from half-filling when the Hund's coupling is sizable in compounds with a nominal valence of, e.g., two electrons in the three t2g orbitals. Such ``Hund's metals'' are correlated despite being far from Mott localization. This physical regime can be a fertile ground to obtain other ferroelectric metals. This work is supported by ERC/FP7 through the
NASA Astrophysics Data System (ADS)
van Roekeghem, Ambroise; Richard, Pierre; Ding, Hong; Biermann, Silke
2016-01-01
Electronic Coulomb correlations lead to characteristic signatures in the spectroscopy of transition metal pnictides and chalcogenides: quasi-particle renormalizations, lifetime effects or incoherent badly metallic behavior above relatively low coherence temperatures are measures of many-body effects due to local Hubbard and Hund's couplings. We review and compare the results of angle-resolved photoemission spectroscopy experiments (ARPES) and of combined density functional/dynamical mean-field theory (DFT+DMFT) calculations. We emphasize the doping-dependence of the quasi-particle mass renormalization and coherence properties.
NASA Astrophysics Data System (ADS)
Freericks, J. K.; Han, Shuyang; Mikelsons, Karlis; Krishnamurthy, H. R.
2016-08-01
We develop a generalized gradient expansion of the inhomogeneous dynamical mean-field theory method for determining properties of ultracold atoms in a trap. This approach goes beyond the well-known local density approximation and at higher temperatures, in the normal phase, it shows why the local density approximation works so well, since the local density and generalized gradient approximations are essentially indistinguishable from each other (and from the exact solution within full inhomogeneous dynamical mean-field theory). But because the generalized gradient expansion only involves nearest-neighbor corrections, it does not work as well at low temperatures, when the systems enter into ordered phases. This is primarily due to the problem that ordered phases often satisfy some global constraints, which determine the spatial ordering pattern, and the local density and generalized gradient approximations are not able to impose those kinds of constraints; they also overestimate the tendency to order. The theory is applied to phase separation of different mass fermionic mixtures represented by the Falicov-Kimball model and to determining the entropy per particle of a fermionic system represented by the Hubbard model. The generalized gradient approximation is a useful diagnostic for the accuracy of the local density approximation—when both methods agree, they are likely accurate, when they disagree, neither is likely to be correct.
Density functional plus dynamical mean-field theory of the spin-crossover molecule Fe(phen)2(NCS)2
NASA Astrophysics Data System (ADS)
Chen, Jia; Millis, Andrew J.; Marianetti, Chris A.
2015-06-01
We study the spin-crossover molecule Fe(phen) 2(NCS) 2 using density functional theory (DFT) plus dynamical mean-field theory, which allows access to observables not attainable with traditional quantum chemical or electronic structure methods. The temperature dependent magnetic susceptibility, electron addition and removal spectra, and total energies are calculated and compared to experiment. We demonstrate that the proper quantitative energy difference between the high-spin and low-spin state, as well as reasonably accurate values of the magnetic susceptibility can be obtained when using reasonable interaction parameters. Comparisons to DFT and DFT+U calculations demonstrate that dynamical correlations are critical to the energetics of the low-spin state. Additionally, we elucidate the differences between DFT+U and spin density functional theory (SDFT) plus U methodologies, demonstrating that DFT+U can recover SDFT+U results for an appropriately chosen on-site exchange interaction.
Hartree–Fock mean-field theory for trapped dirty bosons
NASA Astrophysics Data System (ADS)
Khellil, Tama; Pelster, Axel
2016-06-01
Here we work out in detail a non-perturbative approach to the dirty boson problem, which relies on the Hartree–Fock theory and the replica method. For a weakly interacting Bose gas within a trapped confinement and a delta-correlated disorder potential at finite temperature, we determine the underlying free energy. From it we determine via extremization self-consistency equations for the three components of the particle density, namely the condensate density, the thermal density, and the density of fragmented local Bose–Einstein condensates within the respective minima of the random potential landscape. Solving these self-consistency equations in one and three dimensions in two other publications has revealed how these three densities change for increasing disorder strength.
NASA Astrophysics Data System (ADS)
Krawczyk, Jaroslaw; Croce, Salvatore; Chakrabarti, Buddhapriya; Tasche, Jos
The surface segregation in polymer mixtures remains a challenging problem for both academic exploration as well as industrial applications. Despite its ubiquity and several theoretical attempts a good agreement between computed and experimentally observed profiles has not yet been achieved. A simple theoretical model proposed in this context by Schmidt and Binder combines Flory-Huggins free energy of mixing with the square gradient theory of wetting of a wall by fluid. While the theory gives us a qualitative understanding of the surface induced segregation and the surface enrichment it lacks the quantitative comparison with the experiment. The statistical associating fluid theory (SAFT) allows us to calculate accurate free energy for a real polymeric materials. In an earlier work we had shown that increasing the bulk modulus of a polymer matrix through which small molecules migrate to the free surface causes reduction in the surface migrant fraction using Schmidt-Binder and self-consistent field theories. In this work we validate this idea by combining mean field theories and SAFT to identify parameter ranges where such an effect should be observable. Department of Molecular Physics, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
NASA Technical Reports Server (NTRS)
Kulsrud, Russell M.; Anderson, Stephen W.
1992-01-01
The fluctuation spectrum that must arise in a mean field dynamo generation of galactic fields if the initial field is weak is considered. A kinetic equation for its evolution is derived and solved. The spectrum evolves by transfer of energy from one magnetic mode to another by interaction with turbulent velocity modes. This kinetic equation is valid in the limit that the rate of evolution of the magnetic modes is slower than the reciprocal decorrelation time of the turbulent modes. This turns out to be the case by a factor greater than 3. Most of the fluctuation energy concentrates on small scales, shorter than the hydrodynamic turbulent scales. The fluctuation energy builds up to equipartition with the turbulent energy in times that are short compared to the e-folding time of the mean field. The turbulence becomes strongly modified before the dynamo amplification starts. Thus, the kinematic assumption of the mean dynamo theory is invalid. Thus, the galactic field must have a primordial origin, although it may subsequently be modified by dynamo action.
Harton,S.; Koga, T.; Stevie, F.; Araki, T.; Ade, H.
2005-01-01
Poly(cyclohexyl methacrylate) (PCHMA) and polystyrene (PS) are miscible with each other, but each is highly immiscible with PMMA. Identifiable by the asymmetries in the binary mean-field interaction parameters {chi}, PS preferentially segregates to the PCHMA/PMMA interface. Secondary ion mass spectrometry was used to provide real-space depth profiles of deuterated PS (dPS) in a miscible blend with PCHMA. The initial dPS concentration was varied from 5 to 20% (v/v), and the blend film was annealed at 150 C on a film of PMMA for 42 h. X-ray reflectometry was used to determine the interfacial width between PCHMA and PMMA at 150 C. Using self-consistent mean-field theory, good agreement was found between the experimental and theoretical interfacial excess Z* of dPS at each concentration. Because of their similar glass transition temperatures ({approx}100 C for PS and PCHMA) and the ability of PS and PCHMA to be controllably synthesized with low polydispersities, we anticipate this blend to be a model system for future investigations of such phenomena as diffusion in miscible blends and diffusion near surfaces and interfaces.
NASA Astrophysics Data System (ADS)
Lucarini, V.; Speranza, A.; Vitolo, R.
2009-04-01
A quasi-geostrophic intermediate complexity model of the mid-latitude atmospheric circulation is considered, featuring simplified baroclinic conversion and barotropic convergence processes. The model undergoes baroclinic forcing towards a given latitudinal temperature profile controlled by the forced equator-to-pole temperature difference Te. When Te increases, a transition takes place from a stationary regime-Hadley equilibrium-to a periodic regime, and eventually to a chaotic regime where evolution takes place on a strange attractor. The attractor dimension, metric entropy, and bounding box volume in phase space have a smooth dependence on Te which results in power-law scaling properties. Power-law scalings are detected also for the statistical properties of global physical observables — the total energy of the system and the averaged zonal wind. The scaling laws, which constitute the main novel result of the present work, can be thought to result from the presence of a statistical process of baroclinic adjustment, which tends to decrease the equator-to-pole temperature difference and determines the properties of the attractor of the system. The self-similarity could be of great help in setting up a theory for the overall statistical properties of the general circulation of the atmosphere and in guiding-on a heuristic basis-both data analysis and realistic simulations, going beyond the unsatisfactory mean field theories and /brute force/ approaches. A leading example for this would be the possibility of estimating the sensitivity of the output of the system with respect to changes in the parameters. Ref: Valerio Lucarini, Antonio Speranza, Renato Vitolo, Parametric smoothness and self-scaling of the statistical properties of a minimal climate model: What beyond the mean field theories?, Physica D, 234 (2007), 105-123
NASA Astrophysics Data System (ADS)
Dang, Hung T.; Ai, Xinyuan; Millis, Andrew J.; Marianetti, Chris A.
2014-09-01
The combination of density functional theory and single-site dynamical mean-field theory, using both Hartree and full continuous-time quantum Monte Carlo impurity solvers, is used to study the metal-insulator phase diagram of perovskite transition-metal oxides of the form ABO3 with a rare-earth ion A =Sr, La, Y and transition metal B =Ti, V, Cr. The correlated subspace is constructed from atomiclike d orbitals defined using maximally localized Wannier functions derived from the full p-d manifold; for comparison, results obtained using a projector method are also given. Paramagnetic DFT + DMFT computations using full charge self-consistency along with the standard "fully localized limit" (FLL) double counting are shown to incorrectly predict that LaTiO3, YTiO3, LaVO3, and SrMnO3 are metals. A more general examination of the dependence of physical properties on the mean p-d energy splitting, the occupancy of the correlated d states, the double-counting correction, and the lattice structure demonstrates the importance of charge-transfer physics even in the early transition-metal oxides and elucidates the factors underlying the failure of the standard approximations. If the double counting is chosen to produce a p-d splitting consistent with experimental spectra, single-site dynamical mean-field theory provides a reasonable account of the materials properties. The relation of the results to those obtained from "d-only" models in which the correlation problem is based on the frontier orbital p-d antibonding bands is determined. It is found that if an effective interaction U is properly chosen the d-only model provides a good account of the physics of the d1 and d2 materials.
Rost, D; Assaad, F; Blümer, N
2013-05-01
We present an algorithm for solving the self-consistency equations of the dynamical mean-field theory (DMFT) with high precision and efficiency at low temperatures. In each DMFT iteration, the impurity problem is mapped to an auxiliary Hamiltonian, for which the Green function is computed by combining determinantal quantum Monte Carlo (BSS-QMC) calculations with a multigrid extrapolation procedure. The method is numerically exact, i.e., yields results which are free of significant Trotter errors, but retains the BSS advantage, compared to direct QMC impurity solvers, of linear (instead of cubic) scaling with the inverse temperature. The new algorithm is applied to the half-filled Hubbard model close to the Mott transition; detailed comparisons with exact diagonalization, Hirsch-Fye QMC, and continuous-time QMC are provided. PMID:23767655
NASA Astrophysics Data System (ADS)
Li, Peng; Su, Haibin; Dong, Hui-Ning; Shen, Shun-Qing
2009-08-01
We study a triangular frustrated antiferromagnetic Heisenberg model with nearest-neighbor interactions J1 and third-nearest-neighbor interactions J3 by means of Schwinger-boson mean-field theory. By setting an antiferromagnetic J3 and varying J1 from positive to negative values, we disclose the low-temperature features of its interesting incommensurate phase. The gapless dispersion of quasiparticles leads to the intrinsic T2 law of specific heat. The magnetic susceptibility is linear in temperature. The local magnetization is significantly reduced by quantum fluctuations. We address possible relevance of these results to the low-temperature properties of NiGa2S4. From a careful analysis of the incommensurate spin wavevector, the interaction parameters are estimated as J1≈-3.8755 K and J3≈14.0628 K, in order to account for the experimental data.
NASA Astrophysics Data System (ADS)
Kim, Minjae; Choi, Hong Chul; Shim, Ji Hoon; Min, B. I.
2014-03-01
We have studied correlated electronic structures and the phase diagram of electron-doped hydrocarbon molecular solids, based on the dynamical mean-field theory. We have determined the phase diagram of hydrocarbon molecular solids as functions of doping and energy parameters including the Coulomb correlation, the Hund coupling, and the molecular-orbital (MO) energy level splitting. We have found that the hydrocarbon superconductors (electron-doped picene and coronene) belong to the multi-band Fermi liquid state, while non-superconducting electron-doped pentacene belongs to the single-band state in the proximity of the metal-insulator transition. The size of the MO energy level splitting plays an important role in deriving the superconductivity of electron-doped hydrocarbon solids. The multi-band nature of hydrocarbon solids from the small MO energy level splitting boosts the superconductivity through the enhanced density of states at the Fermi level.
NASA Astrophysics Data System (ADS)
Sun, T. T.; Niu, Z. M.; Zhang, S. Q.
2016-08-01
The relativistic mean field theory formulated with Green’s function method (RMF-GF) is applied to investigate single-proton resonant states and isospin dependence. The calculated energies and widths for the single-proton resonant states in {}120{{Sn}} are in good agreement with previous investigations. The single-proton resonant states of the Sn isotopes and the N = 82 isotones are systematically studied and it is shown that the calculated energies and widths decrease monotonically with the increase of neutron number while increase monotonically with the increase of proton number. To further examine the evolutions of the single-proton resonant states, their dependence on the depth, radius and diffuseness of nuclear potential is investigated with the help of an analytic Woods-Saxon potential, and it is found that the increase of radius plays the most important role in the cross phenomenon appearing in the single-proton resonant states of the Sn isotopes.
NASA Astrophysics Data System (ADS)
Koehl, Patrice; Orland, Henri; Delarue, Marc
2011-08-01
We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.
NASA Astrophysics Data System (ADS)
Amadon, B.; Lechermann, F.; Georges, A.; Jollet, F.; Wehling, T. O.; Lichtenstein, A. I.
2008-05-01
The description of realistic strongly correlated systems has recently advanced through the combination of density functional theory in the local density approximation (LDA) and dynamical mean field theory (DMFT). This LDA+DMFT method is able to treat both strongly correlated insulators and metals. Several interfaces between LDA and DMFT have been used, such as ( Nth order) linear muffin-tin orbitals or maximally localized Wannier functions. Such schemes are, however, either complex in use or additional simplifications are often performed (i.e., the atomic sphere approximation). We present an alternative implementation of LDA+DMFT , which keeps the precision of the Wannier implementation, but which is lighter. It relies on the projection of localized orbitals onto a restricted set of Kohn-Sham states to define the correlated subspace. The method is implemented within the projector augmented wave and within the mixed-basis pseudopotential frameworks. This opens the way to electronic structure calculations within LDA+DMFT for more complex structures with the precision of an all-electron method. We present an application to two correlated systems, namely, SrVO3 and β -NiS (a charge-transfer material), including ligand states in the basis set. The results are compared to calculations done with maximally localized Wannier functions, and the physical features appearing in the orbitally resolved spectral functions are discussed.
NASA Astrophysics Data System (ADS)
Grzetic, Douglas; Wickham, Robert
We simulate chain diffusion in ordered phases of a diblock copolymer melt, using our recently-developed dynamical self-consistent mean-field theory [J. Chem. Phys. 140, 244907 (2014)]. This theory enables us to study large length and time scales in these dense systems, while remaining connected, in a self-consistent manner, to the microscopic physics of Brownian chains whose beads interact via a species-dependent modified Lennard-Jones potential. In the LAM and HEX phases, chain diffusion perpendicular to the microdomain interface is exponentially suppressed with increasing segregation, while parallel diffusion is unaffected. In the BCC phase, diffusion is isotropic and is gradually suppressed with increasing segregation. Chain diffusion is also isotropic in the gyroid phase, but does not vanish with increasing segregation. Instead, the diffusion constant asymptotes to a value consistent with chain diffusion being restricted to the interface of the three-dimensional gyroid network of struts, characterized by a network tortuosity value of 1 . 72 . Finally, we measure the out-of-equilibrium evolution of the anisotropy in the chain diffusion as metastable LAM transforms to stable HEX over long times.
NASA Astrophysics Data System (ADS)
Carrier, Pierre; Tang, Jok M.; Saad, Yousef; Freericks, James K.
Inhomogeneous dynamical mean-field theory has been employed to solve many interesting strongly interacting problems from transport in multilayered devices to the properties of ultracold atoms in a trap. The main computational step, especially for large systems, is the problem of calculating the inverse of a large sparse matrix to solve Dyson's equation and determine the local Green's function at each lattice site from the corresponding local self-energy. We present a new e_cient algorithm, the Lanczos-based low-rank algorithm, for the calculation of the inverse of a large sparse matrix which yields this local (imaginary time) Green's function. The Lanczos-based low-rank algorithm is based on a domain decomposition viewpoint, but avoids explicit calculation of Schur complements and relies instead on low-rank matrix approximations derived from the Lanczos algorithm, for solving the Dyson equation. We report at least a 25-fold improvement of performance compared to explicit decomposition (such as sparse LU) of the matrix inverse. We also report that scaling relative to matrix sizes, of the low-rank correction method on the one hand and domain decomposition methods on the other, are comparable.
McMahan, A K
2005-03-30
This paper reports calculations for compressed Ce (4f{sup 1}), Pr (4f{sup 2}), and Nd (4f{sup 3}) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure. These materials are seen to be strongly localized at ambient pressure and for compressions up through the experimentally observed fcc phases ({gamma} phase for Ce), in the sense of having fully formed Hund's rules moments and little 4f spectral weight at the Fermi level. Subsequent compression for all three lanthanides brings about significant deviation of the moments from their Hund's rules values, a growing Kondo resonance at the fermi level, an associated softening in the total energy, and quenching of the spin orbit since the Kondo resonance is of mixed spin-orbit character while the lower Hubbard band is predominantly j = 5/2. while the most dramatic changes for Ce occur within the two-phase region of the {gamma}-{alpha} volume collapse transition, as found in earlier work, those for Pr and Nd occur within the volume range of the experimentally observed distorted fcc (dfcc) phase, which is therefore seen here as transitional and not part of the localized trivalent lanthanide sequence. The experimentally observed collapse to the {alpha}-U structure in Pr occurs only on further compression, and no such collapse is found in Nd. These lanthanides start closer to the localized limit for increasing atomic number, and so the theoretical signatures noted above are also offset to smaller volume as well, which is possibly related to the measured systematics of the size of the volume collapse being 15%, 9%, and none for Ce, Pr, and Nd, respectively.
Pressure-driven metal-insulator transition in BiFeO3 from dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Shorikov, A. O.; Lukoyanov, A. V.; Anisimov, V. I.; Savrasov, S. Y.
2015-07-01
A metal-insulator transition (MIT) in BiFeO3 under pressure was investigated by a method combining generalized gradient corrected local density approximation with dynamical mean-field theory (GGA+DMFT). Our paramagnetic calculations are found to be in agreement with the experimental phase diagram: Magnetic and spectral properties of BiFeO3 at ambient and high pressures were calculated for three experimental crystal structures R 3 c , P b n m , and P m 3 ¯m . At ambient pressure in the R 3 c phase, an insulating gap of 1.2 eV was obtained in good agreement with its experimental value. Both R 3 c and P b n m phases have a metal-insulator transition that occurs simultaneously with a high-spin (HS) to low-spin (LS) transition. The critical pressure for the P b n m phase is 25-33 GPa, which agrees well with the experimental observations. The high-pressure and -temperature P m 3 ¯m phase exhibits a metallic behavior observed experimentally as well as in our calculations in the whole range of considered pressures and undergoes the LS state at 33 GPa, where a P b n m to P m 3 ¯m transition is experimentally observed. The antiferromagnetic GGA+DMFT calculations carried out for the P b n m structure result in simultaneous MIT and HS-LS transitions at a critical pressure of 43 GPa in agreement with the experimental data.
NASA Astrophysics Data System (ADS)
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
NASA Astrophysics Data System (ADS)
Hattori, Kazumasa
2010-11-01
We investigate a two-orbital Anderson lattice model with Ising orbital intersite exchange interactions on the basis of a dynamical mean field theory combined with the static mean field approximation of intersite orbital interactions. Focusing on Ce-based heavy-fermion compounds, we examine the orbital crossover between two orbital states, when the total f-electron number per site nf is ˜1. We show that a “meta-orbital” transition, at which the occupancy of two orbitals changes steeply, occurs when the hybridization between the ground-state f-electron orbital and conduction electrons is smaller than that between the excited f-electron orbital and conduction electrons at low pressures. Near the meta-orbital critical end point, orbital fluctuations are enhanced and couple with charge fluctuations. A critical theory of meta-orbital fluctuations is also developed by applying the self-consistent renormalization theory of itinerant electron magnetism to orbital fluctuations. The critical end point, first-order transition, and crossover are described within Gaussian approximations of orbital fluctuations. We discuss the relevance of our results to CeAl2, CeCu2Si2, CeCu2Ge2, and related compounds, which all have low-lying crystalline-electric-field excited states.
Moreno-Torres, M.; Anguiano, M.; Grasso, M.; Van Giai, N.; Liang, H.; De Donno, V.
2010-06-15
Tensor effects in shell evolution are studied within the mean-field approach. Particular attention is paid to the analysis of the magic gaps in different regions of the nuclear chart, namely, Z,N=8, 20, and 28. Hartree-Fock calculations with Skyrme and Gogny interactions are performed where the tensor term has a zero and finite range, respectively. Results obtained with and without the tensor component are compared between them and with the experimental data, when available. To complete this analysis, the tensor effect is also investigated within the relativistic Hartree-Fock model, where the exchange of rho mesons and pions is taken into account. It turns out that the tensor effect in the evolution of the magic gaps can be more easily identified in the cases Z,N=8 and 20, whereas the interpretation of the effect is more complicated for Z or N= 28. Consequently, we indicate the regions defined by the magic numbers 8 and 20 as suitable for fitting the tensor parameters in a mean-field approach: We suggest to include explicitly the data associated to these gap evolutions in the fitting procedures. In general, with the parametrizations used in this work (which have not been fitted on these data), the mean-field results obtained with the tensor contribution do not reproduce the experimental trend, that is, the reduction of the gaps at 8 and 20 that is observed when going toward the drip lines. Since some of the considered nuclei have N=Z, a discussion will be devoted to the interpretation of the experimental data concerning these nuclei and to the Wigner-energy correction.
NASA Astrophysics Data System (ADS)
Richards, Howard L.; Einstein, T. L.
2000-03-01
The so-called generalized Wigner distribution (GWD) has been shown to provide an excellent description of terrace width distributions (TWDs) on vicinal surfaces for which there are repulsive interactions between steps that are proportional to the inverse square of the step separation.(T. L. Einstein and O. Pierre-Louis, Surface Sci. 424), L299 (1999). (S. D. Cohen, H. L. Richards, and T. L. Einstein, preprint.) Until recently, however, there was no plausible physical explanation for the excellent agreement between the GWD and the TWDs observed in Monte Carlo simulations^3 or derived from a few integrable models.^2 Here we show that the GWD can be derived from a mean-field approximation similar in spirit to the Gruber-Mullins approximation.(E. E. Gruber and W. W. Mullins, J. Phys. Chem. Solids 28), 875 (1967) This mean-field treatment can be generalized to other forms of step-step repulsions; the resulting predictions are in good agreement with Monte Carlo simulations. Finally, the process can be inverted to allow nontrivial step-step interactions to be extracted from experimental TWDs.
NASA Astrophysics Data System (ADS)
Ortiz, Gerardo; Cobanera, Emilio
2016-09-01
We investigate Majorana modes of number-conserving fermionic superfluids from both basic physics principles, and concrete models perspectives. After reviewing a criterion for establishing topological superfluidity in interacting systems, based on many-body fermionic parity switches, we reveal the emergence of zero-energy modes anticommuting with fermionic parity. Those many-body Majorana modes are constructed as coherent superpositions of states with different number of fermions. While realization of Majorana modes beyond mean field is plausible, we show that the challenge to quantum-control them is compounded by particle-conservation, and more realistic protocols will have to balance engineering needs with astringent constraints coming from superselection rules. Majorana modes in number-conserving systems are the result of a peculiar interplay between quantum statistics, fermionic parity, and an unusual form of spontaneous symmetry breaking. We test these ideas on the Richardson-Gaudin-Kitaev chain, a number-conserving model solvable by way of the algebraic Bethe ansatz, and equivalent in mean field to a long-range Kitaev chain.
Mean-field theory of baryonic matter for QCD in the large Nc and heavy quark mass limits
NASA Astrophysics Data System (ADS)
Adhikari, Prabal; Cohen, Thomas D.
2013-11-01
We discuss theoretical issues pertaining to baryonic matter in the combined heavy-quark and large Nc limits of QCD. Witten's classic argument that baryons and interacting systems of baryons can be described in a mean-field approximation with each of the quarks moving in an average potential due to the remaining quarks is heuristic. It is important to justify this heuristic description for the case of baryonic matter since systems of interacting baryons are intrinsically more complicated than single baryons due to the possibility of hidden color states—states in which the subsystems making up the entire baryon crystal are not color-singlet nucleons but rather colorful states coupled together to make a color-singlet state. In this work, we provide a formal justification of this heuristic prescription. In order to do this, we start by taking the heavy quark limit, thus effectively reducing the problem to a many-body quantum mechanical system. This problem can be formulated in terms of integrals over coherent states, which for this problem are simple Slater determinants. We show that for the many-body problem, the support region for these integrals becomes narrow at large Nc, yielding an energy which is well approximated by a single coherent state—that is a mean-field description. Corrections to the energy are of relative order 1/Nc. While hidden color states are present in the exact state of the heavy quark system, they only influence the interaction energy below leading order in 1/Nc.
Edison, John R.; Monson, Peter A.
2014-07-14
Recently we have developed a dynamic mean field theory (DMFT) for lattice gas models of fluids in porous materials [P. A. Monson, J. Chem. Phys. 128(8), 084701 (2008)]. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable states for fluids in pores and is especially useful for studying system exhibiting adsorption/desorption hysteresis. In this paper we discuss the extension of the theory to higher order by means of the path probability method (PPM) of Kikuchi and co-workers. We show that this leads to a treatment of the dynamics that is consistent with thermodynamics coming from the Bethe-Peierls or Quasi-Chemical approximation for the equilibrium or metastable equilibrium states of the lattice model. We compare the results from the PPM with those from DMFT and from dynamic Monte Carlo simulations. We find that the predictions from PPM are qualitatively similar to those from DMFT but give somewhat improved quantitative accuracy, in part due to the superior treatment of the underlying thermodynamics. This comes at the cost of greater computational expense associated with the larger number of equations that must be solved.
NASA Astrophysics Data System (ADS)
Wang, Fa
2010-07-01
Motivated by the recent numerical evidence [Z. Meng, T. Lang, S. Wessel, F. Assaad, and A. Muramatsu, Nature (London) 464, 847 (2010)10.1038/nature08942] of a short-range resonating valence bond state in the honeycomb lattice Hubbard model, we consider Schwinger boson mean field theories of possible spin liquid states on honeycomb lattice. From general stability considerations the possible spin liquids will have gapped spinons coupled to Z2 gauge field. We apply the projective symmetry group method to classify possible Z2 spin liquid states within this formalism on honeycomb lattice. It is found that there are only two relevant Z2 states, differed by the value of gauge flux, zero or π , in the elementary hexagon. The zero-flux state is a promising candidate for the observed spin liquid and continuous phase transition into commensurate Néel order. We also derive the critical field theory for this transition, which is the well-studied O(4) invariant theory [A. V. Chubukov, T. Senthil, and S. Sachdev, Phys. Rev. Lett. 72, 2089 (1994)10.1103/PhysRevLett.72.2089; A. V. Chubukov, S. Sachdev, and T. Senthil, Nucl. Phys. B 426, 601 (1994)10.1016/0550-3213(94)90023-X; S. V. Isakov, T. Senthil, and Y. B. Kim, Phys. Rev. B 72, 174417 (2005)10.1103/PhysRevB.72.174417], and has an irrelevant coupling between Higgs and boson fields with cubic power of spatial derivatives as required by lattice symmetry. This is in sharp contrast to the conventional theory [S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)10.1142/S0217979291000158], where such transition generically leads to incommensurate magnetic order. In this scenario the Z2 spin liquid could be close to a tricritical point. Soft boson modes will exist at seven different wave vectors. This will show up as low-frequency dynamical spin susceptibility peaks not only at the Γ point (the Néel order wave vector) but also at Brillouin-zone-edge center M points and twelve other points. Some simple properties of the
Speck, Thomas; Menzel, Andreas M.; Bialké, Julian; Löwen, Hartmut
2015-06-14
Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.
NASA Astrophysics Data System (ADS)
Ovidiu Vlad, Marcel; Schönfisch, Birgitt
1996-08-01
A mean-field approach for epidemic processes with high migration is suggested by analogy with non-equilibrium statistical mechanics. For large systems a limit of the thermodynamic type is introduced for which both the total size of the system and the total number of individuals tend to infinity but the population density remains constant. In the thermodynamic limit the infection rate is proportional to the product of the proportion of individuals susceptible to infection and the average probability of infection. The limit form of the average probability of infection is insensitive to the detailed behaviour of the fluctuations of the number of infectious individuals and may belong to two universality classes: (1) if the fluctuation of the number of infectives is non-intermittent it increases with the increase of the partial density of infectives and approaches exponentially the asymptotic value one for large densities; (2) for intermittent fluctuations obeying a power-law scaling the average probability of infection also displays a saturation effect for large densities of infectives but the asymptotic value one is approached according to a power law rather than exponentially. For low densities of infectives both expressions for the average probability of infection are linear functions of the proportion of infectives and the infection rate is given by the mass-action law.
NASA Astrophysics Data System (ADS)
Ayral, Thomas; Biermann, Silke; Werner, Philipp
2013-03-01
We describe a recent implementation of the combined GW and dynamical mean field method (GW+DMFT) for the two-dimensional Hubbard model with onsite and nearest-neighbor repulsion. We clarify the relation of the GW+DMFT scheme to alternative approaches in the literature, and discuss the corresponding approximations to the free-energy functional of the model. Furthermore, we describe a numerically exact technique for the solution of the GW+DMFT equations, namely, the hybridization expansion continuous-time algorithm for impurity models with retarded interactions. We compute the low-temperature phase diagram of the half-filled extended Hubbard model, addressing the metal-insulator transition at small intersite interactions and the transition to a charge-ordered state for stronger intersite repulsions. GW+DMFT introduces a nontrivial momentum dependence into the many-body self-energy and polarization. We find that the charge fluctuations included in the present approach have a larger impact on the latter than on the former. Finally, within the GW+DMFT framework, as in extended DMFT, the intersite repulsion translates into a frequency dependence of the local effective interaction. We analyze this dependence and show how it affects the local spectral function.
Liang Haozhao; Zhao Pengwei; Li Lulu; Meng Jie
2011-01-15
Relativistic mean-field (RMF) theory is applied to investigate the properties of the radioactive neutron-rich doubly magic nucleus {sup 132}Sn and the corresponding isotopes and isotones. The two-neutron and two-proton separation energies are well reproduced by the RMF theory. In particular, the RMF results agree with the experimental single-particle spectrum in {sup 132}Sn as well as the Nilsson spin-orbit parameter C and orbit-orbit parameter D thus extracted, but remarkably differ from the traditional Nilsson parameters. Furthermore, the present results provide a guideline for the isospin dependence of the Nilsson parameters.
NASA Astrophysics Data System (ADS)
Verret, Simon; Roy, Jyotirmoy; Sénéchal, David; Tremblay, A.-M. S.
Much work has been done to find how the pseudogap is related to charge density waves in cuprates. In scanning tunneling microscopy (STM) measurements, the superconducting gap and pseudogap of cuprates are sometimes accompanied by a small sub-gap structure at very low energy. This was documented early in vortex cores studies, and has now been reported at zero field for YBCO.(1) Here, we show that this can be caused by density waves, first through a standard mean-field approach, and then with Cellular Dynamical Mean-Field Theory for the Hubbard model using an exact diagonalization solver. We comment on the implication of these results for the relation between pseudogap and charge order. (1) Jens Bruér et al. arXiv:1507.06775 Supported by NSERC, CIFAR and the Tier I Canada Research Chair Program.
Burrola-Gándara, L. A. Santillan-Rodriguez, C. R.; Rivera-Gomez, F. J.; Saenz-Hernandez, R. J.; Botello-Zubiate, M. E.; Matutes-Aquino, J. A.
2015-05-07
Magnetocaloric materials with second order phase transition near the Curie temperature can be described by critical phenomena theory. In this theory, scaling, universality, and renormalization are key concepts from which several phase transition order criteria are derived. In this work, the rescaled universal curve, Banerjee and mean field theory criteria were used to make a comparison for several magnetocaloric materials including pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, MnFeP{sub 0.46}As{sub 0.54}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3}. Pure Gd, SmCo{sub 1.8}Fe{sub 0.2}, and La{sub 0.7}Ca{sub 0.15}Sr{sub 0.15}MnO{sub 3} present a collapse of the rescaled magnetic entropy change curves into a universal curve, which indicates a second order phase transition; applying Banerjee criterion to H/σ vs σ{sup 2} Arrot plots and the mean field theory relation |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3} for the same materials also determines a second order phase transition. However, in the MnFeP{sub 0.46}As{sub 0.54} sample, the Banerjee criterion applied to the H/σ vs σ{sup 2} Arrot plot indicates a first order magnetic phase transition, while the mean field theory prediction for a second order phase transition, |ΔS{sub M}| ∝ (μ{sub 0}H/T{sub c}){sup 2/3}, describes a second order behavior. Also, a mixture of first and second order behavior was indicated by the rescaled universal curve criterion. The diverse results obtained for each criterion in MnFeP{sub 0.46}As{sub 0.54} are apparently related to the magnetoelastic effect and to the simultaneous presence of weak and strong magnetism in Fe (3f) and Mn (3g) alternate atomic layers, respectively. The simultaneous application of the universal curve, the Banerjee and the mean field theory criteria has allowed a better understanding about the nature of the order of the phase transitions in different magnetocaloric materials.
NASA Astrophysics Data System (ADS)
Charlebois, M.; Sénéchal, D.; Gagnon, A.-M.; Tremblay, A.-M. S.
2015-01-01
Defect-induced magnetic moments are at the center of the research effort on spintronic applications of graphene. Here, we study the problem of a nonmagnetic impurity in graphene with a new theoretical method, inhomogeneous cluster dynamical mean-field theory (I-CDMFT), which takes into account interaction-induced short-range correlations while allowing long-range inhomogeneities. The system is described by a Hubbard model on the honeycomb lattice. The impurity is modeled by a local potential. For a large enough potential, interactions induce local antiferromagnetic correlations around the impurity and a net total spin 1/2 appears, in agreement with Lieb's theorem. Bound states caused by the impurity are visible in the local density of states (LDOS) and have their energies shifted by interactions in a spin-dependent way, leading to the antiferromagnetic correlations. Our results take into account dynamical correlations; nevertheless they qualitatively agree with previous mean-field and density functional theory (DFT) studies. Moreover, they provide a relation between impurity potential and on-site repulsion U that could in principle be used to determine experimentally the value of U .
Cattes, Stefanie M; Gubbins, Keith E; Schoen, Martin
2016-05-21
In this work, we employ classical density functional theory (DFT) to investigate for the first time equilibrium properties of a Heisenberg fluid confined to nanoscopic slit pores of variable width. Within DFT pair correlations are treated at modified mean-field level. We consider three types of walls: hard ones, where the fluid-wall potential becomes infinite upon molecular contact but vanishes otherwise, and hard walls with superimposed short-range attraction with and without explicit orientation dependence. To model the distance dependence of the attractions, we employ a Yukawa potential. The orientation dependence is realized through anchoring of molecules at the substrates, i.e., an energetic discrimination of specific molecular orientations. If the walls are hard or attractive without specific anchoring, the results are "quasi-bulk"-like in that they can be linked to a confinement-induced reduction of the bulk mean field. In these cases, the precise nature of the walls is completely irrelevant at coexistence. Only for specific anchoring nontrivial features arise, because then the fluid-wall interaction potential affects the orientation distribution function in a nontrivial way and thus appears explicitly in the Euler-Lagrange equations to be solved for minima of the grand potential of coexisting phases. PMID:27208962
Biermann, Silke
2014-04-30
We give a summary of recent progress in the field of electronic structure calculations for materials with strong electronic Coulomb correlations. The discussion focuses on developments beyond the by now well established combination of density functional and dynamical mean field theory dubbed 'LDA + DMFT'. It is organized around the description of dynamical screening effects in the solid. Indeed, screening in the solid gives rise to dynamical local Coulomb interactions U(ω) (Aryasetiawan et al 2004 Phys. Rev. B 70 195104), and this frequency dependence leads to effects that cannot be neglected in a truly first principles description. We review the recently introduced extension of LDA + DMFT to dynamical local Coulomb interactions 'LDA + U(ω) + DMFT' (Casula et al 2012 Phys. Rev. B 85 035115, Werner et al 2012 Nature Phys. 1745-2481). A reliable description of dynamical screening effects is also a central ingredient of the 'GW + DMFT' scheme (Biermann et al 2003 Phys. Rev. Lett. 90 086402), a combination of many-body perturbation theory in Hedin's GW approximation and dynamical mean field theory. Recently, the first GW + DMFT calculations including dynamical screening effects for real materials have been achieved, with applications to SrV O3 (Tomczak et al 2012 Europhys. Lett. 100 67001, Tomczak et al Phys. Rev. B submitted (available electronically as arXiv:1312.7546)) and adatom systems on surfaces (Hansmann et al 2013 Phys. Rev. Lett. 110 166401). We review these and comment on further perspectives in the field. This review is an attempt to put elements of the original works into the broad perspective of the development of truly first principles techniques for correlated electron materials. PMID:24722486
Katanin, A. A.
2015-06-15
We consider formulations of the functional renormalization-group (fRG) flow for correlated electronic systems with the dynamical mean-field theory as a starting point. We classify the corresponding renormalization-group schemes into those neglecting one-particle irreducible six-point vertices (with respect to the local Green’s functions) and neglecting one-particle reducible six-point vertices. The former class is represented by the recently introduced DMF{sup 2}RG approach [31], but also by the scale-dependent generalization of the one-particle irreducible representation (with respect to local Green’s functions, 1PI-LGF) of the generating functional [20]. The second class is represented by the fRG flow within the dual fermion approach [16, 32]. We compare formulations of the fRG approach in each of these cases and suggest their further application to study 2D systems within the Hubbard model.
Çağlar, Tolga; Berker, A Nihat
2015-12-01
Hard-spin mean-field theory has recently been applied to Ising magnets, correctly yielding the absence and presence of an interface roughening transition respectively in d=2 and d=3 dimensions and producing the ordering-roughening phase diagram for isotropic and anisotropic systems. The approach has now been extended to the effects of quenched random pinning centers and missing bonds on the interface of isotropic and anisotropic Ising models in d=3. We find that these frozen impurities cause domain boundary roughening that exhibits consecutive thresholding transitions as a function of interaction anisotropy. For both missing-bond and pinning-center impurities, for moderately large values of the anisotropy, the systems saturate to the "solid-on-solid" limit, exhibiting a single universal curve for the domain boundary width as a function of impurity concentration. PMID:26764656
NASA Astrophysics Data System (ADS)
Yao, J. M.; Song, L. S.; Hagino, K.; Ring, P.; Meng, J.
2015-02-01
We report a systematic study of nuclear matrix elements (NMEs) in neutrinoless double-β decays with a state-of-the-art beyond-mean-field covariant density functional theory. The dynamic effects of particle-number and angular-momentum conservations as well as quadrupole shape fluctuations are taken into account with projections and generator coordinate method for both initial and final nuclei. The full relativistic transition operator is adopted to calculate the NMEs. The present systematic studies show that in most of the cases there is a much better agreement with the previous nonrelativistic calculation based on the Gogny force than in the case of the nucleus 150Nd found by Song et al. [Phys. Rev. C 90, 054309 (2014), 10.1103/PhysRevC.90.054309]. In particular, we find that the total NMEs can be well approximated by the pure axial-vector coupling term with a considerable reduction of the computational effort.
Stadler, K M; Yin, Z P; von Delft, J; Kotliar, G; Weichselbaum, A
2015-09-25
We show that the numerical renormalization group is a viable multi-band impurity solver for dynamical mean-field theory (DMFT), offering unprecedented real-frequency spectral resolution at arbitrarily low energies and temperatures. We use it to obtain a numerically exact DMFT solution to the Hund metal problem for a three-band model on a Bethe lattice at 1/3 filling. The ground state is a Fermi liquid. The one-particle spectral function undergoes a coherence-incoherence crossover with increasing temperature, with spectral weight being transferred from low to high energies. Further, it exhibits a strong particle-hole asymmetry. In the incoherent regime, the self-energy displays approximate power-law behavior for positive frequencies only. The spin and orbital spectral functions show "spin-orbital separation": spin screening occurs at much lower energies than orbital screening. The renormalization group flows clearly reveal the relevant physics at all energy scales. PMID:26451570
NASA Astrophysics Data System (ADS)
Stadler, K. M.; Yin, Z. P.; von Delft, J.; Kotliar, G.; Weichselbaum, A.
2015-09-01
We show that the numerical renormalization group is a viable multi-band impurity solver for dynamical mean-field theory (DMFT), offering unprecedented real-frequency spectral resolution at arbitrarily low energies and temperatures. We use it to obtain a numerically exact DMFT solution to the Hund metal problem for a three-band model on a Bethe lattice at 1 /3 filling. The ground state is a Fermi liquid. The one-particle spectral function undergoes a coherence-incoherence crossover with increasing temperature, with spectral weight being transferred from low to high energies. Further, it exhibits a strong particle-hole asymmetry. In the incoherent regime, the self-energy displays approximate power-law behavior for positive frequencies only. The spin and orbital spectral functions show "spin-orbital separation": spin screening occurs at much lower energies than orbital screening. The renormalization group flows clearly reveal the relevant physics at all energy scales.
NASA Astrophysics Data System (ADS)
Moon, Chang-Youn; Kang, Hanhim; Jang, Bo Gyu; Shim, Ji Hoon
2015-12-01
We investigate the evolution of the electronic structure of NiS2 -xSex alloys with varying temperature and composition x by using the combined approach of density-functional theory and dynamical mean-field theory. Adopting realistic alloy structures containing S and Se dimers, we map their electronic correlation strength on the phase diagram and observe the metal-insulator transition (MIT) at the composition x =0.5 , which is consistent with the experimental measurements. The temperature dependence of the local magnetic susceptibility is found to show a typical Curie-Weiss-like behavior in the insulating phase while it shows a constant Pauli-like behavior in the metallic phase. A comparison of the electronic structures for NiS2 and NiSe2 in different lattice structures suggests that the MIT in this alloy system can be classified as of bandwidth-control type, where the change in the hybridization strength between Ni d and chalcogen p orbitals is the most important parameter.
NASA Astrophysics Data System (ADS)
Sato, Toshihiro; Tsunetsugu, Hirokazu
2016-08-01
We numerically study optical conductivity σ (ω ) near the "antiferromagnetic" phase transition in the square-lattice Hubbard model at half filling. We use a cluster dynamical mean field theory and calculate conductivity including vertex corrections and, to this end, we have reformulated the vertex corrections in the antiferromagnetic phase. We find that the vertex corrections change various important details in temperature and ω dependencies of conductivity in the square lattice, and this contrasts sharply the case of the Mott transition in the frustrated triangular lattice. Generally, the vertex corrections enhance variations in the ω dependence, and sharpen the Drude peak and a high-ω incoherent peak in the paramagnetic phase. They also enhance the dip in σ (ω ) at ω =0 in the antiferromagnetic phase. Therefore, the dc conductivity is enhanced in the paramagnetic phase and suppressed in the antiferromagnetic phase, but this change occurs slightly below the transition temperature. We also find a temperature region above the transition temperature in which the dc conductivity shows an insulating behavior but σ (ω ) retains the Drude peak, and this region is stabilized by the vertex corrections. We also investigate which fluctuations are important in the vertex corrections and analyze momentum dependence of the vertex function in detail.
NASA Astrophysics Data System (ADS)
Kon, Misaki; Kobayashi, Kazumichi; Watanabe, Masao
2014-12-01
This study aims to investigate the liquid temperature dependency of the kinetic boundary condition at a vapor-liquid interface in net evaporation/condensation. The numerical simulations based on the mean-field kinetic theory and the molecular gas dynamics in the cases of various liquid temperatures were carried out. We focused on two important issues for the kinetic boundary condition; one is to investigate the applicable limit of the kinetic boundary condition which is assumed to be the isotropic velocity distribution at the liquid temperature and the other is to estimate the value of the condensation coefficient included in the kinetic boundary condition. The simulation results showed that the applicable limit of the isotropic velocity distribution in net evaporation/condensation practically independent from the liquid temperature. Furthermore, the condensation coefficients in net evaporation/condensation depend significantly on the liquid temperature; the condensation coefficient is constant and equal to the evaporation coefficient in net evaporation, while, in net condensation, the condensation coefficient increases with the increase of the degree of nonequilibrium.
NASA Astrophysics Data System (ADS)
Bakalov, P.; Nasr Esfahani, D.; Covaci, L.; Peeters, F. M.; Tempere, J.; Locquet, J.-P.
2016-04-01
Simulations are carried out based on the dynamical mean-field theory (DMFT) in order to investigate the properties of correlated thin films for various values of the chemical potential, temperature, interaction strength, and applied transverse electric field. Application of a sufficiently strong field to a thin film at half filling leads to the appearance of conducting regions near the surfaces of the film, whereas in doped slabs the application of a field leads to a conductivity enhancement on one side of the film and a gradual transition to the insulating state on the opposite side. In addition to the inhomogeneous DMFT, a local density approximation (LDA) is considered in which the particle density n , quasiparticle residue Z , and spectral weight at the Fermi level A (ω =0 ) of each layer are approximated by a homogeneous bulk environment. A systematic comparison between the two approaches reveals that the less expensive LDA results are in good agreement with the DMFT approach, except close to the metal-to-insulator transition points and in the layers immediately at the film surfaces. LDA values for n are overall more reliable than those for Z and A (ω =0 ) . The hysteretic behavior (memory effect) characteristic of the bulk doping driven Mott transition persists in the slab.
Sharma, M.M.; Farhan, A.R.; Muenzenberg, G.
2005-05-01
We have investigated properties of {alpha}-decay chains of recently produced superheavy elements Z=115 and Z=113 using the new Lagrangian model NL-SV1 with inclusion of the vector self-coupling of the {omega} meson in the framework of relativistic mean-field theory. It is shown that the experimentally observed {alpha}-decay energies and half-lives are reproduced well by this Lagrangian model. Further calculations for the heavier elements with Z=117-125 show that these nuclei are superdeformed with a prolate shape in the ground state. A superdeformed shell closure at Z=118 lends an additional binding and an extra stability to nuclei in this region. Consequently, it is predicted that the corresponding Q{sub {alpha}} values provide {alpha}-decay half-lives for heavier superheavy nuclei within experimentally feasible conditions. The results are compared with those of macroscopic-microscopic approaches. A perspective of the difference in shell effects among various approaches is presented and its consequences for superheavy nuclei are discussed.
NASA Astrophysics Data System (ADS)
Wang, Zaijun; Ren, Zhongzhou; Dong, Tiekuang; Xu, Chang
2014-08-01
The ground-state spins and parities of the odd-A phosphorus isotopes 25-47P are studied with the relativistic mean-field (RMF) model and relativistic elastic magnetic electron-scattering theory (REMES). Results of the RMF model with the NL-SH, TM2, and NL3 parameters show that the 2s1/2 and 1d3/2 proton level inversion may occur for the neutron-rich isotopes 37-47P, and, consequently, the possible spin-parity values of 37-47P may be 3/2+, which, except for P47, differs from those given by the NUBASE2012 nuclear data table by Audi et al. Calculations of the elastic magnetic electron scattering of 37-47P with the single valence proton in the 2s1/2 and 1d3/2 state show that the form factors have significant differences. The results imply that elastic magnetic electron scattering can be a possible way to study the 2s1/2 and 1d3/2 level inversion and the spin-parity values of 37-47P. The results can also provide new tests as to what extent the RMF model, along with its various parameter sets, is valid for describing the nuclear structures. In addition, the contributions of the upper and lower components of the Dirac four-spinors to the form factors and the isotopic shifts of the magnetic form factors are discussed.
Information geometry of mean-field approximation.
Tanaka, T
2000-08-01
I present a general theory of mean-field approximation based on information geometry and applicable not only to Boltzmann machines but also to wider classes of statistical models. Using perturbation expansion of the Kullback divergence (or Plefka expansion in statistical physics), a formulation of mean-field approximation of general orders is derived. It includes in a natural way the "naive" mean-field approximation and is consistent with the Thouless-Anderson-Palmer (TAP) approach and the linear response theorem in statistical physics. PMID:10953246
Universality in bipartite mean field spin glasses
NASA Astrophysics Data System (ADS)
Genovese, Giuseppe
2012-12-01
In this work, we give a proof of universality with respect to the choice of the statistical distribution of the quenched noise, for mean field bipartite spin glasses. We use mainly techniques of spin glasses theory, as Guerra's interpolation and the cavity approach.
A mean field approach to watershed hydrology
NASA Astrophysics Data System (ADS)
Bartlett, Mark; Porporato, Amilcare
2016-04-01
Mean field theory (also known as self-consistent field theory) is commonly used in statistical physics when modeling the space-time behavior of complex systems. The mean field theory approximates a complex multi-component system by considering a lumped (or average) effect for all individual components acting on a single component. Thus, the many body problem is reduced to a one body problem. For watershed hydrology, a mean field theory reduces the numerous point component effects to more tractable watershed averages, resulting in a consistent method for linking the average watershed fluxes to the local fluxes at each point. We apply this approach to the spatial distribution of soil moisture, and as a result, the numerous local interactions related to lateral fluxes of soil water are parameterized in terms of the average soil moisture. The mean field approach provides a basis for unifying and extending common event-based models (e.g. Soil Conservation Service curve number (SCS-CN) method) with more modern semi-distributed models (e.g. Variable Infiltration Capacity (VIC) model, the Probability Distributed (PDM) model, and TOPMODEL). We obtain simple equations for the fractions of the different source areas of runoff, the spatial variability of runoff, and the average runoff value (i.e., the so-called runoff curve). The resulting space time distribution of soil moisture offers a concise description of the variability of watershed fluxes.
Stochastic kinetic mean field model
NASA Astrophysics Data System (ADS)
Erdélyi, Zoltán; Pasichnyy, Mykola; Bezpalchuk, Volodymyr; Tomán, János J.; Gajdics, Bence; Gusak, Andriy M.
2016-07-01
This paper introduces a new model for calculating the change in time of three-dimensional atomic configurations. The model is based on the kinetic mean field (KMF) approach, however we have transformed that model into a stochastic approach by introducing dynamic Langevin noise. The result is a stochastic kinetic mean field model (SKMF) which produces results similar to the lattice kinetic Monte Carlo (KMC). SKMF is, however, far more cost-effective and easier to implement the algorithm (open source program code is provided on
NASA Astrophysics Data System (ADS)
Go, Ara; Millis, Andrew J.
2015-01-01
A recently proposed configuration-interaction-based impurity solver is used in combination with the single-site and four-site cluster dynamical mean field approximations to investigate the three-band copper oxide model believed to describe the electronic structure of high transition temperature copper-oxide superconductors. Use of the configuration interaction solver enables verification of the convergence of results with respect to the number of bath orbitals. The spatial correlations included in the cluster approximation substantially shift the metal-insulator phase boundary relative to the prediction of the single-site approximation and increase the predicted energy gap of the insulating phase by about 1 eV above the single-site result. Vertex corrections occurring in the four-site approximation act to dramatically increase the value of the optical conductivity near the gap edge, resulting in better agreement with the data. The calculations reveal two distinct correlated insulating states: the "magnetically correlated insulator," in which nontrivial intersite correlations play an essential role in stabilizing the insulating state, and the strongly correlated insulator, in which local physics suffices. Comparison of the calculations to the data places the cuprates in the magnetically correlated Mott insulator regime.
Ciach, A; Góźdź, W T; Stell, G
2007-05-01
The primitive model of ionic systems is investigated within a field-theoretic description for the whole range of diameter-, lambda , and charge, Z ratios of the two ionic species. Two order parameters (OP) are identified. The relation of the OP's to physically relevant quantities is nontrivial. Each OP is a linear combination of the charge density and the number-density waves. Instabilities of the disordered phase associated with the two OP's are determined in the mean-field approximation (MF). In MF a gas-liquid separation occurs for any Z and lambda is not equal to 1 . In addition, an instability with respect to various types of periodic ordering of the two kinds of ions is found. Depending on lambda and Z , one or the other transition is metastable in different thermodynamic states. For sufficiently large size disparity we find a sequence of fluid-crystal-fluid transitions for the increasing volume fraction of ions, in agreement with experimental observations. The instabilities found in MF represent weak ordering of the most probable instantaneous states, and are identified with structural loci associated with pretransitional effects. PMID:17677071
Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt; Marques, Carlos M.
2015-03-21
Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions, Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2014-05-01
We discuss the dynamics and thermodynamics of the Brownian mean field (BMF) model which is a system of N Brownian particles moving on a circle and interacting via a cosine potential. It can be viewed as the canonical version of the Hamiltonian mean field (HMF) model. The BMF model displays a second order phase transition from a homogeneous phase to an inhomogeneous phase below a critical temperature T c = 1 / 2. We first complete the description of this model in the mean field approximation valid for N → +∞. In the strong friction limit, the evolution of the density towards the mean field Boltzmann distribution is governed by the mean field Smoluchowski equation. For T < T c , this equation describes a process of self-organization from a non-magnetized (homogeneous) phase to a magnetized (inhomogeneous) phase. We obtain an analytical expression for the temporal evolution of the magnetization close to T c . Then, we take fluctuations (finite N effects) into account. The evolution of the density is governed by the stochastic Smoluchowski equation. From this equation, we derive a stochastic equation for the magnetization and study its properties both in the homogenous and inhomogeneous phase. We show that the fluctuations diverge at the critical point so that the mean field approximation ceases to be valid. Actually, the limits N → +∞ and T → T c do not commute. The validity of the mean field approximation requires N( T - T c ) → +∞ so that N must be larger and larger as T approaches T c . We show that the direction of the magnetization changes rapidly close to T c while its amplitude takes a long time to relax. We also indicate that, for systems with long-range interactions, the lifetime of metastable states scales as e N except close to a critical point. The BMF model shares many analogies with other systems of Brownian particles with long-range interactions such as self-gravitating Brownian particles, the Keller-Segel model describing the chemotaxis
Non-mean-field critical exponent in a mean-field model: dynamics versus statistical mechanics.
Ogawa, Shun; Patelli, Aurelio; Yamaguchi, Yoshiyuki Y
2014-03-01
Mean-field theory tells us that the classical critical exponent of susceptibility is twice that of magnetization. However, linear response theory based on the Vlasov equation, which is naturally introduced by the mean-field nature, makes the former exponent half of the latter for families of quasistationary states having second order phase transitions in the Hamiltonian mean-field model and its variances, in the low-energy phase. We clarify that this strange exponent is due to the existence of Casimir invariants which trap the system in a quasistationary state for a time scale diverging with the system size. The theoretical prediction is numerically confirmed by N-body simulations for the equilibrium states and a family of quasistationary states. PMID:24730814
Mean-field sparse optimal control
Fornasier, Massimo; Piccoli, Benedetto; Rossi, Francesco
2014-01-01
We introduce the rigorous limit process connecting finite dimensional sparse optimal control problems with ODE constraints, modelling parsimonious interventions on the dynamics of a moving population divided into leaders and followers, to an infinite dimensional optimal control problem with a constraint given by a system of ODE for the leaders coupled with a PDE of Vlasov-type, governing the dynamics of the probability distribution of the followers. In the classical mean-field theory, one studies the behaviour of a large number of small individuals freely interacting with each other, by simplifying the effect of all the other individuals on any given individual by a single averaged effect. In this paper, we address instead the situation where the leaders are actually influenced also by an external policy maker, and we propagate its effect for the number N of followers going to infinity. The technical derivation of the sparse mean-field optimal control is realized by the simultaneous development of the mean-field limit of the equations governing the followers dynamics together with the Γ-limit of the finite dimensional sparse optimal control problems. PMID:25288818
Momentum dependence of the nuclear mean field
Baldo, M.; Bombaci, I.; Giansiracusa, G.; Lombardo, U. Dipartimento di Fisica, Universita di Catania, Corso Italia 57, 95129 Catania, Italy)
1989-08-01
The dependence on the momentum of the nuclear mean field is studied in the framework of the self-consistent Bethe-Brueckner theory. It is pointed out that the rearrangement term, coming from the variation of the {ital G} matrix, gives a substantial contribution at the lowest momenta. The resulting single particle potential exhibits a good rate of convergence. Its momentum dependence appears to be negligible up to 2 fm{sup {minus}1}, in contrast with potentials used in calculations of heavy-ion collisions at intermediate energies.
NASA Astrophysics Data System (ADS)
Weber, Cédric; Haule, Kristjan; Kotliar, Gabriel
2008-10-01
We use the local density approximation in combination with the dynamical mean-field theory to investigate intermediate energy properties of the copper oxides. We identify coherent and incoherent spectral features that result from doping a charge-transfer insulator, namely quasiparticles, Zhang-Rice singlet band, and the upper and lower Hubbard bands. Angle resolving these features, we identify a waterfall-like feature between the quasiparticle part and the incoherent part of the Zhang-Rice band. We investigate the asymmetry between particle and hole doping. On the hole-doped side, there is a very rapid transfer of spectral weight upon doping in the one particle spectra. The optical spectral weight increases superlinearly on the hole-doped side in agreement with experiments.
NASA Astrophysics Data System (ADS)
Craco, L.; Faria, J. L. B.
2016-02-01
Iron sulfides are promising candidates for the next generation of rechargeable lithium-ion battery materials. Motivated thereby, we present a detailed study of correlation- and doping-induced electronic reconstruction in troilite. Based on local-density-approximation plus dynamical-mean-field-theory, we stress the importance of multi-orbital Coulomb interactions in concert with first-principles band structure calculations for a consistent understanding of intrinsic Mott-Hubbard insulating state in FeS. We explore the anomalous nature of electron doping-induced insulator-bad metal transition, showing that it is driven by orbital-selective dynamical spectral weight transfer. Our results are relevant for understanding charge dynamics upon electrochemical lithiation of iron monosulfides electrode materials for lithium-ion batteries.
Chemical potential beyond the quasiparticle mean field
Dinh Dang, N.; Hung, N. Quang
2010-03-15
The effects of quantal and thermal fluctuations beyond the BCS quasiparticle mean field on the chemical potential are studied within a model, which consists of N particles distributed amongst {Omega} doubly folded equidistant levels interacting via a pairing force with parameter G. The results obtained at zero and finite temperatures T within several approaches, which include the fluctuations beyond the BCS theory, are compared with the exact results. The chemical potential, defined as the Lagrangian multiplier to preserve the average number of particles, is compared with the corresponding quantity, which includes the effect from fluctuations of particle and quasiparticle numbers beyond the BCS quasiparticle mean field. The analysis of the results shows that the latter differs significantly from the former as functions of G and T. The chemical potential loses its physical meaning in the system with a fixed number of particles or after eliminating quantal fluctuations of particle (quasiparticle) numbers by means of particle number projection. The validity of the criterion for the signature of the transition to Bose-Einstein condensation, which occurs in infinite systems when the chemical potential hits the bottom of the energy spectrum, is reexamined for the finite multilevel model.
Continuous Time Finite State Mean Field Games
Gomes, Diogo A.; Mohr, Joana Souza, Rafael Rigao
2013-08-01
In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N{yields}{infinity} of the mean field model and an estimate of the rate of convergence. We end the paper with some further examples for potential mean field games.
Deterministic Mean-Field Ensemble Kalman Filtering
Law, Kody J. H.; Tembine, Hamidou; Tempone, Raul
2016-05-03
The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. In this paper, a density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence κ between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d
Parametrization of light clusters within relativistic mean field models
Ferreira, Marcio; Providencia, Constanca
2013-06-10
Light clusters are included in the equation of state of nuclearmatter within the relativistic mean field theory. The effect of the cluster-meson coupling constants on the dissolution density is discussed. Theoretical and experimental constraints are used to fix the cluster-meson couplings at T Almost-Equal-To 5 MeV.
Microscopically constrained mean-field models from chiral nuclear thermodynamics
NASA Astrophysics Data System (ADS)
Rrapaj, Ermal; Roggero, Alessandro; Holt, Jeremy W.
2016-06-01
We explore the use of mean-field models to approximate microscopic nuclear equations of state derived from chiral effective field theory across the densities and temperatures relevant for simulating astrophysical phenomena such as core-collapse supernovae and binary neutron star mergers. We consider both relativistic mean-field theory with scalar and vector meson exchange as well as energy density functionals based on Skyrme phenomenology and compare to thermodynamic equations of state derived from chiral two- and three-nucleon forces in many-body perturbation theory. Quantum Monte Carlo simulations of symmetric nuclear matter and pure neutron matter are used to determine the density regimes in which perturbation theory with chiral nuclear forces is valid. Within the theoretical uncertainties associated with the many-body methods, we find that select mean-field models describe well microscopic nuclear thermodynamics. As an additional consistency requirement, we study as well the single-particle properties of nucleons in a hot/dense environment, which affect e.g., charged-current weak reactions in neutron-rich matter. The identified mean-field models can be used across a larger range of densities and temperatures in astrophysical simulations than more computationally expensive microscopic models.
Bauso, Dario; Dia, Ben Mansour; Djehiche, Boualem; Tembine, Hamidou; Tempone, Raul
2014-01-01
This article examines mean-field games for marriage. The results support the argument that optimizing the long-term well-being through effort and social feeling state distribution (mean-field) will help to stabilize marriage. However, if the cost of effort is very high, the couple fluctuates in a bad feeling state or the marriage breaks down. We then examine the influence of society on a couple using mean-field sentimental games. We show that, in mean-field equilibrium, the optimal effort is always higher than the one-shot optimal effort. We illustrate numerically the influence of the couple’s network on their feeling states and their well-being. PMID:24804835
Degenerate approach to the mean field Bose-Hubbard Hamiltonian
NASA Astrophysics Data System (ADS)
Belemuk, Alexander M.; Ryzhov, Valentin N.
2016-04-01
A degenerate variant of mean field perturbation theory for the on-site Bose-Hubbard Hamiltonian is presented. We split the perturbation into two terms and perform exact diagonalization in the two-dimensional subspace corresponding to the degenerate states. The final relations for the second order ground state energy and first order wave function do not contain singularities at integer values of the chemical potentials. The resulting equation for the phase boundary between superfluid and Mott states coincides with the prediction from the conventional mean field perturbation approach.
"Phase diagram" of a mean field game
NASA Astrophysics Data System (ADS)
Swiecicki, Igor; Gobron, Thierry; Ullmo, Denis
2016-01-01
Mean field games were introduced by J-M. Lasry and P-L. Lions in the mathematical community, and independently by M. Huang and co-workers in the engineering community, to deal with optimization problems when the number of agents becomes very large. In this article we study in detail a particular example called the "seminar problem" introduced by O. Guéant, J-M. Lasry, and P-L. Lions in 2010. This model contains the main ingredients of any mean field game but has the particular feature that all agents are coupled only through a simple random event (the seminar starting time) that they all contribute to form. In the mean field limit, this event becomes deterministic and its value can be fixed through a self consistent procedure. This allows for a rather thorough understanding of the solutions of the problem, through both exact results and a detailed analysis of various limiting regimes. For a sensible class of initial configurations, distinct behaviors can be associated to different domains in the parameter space. For this reason, the "seminar problem" appears to be an interesting toy model on which both intuition and technical approaches can be tested as a preliminary study toward more complex mean field game models.
Instabilities in the Mean Field Limit
NASA Astrophysics Data System (ADS)
Han-Kwan, Daniel; Nguyen, Toan T.
2016-03-01
Consider a system of N particles interacting through Newton's second law with Coulomb interaction potential in one spatial dimension or a {C}^2 smooth potential in any dimension. We prove that in the mean field limit N → + ∞, the N particles system displays instabilities in times of order log N, for some configurations approximately distributed according to unstable homogeneous equilibria.
Shell corrections, magic numbers, and mean field
Denisov, V. Yu.
2007-02-15
It is shown that the positions of deep local minima of shell corrections associated with magic numbers in the region of superheavy nuclei depend on the parameters of the central and spin-orbit mean-field potentials. The accuracy of nuclear-mass predictions made within various models for superheavy nuclei is analyzed.
Unstable infinite nuclear matter in stochastic mean field approach
Colonna, M.; Chomaz, P. Laboratorio Nazionale del Sud, Viale Andrea Doria, Catania )
1994-04-01
In this article, we consider a semiclassical stochastic mean-field approach. In the case of unstable infinite nuclear matter, we calculate the characteristic time of the exponential growing of fluctuations and the diffusion coefficients associated to the unstable modes, in the framework of the Boltzmann-Langevin theory. These two quantities are essential to describe the dynamics of fluctuations and instabilities since, in the unstable regions, the evolution of the system will be dominated by the amplification of fluctuations. In order to make realistic 3D calculations feasible, we suggest to replace the complicated Boltzmann-Langevin theory by a simpler stochastic mean-field approach corresponding to a standard Boltzmann evolution, complemented by a simple noise chosen to reproduce the dynamics of the most unstable modes. Finally we explain how to approximately implement this method by simply tuning the noise associated to the use of a finite number of test particles in Boltzman-like calculations.
Robust mean field games for coupled Markov jump linear systems
NASA Astrophysics Data System (ADS)
Moon, Jun; Başar, Tamer
2016-07-01
We consider robust stochastic large population games for coupled Markov jump linear systems (MJLSs). The N agents' individual MJLSs are governed by different infinitesimal generators, and are affected not only by the control input but also by an individual disturbance (or adversarial) input. The mean field term, representing the average behaviour of N agents, is included in the individual worst-case cost function to capture coupling effects among agents. To circumvent the computational complexity and analyse the worst-case effect of the disturbance, we use robust mean field game theory to design low-complexity robust decentralised controllers and to characterise the associated worst-case disturbance. We show that with the individual robust decentralised controller and the corresponding worst-case disturbance, which constitute a saddle-point solution to a generic stochastic differential game for MJLSs, the actual mean field behaviour can be approximated by a deterministic function which is a fixed-point solution to the constructed mean field system. We further show that the closed-loop system is uniformly stable independent of N, and an approximate optimality can be obtained in the sense of ε-Nash equilibrium, where ε can be taken to be arbitrarily close to zero as N becomes sufficiently large. A numerical example is included to illustrate the results.
On Mean Field Limits for Dynamical Systems
NASA Astrophysics Data System (ADS)
Boers, Niklas; Pickl, Peter
2016-07-01
We present a purely probabilistic proof of propagation of molecular chaos for N-particle systems in dimension 3 with interaction forces scaling like 1/\\vert q\\vert ^{3λ - 1} with λ smaller but close to one and cut-off at q = N^{-1/3}. The proof yields a Gronwall estimate for the maximal distance between exact microscopic and approximate mean-field dynamics. This can be used to show weak convergence of the one-particle marginals to solutions of the respective mean-field equation without cut-off in a quantitative way. Our results thus lead to a derivation of the Vlasov equation from the microscopic N-particle dynamics with force term arbitrarily close to the physically relevant Coulomb- and gravitational forces.
Mean-Field Evolution of Fermionic Systems
NASA Astrophysics Data System (ADS)
Benedikter, Niels; Porta, Marcello; Schlein, Benjamin
2014-11-01
The mean field limit for systems of many fermions is naturally coupled with a semiclassical limit. This makes the analysis of the mean field regime much more involved, compared with bosonic systems. In this paper, we study the dynamics of initial data close to a Slater determinant, whose reduced one-particle density is an orthogonal projection ω N with the appropriate semiclassical structure. Assuming some regularity of the interaction potential, we show that the evolution of such an initial data remains close to a Slater determinant, with reduced one-particle density given by the solution of the Hartree-Fock equation with initial data ω N . Our result holds for all (semiclassical) times, and gives effective bounds on the rate of the convergence towards the Hartree-Fock dynamics.
Mean-Field Dynamical Semigroups on C*-ALGEBRAS
NASA Astrophysics Data System (ADS)
Duffield, N. G.; Werner, R. F.
We study a notion of the mean-field limit of a sequence of dynamical semigroups on the n-fold tensor products of a C*-algebra { A} with itself. In analogy with the theory of semigroups on Banach spaces we give abstract conditions for the existence of these limits. These conditions are verified in the case of semigroups whose generators are determined by the successive resymmetrizations of a fixed operator, as well as generators which can be approximated by generators of this type. This includes the time evolutions of the mean-field versions of quantum lattice systems. In these cases the limiting dynamical semigroup is given by a continuous flow on the state space of { A}. For a class of such flows we show stability by constructing a Liapunov function. We also give examples where the limiting evolution is given by a diffusion, rather than a flow on the state space of { A}.
Relativistic Mean Field description of exotic nuclei
NASA Astrophysics Data System (ADS)
Gambhir, Y. K.
1994-03-01
The Relativistic Mean Field (RMF) approach which essentially is an extension of the original σ — ω model of Walecka, has been applied to exotic nuclei as an illustration. We consider nuclei near Z = 34 in the very interesting 2p-1f region. The calculated binding energies, root mean square radii, deformations and other observables are very satisfactory and are in accordance with the experiment (where available) and also with the available empirical studies. Large deformations and shape co-existence are obtained for several cases.
A minimax approach to mean field games
NASA Astrophysics Data System (ADS)
Averboukh, Yu V.
2015-07-01
An initial boundary value problem for the system of equations of a determined mean field game is considered. The proposed definition of a generalized solution is based on the minimax approach to the Hamilton-Jacobi equation. We prove the existence of the generalized (minimax) solution using the Nash equilibrium in the auxiliary differential game with infinitely many identical players. We show that the minimax solution of the original system provides the \\varepsilon-Nash equilibrium in the differential game with a finite number of players. Bibliography: 34 titles.
Extended Chiral ({sigma},{pi},{omega}) Mean-Field Model with Vacuum Fluctuation Corrections
Uechi, Schun T.; Uechi, Hiroshi
2011-10-21
Density-dependent relations among saturation properties of symmetric nuclear matter and properties of hadronic stars are discussed by applying the conserving chiral nonlinear ({sigma},{pi},{omega}) mean-field theory. The chiral nonlinear ({sigma},{pi},{omega}) mean-field theory is an extension of the conserving nonlinear (nonchiral){sigma}-{omega} mean-field theory, which is thermodynamically consistent, relativistic and Lorentz-covariant. In the extended chiral ({sigma},{pi},{omega}) mean-field model, all the masses of hadrons are produced by the spontaneous chiral symmetry breaking, which is different from conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of the chiral symmetry breaking mechanism on the mass of {sigma}-meson, coefficients of nonlinear interactions and Fermi-liquid properties are investigated in nuclear matter and neutron stars.
Coulomb Glass: a Mean Field Study
NASA Astrophysics Data System (ADS)
Mandra, Salvatore; Palassini, Matteo
2012-02-01
We study the Coulomb glass model of disordered localized electrons with long-range Coulomb interaction, which describes systems such as disordered insulators, granular metals, amorphous semiconductors, or doped crystalline semiconductors. Long ago Efros and Shklovskii showed that the long-range repulsion induces a soft Coulomb gap in the single particle density of states at low temperatures. Recent works suggested that this gap is associated to a transition to a glass phase, similar to the Almeida-Thouless transition in spin glasses. In this work, we use a mean field approach to characterize several physical properties of the Coulomb glass. In particular, following a seminal work of Bray and Moore, we show that the Edward-Anderson parameter qEA and the spin glass susceptibility χSG are directly related to spectrum distribution of the Hessian matrix around free energy minima. Using this result, we show that no glass transition is associated to the gap formation.
Invisible dynamo in mean-field models
NASA Astrophysics Data System (ADS)
Reshetnyak, M. Yu.
2016-07-01
The inverse problem in a spherical shell to find the two-dimensional spatial distributions of the α-effect and differential rotation in a mean-field dynamo model has been solved. The derived distributions lead to the generation of a magnetic field concentrated inside the convection zone. The magnetic field is shown to have no time to rise from the region of maximum generation located in the lower layers to the surface in the polarity reversal time due to magnetic diffusion. The ratio of the maximum magnetic energy in the convection zone to its value at the outer boundary reaches two orders of magnitude or more. This result is important in interpreting the observed stellar and planetary magnetic fields. The proposed method of solving the inverse nonlinear dynamo problem is easily adapted for a wide class of mathematical-physics problems.
Neural Population Dynamics Modeled by Mean-Field Graphs
NASA Astrophysics Data System (ADS)
Kozma, Robert; Puljic, Marko
2011-09-01
In this work we apply random graph theory approach to describe neural population dynamics. There are important advantages of using random graph theory approach in addition to ordinary and partial differential equations. The mathematical theory of large-scale random graphs provides an efficient tool to describe transitions between high- and low-dimensional spaces. Recent advances in studying neural correlates of higher cognition indicate the significance of sudden changes in space-time neurodynamics, which can be efficiently described as phase transitions in the neuropil medium. Phase transitions are rigorously defined mathematically on random graph sequences and they can be naturally generalized to a class of percolation processes called neuropercolation. In this work we employ mean-field graphs with given vertex degree distribution and edge strength distribution. We demonstrate the emergence of collective oscillations in the style of brains.
Stochastic mean-field polycrystal plasticity methods
NASA Astrophysics Data System (ADS)
Tonks, Michael R.
To accommodate multiple length scales, mean-field polycrystal plasticity models treat each material point as an aggregate of N crystals. The crystal velocity gradients Lc are approximated and then used to evaluate the crystal stresses T c. The Tc are averaged to determine the material point stress T. Commonly, the Lc are approximated with the fully constrained model (FCM) based on the Taylor hypothesis which equates Lc to the macro-scale velocity gradient L. Herein, we present two stochastic models that relax the FCM constraint. Through various applications we show that these computationally efficient stochastic models provide realistic response predictions. We first investigate the texture evolution in a planar polycrystal with our stochastic Taylor model (STM), in which we define L c as a realization of a normal distribution with mean equal to L. Our STM predictions agree with crystal plasticity finite element method (CPFEM) predictions, demonstrating the development of a steady-state texture that is not predicted by the FCM. The computational cost of the STM is comparable to the FCM, i.e. substantially less than the CPFEM. We develop the STM for 3-D polycrystals based on CPFEM analysis results which show that Lc follows a normal distribution. In addition to the STM, we develop the stochastic no-constraints model (SNCM), which differs from the STM in the manner with which the Lc distribution means are determined. Calibration and validation of the models are performed using tantalum compression experiment data. Both models predict the compression textures more accurately than the FCM, and the SNCM predicts them more accurately than the STM. The STM is slightly more computationally expensive than the FCM, while the SNCM is three times more expensive. Finally, we incorporate the STM in a finite element simulation of the Taylor impact of two tantalum specimens. Our simulation predictions mimic the texture and deformation data measured from a powder metallurgy
Benchmarking mean-field approximations to level densities
NASA Astrophysics Data System (ADS)
Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Nakada, H.
2016-04-01
We assess the accuracy of finite-temperature mean-field theory using as a standard the Hamiltonian and model space of the shell model Monte Carlo calculations. Two examples are considered: the nucleus 162Dy, representing a heavy deformed nucleus, and 148Sm, representing a nearby heavy spherical nucleus with strong pairing correlations. The errors inherent in the finite-temperature Hartree-Fock and Hartree-Fock-Bogoliubov approximations are analyzed by comparing the entropies of the grand canonical and canonical ensembles, as well as the level density at the neutron resonance threshold, with shell model Monte Carlo calculations, which are accurate up to well-controlled statistical errors. The main weak points in the mean-field treatments are found to be: (i) the extraction of number-projected densities from the grand canonical ensembles, and (ii) the symmetry breaking by deformation or by the pairing condensate. In the absence of a pairing condensate, we confirm that the usual saddle-point approximation to extract the number-projected densities is not a significant source of error compared to other errors inherent to the mean-field theory. We also present an alternative formulation of the saddle-point approximation that makes direct use of an approximate particle-number projection and avoids computing the usual three-dimensional Jacobian of the saddle-point integration. We find that the pairing condensate is less amenable to approximate particle-number projection methods because of the explicit violation of particle-number conservation in the pairing condensate. Nevertheless, the Hartree-Fock-Bogoliubov theory is accurate to less than one unit of entropy for 148Sm at the neutron threshold energy, which is above the pairing phase transition. This result provides support for the commonly used "back-shift" approximation, treating pairing as only affecting the excitation energy scale. When the ground state is strongly deformed, the Hartree-Fock entropy is significantly
Mean Field Analysis of Quantum Annealing Correction
NASA Astrophysics Data System (ADS)
Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A.
2016-06-01
Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p -body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p =2 , where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p ≥3 , where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.
Mean Field Analysis of Quantum Annealing Correction.
Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A
2016-06-01
Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder. PMID:27314705
Dispersion-Corrected Mean-Field Electronic Structure Methods.
Grimme, Stefan; Hansen, Andreas; Brandenburg, Jan Gerit; Bannwarth, Christoph
2016-05-11
Mean-field electronic structure methods like Hartree-Fock, semilocal density functional approximations, or semiempirical molecular orbital (MO) theories do not account for long-range electron correlation (London dispersion interaction). Inclusion of these effects is mandatory for realistic calculations on large or condensed chemical systems and for various intramolecular phenomena (thermochemistry). This Review describes the recent developments (including some historical aspects) of dispersion corrections with an emphasis on methods that can be employed routinely with reasonable accuracy in large-scale applications. The most prominent correction schemes are classified into three groups: (i) nonlocal, density-based functionals, (ii) semiclassical C6-based, and (iii) one-electron effective potentials. The properties as well as pros and cons of these methods are critically discussed, and typical examples and benchmarks on molecular complexes and crystals are provided. Although there are some areas for further improvement (robustness, many-body and short-range effects), the situation regarding the overall accuracy is clear. Various approaches yield long-range dispersion energies with a typical relative error of 5%. For many chemical problems, this accuracy is higher compared to that of the underlying mean-field method (i.e., a typical semilocal (hybrid) functional like B3LYP). PMID:27077966
Mean field approach to fluctuations of surface line defects
NASA Astrophysics Data System (ADS)
Margetis, Dionisios
2011-03-01
Below the roughening transition temperature, the dynamics of crystal surfaces are driven by the motion of line defects (steps) of atomic size. According to the celebrated Burton Cabrera-Frank (BCF) model, the steps move by mass conservation, as adsorbed atoms (adatoms) diffuse on terraces and attach/detach at step edges. The resulting deterministic equations of motion incorporate nonlinear couplings due to entropic and elastic-dipole step-step interactions. In this talk, I will discuss a formal theory for stochastic aspects of step motion by adding noise to the BCF model in 1+1 dimensions. I will define systematically a ``mean field'' that enables the conversion of the coupled, nonlinear stochastic equations for the distance between neighboring steps (terrace widths) to a single Langevin-type equation for an effective terrace width. In the course of my study, I invoke the Bogoliubov-Born-Green Kirkwood-Yvon (BBGKY) hierarchy for joint terrace-width probability densities and a decorrelation ansatz for terrace widths. By using an example drawn from epitaxial growth (with material deposition from above), I will compare the mean field approach to an exact result from a linearized growth model. [D. Margetis, J. Phys A: Math. Theor. 43, 065003 (2010).] This work was supported by NSF under Grant DMS-0847587.
Mean field bipartite spin models treated with mechanical techniques
NASA Astrophysics Data System (ADS)
Barra, Adriano; Galluzzi, Andrea; Guerra, Francesco; Pizzoferrato, Andrea; Tantari, Daniele
2014-03-01
Inspired by a continuously increasing interest in modeling and framing complex systems in a thermodynamic rationale, in this paper we continue our investigation in adapting well-known techniques (originally stemmed in fields of physics and mathematics far from the present) for solving for the free energy of mean field spin models in a statistical mechanics scenario. Focusing on the test cases of bipartite spin systems embedded with all the possible interactions (self and reciprocal), we show that both the fully interacting bipartite ferromagnet, as well as the spin glass counterpart, at least at the replica symmetric level, can be solved via the fundamental theorem of calculus, trough an analogy with the Hamilton-Jacobi theory and lastly with a mapping to a Fourier diffusion problem. All these technologies are shown symmetrically for ferromagnets and spin-glasses in full details and contribute as powerful tools in the investigation of complex systems.
Phase transitions of nuclear matter beyond mean field theory
Tran Huu Phat; Nguyen Tuan Anh; Nguyen Van Long; Le Viet Hoa
2007-10-15
The Cornwall-Jackiw-Tomboulis (CJT) effective action approach is applied to study the phase transition of nuclear matter modeled by the four-nucleon interaction. It is shown that in the Hartree-Fock approximation (HFA) a first-order phase transition takes place at low temperature, whereas the phase transition is of second order at higher temperature.
Dynamic scaling in entangled mean-field gelation polymers.
Das, Chinmay; Read, Daniel J; Kelmanson, Mark A; McLeish, Tom C B
2006-07-01
We present a simple reaction kinetics model to describe the polymer synthesis used by Lusignan et al. [Phys. Rev. E 60, 5657 (1999)] to produce randomly branched polymers in the vulcanization class. Numerical solution of the rate equations gives probabilities for different connections in the final product, which we use to generate a numerical ensemble of representative molecules. All structural quantities probed in the experiments are in quantitative agreement with our results for the entire range of molecular weights considered. However, with detailed topological information available in our calculations, our estimate of the "rheologically relevant" linear segment length is smaller than that estimated from the experimental results. We use a numerical method based on a tube model of polymer melts to calculate the rheological properties of such molecules. Results are in good agreement with experiment, except that in the case of the largest molecular weight samples our estimate of the zero-shear viscosity is significantly lower than the experimental findings. Using acid concentration as an indicator for closeness to the gelation transition, we show that the high-molecular-weight polymers considered are at the limit of mean-field behavior--which possibly is the reason for this disagreement. For a truly mean-field gelation class of model polymers, we numerically calculate the rheological properties for a range of segment lengths. Our calculations show that the tube theory with dynamical dilation predicts that, very close to the gelation limit, the contribution to viscosity for this class of polymers is dominated by the contribution from constraint-release Rouse motion and the final viscosity exponent approaches a Rouse-like value. PMID:16907093
Relativistic mean field model based on realistic nuclear forces
Hirose, S.; Serra, M.; Ring, P.; Otsuka, T.; Akaishi, Y.
2007-02-15
In order to predict properties of asymmetric nuclear matter, we construct a relativistic mean field (RMF) model consisting of one-meson exchange (OME) terms and point coupling (PC) terms. In order to determine the density dependent parameters of this model, we use properties of isospin symmetric nuclear matter in combination with the information on nucleon-nucleon scattering data, which are given in the form of the density dependent G-matrix derived from Brueckner calculations based on the Tamagaki potential. We show that the medium- and long-range components of this G-matrix can be described reasonably well by our effective OME interaction. In order to take into account the short-range part of the nucleon-nucleon interaction, which cannot be described well in this manner, a point coupling term is added. Its analytical form is taken from a model based on chiral perturbation theory. It contains only one additional parameter, which does not depend on the density. It is, together with the parameters of the OME potentials adjusted to the equation of state of symmetric nuclear matter. We apply this model for the investigation of asymmetric nuclear matter and find that the results for the symmetry energy as well as for the equation of state of pure neutron matter are in good agreement with either experimental data or with presently adopted theoretical predictions. In order to test the model at higher density, we use its equation of state for an investigation of properties of neutron stars.
NASA Astrophysics Data System (ADS)
Rädler, K.-H.
This article elucidates the basic ideas of electrodynamics and magnetohydrodynamics of mean fields in turbulently moving conducting fluids. It is stressed that the connection of the mean electromotive force with the mean magnetic field and its first spatial derivatives is in general neither local nor instantaneous and that quite a few claims concerning pretended failures of the mean-field concept result from ignoring this aspect. In addition to the mean-field dynamo mechanisms of α2 and α Ω type several others are considered. Much progress in mean-field electrodynamics and magnetohydrodynamics results from the test-field method for calculating the coefficients that determine the connection of the mean electromotive force with the mean magnetic field. As an important example the memory effect in homogeneous isotropic turbulence is explained. In magnetohydrodynamic turbulence there is the possibility of a mean electromotive force that is primarily independent of the mean magnetic field and labeled as Yoshizawa effect. Despite of many efforts there is so far no convincing comprehensive theory of α quenching, that is, the reduction of the α effect with growing mean magnetic field, and of the saturation of mean-field dynamos. Steps toward such a theory are explained. Finally, some remarks on laboratory experiments with dynamos are made.
Quark mean field approach with derivative coupling for nuclear matter
Kawabata, M.; Akiyama, S.; Futami, Y.; Nakasone, T.; Yukino, T.
2008-05-15
We propose the quark mean field model including derivative coupling between quarks and scalar mesons in nuclear matter. This model concisely interprets an increasing size of the nucleon as well as a modification of coupling constant in the nuclear environment.
Mean field limit for bosons and propagation of Wigner measures
NASA Astrophysics Data System (ADS)
Ammari, Z.; Nier, F.
2009-04-01
We consider the N-body Schrödinger dynamics of bosons in the mean field limit with a bounded pair-interaction potential. According to the previous work [Ammari, Z. and Nier, F., "Mean field limit for bosons and infinite dimensional phase-space analysis," Ann. Henri Poincare 9, 1503 (2008)], the mean field limit is translated into a semiclassical problem with a small parameter ɛ →0, after introducing an ɛ-dependent bosonic quantization. The limits of quantum correlation functions are expressed as a push forward by a nonlinear flow (e.g., Hartree) of the associated Wigner measures. These object and their basic properties were introduced by Ammari and Nier in the infinite dimensional setting. The additional result presented here states that the transport by the nonlinear flow holds for a rather general class of quantum states in their mean field limit.
Mean field limit for bosons and propagation of Wigner measures
Ammari, Z.; Nier, F.
2009-04-15
We consider the N-body Schroedinger dynamics of bosons in the mean field limit with a bounded pair-interaction potential. According to the previous work [Ammari, Z. and Nier, F., 'Mean field limit for bosons and infinite dimensional phase-space analysis', Ann. Henri Poincare 9, 1503 (2008)], the mean field limit is translated into a semiclassical problem with a small parameter {epsilon}{yields}0, after introducing an {epsilon}-dependent bosonic quantization. The limits of quantum correlation functions are expressed as a push forward by a nonlinear flow (e.g., Hartree) of the associated Wigner measures. These object and their basic properties were introduced by Ammari and Nier in the infinite dimensional setting. The additional result presented here states that the transport by the nonlinear flow holds for a rather general class of quantum states in their mean field limit.
Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows
NASA Astrophysics Data System (ADS)
Rädler, Karl-Heinz; Brandenburg, Axel; Del Sordo, Fabio; Rheinhardt, Matthias
2011-10-01
Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion dominates the vortical part, the Péclet or magnetic Reynolds number is not too large, and, in addition, the variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical results on mean-field diffusivities and related quantities found within the second-order correlation approximation are presented, as well as numerical results obtained by the test-field method, which applies independently of this approximation. Particular attention is paid to nonlocal and noninstantaneous connections between the turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar in a compressible fluid under the influence of these flows can be much slower than without any flow, and can be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients depend on the decay rates themselves.
Mean-field Ohm's law and coaxial helicity injection in force-free plasmas
Weening, R. H.
2011-12-15
A theoretical analysis of steady-state coaxial helicity injection (CHI) in force-free plasmas is presented using a parallel mean-field Ohm's law that includes resistivity {eta} and hyper-resistivity {Lambda} terms. Using Boozer coordinates, a partial differential equation is derived for the time evolution of the mean-field poloidal magnetic flux, or magnetic Hamiltonian function, from the parallel mean-field Ohm's law. A general expression is obtained from the mean-field theory for the efficiency of CHI current drive in force-free plasmas. Inductances of internal energy, magnetic helicity, and poloidal magnetic flux are used to characterize axisymmetric plasma equilibria that have a model current profile. Using the model current profile, a method is suggested to determine the level of magnetohydrodynamic activity at the magnetic axis and the consequent deviation from the completely relaxed Taylor state. The mean-field Ohm's law model suggests that steady-state CHI can be viewed most simply as a boundary layer problem.
Mean-field cluster model for the critical behaviour of ferromagnets
NASA Astrophysics Data System (ADS)
Chamberlin, Ralph V.
2000-11-01
Two separate theories are often used to characterize the paramagnetic properties of ferromagnetic materials. At temperatures T well above the Curie temperature, TC (where the transition from paramagnetic to ferromagnetic behaviour occurs), classical mean-field theory yields the Curie-Weiss law for the magnetic susceptibility: χ(
Local excitations in mean-field spin glasses
NASA Astrophysics Data System (ADS)
Krzakala, F.; Parisi, G.
2004-06-01
We address the question of geometrical as well as energetic properties of local excitations in mean-field Ising spin glasses. We study analytically the Random Energy Model and numerically a dilute mean-field model, first on tree-like graphs, equivalent to a replica-symmetric computation, and then directly on finite-connectivity random lattices. In the first model, characterized by a discontinuous replica symmetry breaking, we found that the energy of finite-volume excitation is infinite, whereas in the dilute mean-field model, described by a continuous replica symmetry breaking, it slowly decreases with sizes and saturates at a finite value, in contrast with what would be naively expected. The geometrical properties of these excitations are similar to those of lattice animals or branched polymers. We discuss the meaning of these results in terms of replica symmetry breaking and also possible relevance in finite-dimensional systems.
MEAN FIELD AND MONTE CARLO MODELING OF MULTIBLOCK COPOLYMERS
K. RASMUSSEN; ET AL
2001-01-01
The authors discuss and apply extensions needed to treat multiblock copolymers within the mean field theoretical framework for microphase separation in diblock copolymer metals, originally due to Leibler. The mean field calculations are complemented by lattice Monte Carlo realizations using the bond fluctuation model. They find that the microphase separation transition occurs at larger {sub {chi}}N as the number of blocks in increased beyond two (i.e., beyond diblock), and that the characteristic length scale of the emerging morphology decreases as the number of blocks increases. The latter prediction is in qualitative agreement with published experimental results due to Sontak and co-workers for model multiblock poly(styrene-isoprene) systems and recent results due to Hjelm and co-workers for a segmented poly(ester-urethane) relevant to Los Alamos interests. Additionally, the mean field predictions and bond fluctuation realizations yield consistent results.
Mean-field description of topological charge 4e superconductors
NASA Astrophysics Data System (ADS)
Gabriele, Victoria; Luo, Jing; Teo, Jeffrey C. Y.
BCS superconductors can be understood by a mean-field approximation of two-body interacting Hamiltonians, whose ground states break charge conservation spontaneously by allowing non-vanishing expectation values of charge 2e Cooper pairs. Topological superconductors, such as one-dimensional p-wave wires, have non-trivial ground states that support robust gapless boundary excitations. We construct a four-body Hamiltonian in one dimension and perform a mean-field analysis. The mean-field Hamiltonian is now quartic in fermions but is still exactly solvable. The ground state exhibits 4-fermion expectation values instead of Cooper pair ones. There also exists a topological phase, where the charge 4e superconductor carries exotic zero energy boundary excitations.
Incorporating spatial correlations into multispecies mean-field models
NASA Astrophysics Data System (ADS)
Markham, Deborah C.; Simpson, Matthew J.; Maini, Philip K.; Gaffney, Eamonn A.; Baker, Ruth E.
2013-11-01
In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modeling interactions between such species, we often make use of the mean-field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean-field approximation is only used in appropriate settings. In circumstances where the mean-field approximation is unsuitable, we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper, we provide a method that overcomes many of the failures of the mean-field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multispecies case and show results specific to a two-species problem. We compare averaged discrete results to both the mean-field approximation and our improved method, which incorporates spatial correlations. We note that the mean-field approximation fails dramatically in some cases, predicting very different behavior from that seen upon averaging multiple realizations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behavior in all cases, thus providing a more reliable modeling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques.
Many-Body Mean-Field Equations: Parallel implementation
Vallieres, M.; Umar, S.; Chinn, C.; Strayer, M.
1993-12-31
We describe the implementation of Hartree-Fock Many-Body Mean-Field Equations on a Parallel Intel iPSC/860 hypercube. We first discuss the Nuclear Mean-Field approach in physical terms. Then we describe our parallel implementation of this approach on the Intel iPSC/860 hypercube. We discuss and compare the advantages and disadvantages of the domain partition versus the Hilbert space partition for this problem. We conclude by discussing some timing experiments on various computing platforms.
Uechi, Schun T.; Uechi, Hiroshi
2011-05-06
Density-dependent relations among saturation properties of symmetric nuclear matter and properties of hadronic stars are discussed by applying the conserving chiral nonlinear ({sigma},{pi},{omega}) hadronic mean-field theory. The chiral nonlinear ({sigma},{pi},{omega}) mean-field theory is an extension of the conserving nonlinear (nonchiral) {sigma}-{omega} hadronic mean-field theory which is thermodynamically consistent, relativistic and is a Lorentz-covariant mean-field theory of hadrons. In the extended chiral ({sigma},{pi},{omega}) mean-field model, all the masses of hadrons are produced by the breaking of chiral symmetry, which is different from other conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of the chiral symmetry breaking mechanism on the mass of {sigma}-meson, coefficients of nonlinear interactions and Fermi-liquid properties are investigated in nuclear matter and neutron stars.
Numerical accuracy of mean-field calculations in coordinate space
NASA Astrophysics Data System (ADS)
Ryssens, W.; Heenen, P.-H.; Bender, M.
2015-12-01
Background: Mean-field methods based on an energy density functional (EDF) are powerful tools used to describe many properties of nuclei in the entirety of the nuclear chart. The accuracy required of energies for nuclear physics and astrophysics applications is of the order of 500 keV and much effort is undertaken to build EDFs that meet this requirement. Purpose: Mean-field calculations have to be accurate enough to preserve the accuracy of the EDF. We study this numerical accuracy in detail for a specific numerical choice of representation for mean-field equations that can accommodate any kind of symmetry breaking. Method: The method that we use is a particular implementation of three-dimensional mesh calculations. Its numerical accuracy is governed by three main factors: the size of the box in which the nucleus is confined, the way numerical derivatives are calculated, and the distance between the points on the mesh. Results: We examine the dependence of the results on these three factors for spherical doubly magic nuclei, neutron-rich 34Ne , the fission barrier of 240Pu , and isotopic chains around Z =50 . Conclusions: Mesh calculations offer the user extensive control over the numerical accuracy of the solution scheme. When appropriate choices for the numerical scheme are made the achievable accuracy is well below the model uncertainties of mean-field methods.
On the Mean Field and Classical Limits of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Golse, François; Mouhot, Clément; Paul, Thierry
2016-04-01
The main result in this paper is a new inequality bearing on solutions of the N-body linear Schrödinger equation and of the mean field Hartree equation. This inequality implies that the mean field limit of the quantum mechanics of N identical particles is uniform in the classical limit and provides a quantitative estimate of the quality of the approximation. This result applies to the case of C 1,1 interaction potentials. The quantity measuring the approximation of the N-body quantum dynamics by its mean field limit is analogous to the Monge-Kantorovich (or Wasserstein) distance with exponent 2. The inequality satisfied by this quantity is reminiscent of the work of Dobrushin on the mean field limit in classical mechanics [Func. Anal. Appl. 13, 115-123, (1979)]. Our approach to this problem is based on a direct analysis of the N-particle Liouville equation, and avoids using techniques based on the BBGKY hierarchy or on second quantization.
Deviations from the mean-field predictions for the phase behaviour of random copolymers melts
NASA Astrophysics Data System (ADS)
Houdayer, J.; Müller, M.
2002-06-01
We investigate the phase behaviour of random copolymers melts via large-scale Monte Carlo simulations. We observe macrophase separation into A- and B-rich phases as predicted by the mean-field theory only for systems with a very large correlation λ of blocks along the polymer chains, far away from the Lifshitz point. For smaller values of λ, we find that a locally segregated, disordered microemulsion-like structure gradually forms as the temperature decreases. As we increase the number of blocks in the polymers, the region of macrophase separation further shrinks. The results of our Monte Carlo simulation are in agreement with a Ginzburg criterium, which suggests that the mean-field theory becomes worse as the number of blocks in polymers increases.
Schrödinger Approach to Mean Field Games
NASA Astrophysics Data System (ADS)
Swiecicki, Igor; Gobron, Thierry; Ullmo, Denis
2016-03-01
Mean field games (MFG) provide a theoretical frame to model socioeconomic systems. In this Letter, we study a particular class of MFG that shows strong analogies with the nonlinear Schrödinger and Gross-Pitaevskii equations introduced in physics to describe a variety of physical phenomena. Using this bridge, many results and techniques developed along the years in the latter context can be transferred to the former, which provides both a new domain of application for the nonlinear Schrödinger equation and a new and fruitful approach in the study of mean field games. Utilizing this approach, we analyze in detail a population dynamics model in which the "players" are under a strong incentive to coordinate themselves.
Neutron star cooling: A challenge to the nuclear mean field
Hoang Sy Than; Nguyen Van Giai
2009-12-15
The two recent density-dependent versions of the finite-range M3Y interaction (CDM3Yn and M3Y-Pn) have been probed against the bulk properties of asymmetric nuclear matter (NM) in the nonrelativistic Hartree-Fock (HF) formalism. The same HF study has also been done with the famous Skyrme (SLy4) and Gogny (D1S and D1N) interactions that were well tested in the nuclear structure calculations. Our HF results are compared with those given by other many-body calculations like the Dirac-Brueckner Hartree-Fock approach or ab initio variational calculations using free nucleon-nucleon interaction and by both the nonrelativistic and relativistic mean-field studies using different model parameters. Although the two considered density-dependent versions of the M3Y interaction were proven to be quite realistic in the nuclear structure or reaction studies, they give two distinct behaviors of the NM symmetry energy at high densities, like the Asy-soft and Asy-stiff scenarios found earlier with other mean-field interactions. As a consequence, we obtain two different behaviors of the proton fraction in the {beta}-equilibrium that in turn can imply two drastically different mechanisms for the neutron star cooling. While some preference of the Asy-stiff scenario was found based on predictions of the latest microscopic many-body calculations or empirical NM pressure and isospin diffusion data deduced from heavy-ion collisions, a consistent mean-field description of nuclear structure database is more often given by some Asy-soft type interaction like the Gogny or M3Y-Pn ones. Such a dilemma poses an interesting challenge to the modern mean-field approaches.
Stochastic Mean-Field Dynamics For Nuclear Collisions
Ayik, Sakir
2008-11-11
We discuss a stochastic approach to improve description of nuclear dynamics beyond the mean-field approximation at low energies. For small amplitude fluctuations, this approach gives a result for the dispersion of a one-body observable that is identical to the result obtained previously through a variational approach. Furthermore, it incorporates one-body dissipation and fluctuation mechanisms in accordance with quantal fluctuation-dissipation relation.
Disorder Chaos in the Spherical Mean-Field Model
NASA Astrophysics Data System (ADS)
Chen, Wei-Kuo; Hsieh, Hsi-Wei; Hwang, Chii-Ruey; Sheu, Yuan-Chung
2015-07-01
We study the problem of disorder chaos in the spherical mean-field model. It concerns the behavior of the overlap between two independently sampled spin configurations from two Gibbs measures with the same external parameters. The prediction states that if the disorders in the Hamiltonians are slightly decoupled, then the overlap will be concentrated near a constant value. Following Guerra's replica symmetry breaking scheme, we establish this at the levels of the free energy and the Gibbs measure.
Absorbing boundaries in the mean-field approximation
Jhala, Chirag; Dreissigacker, Ingo; Lein, Manfred
2010-12-15
Absorbing boundaries in the mean-field approximation are investigated and applied to small systems interacting with strong laser fields. Two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full Hamiltonian and (ii) the inclusion of a complex absorbing potential in the single-particle equations. It is elucidated that the second approach outperforms the variational approach for small grids.
Mean field dynamo saturation: toward understanding conflicting results
NASA Astrophysics Data System (ADS)
Blackman, Eric G.; Field, George B.
Mean field dynamos may explain the origin of large scale magnetic fields of galaxies, but controversy arises over the extent of dynamo quenching by the growing field. Here we explain how apparently conflicting results may be mutually consistent, by showing the role of magnetic helicity conservation and boundary terms usually neglected. We estimate the associated magnetic energy flowing out of the Galaxy but emphasize that the mechanism of field escape needs to be addressed.
Mean-field description of plastic flow in amorphous solids
NASA Astrophysics Data System (ADS)
Lin, Jie; Wyart, Matthieu
Failure and flow of amorphous materials are central to various phenomena including earthquakes and landslides. There is accumulating evidence that the yielding transition between a flowing and an arrested phase is a critical phenomenon, but the associated exponents are not understood, even at a mean-field level where the validity of popular models is debated. Here we solve a mean-field model that captures the broad distribution of the mechanical noise generated by plasticity, whose behavior is related to biased Lévy flights near an absorbing boundary. We compute the exponent θ characterizing the density of shear transformation P (x) ~xθ , where x is the stress increment beyond which they yield. We find that after an isotropic thermal quench, θ = 1 / 2 . However, θ depends continuously on the applied shear stress, this dependence is not monotonic, and its value at the yield stress is not universal. The model rationalizes previously unexplained observations, and captures reasonably well the value of exponents in three dimensions. These results support that it is the true mean-field model that applies in large dimension, and raise fundamental questions on the nature of the yielding transition.
Mean-Field Description of Plastic Flow in Amorphous Solids
NASA Astrophysics Data System (ADS)
Lin, Jie; Wyart, Matthieu
2016-01-01
Failure and flow of amorphous materials are central to various phenomena including earthquakes and landslides. There is accumulating evidence that the yielding transition between a flowing and an arrested phase is a critical phenomenon, but the associated exponents are not understood, even at a mean-field level where the validity of popular models is debated. Here, we solve a mean-field model that captures the broad distribution of the mechanical noise generated by plasticity, whose behavior is related to biased Lévy flights near an absorbing boundary. We compute the exponent θ characterizing the density of shear transformation P (x )˜xθ, where x is the stress increment beyond which they yield. We find that after an isotropic thermal quench, θ =1 /2 . However, θ depends continuously on the applied shear stress; this dependence is not monotonic, and its value at the yield stress is not universal. The model rationalizes previously unexplained observations and captures reasonably well the value of exponents in three dimensions. Values of exponents in four dimensions are accurately predicted. These results support the fact that it is the true mean-field model that applies in large dimensions, and they raise fundamental questions about the nature of the yielding transition.
The glass crossover from mean-field Spin-Glasses to supercooled liquids
NASA Astrophysics Data System (ADS)
Rizzo, Tommaso
2016-03-01
Stochastic-Beta-Relaxation provides a characterisation of the glass crossover in discontinuous Spin-Glasses and supercoooled liquid. Notably it can be derived through a rigorous computation from a dynamical Landau theory. In this paper, I will discuss the precise meaning of this connection in a language that does not require familiarity with statistical field theory. I will discuss finite-size corrections in mean-field Spin-Glass models and loop corrections in finite-dimensional models that are both described by the dynamical Landau theory considered. Then I will argue that the same Landau theory can be associated to supercooled liquid described by Mode-Coupling Theory invoking a physical principle of time-scale invariance.
NASA Astrophysics Data System (ADS)
Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.
2016-04-01
We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton's [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show that anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.
Ehrenfest breakdown of the mean-field dynamics of Bose gases
NASA Astrophysics Data System (ADS)
Han, Xizhi; Wu, Biao
2016-02-01
The unstable mean-field dynamics of a Bose gas is shown to break down at time τh=(c1/γ ) lnN , where γ is the Lyapunov exponent of the mean-field theory, N is the number of bosons, and c1 is a system-dependent constant. The breakdown time τh is essentially the Ehrenfest time that characterizes the breakdown of the correspondence between classical and quantum dynamics. This breakdown can be well described by a quantum fidelity defined for one-particle reduced density matrices. Our results are obtained with the formalism in particle-number phase space and are illustrated with a triple-well model. The logarithmic quantum-classical correspondence time may be verified experimentally with Bose-Einstein condensates.
Relativistic mean field calculations in neutron-rich nuclei
Gangopadhyay, G.; Bhattacharya, Madhubrata; Roy, Subinit
2014-08-14
Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.
Isomeric state in {sup 53}Co: A mean field analysis
Patra, S. K.; Bhat, F. H.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.
2009-04-15
We study the ground and the first excited intrinsic states of {sup 53}Co and its mirror nucleus {sup 53}Fe, within the frameworks of the relativistic and nonrelativistic mean field formalisms. The analysis of the single-particle energy spectra of these nuclei show a competition of spins 1/2{sup -} and 3/2{sup -} in a low-lying excited state, which agrees well with the recent experimental observation [D. Rudolph et al., Eur. Phys. J. A 36, 131 (2008)] of spin and parity J{sup {pi}}=3/2{sup -} for the isomeric configuration in {sup 53}Co.
Modeling asset price processes based on mean-field framework
NASA Astrophysics Data System (ADS)
Ieda, Masashi; Shiino, Masatoshi
2011-12-01
We propose a model of the dynamics of financial assets based on the mean-field framework. This framework allows us to construct a model which includes the interaction among the financial assets reflecting the market structure. Our study is on the cutting edge in the sense of a microscopic approach to modeling the financial market. To demonstrate the effectiveness of our model concretely, we provide a case study, which is the pricing problem of the European call option with short-time memory noise.
A mechanical approach to mean field spin models
NASA Astrophysics Data System (ADS)
Genovese, Giuseppe; Barra, Adriano
2009-05-01
Inspired by the bridge pioneered by Guerra among statistical mechanics on lattice and analytical mechanics on 1+1 continuous Euclidean space time, we built a self-consistent method to solve for the thermodynamics of mean field models defined on lattice, whose order parameters self-average. We show the whole procedure by analyzing in full detail the simplest test case, namely, the Curie-Weiss model. Further, we report some applications also to models whose order parameters do not self-average by using the Sherrington-Kirkpatrick spin glass as a guide.
Thermal entanglement of spins in mean-field clusters
Asoudeh, M.; Karimipour, V.
2006-06-15
We determine thermal entanglement in mean-field clusters of N spin one-half particles interacting via the anisotropic Heisenberg interaction, with and without external magnetic field. For the xxx cluster in the absence of magnetic field we prove that only the N=2 ferromagnetic cluster shows entanglement. An external magnetic field B can only entangle xxx antiferromagnetic clusters in certain regions of the B-T plane. On the other hand, the xxz clusters of size N>2 are entangled only when the interaction is ferromagnetic. Detailed dependence of the entanglement on various parameters is investigated in each case.
A mean field Ohm's law for collisionless plasmas
Biglari, H. ); Diamond, P.H. )
1993-11-01
A mean field Ohm's law valid for collisionless plasmas is derived kinetically. It is shown that contrary to conventional thinking, the resulting hyperresistivity is significantly smaller than its fluid counterpart due to the fact that the turbulent decorrelation rate is linked to the rapid electron ballistic motion rather than the slower nonlinear mixing time. Moreover, the off-diagonal contributions to the parallel electron momentum flux are shown to result in Ohm's law renormalizations that dwarf the current diffusivity and break radial parity symmetry.
Mean-field approach for diffusion of interacting particles.
Suárez, G; Hoyuelos, M; Mártin, H
2015-12-01
A nonlinear Fokker-Planck equation is obtained in the continuous limit of a one-dimensional lattice with an energy landscape of wells and barriers. Interaction is possible among particles in the same energy well. A parameter γ, related to the barrier's heights, is introduced. Its value is determinant for the functional dependence of the mobility and diffusion coefficient on particle concentration, but has no influence on the equilibrium solution. A relation between the mean-field potential and the microscopic interaction energy is derived. The results are illustrated with classical particles with interactions that reproduce fermion and boson statistics. PMID:26764643
Systematic study of bubble nuclei in relativistic mean field model
NASA Astrophysics Data System (ADS)
Shukla, A.; Åberg, S.; Bajpeyi, A.
2016-01-01
We have theoretically studied potential bubble nuclei (20,22O, 34,36Si, and 46Ar), which are experimentally accessible and have attracted several studies in the recent past. Relativistic mean field is employed in conjunction with the NL-SH parameter set. Our results show that among the possible candidates, 22Oand 34Si may be the most prominent candidates, showing significant depletion of density at the center, which could be verified experimentally in the near future with some of the experiments underway.
Beyond Mean-Field Calculations for Odd-Mass Nuclei
NASA Astrophysics Data System (ADS)
Bally, B.; Avez, B.; Bender, M.; Heenen, P.-H.
2014-10-01
Beyond mean-field methods are very successful tools for the description of large-amplitude collective motion for even-even atomic nuclei. The state-of-the-art framework of these methods consists in a generator coordinate method based on angular-momentum and particle-number projected triaxially deformed Hartree-Fock-Bogoliubov (HFB) states. The extension of this scheme to odd-mass nuclei is a long-standing challenge. We present for the first time such an extension, where the generator coordinate space is built from self-consistently blocked one-quasiparticle HFB states. One of the key points for this success is that the same Skyrme interaction is used for the mean-field and the pairing channels, thus avoiding problems related to the violation of the Pauli principle. An application to Mg25 illustrates the power of our method, as agreement with experiment is obtained for the spectrum, electromagnetic moments, and transition strengths, for both positive and negative parity states and without the necessity for effective charges or effective moments. Although the effective interaction still requires improvement, our study opens the way to systematically describe odd-A nuclei throughout the nuclear chart.
Mean-field limit of systems with multiplicative noise.
Muñoz, Miguel A; Colaiori, Francesca; Castellano, Claudio
2005-11-01
A detailed study of the mean-field solution of Langevin equations with multiplicative noise is presented. Three different regimes depending on noise intensity (weak, intermediate, and strong noise) are identified by performing a self-consistent calculation on a fully connected lattice. The most interesting, strong-noise, regime is shown to be intrinsically unstable with respect to the inclusion of fluctuations, as a Ginzburg criterion shows. On the other hand, the self-consistent approach is shown to be valid only in the thermodynamic limit, while for finite systems the critical behavior is found to be different. In this last case, the self-consistent field itself is broadly distributed rather than taking a well defined mean value; its fluctuations, described by an effective zero-dimensional multiplicative noise equation, govern the critical properties. These findings are obtained analytically for a fully connected graph, and verified numerically both on fully connected graphs and on random regular networks. The results presented here shed some doubt on what is the validity and meaning of a standard mean-field approach in systems with multiplicative noise in finite dimensions, where each site does not see an infinite number of neighbors, but a finite one. The implications of all this on the existence of a finite upper critical dimension for multiplicative noise and Kardar-Parisi-Zhang problems are briefly discussed. PMID:16383683
Simulated Tempering and Swapping on Mean-Field Models
NASA Astrophysics Data System (ADS)
Bhatnagar, Nayantara; Randall, Dana
2016-08-01
Simulated and parallel tempering are families of Markov Chain Monte Carlo algorithms where a temperature parameter is varied during the simulation to overcome bottlenecks to convergence due to multimodality. In this work we introduce and analyze the convergence for a set of new tempering distributions which we call entropy dampening. For asymmetric exponential distributions and the mean field Ising model with an external field simulated tempering is known to converge slowly. We show that tempering with entropy dampening distributions mixes in polynomial time for these models. Examining slow mixing times of tempering more closely, we show that for the mean-field 3-state ferromagnetic Potts model, tempering converges slowly regardless of the temperature schedule chosen. On the other hand, tempering with entropy dampening distributions converges in polynomial time to stationarity. Finally we show that the slow mixing can be very expensive practically. In particular, the mixing time of simulated tempering is an exponential factor longer than the mixing time at the fixed temperature.
Beyond mean-field calculations for odd-mass nuclei.
Bally, B; Avez, B; Bender, M; Heenen, P-H
2014-10-17
Beyond mean-field methods are very successful tools for the description of large-amplitude collective motion for even-even atomic nuclei. The state-of-the-art framework of these methods consists in a generator coordinate method based on angular-momentum and particle-number projected triaxially deformed Hartree-Fock-Bogoliubov (HFB) states. The extension of this scheme to odd-mass nuclei is a long-standing challenge. We present for the first time such an extension, where the generator coordinate space is built from self-consistently blocked one-quasiparticle HFB states. One of the key points for this success is that the same Skyrme interaction is used for the mean-field and the pairing channels, thus avoiding problems related to the violation of the Pauli principle. An application to ^{25}Mg illustrates the power of our method, as agreement with experiment is obtained for the spectrum, electromagnetic moments, and transition strengths, for both positive and negative parity states and without the necessity for effective charges or effective moments. Although the effective interaction still requires improvement, our study opens the way to systematically describe odd-A nuclei throughout the nuclear chart. PMID:25361253
Mean field game theoretic approach for security in mobile ad-hoc networks
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Tang, Helen; Yu, F. Richard; Huang, Minyi
2013-05-01
Game theory can provide a useful tool to study the security problem in mobile ad hoc networks (MANETs). Most existing work on applying game theories to security only considers two players in the security game model: an attacker and a defender. While this assumption is valid for a network with centralized administration, it may not be realistic in MANETs, where centralized administration is not available. Consequently, each individual node in a MANET should be treated separately in the security game model. In this paper, using recent advances in mean field game theory, we propose a novel game theoretic approach for security in MANETs. Mean field game theory provides a powerful mathematical tool for problems with a large number of players. Since security defence mechanisms consume precious system resources (e.g., energy), the proposed scheme considers not only the security requirement of MANETs but also the system resources. In addition, each node only needs to know its own state information and the aggregate effect of the other nodes in the MANET. Therefore, the proposed scheme is a fully distributed scheme. Simulation results are presented to illustrate the effectiveness of the proposed scheme.
Antimagnetic rotation in 108,110In with tilted axis cranking relativistic mean-field approach
NASA Astrophysics Data System (ADS)
Sun, Wu-Ji; Xu, Hai-Dan; Li, Jian; Liu, Yong-Hao; Ma, Ke-Yan; Yang, Dong; Lu, Jing-Bing; Ma, Ying-Jun
2016-08-01
Based on tilted axis cranking relativistic mean-field theory within point-coupling interaction PC-PK1, the rotational structure and the characteristic features of antimagnetic rotation for ΔI = 2 bands in 108,110In are studied. Tilted axis cranking relativistic mean-field calculations reproduce the experimental energy spectrum well and are in agreement with the experimental I ∼ ω plot, although the calculated spin overestimates the experimental values. In addition, the two-shears-like mechanism in candidate antimagnetic rotation bands is clearly illustrated and the contributions from two-shears-like orbits, neutron (gd) orbits above Z = 50 shell and Z = 50, N = 50 core are investigated microscopically. The predicted B(E2), dynamic moment of inertia ℑ(2), deformation parameters β and γ, and ℑ(2)/B(E2) ratios in tilted axis cranking relativistic mean-field calculations are discussed and the characteristic features of antimagnetic rotation for the bands before and after alignment are shown. Supported by National Natural Science Foundation of China (11205068, 11205069, 11405072, 11475072, 11547308) and China Postdoctoral Science Foundation (2012M520667)
Mean-Field Approximation to the Hydrophobic Hydration in the Liquid-Vapor Interface of Water.
Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro
2016-03-01
A mean-field approximation to the solvation of nonpolar solutes in the liquid-vapor interface of aqueous solutions is proposed. It is first remarked with a numerical illustration that the solvation of a methane-like solute in bulk liquid water is accurately described by the mean-field theory of liquids, the main idea of which is that the probability (Pcav) of finding a cavity in the solvent that can accommodate the solute molecule and the attractive interaction energy (uatt) that the solute would feel if it is inserted in such a cavity are both functions of the solvent density alone. It is then assumed that the basic idea is still valid in the liquid-vapor interface, but Pcav and uatt are separately functions of different coarse-grained local densities, not functions of a common local density. Validity of the assumptions is confirmed for the solvation of the methane-like particle in the interface of model water at temperatures between 253 and 613 K. With the mean-field approximation extended to the inhomogeneous system the local solubility profiles across the interface at various temperatures are calculated from Pcav and uatt obtained at a single temperature. The predicted profiles are in excellent agreement with those obtained by the direct calculation of the excess chemical potential over an interfacial region where the solvent local density varies most rapidly. PMID:26595441
Finite- to zero-range relativistic mean-field interactions
Niksic, T.; Vretenar, D.; Lalazissis, G. A.; Ring, P.
2008-03-15
We study the relation between the finite-range (meson-exchange) and zero-range (point-coupling) representations of effective nuclear interactions in the relativistic mean-field framework. Starting from the phenomenological interaction DD-ME2 with density-dependent meson-nucleon couplings, we construct a family of point-coupling effective interactions for different values of the strength parameter of the isoscalar-scalar derivative term. In the meson-exchange picture this corresponds to different values of the {sigma}-meson mass. The parameters of the isoscalar-scalar and isovector-vector channels of the point-coupling interactions are adjusted to nuclear matter and ground-state properties of finite nuclei. By comparing results for infinite and semi-infinite nuclear matter, ground-state masses, charge radii, and collective excitations, we discuss constraints on the parameters of phenomenological point-coupling relativistic effective interaction.
Driven-dissipative Ising model: Mean-field solution
NASA Astrophysics Data System (ADS)
Goldstein, G.; Aron, C.; Chamon, C.
2015-11-01
We study the fate of the Ising model and its universal properties when driven by a rapid periodic drive and weakly coupled to a bath at equilibrium. The far-from-equilibrium steady-state regime is accessed by means of a Floquet mean-field approach. We show that, depending on the details of the bath, the drive can strongly renormalize the critical temperature to higher temperatures, modify the critical exponents, or even change the nature of the phase transition from second to first order after the emergence of a tricritical point. Moreover, by judiciously selecting the frequency of the field and by engineering the spectrum of the bath, one can drive a ferromagnetic Hamiltonian to an antiferromagnetically ordered phase and vice versa.
Double binding energy differences: Mean-field or pairing effect?
NASA Astrophysics Data System (ADS)
Qi, Chong
2012-10-01
In this Letter we present a systematic analysis on the average interaction between the last protons and neutrons in atomic nuclei, which can be extracted from the double differences of nuclear binding energies. The empirical average proton-neutron interaction Vpn thus derived from experimental data can be described in a very simple form as the interplay of the nuclear mean field and the pairing interaction. It is found that the smooth behavior as well as the local fluctuations of the Vpn in even-even nuclei with N ≠ Z are dominated by the contribution from the proton-neutron monopole interactions. A strong additional contribution from the isoscalar monopole interaction and isovector proton-neutron pairing interaction is seen in the Vpn for even-even N = Z nuclei and for the adjacent odd-A nuclei with one neutron or proton being subtracted.
Scattering bright solitons: Quantum versus mean-field behavior
NASA Astrophysics Data System (ADS)
Gertjerenken, Bettina; Billam, Thomas P.; Khaykovich, Lev; Weiss, Christoph
2012-09-01
We investigate scattering bright solitons off a potential using both analytical and numerical methods. Our paper focuses on low kinetic energies for which differences between the mean-field description via the Gross-Pitaevskii equation (GPE) and the quantum behavior are particularly large. On the N-particle quantum level, adding an additional harmonic confinement leads to a simple signature to distinguish quantum superpositions from statistical mixtures. While the nonlinear character of the GPE does not allow quantum superpositions, the splitting of GPE solitons takes place only partially. When the potential strength is increased, the fraction of the soliton which is transmitted or reflected jumps noncontinuously. We explain these jumps via energy conservation and interpret them as indications for quantum superpositions on the N-particle level. On the GPE level, we also investigate the transition from this stepwise behavior to the continuous case.
Lifting mean field degeneracies in anisotropic spin systems
NASA Astrophysics Data System (ADS)
Sizyuk, Yuriy; Perkins, Natalia; Wolfle, Peter
We propose a method for calculating the fluctuation contribution to the free energy of anisotropic spin systems with generic bilinear superexchange magnetic Hamiltonian based on the Hubbard-Stratonovich transformation. We show that this contribution splits the set of mean field degenerate states with rotational symmetry, and chooses states with the order parameter directed along lattice symmetric directions as the true ground states. We consider the simple example of Heisenberg-compass model on cubic lattice to show that depending on the relative strength of the compass and Heisenberg interactions the spontaneous magnetization is pinned to either one of the cubic directions or one of the cubic body diagonals with a intermediate phase in between where the minima and maxima of the free energy interchange. DMR-1005932, DMR-1511768, and NSF PHY11-25915.
Two stochastic mean-field polycrystal plasticity methods
Tonks, Michael
2008-01-01
In this work, we develop two mean-field polycrystal plasticity models in which the L{sup c} are approximated stochastically. Through comprehensive CPFEM analyses of an idealized tantalum polycrystal, we verify that the L{sup c} tend to follow a normal distribution and surmise that this is due to the crystal interactions. We draw on these results to develop the STM and the stochastic no-constraints model (SNCM), which differ in the manner in which the crystal strain rates D{sup c} are prescribed. Calibration and validation of the models are performed using data from tantalum compression experiments. Both models predict the compression textures more accurately than the FCM, and the SNCM predicts them more accurately than the STM. The STM is extremely computationally efficient, only slightly more expensive than the FCM, while the SNCM is three times more computationally expensive than the STM.
Superfluidity and mean-field energy loops: Hysteretic behavior in Bose-Einstein condensates
Mueller, Erich J.
2002-12-01
We present a theory of hysteretic phenomena in Bose gases, using superfluidity in one-dimensional rings and in optical lattices as primary examples. Through this study we are able to give a physical interpretation of swallow-tail loops recently found by many authors in the mean-field energy structure of trapped atomic gases. These loops are a generic sign of hysteresis, and in the present context are an indication of superfluidity. We have also calculated the rate of decay of metastable current-carrying states due to quantum fluctuations.
Stochastic mean-field dynamics for fermions in the weak-coupling limit
Lacroix, Denis
2006-04-15
Assuming that the effect of the residual interaction beyond the mean field is weak and has a short memory time, two approximate treatments of correlation in fermionic systems by means of the Markovian quantum jump are presented. A simplified scenario for the introduction of fluctuations beyond the mean field is presented first. In this theory, part of the quantum correlations between the residual interaction and the one-body density matrix are neglected and jumps occur between many-body densities formed of pairs of states D={phi}{sub a}><{phi}{sub b}/<{phi}{sub b}{phi}{sub a}>, where {phi}{sub a}> and {phi}{sub b}> are antisymmetrized products of single-particle states. The underlying stochastic mean-field theory is discussed and is applied to the monopole vibration of a spherical {sup 40}Ca nucleus under the influence of a statistical ensemble of two-body contact interactions. This framework is however too simplistic to account for both fluctuation and dissipation. In the second part of this work, an alternative quantum jump method is obtained without making the approximation on quantum correlations. By restricting to two-particle-two-hole residual interactions, the evolution of the one-body density matrix of a correlated system is transformed into a Lindblad equation. The associated dissipative dynamics can be simulated by quantum jumps between densities written as D=|{phi}><{phi}|, where |{phi}> is a normalized Slater determinant. The associated stochastic Schroedinger equation for single-particle wave functions is given.
First principles based mean field model for oxygen reduction reaction.
Jinnouchi, Ryosuke; Kodama, Kensaku; Hatanaka, Tatsuya; Morimoto, Yu
2011-12-21
A first principles-based mean field model was developed for the oxygen reduction reaction (ORR) taking account of the coverage- and material-dependent reversible potentials of the elementary steps. This model was applied to the simulation of single crystal surfaces of Pt, Pt alloy and Pt core-shell catalysts under Ar and O(2) atmospheres. The results are consistent with those shown by past experimental and theoretical studies on surface coverages under Ar atmosphere, the shape of the current-voltage curve for the ORR on Pt(111) and the material-dependence of the ORR activity. This model suggests that the oxygen associative pathway including HO(2)(ads) formation is the main pathway on Pt(111), and that the rate determining step (RDS) is the removal step of O(ads) on Pt(111). This RDS is accelerated on several highly active Pt alloys and core-shell surfaces, and this acceleration decreases the reaction intermediate O(ads). The increase in the partial pressure of O(2)(g) increases the surface coverage with O(ads) and OH(ads), and this coverage increase reduces the apparent reaction order with respect to the partial pressure to less than unity. This model shows details on how the reaction pathway, RDS, surface coverages, Tafel slope, reaction order and material-dependent activity are interrelated. PMID:22064886
Mean-field inference of Hawkes point processes
NASA Astrophysics Data System (ADS)
Bacry, Emmanuel; Gaïffas, Stéphane; Mastromatteo, Iacopo; Muzy, Jean-François
2016-04-01
We propose a fast and efficient estimation method that is able to accurately recover the parameters of a d-dimensional Hawkes point-process from a set of observations. We exploit a mean-field approximation that is valid when the fluctuations of the stochastic intensity are small. We show that this is notably the case in situations when interactions are sufficiently weak, when the dimension of the system is high or when the fluctuations are self-averaging due to the large number of past events they involve. In such a regime the estimation of a Hawkes process can be mapped on a least-squares problem for which we provide an analytic solution. Though this estimator is biased, we show that its precision can be comparable to the one of the maximum likelihood estimator while its computation speed is shown to be improved considerably. We give a theoretical control on the accuracy of our new approach and illustrate its efficiency using synthetic datasets, in order to assess the statistical estimation error of the parameters.
Individual based and mean-field modeling of direct aggregation
Burger, Martin; Haškovec, Jan; Wolfram, Marie-Therese
2013-01-01
We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the first-order model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. PMID:24926113
Mean-field-diffusion-induced chimera death state
NASA Astrophysics Data System (ADS)
Banerjee, Tanmoy
2015-06-01
Recently a novel dynamical state, called the chimera death, has been discovered in a network of nonlocally coupled identical oscillators (Zakharova A., Kapeller M. and Schöll E., Phys. Rev. Lett., 112 (2014) 154101), which is defined as the coexistence of spatially coherent and incoherent oscillation death state. This state arises due to the interplay of nonlocality and symmetry breaking and thus it bridges the gap between two important dynamical states, namely the chimera and oscillation death. In this paper we show that the chimera death can be induced in a network of generic identical oscillators with mean-field diffusive coupling and thus we establish that a nonlocal coupling is not essential to obtain chimera death. We identify a new transition route to the chimera death state, namely the transition from in-phase synchronized oscillation to chimera death via global amplitude death state. We ascribe the occurrence of chimera death to the bifurcation structure of the network in the limiting condition and show that multi-cluster chimera death states can be achieved by a proper choice of initial conditions.