Science.gov

Sample records for measured residual stresses

  1. Residual stress measurement in YBCO thin films.

    SciTech Connect

    Cheon, J. H.; Singh, J. P.

    2002-05-13

    Residual stress in YBCO films on Ag and Hastelloy C substrates was determined by using 3-D optical interferometry and laser scanning to measure the change in curvature radius before and after film deposition. The residual stress was obtained by appropriate analysis of curvature measurements. Consistent with residual thermal stress calculations based on the thermal expansion coefficient mismatch between the substrates and YBCO film, the measured residual stress in the YBCO film on Hastelloy C substrate was tensile, while it was compressive on the Ag substrate. The stress values measured by the two techniques were generally in good agreement, suggesting that optical interferometry and laser scanning have promise for measuring residual stresses in thin films.

  2. Ultrasonics used to measure residual stress

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Ultrasonic method is used to measure residual stress in metal structures. By using this method, various forms of wave propagation in metals are possible, and more thorough analysis of complex geometric structures may be had.

  3. System and method for measuring residual stress

    DOEpatents

    Prime, Michael B.

    2002-01-01

    The present invention is a method and system for determining the residual stress within an elastic object. In the method, an elastic object is cut along a path having a known configuration. The cut creates a portion of the object having a new free surface. The free surface then deforms to a contour which is different from the path. Next, the contour is measured to determine how much deformation has occurred across the new free surface. Points defining the contour are collected in an empirical data set. The portion of the object is then modeled in a computer simulator. The points in the empirical data set are entered into the computer simulator. The computer simulator then calculates the residual stress along the path which caused the points within the object to move to the positions measured in the empirical data set. The calculated residual stress is then presented in a useful format to an analyst.

  4. Accuracy evaluation of residual stress measurements

    SciTech Connect

    Yerman, J.A.; Kroenke, W.C.; Long, W.H.

    1996-05-01

    The accuracy of residual stress measurement techniques is difficult to assess due to the lack of available reference standards. To satisfy the need for reference standards, two specimens were designed and developed to provide known stress magnitudes and distributions: one with a uniform stress distribution and one with a nonuniform linear stress distribution. A reusable, portable load fixture was developed for use with each of the two specimens. Extensive bench testing was performed to determine if the specimens provide desired known stress magnitudes and distributions and stability of the known stress with time. The testing indicated that the nonuniform linear specimen and load fixture provided the desired known stress magnitude and distribution but that modifications were required for the uniform stress specimen. A trial use of the specimens and load fixtures using hole drilling was successful.

  5. Residual stress measurements in carbon steel

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Min, N.

    1986-01-01

    External dc magnetic field-induced changes in natural velocity of Rayleigh surface waves were measured in steel specimens under various stress conditions. The low field slopes of curves representing the fractional changes of natural velocity were proved to provide correct stress information in steels with different metallurgical properties. The slopes of curves under uniaxial compression, exceeding about one third of the yield stress, fell below zero in all the specimens when magnetized along the stress axis. The slopes under tension varied among different steels but remained positive in any circumstances. The stress effect was observed for both applied and residual stress. A physical interpretation of these results is given based on the stress-induced domain structure changes and the delta epsilon effect. Most importantly, it is found that the influence of detailed metallurgical properties cause only secondary effects on the obtained stress information.

  6. Residual Stress Measurement Using Rectangular Spiral Coils

    NASA Astrophysics Data System (ADS)

    Sun, Haiyan; Plotnikov, Yuri

    2008-02-01

    Shot peening process provides compressive residual stress within a depth of about 150˜200 um from the surface. It has been demonstrated that multi-frequency eddy current measurement can be effectively used for the residual stress estimation on Ni-based superalloys. In order to measure the stress profile over the entire compressive zone, the probe needs to work in a wide frequency range from 0.1 MHz to above 50 MHz. Due to its wide bandwidth and high precision fabrication process, spiral coils fabricated on flexible substrate using photolithographic technology are good candidate for this task It is useful to develop a coil model in order to optimize coil design, minimize liftoff effect and maximize coil gauge factor. In this work, a 3D analytical model was used to simulate rectangular spiral coil response on a half-space conductor. The results were compared with commercial available 3D finite element software and experimental results. The analytical model was also used to simulate 4-point calibration process that was used to calculate apparent eddy current conductivity (AECC). The experimental setup was described and AECC profile was obtained for shot-peening samples with different peening intensity and different heat treatment.

  7. Measurment Of Residual Stress In Ferromagnetic Materials

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.

    1992-01-01

    Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.

  8. Measurement of residual stresses using fracture mechanics weight functions

    SciTech Connect

    Fan, Y.

    2000-10-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed.

  9. Photoelastic measurements of residual stresses for NDE

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.

    1988-01-01

    Photoelastic measurements of residual strains are used extensively in the QC and inspection of transparent materials. A new method of measurements, based on Spectral Contents Analysis, is described in this paper. The method uses a personal computer for photoelastic data acquisition, eliminating personal skill and subjectivity. the new tool should make the measurements of residual strains for QC simpler and more reliable.

  10. Measurements of residual stress in fracture mechanics coupons

    SciTech Connect

    Prime, Michael B; Hill, Michael R; Nav Dalen, John E

    2010-01-01

    This paper describes measurements of residual stress in coupons used for fracture mechanics testing. The primary objective of the measurements is to quantify the distribution of residual stress acting to open (and/or close) the crack across the crack plane. The slitting method and the contour method are two destructive residual stress measurement methods particularly capable of addressing that objective, and these were applied to measure residual stress in a set of identically prepared compact tension (C(T)) coupons. Comparison of the results of the two measurement methods provides some useful observations. Results from fracture mechanics tests of residual stress bearing coupons and fracture analysis, based on linear superposition of applied and residual stresses, show consistent behavior of coupons having various levels of residual stress.

  11. Measurement of residual stress in bent pipelines

    NASA Astrophysics Data System (ADS)

    Alers, G. A.; McColskey, J. D.

    2002-05-01

    Buried gas and oil pipelines can be subjected to unexpected bending loads caused by such earth movements as earthquakes, wash-outs, road building, or mining subsidence as well as by denting from unintentional digging. In order to make a fitness-for-service assessment, it is necessary to measure any residual stresses that are left in the pipe wall as well as the degree of plastic flow within regions of severe damage. A portable instrument that uses EMATs to rapidly measure ultrasonic shear wave birefringence in the wall of a pipe has been developed and applied to a 5 m (15 ft) long section of 0.56 m (22 in) diameter linepipe loaded in three point bending by a 22 MN (five million pound) load frame. The results showed that: (1) a large correction for shear wave anisotropy caused by texture in the steel had to be introduced and (2) the degree of plastic flow could be deduced from changes in the texture contribution alone. An attempt to separate the stress and texture effects by using SH wave modes in the pipe wall proved unreliable because of magnetostrictive effects in the periodic permanent magnet EMATs used for these experiments.

  12. Residual stress determination from a laser-based curvature measurement

    SciTech Connect

    W. D. Swank; R. A. Gavalya; J. K. Wright; R. N. Wright

    2000-05-08

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  13. Residual Stress Determination from a Laser-Based Curvature Measurement

    SciTech Connect

    Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil

    2000-05-01

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  14. Low-field magnetoacoustic residual stress measurement in steel

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Utrata, D.; Heyman, J. S.; Allison, S. G.

    1987-01-01

    Much of the recent development of the magnetoacoustic technique has been devoted to refine this technique as a reliable and practical tool for measuring bulk residual stress in steel components. For this, the effects of structural and metallurgical properties on the magnetoacoustic interaction have been studied for various types of steel samples. Also, progress is being made to obtain quantitative residual stress measurements in railroad wheels. This paper reviews the physical basis and the experimental results of the magnetoacoustic stress measurements in steels.

  15. Measuring of residual stresses in thermal sprayed coatings

    SciTech Connect

    Brandt, O.C.

    1995-12-31

    The Modified Almen Method (MAM) uses the deformation of test samples for measuring the residual stress and with small mathematical expenditure it yields the distribution in the coating. This paper presents the basic theory of MAM and the boundary conditions for using this method for the classification of thermal sprayed coatings with respect to the residual stress. The residual stress distribution of different HVOF coatings are shown in this work. Typical spray parameters are compared. The results are also compared with the ones calculated with other methods for the determination of the residual stress in thermal sprayed coatings.

  16. Residual stress measurements of tension leg platform tendon welds

    SciTech Connect

    Kim, D.S.; Smith, J.D.

    1994-12-31

    Results of fatigue test of prototype welded tendons showed that fatigue life was greatly reduced for the weld repaired joint. Since tensile residual stresses near the fusion boundary were suspected to cause the fatigue life reduction, these residual stresses were measured. Residual stresses of girth welded tendon pipes for a tension leg platform (TLP) were obtained for various fabrication conditions. The stresses were measured experimentally using the blind hole drilling (BHD) technique, X-ray diffraction (XRD) technique and Barkhausen Noise (BHN) method. The results of these measurements illustrate the reliability of each measurement technique. Effects of joint configuration, weld repair, weld cap grinding, and pre-fatigue test on residual stresses were discussed.

  17. Measured residual stresses in overlay pipe weldments removed from service

    SciTech Connect

    Shack, W.J.

    1985-02-01

    Surface and throughwall residual stresses were measured on an elbow-to-pipe weldment that had been removed from the Hatch-2 reactor about a year after the application of a weld overlay. The results were compared with experimental measurements on three mock-up weldments and with finite-element calculations. The comparison shows that there are significant differences in the form and magnitude of the residual stress distributions. However, even after more than a year of service, the residual stresses over most of the inner surface of the actual plant weldment with an overlay were strongly compressive. 3 refs., 7 figs.

  18. Methodologies for measuring residual stress distributions in epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Liu, M.; Ruan, H. H.; Zhang, L. C.

    2013-01-01

    Residual stresses in a thin film deposited on a dissimilar substrate can bring about various interface or subsurface damages, such as delamination, dislocation, twinning and cracking. In high performance integrated circuits and MEMS, a too high residual stress can significantly alter their electronic properties. A proper residual stress characterization needs the description of full stress tensors and their variations with thickness. The problem is that film thickness measurement requires different means, and that direct measurement techniques to fulfill the tasks are not straightforward. This paper provides a simple method using X-ray diffraction (XRD) and Raman scattering for the measurement of residual stresses and their thickness dependence. Using the epitaxial silicon film on a sapphire substrate as an example, this paper demonstrates that the improved XRD technique can make use of multiple diffraction peaks to give rise to a highly accurate stress tensor. The co-existence of silicon and sapphire peaks in a Raman spectrum then allows a simultaneous measurement of film thickness from the peak intensity ratio and the residual stress from the peak shift. The paper also concludes the relation between film thickness and residual stresses.

  19. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  20. Nondestructive method for measuring residual stresses in metals, a concept

    NASA Technical Reports Server (NTRS)

    Schwebel, C. D.

    1968-01-01

    Nondestructive direct measurement of residual surface stresses in metals can be made because metal under stress has a different electrochemical solution potential than in the unstressed condition. The method uses two matched electrolytic cells to cancel extraneous effects on the actual solution potential of the metal specimen.

  1. Residual stress measurement and analysis using ultrasonic techniques.

    NASA Technical Reports Server (NTRS)

    Noronha, P. J.; Chapman, J. R.; Wert, J. J.

    1973-01-01

    A technique which utilizes ultrasonic radiation has been developed to measure residual stresses in metals. This technique makes it possible to detect and measure the magnitude of the principle stresses and also to obtain their direction. The velocities of ultrasonic waves in materials are measured as the time to travel a fixed path length, and the change in transit time is related to the applied stress. The linear relationship obtained allows a procedure based on this principle to be used for the measurement of residual stress using surface waves and shear waves. A method for plotting stress profiles through a material using surface waves uses varying frequencies for the ultrasonic wave. A limitation of the shear wave method is considered. The system used for this technique is called the Modified Time of Flight System.

  2. Residual stress measurement and microstructural characterization of thick beryllium films

    SciTech Connect

    Detor, A; Wang, M; Hodge, A M; Chason, E; Walton, C; Hamza, A V; Xu, H; Nikroo, A

    2008-02-11

    Beryllium films are synthesized by a magnetron sputtering technique incorporating in-situ residual stress measurement. Monitoring the stress evolution in real time provides quantitative through-thickness information on the effects of various processing parameters, including sputtering gas pressure and substrate biasing. Specimens produced over a wide range of stress states are characterized via transmission and scanning electron microscopy, and atomic force microscopy, in order to correlate the stress data with microstructure. A columnar grain structure is observed for all specimens, and surface morphology is found to be strongly dependent on processing conditions. Analytical models of stress generation are reviewed and discussed in terms of the observed microstructure.

  3. Measurements of residual stresses and surface topography using optical techniques

    NASA Astrophysics Data System (ADS)

    Wang, Baishi

    The dissertation presents two breakthrough optical interferometric techniques for the measurements of both whole-field residual stresses and surface topography. First, the whole-field residual stress measurement technique is developed for the first time using moire interferometry and Twyman/Green interferometry coupled high temperature resistant grating technique and thermal annealing. In the measurement, a special high temperature resistant cross grating is firstly made on the sample surface, and the whole-field residual stress relief is achieved by thermal annealing. Moire interferometry and Twyman/Green interferometry are then utilized to measure both in-plane and out-of-plane deformations generated by the residual stress relaxation, and then to obtain the whole-field strain redistribution due to the residual stress relief. The technique has been successfully applied to the measurement of the whole-field generalized 2-D residual stresses (i.e. both in-plane stresses and the out-of-plane normal stresses) in the rail using a transverse rail slice based on plausible assumptions. Its comparison to hole-drilling method with moire interferometry shows good quantitative agreement. Some key issues for further development are identified and discussed. Second, a novel polarization phase-stepping shearing interferometry (PPSSI) is presented for the calibration-free measurement of surface topography regardless of any surface reflectivity variation. The PPSSI incorporates the polarization phase modulation and Nomarski shearing interferometry to measure wavefront phase difference, or surface slope, irrespective of any wavefront amplitude change. The principle and theory of the PPSSI are described using Jones matrix method. Experimental results and its applications to the topographic measurements and flat wafers and speckle samples are shown. In addition, the modulation transfer function (MTF) and impulse response of a PPSSI system are studied both analytically and

  4. Dual-axis hole-drilling ESPI residual stress measurements

    SciTech Connect

    Steinzig, Michael; Schajer, Gary

    2008-01-01

    A novel dual-axis ESPI hole-drilling residual stress measurement method is presented. The method enables the evaluation of all the in-plane normal stress components with similar response to measurement errors, significantly lower than with single-axis measurements. A numerical method is described that takes advantage of, and compactly handles, the additional optical data that are available from the second measurement axis. Experimental tests were conducted on a calibrated specimen to demonstrate the proposed method, and the results supported theoretical expectations.

  5. Effect of Measured Welding Residual Stresses on Crack Growth

    NASA Technical Reports Server (NTRS)

    Hampton, Roy W.; Nelson, Drew; Doty, Laura W. (Technical Monitor)

    1998-01-01

    Welding residual stresses in thin plate A516-70 steel and 2219-T87 aluminum butt weldments were measured by the strain-gage hole drilling and X-ray diffraction methods. The residual stress data were used to construct 3D strain fields which were modeled as thermally induced strains. These 3D strain fields were then analyzed with the WARP31) FEM fracture analysis code in order to predict their effect on fatigue and on fracture. For analyses of fatigue crack advance and subsequent verification testing, fatigue crack growth increments were simulated by successive saw-cuts and incremental loading to generate, as a function of crack length, effects on crack growth of the interaction between residual stresses and load induced stresses. The specimen experimental response was characterized and compared to the WARM linear elastic and elastic-plastic fracture mechanics analysis predictions. To perform the fracture analysis, the plate material's crack tearing resistance was determined by tests of thin plate M(T) specimens. Fracture analyses of these specimen were performed using WARP31D to determine the critical Crack Tip Opening Angle [CTOA] of each material. These critical CTOA values were used to predict crack tearing and fracture in the weldments. To verify the fracture predictions, weldment M(T) specimen were tested in monotonic loading to fracture while characterizing the fracture process.

  6. Residual Stress Measurements After Proof and Flight: ETP-0403

    NASA Technical Reports Server (NTRS)

    Webster, Ronald L..

    1997-01-01

    The intent of this testing was to evaluate the residual stresses that occur in and around the attachment details of a case stiffener segment that has been subjected to flight/recovery followed by proof loading. Not measured in this test were stresses relieved at joint disassembly due to out-of-round and interference effects, and those released by cutting the specimens out of the case segment. The test article was lightweight case stiffener segment 1U50715, S/N L023 which was flown in the forward stiffener position on flight SRM 14A and in the aft position on flight SRM24A. Both of these flights were flown with the 3 stiffener ring configuration. Stiffener L023 had a stiffener ring installed only on the aft stub in its first flight, and it had both rings installed on its second flight. No significant post flight damage was found on either flight. Finally, the segment was used on the DM-8 static test motor in the forward position. No stiffener rings were installed. It had only one proof pressurization prior to assignment to its first use, and it was cleaned and proof tested after each flight. Thus, the segment had seen 3 proof tests, two flight pressurizations, and two low intensity water impacts prior to manufacturing for use on DM-8. On DM-8 it received one static firing pressurization in the horizontal configuration. Residual stresses at the surface and in depth were evaluated by both the x-ray diffraction and neutron beam diffraction methods. The x-ray diffraction evaluations were conducted by Technology for Energy Corporation (TEC) at their facilities in Knoxville, TN. The neutron beam evaluations were done by Atomic Energy of Canada Limited (AECL) at the Chalk River Nuclear Laboratories in Ontario. The results showed general agreement with relatively high compressive residual stresses on the surface and moderate to low subsurface tensile residual stresses.

  7. Estimation of uncertainty for contour method residual stress measurements

    DOE PAGESBeta

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; Hill, Michael R.

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulnessmore » of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).« less

  8. Estimation of uncertainty for contour method residual stress measurements

    SciTech Connect

    Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; Hill, Michael R.

    2014-12-03

    This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulness of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).

  9. Effects of cutting and specimen size on neutron measurement of residual stresses

    NASA Astrophysics Data System (ADS)

    Law, M.; Luzin, V.; Kirstein, O.

    2010-11-01

    To perform neutron residual stress measurements it is often necessary to cut samples to a manageable size. The effects of cutting a girth welded pipe were investigated with analytical methods and finite element analysis. The effect of cutting on measured stresses was calculated. A simplified method of modelling residual stresses in welds, "chill modelling", is introduced. In ring slitting a cut is made in the axial direction and the deformation is maeesured. The change in elastic stress can be calculated and added to neutron diffraction measurements made on a cut ring to calculate the original stresses. Residual stress measurements were performed to validate the ring slitting correction using ANSTO's residual stress diffractometer Kowari.

  10. Residual Stress Measurements of Explosively Clad Cylindrical Pressure Vessels

    SciTech Connect

    Taylor, Douglas J; Watkins, Thomas R; Hubbard, Camden R; Hill, M. R.; Meith, W. A.

    2012-01-01

    Tantalum refractory liners were explosively clad into cylindrical pressure vessels, some of which had been previously autofrettaged. Using explosive cladding, the refractory liner formed a metallurgical bond with the steel of the pressure vessel at a cost of induced strain. Two techniques were employed to determine the residual stress state of the clad steel cylinders: neutron diffraction and mechanical slitting. Neutron diffraction is typically nondestructive; however, due to attenuation along the beam path, the cylinders had to be sectioned into rings that were nominally 25 mm thick. Slitting is a destructive method, requiring the sectioning of the cylindrical samples. Both techniques provided triaxial stress data and useful information on the effects of explosive cladding. The stress profiles in the hoop and radial directions were similar for an autofrettaged, nonclad vessel and a clad, nonautofrettaged vessel. The stress profiles in the axial direction appeared to be different. Further, the data suggested that residual stresses from the autofrettage and explosive cladding processes were not additive, in part due to evidence of reverse yielding. The residual stress data are presented, compared and discussed.

  11. X-ray diffraction measurement of residual stresses in thick, multi-pass steel weldments

    SciTech Connect

    Ruud, C.O.; Di Mascio, P.S.; Pangborn, R.N.; Snoha, D.J.

    1985-05-01

    A unique X-ray diffraction instrument for residual stress measurement has been developed that provides for speed, ease of measurement, accuracy, and economy of surface stress measurement. Application of this instrument with a material removal technique, e.g., electropolishing, has facilitated detailed, high resolution studies of three-dimensional stress fields. This paper describes the instrumentation and techniques applied to conduct the residual stress measurement and presents maps of the residual stress data obtained for the surfaces of a heavy 21/4 Cr 1 Mo steel plate weldment.

  12. Measurement and theory of the dependence of hardness on residual stress

    NASA Astrophysics Data System (ADS)

    Abbate, A.; Frankel, J.; Scholz, W.

    1993-05-01

    The Rockwell C hardness (Rc) was measured as a function of position on the three steel rings cut from tubes with different amounts of autofrettage. These rings had different residual stress profiles through the wall that were measured using an ultrasonic technique. An experimental correlation between residual stress and Rc was obtained. In order to model the effects of residual stress on the measured hardness, the Tresca (linear) and the von Mises-Hencky (power) yield criteria were utilized within a model given by Shaw, Hoshi, and Henry that depicts the stress state within a spherical indenter. The von Mises-Hencky method was more successful in matching the data.

  13. Neutron diffraction measurements of residual stresses in friction stir welding: a review

    SciTech Connect

    Woo, Wan Chuck; Feng, Zhili; Wang, Xun-Li; David, Stan A

    2011-01-01

    Significant amounts of residual stresses are often generated during welding and result in critical degradation of the structural integrity and performance of components. Neutron diffraction has become a well established technique for the determination of residual stresses in welds because of the unique deep penetration, three-dimensional mapping capability, and volume averaged bulk measurements characteristic of the scattering neutron beam. Friction stir welding has gained prominence in recent years. The authors reviewed a number of neutron diffraction measurements of residual stresses in friction stir welds and highlighted examples addressing how the microstructures and residual stresses are correlated with each other. An example of in situ neutron diffraction measurement result shows the evolution of the residual stresses during welding.

  14. Thermography analyses of the hole-drilling residual stress measuring technique

    NASA Astrophysics Data System (ADS)

    Honner, Milan; Litoš, Pavel; Švantner, Michal

    2004-03-01

    The paper deals with methods and results of thermography analyses of the hole-drilling residual stress measuring technique. Surface IR properties of the drilling mill and sample with strain gauge rosette of millimeter dimensions are determined by the emissivity and reflectivity measurements. Dynamic surface temperature field measurement is accompanied by the strain measurement during step-by-step drilling. Possible sources of errors in relation to the residual stress determination are discussed.

  15. Residual stresses in material processing

    SciTech Connect

    Kozaczek, K.J.; Watkins, T.R.; Hubbard, C.R.; Wang, Xun-Li; Spooner, S.

    1994-09-01

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then adresses the direct, nondestructive methods of residual stress measurement by X-ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  16. In-situ measurement of residual stresses during the nitriding process

    SciTech Connect

    Hoffman, F.T.; Kreft, U.; Hirsch, T.; Mayr, P.

    1995-12-31

    Residual stresses have a strong influence on the properties of nitrided parts. Therefore knowledge of their origin and magnitude is of great interest and a prerequisite if changes in the stresses are intended. From the relevant theories of residual stresses in gas nitrided materials it can be concluded that stresses which are generated during nitriding can be reduced by plastic deformation during the nitriding process and increased during cooling from nitriding temperature to room temperature. The increase of residual stresses in the compound layer should be a result of the volume misfit generated by different thermal expansion coefficients of compound layer and diffusion zone. These theories mentioned have not been confirmed by experimental work up to now. Therefore, one aim of the investigations was to clarify the origin of residual stresses as well as the different influences on the formation of residual stresses. Previously, residual stresses of nitrided parts could only be measured after nitriding. In the present work it will be shown, for the first time, that residual stresses can successfully be determined in situ during the gas nitriding process by a special nitriding device installed in an X-ray diffractometer. By this way the influences of the parameters nitriding potential, nitriding temperature, cooling process, and carbon content of the investigated material can be shown.

  17. A New Methodology For In-Situ Residual Stress Measurement In MEMS Structures

    NASA Astrophysics Data System (ADS)

    Sebastiani, M.; Bemporad, E.; Melone, G.; Rizzi, L.; Korsunsky, A. M.

    2010-11-01

    In this paper, a new approach is presented for local residual stress measurement in MEMS structures. The newly proposed approach involves incremental focused ion beam (FIB) milling of annular trenches at material surface, combined with high resolution SEM imaging and Digital Image Correlation (DIC) analysis for the measurement of the strain relief over the surface of the remaining central pillar. The proposed technique allows investigating the average residual stress on suspended micro-structures, with a spatial resolution lower than 1 μm. Results are presented for residual stress measurement on double clamped micro-beams, whose layers are obtained by DC-sputtering (PVD) deposition. Residual stresses were also independently measured by the conventional curvature method (Stoney's equation) on a similar homogeneous coating obtained by the same deposition parameters and a comparison and discussion of obtained results is performed.

  18. A New Methodology For In-Situ Residual Stress Measurement In MEMS Structures

    SciTech Connect

    Sebastiani, M.; Bemporad, E.; Melone, G.; Rizzi, L.; Korsunsky, A. M.

    2010-11-24

    In this paper, a new approach is presented for local residual stress measurement in MEMS structures. The newly proposed approach involves incremental focused ion beam (FIB) milling of annular trenches at material surface, combined with high resolution SEM imaging and Digital Image Correlation (DIC) analysis for the measurement of the strain relief over the surface of the remaining central pillar. The proposed technique allows investigating the average residual stress on suspended micro-structures, with a spatial resolution lower than 1 {mu}m. Results are presented for residual stress measurement on double clamped micro-beams, whose layers are obtained by DC-sputtering (PVD) deposition. Residual stresses were also independently measured by the conventional curvature method (Stoney's equation) on a similar homogeneous coating obtained by the same deposition parameters and a comparison and discussion of obtained results is performed.

  19. Accurate measurement of residual stress in glass rod by photoelastic experiment

    SciTech Connect

    Baek, Tae Hyun; Lee, Jae Choon; Kim, Dong Hyun

    1996-12-31

    Photoelastic law is used to measure residual stresses in glass rods which have been heat-treated at different temperatures ranging from 560{degrees}C to 665 {degrees}C. This research is performed to analyze the variation of residual stresses with respect to heat-treatment temperatures of glass rods. In order to measure the stresses accurately, both fringe sharpening and fringe multiplication techniques are applied to the determination of photoelastic fringe orders. The experimental results show that all the hoop stress components are changed from tensile stresses to compressive ones at approximate R/R{sub o}=0.6, where R is any measured radius and R{sub o} outer radius. For the borosilicate glass rods which are used in this experiment, residual stresses increase as heat-treatment temperatures are raised from 560{degrees}C to 665{degrees}C. These experimental results are compared with ones calculated by Instant Freezing Numerical Model.

  20. Measurement of residual stress in a multi-layer semiconductor heterostructure by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Qiu, Wei; Cheng, Cui-Li; Liang, Ren-Rong; Zhao, Chun-Wang; Lei, Zhen-Kun; Zhao, Yu-Cheng; Ma, Lu-Lu; Xu, Jun; Fang, Hua-Jun; Kang, Yi-Lan

    2016-07-01

    Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy (SEM), micro-Raman spectroscopy (MRS), and transmission electron microscopy (TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and cross-section residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.

  1. Laser Treatment of HVOF Coating: Modeling and Measurement of Residual Stress in Coating

    NASA Astrophysics Data System (ADS)

    Arif, A. F. M.; Yilbas, B. S.

    2008-10-01

    High-velocity oxy-fuel (HVOF) coating of diamalloy 1005 (similar to Inconel 625 alloy) onto the Ti-6Al-4V alloy is considered and laser-controlled melting of the coating is examined. The residual stress developed after the laser treatment process is modeled using the finite element method (FEM). The experiment is conducted to melt the coating using a laser beam. The residual stress measurement in the coating after the laser treatment process is realized using the XRD technique. The morphological and metallurgical changes in the coating are examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It is found that the residual stress reduces at the coating-base material interface and the residual stress predicted agrees with the XRD measurements. A compact and crack-free coating is resulted after the laser treatment process.

  2. Measurement and modeling of residual stress in net-shape plasma sprayed tubes

    SciTech Connect

    Bartlett, A.; Castro, R.G.

    1996-09-01

    Residual stresses in net-shaped plasma sprayed MoSi{sub 2} tubes were measured by x-ray microdiffraction as a function of radial position in the sample. A tensile to compressive hoop stress profile was measured, ranging 200 MPa in tension at the outer diameter, to -125 MPa at the inner. A force balance model was used to explain the evolution of stresses when incrementally adding layers to the pre-existent material.

  3. Residual-stress characterization by use of elastic-wave-scattering measurements

    SciTech Connect

    Domany, E.; Gubernatis, J.E.

    1982-01-01

    The presence of a state of residual stress in a material can impair its structural quality by adversely affecting its elastic limit, yield point, etc. In this paper we derive the appropriate equations for the use of elastic waves to probe an inhomogeneous state of residual stress. As in other treatments of ultrasonic residual stress measurement, we start with nonlinear effects and require knowledge of third order elastic constants. Unlike other treatments, which relate these nonlinear effects to small relative changes in propagation speed of an incident wave, we identify these effects as a source of scattering of the incident wave. Like other treatments, one difficulty with ultrasonic residual stress measurements is separating small residual stress effects from other effects. However, we will give an example of at least one class of problems where this separation appears possible using our approach. It is demonstrated that elastic wave propagation in the presence of non-uniform residual stress can be viewed as a scattering problem. One should note that in various limits, such as that of short wavelength, this scattering problem (as well as any other) can be treated by optical methods (ray bendings, diffraction, etc.). The special features of a scattering situation are expected to be important for smaller wavelengths, and therefore their experimental observability is questionable, and can be resolved only by careful and thorough measurements.

  4. Remarks on Residual Stress Measurement by Hole-Drilling and Electronic Speckle Pattern Interferometry

    PubMed Central

    2014-01-01

    Hole drilling is the most widespread method for measuring residual stress. It is based on the principle that drilling a hole in the material causes a local stress relaxation; the initial residual stress can be calculated by measuring strain in correspondence with each drill depth. Recently optical techniques were introduced to measure strain; in this case, the accuracy of the final results depends, among other factors, on the proper choice of the area of analysis. Deformations are in fact analyzed within an annulus determined by two parameters: the internal and the external radius. In this paper, the influence of the choice of the area of analysis was analysed. A known stress field was introduced on a Ti grade 5 sample and then the stress was measured in correspondence with different values of the internal and the external radius of analysis; results were finally compared with the expected theoretical value. PMID:25276850

  5. Measurement of residual stress in quenched 1045 steel by the nanoindentation method

    SciTech Connect

    Zhu Lina; Xu Binshi; Wang Haidou; Wang Chengbiao

    2010-12-15

    In this paper, the residual stress in quenched AISI 1045 steel was measured by a recently developed nanoindentation technique. Depth control mode was adopted to measure the residual stress. It was found that residual compressive stress was generated in the quenched steel. The material around nanoindents exhibits significant pile-up deformation. A new method was proposed to determine the real contact area for pile-up material on the basis of invariant pile-up morphology of the loaded or unloaded states. The results obtained by the new method were in good agreement with the residual stresses measured by the classical X-ray diffraction (XRD) method. - Research Highlights: {yields} A new method was proposed to measure the real contact area for pile-up materials. {yields} The real contact depth is defined as the sum of h{sub max} and the pile-up height h{sub p}. {yields} The value of residual stress measured by the nanoindentation method was in good agreement with that by the XRD method.

  6. Residual stress measurements in polycrystalline graphite with micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, Ram; Jones, Abbie N.; Edge, Ruth; Marsden, Barry J.

    2015-06-01

    Micro-Raman microscopy technique is applied to evaluate unevenly distributed residual stresses in the various constituents of polygranular reactor grades graphite. The wavenumber based Raman shift (cm-1) corresponds to the local residual stress and measurements of stress dependent first order Raman spectra in graphite have enabled localized residual stress values to be determined. The bulk polygranular graphite of reactor grades - Gilsocarbon, NBG-18 and PGA - are examined to illustrate the residual stress variations in their constituents. Binder phase and filler particles have shown to be under compressive and tensile stresses, respectively. Among the studied graphite grades, the binder phase in Gilsocarbon has the highest residual stress and NBG-18 has the lowest value. Filler particles in Gilsocarbon have the highest residual stress and PGA showed the lowest, this is most likely due to the morphology of the coke particles used in the manufacturing and applied processing techniques for fabrications. Stresses have also been evaluated along the peripheral of pores and at the tips of the cracks. Cracks in filler and binder phases have shown mixed behaviour, compressive as well as tensile, whereas pores in binder and filler particles have shown compressive behaviour. The stresses in these graphitic constituents are of the order of MPa. Non-destructive analyses presented in this study make the current state-of-the-art technique a powerful method for the study of stress variations near the graphite surface and are expected to increase its use further in property determination analysis of low to highly fluence irradiated graphite samples from the material test reactors.

  7. Residual stress measurements of welded components using synchrotron and neutron diffraction.

    SciTech Connect

    Paradowska, A. M.; Price, J. W .H; Finlayson, T. R.; Lienert, U.; Ibrahim, R.; Monash Univ.; Univ. of Melbourne

    2007-01-01

    Residual stress remains the single largest unknown in industrial damage situations. Residual stresses have a significant effect on corrosion, fracture resistance, creep and corrosion/fatigue performance and a reduction of these stresses is normally desirable. In this research high energy synchrotron (70 keV) radiation (at the Advanced Photon Source) and thermal neutrons (at the Lucas Heights Research Reactor) have been employed to investigate and compare the residual stress characteristics in fully restrained samples with different numbers of weld beads. The aim of the research was to characterize the residual stress distribution which arises in a welded component with increasing number of beads. The number and resolution of the measurements carried out in this work reveal significant features of the residual stress pattern in single bead in the as-welded condition and after post-weld heat treatment. The intention is to provide key data for the validation of design, fitness-for-purpose methodologies and finite-element tools. In this presentation the details of the synchrotron X-ray and neutron techniques will be compared and contrasted, utilizing results from a number of weldment samples.

  8. A photoelastic measurement system for residual stress analysis in scintillating crystals by conoscopic imaging

    NASA Astrophysics Data System (ADS)

    Montalto, L.; Paone, N.; Scalise, L.; Rinaldi, D.

    2015-06-01

    The assessment of the stress state of scintillating crystals is an important issue for producers as well as users of such materials, because residual stress may arise during growth process. In this paper, a measurement system, based on the use of a photoelastic, conoscopic optical setup, is proposed for the assessment of stress state in scintillating crystals. Local stress values can be measured on the crystal in order to observe their spatial distribution. With the proposed system, it is possible to vary the dimensions of the inspected measurement volume. It has been validated with reference to a known stress state induced in a birefringent crystal sample and it has been tested for the case of loaded and unloaded samples, showing sub-millimetric spatial resolution and stress uncertainty ≤0.25 MPa. The proposed measurement system is a valid method for the inspection of scintillating crystals required by producers and users of such materials.

  9. Residual stresses in resistance spot welding: Comparison of simulation and measured results

    SciTech Connect

    Sheppard, S.; Syed, M.

    1994-12-31

    Numerical simulations of welding processes offer researchers and engineers the opportunity to study in detail thermal and mechanical histories created by welding. The objective of this work is to explore the influence of the dynamically changing contact patch size on thermal and mechanical histories in resistance spot welding. To this end, a fully coupled electrical-thermal-mechanical simulation of RSW has been developed. The simulation considers welding and the subsequent cooling of the workpiece. The results of such a simulation are presented for the case of HSLA galvanized sheet and are compared with numerical results where such a coupling was not included. In particular, thermal histories and the final states of residual stresses are compared. Specifically, the fully coupled simulation results show that: (1) There is a 44% reduction in contact area at the faying surface as welding progresses. (2) There are substantial (near yield strength) residual stresses in the annulus surrounding the weld nugget. (3) Cooling rates in the nugget are on the order of 10,000{degrees}F/s when welding with electrode hold time. Rates are closer to 1000{degrees}F/s when there is no electrode hold time. (4) predicted residual stresses compare favorably with measured values. Note that it is extremely difficult (if not impossible) to make residual stress measurements in the area of greatest concern with regards to weld fatigue failure. The predicted residual stresses will be valuable input to engineers and researchers concerned with the fatigue performance of resistance spot welded structures.

  10. Measurement of residual stresses on ceramic materials with high spatial resolution

    SciTech Connect

    Kozaczek, K.J.; Ruud, C.O.; Fitting, J.D.

    1993-12-31

    A fast x-ray diffraction technique has been developed for measuring the residual stresses with high spatial resolution in ceramic materials. This resolution is limited by the mean size of grains and the radiation type. The effective diffraction elastic constants were experimentally determined for alumina as (E/l+{nu})){sub (1016)} = 200 GPa. The accuracy of XRD measurement of residual stresses with the spatial resolution of 170 {mu}m and precision {plus_minus} 15 MPa was verified experimentally by strain gauge measurements. The stress field around a singular Kovar pin brazed to alumina was asymmetric with high tangential stresses in the vicinity of the pin decreasing with the distance from the pin.

  11. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.

    PubMed

    Nuño, N; Madrala, A; Plamondon, D

    2008-08-28

    The initial fixation of a cemented hip implant relies on the strength of the interface between the stem, bone cement and adjacent bone. Bone cement is used as grouting material to fix the prosthesis to the bone. The curing process of bone cement is an exothermic reaction where bone cement undergoes volumetric changes that will generate transient stresses resulting in residual stresses once polymerization is completed. However, the precise magnitude of these stresses is still not well documented in the literature. The objective of this study is to develop an experiment for the direct measurement of the transient and residual radial stresses at the stem-cement interface generated during cement polymerization. The idealized femoral-cemented implant consists of a stem placed inside a hollow cylindrical bone filled with bone cement. A sub-miniature load cell is inserted inside the stem to make a direct measurement of the radial compressive forces at the stem-cement interface, which are then converted to radial stresses. A thermocouple measures the temperature evolution during the polymerization process. The results show the evolution of stress generation corresponding to volumetric changes in the cement. The effect of initial temperature of the stem and bone as well as the cement-bone interface condition (adhesion or no adhesion) on residual radial stresses is investigated. A maximum peak temperature of 70 degrees C corresponds to a peak in transient stress during cement curing. Maximum radial residual stresses of 0.6 MPa in compression are measured for the preheated stem. PMID:18692188

  12. Residual stress measurements in forced convective quenched steel bars by means of neutron diffraction

    SciTech Connect

    Hernandez-Morales, B.; Hawbolt, B.E.; Brimacombe, J.K.

    1996-12-31

    The residual stress distributions in 38.1 mm-dia., forced convective quenched bars of interstitial-free (IF), 1045 carbon, and alloyed steels were determined by neutron diffraction. The IF and 1045 carbon steel quenched bars exhibited compressive axial and circumferential (hoop) residual stresses near the surface and tensile values at the center. The radial residual stresses were tensile at all radial positions, decreasing towards zero near the surface. In contrast, the measured axial and circumferential components of the residual stress tensor in the alloyed eutectoid steel quenched bar were tensile near the surface and decreased to compressive values at the center. The radial component showed a maximum compressive value at the center and approached zero close to the surface. Metallographic analysis and hardness testing of the three steel specimens, revealed that the IF steel had transformed completely to ferrite, while the 1045 carbon steel bar transformed to martensite near the surface and a mixture of pearlite, ferrite and martensite at the center. On the other hand, the alloyed eutectoid steel specimen transformed entirely to martensite with small amounts of bainite near the center of the rod. The observed differences in the residual stress distributions in the three steels were explained based on the sequence of phase transformations that took place during quenching.

  13. Measuring multiple residual-stress components using the contour method and multiple cuts

    SciTech Connect

    Prime, Michael B; Swenson, Hunter; Pagliaro, Pierluigi; Zuccarello, Bernardo

    2009-01-01

    The conventional contour method determines one component of stress over the cross section of a part. The part is cut into two, the contour of the exposed surface is measured, and Bueckner's superposition principle is analytically applied to calculate stresses. In this paper, the contour method is extended to the measurement of multiple stress components by making multiple cuts with subsequent applications of superposition. The theory and limitations are described. The theory is experimentally tested on a 316L stainless steel disk with residual stresses induced by plastically indenting the central portion of the disk. The stress results are validated against independent measurements using neutron diffraction. The theory has implications beyond just multiple cuts. The contour method measurements and calculations for the first cut reveal how the residual stresses have changed throughout the part. Subsequent measurements of partially relaxed stresses by other techniques, such as laboratory x-rays, hole drilling, or neutron or synchrotron diffraction, can be superimposed back to the original state of the body.

  14. Residual Stress Measurements with Laser Speckle Correlation Interferometry and Local Heat Treating

    SciTech Connect

    Pechersky, M.J.; Miller, R.F.; Vikram, C.S.

    1994-01-06

    A new experimental technique has been devised to measure residual stresses in ductile materials with a combination of laser speckle pattern interferometry and spot heating. The speckle pattern interferometer measures in-plane deformations while the heating provides for very localized stress relief. The residual stresses are determined by the amount of strain that is measured subsequent to the heating and cool-down of the region being interrogated. A simple lumped parameter model is presented to provide a description of the method. This description is followed by presentations of the results of finite element analyses and experimental results with uniaxial test specimens. Excellent agreement between the experiments and the computer analyses were obtained.

  15. Residual stress measurement by successive extension of a slot: A literature review

    SciTech Connect

    Prime, M.B.

    1997-05-01

    This report reviews the technical literature on techniques that employ successive extension of a slot and the resulting deformations to measure residual stress. Such techniques are known variously in the literature as the compliance or crack compliance method, the successive cracking method, the slotting method, and a fracture mechanics based approach. The report introduces the field and describes the basic aspects of these methods. The report then reviews all literature on the theoretical developments of the method. The theory portion first considers forward method solutions including fracture mechanics, finite element, analytical, and body force methods. Then it examines inverse solutions, including incremental inverses and series expansions. Next, the report reviews all experimental applications of slotting methods. Aspects reviewed include the specimen geometry and material, the details of making the slot, the method used to measure deformation, and the theoretical solutions used to solve for stress. Finally, the report makes a brief qualitative comparison between slotting methods and other residual stress measurement methods.

  16. Residual stress measurements on thick plate low-alloy steel narrow gap weldments by x-ray diffraction

    SciTech Connect

    Rund, C.O.; DiMascio, P.S.; Pangborn, R.N.; Snoha, D.J.

    1984-06-01

    A unique x-ray diffraction instrument for residual stress measurement has been developed that provides for speed, ease of measurement, accuracy, and economy of surface stress measurement. Application of this instrument with a material removal technique, e.g., electropolishing, has facilitated detailed, high resolution studies of three-dimensional stress fields. This paper describes the instrumentation and techniques applied to conduct the residual stress measurement and presents maps of the residual stress data obtained for the surfaces of a heavy 2 1/4 Cr 1 Mo steel plate weldment.

  17. Residual Stresses in DC cast Aluminum Billet: Neutron Diffraction Measurements and Thermomechanical Modeling

    SciTech Connect

    Drezet, J.-M.; Evans, A.; Pirling, T.

    2011-05-04

    Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.

  18. Residual Stresses in DC cast Aluminum Billet: Neutron Diffraction Measurements and Thermomechanical Modeling

    NASA Astrophysics Data System (ADS)

    Drezet, J.-M.; Evans, A.; Pirling, T.

    2011-05-01

    Thermally-induced residual stresses, generated during the industrial Direct Chill casting process of aluminum alloys, can cause both significant safety concerns as well as the formation of defects during down-stream processing. Although these thermally induced strains can be partially relieved by permanent deformation, cracks will be generated either during solidification (hot tears) or post-solidification cooling (cold cracks) when stresses exceed the deformation limit of the alloy. Furthermore, the thermally induced strains result in the presence of large internal stresses within the billet before further processing steps. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. In the present work, the variation in residual elastic strains and stresses in the steady state regime of casting has been measured as a function of radial position using neutron diffraction in an AA6063 grain-refined cylindrical billet. These measurements have been carried out on the same billet section at Poldi at PSI-Villigen and at Salsa at ILL-Grenoble and compare favorably. The results are used to validate a thermo-mechanical finite element casting model and to assess the level of stored elastic energy within the billet.

  19. Thermal input control and enhancement for laser based residual stress measurements using liquid temperature indicating coatings

    DOEpatents

    Pechersky, M.J.

    1999-07-06

    An improved method for measuring residual stress in a material is disclosed comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress. 3 figs.

  20. Method for measuring residual stresses in materials by plastically deforming the material and interference pattern comparison

    DOEpatents

    Pechersky, Martin J.

    1995-01-01

    A method for measuring residual stress in a material comprising the steps of establishing a speckle pattern on the surface with a first laser then heating a portion of that pattern with an infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress dung heating and enables calculation of the stress.

  1. Thermal input control and enhancement for laser based residual stress measurements using liquid temperature indicating coatings

    DOEpatents

    Pechersky, Martin J.

    1999-01-01

    An improved method for measuring residual stress in a material comprising the steps of applying a spot of temperature indicating coating to the surface to be studied, establishing a speckle pattern surrounds the spot of coating with a first laser then heating the spot of coating with a far infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress during heating and enables calculation of the stress.

  2. Quantitative measurement of CO2 laser-induced residual stress in fused silica optics

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Liao, Wei; Miao, Xinxiang; Yuan, Xiaodong; Zheng, Wanguo; Lv, Haibin; Zhou, Guorui; Zu, Xiaotao; Xiang, Xia

    2015-05-01

    The residual stress field of fused silica induced by continuous wave CO2 laser irradiation is investigated with specific photoelastic methods. Both hoop stress and axial stress in the irradiated zone are measured quantitatively. For the hoop stress along the radial direction, the maximum phase retardance of 30 nm appears at the boundary of the laser distorted zone (680-μm distance to center), and the phase retardance decreases rapidly and linearly inward, and decreases slowly and exponentially outward. For the axial stress, tensile stress lies in a thin surface layer (<280 μm) and compressive stress lies just below the tensile region. Both tensile and compressive stresses increase first and then decrease along the depth direction. The maximum phase retardance induced by axial tensile stress is 150 nm, and the maximum phase retardance caused by axial compression stress is about 75 nm. In addition, the relationship between the maximum axial stress and the deformation height of the laser irradiated zone is also discussed.

  3. NEUTRON DIFFRACTION MEASUREMENT OF RESIDUAL STRESSES IN FRICTION STIR PROCESSED NANOCOMPOSITE SURFACE LAYER

    SciTech Connect

    Xu, Hanbing; Hubbard, Camden R; An, Ke; Wang, Xun-Li; Feng, Zhili; Qu, Jun

    2009-01-01

    Friction stir processing (FSP) was successfully used to stir and mix nano-sized Al2O3 particles into a Al6061-T6 aluminum plate to form a nanocomposite layer up to 3 mm thick. This nanocomposite surface has demonstrated significantly improved surface hardness, yield strength, and wear-resistance without sacrificing the substrate ductility and conductivity. Neutron diffraction analysis was conducted to determine the residual stress distribution in the nanocomposite surface layer. For comparison, the residual stress of the aluminum surface that was processed similarly but had no particle involved was also measured. Results showed that the macro-level residual stresses in the FSP zone without particles are low due to the annealing effect induced by the long heating time and large heat input. The macro-level residual stresses in the FSP-processed Al-Al2O3 nanocomposite zone are tensile up to 100 MPa in all three directions. The details of the results will be further discussed in the paper.

  4. Nondestructive evaluation of residual stresses in case hardened steels by magnetic anisotropy measurements

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.

    2012-05-01

    This paper reports on a recent study aimed at developing the stress-induced magnetic anisotropy (SMA) technique for characterizing residual stresses in case hardened steel components. The results of SMA measurements performed on flat induction hardened steel discs with different case depths confirm the feasibility of detecting principal stress axes by measuring the angular variation of magnetic permeability. The permeability signals along the principal axes were found to vary monotonically with the residual stresses measured by XRD, but the signals are in general smaller for samples with a larger case depth. The magnetomechanical properties of the martensitic case and ferritic/pearlitic core of the induction hardened sample were studied by measuring magnetostriction curves from strip samples that were cut from the case and core regions, respectively. The case strip shows a significantly lower magnetostriction than the core strip, indicating a weaker stress dependence of magnetic properties for the martensitic case than for the ferritic/pearlitic bulk of the case hardened samples.

  5. Measuring the elastic modulus and residual stress of freestanding thin films using nanoindentation techniques

    SciTech Connect

    Herbert, E.; Oliver, W. C.; De Boer, Maarten P.; Pharr, George Mathews

    2009-01-01

    A new method is proposed to determine the elastic modulus and residual stress of freestanding thin films based on nanoindentation techniques. The experimentally measured stiffness-displacement response is applied to a simple membrane model that assumes the film deformation is dominated by stretching as opposed to bending. Dimensional analysis is used to identify appropriate limitations of the proposed model. Experimental verification of the method is demonstrated for Al/0.5 wt% Cu films nominally 22 {micro}m wide, 0.55 {micro}m thick, and 150, 300, and 500 {micro}m long. The estimated modulus for the four freestanding films match the value measured by electrostatic techniques to within 2%, and the residual stress to within 19.1%. The difference in residual stress can be completely accounted for by thermal expansion and a modest change in temperature of 3 C. Numerous experimental pitfalls are identified and discussed. Collectively, these data and the technique used to generate them should help future investigators make more accurate and precise measurements of the mechanical properties of freestanding thin films using nanoindentation.

  6. Tutorial: Understanding residual stress in polycrystalline thin films through real-time measurements and physical models

    NASA Astrophysics Data System (ADS)

    Chason, Eric; Guduru, Pradeep R.

    2016-05-01

    Residual stress is a long-standing issue in thin film growth. Better understanding and control of film stress would lead to enhanced performance and reduced failures. In this work, we review how thin film stress is measured and interpreted. The results are used to describe a comprehensive picture that is emerging of what controls stress evolution. Examples from multiple studies are discussed to illustrate how the stress depends on key parameters (e.g., growth rate, material type, temperature, grain size, morphology, etc.). The corresponding stress-generating mechanisms that have been proposed to explain the data are also described. To develop a fuller understanding, we consider the kinetic factors that determine how much each of these processes contributes to the overall stress under different conditions. This leads to a kinetic model that can predict the dependence of the stress on multiple parameters. The model results are compared with the experiments to show how this approach can explain many features of stress evolution.

  7. Cross-Sectional Residual Stresses in Thermal Spray Coatings Measured by Moiré Interferometry and Nanoindentation Technique

    NASA Astrophysics Data System (ADS)

    Zhu, Jianguo; Xie, Huimin; Hu, Zhenxing; Chen, Pengwan; Zhang, Qingming

    2012-09-01

    A plasma-sprayed thermal barrier coating (TBC) was deposited on a stainless steel substrate. The residual stresses were firstly measured by moiré interferometry combined with a cutting relaxation method. The fringe patterns in the cross-section of the specimen clearly demonstrate the deformation caused by the residual stress in thermal spray coatings. However, restricted by the sensitivity of moiré interferometry, there are few fringes in the top coat, and large errors may exist in evaluating the residual stress in the top coat. Then, the nanoindentation technique was used to estimate the residual stresses across the coating thickness. The stress/depth profile shows that the process-induced stresses after thermal spray are compressive in the top coat and a tendency to a more compressive state toward the interface. In addition, the stress gradient in the substrate is nonlinear, and tensile and compressive stresses appear simultaneously for self-equilibrium in the cross-section.

  8. Measurements of residual stresses in the Parylene C film/silicon substrate using a microcantilever beam

    NASA Astrophysics Data System (ADS)

    Peng, Jyun-Siang; Fang, Weileun; Lin, Hung-Yi; Hsueh, Chun-Hway; Lee, Sanboh

    2013-09-01

    A series of Parylene C film/silicon substrate bilayer microcantilever beams were fabricated by microelectromechanical processes for the study of residual stresses. The Parylene C films of 2 µm thickness were deposited on the Si substrates with various thicknesses. After deposition at room temperature, deflection of the beam was observed with deposited Parylene C on the concave side. While Parylene C has a higher coefficient of thermal expansion than Si, this deflection is believed to result from the thermal mismatch between Parylene C and Si, and the temperature of monomer gas (which is formed at 690 °C) flowing across the sample could be higher than 25 °C. It is estimated to be 73 °C based on the fitting of the curvature versus substrate thickness relation between the measurements and analytical solutions. In this case, Parylene C films are subjected to tension. In addition, the residual stress in the Parlyene C film decreases with decreasing substrate thickness.

  9. Neutron scattering residual stress measurements on gray cast iron brake discs

    SciTech Connect

    Spooner, S.; Payzant, E.A.; Hubbard, C.R.

    1996-11-01

    Neutron diffraction was used to investigate the effects of a heat treatment designed to remove internal residual stresses in brake discs. It is believed that residual stresses may change the rate of deformation of the discs during severe braking conditions when the disc temperature is increased significantly. Neutron diffraction was used to map out residual strain distributions in a production disc before and after a stress-relieving heat treatment. Results from these neutron diffraction experiments show that some residual strains were reduced by as much as 400 microstrain by stress relieving. 5 refs., 5 figs., 1 tab.

  10. Experimental measurement and numerical simulation of residual stresses in a carburized layer of a 5120 steel

    SciTech Connect

    Rangaswamy, P.; Bourke, M.A.M.; Shipley, J.C.; Goldstone, J.A.

    1995-09-01

    A combined experimental and numerical study of residual stress and microstructure has been performed for a carburized steel 5120 specimen. Specimens were cut from 5120 steel bar stock, in the shape of hockey pucks and were subsequently carburized and quenched. X-ray diffraction was used to record stress profiles through the case for the martensite and retained austenite on the two flat surfaces oriented up and down during the quench. Layer removal was performed by electropolishing. Rietveld analysis was used to determine the lattice parameters of the phases at each depth varying with both carbon content and stress. The experimental measurements are compared with a numerical simulation of the phase transformation and the metallurgical changes following the carburization and quench. Results am discussed in the context of the microstructure and the role played by the retained austenite in interpretation. In addition the carbon profile obtained from the lattice parameters is compared with profiles measured using burnout.

  11. Non-destructive measurement and role of surface residual stress monitoring in residual life assessment of a steam turbine blading material

    NASA Astrophysics Data System (ADS)

    Prabhu-Gaunkar, Gajanana; Rawat, M. S.; Prasad, C. R.

    2014-02-01

    Steam turbine blades in power generation equipment are made from martensitic stainless steels having high strength, good toughness and corrosion resistance. However, these steels are susceptible to pitting which can promote early failures of blades in the turbines, particularly in the low pressure dry/wet areas by stress corrosion and corrosion fatigue. Presence of tensile residual stresses is known to accelerate failures whereas compressive stresses can help in delaying failures. Shot peening has been employed as an effective tool to induce compressive residual stresses which offset a part of local surface tensile stresses in the surface layers of components. Maintaining local stresses at stress raisers, such as pits formed during service, below a threshold level can help in preventing the initiation microcracks and failures. The thickness of the layer in compression will, however, depend of the shot peening parameters and should extend below the bottom of corrosion pits. The magnitude of surface compressive drops progressively during service exposure and over time the effectiveness of shot peening is lost making the material susceptible to micro-crack initiation once again. Measurement and monitoring of surface residual stress therefore becomes important for assessing residual life of components in service. This paper shows the applicability of surface stress monitoring to life assessment of steam turbine blade material based on data generated in laboratory on residual surface stress measurements in relation to fatigue exposure. An empirical model is proposed to calculate the remaining life of shot peened steam turbine blades in service.

  12. Measuring residual stresses in metallic components manufactured with fibre Bragg gratings embedded by selective laser melting

    NASA Astrophysics Data System (ADS)

    Havermann, Dirk; Mathew, Jinesh; MacPherson, William N.; Hand, Duncan P.; Maier, Robert R. J.

    2015-09-01

    Metal clad single mode optical fibres containing Fibre Bragg Gratings are embedded in stainless steel components using bespoke laser based Selective Laser Melting technology (SLM). Significant residual stresses can be created in SLM manufactured components through the strong thermal gradients during the build process. We demonstrate the ability to monitor these internal stresses through embedded optical fibres with FBGs on a layer to layer basis, confirming estimates from models for residual stresses in additive manufactured components.

  13. Neutron diffraction measurement of residual stresses in Al-clad U-10Mo fuel plates

    NASA Astrophysics Data System (ADS)

    Brown, D. W.; Okuniewski, M. A.; Clausen, B.; Moore, G. A.; Sisneros, T. A.

    2016-06-01

    Neutron diffraction was used to determine residual stress in monolithic two Al-clad U 10 weight percent Mo mini-fuel plates and a full sized fuel plate. One mini-plate was cooled following hot isostatic pressing at a rate of 6.75 °C/min, the second at 0.675 °C/min. A non-traditional method of calibrating the neutron diffractometer at each measurement point was necessitated by the thin nature of the sample. The in-plane stresses in the U-10Mo foils are relatively large, -250 MPa in the U-10Mo foil of the fast cooled mini-plate,-150 MPa in the slow cooled mini-plate and -275 MPa in the full-sized plate. Likewise, the in-plane stresses in the Al-cladding of the fast-cooled mini-plate and full-sized plate were determined to reach ∼50 MPa, while in the slow-cooled sample the stresses in the Al cladding were on the level of the measurement uncertainty. The in-plane stresses in the Zr diffusion barrier were estimated to be as large as -300 MPa.

  14. Residual stresses in welded plates

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1994-01-01

    The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.

  15. Compact sensor combining digital speckle pattern interferometry and the hole-drilling technique to measure nonuniform residual stress fields

    NASA Astrophysics Data System (ADS)

    Viotti, Matías R.; Albertazzi, Armando

    2013-10-01

    A portable device to essentially measure residual stress fields outside an optical bench is presented. This system combines the hole-drilling technique with digital speckle pattern interferometry. A novel feature of this device is its high degree of compaction since only one base supports simultaneously the measurement module and the hole-drilling device. A new version of the American society for testing and materials standard E837 for the measurement of residual stresses has been improved including a computation method for nonuniform residual stresses. According to this standard, a hole with a maximum depth of 1.0 mm should be introduced into the material to assess the stress distribution along the hole's depth. The discretization of the stress distribution is performed in 20 equal steps of 0.05 mm, getting the deformations generated for stress relief in every drilling step. A description of the compact device showing the solution for a fast and easy interchanging process between modules is also presented. The proposed system was compared with a traditional method using strain gages, and a good agreement was shown between stress distributions measured with both methods. Finally, the portable device was used to evaluate the residual stress distribution in a sample with a rod welded by friction hydro pillar processing.

  16. ETP-0492, Measured Residual Stresses in CYL S/N 53 Fretted Area

    NASA Technical Reports Server (NTRS)

    Webster, Ronald L.

    1998-01-01

    This test report presents the results of a residual stress survey of the inner clevis leg of lightweight cylinder SIN 053 as described by ETP-0492. The intent of this testing was to evaluate the residual stresses that occur in and around the inner clevis leg at the capture feature contact zone during a normal flight cycle. Lightweight case cylinder segment IU50717, S/N L053 from Flight STS-27 exhibited fretting around the contact zone of the inner clevis leg and the capture feature of the field joint. Post flight inspection revealed several large fitting pits on the inside of the inner clevis leg. This cylinder was assigned for both residual stress and metallurgical evaluation. This report is concerned only with the residual so= evaluations. The effects of glass bead cleaning and fi=ing were evaluated using the x-ray diffraction method.

  17. Minimization and Mitigation of Wire EDM Cutting Errors in the Application of the Contour Method of Residual Stress Measurement

    NASA Astrophysics Data System (ADS)

    Ahmad, Bilal; Fitzpatrick, Michael E.

    2016-01-01

    The contour method of residual stress measurement relies on the careful application of wire electro-discharge machining (WEDM) for the cutting stage. Changes in material removal rates during the cut lead to errors in the final calculated values of residual stress. In this study, WEDM cutting parameters have been explored to identify the optimum conditions for contour method residual stress measurements. The influence of machine parameters on the surface roughness and cutting artifacts in the contour cut is discussed. It has been identified that the critical parameter in improving the surface finish is the spark pulse duration. A typical cutting artifact and its impact on measured stress values have been identified and demonstrated for a contour cut in a welded marine steel. A procedure is presented to correct contour displacement data from the influence of WEDM cutting artifacts, and is demonstrated on the correction of a measured weld residual stress. The corrected contour method improved the residual stress magnitude up to 150 MPa. The corrected contour method results were validated by X-ray diffraction, incremental center hole drilling, and neutron diffraction.

  18. Development of Laser Ultrasonic Device for Residual Stress Measurement in Welded Structures

    SciTech Connect

    Subudhi, Manomohan

    2009-03-31

    A CRADA project was performed between BNL and SpectraQuest, Inc. of Richmond, Virginia under the auspices of IPP with the DOE support. The purpose was to jointly support Prokhorov General Physics Institute (GPI), Russian Academy of Sciences of Russia to develop a prototype Laser Ultrasonic Impact Testing (LUIT) device which could be commercialized and marketed. The device is based on laser-generated ultrasonic waves and can be used for measuring residual stresses in welded structures using a nondestructive technique. The work was performed from October 1, 2003 to September 30, 2009. The project resulted in development and validation of a prototype LUIT device. GPI - BNL – SpectraQuest partnership developed the LUIT device to the point where it could be commercialized and marketed for the special applications in the manufacturing field.

  19. Comparison of measured temperatures, thermal stresses and creep residues with predictions on a built-up titanium structure

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1987-01-01

    Temperature, thermal stresses, and residual creep stresses were studied by comparing laboratory values measured on a built-up titanium structure with values calculated from finite-element models. Several such models were used to examine the relationship between computational thermal stresses and thermal stresses measured on a built-up structure. Element suitability, element density, and computational temperature discrepancies were studied to determine their impact on measured and calculated thermal stress. The optimum number of elements is established from a balance between element density and suitable safety margins, such that the answer is acceptably safe yet is economical from a computational viewpoint. It is noted that situations exist where relatively small excursions of calculated temperatures from measured values result in far more than proportional increases in thermal stress values. Measured residual stresses due to creep significantly exceeded the values computed by the piecewise linear elastic strain analogy approach. The most important element in the computation is the correct definition of the creep law. Computational methodology advances in predicting residual stresses due to creep require significantly more viscoelastic material characterization.

  20. Three-dimensional welding residual stresses evaluation based on the eigenstrain methodology via X-ray measurements at the surface

    NASA Astrophysics Data System (ADS)

    Ogawa, Masaru

    2014-12-01

    In order to assure structural integrity for operating welded structures, it is necessary to evaluate crack growth rate and crack propagation direction for each observed crack non-destructively. Here, three dimensional (3D) welding residual stresses must be evaluated to predict crack propagation. Today, X-ray diffraction is used and the ultrasonic method has been proposed as non-destructive method to measure residual stresses. However, it is impossible to determine residual stress distributions in the thickness direction. Although residual stresses through a depth of several tens of millimeters can be evaluated non-destructively by neutron diffraction, it cannot be used as an on-site measurement technique. This is because neutron diffraction is only available in special irradiation facilities. Author pays attention to the bead flush method based on the eigenstrain methodology. In this method, 3D welding residual stresses are calculated by an elastic Finite Element Method (FEM) analysis from eigenstrains which are evaluated by an inverse analysis from released strains by strain gauges in the removal of the reinforcement of the weld. Here, the removal of the excess metal can be regarded as non-destructive treatment because toe of weld which may become crack starters can be eliminated. The effectiveness of the method has been proven for welded plates and pipes even with relatively lower bead height. In actual measurements, stress evaluation accuracy becomes poorer because measured values of strain gauges are affected by processing strains on the machined surface. In the previous studies, the author has developed the bead flush method that is free from the influence of the affecting strains by using residual strains on surface by X-ray diffraction. However, stress evaluation accuracy is not good enough because of relatively poor measurement accuracy of X-ray diffraction. In this study, a method to improve the estimation accuracy of residual stresses in this method is

  1. Non-destructive Measurement of Residual Stress Depth Profile in Laser-peened Steel at SPring-8

    SciTech Connect

    Sato, Masugu; Kajiwara, Kentaro; Sano, Yuji; Tanaka, Hirotomo; Akita, Koichi

    2007-01-19

    We investigated the residual stress depth profile near the surface of steel treated by laser peening without coating using X-ray diffraction at SPring-8. This investigation was carried out using a constant penetration depth sin2{psi} method. In this method, the sin2{psi} diagram is measured controlling both the {psi} angle and the X-ray penetration depth simultaneously with a combination of the {omega} and {chi} axes of the 4-circle goniometer. This method makes it possible to evaluate the residual stress and its depth profile in material with a stress gradient precisely and non-destructively. As a result, we confirmed that a compressive residual stress was successfully formed all over the range of the depth profile in the steel treated properly by laser peening without coating.

  2. Non-destructive Measurement of Residual Stress Depth Profile in Laser-peened Steel at SPring-8

    NASA Astrophysics Data System (ADS)

    Sato, Masugu; Sano, Yuji; Kajiwara, Kentaro; Tanaka, Hirotomo; Akita, Koichi

    2007-01-01

    We investigated the residual stress depth profile near the surface of steel treated by laser peening without coating using X-ray diffraction at SPring-8. This investigation was carried out using a constant penetration depth sin2ψ method. In this method, the sin2ψ diagram is measured controlling both the ψ angle and the X-ray penetration depth simultaneously with a combination of the ω and χ axes of the 4-circle goniometer. This method makes it possible to evaluate the residual stress and its depth profile in material with a stress gradient precisely and non-destructively. As a result, we confirmed that a compressive residual stress was successfully formed all over the range of the depth profile in the steel treated properly by laser peening without coating.

  3. Fabrication of speckle patterns by focused ion beam deposition and its application to micro-scale residual stress measurement

    NASA Astrophysics Data System (ADS)

    Zhu, Ronghua; Xie, Huimin; Xue, Yunfei; Wang, Liang; Li, YanJie

    2015-09-01

    This paper deals with the characterization of influence parameters on the fabrication of speckle patterns using FIB deposition. In many manufacturing processes the presence of residual stress is disturbing, and can significantly affect the mechanical properties of materials and structures. Digital image correlation (DIC) is validated to be an effective approach for the determination of micro-scale residual stress under the dual-beam microscope (FIB-EB). Considering the high-quality micro-scale speckle pattern is the prerequisite in DIC measurement, the influence parameters on the deposited speckle patterns, such as the quality of the speckle template, total deposition time, ion beam current density, and dwell time, are primarily discussed. Moreover, in the measurement of residual stress, the integrated fabrication technique under the FIB-EB dual-beam system is also explained, covering the following steps: fabrication of the speckle pattern by FIB deposition, slot milling for stress release by FIB, high-resolution SEM imaging before and after stress release as well as the deformation analysis by DIC. As application, the optimized micro-scale speckle patterns are deposited on the surface of laser shock peened metallic glass, and the residual stress distribution on the sample surface is successfully measured.

  4. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Mao, W. G.; Zhou, Y. C.; Lu, C.

    2010-09-01

    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2O 3-stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  5. As-Cast Residual Stresses in an Aluminum Alloy AA6063 Billet: Neutron Diffraction Measurements and Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Drezet, J.-M.; Phillion, A. B.

    2010-12-01

    The presence of thermally induced residual stresses, created during the industrial direct chill (DC) casting process of aluminum alloys, can cause both significant safety concerns and the formation of defects during downstream processing. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. Recently, the variation in residual elastic strains in the steady-state regime of casting has been measured as a function of radial position using neutron diffraction (ND) in an AA6063 grain-refined cylindrical billet. In the present study, these measurements are used to show that a well-designed thermomechanical finite element (FE) process model can reproduce relatively well the experimental results. A sensitivity analysis is then carried out to determine the relative effect of the various mechanical parameters when computing the as-cast residual stresses in a cylindrical billet. Two model parameters have been investigated: the temperature when the alloy starts to thermally contract and the plasticity behavior. It is shown that the mechanical properties at low temperatures have a much larger influence on the residual stresses than those at high temperatures.

  6. Measurement of residual stresses in deposited films of SOFC component materials

    SciTech Connect

    Kato, T.; Momma, A.; Nagata, S.; Kasuga, Y.

    1996-12-31

    The stress induced in Solid oxide fuel cells (SOFC)s has important influence on the lifetime of SOFC. But the data on stress in SOFC and mechanical properties of SOW component materials have not been accumulated enough to manufacture SOFC. Especially, the data of La{sub 1-x}Sr{sub x}MnO{sub 3} cathode and La{sub 1-x}Sr{sub x}CrO{sub 3} interconnection have been extremely limited. We have estimated numerically the dependences of residual stress in SOFC on the material properties, the cell structure and the fabrication temperatures of the components, but these unknown factors have caused obstruction to simulate the accurate behavior of residual stress. Therefore, the residual stresses in deposited La{sub 1-x}Sr{sub x}MnO{sub 3} and La{sub 1-x}Sr{sub x}CrO{sub 3} films are researched by the observation of the bending behavior of the substrate strips. The films of SOFC component materials were prepared by the RF sputtering method, because: (1) It can fabricate dense films of poor sinterable material such as La{sub 1-x}Sr{sub x}CrO{sub 3} compared with sintering or plasma spray method. (2) For the complicated material such as perovskite materials, the difference between the composition of a film and that of a target material is generally small. (3) It can fabricate a thick ceramics film by improving of the deposition rate. For example, Al{sub 2}O{sub 3} thick films of 50{mu}m can be fabricated with the deposition rate of approximately 5{mu}m/h industrially. In this paper, the dependence of residual stress on the deposition conditions is defined and mechanical properties of these materials are estimated from the results of the experiments.

  7. Comparison of three different techniques for measuring the residual stresses in an electron beam-welded plate of Waspaloy

    SciTech Connect

    Stone, H.J.; Withers, P.J.; Roberts, S.M.; Reed, R.C.; Holden, T.M.

    1999-07-01

    The longitudinal, transverse, and through-thickness (short-transverse) residual stresses in an electron beam-welded plate of Waspaloy, a high-strength nickel-based superalloy, have been characterized using neutron diffraction, X-ray diffraction, and a hole-drilling method. Where possible, the results from the different techniques, and the associated uncertainties, have been compared. For the neutron measurements, the {gamma}/{gamma}{prime} {l_brace}111{r_brace} peak was used for the determination of lattice strains. The X-ray measurements were carried out using Fe K{sub {alpha}} radiation, the sin{sup 2} {psi} technique, and the {l_brace}311{r_brace} {gamma}/{gamma}{prime} composite peak. The Matthar-Soete method was used for the incremental hole-drilling measurements. Unfortunately, due to texture effects, it was not possible to detect the residual stresses within the weld metal by the diffraction-based methods. for the Estimation of residual stresses, plane-specific values of the Young`s modulus and Poisson`s ratio were determined from tensile testpieces using in situ neutron diffractometry. When these data are used, it is found that the neutron, X-ray, and hole-drilling residual stress data are mutually consistent, although the absolute certainties vary with the method employed. The results indicate that, next to the weld, the longitudinal residual stresses approach 1000 MPa and are typically far greater (up to 5 times) than those in the transverse and through-thickness directions. The plastic upset zone has a size which is at least 3 times greater than the cross-sectional area of the weld metal; this suggests that, for accurate analysis of weld-induced distortion, attention should be paid to the evolution of residual stresses in the heat-affected zone as well as the fusion zone.

  8. In Situ Tensile Deformation and Residual Stress Measurement by Neutron Diffraction in Modified 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna; Charit, Indrajit; Potirniche, Gabriel

    2015-12-01

    The deformation behavior of monolithic modified 9Cr-1Mo (Grade 91) steel during uniaxial tensile loading was studied using the in situ neutron diffraction technique. The residual stress distribution across gas tungsten arc welds in the Grade 91 steel was measured by the time-of-flight neutron diffraction method using the SMARTS diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory. Grade 91 plates were welded using the gas tungsten arc welding (GTAW) technique. The load sharing by different grain orientations was observed during the tensile loading. The residual stresses along three orthogonal directions were determined at the mid-thickness, 4.35 and 2.35 mm below the surface of both the as-welded and post-weld heat-treated plates. The residual stresses of the as-welded plates were compared with those of the post-weld heat-treated plates. The post-weld heat treatment significantly reduced the residual stress level in the base metal, the heat-affected zone, and the weld zone. Vickers microhardness across the weld zone of the as-welded and post-weld heat-treated specimens was evaluated and correlated with the observed residual stress profile and microstructure.

  9. A Benchmark Study on Casting Residual Stress

    SciTech Connect

    Johnson, Eric M.; Watkins, Thomas R; Schmidlin, Joshua E; Dutler, S. A.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast

  10. Residual stress measurements in a zircaloy-4 weld by neutron diffraction

    SciTech Connect

    Carr, D.G.; Ripley, M.I.; Holden, T.M.; Brown, D.W.; Vogel, S.C

    2004-08-16

    The macroscopic stress distribution across a Zircaloy-4 gas tungsten arc weld was measured by time-of-flight neutron diffraction at the SMARTS diffractometer at Los Alamos National Laboratory. The method enabled the measurement of strain for all the available reflections permitted by the rolling texture of the plate and the modified texture in the weld-metal and heat affected zone. A maximum longitudinal stress of 220 {+-} 40 MPa was observed in the weld compared with the 0.2% yield stress of 390 MPa of the plate. A maximum transverse stress of 60 {+-} 40 MPa was observed in the weld. Textures were measured at the HIPPO diffractometer.

  11. Residual stress in sputtered gold films on quartz measured by the cantilever beam deflection technique.

    PubMed

    Thornell, G; Ericson, F; Hedlund, C; Ohrmaim, J; Schweitz, J A; Portnoff, G

    1999-01-01

    With resonator applications in mind, the residual stress in sputtered gold electrodes on quartz has been investigated with respect to various deposition rates (2, 10, and 50 A/s), pressures (1.0 and 3.0 10(-3) mbar), deposition temperatures (80 degrees C and room temperature (RT)), film thicknesses (approx. 400 to 800 A), and substrate smoothnesses (lapped and polished), using the cantilever beam deflection method. Samples were monitored for 4 weeks at room temperature followed by 13 weeks of annealing at 85 degrees C. The initial stress (ranging from -180 to -60 MPa) was compressive for all samples but turned tensile (a few megaPascals) in some of the samples after annealing. A significant decrease in initial compressive stress appeared with samples coated at an elevated temperature. From samples prepared at lower pressure and differing only in film thickness and substrate roughness, an increased compressive stress was found in thicker films and on rougher surfaces. The stress relaxation has been fitted to an exponential expression, and an attempt to relate the stress to a frequency shift (typically a few parts per million for ordinary, 100-mum thick AT blanks) has been made. With the help of transmission electron microscopy (TEM) the film morphology was investigated and related to the deposition parameters and aging. Judging from the increase in compressive stress and grain refinement with increased deposition rate and decreased pressure, the atomic peening mechanism is the most likely reason for the induced stress. Rutherford backscattering spectrometry (RBS) was employed to rule out the inclusion of argon (below or around 0.5%) as an explanation. From the vague, but clearly discernible, trend toward faster RT stress relaxation with higher initial stress, together with the finer film morphology, the relief mechanism is believed to be stress-promoted grain boundary diffusion. PMID:18238503

  12. Measurement of residual stress fields in FHPP welding: a comparison between DSPI combined with hole-drilling and neutron diffraction

    NASA Astrophysics Data System (ADS)

    Viotti, Matias R.; Albertazzi, Armando; Staron, Peter; Pisa, Marcelo

    2013-04-01

    This paper shows a portable device to measure mainly residual stress fields outside the optical bench. This system combines the traditional hole drilling technique with Digital Speckle Pattern Interferometry. The novel feature of this device is the high degree of compaction since only one base supports simultaneously the measurement module and the hole-drilling device. The portable device allows the measurement of non-uniform residual stresses in accordance with the ASTM standard. In oil and gas offshore industries, alternative welding procedures among them, the friction hydro pillar processing (FHPP) is highlighted and nowadays is an important maintenance tool since it has the capability to produce structure repairs without risk of explosions. In this process a hole is drilled and filled with a consumable rod of the same material. The rod, which could be cylindrical or conical, is rotated and pressed against the hole, leading to frictional heating. In order to assess features about the residual stress distribution generated by the weld into the rod as well as into the base material around the rod, welded samples were evaluated by neutron diffraction and by the hole drilling technique having a comparison between them. For the hole drilling technique some layers were removed by using electrical discharge machining (EDM) after diffraction measurements in order to assess the bulk stress distribution. Results have shown a good agreement between techniques.

  13. Residual stress patterns in steel welds

    SciTech Connect

    Spooner, S.; Hubbard, C.R.; Wang, X.L.; David, S.A.; Holden, T.M.; Root, J.H.; Swainson, I.

    1994-12-31

    Neutron strain scanning of residual stress is a valuable nondestructive tool for evaluation of residual stress in welds. The penetrating characteristic of neutrons permits mapping of strain patterns with a spatial resolution approaching 1mm at depths of 20mm in steels. While the overall patterns of the residual stress tensor in a weld are understood, the detailed patterns depend on welding process parameters and the effects of solid state transformation. The residual strain profiles in two multi-pass austenitic welds and a ferritic steel weld are presented. The stress-free lattice parameters within the fusion zone and the adjacent heat affected zone in the two austenitic welds show that the interpretation of residual stress from strains are affected by welding parameters. An interpretation of the residual strain pattern in the ferritic steel plate can be made using the strain measurements of a Gleeble test bar which has undergone the solid state austenite decomposition.

  14. Finite Element Modeling of the Bulk Magnitization of Railroad Wheels to Improve Test Conditions for Magnetoacoustic Residual Stress Measurements

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Namkung, M.; Utrata, D.

    1992-01-01

    The magnetoacoustic measurement technique has been used successfully for residual stress measurements in laboratory samples. However, when used to field test samples with complex geometries, such as railroad wheels, the sensitivity of the method declines dramatically. It has been suggested that the decrease in performance may be due, in part, to an insufficient or nonuniform magnetic induction in the test sample. The purpose of this paper is to optimize the test conditions by using finite element modeling to predict the distribution of the induced bulk magnetization of railroad wheels. The results suggest that it is possible to obtain a sufficiently large and uniform bulk magnetization by altering the shape of the electromagnet used in the tests. Consequently, problems associated with bulk magnetization can be overcome, and should not prohibit the magnetoacoustic technique from being used to make residual stress measurements in railroad wheels. We begin by giving a brief overview of the magnetoacoustic technique as it applies to residual stress measurements of railroad wheels. We then define the finite element model used to predict the behavior of the current test configuration along with the nonlinear constitutive relations which we obtained experimentally through measurements on materials typically used to construct both railroad wheels and electromagnets. Finally, we show that by modifying the pole of the electromagnet it is possible to obtain a significantly more uniform bulk magnetization in the region of interest.

  15. Residual stress measurement in thin films using a slitting method with geometric phase analysis under a dual beam (FIB/SEM) system

    NASA Astrophysics Data System (ADS)

    Zhu, Ronghua; Xie, Huimin; Dai, Xianglu; Zhu, Jianguo; Jin, Aizi

    2014-09-01

    Stress generated during thin film deposition is a critical issue for many applications. In general, the possible origins of the residual stress include intrinsic and extrinsic stresses. Since high residual stresses can cause detrimental effects on the film, such as delamination and wrinkle, it is of great importance to quantify the residual stress for the optimal design and the evaluation of its mechanical behavior. In this study, a method combining focused ion beam (FIB) milling and geometric phase analysis (GPA) is developed to assess the residual stress of thin films. The procedures of the residual stress measurement using this method include grating fabrication and slot milling by FIB, high-resolution scanning electron microscope (SEM) imaging of the grating before and after stress relaxation, and deformation analysis by GPA. The residual stress can be inferred from the released deformation using the reference displacements of the finite element model. As an application, this method was utilized to measure the residual stress in a TiAlSiN film, and the measured result is in good agreement with that obtained by the curvature method. In order to analyze the measurement error, the influence factors of Ga+ bombardment and the deposited platinum layer on the stress calculation are also discussed in detail.

  16. Swept frequency eddy current (SFEC) measurements of Inconel 718 as a function of microstructure and residual stress

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Ramya

    The goal of this thesis was to determine the dependency of swept frequency eddy current (SFEC) measurements on the microstructure of the Ni-based alloy, Inconel 718 as a function of heat treatment and shot peening. This involved extensive characterization of the sample using SEM and TEM coupled with measurements and analysis of the eddy current response of the various sample conditions using SFEC data. Specific objectives included determining the eddy current response at varying depths within the sample, and this was accomplished by taking SFEC measurements in frequencies ranging from 100 kHz to 50 MHz. Conductivity profile fitting of the resulting SFEC signals was obtained by considering influencing factors (such as surface damage). The problems associated with surface roughness and near surface damage produced by shot peening were overcome by using an inversion model. Differences in signal were seen as a result of precipitation produced by heat treatment and by residual stresses induced due to the shot peening. Hardness of the material, which is related both to precipitation and shot peening, was seen to correlate with the measured SFEC signal. Surface stress measurement was carried out using XRD giving stress in the near surface regions, but not included in the calculations due to shallow depth information provided by the technique compared to SFEC. By comparing theoretical SFEC signal computed using the microstructural values (precipitate fraction) and experimental SFEC data, dependency of the SFEC signals on microstructure and residual stress was obtained.

  17. Laser sheet scattered light method for industrial measurement of thickness residual stress distribution in flat tempered glass

    NASA Astrophysics Data System (ADS)

    Castellini, P.; Stroppa, L.; Paone, N.

    2012-05-01

    The paper presents the laser sheet scattered light technique, a fast optical non contact method for measuring internal stress distribution over a cross section of flat glass specimens, designed for closed loop control of glass tempering furnaces. The technique is an evolution of the scattered light method for flat glass residual stress analysis and allows a full thickness stress profile to be measured with a single shot acquisition across a glass plate without any contact. A linearly polarized laser sheet, shaped into a thin plane of parallel light beams, enters orthogonally to the side of the flat glass illuminating its full thickness. Light sheet is orthogonal to the glass surface and travels parallel to it. Stress induced birefringence through the glass affects light polarization, thus scattered light intensity detected at 90° with respect to the polarization of the incident light appears spatially modulated in intensity. A camera aligned orthogonal to the laser light polarization collects an image of fringes whose shape is digitally analyzed to measure the thickness stress state. The paper describes the development of this technique by recalling the scattered light method, then describing its automation by scanning a collimated beam across the glass thickness and finally by showing that the scan method can be substituted by the light sheet method. Light sheet method provides a full field non contact stress measurement across the glass thickness, thus allowing for a fast inspection method, suitable for industrial use. Flat glass items for industrial use have bevelled edges; this does not allow measurements close to glass surface. To solve this limit, experimental data are extrapolated by a symmetrical polynomial fitting and imposing a zero integral to the stress profile. Results on surface stress measured by the laser sheet scattered method are in agreement with those of the automated light scattered method and show a fair agreement with measurement by an

  18. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    SciTech Connect

    Hödemann, S. Möls, P.; Kiisk, V.; Saar, R.; Kikas, J.; Murata, T.

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  19. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    NASA Astrophysics Data System (ADS)

    Hödemann, S.; Möls, P.; Kiisk, V.; Murata, T.; Saar, R.; Kikas, J.

    2015-12-01

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na+ ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  20. Residual stresses in injection molded products

    NASA Astrophysics Data System (ADS)

    Jansen, K. M. B.

    2015-12-01

    During the molding process residual stresses are formed due to thermal contraction during cooling as well as the local pressure history during solidification. In this paper a simple analytical model is reviewed which relates residual stresses, product shrinkage as well as warpage to the temperature and pressure histories during molding. Precise excimer laser layer removal measurements were performed to verify the predicted residual stress distributions. In addition, detailed shrinkage and warpage measurements on a large series of polymers and for different molding conditions were performed and are shown to compare well with the model predictions.

  1. The Role of Cold Work in Eddy Current Residual Stress Measurements in Shot-Peened Nickel-Base Superalloys

    SciTech Connect

    Yu, F.; Nagy, P. B.

    2006-03-06

    Recently, it was shown that eddy current methods can be adapted to residual stress measurement in shot-peened nickel-base superalloys. However, experimental evidence indicates that the piezoresistivity effect is simply not high enough to account for the observed apparent eddy current conductivity (AECC) increase. At the same time, X-ray diffraction data indicates that 'cold work' lingers even when the residual stress is fully relaxed and the excess AECC is completely gone. It is impossible to account for both observations with a single coherent explanation unless we assume that instead of a single 'cold work' effect, there are two varieties of cold work; type-A and type-B. Type-A cold work (e.g., changes in the microscopic homogeneity of the material) is not detected by X-ray diffraction as it does not significantly affect the beam width, but causes substantial conductivity change and exhibits strong thermal relaxation. Type-B cold work (e.g., dislocations) is detected by X-ray, but causes little or no conductivity change and exhibits weak thermal relaxation. Based on the assumption of two separate cold-work variables and that X-ray diffraction results indicate the presence of type-B, but not type-A, all observed phenomena can be explained. If this working hypothesis is proven right, the separation of residual stress and type-A cold work is less critical because they both relax much earlier and much faster than type-B cold work.

  2. Longitudinal residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1976-01-01

    A method of measuring the longitudinal residual stress distribution in boron fibers is presented. The residual stresses in commercial CVD boron on tungsten fibers of 102, 142, and 203 microns (4, 5.6, and 8 mil) diameters were determined. Results for the three sizes show a compressive stress at the surface 800 to -1400 MN/sq m 120 to -200 ksi), changing monotonically to a region of tensile stress within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile 600 to 1000 MN/sq m(90 to 150 ksi) and then decreases to compressive near the tungsten boride core. The core itself is under a compressive stress of approximately -1300 MN/sq m (-190 ksi). The effects of surface removal on core residual stress and core-initiated fracture are discussed.

  3. Volumetric measurement of residual stress using high energy x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Whitesell, R.; McKenna, A.; Wendt, S.; Gray, J.

    2016-02-01

    We present results and recent developments from our laboratory, bench-top high energy x-ray diffraction system (HEXRD), between diffraction energies 50 and 150 KeV, to measure internal strain of moderately sized objects. Traditional x-ray strain measurements are limited to a few microns depth due to the use of Cu Kα1 Mo Kα1 radiation. The use of high energy x-rays for volumetric measurements of strain is typically the domain of synchrotron sources. We discuss the use of industrial 320kVp tube sources to generate a brighter x-ray beam along with a method using the intrinsic 43 eV width of the Kα1 characteristic peak of tungsten to measure volumetric strains in a number of industrially relevant materials. We will present volumetric strain measurements from two examples, first, additive manufacturing (AM) parts with various build configurations and, secondly, residual strain depth profiles from shot peened surface treatments. The spatial resolution of these depth profiles is ˜75 microns. The development of a faster method as compared to energy dispersive or θ-2θ scans is based on the intensity variation measurement of the strain using the aforementioned 43 eV characteristic tungsten kα line. We will present recent results on the development of this new tool and on x-ray diffraction measurements at high energy.

  4. Axial residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1978-01-01

    The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed.

  5. Residual Stress Analysis in Thick Uranium Films

    SciTech Connect

    Hodge, A M; Foreman, R J; Gallegos, G F

    2004-12-06

    Residual stress analysis was performed on thick, 1.0 to 25 {micro}m, depleted Uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0-300V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses.

  6. Residual Stress Predictions in Polycrystalline Alumina

    SciTech Connect

    VEDULA,VENKATA R.; GLASS,S. JILL; SAYLOR,DAVID M.; ROHRER,GREGORY S.; CARTER,W. CRAIG; LANGER,STEPHEN A.

    1999-12-13

    Microstructure-level residual stresses arise in polycrystalline ceramics during processing as a result of thermal expansion anisotropy and crystallographic disorientation across the grain boundaries. Depending upon the grain size, the magnitude of these stresses can be sufficiently high to cause spontaneous microcracking during the processing of these materials. They are also likely to affect where cracks initiate and propagate under macroscopic loading. The magnitudes of residual stresses in untextured and textured alumina samples were predicted using object oriented finite (OOF) element analysis and experimentally determined grain orientations. The crystallographic orientations were obtained by electron-backscattered diffraction (EBSD). The residual stresses were lower and the stress distributions were narrower in the textured samples compared to those in the untextured samples. Crack initiation and propagation were also simulated using the Griffith fracture criterion. The grain boundary to surface energy ratios required for computations were estimated using AFM groove measurements.

  7. PUFF TOO: a residual stress experiment

    SciTech Connect

    Smith, C.W.

    1980-04-01

    Following the passage of the dynamic effects in a contained explosive detonation, there remains a strong compressive stress field in the material about the cavity. In this experiment, a 454-kg (1000 lb) sphere of high explosive was detonated in saturated ashfall tuff. Instrumentation measured peak stresses over the range of 0.1 to 6.0 GPa (1 to 6 kbar) and the complete stress-time waveform, including the so-called residual stress, at the 0.1 GPa (1 kbar) peak stress range. Mineback revealed detonation-induced fractures and fractures induced by postevent work.

  8. High energy X-ray diffraction measurement of residual stresses in a monolithic aluminum clad uranium–10 wt% molybdenum fuel plate assembly

    SciTech Connect

    D. W. Brown; M. A. Okuniewski; J. D. Almer; L. Balogh; B. Clausen; J. S. Okasinski; B. H. Rabin

    2013-10-01

    Residual stresses are expected in monolithic, aluminum clad uranium 10 wt% molybdenum (U–10Mo) nuclear fuel plates because of the large mismatch in thermal expansion between the two bonded materials. The full residual stress tensor of the U–10Mo foil in a fuel plate assembly was mapped with 0.1 mm resolution using high-energy (86 keV) X-ray diffraction. The in-plane stresses in the U–10Mo foil are strongly compressive, roughly -250 MPa in the longitudinal direction and -140 MPa in the transverse direction near the center of the fuel foil. The normal component of the stress is weakly compressive near the center of the foil and tensile near the corner. The disparity in the residual stress between the two in-plane directions far from the edges and the tensile normal stress suggest that plastic deformation in the aluminum cladding during fabrication by hot isostatic pressing also contributes to the residual stress field. A tensile in-plane residual stress is presumed to be present in the aluminum cladding to balance the large in-plane compressive stresses in the U–10Mo fuel foil, but cannot be directly measured with the current technique due to large grain size.

  9. Residual stresses and stress corrosion cracking in pipe fittings

    SciTech Connect

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique.

  10. Laser-Ultrasonic Measurements of Residual Stresses in a 7075-T651 Aluminum Sample Surface-Treated with Low Plasticity Burnishing

    NASA Astrophysics Data System (ADS)

    Moreau, A.; Man, C.-S.

    2006-03-01

    Low-plasticity burnishing (LPB) is used to introduce deep compressive surface residual stresses that improve the durability of parts. A non-destructive measurement of residual stresses, their anisotropy, and distribution as a function of depth is being sought to verify initial process quality and residual stress retention over time. Laser-ultrasonic measurements of Rayleigh wave and surface skimming longitudinal wave (SSLW) velocities were used together to evaluate the magnitudes and directions of the two principal stresses independently of LPB-induced texture variations. The results agree with x-ray measurements at the surface. In addition, it was found that the laser-ultrasonic pulse generation mechanism was surface-process dependent.

  11. Laser-Ultrasonic Measurements of Residual Stresses in a 7075-T651 Aluminum Sample Surface-Treated with Low Plasticity Burnishing

    SciTech Connect

    Moreau, A.; Man, C.-S.

    2006-03-06

    Low-plasticity burnishing (LPB) is used to introduce deep compressive surface residual stresses that improve the durability of parts. A non-destructive measurement of residual stresses, their anisotropy, and distribution as a function of depth is being sought to verify initial process quality and residual stress retention over time. Laser-ultrasonic measurements of Rayleigh wave and surface skimming longitudinal wave (SSLW) velocities were used together to evaluate the magnitudes and directions of the two principal stresses independently of LPB-induced texture variations. The results agree with x-ray measurements at the surface. In addition, it was found that the laser-ultrasonic pulse generation mechanism was surface-process dependent.

  12. Review of magnetoacoustic residual stress measurement technique for iron-like ferromagnetic alloys

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Utrata, D.; Langlois, P.; Kushnick, P. W.; Grainger, J. L.

    1988-01-01

    It is shown that the elastic moduli of ironlike ferromagnetics depends explicitly on the state of 90 deg domain walls: the more 90 deg domain wall area available, the lower the elastic modulus. New experimental results obtained for three types of carbon and pure iron samples are presented. The magnetoacoustic response due to magnetization perpendicular to the uniaxial stress axis is considered as well as the magnetoacoustic response due to magnetization parallel to the uniaxial stress axis.

  13. Nondestructive measurement of the residual stress TiN thin film coated on AISI 304 substrate by x-ray stress analyzer

    NASA Astrophysics Data System (ADS)

    Zhang, Y. K.; Feng, A. X.; Lu, J. Z.; Kong, D. J.; Tang, C. P.

    2006-01-01

    Titanium nitride films are deposited on AISI 304 steel with a hollow-cathode-discharge (HCD) ion-plating technique. The status of residual stresses in TiN thin film coated on AISI304 substrate by HCD is studied by x-ray diffraction stress analyzer. By analyzing morphology of the residual stress of TiN thin film at interface between TiN film and AISI 304 substrate, the adhering mechanism of TiN thin film is understood as follows: the mechanical interlocking had important contribution to the adhesion strength, the thermal stress is the major factor which resulting TiN thin film peeling off spontaneously. The results show that the value of thin film is -210MPa~-650Mpa, and the thermal stress is compressive, the intrinsic stress is tensile, origins of the residual stress are primarily discussed.

  14. RESIDUAL STRESSES IN 3013 CONTAINERS

    SciTech Connect

    Mickalonis, J.; Dunn, K.

    2009-11-10

    The DOE Complex is packaging plutonium-bearing materials for storage and eventual disposition or disposal. The materials are handled according to the DOE-STD-3013 which outlines general requirements for stabilization, packaging and long-term storage. The storage vessels for the plutonium-bearing materials are termed 3013 containers. Stress corrosion cracking has been identified as a potential container degradation mode and this work determined that the residual stresses in the containers are sufficient to support such cracking. Sections of the 3013 outer, inner, and convenience containers, in both the as-fabricated condition and the closure welded condition, were evaluated per ASTM standard G-36. The standard requires exposure to a boiling magnesium chloride solution, which is an aggressive testing solution. Tests in a less aggressive 40% calcium chloride solution were also conducted. These tests were used to reveal the relative stress corrosion cracking susceptibility of the as fabricated 3013 containers. Significant cracking was observed in all containers in areas near welds and transitions in the container diameter. Stress corrosion cracks developed in both the lid and the body of gas tungsten arc welded and laser closure welded containers. The development of stress corrosion cracks in the as-fabricated and in the closure welded container samples demonstrates that the residual stresses in the 3013 containers are sufficient to support stress corrosion cracking if the environmental conditions inside the containers do not preclude the cracking process.

  15. FEA predictions of residual stress in stainless steel compared to neutron and x-ray diffraction measurements. [Finite element analysis

    SciTech Connect

    Flower, E.C.; MacEwen, S.R.; Holden, T.M.

    1987-05-01

    Residual stresses in a body arise from nonuniform plastic deformation and continue to be an important consideration in the design and the fabrication of metal components. The finite element method offers a potentially powerful tool for predicting these stresses. However, it is important to first verify this method through careful analysis and experimentation. This paper describes experiments using neutron and x-ray diffraction to provide quantitative data to compare to finite element analysis predictions of deformation induced residual stress in a plane stress austenitic stainless steel ring. Good agreement was found between the experimental results and the numerical predictions. Effects of the formulation of the finite element model on the analysis, constitutive parameters and effects of machining damage in the experiments are addressed.

  16. THE CONTOUR METHOD: SIMPLE 2-D MAPPING OF RESIDUAL STRESSES

    SciTech Connect

    M. PRIME; A. GONZALES

    2000-06-01

    We present an entirely new method for measuring residual stress that is extremely simple to apply yet more powerful than existing techniques. In this method, a part is carefully cut in two. The contour of the resulting new surface is measured to determine the displacements normal to the surface caused by the release of the residual stresses. Analytically, the opposite of these measured displacements are applied as boundary conditions to the surface in a finite element model. By Bueckner's superposition principle, this gives the original residual stresses normal to the plane of the cut. Unlike other relaxation methods for measuring residual stress, the measured data can be used to solve directly for the stresses without a tedious inversion technique. At the same time, an arbitrary two-dimensional variation in stresses can be determined. We demonstrate the method on a steel specimen with a known residual stress profile.

  17. Grinding Induced Changes in Residual Stresses of Carburized Gears

    SciTech Connect

    Lemaster, Robert A; Boggs, Bryan L; Bunn, Jeffrey R; Hubbard, Camden R; Watkins, Thomas R

    2009-01-01

    This paper presents the results of a study performed to measure the change in residual stress that results from the finish grinding of carburized gears. Residual stresses were measured in five gears using the x-ray diffraction equipment in the Large Specimen Residual Stress Facility at Oak Ridge National Laboratory. Two of the gears were hobbed, carburized, quenched and tempered, but not finished. The remaining three gears were processed similarly, but were finish ground. The residual stresses were measured at 64 different locations on a tooth from each gear. Residual stresses were also measured at fewer points on other teeth to determine the tooth-to-tooth variation. Tooth profile measurements were made of the finished and unfinished gear samples. The results show a fairly uniform and constant compressive residual field in the nonfinished gears. There was a significant reduction in the average residual stress measured in the finished gears. Additionally, there was a significant increase in the variability of the residual stress that was introduced by the grinding process. Analysis of the data suggests a linear relationship between the change in average residual stress and the amount of material removed by the grinding process.

  18. Quantifying Residual Stresses by Means of Thermoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2001-01-01

    This study focused on the application of the Thermoelastic Stress Analysis (TSA) technique as a tool for assessing the residual stress state of structures. TSA is based on the fact that materials experience small temperature changes when compressed or expanded. When a structure is cyclically loaded, a surface temperature profile results which correlates to the surface stresses. The cyclic surface temperature is measured with an infrared camera. Traditionally, the amplitude of a TSA signal was theoretically defined to be linearly dependent on the cyclic stress amplitude. Recent studies have established that the temperature response is also dependent on the cyclic mean stress (i.e., the static stress state of the structure). In a previous study by the authors, it was shown that mean stresses significantly influenced the TSA results for titanium- and nickel-based alloys. This study continued the effort of accurate direct measurements of the mean stress effect by implementing various experimental modifications. In addition, a more in-depth analysis was conducted which involved analyzing the second harmonic of the temperature response. By obtaining the amplitudes of the first and second harmonics, the stress amplitude and the mean stress at a given point on a structure subjected to a cyclic load can be simultaneously obtained. The experimental results showed good agreement with the theoretical predictions for both the first and second harmonics of the temperature response. As a result, confidence was achieved concerning the ability to simultaneously obtain values for the static stress state as well as the cyclic stress amplitude of structures subjected to cyclic loads using the TSA technique. With continued research, it is now feasible to establish a protocol that would enable the monitoring of residual stresses in structures utilizing TSA.

  19. Residual stress and crack propagation in laminated composites

    SciTech Connect

    Yttergren, R.M.F.; Zeng, K.; Rowcliffe, D.J.

    1994-12-31

    Residual stress distributions in several laminated ceramic composites were measured by an indentation technique. The material included alumina-zirconia laminated composites, containing strong interfaces, and alumina-porcelain laminated composites with both weak and strong interfaces. The residual stress in these material originates from the mismatch of the thermal properties, differences in elastic properties, and different shrinkage of the laminates during sintering. An experimental technique is presented which gives a direct view of the residual stress state in the materials. Values of residual tensile stress are presented as a function of position relative to the interface in each material.

  20. Consideratons Regarding the Alignment of Diffractometers for Residual stress Analysis

    SciTech Connect

    Watkins, Thomas R; Cavin, Odis Burl; Matlock, Beth

    2006-01-01

    Proper alignment of an X-ray diffractometer is critical to performing credible measurements, particularly for residual stress determinations. This article will emphasize practical aspects of diffractometer alignment and standards usage with regards to residual strain measurement. Essentially, what to do when one is confronted with a residual stress problem and an unfamiliar goniometer. Various alignment techniques, use of standards, and related issues will be discussed.

  1. Lamination residual stresses in fiber composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1975-01-01

    An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.

  2. A finite element model for residual stress in repair welds

    SciTech Connect

    Feng, Z.; Wang, X.L.; Spooner, S.; Goodwin, G.M.; Maziasz, P.J.; Hubbard, C.R.; Zacharia, T.

    1996-03-28

    This paper describes a three-dimensional finite element model for calculation of the residual stress distribution caused by repair welding. Special user subroutines were developed to simulate the continuous deposition of filler metal during welding. The model was then tested by simulating the residual stress/strain field of a FeAl weld overlay clad on a 2{1/4}Cr-1 Mo steel plate, for which neutron diffraction measurement data of the residual strain field were available. It is shown that the calculated residual stress distribution was consistent with that determined with neutron diffraction. High tensile residual stresses in both the longitudinal and transverse directions were observed around the weld toe at the end of the weld. The strong spatial dependency of the residual stresses in the region around the weld demonstrates that the common two-dimensional cross-section finite element models should not be used for repair welding analysis.

  3. Residual stresses and vector hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Ktena, Aphrodite

    2016-04-01

    Residual stresses in magnetic materials, whether the result of processing or intentional loading, leave their footprint on macroscopic data, such hysteresis loops and differential permeability measurements. A Preisach-type vector model is used to reproduce the phenomenology observed based on assumptions deduced from the data: internal stresses lead to smaller and misaligned grains, hence increased domain wall pinning and angular dispersion of local easy axes, favouring rotation as a magnetization reversal mechanism; misaligned grains contribute to magnetostatic fields opposing the direction of the applied field. The model is using a vector operator which accounts for both reversible and irreversible processes; the Preisach concept for interactions for the role of stress related demagnetizing fields; and a characteristic probability density function which is constructed as a weighed sum of constituent functions: the material is modeled as consisting of various subsystems, e.g. reversal mechanisms or areas subject to strong/weak long range interactions and each subsystem is represented by a constituent probability density function. Our assumptions are validated since the model reproduces the hysteresis loops and differential permeability curves observed experimentally and calculations involving rotating inputs at various residual stress levels are consistent and in agreement with experimental evidence.

  4. Residual stress in spin-cast polyurethane thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zhang, Li

    2015-01-01

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  5. Residual stress in spin-cast polyurethane thin films

    SciTech Connect

    Zhang, Hong; Zhang, Li

    2015-01-19

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  6. Improved analytical model for residual stress prediction in orthogonal cutting

    NASA Astrophysics Data System (ADS)

    Qi, Zhaoxu; Li, Bin; Xiong, Liangshan

    2014-09-01

    The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann's model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volumeconstancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann's model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann's model.

  7. Improved analytical model for residual stress prediction in orthogonal cutting

    NASA Astrophysics Data System (ADS)

    Qi, Zhaoxu; Li, Bin; Xiong, Liangshan

    2014-09-01

    The analytical model of residual stress in orthogonal cutting proposed by Jiann is an important tool for residual stress prediction in orthogonal cutting. In application of the model, a problem of low precision of the surface residual stress prediction is found. By theoretical analysis, several shortages of Jiann's model are picked out, including: inappropriate boundary conditions, unreasonable calculation method of thermal stress, ignorance of stress constraint and cyclic loading algorithm. These shortages may directly lead to the low precision of the surface residual stress prediction. To eliminate these shortages and make the prediction more accurate, an improved model is proposed. In this model, a new contact boundary condition between tool and workpiece is used to make it in accord with the real cutting process; an improved calculation method of thermal stress is adopted; a stress constraint is added according to the volume-constancy of plastic deformation; and the accumulative effect of the stresses during cyclic loading is considered. At last, an experiment for measuring residual stress in cutting AISI 1045 steel is conducted. Also, Jiann's model and the improved model are simulated under the same conditions with cutting experiment. The comparisons show that the surface residual stresses predicted by the improved model is closer to the experimental results than the results predicted by Jiann's model.

  8. Effects of residual stress on irradiation hardening in stainless steels

    NASA Astrophysics Data System (ADS)

    Okubo, N.; Miwa, Y.; Kondo, K.; Kaji, Y.

    2009-04-01

    Effects of residual stress on irradiation hardening were studied in advance for predicting irradiation assisted stress corrosion cracking. The specimens of SUS316 and SUS316L with several % plastic strains, which correspond to weld residual stress, were prepared by bending and keeping deformation under irradiation. Ion irradiations of 12 MeV Ni 3+ were performed at 330, 400 and 550 oC to 45 dpa. No bended specimen was simultaneously irradiated with the bended specimen. The residual stress was estimated by X-ray residual stress measurements before and after the irradiation. The micro-hardness was measured by using nanoindenter. The residual stress did not relax even for the case of the higher temperature aging at 500 oC for the same time of irradiation. The residual stress after ion irradiation up to high dpa, however, relaxed at these experimental temperatures. The irradiation hardening of stressed specimen was obviously lower than that of un-stressed one in case of SUS316L irradiated at 300 oC to 12 dpa.

  9. Creep Deformation, Rupture Analysis, Heat Treatment and Residual Stress Measurement of Monolithic and Welded Grade 91 Steel for Power Plant Components

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna

    Modified 9Cr-1 Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR), and in fossil-fuel fired power plants at higher temperatures and stresses. The tensile creep behavior of Grade 91 steel was studied in the temperature range of 600°C to 750°C and stresses between 35 MPa and 350 MPa. Heat treatment of Grade 91 steel was studied by normalizing and tempering the steel at various temperatures and times. Moreover, Thermo-Ca1c(TM) calculation was used to predict the precipitate stability and their evolution, and construct carbon isopleths of Grade 91 steel. Residual stress distribution across gas tungsten arc welds (GTAW) in Grade 91 steel was measured by the time-of-flight neutron diffraction using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM, USA. Analysis of creep results yielded stress exponents of ˜9-11 in the higher stress regime and ˜1 in the lower stress regime. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate-controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep. Creep rupture data were analyzed in terms of Monkman-Grant relation and Larson-Miller parameter. Creep damage tolerance factor and stress exponent were used to identify the cause of creep damage. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy to elucidate the failure mechanisms. Fracture mechanism map for Grade 91 steel was developed based on the available material parameters and experimental observations. The microstructural

  10. Neutron Diffraction Measurement of Residual Stresses, Dislocation Density and Texture in Zr-bonded U-10Mo ''Mini'' Fuel Foils and Plates

    SciTech Connect

    Brown, Donald W.; Okuniewski, M. A.; Sisneros, Thomas A.; Clausen, Bjorn; Moore, G. A.; Balogh, L

    2014-08-07

    Aluminum clad monolithic uranium 10 weight percent molybdenum (U-10Mo) fuel plates are being considered for conversion of several research and test nuclear reactors from high-enriched to low-enriched uranium fuel due to the inherently high density of fissile material. Comprehensive neutron diffraction measurements of the evolution of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the HIP procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stresses in the clad fuel plate do not depend strongly on the final processing step of the bare foil prior to HIP bonding. Rather, the residual stresses are dominated by the thermal expansion mismatch of the constituent materials of the fuel plate.

  11. Surface Residual Stresses in Ti-6Al-4V Friction Stir Welds: Pre- and Post-Thermal Stress Relief

    NASA Astrophysics Data System (ADS)

    Edwards, P.; Ramulu, M.

    2015-09-01

    The purpose of this study was to determine the residual stresses present in titanium friction stir welds and if a post-weld thermal stress relief cycle would be effective in minimizing those weld-induced residual stresses. Surface residual stresses in titanium 6Al-4V alloy friction stir welds were measured in butt joint thicknesses ranging from 3 to 12 mm. The residual stress states were also evaluated after the welds were subjected to a post-weld thermal stress relief cycle of 760 °C for 45 min. High (300-400 MPa) tensile residual stresses were observed in the longitudinal direction prior to stress relief and compressive residual stresses were measured in the transverse direction. After stress relief, the residual stresses were decreased by an order of magnitude to negligible levels.

  12. Neutron stress measurement of triaxial residual stress tensors in an aerospace weldment before and after post-weld heat-treatment

    SciTech Connect

    Winholtz, R.A.; Krawitz, A.D.

    1996-12-31

    Triaxial stress tensors and their corresponding principal stresses were determined with neutron diffraction, before and after post-weld heat-treatment, at 14 positions in and near a circumferential weld in a subscale model cylinder of the NASA-Advanced Solid Rocket Motor. No principal stress directions were assumed in making the measurements. The principal stresses range from {minus}393 to +1,045 MPa in the as-welded condition and decreased to a range of {minus}212 to +421 MPa after post-weld heat-treatment. The largest as-welded tensile stresses were located around the cap pass heat affected zone in the interior of the material and were aligned with the hoop direction of the cylinder.

  13. Method For Characterizing Residual Stress In Metals

    DOEpatents

    Jacobson, Loren A.; Michel, David J.; Wyatt, Jeffrey R.

    2002-12-03

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  14. Residual stresses in weld deposited clad pressure vessels and nozzles

    SciTech Connect

    Jones, D.P.; Mabe, W.R.; Shadley, J.R.; Rybicki, E.F.

    1998-04-01

    Results of through-thickness residual stress measurements are provided for a variety of samples of weld deposited 308/309L stainless steel and Alloy 600 cladding on low-alloy pressure vessel ferritic steels. Clad thicknesses between 5 and 9mm on samples that vary in thickness from 45 to 200mm were studied. The samples were taken from flat plates, from a spherical head of a pressure vessel, from a ring-segment of a nozzle bore, and from the transition radius between a nozzle and a pressure vessel shell. A layer removal method was used to measure the residual stresses. The effects of uncertainties in elastic constants (Young`s modulus and Poisson`s ratio) as well as experimental error are assessed. All measurements were done at room temperature. The results of this work indicate that curvature plays a significant role in cladding residual stress and that tensile residual stresses as high as the yield stress can be measured in the cladding material. Since the vessel from which the spherical and nozzle corner samples were taken was hydrotested, and the flat plate specimens were taken from specimens used in mechanical fatigue testing, these results suggest that rather high tensile residual stresses can be retained in the cladding material even after some mechanical loading associated with hydrotesting and that higher levels of hydrotest loading would be required to alter the cladding residual stresses.

  15. Residual stress effects in stress-corrosion cracking

    SciTech Connect

    Toribio, J.

    1998-04-01

    This paper describes a wide variety of residual stress effects in stress-corrosion cracking (SCC) of metallic materials on the basis of previous research of the author on high-strength steel in the form of hot-rolled bars and cold-drawn wires for prestressed concrete. It is seen that internal residual stress fields in the material play a very important -- if not decisive -- role in the SCC behavior of any engineering material, especially residual stresses generated near the free surface or in the vicinity of a crack tip.

  16. Noninvasive in vivo determination of residual strains and stresses.

    PubMed

    Donmazov, Samir; Piskin, Senol; Pekkan, Kerem

    2015-06-01

    Vascular growth and remodeling during embryonic development are associated with blood flow and pressure induced stress distribution, in which residual strains and stresses play a central role. Residual strains are typically measured by performing in vitro tests on the excised vascular tissue. In this paper, we investigated the possibility of estimating residual strains and stresses using physiological pressure-radius data obtained through in vivo noninvasive measurement techniques, such as optical coherence tomography or ultrasound modalities. This analytical approach first tested with in vitro results using experimental data sets for three different arteries such as rabbit carotid artery, rabbit thoracic artery, and human carotid artery based on Fung's pseudostrain energy function and Delfino's exponential strain energy function (SEF). We also examined residual strains and stresses in the human swine iliac artery using the in vivo experimental ultrasound data sets corresponding to the systolic-to-diastolic region only. This allowed computation of the in vivo residual stress information for loading and unloading states separately. Residual strain parameters as well as the material parameters were successfully computed with high accuracy, where the relative errors are introduced in the range of 0-7.5%. Corresponding residual stress distributions demonstrated global errors all in acceptable ranges. A slight discrepancy was observed in the computed reduced axial force. Results of computations performed based on in vivo experimental data obtained from loading and unloading states of the artery exhibited alterations in material properties and residual strain parameters as well. Emerging noninvasive measurement techniques combined with the present analytical approach can be used to estimate residual strains and stresses in vascular tissues as a precursor for growth estimates. This approach is also validated with a finite element model of a general two-layered artery

  17. Evaluation of Surface Residual Stresses in Friction Stir Welds Due to Laser and Shot Peening

    NASA Technical Reports Server (NTRS)

    Hatamleh, Omar; Rivero, Iris V.; Lyons, Jed

    2007-01-01

    The effects of laser, and shot peening on the residual stresses in Friction Stir Welds (FSW) has been investigated. The surface residual stresses were measured at five different locations across the weld in order to produce an adequate residual stress profile. The residual stresses before and after sectioning the coupon from the welded plate were also measured, and the effect of coupon size on the residual stress relaxation was determined and characterized. Measurements indicate that residual stresses were not uniform along the welded plate, and large variation in stress magnitude could be exhibited at various locations along the FSW plate. Sectioning resulted in significant residual stress relaxation in the longitudinal direction attributed to the large change in dimensions in this direction. Overall, Laser and shot peening resulted in a significant reduction in tensile residual stresses at the surface of the specimens.

  18. Neutron diffractometer RSND for residual stress analysis at CAEP

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wang, Hong; Sun, Guangai; Chen, Bo; Chen, Yanzhou; Pang, Beibei; Zhang, Ying; Wang, Yun; Zhang, Changsheng; Gong, Jian; Liu, Yaoguang

    2015-05-01

    Residual Stress Neutron Diffractometer (RSND) has been built at China Academy of Engineering Physics (CAEP) in Mianyang. Due to its excellent flexibility, the residual stress measurement on different samples, as well as in-situ study for materials science, can be carried out through RSND. The basic tests on its intensity and resolution and some preliminary experimental results under mechanical load, demonstrate the high quality of RSND.

  19. Water aging reverses residual stresses in hydrophilic dental composites.

    PubMed

    Park, J W; Ferracane, J L

    2014-02-01

    Dental composites develop residual stresses during polymerization due to shrinkage. These stresses may change with time because of relaxation and water sorption in the oral environment. This phenomenon is likely dependent on the composition of the materials, specifically their hydrophilic characteristics, and could result in deleterious stresses on restorative materials and tooth structure. The purpose of this experiment was to use the thin ring-slitting method to compare the residual stress generated within composite materials of varying hydrophilicity when aged in wet and dry conditions after polymerization. Water sorption, solubility, elastic modulus, and residual stresses were measured in 6 commercial composites/cements aged in water and dry conditions. The self-adhesive resin cement showed the highest water sorption and solubility. All composites showed initial residual contraction stresses, which were maintained when aged dry. Residual stresses in 2 of the self-adhesive cements and the polyacid-modified composite aged in wet conditions resulted in a net expansion. This experiment verified that residual shrinkage stresses in dental composites can be reversed during aging in water, resulting in a net expansion, with the effect directly related to their hydrophilic properties. PMID:24272790

  20. Residual stresses in a cast iron automotive brake disc rotor

    NASA Astrophysics Data System (ADS)

    Ripley, Maurice I.; Kirstein, Oliver

    2006-11-01

    Runout, and consequent juddering and pulsation through the brake pedal, is a multi-million dollar per year warranty problem for car manufacturers. There is some suspicion that the runout can be caused by relaxation of residual casting stresses when the disc is overheated during severe-braking episodes. We report here neutron-diffraction measurements of the levels and distribution of residual strains in a used cast iron brake disc rotor. The difficulties of measuring stresses in grey cast iron are outlined and three-dimensional residual-strain distributions are presented and their possible effects discussed.

  1. Residual Stress Testing of Outer 3013 Containers

    SciTech Connect

    Dunn, K.

    2004-02-12

    A Gas Tungsten Arc Welded (GTAW) outer 3013 container and a laser welded outer 3013 container have been tested for residual stresses according to the American Society for Testing Materials (ASTM) Standard G-36-94 [1]. This ASTM standard describes a procedure for conducting stress-corrosion cracking tests in boiling magnesium chloride (MgCl2) solution. Container sections in both the as-fabricated condition as well as the closure welded condition were evaluated. Significantly large residual stresses were observed in the bottom half of the as-fabricated container, a result of the base to can fabrication weld because through wall cracks were observed perpendicular to the weld. This observation indicates that regardless of the closure weld technique, sufficient residual stresses exist in the as-fabricated container to provide the stress necessary for stress corrosion cracking of the container, at the base fabrication weld. Additionally, sufficiently high residual stresses were observed in both the lid and the body of the GTAW as well as the laser closure welded containers. The stresses are oriented perpendicular to the closure weld in both the container lid and the container body. Although the boiling MgCl2 test is not a quantitative test, a comparison of the test results from the closure welds shows that there are noticeably more through wall cracks in the laser closure welded container than in the GTAW closure welded container.

  2. Prediction of residual stress and distortion from residual stress in heat treated and machined aluminum parts

    NASA Astrophysics Data System (ADS)

    Jones, Robert

    Parts machined from relatively large thickness cross sections can experience significant deformations from high residual stresses that develop in the part during the heat treatment used to form the aluminum alloy. Uphill quenching is a process that can create a part with low residual stress and stable dimensions when the process is controlled properly. The uphill quenching process involves a solution heat treat, quench, cool to liquid nitrogen, steam blast, and then age to final temper. In this thesis two parts were modeled using ANSYS. The first part underwent the uphill quench process in the rough machined state. The second part was modeled in the stock material shape and only underwent a solution heat treat, quench, and age to final temper. After the residual stress in the second part was predicted the excess material was removed by killing the associated elements and the deformation of the final machined part was predicted. For both parts analyzed measurements were made and compared against predictions with fairly good results.

  3. Evaluation of residual stress in sputtered tantalum thin-film

    NASA Astrophysics Data System (ADS)

    Al-masha'al, Asa'ad; Bunting, Andrew; Cheung, Rebecca

    2016-05-01

    The influence of deposition conditions on the residual stress of sputtered tantalum thin-film has been evaluated in the present study. Films have been deposited by DC magnetron sputtering and curvature measurement method has been employed to calculate the residual stress of the films. Transitions of tantalum film stress from compressive to tensile state have been observed as the sputtering pressure increases. Also, the effect of annealing process at temperature range of 90-300 °C in oxygen ambient on the residual stress of the films has been studied. The results demonstrate that the residual stress of the films that have been deposited at lower sputtering pressure has become more compressive when annealed at 300 °C. Furthermore, the impact of exposure to atmospheric ambient on the tantalum film stress has been investigated by monitoring the variation of the residual stress of both annealed and unannealed films over time. The as-deposited films have been exposed to pure Argon energy bombardment and as result, a high compressive stress has been developed in the films.

  4. Residual stresses and plastic deformation in GTA-welded steel

    SciTech Connect

    Brand, P.C. ); Keijser, T.H. de; Ouden, G. den )

    1993-03-01

    Residual stresses and plastic deformation in single pass GTA welded low-carbon steel were studied by means of x-ray diffraction in combination with optical microscopy and hardness measurements. The residual stresses and the amount of plastic deformation (microstrain) were obtained from x-ray diffraction line positions and line broading. Since the plates were polished before welding, it was possible to observe in the optical microscope two types of Lueders bands. During heating curved Lueders bands and during cooling straight Lueders bands perpendicular to the weld are formed. The curved Lueders bands extend over a larger distance from the weld than the straight Lueders bands. The amount of plastic deformation as obtained from the x-ray diffraction analysis is in agreement with these observations. An explanation is offered for the stresses measured in combination with plastic deformations observed. It is concluded that in the present experiments plastic deformation is the main cause of the residual stresses.

  5. Modeling Residual Stresses in Ceramic Plates

    SciTech Connect

    Cantavella, V.; Moreno, A.; Mezquita, A.; Reig, Y.

    2008-02-15

    The generation of residual stresses during cooling of layered ceramic plates has been modeled. Each plate comprises a body and two thin layers (engobe and glaze). The model takes into account two types of stresses: thermal stresses, resulting from temperature gradients inside the plate during cooling, and the stresses produced by the mismatch of the coefficient of thermal expansion (CTE) of the layers. The body has been simulated using a linear viscoelastic constitutive equation. The engobe and the glaze layer have been considered as elastic solids below a certain temperature (setting temperature: T{sub a}). Above T{sub a} these two layers have no mechanical influence on the body.

  6. Modeling Residual Stresses in Ceramic Plates

    NASA Astrophysics Data System (ADS)

    Cantavella, V.; Moreno, A.; Mezquita, A.; Reig, Y.

    2008-02-01

    The generation of residual stresses during cooling of layered ceramic plates has been modeled. Each plate comprises a body and two thin layers (engobe and glaze). The model takes into account two types of stresses: thermal stresses, resulting from temperature gradients inside the plate during cooling, and the stresses produced by the mismatch of the coefficient of thermal expansion (CTE) of the layers. The body has been simulated using a linear viscoelastic constitutive equation. The engobe and the glaze layer have been considered as elastic solids below a certain temperature (setting temperature: Ta). Above Ta these two layers have no mechanical influence on the body.

  7. Determination of Residual Stress in Composite Materials Using Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Rokhlin, S. I.

    1997-01-01

    The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual

  8. Modeling of residual stresses by HY-100 weldments

    SciTech Connect

    Zacharia, T.; Taljat, B.; Radhakrishnan, B.

    1997-02-01

    Residual stress distribution in a HY-100 steel disk, induced by GTA spot welding, was analyzed by finite element (FE) formulations and measured by neutron diffraction (ND). Computations used temperature- dependent thermophysical and mechanical properties. FE model predictions are in good agreement with ND data in far heat affected zone (HAZ) and in base metal. Predicted residual stresses in fusion zone and near HAZ were higher than those measured by ND. This discrepancy was attributed to microstructural changes and associated material properties in the HAZ and fusion zone due to phase transformations during the weld thermal cycle.

  9. Neutron diffraction residual stress studies for aero-engine component applications

    NASA Astrophysics Data System (ADS)

    Clay, K.; Small, C.

    1991-12-01

    Computer graphics for a presentation describing how Rolls-Royce is refining the method of residual stress measurement by neutron diffraction to suit the characteristic stress fields of components are presented. Results to date are given. An outline of how this residual stress data is to be used in developing stress models for critical rotating components is given.

  10. Dependence of diffuse ultrasonic backscatter on residual stress in 1080 steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2016-04-01

    In this article, the effects of residual stress on the ultrasonic scattering in a quenched steel sample are investigated by calculating the change of spatial variance amplitudes of ultrasonic signals after removing residual stress via annealing. The experimental results show that the average spatial variance amplitude decreases by about 11.89% for a scan area on the quenched surface after removing residual stress. This quantity was used to estimate the residual stress based on the developed stress-dependent backscatter model. In addition, the residual stress on the whole scan area was mapped by calculating the change of the spatial variance amplitude for each subarea after annealing, respectively. Diffuse ultrasonic backscatter signals show a high sensitivity to residual stress such that this technique has potential as a non-destructive method for measuring residual stress. PMID:26784273

  11. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    SciTech Connect

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  12. Quantifying residual stress in nanoscale thin polymer films via surface wrinkling.

    PubMed

    Chung, Jun Young; Chastek, Thomas Q; Fasolka, Michael J; Ro, Hyun Wook; Stafford, Christopher M

    2009-04-28

    Residual stress, a pervasive consequence of solid materials processing, is stress that remains in a material after external forces have been removed. In polymeric materials, residual stress results from processes, such as film formation, that force and then trap polymer chains into nonequilibrium stressed conformations. In solvent-cast films, which are central to a wide range of technologies, residual stress can cause detrimental effects, including microscopic defect formation and macroscopic dimensional changes. Since residual stress is difficult to measure accurately, particularly in nanoscale thin polymer films, it remains a challenge to understand and control. We present here a quantitative method of assessing residual stress in polymer thin films by monitoring the onset of strain-induced wrinkling instabilities. Using this approach, we show that thin (>100 nm) polystyrene films prepared via spin-coating possess residual stresses of approximately 30 MPa, close to the crazing and yield stress. In contrast to conventional stress measurement techniques such as wafer curvature, our technique has the resolution to measure residual stress in films as thin as 25 nm. Furthermore, we measure the dissipation of residual stress through two relaxation mechanisms: thermal annealing and plasticizer addition. In quantifying the amount of residual stress in these films, we find that the residual stress gradually decreases with increasing annealing time and plasticizer amounts. Our robust and simple route to measure residual stress adds a key component to the understanding of polymer thin film behavior and will enable identification of more effective processing routes that mitigate the detrimental effects of residual stress. PMID:19298053

  13. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  14. Patterns of residual stresses due to welding

    NASA Technical Reports Server (NTRS)

    Botros, B. M.

    1983-01-01

    Residual stresses caused by welding result from the nonuniform rate of cooling and the restrained thermal contraction or non-uniform plastic deformation. From the zone of extremely high temperature at the weld, heat flows into both the adjoining cool body and the surrounding atmosphere. The weld metal solidifies under very rapid cooling. The plasticity of the hot metal allows adjustment initially, but as the structure cools the rigidity of the surrounding cold metal inhibits further contraction. The zone is compressed and the weld is put under tensile stresses of high magnitude. The danger of cracking in these structural elements is great. Change in specific volume is caused by the change in temperature.

  15. Analytical solutions for determining residual stresses in two-dimensional domains using the contour method

    PubMed Central

    Kartal, Mehmet E.

    2013-01-01

    The contour method is one of the most prevalent destructive techniques for residual stress measurement. Up to now, the method has involved the use of the finite-element (FE) method to determine the residual stresses from the experimental measurements. This paper presents analytical solutions, obtained for a semi-infinite strip and a finite rectangle, which can be used to calculate the residual stresses directly from the measured data; thereby, eliminating the need for an FE approach. The technique is then used to determine the residual stresses in a variable-polarity plasma-arc welded plate and the results show good agreement with independent neutron diffraction measurements. PMID:24204187

  16. Residual stresses in continuous graphite fiber Al metal matrix composites

    NASA Technical Reports Server (NTRS)

    Park, Hun Sub; Zong, Gui Sheng; Marcus, Harris L.

    1988-01-01

    The residual stresses in graphite fiber reinforced aluminum (Gr/Al) composites with various thermal histories are measured using X-ray diffraction (XRD) methods. The XRD stress analysis is based on the determination of lattice strains by precise measurements of the interplanar spacings in different directions of the sample. The sample is a plate consisting of two-ply P 100 Gr/Al 6061 precursor wires and Al 6061 overlayers. Prior to XRD measurement, the 6061 overlayers are electrochemically removed. In order to calibrate the relationship between stress magnitude and lattice spacing shift, samples of Al 6061 are loaded at varying stress levels in a three-point bend fixture, while the stresses are simultaneously determined by XRD and surface-attached strain gages. The stresses determined by XRD closely match those determined by the strain gages. Using these calibrations, the longitudinal residual stresses of P 100 Gr/Al 6061 composites are measured for various heat treatments, and the results are presented.

  17. Residual Stress Assessment in Thin Angle Ply Tubes

    NASA Astrophysics Data System (ADS)

    Kaddour, A. S.; Al-Hassani, S. T. S.; Hinton, M. J.

    2003-05-01

    This preliminary study aims to investigate the residual stresses developed in hot cured thin-walled angle-ply filament wound tubes made of E-glass/epoxy, Kevlar/epoxy and carbon/epoxy materials. The residual stresses were estimated from change in geometry of these tubes when axially slitted at ambient temperature. Three basic deformation modes; namely opening up, closing-in and twisting, were observed and these depended on the winding angle, material and wall thickness. The residual stresses were also determined from hoop and axial strain gauges mounted on both the inner and outer surfaces at various locations around the tube. The stresses were compared with theoretical prediction based upon a linear thermo-elastic analysis. Both the predicted and measured values were found to increase with increasing hoop stiffness but there was a large discrepancy between the predicted and measured data, reaching a factor of 5 for the thinnest case. When compared with predicted failure stresses, the experimentally determined stresses were some 15% of the computed compressive strength.

  18. Experimental study of cumulative effect of residual stress on machined surface on HSM

    NASA Astrophysics Data System (ADS)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The high speed milling experiments are performed for hardened H13 die steel by using coated ball end milling cutter, the experiment was design for testing distribution properties of the residual stress in HSM. And the residual stress of the work-piece surface on the feed and cross feed direction are measured by the X-ray stress analyzer (X-stress 3000), and the distribution characteristics of residual stress is analyzed. The result shows that the residual stress presents gradient distribution on feed direction, and furthermore, the three-dimensional surface micro topography has been observed by the WykoNT9300, it shows that the micro topography has no close relation with the residual stress. In addition, the cumulative effect is discussed for explaining the phenomena. It could be one explanation for the residual stress gradient on the machined surface on mechanism.

  19. Experimental study of cumulative effect of residual stress on machined surface on HSM

    NASA Astrophysics Data System (ADS)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2009-12-01

    The high speed milling experiments are performed for hardened H13 die steel by using coated ball end milling cutter, the experiment was design for testing distribution properties of the residual stress in HSM. And the residual stress of the work-piece surface on the feed and cross feed direction are measured by the X-ray stress analyzer (X-stress 3000), and the distribution characteristics of residual stress is analyzed. The result shows that the residual stress presents gradient distribution on feed direction, and furthermore, the three-dimensional surface micro topography has been observed by the WykoNT9300, it shows that the micro topography has no close relation with the residual stress. In addition, the cumulative effect is discussed for explaining the phenomena. It could be one explanation for the residual stress gradient on the machined surface on mechanism.

  20. Residual stresses in sputter-deposited copper/330 stainless steel multilayers

    SciTech Connect

    Zhang, X.; Misra, A.

    2004-12-15

    The evolution of residual stresses as a function of bilayer period from 10 nm to 1 {mu}m in sputter-deposited Cu/330 stainless-steel (SS) multilayered films is evaluated by the substrate curvature technique. The multilayer stress evolution is compared with residual stresses in single layer Cu films and single layer 330 SS films, also measured by substrate curvature technique, with respective film thicknesses varying from 5 to 500 nm. Both single layer and multilayer films exhibit high tensile residual stresses that increase with decreasing layer thickness, but are found to be lower than the respective yield strengths. The intrinsic tensile residual stress evolution with film thickness is explained using the island coalescence model. The difference between the multilayer residual stress and the average residual stresses in single-layered Cu and 330 SS films is interpreted in terms of interface stress.

  1. Residual stresses in sputter-deposited copper/330 stainless steel multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Misra, A.

    2004-12-01

    The evolution of residual stresses as a function of bilayer period from 10nmto1μm in sputter-deposited Cu/330 stainless-steel (SS) multilayered films is evaluated by the substrate curvature technique. The multilayer stress evolution is compared with residual stresses in single layer Cu films and single layer 330 SS films, also measured by substrate curvature technique, with respective film thicknesses varying from 5to500nm. Both single layer and multilayer films exhibit high tensile residual stresses that increase with decreasing layer thickness, but are found to be lower than the respective yield strengths. The intrinsic tensile residual stress evolution with film thickness is explained using the island coalescence model. The difference between the multilayer residual stress and the average residual stresses in single-layered Cu and 330 SS films is interpreted in terms of interface stress.

  2. Effects of residual stresses on fracture of welded pipes

    SciTech Connect

    Hou, Y.C.; Kim, M,; Pan, J.; Brust, F.W.

    1996-12-01

    Thermal residual stresses induced by multi-pass butt welding processes of stainless steel pipes are obtained by a thermoelastic-plastic finite element analysis with the assumption of axisymmetric conditions. After the welding processes, circumferential part-through cracks are introduced at the locations having the highest axial residual stress. Crack-tip parameters are sought for characterizing the crack-tip stress and deformation field under subsequent applied axial stresses. The computational results indicate that without residual stress mitigation processes, the residual stresses are quite large and the J integrals for several arbitrary paths are path dependent under the range of axial stresses. Therefore, J cannot be used as a characterizing parameter under the applied stresses. The results also show that, as the axial stress becomes large, the J integrals for different paths follow the same trend as those without residual stresses. This indicates that the residual stress effects become less significant when the deformation due to the applied axial stress becomes dominant. Finally, a computationally convenient parameter, the crack tip opening angle (CTOA), which can take into account the effects of residual stresses near the tip, is adopted for characterizing the crack tip deformation. The CTOA results suggest that with residual stresses the propensity for subcritical crack growth via a stress corrosion cracking or fatigue crack growth mechanism in welds may be higher than that without residual stresses.

  3. Residual stress distribution in oxide films formed on Zircaloy-2

    NASA Astrophysics Data System (ADS)

    Sawabe, T.; Sonoda, T.; Furuya, M.; Kitajima, S.; Takano, H.

    2015-11-01

    In order to evaluate residual the stress distribution in oxides formed on zirconium alloys, synchrotron X-ray diffraction (XRD) was performed on the oxides formed on Zircaloy-2 after autoclave treatment at a temperature of 360° C in pure water. The use of a micro-beam XRD and a micro-sized cross-sectional sample achieved the detailed local characterization of the oxides. The oxide microstructure was observed by TEM following the micro-beam XRD measurements. The residual compressive stress increased in the vicinity of the oxide/metal interface of the pre-transition oxide. Highly oriented columnar grains of a monoclinic phase were observed in that region. Furthermore, at the interface of the post-first transition oxide, there was only a small increase in the residual compressive stress and the columnar grains had a more random orientation. The volume fraction of the tetragonal phase increased with the residual compressive stress. The results are discussed in terms of the formation and transition of the protective oxide.

  4. Residual Stresses Modeled in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Freborg, A. M.; Ferguson, B. L.; Petrus, G. J.; Brindley, W. J.

    1998-01-01

    Thermal barrier coating (TBC) applications continue to increase as the need for greater engine efficiency in aircraft and land-based gas turbines increases. However, durability and reliability issues limit the benefits that can be derived from TBC's. A thorough understanding of the mechanisms that cause TBC failure is a key to increasing, as well as predicting, TBC durability. Oxidation of the bond coat has been repeatedly identified as one of the major factors affecting the durability of the ceramic top coat during service. However, the mechanisms by which oxidation facilitates TBC failure are poorly understood and require further characterization. In addition, researchers have suspected that other bond coat and top coat factors might influence TBC thermal fatigue life, both separately and through interactions with the mechanism of oxidation. These other factors include the bond coat coefficient of thermal expansion, the bond coat roughness, and the creep behavior of both the ceramic and bond coat layers. Although it is difficult to design an experiment to examine these factors unambiguously, it is possible to design a computer modeling "experiment" to examine the action and interaction of these factors, as well as to determine failure drivers for TBC's. Previous computer models have examined some of these factors separately to determine their effect on coating residual stresses, but none have examined all the factors concurrently. The purpose of this research, which was performed at DCT, Inc., in contract with the NASA Lewis Research Center, was to develop an inclusive finite element model to characterize the effects of oxidation on the residual stresses within the TBC system during thermal cycling as well as to examine the interaction of oxidation with the other factors affecting TBC life. The plasma sprayed, two-layer thermal barrier coating that was modeled incorporated a superalloy substrate, a NiCrAlY bond coat, and a ZrO2-8 wt % Y2O3 ceramic top coat. We

  5. Thermoelastic Stress Analysis: An NDE Tool for the Residual Stress Assessment of Metallic Alloys

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2000-01-01

    During manufacturing, certain propulsion components that will be used in a cyclic fatigue environment are fabricated to contain compressive residual stresses on their surfaces because these stresses inhibit the nucleation of cracks. Overloads and elevated temperature excursions cause the induced residual stresses to dissipate while the component is still in service, lowering its resistance to crack initiation. Research at the NASA Glenn Research Center at Lewis Field has focused on employing the Thermoelastic Stress Analysis technique (TSA, also recognized as SPATE: Stress Pattern Analysis by Thermal Emission) as a tool for monitoring the residual stress state of propulsion components. TSA is based on the fact that materials experience small temperature changes when they are compressed or expanded. When a structure is cyclically loaded (i.e., cyclically compressed and expanded), the resulting surface-temperature profile correlates to the stress state of the structure s surface. The surface-temperature variations resulting from a cyclic load are measured with an infrared camera. Traditionally, the temperature amplitude of a TSA signal has been theoretically defined to be linearly dependent on the cyclic stress amplitude. As a result, the temperature amplitude resulting from an applied cyclic stress was assumed to be independent of the cyclic mean stress.

  6. Residual stress depth profiles of ausrolled 9310 gear steel

    SciTech Connect

    Paliani, C.M.; Queeney, R.A.; Kozaczek, K.J.

    1995-12-31

    Residual Stress analysis utilizing x-ray diffraction in conjunction with material removal by chemical polishing provides a very effective method of analyzing the near surface residual stress profile of steels. In this experiment, residual stress profiling has been used to analyze the effects of surface ausrolling during the marquenching of a 9310 gear steel which has been carburized to 1% carbon. The ausrolling process is an advanced thermomechanical processing technique used to ausform only the critical surface layer of gears and produce a hard, tough, fine-grained martensitic product. This study compares the residual stress profile of a marquenched specimen with a moderately deformed ausrolled specimen and with a heavily deformed ausrolled specimen, in order to correlate the effects of residual stress with the improved fatigue properties of the gear steel. While no significant variation was observed between the residual stress profile of the marquenched specimens (no deformation) and the line contact ausrolled specimens (moderate deformation), significant increases in the amount of compressive residual stress was noted in the residual stress profile of the point contact ausrolled (heavily deformed) samples. The maximum increase in compressive residual stress due to point contact ausrolling was approximately 500 MPa, when compared to the marquenched sample. This increased residual compressive stress will lower the effective shear stresses during rolling contact fatigue and would therefore explain some of the increase the rolling contact fatigue endurance of the point contact ausrolled specimens.

  7. Effect of Ultrasonic Peening and Accelerated Corrosion Exposure on the Residual Stress Distribution in Welded Marine Steel

    NASA Astrophysics Data System (ADS)

    Ahmad, Bilal; Fitzpatrick, Michael E.

    2015-03-01

    Specimens of DH36 marine steel were prepared with welded attachments. Residual stress measurements were made on the samples as-welded, following an ultrasonic peening treatment, and following accelerated corrosion exposure after ultrasonic peening. Neutron diffraction and the contour method were used for determining the residual stress profiles. The welding introduces tensile near-surface residual stress, approaching the material yield strength, and the ultrasonic peening overlays this with a compressive residual stress. Material removal by corrosion decreases the peak surface compressive stress slightly, by removal of a layer of stressed material, but does not cause significant redistribution of the residual stress profile.

  8. An analytical method on the surface residual stress for the cutting tool orientation

    NASA Astrophysics Data System (ADS)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2009-12-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.

  9. An analytical method on the surface residual stress for the cutting tool orientation

    NASA Astrophysics Data System (ADS)

    Li, Yueen; Zhao, Jun; Wang, Wei

    2010-03-01

    The residual stress is measured by choosing 8 kinds orientations on cutting the H13 dies steel on the HSM in the experiment of this paper. The measured data shows on that the residual stress exists periodicity for the different rake angle (β) and side rake angle (θ) parameters, further study find that the cutting tool orientations have closed relationship with the residual stresses, and for the original of the machined residual stress on the surface from the cutting force and the axial force, it can be gained the simply model of tool-workpiece force, using the model it can be deduced the residual stress model, which is feasible to calculate the size of residual stress. And for almost all the measured residual stresses are compressed stress, the compressed stress size and the direction could be confirmed by the input data for the H13 on HSM. As the result, the residual stress model is the key for optimization of rake angle (β) and side rake angle (θ) in theory, using the theory the more cutting mechanism can be expressed.

  10. Residual stress delaying phase transformation in Y-TZP bio-restorations

    NASA Astrophysics Data System (ADS)

    Allahkarami, Masoud; Hanan, Jay C.

    2012-01-01

    Engineering favorable residual stress for the complex geometry of bi-layer porcelain-zirconia crowns potentially prevents crack initiation and improves the mechanical performance and lifetime of the dental restoration. In addition to external load, the stress field depends on initial residual stress before loading. Residual stress is the result of factors such as the thermal expansion mismatch of layers and compliance anisotropy of zirconia grains in the process of sintering and cooling. Stress induced phase transformation in zirconia extensively relaxes the residual stress and changes the stress state. The objective of this study is to investigate the coupling between tetragonal to monoclinic phase transformations and residual stress. Residual stress, on the surface of the sectioned single load to failure crown, at 23 points starting from the pure tetragonal and ending at a fully monoclinic region were measured using the micro X-ray diffraction sin2 ψ method. An important observation is the significant range in measured residual stress from a compressive stress of -400 MPa up to tensile stress of 400 MPa and up to 100% tetragonal to monoclinic phase transformation.

  11. Magnetic Barkhausen noise analysis of residual stress and carburization

    NASA Astrophysics Data System (ADS)

    Stewart, D. M.; Stevens, K. J.; Kaiser, A. B.

    2001-04-01

    Magnetic Barkhausen noise analysis is an effective non-destructive testing technique for determining both residual stress and carburization, with potential for improving the accuracy of remaining-life estimates of critical components in operational plant such as that used in thermal power stations and the petrochemical industry. We have measured Barkhausen noise in magnetic Durehete 1055 samples under stress and in carburized ethylene pyrolysis tubes. The Barkhausen power as a function of applied field is modeled using Sablik's function for Barkhausen power as a function of irreversible differential permeability (μirr); the Jiles-Atherton model of hysteresis is used to determine μirr as a function of applied field.

  12. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075

    SciTech Connect

    Robinson, J.S.; Tanner, D.A.; Truman, C.E.; Paradowska, A.M.; Wimpory, R.C.

    2012-03-15

    The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: Black-Right-Pointing-Pointer Through thickness residual stress measurements made on large Al alloy forgings. Black-Right-Pointing-Pointer Residual stress characterised using neutron diffraction and deep hole drilling. Black-Right-Pointing-Pointer Biaxial compressive surface and triaxial subsurface residual stresses. Black-Right-Pointing-Pointer Quench sensitivity

  13. Magnetoacoustic stress measurements in steel

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Utrata, D.; Allison, S. G.; Heyman, J. S.

    1985-01-01

    Uniaxial stress effects on the low-field magnetoacoustic interaction have been studied using bulk compressional waves and Rayleigh surface waves in numerous steel samples having various impurity concentrations (Namkung et al., 1984). The results invariably showed that the initial slope of acoustic natural velocity variations, with respect to net induced magnetization parallel to the stress axis, is positive under tension and negative under compression. The results of current measurements in railroad rail steel having about 0.68 wt percent carbon content are typical for medium range carbon steels. The low-field natural velocity slope in this particular type of steel, which is almost zero when unstressed, becomes steeper with increased magnitude of stress in both directions. Hence, the nondestructive determination of the sign of residual stress in railroad wheels and rails is possible using this technique. This paper discusses the basic physical mechanism underlying the experimental observations and presents the results obtained in railroad rail steel.

  14. The Effect of Creep on the Residual Stresses Generated During Silicon Sheet Growth

    NASA Technical Reports Server (NTRS)

    Hutchinson, J. W.; Lambropoulos, J. C.

    1984-01-01

    The modeling of stresses generated during the growth of thin silicon sheets at high speeds is an important part of the EFG technique since the experimental measurement of the stresses is difficult and prohibitive. The residual stresses which arise in such a growth process lead to serious problems which make thin Si ribbons unsuitable for fabrication. The constitutive behavior is unrealistic because at high temperature (close to the melting point) Si exhibits considerable creep which significantly relaxes the residual stresses. The effect of creep on the residual stresses generated during the growth of Si sheets at high speeds was addressed and the basic qualitative effect of creep are reported.

  15. A residual stress study in similar and dissimilar welds

    DOE PAGESBeta

    Eisazadeh, Hamid; Goldak, John A.; Aidun, Daryush K.; Coules, Harry E.; Bunn, Jeffrey R; Achuthan, A.

    2016-04-01

    Residual strain distributions in similar and dissimilar welds were measured using neutron diffraction (ND) method. Then, using three strain components, three-dimensional stress states were calculated. The results were used to determine the effect of the martensitic phase transformation and material properties on residual stress (RS) distribution. It was observed that smaller longitudinal RS was induced in the low carbon steel side of dissimilar weld when compared to its similar weld. Also, it was found that the transverse RS near and within the weld zone (WZ) in dissimilar weld exhibited a distinctive trend, with tensile mode reaching the yield strength ofmore » the base metal (BM). In order to characterize the WZ in dissimilar weld, we deployed optical microscopy, hardness, and energy dispersive X-ray spectroscopy (EDAX). This study not only provides further insight into the RS state in similar and dissimilar welds; it also delivers important consequences of phase transformation in the latter case.« less

  16. Method of characterizing residual stress in ferromagnetic materials using a pulse histogram of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Namkung, Min (Inventor); Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Grainger, John L. (Inventor)

    1992-01-01

    The invention is a method and apparatus for characterizing residual uniaxial stress in a ferromagnetic test member by distinguishing between residual stresses resulting from positive (tension) forces and negative (compression) forces by using the distinct and known magnetoacoustic (MAC) and a magnetoacoustic emission (MAE) measurement circuit means. A switch permits the selective operation of the respective circuit means.

  17. Thermal Stability of Residual Stresses in Ti-6Al-4V components

    NASA Astrophysics Data System (ADS)

    Stanojevic, A.; Angerer, P.; Oberwinkler, B.

    2016-03-01

    The need for light weight design while maintaining a high safety is essential for many components, especially in the aircraft industry. Therefore, it's important to consider every aspect to reduce weight, improve fatigue life and maintain safety of crucial components. Residual stresses are a major factor which can positively influence components and fulfil all three requirements. However, due to the inconstancy of the behaviour of residual stresses during the life time of a component, residual stresses are often neglected. If the behaviour of residual stresses could be described reliably over the entire life time of a component, residual stresses could be taken into account and components could be optimized even further. Mechanical and thermal loads are the main reason for relaxation of residual stresses. This work covers the thermal stability of residual stresses in Ti-6Al-4V components. Therefore, exposure tests at raised temperatures were performed on specimens with different surface conditions. Residual stresses were measured by x-ray diffraction before and after testing. Creep tests were also carried out to describe the creep behaviour and thereby the ability for residual stress relaxation. A correlation between the creep rate and amount of relaxed stress was found. The creep behaviour of the material was described by using a combination of the Norton Power law and the Arrhenius equation. The Zener-Wert-Avrami model was used to describe the residual stress relaxation. With these models a satisfying correlation between measured and calculated data was found. Hence, the relaxation of residual stresses due to thermal load was described reliably.

  18. Monitoring of residual stresses in injection-molded plastics with holographic interferometry

    NASA Astrophysics Data System (ADS)

    Sanchez, Lilia A.; Hornberger, Lee E.

    2002-01-01

    Residual stresses are often trapped in injection-molded plastic parts due to the rapid cooling of the material in this manufacturing process. These stresses are a common source of failure in plastic components in automobiles, appliances and computers and are difficult to measure with conventional residual-stress experimental methods. Real-time holographic interferometry appears to be a viable technique to identify and monitor these stresses in plastic parts. In this investigation, holographic interferometry was used to monitor the relaxation of residual stresses in the plastic-molded actuator arm of a computer hard drive. In the first phase of this study, the relaxation of these residual stresses as a function of temperature was observed. In the second phase, the time to completely relax the residual stresses in the plastic part at an elevated temperature, the annealing temperature, was determined. In the third phase of this investigation, the rate of relaxation of these residual stresses as a function of time at various operating temperatures, was studied. Based on the results of this study, holographic interferometry appears to be a powerful research tool in the study of residual stresses in plastic parts. It also has the potential to be a practical tool for the inspection of manufactured plastic parts for the presence of residual stress.

  19. Stress Measurement System

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under the Aircraft Structural Integrity program, Langley Research Center and Stress Photonics developed an infrared-based stress measurement system for use in nondestructive evaluation of materials and structures. Stress Photonics commercialized the technology in the DeltaTherm 1000 system, used to compare designs and detect cracks in structures, especially for aging aircraft and bridges. The system combines digital signal processing technology with a special infrared camera to provide instantaneous thermal images and live differential images.

  20. Study on residual stress of AISI304 TIG welding line with laser shock processing by x-ray stress analyzer

    NASA Astrophysics Data System (ADS)

    Zhang, Y. K.; Kong, D. J.; Yin, S. M.; Feng, A. X.; Lu, J. Z.; Ge, T.

    2006-02-01

    The surface of AISI304 TIG welding line was processed by LSP (laser shock processing). The effects on the microstructure, hardness and residual stress of AISI304 welding line by LSP were observed, and its mechanical properties were researched by SEM (scanning electron microscope) and test device of mechanical property. Residual stresses of AISI304 TIG welding line by LSP were measured with Model X-350A X ray analyzer. The test results show that compressive residual stress values of AISI304 TIG welding line by LSP are about 110MPa. Strengthening effects of AISI304 TIG welding line by LSP is very obvious, and fatigue properties of welding line is improved, and tensile residual stresses of welding line are obviously reduced, the distribution of residual stress tends to equality, and service life of AISI304 TIG welding line is improved.

  1. Residual stresses in darrieus vertical axis wind turbine blades

    SciTech Connect

    Veers, P.

    1981-04-01

    A numerical package called RESID has been assembled to calculate the residual stresses in VAWT blades induced during cold forming. Using a strength of materials - elementary beam theory approach, RESID models the material response with a bilinear stress-strain curve, and the cross-sectional geometry with an array of area increments. Through an iterative solution procedure residual stresses are predicted for a specified final radius of curvature or applied bending moment. RESID results are compared to theoretical solutions for simple geometries and with MARC Finite element results for VAWT blade geometries. Calculating residual stress levels, determining acceptable residual stress levels, and a method of reducing residual stresses are discussed. A complete listing and sample run are included in the appendicies.

  2. Modelling Of Residual Stresses Induced By High Speed Milling Process

    NASA Astrophysics Data System (ADS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.

  3. Modelling Of Residual Stresses Induced By High Speed Milling Process

    SciTech Connect

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-04

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  4. Residual stress of physical vapor-deposited polycrystalline multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Zhang, Hui; Zheng, LiLi

    2015-02-01

    An extended one-dimensional stress model for the deposition of multilayer films is built based on the existing stress model by considering the influence of deposition conditions. Both thermal stress and intrinsic stress are considered to constitute the final residual stress in the model. The deposition process conditions such as deposition temperature, oxygen pressure, and film growth rate are correlated to the full stress model to analyze the final residual stress distribution, and thus the deformation of the deposited multilayer system under different process conditions. Also, the model is numerically realized with in-house built code. A deposition of Ag-Cu multilayer system is simulated with the as-built extended stress model, and the final residual stresses under different deposition conditions are discussed with part of the results compared with experiment from other literature.

  5. Residual stresses in sapphire rods grown by the Stepanov method

    NASA Astrophysics Data System (ADS)

    Krymov, V. M.; Nosov, Yu. G.; Bakholdin, S. I.; Galaktionov, E. V.; Maslov, V. N.; Tropp, E. A.

    2015-04-01

    The residual stresses in cylindrical [0001] sapphire crystals have been studied using the polarization-optical method. The angle between the optical axes 2 V and the difference in the normal components of the tensor of elastic residual stresses (σφ - σ r ) have been determined from the isogyre divergence. It has been found that a tangential tensile stress of no more than 20 MPa acts on the ingot surface. The residual stresses have been compared with the calculated thermoelastic stresses generated during the crystal growth in a given heating zone. It has been shown that the determined pattern of residual stresses can be caused by thermoelastic stresses developing in the immediate vicinity of the crystallization front.

  6. Quantification of residual stress from photonic signatures of fused silica

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William T.

    2014-02-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10-12 Pa-1. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.

  7. Residual stress and plastic anisotropy in indented 2024-T351 aluminum disks

    SciTech Connect

    Clausen, Bjorn; Prime, Michael B; Saurabh, Kabra; Brown, Donald W; Pagliaro, Pierluigi; Backlund, Peter; Shaw, Sanjiv; Criss, Everett

    2009-01-01

    Recent studies have proven that generating a well defined residual stress state using the indented disk approach is an excellent way to validate experimental and modeling techniques for measuring and predicting residual stresses. The previous studies dealt with indented stainless steel disks, and included experimental determination of residual stresses using the Contour Method and neutron diffraction measurements. The measured residual stress states showed good agreement between the techniques, and a Finite Element Model predicted residual stress state based upon material properties determined form standard tension and compression/tension tests was also in good agreement with the measurements. In the present work, disks of 2024-T351 Aluminum were investigated. As before, the residual stress profile was measured using neutron diffraction and the Contour Method and Finite Element Modeling was employed to predict the residual stress profile. Analysis and comparison of the three techniques were complicated by the fact that the experimental data shows evidence of plastic anisotropy and strong Bauschinger effect within the indented disks.

  8. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    SciTech Connect

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.

  9. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGESBeta

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  10. Issues related to prediction of residual stresses in titanium alloy matrix composites

    SciTech Connect

    Rangaswamy, P.; Jayaraman, N.

    1995-01-01

    Recently, a detailed study of residual stresses on the as-processed SCS-6/Ti-24Al-11Nb [0]{sub 8} composite, and SCS-6/Beta-21S composites in unidirectional [0]{sub 4}, cross-ply [0/90]s, and quasi-isotropic [0/{+-}45/90]s lay-ups has been completed. In this study, residual stresses have been measured using x-ray diffraction (Sin{sup 2}{Psi}) technique. We have shown that the use of conventional unit cell models consisting of a quarter fiber surrounded by the matrix material to predict residual stresses for verification of experimental results is inadequate. Such models have successfully predicted the stresses at the fiber-matrix interface. However, experimental work to measure residual stresses have always been on surfaces far away from the interface region. In this paper, the approach taken in extending the conventional unit cell model to the concept of multi-fiber models to predict average stresses are presented. In this process, several modeling issues have been identified. These issues are (i) use of conventional unit models for prediction of average surface residual stresses, (ii) effect of orientation of the sub-surface plies on the residual stresses in the surface ply, (iii) residual stresses in the interior plies, and (iv) constituent material properties.

  11. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    NASA Technical Reports Server (NTRS)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  12. Quantification of Residual Stress from Photonic Signatures of Fused Silica

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Hayward, Maurice; Yost, William E.

    2013-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 +/- 0.54 x 10(exp -12)/Pa. Fused silica specimens containing impacts artificially made at NASA's Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented. Keywords: Glass, fused silica, photoelasticity, residual stress

  13. The effect of residual stress on performance of high temperature coatings

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Techniques for measurement of residual stress in MoSi2 coatings and the determination of stress in coatings prepared by metalliding, pack and slurry processes are discussed. The stress level can be determined by stress induced deflections or by X-ray techniques. The deflection method is most direct. It is based on the fact that a thin substrate, coated on one side only, is usually curved at room temperature. The radius of curvature is easily measured and readily related to residual stress.

  14. Nondestructive Testing Residual Stress Using Ultrasonic Critical Refracted Longitudinal Wave

    NASA Astrophysics Data System (ADS)

    Xu, Chunguang; Song, Wentao; Pan, Qinxue; Li, Huanxin; Liu, Shuai

    Residual stress has significant impacts on the performance of the mechanical components, especially on its strength, fatigue life and corrosion resistance and dimensional stability. Based on theory of acoustoelasticity, the testing principle of ultrasonic LCR wave method is analyzed. The testing system of residual stress is build. The method of calibration of stress coefficient is proposed in order to improve the detection precision. At last, through experiments and applications on residual stress testing of oil pipeline weld joint, vehicle's torsion shaft, glass and ceramics, gear tooth root, and so on, the result show that it deserved to be studied deeply on application and popularization of ultrasonic LCR wave method.

  15. Method and apparatus for determination of material residual stress

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J. (Inventor); Flom, Yury (Inventor)

    1993-01-01

    A device for the determination of residual stress in a material sample consisting of a sensor coil, adjacent to the material sample, whose resistance varies according to the amount of stress within the material sample, a mechanical push-pull machine for imparting a gradually increasing compressional and tensional force on the material sample, and an impedance gain/phase analyzer and personal computer (PC) for sending an input signal to and receiving an input signal from the sensor coil is presented. The PC will measure and record the change in resistance of the sensor coil and the corresponding amount of strain of the sample. The PC will then determine, from the measurements of change of resistance and corresponding strain of the sample, the point at which the resistance of the sensor coil is at a minimum and the corresponding value and type of strain of the sample at that minimum resistance point, thereby, enabling a calculation of the residual stress in the sample.

  16. Experimental determination of residual stress by neutron diffraction in a boiling water reactor core shroud

    SciTech Connect

    Payzant, A.; Spooner, S.; Zhu, Xiaojing; Hubbard, C.R.

    1996-06-01

    Residual strains in a 51 mm (2-inch) thick 304L stainless steel plate have been measured by neutron diffraction and interpreted in terms of residual stress. The plate, measuring (300 mm) in area, was removed from a 6m (20-ft.) diameter unirradiated boiling water reactor core shroud, and included a multiple-pass horizontal weld which joined two of the cylindrical shells which comprise the core shroud. Residual stress mapping was undertaken in the heat affected zone, concentrating on the outside half of the plate thickness. Variations in residual stresses with location appeared consistent with trends expected from finite element calculations, considering that a large fraction of the residual hoop stress was released upon removal of the plate from the core shroud cylinder.

  17. Effect of preheat on residual stress distributions in arc-welded mild steel plates

    SciTech Connect

    Adedayo, S.M.; Adeyemi, M.B.

    2000-02-01

    Residual stress distribution in the longitudinal and transverse directions on a 6-mm-thick arc-welded mild steel plate was experimentally examined with and without initial preheat. Stress measurements were completed by monitoring strain changes on mounted strain gauges resulting from successive milling of the welded plate specimens. Machining stresses were also compensated for by carrying out measurements of strain changes due to milling operation of a stress-free unwelded annealed mild steel plate. High tensile residual stresses exist close to the weld line in both longitudinal and transverse stresses. Maximum longitudinal residual stress values existing close to the weld line are reduced (between 50 and 75%) due to the effect of initial metal preheat of 200 C of the welded steel plate.

  18. Effect of Residual Stresses on the Hardness of Bulk Metallic Glasses

    SciTech Connect

    Wang, L.; Bei, Hongbin; Gao, Y. F.; Lu, Zhao Ping; Nieh, T. G.

    2011-01-01

    Nanoindentation experiments were conducted on Zr-based metallic glass samples, which were elastically and plastically bent in order to investigate the effect of residual stresses on hardness. It was found that tensile residual stress reduced the hardness significantly, while compressive residual stress produced only a small effect on the hardness. These observations are consistent with three-dimensional continuum-plasticity-based finite-element simulations. The hardness was also found to vary more significantly with residual stresses, in particular in tension, than that caused by shear-banding-induced softening, suggesting hardness measurement is a practical method for the evaluation of tensile residual stresses in a metallic glass. Hardness variation in the bent sample was correlated with the residual-stress induced volume dilatation through a free-volume-based model. In this paper, we also present a detailed stress analysis based on yield asymmetry under tension and compression to describe the distribution of residual stresses in bent metallic glass specimens. The calculations agree well with the hardness variations measured experimentally.

  19. A stress-free model for residual stress assessment using thermoelastic stress analysis

    NASA Astrophysics Data System (ADS)

    Howell, Geoffrey; Dulieu-Barton, Janice M.; Achintha, Mithila; Robinson, Andrew F.

    2015-03-01

    Thermoelastic Stress Analysis (TSA) has been proposed as a method of obtaining residual stresses. The results of a preliminary study demonstrated that when Al-2024 plate containing holes that were plastically deformed by cold expansion process to 2% and 4% strain the thermoelastic response in the material around the hole was different to that obtained from a plate that had not experienced any plastic cold expansion (i.e. a reference specimen). This observation provides an opportunity for obtaining residual stresses based on TSA data. In many applications a reference specimen (i.e. residual stress free specimen) may not be available for comparison, so a synthetic, digital bitmap has been proposed as an alternative. An elastic finite element model is created using commercially available software Abaqus/Standard and the resultant stress field is extracted. The simulated stress field from the model is mapped onto a grid that matches the TSA pixel data from a physical reference specimen. This stress field is then converted to a ΔT/T field that can be compared to the full-field TSA data. When the reference experimental data is subtracted from the, bitmap dataset the resultant ΔT/T field is approximately zero. Further work proposes replacing the experimental reference data with that from specimens that have undergone cold expansion with the aim of revealing the regions affected by residual stress through a departure from zero in the resultant stress field. The paper demonstrates the first steps necessary for deriving the residual stresses from a general specimen using TSA.

  20. Predicting residual and flow stresses from surface topography created by laser cutting technology

    NASA Astrophysics Data System (ADS)

    Harničárová, Marta; Valíček, Jan; Öchsner, Andreas; Grznárik, Radovan; Kušnerová, Milena; Neugebauer, Josef; Kozak, Dražan

    2013-11-01

    The paper deals with the engineering method for laser cutting technology that utilizes stress equations derived from surface topography for determining residual stresses. It presents an original method for residual stress assessment in a non-contact and non-destructive manner. The high temperature around cut edges results in the development of residual stresses during the cutting process, which decreases the quality of the end product. Surface topographical parameters themselves carry information on a concrete state of technological process in the concrete moment of its usage. This method for the assessment of residual stress in materials being cut by a laser beam provides sufficient information on the residual stress state evaluation with sufficient accuracy by applying an analytical and experimental approach. Experiments were conducted on three different materials, namely steel, aluminium alloy and titanium. It was necessary to check calculation by measuring the residual stress distribution in the vicinity of cut edge using the ultrasonic method. The novelty of the method for the determination of residual stresses in a workpiece lies in the physics-based approach focusing on the mechanical and stress-deformation parameters of the material being cut and on the mechanical equilibrium of the system: material properties-tool properties-deformation properties.

  1. Transient and residual stresses in dental porcelains as affected by cooling rates.

    PubMed

    Asaoka, K; Tesk, J A

    1989-06-01

    The development of either transient or residual stress in a slab of dental porcelain during cooling was simulated by use of a super-computer. The temperature dependences of the elastic modulus, the thermal expansion coefficient, and the shear viscosity, and the cooling rate dependence of the glass transition temperature, Tg, were considered in this calculation. Internal stress and viscoelastic creep were computed for several cooling rates. Calculated results display stress profiles which agree reasonably well with reported measured profiles in quenched, tempered glasses. The calculated residual surface stress, sigma, could be fit by the following empirical formula, sigma = kl2(q/q0)n, q is the cooling rate, q0 is a reference cooling rate and l is the half-thickness of the porcelain. The method by which residual stress develops is also discussed. This discussion suggests a method for strengthening of the porcelain by the development of high-compressive residual stress on the surface. PMID:2638963

  2. Lamination residual stresses in hybrid composites, part 1

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.

  3. Residual stresses in cross-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Cohen, D.; Hyer, M. W.

    1984-01-01

    The residual thermal stresses in 4-layer cross-ply tubes are studied. The tubes considered has a small radius to wall-thickness ratios and so elasticity solutions were used. The residual thermal stress problem was considered to be axisymmetric and three elasticity solutions were derived and the results compared with the results using classical lamination theory. The comparison illustrates the limitations of classical lamination theory. The three elasticity solutions derived were: plane stress, plane strain, and generalized plane strain, the latter being the most realistic. Residual stresses in both the hoop and axial direction is significant. Stacking arrangement effects the residual stress to some extent, as do the material properties of the individual lamina. The benefits of hybrid construction are briefly discussed.

  4. Residue stress analysis of molding aspherical plastic lens

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Ying; Cheng, Yuan-Chieh; Chang, Shenq-Tsong; Huang, Ting-Ming

    2015-09-01

    The aspherical plastic lens is widely used in commercial optical products. Warpage and residue stress are two important factors that influence wavefront error. Several investigators have discussed warpage. We propose a methodology to study the effect of residue stress on wavefront error. Mold flow software was adopted to calculate the residue stress in injection processes. Optical software was used to find optical ray paths through the lens. Corresponding Optical Path Different (OPD) in each ray path was simulated by self-developed software. A 50-mm diameter plastic lens was used in this study. The mild- and high-frequency wavefront errors and the stress OPD effect at the injection area were found to be a result of the molding process. The proposed methodology was found to be very suitable for finding the effect of residue stress on wavefront error in plastic lenses.

  5. Evaluation Of Residual Stresses In Inner Ring Of The Bearings

    NASA Astrophysics Data System (ADS)

    Malotová, Šárka; Hemžský, Pavel; Pitela, David; Nicielnik, Henryk; Šoková, Dagmar; Kyncl, Ladislav; Mrázik, Jozef

    2015-12-01

    Residual stresses are undesirable and it should not be underestimated. They occur in many components and it is necessary to identify and try to avoid them. For detection the Residual stresses, there are many methods, but not all are suitable, because they can completely destroy of the components. The article deals with the evaluation of Residual stresses in the inner rings of Bearings, which are made from steel 100Cr6 (ČSN 14 109.4. The surfaces were turning at different cutting parameters and subsequently are evaluated Residual stresses. The stresses have been evaluated by non - destructive method X - Ray. The experiment was realized in cooperation Faculty of Mechanical Engineering VSB - TU Ostrava and Faculty of Mechanical Engineering of ZU Zilina - machining in the laboratories of ZU Žilina, Slovak Republic.

  6. Optimization of machining and vibration parameters for residual stresses minimization in ultrasonic assisted turning of 4340 hardened steel.

    PubMed

    Sharma, Varun; Pandey, Pulak M

    2016-08-01

    The residual stresses generated in the machined work piece have detrimental effect on fatigue life, corrosion resistance and tribological properties. However, the effect of cutting and vibration parameters on residual stresses in Ultrasonic Assisted Turning (UAT) has not been dealt with. The present paper highlights the effect of feed rate, depth of cut, cutting velocity and percentage intensity of ultrasonic power on residual stress generation. XRD analysis has been carried out to measure the residual stress while turning 4340 hardened steel using UAT. The experiments were performed based on response surface methodology to develop statistical model for residual stress. The outcome of ANOVA revealed that percentage intensity and feed rate significantly affect the residual stress generation. The significant interactions between process parameters have also been presented tin order to understand the thermo-mechanical mechanism responsible for residual stress generation. PMID:27179142

  7. Residual stresses in a multi-pass weld in an austenitic stainless steel plate before and after thermal stress relief

    SciTech Connect

    Spooner, S.; Wang, X.L.; Hubbard, C.R.; David, S.A.

    1994-06-01

    Changes in residual stresses due to thermal stress relief were determined in a welded 1/2 in. thick 304 stainless steel plate from two residual stress maps determined with the neutron diffraction technique. The 304 stainless plate was made from two 6 {times} 12 {times} 1/2 in. pieces joined along the length by a gas tungsten arc welding process. Multi-pass welds were made with a semiautomatic welding machine employing cold-wire feed of type 308 stainless steel filler alloy. The thermal stress relief treatment consisted of heating to 1150 F, holding for one hour at temperature and then air cooling. Strain components were measured along the weld direction (longitudinal), perpendicular to the weld line in the plate (transverse), and normal to the plate. Measurements were confined to the plane bisecting the weld at the center of the plate. The strain components were converted to stresses assuming that the measured strains were along the principal axes of the strain tensor. Parameters used in the calculation were E=224 GPa and v=0.25. As-welded longitudinal stresses are compressive in the base metal and become strongly tensile through the heat affected zone and into the fusion zone. The transverse stresses follow the longitudinal trend but with a lower magnitude while the normal stresses are small throughout. The stress relief treatment reduced the magnitudes of all the stresses. In the weld zone the longitudinal stress was lowered by 30% and the spatial range of residual stresses was reduced as well.

  8. Residual Stresses in High-Velocity Oxy-Fuel Metallic Coatings

    SciTech Connect

    Terry C. Totemeier; Richard N. Wright; W. David Swank

    2004-06-01

    X-ray based residual stress measurements were made on type 316 stainless steel and Fe3A1 coatings that were high-velocity oxy-fuel (HVOF) sprayed onto low-carbon and stainless steel substrates. Nominal coating thicknesses varied from 250 to 1500 mm. The effect of HVOF spray particle velocity on residual stress and deposition efficiency was assessed by preparing coatings at three different torch chamber pressures. The effect of substrate thickness on residual stress was determined by spraying coatings onto thick (6.4 mm) and thin (1.4 mm) substrates. Residual stresses were compressive for both coating materials and increased in magnitude with spray velocity. For coatings applied to thick substrates, near-surface residual stresses were essentially constant with increasing coating thickness. Difference in thermal expansion coefficient between low-carbon and stainless steels led to a 180 MPa difference in residual stress for Fe3A1 coatings. Deposition efficiency for both materials is maximized at an intermediate (~600 m/s) velocity. Considerations for X-ray measurement of residual stresses in HVOF coatings are also presented.

  9. Numerical Simulation of Residual Stress in an Al-Cu Alloy Block During Quenching and Aging

    NASA Astrophysics Data System (ADS)

    Dong, Ya-Bo; Shao, Wen-Zhu; Lu, Liang-Xing; Jiang, Jian-Tang; Zhen, Liang

    2015-12-01

    In this study, residual stresses after different quenching and aging processes of Al-Cu forged blocks were investigated by numerical simulation method and experimental measurements. An iterative zone-based heat transfer calculation was coupled with the hyperbolic sine-type constitutive model to simulate the residual stress during quenching process. The simulation results were compared with experiment data using both x-ray diffraction and crack compliance methods. The simulation results were in good agreement with the experimental measurements with around 9-13% deviation at the largest. Residual stress reduction can be achieved by decreasing the cooling rate during quenching. Quenching in water with different temperatures of 60, 80, and 100 °C resulted in the maximum compressive residual stress reduction of approximately 28.2, 75.7, and 88.9%, respectively, in Al-Cu alloy samples. When quenched in 10, 20, and 30% PAG solution, the reduction of maximum compressive residual stress in Al-Cu alloy samples was approximately 35.1, 47.8, and 53.2%, respectively. In addition, in order to study the amount of residual stress relief after aging treatments, aging treatments at 140 and 170 °C for different times were also studied. Aging treatment used to obtain the peak-aged (T6) and overaged (T7) condition produces only about 22.5 to 34.7% reduction in residual stresses.

  10. Residual stress characterization of welds and post-weld processes using x-ray diffraction techniques

    NASA Astrophysics Data System (ADS)

    Brauss, Michael E.; Pineault, James A.; Eckersley, John S.

    1998-03-01

    This paper illustrates the importance of residual stress characterization in welds and post weld processes. The failure to characterize residual stresses created during welding and/or post weld processes can lead to unexpected occurrences of stress corrosion cracking, distortion, fatigue cracking as well as instances of over design or over processing. The development of automated residual stress mapping and the availability of portable and fast equipment have now made the characterization of residual stresses using x-ray diffraction practical for process control and optimization. The paper presents examples where x-ray diffraction residual stress characterization techniques were applied on various kinds of welds including arc welds, TIG welds, resistance welds, laser welds and electron beam welds. The nondestructive nature of the x-ray diffraction technique has made the residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. Some examples presented show the residual stresses before and after the application of post weld processes such as shot peening, grinding and heat treatment.

  11. Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers.

    PubMed

    Mamdem, Y Sikali; Burov, E; de Montmorillon, L-A; Jaouën, Y; Moreau, G; Gabet, R; Taillade, F

    2012-01-16

    Residual stresses inside optical fibers can impact significantly on Brillouin spectrum properties. We have analyzed the importance of internal stresses on the Brillouin Gain Spectrum (BGS) for a conventional G.652 fiber and compared modeling results to measurements. Then the residual internal stresses have been investigated for a set of trench-assisted fibers: fibers are coming from a single preform with different draw tensions. Numerical modeling based on measured internal stresses profiles are compared with corresponding BGS experimental results. Clearly, Brillouin spectrum is shifted linearly versus draw tension with a coefficient of -20MHz/100g and its linewidth increases. PMID:22274523

  12. Power-law creep and residual stresses in carbopol microgels

    NASA Astrophysics Data System (ADS)

    Lidon, Pierre; Manneville, Sebastien

    We report on the interplay between creep and residual stresses in carbopol microgels. When a constant shear stress σ is applied below the yield stress σc, the strain is shown to increase as a power law of time, γ (t) =γ0 +(t / τ) α , with and exponent α ~= 0 . 38 that is strongly reminiscent of Andrade creep in hard solids. For applied shear stresses lower than some characteristic value of about σc / 10 , the microgels experience a more complex creep behavior that we link to the existence of residual stresses and to weak aging of the system after preshear. The influence of the preshear protocol, of boundary conditions and of microgel concentration on residual stresses is investigated. We discuss our results in light of previous works on colloidal glasses and other soft glassy systems.

  13. Validating Measures of Teacher Stress.

    ERIC Educational Resources Information Center

    Pettegrew, Loyd S.; Wolf, Glenda E.

    1982-01-01

    A validation study in the development of empirical measures of teacher stress is presented. Role-related, task-based, and environmental stress measures demonstrated internal consistency and provided reliable and valid multivariate assessment of teacher stress. (PN)

  14. Variable-load stress analysis of threaded connections of high-strength materials with allowance for process-induced residual stresses

    NASA Astrophysics Data System (ADS)

    Pavlov, V. F.; Konovalov, G. V.; Minin, B. V.; Kirpichev, V. A.

    Results of residual stress measurements and fatigue tests are presented for bolts of VT16 titanium alloy manufactured by various methods. A method is proposed for plotting the maximum-amplitude diagram of the stress cycle of a threaded joint with allowance for the residual stresses in the thread grooves. The calculated results are in good agreement with experimental data.

  15. Residual stress distribution in FeAl weld overlay on steel

    SciTech Connect

    Wang, X.L.; Spooner, S.; Hubbard, C.R.; Maziasz, P.J.; Goodwin, G.M.; Feng, Z.; Zacharia, T.

    1994-12-31

    Neutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.

  16. Mode-coupling analysis of residual stresses in colloidal glasses.

    PubMed

    Fritschi, S; Fuchs, M; Voigtmann, Th

    2014-07-21

    We present results from computer simulation and mode-coupling theory of the glass transition for the nonequilibrium relaxation of stresses in a colloidal glass former after the cessation of shear flow. In the ideal glass, persistent residual stresses are found that depend on the flow history. The partial decay of stresses from the steady state to this residual stress is governed by the previous shear rate. We rationalize this observation in a schematic model of mode-coupling theory. The results from Brownian-dynamics simulations of a glassy two-dimensional hard-disk system are in qualitative agreement with the predictions of the theory. PMID:24841537

  17. Numerical and Experimental Study on the Residual Stresses in the Nitrided Steel

    NASA Astrophysics Data System (ADS)

    Song, X.; Zhang, Zhi-Qian; Narayanaswamy, S.; Huang, Y. Z.; Zarinejad, M.

    2016-07-01

    In the present work, residual stresses distribution in the gas nitrided AISI 4140 sample has been studied using finite element (FE) simulation. The nitrogen concentration profile is obtained from the diffusion-controlled compound layer growth model, and nitrogen concentration controls the material volume change through phase transformation and lattice interstitials which results in residual stresses. Such model is validated through residual stress measurement technique—micro-ring-core method, which is applied to the nitriding process to obtain the residual stresses profiles in both the compound and diffusion layer. The numerical and experimental results are in good agreement with each other; they both indicate significant stress variation in the compound layer, which was not captured in previous research works due to the resolution limit of the traditional methods.

  18. Digital image correlation utilization in pipeline oriented residual stress estimation

    NASA Astrophysics Data System (ADS)

    Brynk, Tomasz; Mezyk, Dariusz; Kukla, Dominik

    2014-10-01

    The aim of the paper is to present an idea of the utilization of Digital Image Correlation (DIC) method for industrial pipelines residual stress oriented investigation. For this purpose results of tests performed in laboratory and industrial conditions are presented. Obtained results showed that DIC method gives reliable near drilled hole strain/displacement distribution maps which may be used for accurate residual stress calculations.

  19. Residual stresses and damage in unidirectional model composites

    SciTech Connect

    Chatterjee, A.; Moschler, J.W.; Mall, S.; Kerans, R.J.; Pagano, N.J.

    1989-10-01

    Unidirectional model composites were fabricated with SiC fibers and different borosilicate glasses to study the effect of residual stress states on the damage progression in these composites. A specially designed straining stage was employed to study the failure modes in these materials under stepwise loading. Although both fiber and matrix cracks were observed in all specimens, the mechanisms of failure were found to be different and strongly dependent on the residual stress state in these materials. 15 refs.

  20. Method for residual stress relief and retained austenite destabilization

    DOEpatents

    Ludtka, Gerard M.

    2004-08-10

    A method using of a magnetic field to affect residual stress relief or phase transformations in a metallic material is disclosed. In a first aspect of the method, residual stress relief of a material is achieved at ambient temperatures by placing the material in a magnetic field. In a second aspect of the method, retained austenite stabilization is reversed in a ferrous alloy by applying a magnetic field to the alloy at ambient temperatures.

  1. A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings

    SciTech Connect

    Nair, B. G.; Singh, J. P.; Grimsditch, M.

    2000-02-28

    Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.

  2. Residual stress in zinc oxide thin films deposited by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Elam, David; Kotha, Ramakrishna; Ayon, Arturo; Chabanov, Andrey

    2010-10-01

    The residual stress in a thin film can have an impact on the electrical and optical properties of the film. In addition, stress is an important consideration when incorporating the material into a microelectromechanical (MEMS) device as large unexpected stresses can cause such a device to fail. The residual stress in ZnO thin films prepared by atomic layer deposition was measured using a radius of curvature technique. The results show relatively low residual stresses on the order of ˜0.1 GPa. The stress is observed to change from tensile to compressive as a function of increasing deposition temperature. The polycrystalline structures of the films are also investigated using XRD techniques.

  3. The influence of alloy composition on residual stresses in heat treated aluminium alloys

    SciTech Connect

    Robinson, J.S.; Redington, W.

    2015-07-15

    The as quenched properties of eight different heat treatable aluminium alloys are related to residual stress magnitudes with the objective being to establish if there is a relationship between the residual stress and the as quenched alloy hardness and strength. Near surface residual stresses were assessed with X-ray diffraction using both the established sin{sup 2}ψ method and the more recent cos α technique. Through thickness residual stresses were also characterised using neutron diffraction. The alloys were chosen to encompass a wide range of strengths. The low to medium strength alloys were 6060 and 6082, medium to high strength 2618A, 2014A, 7075, 7010 and two variants of 7449, while the very high strength alloy was the powder metallurgy alloy N707. To assess the as quenched strength, dynamic hardness and tensile properties were determined from samples tested immediately after quenching to minimise the influence of precipitation hardening by natural aging. In addition, hot hardness measurements were made in situ on samples cooled to simulate quench paths. Within the experimental constraints of the investigation, the distribution of residual stress through the thickness was found to follow the same pattern for all the alloys investigated, varying from tensile in the interior to surface compression. The influence of alloy strength was manifested as a change in the observed residual stress magnitudes, and surface residual stresses were found to vary linearly with as quenched hardness and strength. - Highlights: • As quenched aluminium alloys contain high magnitude residual stresses. • Surface is compressive balance by a tensile core. • As quenched surface residual stress is linear function of alloy strength. • In situ hot hardness demonstrates rapid change in intrinsic hardness during rapid cooling.

  4. Modeling and experimental verification of thermally induced residual stress in RF-MEMS

    NASA Astrophysics Data System (ADS)

    Somà, Aurelio; Mubasher Saleem, Muhammad

    2015-05-01

    Electrostatically actuated radio frequency microelectromechanical systems (RF-MEMS) generally consist of microcantilevers and clamped-clamped microbeams. The presence of residual stress in these microstructures affects the static and dynamic behavior of the device. In this study, nonlinear finite element method (FEM) modeling and the experimental validation of residual stress induced in the clamped-clamped microbeams and the symmetric toggle RF-MEMS switch (STS) is presented. The formation of residual stress due to plastic deformation during the thermal loading-unloading cycle in the plasma etching step of the microfabrication process is explained and modeled using the Bauschinger effect. The difference between the designed and the measured natural frequency and pull-in voltage values for the clamped-clamped microbeams is explained by the presence of the nonhomogenous tensile residual stress. For the STS switch specimens, three-dimensional (3D) FEM models are developed and the initial deflection at zero bias voltage, observed during the optical profile measurements, is explained by the residual stress developed during the plasma etching step. The simulated residual stress due to the plastic deformation is included in the STS models to obtain the switch pull-in voltage. At the end of the simulation process, a good correspondence is obtained between the FEM model results and the experimental measurements for both the clamped-clamped microbeams and the STS switch specimens.

  5. Neutron diffraction determination of the residual stress redistribution in cracked autofrettaged tubing

    SciTech Connect

    Bourke, M.A. ); McGillivray, H.J.; Webster, G.A. . Dept. of Mechanical Engineering); Webster, P.J. . Dept. of Civil Engineering)

    1991-01-01

    Neutron diffraction has been used to measure the residual stress distributions in uncracked and fatigue cracked rings taken from a high strength, low alloy steel autofrettage tube with a bore diameter of 60mm and a wall thickness of 32mm. Stresses were determined to a precision of {plus minus} 10MPa. Three crack sixes were examines. No appreciable stress redistribution was observed until the crack was grown into a region which originally contained tensile residual hoop stress. When this occurred an increase in residual hoop tension was observed ahead of the crick tip. Qualitative agreement was achieved between the measured hoop stress distribution and values predicted using a boundary element method. 9 refs., 12 figs.

  6. Neutron diffraction analysis of residual strain/stress distribution in the vicinity of high strength welds

    NASA Astrophysics Data System (ADS)

    Mráz, L.; Karlsson, L.; Hamák, I.; Vrána, M.; Mikula, P.

    2010-06-01

    Residual stresses resulting from non homogeneous heat distribution during welding process belong to most significant factor influencing behavior of welded structures. These stresses are responsible for defect occurrence during welding and they are also responsible for crack initiation and propagation at the either static or dynamic load. The significant effect of weld metal chemical composition as well as the effect of fatigue load and local plastic deformation on residual stress distribution and fatigue life have been recognized for high strength steels welds. The changes in residual stress distribution have then positive effect on cold cracking behavior and also on fatigue properties of the welds [1-3]. Several experimental methods, both destructive and non-destructive, such as hole drilling method, X-ray diffraction, neutron diffraction and others, have been used to examine residual stress distribution in all three significant orientations in the vicinity of the welds. The present contribution summarizes the results of neutron diffraction measurements of residual stress distribution in the vicinity of single-pass high-strength-steel welds having different chemical composition as well as the influence of fatigue load and local plastic deformation. It has been observed that the chemical composition of the weld metal has a significant influence on the stress distribution around the weld. Similarly, by aplying both cyclic load or pre-stress load on the specimens, stress relaxation was observed even in the region of approximately 40 mm far from the weld toe.

  7. Modelling of residually stressed materials with application to AAA.

    PubMed

    Ahamed, T; Dorfmann, L; Ogden, R W

    2016-08-01

    Residual stresses are generated in living tissues by processes of growth and adaptation and they significantly influence the mechanical behaviour of the tissues. Thus, to effectively model the elastic response of the tissues relative to a residually stressed configuration the residual stresses need to be incorporated into the constitutive equations. The purposes of this paper are (a) to summarise a general elastic constitutive formulation that includes residual stress, (b) to specify the tensors needed for the three-dimensional implementation of the theory in a nonlinear finite element code, and (c) to use the theory and its implementation to evaluate the wall stress distribution in an abdominal aortic aneurysm (AAA) using patient specific geometry and material model parameters. The considered material is anisotropic with two preferred directions indicating the orientation of the collagen fibres in the aortic tissue. The method described in this paper is general and can be used, by specifying appropriate energy functions, to investigate other residually stressed biological systems. PMID:26874252

  8. Residual Stresses and Critical Initial Flaw Size Analyses of Welds

    NASA Technical Reports Server (NTRS)

    Brust, Frederick W.; Raju, Ivatury, S.; Dawocke, David S.; Cheston, Derrick

    2009-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). A series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on the fatigue life. The purpose of the weld analyses was to model the weld process using a variety of sequences to determine the 'best' sequence in terms of weld residual stresses and distortions. The many factors examined in this study include weld design (single-V, double-V groove), weld sequence, boundary conditions, and material properties, among others. The results of this weld analysis are included with service loads to perform a fatigue and critical initial flaw size evaluation.

  9. Residual Stresses in LENS-Deposited AISI 410 Stainless Steel Plates

    SciTech Connect

    Wang, L; Felicellli, S D; Pratt, Phillip R

    2008-01-01

    The residual stress in thin plate components deposited by the laser engineered net shaping (LENS{reg_sign}) process was investigated experimentally and numerically. Neutron diffraction mapping was used to characterize the residual stress in LENS-deposited AISI 410 stainless steel thin wall plates. Using the commercial welding software SYSWELD, a thermo-mechanical three-dimensional finite element model was developed, which considers also the effect of metallurgical phase transformations. The model was employed to predict the temperature history and the residual stress field during the LENS process. Several simulations were performed with the geometry and process parameters that were used to build the experimental samples. The origin of the residual stress distribution is discussed based on the thermal histories of the samples, and the modeling results are compared with measurements obtained by neutron diffraction mapping.

  10. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    NASA Astrophysics Data System (ADS)

    Outeiro, José C.; Umbrello, Domenico; Pina, José C.; Rizzuti, Stefania

    2007-05-01

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  11. Numerical analysis of residual stress distribution in tubes with spiral weld cladding

    SciTech Connect

    Taljat, B.; Zacharia, T.; Wang, X.L.; Keiser, J.R.; Swindeman, R.W.; Feng, Z.; Jirinec, M.J.

    1998-08-01

    Residual stresses and strains in a tube with spiral weld cladding were analyzed by the finite element (FE) method. The objective of this work was to determine the residual stress-strain state in the weld clad tube and verify the developed FE model, which might serve for future parametric sensitivity studies of various welding parameters on residual stresses in such tubes. An axisymmetric FE model was developed to simulate the circumferential weld cladding process of Alloy 625 on SA210 carbon steel tube and to analyze the residual stress-strain state. The analysis was uncoupled in that the thermal and mechanical analyses were conducted in two separate runs. The results show high tensile residual stresses in the weld cladding and at the interface with a gradual transition to compressive stresses at the inner tube surface. A neutron diffraction technique was used to experimentally determine residual elastic strains in the clad tube. Comparison with the FE results shows good overall agreement. The agreement is excellent in radial and axial elastic strain components, whereas the calculated tangential elastic strain overpredicted the measured value. The difference is discussed, and certain conclusions are given. Finally, some attempts on how to prevent or relieve high tensile stresses in the weld cladding are presented and discussed in this paper.

  12. Modelling of Tool Wear and Residual Stress during Machining of AISI H13 Tool Steel

    SciTech Connect

    Outeiro, Jose C.; Pina, Jose C.; Umbrello, Domenico; Rizzuti, Stefania

    2007-05-17

    Residual stresses can enhance or impair the ability of a component to withstand loading conditions in service (fatigue, creep, stress corrosion cracking, etc.), depending on their nature: compressive or tensile, respectively. This poses enormous problems in structural assembly as this affects the structural integrity of the whole part. In addition, tool wear issues are of critical importance in manufacturing since these affect component quality, tool life and machining cost. Therefore, prediction and control of both tool wear and the residual stresses in machining are absolutely necessary. In this work, a two-dimensional Finite Element model using an implicit Lagrangian formulation with an automatic remeshing was applied to simulate the orthogonal cutting process of AISI H13 tool steel. To validate such model the predicted and experimentally measured chip geometry, cutting forces, temperatures, tool wear and residual stresses on the machined affected layers were compared. The proposed FE model allowed us to investigate the influence of tool geometry, cutting regime parameters and tool wear on residual stress distribution in the machined surface and subsurface of AISI H13 tool steel. The obtained results permit to conclude that in order to reduce the magnitude of surface residual stresses, the cutting speed should be increased, the uncut chip thickness (or feed) should be reduced and machining with honed tools having large cutting edge radii produce better results than chamfered tools. Moreover, increasing tool wear increases the magnitude of surface residual stresses.

  13. Quantification of residual stress from photonic signatures of fused silica

    SciTech Connect

    Cramer, K. Elliott; Yost, William T.; Hayward, Maurice

    2014-02-18

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10{sup −12} Pa{sup −1}. Fused silica specimens containing impacts artificially made at NASA’s Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.

  14. Gyrokinetic Simulation of Residual Stress from Diamagnetic Velocity Shears

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2010-11-01

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the parallel velocity (and parallel velocity itself) vanishes. Previously [1] we demonstrated with gyrokinetic (GYRO) simulations that TAM pinching from the diamagnetic level shear in the ExB velocity could provide the residual stress needed for spontaneous toroidal rotation. Here we show that the shear in the diamagnetic velocities themselves provide comparable residual stress (and level of stabilization). The sign of the residual stress, quantified by the ratio of TAM flow to ion power flow (M/P), depends on the signs of the various velocity shears as well as ion (ITG) versus electron (TEM) mode directed turbulence. The residual stress from these temperature and density gradient diamagnetic velocity shears is demonstrated in global gyrokinetic simulation of ``null'' rotation DIIID discharges by matching M/P profiles within experimental error. 8pt [1] R.E. Waltz, G.M. Staebler, J. Candy, and F.L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009).

  15. Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings

    NASA Astrophysics Data System (ADS)

    Luo, W.; Selvadurai, U.; Tillmann, W.

    2016-01-01

    The wear resistance of thermal spray coatings mainly depends on coating properties such as the microstructure, hardness, and porosity, as well as on the residual stress in the coating. The residual stress is induced by a variety of influences e.g., temperature gradients, difference of the thermal expansion coefficient of the coating/substrate materials, and the geometry of the components. To investigate the residual stress, the impulse excitation technique was employed to measure the Young's and shear moduli. The residual stress was determined by the hole-drilling method and x-ray diffraction. Pin-on-Disk and Pin-on-Tube tests were used to investigate the wear behavior. After the wear tests, the wear volume was measured by means of a 3D-profilometer. The results show that the value of the residual stress can be modified by varying the coating thickness and the substrate geometry. The compressive stress in the HVOF-sprayed WC-Co coatings has a significant positive influence on the wear resistance whereas the tensile stress has a negative effect.

  16. Effect of Residual Stress on Fatigue Failure of Carbonitrided Low-Carbon Steel

    NASA Astrophysics Data System (ADS)

    Kanchanomai, C.; Limtrakarn, W.

    2008-12-01

    The effect of residual stress on fatigue behavior and mechanisms of carbonitrided AISI 1015 steel under uniaxial cyclic loading has been experimentally studied. By progressive removal of thin surface layers using an electropolishing technique and subsequent residual stress measurements using an x-ray diffraction technique, the compressive residual stress at the surface was approximately 900 MPa. The stress decreased toward the center, and became stable tensile residual stress of approximately 20 MPa. The fatigue resistance of carbonitrided AISI 1015 steel was higher than that of AISI 1015 steel due to the presence of compressive residual stress in case layer. The fatigue limit of AISI 1015 steels with and without carbonitriding was 340 and 300 MPa, respectively. Subsurface cracks initiated at the case-core interface, i.e. approximately 400 μm from the surface. With increasing number of stress cycles, the subsurface cracks coalesced and propagated intergranularly through the case layer. After some incubation cycles, the subsurface cracks reached the surface of specimen, and became a main crack. During this stage, the stress increased, and caused the formation of voids in core material. Consequently, the crack propagated through the core material, interacted with voids, and caused complete fracture.

  17. Residual stresses in weld overlay tubes: A finite element study

    SciTech Connect

    Taljat, B.; Zacharia, T.; Wang, X.L.; Keiser, J.R.; Feng, Z.; Jirinec, M.J.

    1997-01-03

    Residual stresses and strains in a tube with circumferential weld overlay were analyzed by the finite element (FE) method. The objective of this work was to develop and verify a FE model, to determine the magnitude and distribution of residual stresses in the weld overlay tube, and to evaluate the significance of two contributing factors to residual stress: (1) difference in material properties between tube and weld material, and (2) thermal gradients in the weld. An axisymmetric FE model was developed to simulate the circumferential two-layer welding process of alloy 625 overlay on SA210 tube. The first layer was modeled as a gas metal arc welding process with filler metal, whereas the autogenous gas tungsten arc welding process was modeled for the second layer. Neutron diffraction technique was used to experimentally determine residual elastic strains in the weld overlay tube. Comparison with the FE results shows overall good agreement. Both the experimental and FE results show high compressive stresses at the inside tube surface and high tensile stresses in the weld overlay. This suggests that weld overlay may be used to relieve tensile or produce compressive stresses at the inside tube surface, which is significant for applications where crack initiation is found at the root pass of the joining weld.

  18. Optimum Injection Pressure of a Cavitating Jet for Introducing Compressive Residual Stress into Stainless Steel

    NASA Astrophysics Data System (ADS)

    Soyama, Hitoshi; Nagasaka, Kazuya; Takakuwa, Osamu; Naito, Akima

    Introducing compressive residual stress by a cavitating jet into the sub-surface of components used in nuclear power plants can mitigate stress corrosion cracking in these components. Although applying the jet is an effective method for this purpose, it should be used without causing damage to the surface from water jet droplets arising from high-pressure injection of the water jet. Thus, in introducing compressive residual stress, the injection pressure needs to be optimized. In this paper, in order to determine the optimum injection pressure, the residual stress of stainless steel treated by a jet at various injection pressures was measured using an X-ray diffraction method. The injection pressure of the jet was varied from 5 MPa to 300 MPa, and the diameter of the nozzle throat of the jet was varied from 0.35 mm to 2.0 mm. The variation of residual stress with depth was measured by alternating X-ray diffraction measurements with electropolishing. It was revealed that a cavitating jet at an injection pressure of 10 MPa with a nozzle diameter of 2.0 mm can introduce higher compressive residual stress to deeper into stainless steel compared with a jet at 300 MPa with a nozzle diameter of 0.35 mm when the downstream pressure of the nozzle was constant.

  19. Measurement of local stress for microelectronics applications

    NASA Astrophysics Data System (ADS)

    Zheng, Dawei

    For quality control and reliability analysis in semiconductor manufacturing, it is crucial to access the localized stress in devices due to process integration in thin film deposition, etching, passivation and thermal treatment. Presented in this dissertation is the exploration of a new methodology to access localized stress in patterned microstructures. It is called the "micro-bending-beam method". In order to evaluate the residual stress distribution in a thin film pattern residing on a silicon wafer, the Si underlying the pattern was thinned down uniformly so that its deflection, caused by the residual stress, could be measured. If the etched-back surface remains optically flat and reflective, then the bending of the diaphragm would be equivalent to its surface profile, which could be readily measured by a Twyman-Green laser interferometer. A procedure called "numerical etching" was implemented to simulate the Si etching process, which linked the stress state of the microstructure on a bulk wafer to that on a Si diaphragm. An initial stress field in the pattern was assumed, its effect on the bending of the Si diaphragm beneath was calculated and compared to the measured value. The discrepancy between them was used to modify the initially assumed stress field and repeated until satisfactory matches were achieved at each diaphragm thickness. The applicability of the micro-bending-beam method was demonstrated by resolving the residual stress in an electroless Ni bump. It was found that for a relatively thick diaphragm, the "plate" effect dominated; for a relatively thin diaphragm, the "membrane" effect dominated; at intermediate thickness, both effects existed. A general algorithm to solve non-linear equations where both bending stiffness and residual stress in a diaphragm must be considered was invented, and named "non-linear sequential analysis". It was found that for a pre-stressed pattern sitting on a stress-free Si diaphragm starting at to and thinned down to

  20. Finite element calculation of residual stress in dental restorative material

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; D'Amore, Alberto

    2012-07-01

    A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.

  1. Extension, inflation and torsion of a residually stressed circular cylindrical tube

    NASA Astrophysics Data System (ADS)

    Merodio, José; Ogden, Ray W.

    2016-03-01

    In this paper, we provide a new example of the solution of a finite deformation boundary-value problem for a residually stressed elastic body. Specifically, we analyse the problem of the combined extension, inflation and torsion of a circular cylindrical tube subject to radial and circumferential residual stresses and governed by a residual-stress dependent nonlinear elastic constitutive law. The problem is first of all formulated for a general elastic strain-energy function, and compact expressions in the form of integrals are obtained for the pressure, axial load and torsional moment required to maintain the given deformation. For two specific simple prototype strain-energy functions that include residual stress, the integrals are evaluated to give explicit closed-form expressions for the pressure, axial load and torsional moment. The dependence of these quantities on a measure of the radial strain is illustrated graphically for different values of the parameters (in dimensionless form) involved, in particular the tube thickness, the amount of torsion and the strength of the residual stress. The results for the two strain-energy functions are compared and also compared with results when there is no residual stress.

  2. Phase composition and residual stresses in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Ryabenko, B. V.; Ashmarin, A. A.; Molostov, D. E.

    2015-10-01

    The phase composition and the residual stresses in multilayer thermal barrier coatings, which consist of an external ZrO2-8Y2O3 ceramic layer, an intermediate gradient (metal ceramic) layer, and a transient metallic NiCrAlY sublayer, are studied. It is shown that an increase in the specific volume of the metallic sublayer as a result of the formation of thermal growing oxide Al2O3 generates high compressive stresses in this sublayer. The ceramic layer undergoes tensile stresses in this case. A method is proposed to estimate the stresses in gradient coatings from X-ray diffraction results.

  3. Spatial distribution of residual stresses in glass-ZrO2 sphero-cylindrical bilayers.

    PubMed

    Wendler, Michael; Belli, Renan; Petschelt, Anselm; Lohbauer, Ulrich

    2016-07-01

    Residual stresses arising from inhomogeneous cooling after sintering have shown to play a preponderant role in the higher incidence of chippings observed for glass-zirconia dental prostheses. Still, current descriptions of their nature and distribution have failed to reconcile with clinical findings. Therefore, an axisymmetric sphero-cylindrical bilayer model was used in this study to determine the effect of the cooling rate on the final spatial distribution of residual stresses. Zirconia frameworks with two different radii (1.6 and 3.2mm) were CAD/CAM fabricated. Subsequent glass overlays with two different thickness ratios (1:1 and 2:1) were generated and heat pressed onto the zirconia substrates. The obtained structures were submitted to a last firing process and fast- (45°C/s) or slow-cooled (0.5°C/s) to room temperature. Unbonded bilayers were produced by firing glass overlays onto boron nitride coated zirconia. Thin sagittal and transversal sections were obtained from the specimens to assess residual stress distribution by means of light birefringence. The applied cooling rates did not affect distribution or magnitude of radial residual stresses (sagittal sections), whereas increased hoop stress magnitudes were measured (transversal sections) in fast-cooled specimens. A distinct stress nature was observed for the hoop stress component of unbonded overlays after fast cooling. Interaction between stress components seems to govern the final stress distribution, highlighting the importance of a multiaxial assessment of this problem in three-dimensional structures. PMID:27043169

  4. On Taylor-Series Approximations of Residual Stress

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1999-01-01

    Although subgrid-scale models of similarity type are insufficiently dissipative for practical applications to large-eddy simulation, in recently published a priori analyses, they perform remarkably well in the sense of correlating highly against exact residual stresses. Here, Taylor-series expansions of residual stress are exploited to explain the observed behavior and "success" of similarity models. Until very recently, little attention has been given to issues related to the convergence of such expansions. Here, we re-express the convergence criterion of Vasilyev [J. Comput. Phys., 146 (1998)] in terms of the transfer function and the wavenumber cutoff of the grid filter.

  5. Residual Stress Examination In Surface Layers Turned By Auto-Rotary Tool

    NASA Astrophysics Data System (ADS)

    Struharňanský, Jozef; Stančeková, Dana; Martikáň, Anton; Varga, Daniel; Kuždál, Viktor; Rákoci, Jozef

    2015-12-01

    In this article, unconventional kinematics of turning is examined with the aim on influence of cutting parameters on surface layers residual stress. The auto-rotary cutting tool prototype for turning was developed, designed and constructed at the University of Zilina. The tool is made of high speed steel. Residual stress examination of material 100Cr6 was performed by non-destructive measuring method of X-ray diffraction. This method is able to determine normal and shear stress conditions without damaging the examined sample.

  6. Experimental-Numerical Comparison of the Cantilever MEMS Frequency Shift in presence of a Residual Stress Gradient

    PubMed Central

    Ballestra, Alberto; Somà, Aurelio; Pavanello, Renato

    2008-01-01

    The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations.

  7. Mapping Residual Stress Distributions at the Micron Scale in Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Winiarski, Bartlomiej; Langford, Richard M.; Tian, Jiawan; Yokoyama, Yoshihiko; Liaw, Peter K.; Withers, Philip J.

    2010-07-01

    Residual stresses in crystalline or glassy materials often play a key role in the performance of advanced devices and components. However, stresses in amorphous materials cannot easily be determined at the micron scale by diffraction, or by other conventional laboratory methods. In this article, a technique for mapping residual stress profiles in amorphous materials with high spatial definition is presented. By applying a focused ion beam (FIB)-based semidestructive mechanical relaxation method, the stresses are mapped in a peened and fatigued bulk metallic glass (BMG) (Zr50Cu40Al10 at. pct). The residual stresses are inferred using finite element analysis (FEA) of the surface relaxations, as measured by digital image correlation (DIC), that occur when a microslot is micromachined by FIB. Further, we have shown that acceptable accuracy can in most cases be achieved using a simple analytical model of the slot. It was found that the fatigue cycling significantly changes the distribution of compressive residual stresses with depth in the plastically deformed surface layer. Our observations point to the scalability of this method to map residual stresses in volumes as small as 1 × 1 × 0.2 μm3 or less.

  8. Measuring Acoustic-Radiation Stresses in Materials

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, W. T.

    1986-01-01

    System measures nonlinearity parameters of materials. Uses static strain generated by acoustic wave propagating in material. Since static strain is effectively "dc" component of waveform distortion, problems associated with phase-cancellation artifacts disappear. Further, sign of nonlinearity parameter obtained by simple inspection of measured signal polarity. These features make this system very amenable to use in field. System expected to become standard for acoustic-radiation-stress measurements for solids and liquids and for characterization of material properties related to strength and residual or applied stresses. Also expected to become standard for transducer calibration.

  9. JOINING OF MOLYBDENUM DISILICIDE TO STAINLESS STEEL USING AMORPHOUS METAL BRAZES-RESIDUAL STRESS ANALYSIS

    SciTech Connect

    VAIDYA, RAJENDRA U; KAUTZ, DOUGLAS D.; GALLEGOS, DAVID E.

    2007-01-30

    Molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L jOints were produced by high temperature brazing using a cobalt-based metallic-glass (METGLAS{trademark} 2714A). Successful joining was completed in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainiess steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Residual stress measurements were completed on these joints. Indentation results show higher tensile residual stresses in the stainless steel for the joint with the external constraint, in comparison to the unconstrained state. In contrast, the compressive residual stresses In the MoSi{sub 2} (as measured by X-ray diffraction) were lower in the constrained state relative to the unconstrained state. These results and a lack of residual stress balance indicate that the stress state in the braze is significantly different under the two joining conditions and the volume of the braze plays an important role in the development of the residual stresses. Push-out tests carried out on these joints gave higher joint strengths in the unconstrained as compared to the constrained condition. The results of this study have important implications on the selection of the appropriate joining process (use of constraint versus extra braze).

  10. Thermal residual stresses and their toughening effect in Al{sub 2}O{sub 3} platelet reinforced glass

    SciTech Connect

    Todd, R.I.; Sinclair, R.; Yallee, R.B.; Young, R.J.; Boccaccini, A.R.

    1999-09-08

    Fluorescence spectroscopy has been used to measure the thermal residual stresses in Al{sub 2}O{sub 3}-platelet/borosilicate glass composites. Tensile residual stresses were found in the platelets, implying the presence of compressive residual stresses in the glass matrix. Measurements of stresses in the bulk of the composite could be obtained using fluorescence from platelets below the specimen surface. The measured stresses lay between the predictions of models for spherical particles and thin platelets, but were closer to the former for the range of platelet contents investigated (5--30 vol.%). Estimates of the increase in toughness associated with the compressive residual stresses in the matrix suggest that this mechanism makes a significant contribution to the toughening effect of the Al{sub 2}O{sub 3} platelets.

  11. Finite Element Modeling and Validation of Residual Stresses in 304 L Girth Welds

    SciTech Connect

    Dike, J.J.; Ortega, A.R.; Cadden, C.H.; Rangaswamy, P. Brown, D.

    1998-06-01

    Three dimensional finite element simulations of thermal and mechanical response of a 304 L stainless steel pipe subjected to a circumferential autogenous gas tungsten arc weld were used to predict residual stresses in the pipe. Energy is input into the thermal model using a volumetric heat source. Temperature histories from the thermal analysis are used as loads in the mechanical analyses. In the mechanical analyses, a state variable constitutive model was used to describe the material behavior. The model accounts for strain rate, temperature, and load path histories. The predicted stresses are compared with x-ray diffraction determinations of residual stress in the hoop and circumferential directions on the outside surface of the pipe. Calculated stress profiles fell within the measured data. Reasons for observed scatter in measured stresses are discussed.

  12. Nondestructive evaluation of near-surface residual stress in shot-peened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Yu, Feng

    Surface enhancement methods, which produce beneficial compressive residual stresses and increased hardness in a shallow near-surface region, are widely used in a number of industrial applications, including gas-turbine engines. Nondestructive evaluation of residual stress gradients in surface-enhanced materials has great significance for turbine engine component life extension and their reliability in service. It has been recently found that, in sharp contrast with most other materials, shot-peened nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, which can be exploited for nondestructive residual stress assessment. The primary goal of this research is to develop a quantitative eddy current method for nondestructive residual stress profiles in surface-treated nickel-base superalloys. Our work have been focused on five different aspects of this issue, namely, (i) validating the noncontacting eddy current technique for electroelastic coefficients calibration, (ii) developing inversion procedures for determining the subsurface residual stress profiles from the measured apparent eddy current conductivity (AECC), (iii) predicting the adverse effect of surface roughness on the eddy current characterization of shot-peened metals, (iv) separating excess AECC caused by the primary residual stress effect from intrinsic conductivity variations caused by material inhomogeneity, and (v) investigating different mechanisms through which cold work could influence the AECC in surface-treated nickel-base superalloys. The results of this dissertation have led to a better understanding of the underlying physical phenomenon of the measured excess AECC on nickel-base engine alloys, and solved a few critical applied issues in eddy current nondestructive residual stress assessment in surface-treated engine components and, ultimately, contributed to the better utilization and safer operation of the Air Force's aging

  13. The inclusion of weld residual stress in fracture margin assessments of embrittled nuclear reactor pressure vessels

    SciTech Connect

    Dickson, T.L.; Bass, B.R.; McAfee, W.J.

    1998-01-01

    Analyses were performed to determine the impact of weld residual stresses in a reactor pressure vessel (RPV) on (1) the generation of pressure temperature (P-T) curves required for maintaining specified fracture prevention margins during nuclear plant startup and shutdown, and (2) the conditional probability of vessel failure due to pressurized thermal shock (PTS) loading. The through wall residual stress distribution in an axially oriented weld was derived using measurements taken from a shell segment of a canceled RPV and finite element thermal stress analyses. The P-T curve derived from the best estimate load analysis and a t / 8 deep flaw, based on K{sub Ic}, was less limiting than the one derived from the current methodology prescribed in the ASME Boiler and Pressure Vessel Code. The inclusion of the weld residual stresses increased the conditional probability of cleavage fracture due to PTS loading by a factor ranging from 2 to 4.

  14. Investigation of residual stresses in a multipass weld in 1 in. stainless steel plate

    SciTech Connect

    Spooner, S.; Fernandez Baca, J.A.; David, S.A.; Hubbard, C.R.; Holden, T.M.; Root, J.H.

    1994-06-01

    Residual stresses and strains were measured in two welded 25-mm thick plates of type 304 stainless steel by the neutron diffraction. The filler metal was type 308 stainless steel and the weld zone had a two phase microstructure in which the austenitic phase lattice parameter differs from the base metal. In these circumstances stain-free samples were taken from the weld zone area for analysis of the lattice parameters and ferrite content using neutron powder diffraction. Corrections for lattice parameter variation were applied permitting the calculation of residual strains and stresses in weld zone, heat affected zone (HAZ) and base metal. One of the two welds was examined without stress relief and the other was given a stress relief treatment consisting of vibration at a frequency below the resonant condition dudng welding. In both plates the largest residual stress component (longitudinal) is found in the fusion zone near the boundary between the weld zone and the heat affected zone. This longitudinal component is 400 {plus_minus} 50 MPa in tension. The normal stresses are generally close to zero although large fluctuations are found in the weld zone. The transverse stresses are as high as 200 MPa in the weld zone and decrease to 50 MPa {plus_minus} 40 MPa. The lattice parameter variation was equivalent to 5 {times} l0{minus}4 compressive strain and the ferrite content approached 9 percent at the center of the weld zone. Variations in residual stresses with thickness through the base metal plate were small. The treated plate and untreated plate showed nearly identical patterns of stress distribution. Differences in the measured stresses between vibratory-stress-relief treated and untreated plates fall within error bars of the stress determination in these particular 25 mm thick 300-type stainless steel plates.

  15. Mapping residual stresses after foreign object damage using the contour method

    SciTech Connect

    Prime, M. B.; Martineau, R. L.

    2002-01-01

    A 51-mm thick plate of High-Strength Low-Alloy (HSLA-100) steel was impacted by a 6.4 mm diameter tungsten carbide sphere traveling at 2.2 km/sec. The projectile penetration left a 10 mm diameter and 12 mm deep crater. A residual stress map over a cross-section through the crater was measured by the contour method. The predominant feature of the stress map was a peak compressive stress of 900 MPa, or 1.3 times the yield strength, centered about 1.5 crater radii below the crater floor. The results were compared with an explicit finite element simulation of the impact event. The model has good agreement with the measured residual stresses. As part of the study, residual stresses in the as-received HSLA-100 plate were also measured and found to be a typical quenching stress distribution with peak compressive stress of about 165 MPa a few mm below the surface and tensile stress of 200 MPa in the center of the plate thickness.

  16. Residual stresses in a shape welded steel tube by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Taran, Yu V.; Balagurov, A. M.; Schreiber, J.; Stuhr, U.

    2008-03-01

    Measurements of the triaxial residual strains in a composite tube from an austenitic stainless steel as a parent material and a shape welded ferritic steel were carried out by the time-of-flight neutron diffraction method on the POLDI instrument at the PSI SINQ neutron pulsed facility. The shape weld is used to build compressive stresses and, as a result, to suppress stress corrosion. Investigations of the residual stresses in such composite tubes are important for developing optimal welding techniques. Calculation of the residual stresses was performed using measurement results with a comb-sample, machined from the tube by the electro-discharge method, as the stress free reference sample. The results of the POLDI measurements of the stress state in the composite tube are presented and compared to the results of the destructive turning out method and theoretical predictions of calculations by the finite element method. Semiquantitative agreement between all the used methods was only observed for the tangential component of the stress tensor. In this case, the ferrite cladding produced a tangential compressive stress of about 800 MPa on the austenitic tube.

  17. X-ray diffraction analysis of residual stress in zirconia dental composites

    NASA Astrophysics Data System (ADS)

    Allahkarami, Masoud

    Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.

  18. Nondestructive testing and characterization of residual stress field using an ultrasonic method

    NASA Astrophysics Data System (ADS)

    Song, Wentao; Xu, Chunguang; Pan, Qinxue; Song, Jianfeng

    2016-03-01

    To address the difficulty in testing and calibrating the stress gradient in the depth direction of mechanical components, a new technology of nondestructive testing and characterization of the residual stress gradient field by ultrasonic method is proposed based on acoustoelasticity theory. By carrying out theoretical analysis, the sensitivity coefficients of different types of ultrasonic are obtained by taking the low carbon steel(12%C) as a research object. By fixing the interval distance between sending and receiving transducers, the mathematical expressions of the change of stress and the variation of time are established. To design one sending-one receiving and oblique incidence ultrasonic detection probes, according to Snell law, the critically refracted longitudinal wave (LCR wave) is excited at a certain depth of the fixed distance of the tested components. Then, the relationship between the depth of LCR wave detection and the center frequency of the probe in Q235 steel is obtained through experimental study. To detect the stress gradient in the depth direction, a stress gradient LCR wave detection model is established, through which the stress gradient formula is derived by the relationship between center frequency and detecting depth. A C-shaped stress specimen of Q235 steel is designed to conduct stress loading tests, and the stress is measured with the five group probes at different center frequencies. The accuracy of ultrasonic testing is verified by X-ray stress analyzer. The stress value of each specific depth is calculated using the stress gradient formula. Accordingly, the ultrasonic characterization of residual stress field is realized. Characterization results show that the stress gradient distribution is consistent with the simulation in ANSYS. The new technology can be widely applied in the detection of the residual stress gradient field caused by mechanical processing, such as welding and shot peening.

  19. FEM simulation of residual stresses induced by laser Peening

    NASA Astrophysics Data System (ADS)

    Peyre, P.; Sollier, A.; Chaieb, I.; Berthe, L.; Bartnicki, E.; Braham, C.; Fabbro, R.

    2003-08-01

    Benefits from laser Peening have been demonstrated several times in fields like fatigue, wear or stress corrosion cracking. However, in spite of recent work on the calculation of residual stresses, very few authors have considered a finite element method (FEM) approach to predict laser-induced mechanical effect. This comes mainly from the high strain rates involved during LP (10^6 s^{-1}), that necessitate the precise determination of dynamic properties, and also from the possible combination of thermal and mechanical loadings in the case of LP without protective coatings. In this paper, we aim at presenting a global approach of the problem, starting from the determination of loading conditions and dynamic yield strengths, to finish with FEM calculation of residual stress fields induced on a 12% Cr martensitic stainless steel and a 7075 aluminium alloy.

  20. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in Oxide Dispersion Strengthened (ODS) Steel MA956

    SciTech Connect

    Brewer, Luke N.; Bennett, Martin S.; Baker, B. W.; Payzant, E. Andrew; Kolbus, Lindsay M.

    2015-09-08

    This article characterizes the residual stresses generated by friction stir welding of oxide dispersion strengthened steel MA956 over a series of welding conditions. A plate of MA956 steel was friction stir welded at three conditions: 500 rpm/25 millimeters per minute (mmpm), 400 rpm/50 mmpm and 400 rpm/100 mmpm. The residual stresses across these welds were measured using both x-ray and neutron diffraction techniques. Longitudinal residual stresses up to eighty percent of the yield strength were observed for the 400 rpm/100 mmpm condition. Increasing the traverse rate while holding the rotational speed fixed increased the residual stress levels in the stir zone and at the stir zone-thermomechanically affected zone interface. The stress profiles displayed the characteristic M shape, and the asymmetry between advancing and retreating stress peaks was limited, occurring mainly on the root side of the weld. The large magnitude of the stresses was maintained throughout the thickness of the plates.

  1. Influence of tacking sequence on residual stress and distortion of single sided fillet submerged arc welded joint

    NASA Astrophysics Data System (ADS)

    Mondal, Arpan Kumar; Biswas, Pankaj; Bag, Swarup

    2015-07-01

    Submerged arc welding (SAW) is advantageous for joining high thickness materials in large structure due to high material deposition rate. The non-uniform heating and cooling generates the thermal stresses and subsequently the residual stresses and distortion. The longitudinal and transverse residual stresses and angular distortion are generally measured in large panel structure of submerged arc welded fillet joints. Hence, the objective of this present work is to quantify the amount of residual stress and distortion in and around the weld joint due to positioning of stiffeners tack. The tacking sequence influences the level of residual stress and proper controlling of tacking sequences is required to minimize the stress. In present study, an elasto-plastic material behavior is considered to develop the thermo mechanical model which predicts the residual stress and angular distortion with varying tacking sequences. The simulated result reveals that the tacking sequence heavily influences the residual stress and deformation pattern of the single sided fillet joint. The finite element based numerical model is calibrated by comparing the experimental data from published literature. Henceforth, the angular distortions are measured from an in-house developed experimental set-up. A fair agreement between the predicted and experimental results indicates the robustness of the developed numerical model. However, the most significant conclusion from present study states that tack weld position should be placed opposite to the fillet weld side to minimize the residual stress.

  2. Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev

    2016-05-01

    Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal (σ 11) and shear (τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress (P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress (σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.

  3. Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev

    2016-08-01

    Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal ( σ 11) and shear ( τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress ( P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress ( σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.

  4. Experimental determination of the residual stresses in a Kraft recovery boiler tube

    SciTech Connect

    Wang, Xun-Li; Payzant, E.A.; Taljat, B.

    1997-07-01

    Neutron diffraction was used to determine the residual stresses in a spiral weld overlay tube used in Kraft recovery boilers by the pulp and paper industry. The specimen was a 2.5 inches OD carbon steel tube covered with a layer of Inconel 625 weld overlay. Residual strains in the carbon steel and weld overlay layers were determined using the ferritic (211) and austenitic (311) reflections, respectively. Residual stresses in each material were derived from the measured strains using Hooke`s law and appropriate elastic constants. Tensile stress regions were found not only in the weld metal but also in the heat affected zone in the carbon steel. The maximum tensile stress was located in the weld overlay layer and was found to be 360 MPa, or about 75% of the yield strength of the weld metal. The experimental data were compared with a finite element analysis based on an uncoupled thermal-mechanical formulation. Overall, the modeling results were in satisfactory agreement with the experimental data, although the hoop strain (stress) appears to have been overestimated by the finite element model. Additional neutron diffraction measurements on an annealed tube confirmed that these welding residual stresses were eliminated after annealing at 900{degrees}C for 20 minutes. 18 refs., 7 figs.

  5. Residual Stresses in Porcelain-veneered Zirconia Prostheses

    PubMed Central

    Baldassarri, Marta; Stappert, Christian F. J.; Wolff, Mark S.; Thompson, Van P.; Zhang, Yu

    2012-01-01

    Objectives Compressive stress has been intentionally introduced into the overlay porcelain of zirconia-ceramic prostheses to prevent veneer fracture. However, recent theoretical analysis has predicted that the residual stresses in the porcelain may be also tensile in nature. This study aims to determine the type and magnitude of the residual stresses in the porcelain veneers of full-contour fixed-dental prostheses (FDPs) with an anatomic zirconia coping design and in control porcelain with the zirconia removed using a well-established Vickers indentation method. Methods Six 3-unit zirconia FDPs were manufactured (NobelBiocare, Gothenburg, Sweden). Porcelain was hand-veneered using a slow cooling rate. Each FDP was sectioned parallel to the occlusal plane for Vickers indentations (n = 143; load = 9.8 N; dwell time = 5 s). Tests were performed in the veneer of porcelain-zirconia specimens (bilayers, n = 4) and porcelain specimens without zirconia cores (monolayers, n = 2). Results The average crack lengths and standard deviation, in the transverse and radial directions (i.e. parallel and perpendicular to the veneer/core interface, respectively), were 67 ± 12 μm and 52 ± 8 μm for the bilayers and 64 ± 8 μm and 64 ± 7 μm for the monolayers. These results indicated a major hoop compressive stress (~40 to 50 MPa) and a moderate radial tensile stress (~10 MPa) in the bulk of the porcelain veneer. Significance Vickers indentation is a powerful method to determine the residual stresses in veneered zirconia systems. Our findings revealed the presence of a radial tensile stress in the overlay porcelain, which may contributed to the large clinical chip fractures observed in these prostheses. PMID:22578663

  6. Bioinjection Treatment: Effects of Post-Injection Residual Stress on Left Ventricular Wall Stress

    PubMed Central

    Lee, Lik Chuan; Wall, Samuel T.; Genet, Martin; Hinson, Andy; Guccione, Julius M.

    2014-01-01

    Injection of biomaterials into diseased myocardium has been associated with decreased myofiber stress, restored left ventricular (LV) geometry and improved LV function. However, its exact mechanism(s) of action remained unclear. In this work, we present the first patient-specific computational model of biomaterial injection that accounts for the possibility of residual strain and stress introduced by this treatment. We show that the presence of residual stress can create more heterogeneous regional myofiber stress and strain fields. Our simulation results show that the treatment generates low stress and stretch areas between injection sites, and high stress and stretch areas between the injections and both the endocardium and epicardium. Globally, these local changes are translated into an increase in average myofiber stress and its standard deviation (from 6.9 ± 4.6 to 11.2 ± 48.8 kPa and 30 ± 15 to 35.1 ± 50.9 kPa at end-diastole and end-systole, respectively). We also show that the myofiber stress field is sensitive to the void-to-injection size ratio – for a constant void size, the myofiber stress field became less heterogeneous with decreasing injection volume. These results suggest that the residual stress and strain possibly generated by biomaterial injection treatment can have large effects on the regional myocardial stress and strain fields, which may be important in the remodeling process. PMID:25065728

  7. Impurity Effects on Momentum Transport and Residual Stress

    NASA Astrophysics Data System (ADS)

    Ko, Sehoon; Jhang, Hogun; Singh, R.

    2015-11-01

    Impurities are inevitable during tokamak plasma operation because of strong interaction of plasma and plasma facing component and helium ash as a byproduct of fusion process. They cause problems such as radiation power loss and fusion fuel dilution. On the other hands, they are used to diagnosis plasma parameters (CES, XICS etc) and to suppress edge-localized mode by wall-coating. In this research, we study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions is shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.

  8. A micromechanical study of residual stresses in functionally graded materials

    SciTech Connect

    Dao, M.; Gu, P.; Maewal, A.; Asaro, R.J.

    1997-08-01

    A physically based computational micromechanics model is developed to study random and discrete microstructures in functionally graded materials (FGMs). The influences of discrete microstructure on residual stress distributions at grain size level are examined with respect to material gradient and FGM volume percentage (within a ceramic-FGM-metal three-layer structure). Both thermoelastic and thermoplastic deformation are considered, and the plastic behavior of metal grains is modeled at the single crystal level using crystal plasticity theory. The results are compared with those obtained using a continuous model which does not consider the microstructural randomness and discreteness. In an averaged sense both the micromechanics model and the continuous model give practically the same macroscopic stresses; whereas the discrete micromechanics model predicts fairly high residual stress concentrations at the grain size level (i.e., higher than 700 MPa in 5--6 vol% FGM grains) with only a 300 C temperature drop in a Ni-Al{sub 2}O{sub 3} FGM system. Statistical analysis shows that the residual stress concentrations are insensitive to material gradient and FGM volume percentage. The need to consider microstructural details in FGM microstructures is evident. The results obtained provide some insights for improving the reliability of FGMs against fracture and delamination.

  9. Measuring Environmental Stress

    ERIC Educational Resources Information Center

    Walker, John E.; Dahm, Douglas B.

    1975-01-01

    Infrared remote sensors, plus photometric interpretation and digital data analysis are being used to record the stresses on air, water, vegetation and soil. Directly recorded photographic information has been the most effective recording media for remote sensing. (BT)

  10. Residual stress, mechanical behavior and electrical properties of Cu/Nb thin-film multilayers

    SciTech Connect

    Griffin, A.J. Jr.; Hundley, M.F.; Jervis, T.R.; Kung, H.H.; Scarborough, W.K.; Walter, K.C.; Nastasi, M.; Embury, J.D.

    1995-09-01

    Effect of compositional wavelength (modulation) on residual stress, electrical resistivities and mechanical properties of Cu/Nb thin-film multilayers sputtered onto single-crystal Si substrates, was evaluated. Electrical resistivities were measured down to 4 K using a standard 4-point probe. Differential specimen curvature was used to determine residual stress, and a microprobe was used to obtain hardness and elastic modulus. Profilometry, ion-beam analysis and TEM were used. Hardness of the Cu-Nb multilayers increased with decreasing compositional wavelength so that the layered structures had hardness values in excess of either constituent and the hardness predicted by the rule of mixtures. A peak in net residual compressive stress of the multilayers was observed at a compositional wavelength of 100 nm. No resistivity plateau was observed within the composition wavelength range studied.

  11. Effects of ion irradiation on the residual stresses in Cr thin films

    NASA Astrophysics Data System (ADS)

    Misra, A.; Fayeulle, S.; Kung, H.; Mitchell, T. E.; Nastasi, M.

    1998-08-01

    Cr films sputtered onto {100} Si substrates at room temperature were found to be under residual tension, as revealed by wafer curvature measurements. A 150 nm thick Cr film was bombarded with 300 keV Ar ions after deposition. The intrinsic residual tensile stress increased slightly and then decreased with further increase in the ion dose. For ion doses >1×1015ions/cm2, the stress in the film became compressive and increased with increasing dose. Transmission electron microscopy revealed that the grain boundaries in as-deposited Cr have columnar porosity. A Cr film, ion irradiated to a dose of 5×1015ions/cm2, showed no grain boundary porosity. The changes in the residual stress during ion irradiation are explained by considering Ar incorporation in the film and the manner in which irradiation may change the interatomic distances and forces.

  12. Calculation of residual principal stresses in CVD boron on carbon filaments

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1980-01-01

    A three-dimensional finite element model of the chemical vapor deposition (CVD) of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented to show how the principal residual stresses and the filament elongation vary as the parameters defining deposition strain and creep are varied. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. This comparison requires that for good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and that the build-up of residual stresses is limited by significant boron and carbon creep rates.

  13. Calculation of residual principal stresses in CVD boron on carbon filaments

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1980-01-01

    A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates.

  14. Residual stress characterization of Al/SiC nanoscale multilayers using X-ray

    SciTech Connect

    Singh, DRP; Deng, X.; Chawla, N.; Bai, J.; Hubbard, Camden R; Tang, G; Shen, Y-L

    2010-01-01

    Nanolayered composites are used in a variety of applications such as wear resistant coatings, thermal barrier coatings, optical and magnetic thin films, and biological coatings. Residual stresses produced in these materials during processing play an important role in controlling their microstructure and properties. In this paper, we have studied the residual stresses in model metal-ceramic Al/SiC nanoscale multilayers produced by physical vapor deposition (magnetron sputtering). X-ray synchrotron radiation was used to measure stresses in the multilayers using the sin{sup 2} {Psi} technique. The stresses were evaluated as a function of layer thicknesses of Al and SiC and also as a function of the number of layers. The stress state of Al in the multilayer was largely compressive, compared to single layer Al stresses. This is attributed to a peening mechanism due to bombardment of the Al layers by SiC and Ar neutrals during deposition. The stress evolution was numerically modeled by a simplified peening process to qualitatively explain the Al thickness-dependent residual stresses.

  15. Residual Stress Characterization of Al/SiC Nanoscale Multilayers using X-ray

    SciTech Connect

    D Singh X Deng; N Chawla; J Bai; C Hubbard; G Tang; Y Shen

    2011-12-31

    Nanolayered composites are used in a variety of applications such as wear resistant coatings, thermal barrier coatings, optical and magnetic thin films, and biological coatings. Residual stresses produced in these materials during processing play an important role in controlling their microstructure and properties. In this paper, we have studied the residual stresses in model metal-ceramic Al/SiC nanoscale multilayers produced by physical vapor deposition (magnetron sputtering). X-ray synchrotron radiation was used to measure stresses in the multilayers using the sin{sup 2} {psi} technique. The stresses were evaluated as a function of layer thicknesses of Al and SiC and also as a function of the number of layers. The stress state of Al in the multilayer was largely compressive, compared to single layer Al stresses. This is attributed to a peening mechanism due to bombardment of the Al layers by SiC and Ar neutrals during deposition. The stress evolution was numerically modeled by a simplified peening process to qualitatively explain the Al thickness-dependent residual stresses.

  16. An approximate method for residual stress calculation infunctionally graded materials

    SciTech Connect

    Becker, T.L.

    1999-06-02

    Thermal residual stresses in functionally graded materials(FGMs) arise primarily from nonlinear spatial variations in the thermalexpansion coefficient, but can be significantly adjusted by variations inmodulus. Thermoelastic analysis of FGMs is complicated by such modulusgradients. A class of problems for which thermal stress solutions formaterials with constant modulus can be used as a basis for approximationsfor FGMs is discussed. The size of the error in this approximation due togradients in elastic modulus is investigated. Analytical and finiteelement solutions for the thermal stresses in various FGM geometries arecompared to results from this approximate method. In a geometry ofpractical interest, a right cylinder graded along the z-axis, the errorfor a Ni-Al2O3 FGM was found to be within 15 percent for all gradientsconsidered. The form of the approximation makes it easier to identifydesirable types of spatial nonlinearity in expansion coefficient andvariations in modulus: this would allow the manipulation of the locationof compressive stresses.

  17. Investigation on Residual Stress Induced by Shot Peening

    NASA Astrophysics Data System (ADS)

    Zhao, Chunmei; Gao, Yukui; Guo, Jing; Wang, Qiang; Fu, Lichao; Yang, Qingxiang

    2015-03-01

    The high strength steel widely used in the aviation industry was chosen in this paper. The shot peening (SP) tests with different technical parameters were carried out, and compressive residual stress (CRS) distribution along the depth was determined. The phase structures before and after SP were analyzed by XRD and TEM. Microhardness and fatigue life were measured, and the morphology of fatigue fracture was also observed. The effects of different technical parameters on CRS field were investigated, and the CRS features with the characteristic parameters were analyzed deeply to summarize the rules. The results show that the CRS field induced by SP can be expressed by four characteristic parameters: the surface CRS σsrs, the maximum CRS σmrs, the depth of maximum CRS ξm and the depth of CRS (strengthened depth) ξ0. Martensite matrix is not changed by SP, while its boundary changes ambiguous with the formation of dislocations. After SP, the microhardness of the specimen increase, and the fatigue crack source moves inwards. The SP saturated time is 1 min. With the increase of SP intensity, σsrs, σmrs, ξm, and ξ0 all increase. While with the increase of SP angle, ξ0 grows gradually. The strengthen effect behaves more obviously as the shot size increases, and the shot material with larger hardness cause higher level of CRS field. Dual SP mainly increases σsrs value.

  18. A Novel Symmetric Test Structure for Residual Stress on MEMS Thin Film

    NASA Astrophysics Data System (ADS)

    Tu, Chenfeng; Zhou, Zai-Fa; Xu, Yanbo

    Residual stress is one of the important parameters of thin films, which can seriously affect the properties, performance and long-term stability of thin films. Stress measurement techniques are therefore essential for both process development and process monitoring. This paper presents a novel symmetric micro strain gauge which can be in situ fabricated. The structure is modeled and simulated in ANSYS. Both compressive and tensile stress can be measured via this strain gauge and the resolution can reach to 0.0005% with optimized dimension.

  19. Residual stresses calculation in autofrettage using variable material properties method

    SciTech Connect

    Jahed, H.; Dubey, R.N.

    1996-12-01

    Autofrettaged cylinders are used for variety of applications in chemical and nuclear industries where large internal pressures have to be withstood. Autofrettage is in the process by which beneficial residual stresses are introduced into thick-walled tubes by initially subjected the tube to high internal pressure which causes inelastic deformation. Here, the variable material properties method is employed to obtain elastic-plastic analysis of an autofrettaged tube. This method develops inelastic solution from the elastic solution by treating the material properties as field variables. The distribution of these parameters are obtained in an iterative manner as a part of the solution. An energy based scheme is used to update these variables. The residual stress field of autofrettaged tubes based on the actual material curve and isotropic and kinematic hardening models are obtained. The results are shown to be in good agreement with the published experimental and finite element results.

  20. Determination and modeling of residual stress in functionally graded WC-Co

    NASA Astrophysics Data System (ADS)

    Tahvilian, Leila

    Gradual variations in composition and/or structure through the volume of functionally graded materials (FGMs) generally result in corresponding continuous spatial variations in mechanical/physical properties, and often in significant residual stresses that develop during processing. Due to inhomogeneous properties in these materials, residual stress measurement in FGMs can be a very challenging problem. In this study, residual stresses in functionally graded cemented tungsten carbide (FG-WC-Co) were investigated by numerical, analytical and experimental approaches by means of a layer removal technique. The numerical method consisted of finite element analysis (FEA) modeling for the FGM plate, in order to calculate residual stress distribution over the volume and to develop a method for predicting residual stress levels in closely related materials. The analytical procedure embodied a mathematical approach to determine residual stress distributions, and analytically determined values are compared with those obtained from FEA modeling and experimental results. The experimental approach consisted of fabricating and heat treating FG-WC-Co flat samples, then measuring strain changes by strain gauge after each sequential layer removal from the opposite side of the specimen from the graded region. Good agreement was found between analytical, numerical and experimental results. Furthermore, thermal residual stress distribution in FG-WC-Co hollow cylinder was examined with an emphasis on the effects of key variables, the gradient profile and the gradient thickness, on the magnitude and distribution of the stress field. An analytical direct solution based on solving the governing equations of a cylinder composed of a uniform inner core and a functionally graded outer shell was developed. The cylindrical compound was considered as two separate elements: homogeneous cylinder and functionally graded shell. Material properties, such as the elastic modulus and the coefficient of

  1. Mechanical relaxation of localized residual stresses associatedwith foreign object damage

    SciTech Connect

    Boyce, B.L.; Chen, X.; Peters, J.O.; Hutchinson, J.H.; Ritchie,R.O.

    2002-05-01

    Foreign-object damage associated with the ingestion ofdebris into aircraft turbine engines can lead to a marked degradation inthe high-cycle fatigue life of turbine components. This degradation isgenerally considered to be associated with the premature initiation offatigue cracks at or near the damage sites; this is suspected to be dueto, at least in part, the impact-induced residual stress state, which canbe strongly tensile in these locations.

  2. Residual strain change resulting from stress corrosion in Carrara marble

    NASA Astrophysics Data System (ADS)

    Voigtlaender, Anne; Leith, Kerry; Krautblatter, Michael

    2016-04-01

    Residual stresses and strains have been shown to play a fundamental role in determining the elastic behavior of engineering materials, yet the effect of these strains on brittle and elastic behavior of rocks remains unclear. In order to evaluate the impact of stored elastic strains on fracture propagation in rock, we undertook a four-month-long three-point bending test on three large 1100 x 100 x 100 mm Carrara Marble samples. This test induced stable low stress conditions in which strains were concentrated at the tip of a saw cut and pre-cracked notch. A corrosive environment was created at the tip of the notch on two samples (M2 and M4) by dripping calcite saturated water (pH ~ 7.5-8). Sample M5 was loaded in the same way, but kept dry. Samples were unloaded prior to failure, and along with an additional non-loaded reference sample (M0), cored into cylindrical subsamples (ø = 50 mm, h = 100 mm) before being tested for changes in residual elastic strains at the SALSA neutron diffractometer at the Institute Laue-Langevin (ILL), Grenoble, France. Three diffraction peaks corresponding to crystallographic planes hkl (110), (104) and (006) were measured in all three spatial directions relative to the notch. Shifts in the diffraction peak position (d) with respect to a strain free state are indicative of intergranular strain, while changes in the width of the peak (FWHM) reflect changes in intragranular strain. We observe distinctly different patterns in residual and volumetric strains in hkℓ (104) and (006) for the dry M5 and wet tested samples (M2 and M4) indicating the presence of water changes the deformation mechanism, while (110) is strained in compression around 200 μstrain in all samples. A broadening of the diffraction peaks (006) and (110) in front of the crack tip is observed in M2 and M4, while M5 shows no changes in the peak width throughout the depth of the sample. We suggest water present at the crack tip increased the rate of corrosion, allowing a

  3. Nondestructive evaluation of residual stress in short-fiber reinforced plastics by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keisuke; Tokoro, Syouhei; Akiniwa, Yoshiaki; Egami, Noboru

    2014-06-01

    The X-ray diffraction method is used to measure the residual stress in injection-molded plates of short-fiber reinforced plastics (SFRP) made of crystalline thermoplastics, polyphenylene sulphide (PPS), reinforced by carbon fibers with 30 mass%. Based on the orientation of carbon fibers, injection molded plates can be modeled as three-layered lamella where the core layer is sandwiched by skin layers. The stress in the matrix in the skin layer was measured using Cr-Kα radiation with the sin2Ψ method. Since the X-ray penetration depth is shallow, the state of stresses measured by X-rays in FRP can be assumed to be plane stress. The X-ray measurement of stress in carbon fibers was not possible because of high texture. A new method was proposed to evaluate the macrostress in SFRP from the measurement of the matrix stress. According to micromechanics analysis of SFRP, the matrix stresses in the fiber direction, σ1m, and perpendicular to the fiber direction, σ2m, and shear stress τ12m can be expressed as the functions of the applied (macro-) stresses, σ1A, σ2A , τ12A as follows: σ1m = α11σ1A +α12σ2A, σ2m = α21σ1A + α22σ2A, τ12m = α66τ12A, where α11 ,α12, α21, α22, α66 are stress-partitioning coefficients. Using skin-layer strips cut parallel, perpendicular and 45° to the molding direction, the stress in the matrix was measured under the uniaxial applied stress and the stress-partitioning coefficients of the above equations were determined. Once these relations are established, the macrostress in SFRP can be determined from the measurements of the matrix stresses by X-rays.

  4. A wafer mapping technique for residual stress in surface micromachined films

    NASA Astrophysics Data System (ADS)

    Schiavone, G.; Murray, J.; Smith, S.; Desmulliez, M. P. Y.; Mount, A. R.; Walton, A. J.

    2016-09-01

    The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements.

  5. Residual stress alleviation of aircraft metal structures reinforced with filamentary composites

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1973-01-01

    Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.

  6. Residual stress of diffusion bonded aluminum-to-stainless steel joins. Final report

    SciTech Connect

    Stroud, R.D.; Shackelford, J.F.

    1980-09-01

    An x-ray method for determination of residual stress as a function of surface position on a metal sample is described. This method is capable of spatial resolution on the order of 0.040 inch (1 mm) and precision positioning of the sample along three orthogonal axes to better than 0.001 inch. A high precision sample holder was designed and fabricated for this purpose. Apparent residual stress was found to be a strong function of sample position with respect to the axis of rotation of the diffractometer circle. This relationship is on the order of 400 to 500 Kpsi/inch for aluminum. The high precision sample holder allowed careful centering of the sample providing true (rather than apparent) residual stress measurements in the range of low stresses (less than 10 Ksi). Comparison was made between applied stress values obtained with strain gage output and those obtained by x-ray diffraction. Correlation was good with the accuracy of stress measurements being approximately +-500 psi.

  7. The effect of residual stress on the fatigue crack growth behavior of Al-Si-Mg cast alloys—Mechanisms and corrective mathematical models

    NASA Astrophysics Data System (ADS)

    Lados, Diana A.; Apelian, Diran

    2006-01-01

    The fatigue crack growth (FCG) behavior of various types of alloys is significantly affected by the presence of residual stress induced by manufacturing and post-manufacturing processes. There is a qualitative understanding of the effects of residual stress on fatigue behavior, but the effects are not comprehensively quantified or accounted for. The difficulty in quantifying these effects is largely due to the complexity of residual-stress measurements (especially considering that parts produced in similar conditions can have different residual-stress levels) and the lack of mathematical models able to convert experimental data with residual stress into residual-stress-free data. This article provides experimental, testing, and mathematical techniques to account for residual-stress effects on crack growth rate data, together with two methods for eliminating residual stresses in crack growth test specimens. Fracture-mechanics concepts are used to calculate, in simple and convenient ways, stress-intensity factors caused by residual stresses. The method is advantageous, considering that stress-intensity factors are determined before the actual test is conducted. Further on, residual-stress-intensity factors are used to predict the residual-stress distribution in compact tension (CT) specimens prior to testing. Five cast Al-Si-Mg alloys with three Si levels (in unmodified (UM) as well as Sr-modified (M) conditions) were analyzed both with and without residual stress. Fatigue cracks are grown under both constant stress ratio, R=0.1, and constant maximum stress-intensity factor, K max = const., conditions. The mechanisms involved in crack growth through residual-stress fields are presented.

  8. Achieving low-wavefront specifications for DUV lithography: impact of residual stress in HPFS fused silica

    NASA Astrophysics Data System (ADS)

    Ladison, Julie L.; Ellison, Joseph F.; Allan, Douglas C.; Fladd, David R.; Fanning, Andrew W.; Priestley, Richard

    2001-09-01

    As optical lithographers push to extend optical lithography technologies to create smaller features with higher NA, lower k1 values and shorter wavelengths, transmitted wavefront specifications for HPFSR fused silica blanks continue to tighten. HPFSR fused silica blanks are typically certified for acceptance using an interferometer operating at a wavelength of 632.8 nm. As the market demands increasingly tighter homogeneity specifications, it has become critical to understand the sources of variation in wavefront measurements. Corning has recently initiated a study to identify those sources of variation. One glass attribute being studied is the impact of residual stress on the wavefront. It is known that residual stresses can alter the refractive index of fused silica. To obtain the residual stress measurements, birefringence measurements were obtained at 632.8 nm for comparison to wavefront measurements at 632.8 nm. The relationship between residual birefringence and transmitted wavefront measurements, at 632.8 nm on Corning HPFSR fused silica blanks, is explored in this paper.

  9. Phase composition and residual stresses in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Lozovan, A. A.; Betsofen, S. Ya; Ashmarin, A. A.; Ryabenko, B. V.; Ivanova, S. V.

    2016-07-01

    X-ray study of the phase composition and residual stresses distribution in two-layer APS coatings showed that the ceramic layer consists of t-ZrO2 phase with tetragonal lattice and the metal underlayer γ-solid solution based on nickel. In the transition zone thickness of ∼ 100 pm as the distance from the surface was revealed a gradual transition from t-ZrO2 to γ-solid solution. Increase in the specific volume of the metal underlayer resulting TGO growing leads to the formation of this layer high compressive stresses up to 600 MPa. In this case, the ceramic layer contains tensile stress up to 200 MPa.

  10. Thermoelastic Residual Stresses and Deformations at Laser Treatment

    NASA Astrophysics Data System (ADS)

    Gusarov, A. V.; Malakhova-Ziablova, I. S.; Pavlov, M. D.

    A thermoelastic model implying relaxation of stresses at melting is applied for materials with arbitrary thermoelastic properties and the melting point. The range of Poisson's ratio 0.17 - 0.34 is numerically studied. The residual stresses are independent of the space scale. In narrow remelted zones and beads the maximum longitudinal tensile stress is approximately twice as high as the transverse one. The calculations predict cracking of alumina, even with 1600 oC preheating, plastic deformation or cracking of hard metal alloys H13 and TA6 V, and no destruction of polystyrene and thestrongest grades of quartz glass. The calculation results can be used for predicting the thermomechanical stability of materials at laser treatment.

  11. Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method

    SciTech Connect

    Sebastiani, Marco; Eberl, Christoph; Bemporad, Edoardo; Pharr, George Mathews

    2011-01-01

    A new methodology for the measurement of depth sensitive residual stress profiles of thin coatings with sub-micrometer resolution is presented. The two step method consists of incremental focused ion beam (FIB) ring-core milling, combined with high-resolution in situ SEM-FEG imaging of the relaxing surface and a full field strain analysis by digital image correlation (DIC). The through-thickness profile of the residual stress can be obtained by comparison of the experimentally measured surface strain with finite element modeling using Schajer's integral method. In this work, a chromium nitride (CrN) CAE-PVD 3.0 {mu}m coating on steel substrate, and a gold MS-PVD 1.5 {mu}m on silicon were selected for the experimental implementation. Incremental FIB milling was conducted using an optimized milling strategy that produces minimum re-deposition over the sample surface. Results showed an average residual stress of {sigma} = -5.15 GPa in the CrN coating and {sigma} = +194 MPa in the Au coating. These values are in reasonable agreement with estimates obtained by other conventional techniques. The depth profiles revealed an increasing residual stress from surface to the coating/surface interface for both coatings. This observation is likely related to stress relaxation during grain growth, which was observed in microstructural cross sections, as predicted by existing models for structure-stress evolution in PVD coatings. A correlation between the observed stress gradients and the in-service mechanical behavior of the coatings is proposed. Finally, critical aspects of the technique and the influence of microstructure and elastic anisotropy on stress analysis are analyzed and discussed.

  12. Eddy Current Nondestructive Residual Stress Assessment in Shot-Peened Nickel-Base Superalloys

    SciTech Connect

    Blodgett, M.P.; Yu, F.; Nagy, P.B.

    2005-04-09

    Shot peening and other mechanical surface enhancement methods improve the fatigue resistance and foreign-object damage tolerance of metallic components by introducing beneficial near-surface compressive residual stresses and hardening the surface. However, the fatigue life improvement gained via surface enhancement is not explicitly accounted for in current engine component life prediction models because of the lack of accurate and reliable nondestructive methods that could verify the presence of compressive near-surface residual stresses in shot-peened hardware. In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in surface-treated components. This technique is based on the so-called piezoresistivity effect, i.e., the stress-dependence of electrical resistivity. We found that, in contrast with most other materials, surface-treated nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, i.e., at decreasing penetration depths. Experimental results are presented to illustrate that the excess frequency-dependent apparent eddy current conductivity of shot-peened nickel-base superalloys can be used to estimate the absolute level and penetration depth of the compressive residual stress layer both before and after partial thermal relaxation.

  13. Consequences of Residual Stresses in Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Reiter, Guenter

    2010-03-01

    In our quest for making functional devices smaller, the thickness of polymer films has reached values even smaller than the diameter of the unperturbed molecule. However, despite enormous efforts over the last decade, our understanding of the origin of some puzzling properties of such thin films is still not satisfactory and several peculiar observations remain rather mysterious. In this context, we explore the consequences of the transition from a dilute polymer solution to the glassy state with respect to the properties of polymers in thin films. This transition is likely to result in residual stresses, arising from out-of-equilibrium chain conformations due to rapid solvent loss. Consequently, depending on thermal history and ageing time, such films exhibit significant changes even in the glassy state ^ which we quantify by performing detailed studies of viscoelastic dewetting of thin polystyrene films on solid substrates. We explored relaxation times, residual stresses, and temporal changes of the stability of non-equilibrated thin films as they progress toward stable equilibrium behaviors. To do so, we have focused primarily on times shorter than the reptation time of the polymer. The number of spontaneously nucleated holes per unit area is seen to decrease as the films were aged below the glass transition, showing the meta-stability of the system. The ratio of stress over elastic modulus was found to increase strongly with decreasing film thickness and increasing chain length. Full equilibration of chain conformations required long times comparable to bulk reptation times. However, for chains longer than about 3000 monomers, the residual stress relaxed faster, at a rate independent of chain length. We present some tentative ideas on the relation between these observed atypical mechanical and relaxational behaviors and meta-stable states introduced by sample preparation.

  14. Arc-discharge effects on residual stress and refractive index in single-mode optical fibers.

    PubMed

    Wang, Pengfei; Jenkins, Micah H; Gaylord, Thomas K

    2016-03-20

    Arc-discharge effects on the residual stress and refractive index in single-mode optical fibers are investigated using a previously developed three-dimensional concurrent stress-index measurement method. Using commercial optical fibers and a commercial fusion splicer, the residual stress and refractive index perturbations caused by weak electrical arc discharges in single-mode fibers were measured. Refractive index changes greater than 10-4 and longitudinal perturbation lengths of less than 500 μm were shown to be possible. The subsequent prospects for arc-induced long-period fiber gratings are analyzed, and a typical transmission resonance is predicted to have a depth of 56 dB and a bandwidth of 0.08 nm at a wavelength of 1585 nm. The results of this investigation will be useful in modeling device performance and optimization of arc-induced long-period fiber grating fabrication. PMID:27140587

  15. Longitudinal residual strain and stress-strain relationship in rat small intestine

    PubMed Central

    Dou, Yanling; Fan, Yanhua; Zhao, Jingbo; Gregersen, Hans

    2006-01-01

    Background To obtain a more detailed description of the stress-free state of the intestinal wall, longitudinal residual strain measurements are needed. Furthermore, data on longitudinal stress-strain relations in visceral organs are scarce. The present study aims to investigate the longitudinal residual strain and the longitudinal stress-strain relationship in the rat small intestine. Methods The longitudinal zero-stress state was obtained by cutting tissue strips parallel to the longitudinal axis of the intestine. The longitudinal residual stress was characterized by a bending angle (unit: degrees per unit length and positive when bending outwards). Residual strain was computed from the change in dimensions between the zero-stress state and the no-load state. Longitudinal stresses and strains were computed from stretch experiments in the distal ileum at luminal pressures ranging from 0–4 cmH2O. Results Large morphometric variations were found between the duodenum and ileum with the largest wall thickness and wall area in the duodenum and the largest inner circumference and luminal area in the distal ileum (p < 0.001). The bending angle did not differ between the duodenum and ileum (p > 0.5). The longitudinal residual strain was tensile at the serosal surface and compressive at the mucosal surface. Hence, the neutral axis was approximately in the mid-wall. The longitudinal residual strain and the bending angle was not uniform around the intestinal circumference and had the highest values on the mesenteric sides (p < 0.001). The stress-strain curves fitted well to the mono-exponential function with determination coefficients above 0.96. The α constant increased with the pressure, indicating the intestinal wall became stiffer in longitudinal direction when pressurized. Conclusion Large longitudinal residual strains reside in the small intestine and showed circumferential variation. This indicates that the tissue is not uniform and cannot be treated as a homogenous

  16. Ares I-X Upper Stage Simulator Residual Stress Analysis

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Brust, Frederick W.; Phillips, Dawn R.; Cheston, Derrick

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the Ares I-X Upper Stage Simulator (USS) common shell segment. An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. The results of this effort served as one of the critical load inputs required to perform a CIFS assessment of the same segment.

  17. Procedure for Computing Residual Stresses from Neutron Diffraction Data and its Application to Multi-Pass Dissimilar Weld

    SciTech Connect

    Zhang, Wei; Feng, Zhili; Crooker, Paul

    2011-01-01

    Neutron diffraction is a powerful tool for non-destructive measurement of internal residual stresses of welded structures. The conventional approach for determination of residual stresses requires the knowledge of stress-free lattice spacing a priori. For multiple-pass dissimilar metal welds common to nuclear reactor pipeline systems, the stress-free lattice parameter is a complex function of position due to the chemistry inhomogeneity in the weld region and can be challenging to determine experimentally. This paper presents a new approach to calculate the residual stress field in dissimilar welds without the use of stress-free lattice parameter. The theoretical basis takes advantage of the fact that the normal component of welding residual stresses is typically small for thin plate or pipe welds. The applicability of the new approach is examined and justified in a multi-pass dissimilar metal weld consisting of a stainless steel plate and a nickel alloy filler metal. The level of uncertainties associated with this new approach is assessed. Neutron diffraction experiment is carried out to measure the lattice spacing at various locations in the dissimilar weld. A comb-shaped specimen, electro-discharge machined from a companion weld, is used to determine the stress-free lattice spacing. The calculated results from the new approach are consistent with those from the conventional approach. The new approach is found to be a practical method for determining the two in-plane residual stress components in thin plate or pipe dissimilar metal welds.

  18. Quantitative assessments of residual stress fields at the surface of alumina hip joints.

    PubMed

    Pezzotti, Giuseppe; Munisso, Maria Chiara; Lessnau, Kristina; Zhu, Wenliang

    2010-11-01

    In-depth and in-plane response functions of photo- and electro-stimulated probes have been modeled and quantitatively evaluated in order to assess their suitability to detect the highly graded residual stress fields generated at the surface of alumina hip joints. Optical calibrations revealed large differences in probe size, which strongly affected the detected magnitude of residual stress. A comparison between the responses of Raman and fluorescence probes in polycrystalline alumina showed that the depth of those probes spread to an extent in the order of the tens of microns even with using a confocal probe configuration. On the other hand, the electro-stimulated luminescence emitted by oxygen vacancy sites (F(+) center) in the alumina lattice represented the most suitable choice for confining to a shallow volume the stress probe. This latter probe enabled us to reduce the measurement depth to the order of the tens of nanometers. We show maps of surface residual stress as collected on both main-wear and nonwear zones of an alumina femoral head. A comparison among stress maps taken at exactly the same location, but employing different probes, revealed averaging effects on the stress magnitude detected with photo-stimulated probes, while proving the superior spatial resolution of the electron probe. PMID:20848660

  19. Residual stresses in a stainless steel - titanium alloy joint made with the explosive technique

    NASA Astrophysics Data System (ADS)

    Taran, Yu V.; Balagurov, A. M.; Sabirov, B. M.; Evans, A.; Davydov, V.; Venter, A. M.

    2012-02-01

    Joining of pipes from stainless steel (SS) and titanium (Ti) alloy still experience serious technical problems. Recently, reliable and hermetic joining of SS and Ti pipes has been achieved with the explosive bonding technique in the Russian Federal Nuclear Center. Such adapters are earmarked for use at the future International Linear Collider. The manufactured SS-Ti adapters have excellent mechanical behavior at room and liquid nitrogen temperatures, during high-pressure tests and thermal cycling. We here report the first neutron diffraction investigation of the residual stresses in a SS-Ti adapter on the POLDI instrument at the SINQ spallation source. The strain scanning across the adapter walls into the SS-SS and SS-Ti pipes sections encompassed measurement of the axial, radial and hoop strain components, which were transformed into residual stresses. The full stress information was successfully determined for the three steel pipes involved in the joint. The residual stresses do not exceed 300 MPa in magnitude. All stress components have tensile values close to the adapter internal surface, whilst they are compressive close to the outer surface. The strong incoherent and weak coherent neutron scattering cross-sections of Ti did not allow for the reliable determination of stresses inside the titanic pipe.

  20. Research opportunities and facilities at ORNL`s residual stress user center

    SciTech Connect

    Hubbard, C.R.; Watkins, T.R.; Kozaczek, K.; Wang, X.-L.; Spooner, S.

    1994-09-01

    The High Temperature Materials Laboratory (HTML) User Program at ORNL was established to help solve high-temperature materials problems that limit the efficiency and reliability of advanced energy-conversion systems. Both proprietary and nonproprietary research can be conducted within the user program. The facilities are open to researchers in US industry, universities, and federal laboratories. The Residual Stress User Center (RSUC), one of the six HTML user centers, was recently established and consists of two high precision x-ray diffraction systems for measurement of residual strain and texture. Both biaxial and triaxial residual strain data can be collected. Attachments to the diffraction system include a position sensitive detector and a laser specimen positioning system. The RSUC has capabilities for electropolishing and strain measurement with strain gauges. A complementary neutron diffraction facility has recently been developed and demonstrated at the High Flux Isotope Reactor at ORNL. The neutron diffraction facility enables mapping of macro residual stresses throughout the volume of a component, complementing the near surface stress measurements available by x-ray diffraction. The neutron facility has been proposed as an addition to the RSUC.

  1. The formation mechanism and the influence factor of residual stress in machining

    NASA Astrophysics Data System (ADS)

    Qi, Zhaoxu; Li, Bin; Xiong, Liangshan

    2014-09-01

    Residual stresses generated in cutting process have important influences on workpiece performance. The paper presents a method of theoretical analysis in order to explicate the formation mechanism of residual stresses in cutting. An important conclusion is drawn that the accumulated plastic strain is the main factor which determines the nature and the magnitude of surface residual stresses in the workpiece. On the basis of the analytical model for residual stress, a series of simulations for residual stress prediction during cutting AISI 1045 steel are implemented in order to obtain the influences of cutting speed, depth of cut and tool edge radius on surface residual stress in the workpiece. And these influences are explained from the perspective of formation mechanism of residual stress in cutting. The conclusions have good applicability and can be used to guide the parameters selection in actual production.

  2. Cold pulse and rotation reversals with turbulence spreading and residual stress

    NASA Astrophysics Data System (ADS)

    Hariri, F.; Naulin, V.; Juul Rasmussen, J.; Xu, G. S.; Yan, N.

    2016-05-01

    Transport modeling based on inclusion of turbulence spreading and residual stresses shows internal rotation reversals and polarity reversal of cold pulses, with a clear indication of nonlocal transport effects due to fast spreading in the turbulence intensity field. The effects of turbulence spreading and residual stress are calculated from the gradient of the turbulence intensity. In the model presented in this paper, the flux is carried by the turbulence intensity field, which in itself is subject to radial transport effects. The pulse polarity inversion and the rotation profile reversal positions are close to the radial location of the stable/unstable transition. Both effects have no direct explanation within the framework of classical transport modeling, where the fluxes are related directly to the linear growth rates, the turbulence intensity profile is not considered and the corresponding residual stress is absent. Our simulations are in qualitative agreement with measurements from ohmically heated plasmas. Rotation reversal at a finite radius is found in situations not displaying saturated confinement, which we identify as situations where the plasma is nearly everywhere unstable. As an additional and new effect, the model predicts a perturbation of the velocity profile following a cold pulse from the edge. This allows direct experimental confirmation of both the existence of residual stress caused by turbulence intensity profiles and fundamental ideas of transport modeling presented here.

  3. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  4. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  5. The residual stress relaxation after fatigue in fine-grained steels

    NASA Astrophysics Data System (ADS)

    Bruno, G.; Nitschke-Pagel, T.

    Since the residual stress (RS) relaxation during and after fatigue can be highly detrimental to the life of components, a study of its variation in welding, after cyclic loading, simulating the operating conditions, has been carried out. Plates of S96QL ferritic steel were investigated in as-welded conditions and subject to 350-MPa load for 100 cycles. Both have composition 0.17% C, 0.8% Cr, 2% Ni, a yield stress of about 1015MPa and were welded with the mechanised TIG technique. The critical points for rupture are usually the notches at the weld toe even if much higher tensile residual stresses can be found mostly in the centre of the weld seam. However, the relaxation of the residual stresses in the weld seam was examined to understand the mechanisms which lead to residual stress relaxation under quasistatic and cyclic loading. A transverse-to-weld scan was done at mid-depth to identify the maximum RS, which turned out to be both in the heat-affected zone and at the weld centre. A through-depth scan was performed to follow the RS profile in both points. Results show that stresses decrease in the fatigued specimen: tensile stresses relax to moderate values below 300MPa and compressive ones to below 100MPa. Especially in the weld, the degree of triaxiality decreases in the tensile region, after loading, which implies a lower risk to crack initiation and void formation. The experimental results match very well to the results of surface and subsurface measurements by means of X-ray diffraction after electrochemical polishing.

  6. Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy

    DOE PAGESBeta

    Choi, Sukwon; Griffin, Benjamin A.

    2016-01-06

    Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Thus, across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertaintiesmore » for predicting the impact of AlN residual stress on the device performance.« less

  7. Local residual stress monitoring of aluminum nitride MEMS using UV micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Choi, Sukwon; Griffin, Benjamin A.

    2016-02-01

    Localized stress variation in aluminum nitride (AlN) sputtered on patterned metallization has been monitored through the use of UV micro-Raman spectroscopy. This technique utilizing 325 nm laser excitation allows detection of the AlN E2(high) phonon mode in the presence of metal electrodes beneath the AlN layer with a high spatial resolution of less than 400 nm. The AlN film stress shifted 400 MPa from regions where AlN was deposited over a bottom metal electrode versus silicon dioxide. Across wafer stress variations were also investigated showing that wafer level stress metrology, for example using wafer curvature measurements, introduces large uncertainties for predicting the impact of AlN residual stress on the device performance.

  8. Piezoresistive Effect for Near-Surface Eddy Current Residual Stress Assessment

    SciTech Connect

    Yu, F.; Nagy, P.B.

    2005-04-09

    This paper discusses the relationship between isothermal and adiabatic piezoresistive properties of metals. The piezoresistive effect, i.e., stress-dependence of the electrical resistivity, can be exploited for nondestructive residual stress assessment using eddy current measurements. First, the paper establishes the relationship between the familiar isothermal piezoresistivity coefficients measured under uniaxial tension and hydrostatic pressure and the relevant isothermal electroelastic coefficients measured under uniaxial and biaxial stress conditions either by non-directional circular or directional elliptical eddy current coils. In order to quantitatively assess the prevailing residual stress from eddy current conductivity measurements, the electroelastic coefficients must be first determined. These calibration measurements are usually conducted on a reference specimen of the material to be tested using cyclic uniaxial loads between 0.1 and 10 Hz, which is fast enough to produce adiabatic conditions. It is demonstrated that in high-conductivity metals such calibration measurements must be corrected for the thermoelastic effect, which is always positive, i.e., it increases the conductivity in tension, when the material cools down, and reduces it in compression, when the material heats up.

  9. Numerical Simulation and Experimental Investigation of Residual Stresses in the Circumferential Butt GTAW of Incoloy 800H Pipes

    NASA Astrophysics Data System (ADS)

    Purmohamad, H.; Kermanpur, A.; Shamanian, M.

    2010-02-01

    The residual stresses developed during the circumferential butt gas tungsten arc welding (GTAW) process of Incoloy 800H pipes were simulated using the finite element method. A decoupled thermostructural model was developed in three dimensions. The element birth and death technique was used for the addition of filler material in the weld pool. The Goldak double ellipsoidal model was used to simulate the distribution of arc heat during welding. The plastic behavior of the material was described by Von Mises yield function and the bilinear kinematics hardening was assumed. To validate the thermostructural model, both temperature and residual stress distributions within the pipes were measured using thermocouples and strain gages, respectively. Good agreements were found between the experimental and simulation results. The model was then used to predict distribution of residual stresses during the GTAW of Incoloy 800H pipes and to study effects of process parameters on the residual stresses.

  10. Relaxation of bending stresses and the reversibility of residual stresses in amorphous soft magnetic alloys

    SciTech Connect

    Kekalo, I. B.; Mogil’nikov, P. S.

    2015-06-15

    The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.

  11. Young's Modulus, Residual Stress, and Crystal Orientation of Doubly Clamped Silicon Nanowire Beams.

    PubMed

    Calahorra, Y; Shtempluck, O; Kotchetkov, V; Yaish, Y E

    2015-05-13

    Initial or residual stress plays an important role in nanoelectronics. Valley degeneracy in silicon nanowires (SiNWs) is partially lifted due to built-in stresses, and consequently, electron-phonon scattering rate is reduced and device mobility and performance are improved. In this study we use a nonlinear model describing the force-deflection relationship to extract the Young's modulus, the residual stress, and the crystallographic growth orientation of SiNW beams. Measurements were performed on suspended doubly clamped SiNWs subjected to atomic force microscopy (AFM) three-point bending constraints. The nanowires comprised different growth directions and two SiO2 sheath thicknesses, and underwent different rapid thermal annealing processes. Analysis showed that rapid thermal annealing introduces compressive strains into the SiNWs and may result in buckling of the SiNWs. Furthermore, the core-shell model together with the residual stress analysis accurately describe the Young's modulus of oxide covered SiNWs and the crystal orientation of the measured nanowires. PMID:25826449

  12. The effect of microstructure on residual-stress development in short-fiber composites

    SciTech Connect

    Eduljee, R.F.

    1991-01-01

    The aim of this study was the identification of the key processing and microstructural parameters that affect thermal residual stresses through a series of parametric analyses on an infinite-plate geometry. In these analyses polycarbonate was chosen as a representative amorphous resin while polyetheretherketone (PEEK) was used as an example of a semicrystalline resin. The residual stress model of Indenbom was used to investigate residual stresses in amorphous polymers. Due to the inapplicability of this model to semicrystalline polymers and composites where the material properties varied through the thickness of the specimen, a residual stress model based on incremental stress analysis was developed. The parametric analyses on the neat polymers showed that the thermal history and the thermoelastic properties played major roles in the residual stress development in both amorphous and semicrystalline polymers. Crystallization increased the level of residual stresses. The mechanisms for this increase are discussed.

  13. Residual stress and microstructural characterization using Rietveld refinement of a carburized layer in a 5120 steel

    SciTech Connect

    Rangaswamy, P.; Bourke, M.A.M.; Lawson, A.C.; O`Rourke, J.; Goldstone, J.A.

    1995-09-01

    Rietveld refinement of X-ray diffraction patterns has been used to provide microstructural information complementary to conventional X-ray residual stress measurements through a carburized layer containing a maximum vol. 25 % of retained austenite. Layers in a simple specimen were removed incrementally by electropolishing and, at each depth in addition to conventional residual stress measurements in both the martensite and retained austenite, data were collected at {Psi} = 0 for Rietveld refinement. The refinements provide accurate values for the lattice parameters in the respective phases that can be related to carbon content and microstructure. Besides to providing qualitative information concerning the microstructure and possible surface decarburization, the c/a ratio of the martensite potentially offers an independent technique for determining carbon content profiles.

  14. Nondestructive characterization of residual stress within CMOS-based composite microcantilevers

    NASA Astrophysics Data System (ADS)

    Rendon-Hernandez, Adrian A.; Camacho-Leon, Sergio; Martinez-Chapa, Sergio O.

    2013-04-01

    Residual stress can affect the performance of thin-film micromachined structures and lead to curling in cantilevers as well as distortion in the frequency of resonant devices. As the origin of residual stress is dependent on the fabrication processes, a nondestructive method for characterization of residual stress independent of processes conditions is desirable for supporting the design of microcantilever-based microsystems. In this paper we present a nondestructive characterization of the residual stress within composite microcantilever beams providing valuable insights toward predicting their deflection profile after mechanical releasing from the substrate. The approach relies on the assumption of a linear gradient stress and a quadratic deflection profile across a composite microcantilever.

  15. Operator Manual for X-ray Residual Stress Mapping

    SciTech Connect

    Wright, M.C.

    2003-07-30

    This document is intended to serve as a operator manual for remote control of the TEC x-ray diffraction system. It is assumed that the reader is familiar with the operation of the SaraTEC{trademark} 1630 Acquisition Manager software for the TEC 1630 X-Ray Diffraction System. This manual describes the operation of the new TEC Remote Serial Control Module (RCSM) that runs on the TEC computer and Run-the-System that runs on the motion control computer. The basic goal is to add enough control of the TEC system to enable stress mapping. In stress mapping, the specimen is positioned using our X-Y-Z-Phi translation system and data is collected using the TEC system. The process is then repeated for the next position using a table of preset positions. X-Y-Z-Phi axis management is handled by ''Run-the-System'', the LabVIEW program originally developed for the Neutron Residual Stress Mapping Facility, running on a separate computer from the one that controls the TEC. Run-the-System also manages all remote start, stop, and configuration commands that are sent to the TEC system. The two computers communicate over an RS-232 serial line.

  16. Analysis of residual stress in the resin of metal-resin adhesion structures by scanning acoustic microscopy.

    PubMed

    Ohno, Hiroki; Endo, Kazuhiko; Nagano-Takebe, Futami; Ida, Yusuke; Kakino, Ken; Narita, Toshio

    2013-01-01

    The residual stress caused by polymerization shrinkage and thermal contraction of a heat-curing resin containing 4-META on a metal-resin structure was measured by a scanning acoustic microscope. The tensile residual stress in the resin occurred within 70 µm of the adhesion interface with a flat plate specimen. The maximum tensile stress was about 58 MPa at the interface. On a metal plate specimen with retention holes, ring-like cracks in the resin occurred around the retention holes with the adhesive specimen and many linear cracks occurred in the resin vertical to the longitudinal direction of the metal frame with the non-adhesive specimens. There was tensile residual stress on the resin surface at the center of the retention holes of the adhesion specimen, indicating that the stress in the specimen with surface treatment for adhesion was higher than in that without surface treatment. PMID:24240901

  17. Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering

    NASA Astrophysics Data System (ADS)

    Sochalski-Kolbus, L. M.; Payzant, E. A.; Cornwell, P. A.; Watkins, T. R.; Babu, S. S.; Dehoff, R. R.; Lorenz, M.; Ovchinnikova, O.; Duty, C.

    2015-03-01

    Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting (EBM) and the other with direct laser metal sintering. Spatially indexed stress-free cubes were obtained by electrical discharge machining (EDM) equivalent prisms of similar shape. The (311) interplanar spacings from the EDM sectioned sample were compared to the interplanar spacings calculated to fulfill stress and moment balance. We have shown that applying stress and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. In addition, our work has shown that residual stresses in electron beam melted parts are much smaller than that of direct laser metal sintered parts most likely due to the powder preheating step in the EBM process.

  18. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  19. Ultrasonic evaluation of residual stresses in aero engine materials using bulk and Rayleigh surface waves

    NASA Astrophysics Data System (ADS)

    Hubel, Sebastian; Dillhöfer, Alexander; Rieder, Hans; Spies, Martin; Bamberg, Joachim; Götz, Joshua; Hessert, Roland; Preikszas, Christina

    2014-02-01

    The evaluation of residual stresses using ultrasound can be a very complex issue, because different material properties may effect the propagation of ultrasonic waves. Nevertheless, in the manufacturing of modern aero engines it is essential to benefit from the full potential of the employed materials. In this context, it is indispensable to test whether ultrasonic stress measurement is applicable for the highly developed nickel- and titanium-based alloys. This contribution contains basic investigations on the achievable measurement effect in samples made of Inconel IN718 and the Titanium alloy Ti 6-2-4-6. Furthermore, we give an overview over the principles of ultrasonic stress measurement using bulk and Rayleigh waves and present first results which are discussed with respect to texture effects and future work.

  20. Blocks and residual stresses in sapphire rods of different crystallographic orientations grown by the Stepanov method

    SciTech Connect

    Krymov, V. M. Nosov, Yu. G.; Bakholdin, S. I.; Maslov, V. N.; Shul’pina, I. L.

    2015-05-15

    The formation of blocks in shaped sapphire rods of two crystallographic orientations has been investigated. It is shown that, when growth occurs in the direction of the optical c axis, blocks are formed with a higher probability than in the case of growth in the a direction. A model of formation of blocks in rods of different orientations is proposed. The distribution of residual stresses over sapphire rod cross sections is measured by conoscopy. It is found that stresses increase from the middle of a rod to its periphery and reach 20 MPa.

  1. Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Liu, Fencheng; Lin, Xin; Yang, Gaolin; Song, Menghua; Chen, Jing; Huang, Weidong

    2011-02-01

    The microstructure and residual stress of laser rapid formed (LRFed) nickel-base superalloy Inconel 718 was investigated. The as-deposited microstructure of an LRFed Inconel 718 alloy is composed of columnar dendrites growing epitaxially along the deposition direction, and the columnar dendrites transformed to unevenly distributed equiaxed grains after annealing treatment at high temperature. Residual stress evaluation in microstructure scale by Vickers micro-indentation method indicates that the residual thermal stress is unevenly distributed in the LRFed sample, and it has a significant effect on the recrystallization during solution annealing treatment. The residual stress is introduced by rapid heating and cooling during laser rapid forming. There is an alternative distribution between high residual stress regions and low residual stress regions, within a single deposited layer, resulting in a similar distribution of recrystallized grain size.

  2. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  3. The influence of punching process on residual stress and magnetic domain structure of non-oriented silicon steel

    NASA Astrophysics Data System (ADS)

    Cao, Hongzhi; Hao, Linpo; Yi, Jingwen; Zhang, Xianglin; Luo, Zhonghan; Chen, Shenglin; Li, Rongfeng

    2016-05-01

    The main purpose of this paper is to investigate the influence of punching process on residual stress and magnetic domain structure. The residual stress in non-oriented silicon steel after punching process was measured by nanoindentation. The maximum depth was kept constant as 300 nm during nanoindentation. The material around indentation region exhibited no significant pile-up deformation. The calculation of residual stress was based on the Suresh theoretical model. Our experimental results show that residual compressive stress was generated around the sheared edge after punching. The width of residual stress affected zone by punching was around 0.4-0.5 mm. After annealing treatment, the residual stress was significantly decreased. Magnetic domain structure was observed according to the Bitter method. The un-annealed sample exhibited complicated domain patterns, and the widths of the magnetic domains varied between 3 μm and 8 μm. Most of the domain patterns of the annealed sample were 180°-domains and 90°-domains, and the widths of the domains decreased to 1-3 μm.

  4. Effect of residual stresses induced by prestressing on rolling element fatigue life

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    A mechanical prestress cycle suitable to induce compressive stress beneath the surface of the inner race of radially loaded 207-size bearings was determined. Compressive residual stress in excess 0.69 x 10 to the 9th power N/sq m (100,000 psi), as measured by X-ray diffraction, were induced at the depth of maximum shearing stress. The prestress cycle consisted of running the bearings for 25 hours at 2750 rpm at a radial load which produced a maximum Hertz stress of 3.3 x 10 to the 9th power N/sq m (480,000 psi) at the contact of the inner race and the heaviest loaded ball. Bearings subjected to this prestress cycle and subsequently fatigue tested gave a 10 percent fatigue life greater than twice that of a group of baseline bearings.

  5. Residual stress variation due to piping processes of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Ihara, R.; Hashimoto, T.; Mochizuki, M.

    2012-08-01

    In nuclear power plants, stress corrosion cracking (SCC) has been observed near the heat affected zone (HAZ) of the primary loop recirculation pipes made of austenitic stainless steel type 316L. Residual stress is a major cause of SCC. In the joining process of pipes, butt-welding is conducted after machining. Machining is performed to match the inside pipe diameter. Residual stress is generated by both machining and welding. In the case of welding after machining in manufacturing processes of pipes, it appears that residual stress due to machining is varied by the welding thermal cycle. In this study, residual stress variation caused by manufacturing processes was investigated. Residual stress variation was examined by the X-ray diffraction method. The residual stress distribution generated by welding after machining has a local maximum point in the HAZ. The Vickers hardness distribution also has a local maximum point. By the EBSD method, it is clarified that recovery and recrystallization due to welding heat do not occurred in the local maximum point. Residual stress distribution results from the superposition effect of hardening due to machining and welding. The location and value of the local maximum stress are varied by welding conditions. The region of the local maximum stress corresponds to the region where SCC has been observed. Therefore, in addition to a part of the manufacturing processes such as welding or machining, evaluation of all parts of the processes is important to investigate the effect of residual stress distribution on SCC.

  6. Residual Stress Analysis of Cold-Sprayed Copper Coatings by Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Li, Wenya; Yang, Kang; Zhang, Dongdong; Zhou, Xianglin

    2016-01-01

    In this paper, an analysis on the residual stress evolution of cold-sprayed copper coatings on Cu and Al substrates was performed. To investigate the influences of particle velocity, temperature and material combination on the final residual stresses, an integrated frame of calculation was proposed based on the simulation results obtained from the developed thermo-mechanically coupled Eulerian model. In a single Cu splat, generally speaking, the maximum residual stress and plastic deformation are concentrated at the outside contact zone rather than at the center point of initial impact. The action of friction shear between the particle and substrate during impacting should be considered as one of the essential factors on the final residual stress. And the states of residual stresses can vary significantly depending on the material combination, particle velocity, and temperature. In a single pass Cu coating, the residual stress fluctuates across the coating and there exists both compressive stress and tensile stress within the coating. At a certain range of impacting velocities, the resultant residual stresses increase with the increase of particle velocity. The present simulated results are related to the reported experiments by others, showing that the residual stress states and stress change trend are different from some of the reported results.

  7. Number of Dielectric Layers Dependence of Dielectric Properties and Residual Stress of Multilayer Ceramic Capacitors with Ni Electrodes

    NASA Astrophysics Data System (ADS)

    Nakano, Yukie; Nomura, Takeshi; Takenaka, Tadashi

    2004-08-01

    The relationship between the residual stress and dielectric properties of multilayer ceramic capacitors with Ni electrodes (Ni-MLCCs) has been studied. Residual stress measurement by X-ray diffraction revealed that tensile stress inside MLCCs in the thickness direction increased with increasing number of dielectric layers. The increase in the ratio of the c-axis to the a-axis of BaTiO3 in the thickness direction of MLCCs was expected from the results of X-ray diffraction with increasing number of dielectric layers. The increase in dielectric constant and its temperature dependence with increasing number of dielectric layers were expectedly related to crystal structures.

  8. Stress Free Temperature Testing and Residual Stress Calculations on Out-of-Autoclave Composites

    NASA Technical Reports Server (NTRS)

    Cox, Sarah; Tate, LaNetra C.; Danley, Susan; Sampson, Jeff; Taylor, Brian; Miller, Sandi

    2012-01-01

    Future launch vehicles will require the incorporation large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7 /Bismalieimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the residual stress of the materials.

  9. The influence of deformation-induced residual stresses on the post-forming tensile stress/strain behavior of dual-phase steels

    NASA Astrophysics Data System (ADS)

    Hance, Brandon Michael

    complex forming operations that involve abrupt strain path changes. Deformation-induced residual stresses were measured in the IF steel and the HSLA steel; however, the magnitudes of which are such that post-forming tensile stress/strain behavior was not significantly affected. Considering the vast differences in mechanical properties, microstructure, and composition, the IF steel and the HSLA steel showed remarkably similar post-forming tensile stress/strain behavior for all prestrain modes considered.

  10. Residual stress analysis of TiN film fabricated by plasma immersion ion implantation and deposition process

    NASA Astrophysics Data System (ADS)

    Liu, Hongxi; Xu, Qian; Zhang, Xiaowei; Wang, Chuanqi; Tang, Baoyin

    2013-02-01

    Titanium nitride (TiN) films were fabricated on AISI52100 bearing steel surface employing a hybrid plasma immersion ion implantation and deposition (PIIID) technique. The chemical composition, morphology and microstructure of TiN films were characterized by atomic force microscope (AFM), energy dispersive spectrometer (EDS), scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The residual stress of TiN films under different deposition parameter conditions were measured by means of glazing incidence angle X-ray diffraction (GIXRD) method. The influence of film thickness and X-ray glazing incidence angle on residual stress were investigated. AFM observation reveals that the TiN films have extremely smooth surface, high uniformity and efficiency of space filling over large areas. XRD analysis results indicate that TiN phase exists in the surface modified layer and exhibits a preferred orientation with the (2 0 0) plane. The GIXRD data shows that the residual stress in as-deposited TiN films is compressive stress, and the residual stress value decreases with the film thickness and increases with the glazing incidence angle. The compressive stress reduces from 2.164 GPa to 1.163 GPa, which corresponds to the film thickness from 1.5 μm to 4.5 μm, respectively. Reasonably selecting PIIID process parameters for TiN films fabrication, the residual stress in the film can be controlled effectively.

  11. Nondestructive Induced Residual Stress Assessment in Superalloy Turbine Engine Components Using Induced Positron Annihilation (IPA)

    SciTech Connect

    Rideout, C. A.; Ritchie, S. J.; Denison, A.

    2007-03-21

    Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures.

  12. Residual stress and debonding analysis using a fiber Bragg grating in a model composite specimen

    NASA Astrophysics Data System (ADS)

    Colpo, F.; Dunkel, G.; Humbert, L.; Botsis, J.

    2005-05-01

    Optical Fibre Bragg Grating (FBG) sensors are excellent non-destructive tools for internal strain characterization of composite materials and structures. They can be embedded at selected locations during material preparation to provide accurate in-situ measurements. In this study, long-gauge-FBGs are introduced in cylindrical specimens of epoxy. This configuration is particularly attractive because it simplifies the study of some relevant phenomena in micromechanics of composites, for instance residual stresses and fracture of the fibre-matrix interface. Because the matrix epoxy shrinks during the polymerisation process, the optical sensor undergoes substantial non-uniform strain along the fibre. The response of a FBG to a non-uniform strain distribution is investigated using a new Optical Low-Coherence Reflectometry (OLCR) technique developed at EPFL. This method provides a direct reconstruction of the optical period and the corresponding strain distribution along the grating without any a priori assumption about the strain field. Considering the non-uniform residual strain as a reference state, new Bragg wavelength distributions are obtained for two configurations. First, a new Bragg wavelength distribution is measured as a function of the depth of circular cracks machined in the radial direction. These measurements lead to the knowledge of (a) the zone of perturbation of the reinforcing fibre on the residual stresses and (b) the effect of the presence of the mechanically induced crack on the residual stress state in the specimen. A finite element modelling of the residual stress field based on an equivalent thermo-elastic approach is also proposed, showing a very good agreement with experimental data. Second, an interface crack (debonding) between the epoxy and the fibre is introduced by fatigue and monitored using a specifically designed video acquisition system. The induced variations in the FBG response are measured when the fibre is unloaded and then

  13. Development of ultrasonic tomography for residual stress mapping. Final report

    SciTech Connect

    Boland, A.J.; Davis, T.J.; Doctor, S.R.; Harrington, T.P.; Hildebrand, B.P.; Lemon, D.K.; Posakony, G.J.; Skorpik, J.R.

    1980-05-01

    The volumetric stress distribution in nuclear reactor piping and pressure vessels is becoming an increasingly important parameter in nondestructive evaluation. This report describes research and development of instrumentation leading toward a means of measuring subsurface stress distributions in metals. Based on the principles of Computerized Tomography (CT), an ultrasonic tomographic instrument system has been developed. The microprocessor-based system uses an ultrasonic linear array to acquire time-of-flight data to an accuracy of 0.5 to 1.0 ns. The data is processed using a modified ART (Algebraic Reconstruction Technique) program. A two-dimensional map of the velocity distribution is displayed on a monitor. The velocity distribution is interpreted or calibrated in terms of stress through the acousto-elastic coefficients.

  14. Residual stress effects on the impact resistance and strength of fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1973-01-01

    Equations have been derived to predict degradation effects of microresidual stresses on impact resistance of unidirectional fiber composites. Equations also predict lamination residual stresses in multilayered angle ply composites.

  15. The effect of cutting speed on residual stresses when orthogonal cutting TC4

    NASA Astrophysics Data System (ADS)

    Liu, Chaofeng; Wang, Zengqiang; Zhang, Guang; Liu, Lei

    2015-09-01

    As one of the most important parameters in mental cutting, cutting speed has a significant influence on residual stress. Finite element method and experiment method are used to study the relationship between cutting speed and residual stress when orthogonal cutting TC4 titanium alloy. The result of simulation and experiment shows that: when the cutting speed is low, the residual stress in axial direction is compressive stress and gradually converts to tensile stress with the increase of cutting speed, but it will convert to compressive stress again if the cutting speed continues to increase; the residual stress in tangential direction is constant to compressive stress and it will decrease with the increase of cutting speed.

  16. An accurate method for determining residual stresses with magnetic non-destructive techniques in welded ferromagnetic steels

    NASA Astrophysics Data System (ADS)

    Vourna, P.

    2016-03-01

    The scope of the present research work was to investigate the proper selection criteria for developing a suitable methodology for the accurate determination of residual stresses existing in welded parts. Magnetic non-destructive testing took place by the use of two magnetic non-destructive techniques: by the measurement of the magnetic Barkhausen noise and by the evaluation of the magnetic hysteresis loop parameters. The spatial distribution of residual stresses in welded metal parts by both non-destructive magnetic methods and two diffraction methods was determined. The conduction of magnetic measurements required an initial calibration of ferromagnetic steels. Based on the examined volume of the sample, all methods used were divided into two large categories: the first one was related to the determination of surface residual stress, whereas the second one was related to bulk residual stress determination. The first category included the magnetic Barkhausen noise and the X-ray diffraction measurements, while the second one included the magnetic permeability and the neutron diffraction data. The residual stresses determined by the magnetic techniques were in a good agreement with the diffraction ones.

  17. The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique

    SciTech Connect

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lai, Hsuan-Han; Kuo, Che-Wei; Wu, Paxon Ti-Yuan; Wu, Weite

    2015-01-15

    A systematic study of residual stress relaxation and the texture evolution of cold-rolled AZ31 Mg alloys using the vibratory stress relief technique with a simple cantilever beam vibration system was performed using a high-resolution X-ray diffractometer and a portable X-ray residual stress analyzer. The effects of vibrational stress excitation on the surface residual stress distribution and on the texture of pole figures (0002) occurring during the vibratory stress relief were examined. Compared with the effects corresponding to the same alloy under non-vibration condition, it can be observed that the uniform surface residual stress distribution and relaxation of the compressive residual stress in the stress concentration zone were observed rather than all of the residual stresses being eliminated. Furthermore, with an increase in the vibrational aging time, the compressive residual stress, texture density, and (0002) preferred orientation increased first and then decreased. It should be underlined that the vibratory stress relief process for the vibrational aging time of more than 10 min is able to weaken the strong basal textures of AZ31 Mg alloys, which is valuable for enhancement of their formability and is responsible for an almost perfect 3D-Debye–Scherrer ring. - Highlights: • 3D-Debye ring about VSR technique is not discussed in the existing literature. • A newly developed VSR method is suitable for small or thin workpieces. • The cosα method accurately and effectively determines the residual stresses. • The VSR technique is valuable for enhancement of their formability. • The texture and preferred orientation change with the vibrational aging time.

  18. Measuring stress: Uses and limitations

    SciTech Connect

    Suter, G.W. II

    1994-12-31

    The topic of the uses and limitations of measuring stress in the oceans is addressed. The use of the term stress in this context is ambiguous. Rather than assuming that stress is an actual measurable property of oceans, one may assume that the term refers to the complex of harmful things that is going on in the oceans. that is, it is a cover term for a complex of processes and states, many of which are unknown or undefined. The appeal of the term stress used in that way is very tempting. Considerable complexity results from the fact that the ocean consists of numerous and diverse species and ecosystems each of which have various properties that have some claim to protection. Another source of complexity is the diversity of factors which constitute threats to the environment. In evaluating the concepts of ecological risk assessment, there are sources of hazardous agents, there are receptors that are affected, and there is a process by which these interact termed exposure. As a result of exposure there is some probability that the actions of the sources have caused or will cause some effect on the receptor, the risk. Assessments may be source driven; they may attempt to determine the risks associated with a waste outfall. Assessments may also be effects driven; they may attempt to determine the cause of a die-off of marine mammals or determine the likelihood of a particular rise in sea-level. Finally, they may be exposure driven. Each of these components of the causal chain might serve as measures of stress.

  19. Measuring stress variation with depth using Barkhausen signals

    NASA Astrophysics Data System (ADS)

    Kypris, O.; Nlebedim, I. C.; Jiles, D. C.

    2016-06-01

    Magnetic Barkhausen noise analysis (BNA) is an established technique for the characterization of stress in ferromagnetic materials. An important application is the evaluation of residual stress in aerospace components, where shot-peening is used to strengthen the part by inducing compressive residual stresses on its surface. However, the evaluation of the resulting stress-depth gradients cannot be achieved by conventional BNA methods, where signals are interpreted in the time domain. The immediate alternative of using x-ray diffraction stress analysis is less than ideal, as the use of electropolishing to remove surface layers renders the part useless after inspection. Thus, a need for advancing the current BNA techniques prevails. In this work, it is shown how a parametric model for the frequency spectrum of Barkhausen emissions can be used to detect variations of stress along depth in ferromagnetic materials. Proof of concept is demonstrated by inducing linear stress-depth gradients using four-point bending, and fitting the model to the frequency spectra of measured Barkhausen signals, using a simulated annealing algorithm to extract the model parameters. Validation of our model suggests that in bulk samples the Barkhausen frequency spectrum can be expressed by a multi-exponential function with a dependence on stress and depth. One practical application of this spectroscopy method is the non-destructive evaluation of residual stress-depth profiles in aerospace components, thus helping to prevent catastrophic failures.

  20. RESIDUAL LIMB VOLUME CHANGE: SYSTEMATIC REVIEW OF MEASUREMENT AND MANAGEMENT

    PubMed Central

    Sanders, JE; Fatone, S

    2014-01-01

    Management of residual limb volume affects decisions regarding timing of fit of the first prosthesis, when a new prosthetic socket is needed, design of a prosthetic socket, and prescription of accommodation strategies for daily volume fluctuations. The purpose of this systematic review was to assess what is known about measurement and management of residual limb volume change in persons with lower-limb amputation. Publications that met inclusion criteria were grouped into three categories: (I) descriptions of residual limb volume measurement techniques; (II) studies on people with lower-limb amputation investigating the effect of residual limb volume change on clinical care; and (III) studies of residual limb volume management techniques or descriptions of techniques for accommodating or controlling residual limb volume. The review showed that many techniques for the measurement of residual limb volume have been described but clinical use is limited largely because current techniques lack adequate resolution and in-socket measurement capability. Overall, there is limited evidence regarding the management of residual limb volume, and the evidence available focuses primarily on adults with trans-tibial amputation in the early post-operative phase. While we can draw some insights from the available research about residual limb volume measurement and management, further research is required. PMID:22068373

  1. Effect of argon gas pressure on residual stress, microstructure evolution and electrical resistivity of beryllium films

    NASA Astrophysics Data System (ADS)

    Luo, Bing-Chi; Li, Kai; Zhang, Ji-Qiang; Luo, Jiang-Shan; Wu, Wei-Dong; Tang, Yong-Jian

    2016-02-01

    The residual stress in beryllium films fabricated on K9 substrates by using magnetron sputtering deposition is measured by using a curvature method and is theoretically estimated by using the Nix and Clemens (NC) model. The experimental results indicate that the 1.3-μm-thick film is always in a tensile state for pressure variations in the range from 0.4 to 1.2 Pa. When the sputtering gas pressure is increased, the average stress increases at first, after which it decreases by a remarkable amount. The observed descending trend of the tensile stress when the sputtering gas pressure is beyond 0.6 Pa is mainly attributed to the grain size in the film being larger than that in the film when the pressure is below 0.6 Pa. The maximal residual stress of 552 MPa at a sputtering gas pressure of 0.6 Pa is close to the tensile strength (550 MPa) of the corresponding beryllium bulk material and is about 8 times smaller than that calculated by using the N-C model. In addition, the surface morphologies of the as-fabricated films reveal fibrous grains while the cross-sectional morphologies are characterized by a coarsening of columnar grains. The measured electric resistivity of each film strongly depends on its porosity and the sizes of its grains.

  2. 3D Dynamic Finite Element Analysis of the Nonuniform Residual Stress in Ultrasonic Impact Treatment Process

    NASA Astrophysics Data System (ADS)

    Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang

    2016-07-01

    The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.

  3. Determination of the residual stress tensor in textured zirconium alloy by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Sumin, V. V.; Papushkin, I. V.; Vasin, R. N.; Venter, А. M.; Balagurov, А. М.

    2012-02-01

    Results of neutron diffraction studies of crystallographic texture and residual stress tensor components in cold-worked and annealed cylindrical components made from E-110 zirconium alloy are presented. Those components are used as plugs in the fuel elements of the VVER-type reactors; the resident residual stresses influence the durability and safety of the fuel elements. The experiments were carried out on the neutron diffractometers at Dubna (the IBR-2 pulsed reactor) and Berlin Helmholtz-Zentrum (the BER II research reactor). It is shown that the samples have fiber texture that is changed considerably with annealing. The type I residual stress tensors for both samples were calculated by the BulkPathGEO model. The cold worked component has 136-166 MPa tensile residual stress in the radial direction and zero stress along the axial direction. Residual stress values in the annealed component are close to zero.

  4. Morphology of residually stressed tubular tissues: Beyond the elastic multiplicative decomposition

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.; Destrade, M.; Gower, A. L.; Taffetani, M.

    2016-05-01

    Many interesting shapes appearing in the biological world are formed by the onset of mechanical instability. In this work we consider how the build-up of residual stress can cause a solid to buckle. In all past studies a fictitious (virtual) stress-free state was required to calculate the residual stress. In contrast, we use a model which is simple and allows the prescription of any residual stress field. We specialize the analysis to an elastic tube subject to a two-dimensional residual stress, and find that incremental wrinkles can appear on its inner or its outer face, depending on the location of the highest value of the residual hoop stress. We further validate the predictions of the incremental theory with finite element simulations, which allow us to go beyond this threshold and predict the shape, number and amplitude of the resulting creases.

  5. Effect of substrate preheating temperature and coating thickness on residual stress in plasma sprayed hydroxyapatite coating

    NASA Astrophysics Data System (ADS)

    Tang, Dapei

    2015-07-01

    A thermal-mechanical coupling model was developed based on thermal-elastic- plastic theory according the special process of plasma spraying Hydroxyapatite (HA) coating upon Ti-6Al-4V substrate. On the one hand, the classical Fourier transient heat conduction equation was modified by introducing the effect item of deformation on temperature, on the other hand, the Johnson-Cook model, suitable for high temperature and high strain rate conditions, was used as constitutive equation after considering temperature softening effect, strain hardening effect and strain rate reinforcement effect. Based on the above coupling model, the residual stress field within the HA coating was simulated by using finite element method (FEM). Meanwhile, the substrate preheating temperature and coating thickness on the influence of residual stress components were calculated, respectively. The failure modes of coating were also preliminary analyzed. In addition, in order to verify the reliability of calculation, the material removal measurement technique was applied to determine the residual stress of HA coating near the interface. Some important conclusions are obtained.

  6. Residual Stresses in Inertia-Friction-Welded Dissimilar High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Moat, R. J.; Hughes, D. J.; Steuwer, A.; Iqbal, N.; Preuss, M.; Bray, S. E.; Rawson, M.

    2009-09-01

    The welding of dissimilar alloys is seen increasingly as a way forward to improve efficiencies in modern aeroengines, because it allows one to tailor varying material property demands across a component. Dissimilar inertia friction welding (IFW) of two high-strength steels, Aermet 100 and S/CMV, has been identified as a possible joint for rotating gas turbine components and the resulting welds are investigated in this article. In order to understand the impact of the welding process and predict the life expectancy of such structures, a detailed understanding of the residual stress fields present in the welded component is needed. By combining energy-dispersive synchrotron X-ray diffraction (EDSXRD) and neutron diffraction, it has been possible to map the variations in lattice spacing of the ferritic phase on both sides of two tubular Aermet 100-S/CMV inertia friction welds (as-welded and postweld heat-treated condition) with a wall thickness of 37 mm. Laboratory-based XRD measurements were required to take into account the variation in the strain-free d-spacing across the weld region. It was found that, in the heat-affected zone (HAZ) slightly away from the weld line, residual stress fields showed tensile stresses increasing most dramatically in the hoop direction toward the weld line. Closer to the weld line, in the plastically affected zone, a sharp drop in the residual stresses was observed on both sides, although more dramatically in the S/CMV. In addition to residual stress mapping, synchrotron XRD measurements were carried out to map microstructural changes in thin slices cut from the welds. By studying the diffraction peak asymmetry of the 200- α diffraction peak, it was possible to demonstrate that a martensitic phase transformation in the S/CMV is responsible for the significant stress reduction close to the weld line. The postweld heat treatment (PWHT) chosen to avoid any overaging of the Aermet 100 and to temper the S/CMV martensite resulted in little

  7. On Residual Stresses in Resistance Spot-Welded Aluminum Alloy 6061-T6: Experimental and Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Afshari, D.; Sedighi, M.; Karimi, M. R.; Barsoum, Z.

    2013-12-01

    In this study, an electro-thermal-structural-coupled finite element (FE) model and x-ray diffraction residual stress measurements have been utilized to analyze distribution of residual stresses in an aluminum alloy 6061-T6 resistance spot-welded joint with 2-mm-thickness sheet. Increasing the aluminum sheet thickness to more than 1 mm leads to creating difficulty in spot-welding process and increases the complexity of the FE model. The electrical and thermal contact conductances, as mandatory factors are applied in contact areas of electrode-workpiece and workpiece-workpiece to resolve the complexity of the FE model. The physical and mechanical properties of the material are defined as thermal dependent to improve the accuracy of the model. Furthermore, the electrodes are removed after the holding cycle using the birth-and-death elements method. The results have a good agreement with experimental data obtained from x-ray diffraction residual stress measurements. However, the highest internal tensile residual stress occurs in the center of the nugget zone and decreases toward nugget edge; surface residual stress increases toward the edge of the welding zone and afterward, the area decreases slightly.

  8. Phase transformations and residual stresses in environmental barrier coatings

    NASA Astrophysics Data System (ADS)

    Harder, Bryan J.

    Silicon-based ceramics (SiC, Si3N4) are promising materials for high-temperature structural applications in turbine engines. However, the silica layer that forms on these materials is susceptible to attack from water vapor present in combustion environments. To protect against this degradation, environmental barrier coatings (EBCs) were developed to protect the underlying substrate. In the case of silicon carbide (SiC), multilayer coating systems consist of a Ba1-xSrxAl2Si 2O8 (BSAS) topcoat, a mullite or mullite + SrAl2Si 2O8 (SAS) interlayer, and a silicon bond coat. In this work, biaxial strains were measured on as-sprayed and heat-treated samples to analyze the stress and phase evolution in the coating system as a function of depth and temperature. Models were used to compare the results with an ideal coating system. In the assprayed state, tensile stresses as high as 175 MPa were measured, and cracking was observed. After thermally cycling the samples, stresses were significantly reduced and cracks in the topcoat had closed. The addition of SAS to the interlayer increased the compressive stress in the BSAS topcoat in thermally-cycled samples, which was desirable for EBC applications. The BSAS topcoat transformed from the as-deposited hexacelsian state to the stable celsian above 1200°C. This phase transformation is accompanied by a CTE reduction. The kinetics of the hexacelsian-to-celsian transformation were quantified for freestanding plasma-sprayed BSAS. Activation energies for bulk bars and crushed powder were determined to be ˜340 kJ/mol and ˜500 kJ/mol, respectively. X-ray diffraction and electron backscatter diffraction were used to establish how microstructural constraints reduce the transformation energy. Barrier coating lifetime and stability are also influenced by exposure to reactive, low-melting point calcium-magnesium-aluminosilicate (CMAS) deposits formed from dust and sand. Multilayer doped aluminosilicate coatings and bulk BSAS material were

  9. Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    Distortion frequently occurs during machining of age hardening aluminum alloys due to residual stresses introduced during the quenching step in the heat treatment process. This report quantifies, compares, and discusses the effectiveness of several methods for minimizing residual stresses and machining distortion in aluminum alloys 7075 and 6061.

  10. Prediction and Optimization of Residual Stresses on Machined Surface and Sub-Surface in MQL Turning

    NASA Astrophysics Data System (ADS)

    Ji, Xia; Zou, Pan; Li, Beizhi; Rajora, Manik; Shao, Yamin; Liang, Steven Y.

    Residual stress in the machined surface and subsurface is affected by materials, machining conditions, and tool geometry and can affect the component life and service quality significantly. Empirical or numerical experiments are commonly used for determining residual stresses but these are very expensive. There has been an increase in the utilization of minimum quantity lubrication (MQL) in recent years in order to reduce the cost and tool/part handling efforts, while its effect on machined part residual stress, although important, has not been explored. This paper presents a hybrid neural network that is trained using Simulated Annealing (SA) and Levenberg-Marquardt Algorithm (LM) in order to predict the values of residual stresses in cutting and radial direction on the surface and within the work piece after the MQL face turning process. Once the ANN has successfully been trained, an optimization procedure, using Genetic Algorithm (GA), is applied in order to find the best cutting conditions in order to minimize the surface tensile residual stresses and maximize the compressive residual stresses within the work piece. The optimization results show that the usage of MQL decreases the surface tensile residual stresses and increases the compressive residual stresses within the work piece.

  11. Residual stress analysis of graphite/polyimide composites using the concept of metallic inclusions

    NASA Astrophysics Data System (ADS)

    Dragoi, Danut

    The purpose of this thesis is to investigate the use of metal particles (Al, Ag, Nb) embedded between the first and second plies of 6-ply unidirectional and 4-ply 8-harness satin weave cloth carbon/polyimide laminates, as strain sensors for the determination of residual and applied stresses by x-ray diffraction. XRD measurements were made using a Siemens D500 diffractometer with parallel-beam optics a solid state detector and Cu K a radiation. Specimens were subjected to bending loads while irradiated, using a 4-point bending device mounted on the D500 goniometer. Finite Element calculations were performed on a specimen with an isolated spherical particle located at half the distance between neutral axis and the surface of the specimen for the 4-ply laminate and two thirds the distance for the 6-ply laminate. ANSYS v.5.2 was used with tetrahedral Solid92 elements. Eshelby calculations were done using the Eshelby tensor for a spherical inclusion embedded in an infinite homogeneous anisotropic matrix, the known strain matrix for bending and the matrices for thermal expansion of the composite and the metal inclusion. FEM and Eshelby method results were found to be equivalent for an isolated particle in a large volume of matrix, i.e. a volume fraction of filler approaching zero. For XRD measurements, a certain minimum concentration of filler was required in order to have enough diffracted x-ray intensity to obtain measurable peak positions within acceptable limits of errors. For multiple inclusions, the slopes of strains and stresses versus outer pin displacement inside the inclusions do not differ significantly from those in single inclusions, however a remarkable change is in the intercept. This is due to a constant stress-strain field that is added to each particle single solution, because of the multiple inclusion interaction. Strains and stresses obtained by XRD in the embedded particles were sensitive to the residual stresses in the as-cured laminates and

  12. Residual stress and damage-induced critical fracture on CO2 laser treated fused silica

    SciTech Connect

    Matthews, M; Stolken, J; Vignes, R; Norton, M

    2009-11-02

    Localized damage repair and polishing of silica-based optics using mid- and far-IR CO{sub 2} lasers has been shown to be an effective method for increasing optical damage threshold in the UV. However, it is known that CO{sub 2} laser heating of silicate surfaces can lead to a level of residual stress capable of causing critical fracture either during or after laser treatment. Sufficient control of the surface temperature as a function of time and position is therefore required to limit this residual stress to an acceptable level to avoid critical fracture. In this work they present the results of 351 nm, 3 ns Gaussian damage growth experiments within regions of varying residual stress caused by prior CO{sub 2} laser exposures. Thermally stressed regions were non-destructively characterized using polarimetry and confocal Raman microscopy to measure the stress induced birefringence and fictive temperature respectively. For 1 {approx} 40s square pulse CO{sub 2} laser exposures created over 0.5-1.25 kW/cm{sup 2} with a 1-3 mm 1/e{sup 2} diameter beam (T{sub max} {approx} 1500-3000 K), the critical damage site size leading to fracture increases weakly with peak temperature, but shows a stronger dependence on cooling rate, as predicted by finite element hydrodynamics simulations. Confocal micro-Raman was used to probe structural changes to the glass over different thermal histories and indicated a maximum fictive temperature of 1900K for T{sub max} {ge} 2000 K. The effect of cooling rate on fictive temperature caused by CO{sub 2} laser heating are consistent with finite element calculations based on a Tool-Narayanaswamy relaxation model.

  13. Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in Oxide Dispersion Strengthened (ODS) Steel MA956

    DOE PAGESBeta

    Brewer, Luke N.; Bennett, Martin S.; Baker, B. W.; Payzant, E. Andrew; Kolbus, Lindsay M.

    2015-09-08

    This article characterizes the residual stresses generated by friction stir welding of oxide dispersion strengthened steel MA956 over a series of welding conditions. A plate of MA956 steel was friction stir welded at three conditions: 500 rpm/25 millimeters per minute (mmpm), 400 rpm/50 mmpm and 400 rpm/100 mmpm. The residual stresses across these welds were measured using both x-ray and neutron diffraction techniques. Longitudinal residual stresses up to eighty percent of the yield strength were observed for the 400 rpm/100 mmpm condition. Increasing the traverse rate while holding the rotational speed fixed increased the residual stress levels in the stirmore » zone and at the stir zone-thermomechanically affected zone interface. The stress profiles displayed the characteristic M shape, and the asymmetry between advancing and retreating stress peaks was limited, occurring mainly on the root side of the weld. The large magnitude of the stresses was maintained throughout the thickness of the plates.« less

  14. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    SciTech Connect

    Dong, P.; Rahman, S.; Wilkowski, G.

    1997-04-01

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  15. Effect of residual stress on modal patterns of MEMS vibratory gyroscope

    NASA Astrophysics Data System (ADS)

    Dutta, Shankar; Panchal, Abha; Kumar, Manoj; Pal, Ramjay; Bhan, R. K.

    2016-04-01

    Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 - 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.

  16. Effects of post-weld heat treatments on the residual stress and mechanical properties of electron beam welded SAE 4130 steel plates

    SciTech Connect

    Huang, C.C.; Chuang, T.H.; Pan, Y.C.

    1997-02-01

    The distribution of the residual stresses of electron beam welded SAE 4130 and the effect of stress relief after various post-weld heat treatments (PWHT) were measured using X-ray diffraction. The mechanical properties and microstructure were also examined. Experimental results show that the tensile residual stress increased with the heat input of the electron beam. Most of the residual stresses were relieved by the PWHT at 530 C for 2 h followed by furnace cooling to 50 C. The strength of the welds decreased slightly, and the elongation of the welds increased after PWHT.

  17. Effects of post-weld heat treatments on the residual stress and mechanical properties of electron beam welded sae 4130 steel plates

    NASA Astrophysics Data System (ADS)

    Huang, C. C.; Pan, Y. C.; Chuang, T. H.

    1997-02-01

    The distribution of the residual stresses of electron beam welded SAE 4130 and the effect of stress relief after various post- weld heat treatments (PWHT) were measured using X- ray diffraction. The mechanical properties and microstructure were also examined. Experimental results show that the tensile residual stress increased with the heat input of the electron beam. Most of the residual stresses were relieved by the PWHT at 530 °C for 2 h followed by furnace cooling to 50 °C. The strength of the welds decreased slightly, and the elongation of the welds increased after PWHT.

  18. Bridge-safety evaluation using ultrasonic stress measurement

    NASA Astrophysics Data System (ADS)

    Clark, Al V.; Lozev, Margarit G.; Fuchs, P. A.

    1996-11-01

    Fracture mechanics can be used to evaluate the consequence of having a crack in a bridge structure. To do so requires that the stress state near the crack be known including the contribution of residual and fabrication stresses. In general these must be measured. Stress causes a small but measurable change in the speed of sound in many materials. Hence measurement of velocity in a bridge provides a means to determine all the components of stress. This concept has been demonstrated in laboratory situations by various researchers. Here we report results from field tests on actual bridges. The stress in flange and web regions of two bridges was measured with ultrasonics. In the first bridge we determined the residual stress in the girders. The second bridge was an integral backwall bridge with no expansion joints. It had been instrumented at time of construction. Strain gage readings indicated compressive stresses near yield. Ultrasonic measurements showed the bridge to be safe. Subsequent replacement of suspect electronics in the monitoring instrumentation verified the ultrasonic results to be safe.

  19. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering

    DOE PAGESBeta

    Kolbus, Lindsay M.; Payzant, E. Andrew; Cornwell, Paris A.; Watkins, Thomas R.; Babu, Sudarsanam Suresh; Dehoff, Ryan R.; Duty, Chad E.; Lorenz, M.; Ovchinnikova, O. S.

    2015-01-10

    Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting and the other with direct laser sintering. Spatially indexed stress-free cubes were obtained by EDM sectioning equivalent prisms of similar shape. The (311) interplanar spacing examined for the EDM sectioned sample was compared to the interplanar spacings calculated to fulfill force and moment balance. We have shown that Applying force and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. Furthermore, our work hasmore » shown that residual stresses in electron beam melting parts are much smaller than that of direct laser metal sintering parts.« less

  20. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering

    SciTech Connect

    Kolbus, Lindsay M.; Payzant, E. Andrew; Cornwell, Paris A.; Watkins, Thomas R.; Babu, Sudarsanam Suresh; Dehoff, Ryan R.; Duty, Chad E.; Lorenz, M.; Ovchinnikova, O. S.

    2015-01-10

    Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting and the other with direct laser sintering. Spatially indexed stress-free cubes were obtained by EDM sectioning equivalent prisms of similar shape. The (311) interplanar spacing examined for the EDM sectioned sample was compared to the interplanar spacings calculated to fulfill force and moment balance. We have shown that Applying force and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. Furthermore, our work has shown that residual stresses in electron beam melting parts are much smaller than that of direct laser metal sintering parts.

  1. Apparatus automatically measures soluble residue content of volatile solvents

    NASA Technical Reports Server (NTRS)

    Oswalt, F. W.

    1969-01-01

    Solvent Purity Meter /SPM/ automatically measures the soluble residue in volatile solvents used in cleaning or extraction of oils, greases, and other nonvolatile materials. The SPM gives instantaneous and continuous readout of soluble contaminant residues in concentrations as low as one part per million of solution.

  2. Relation Between Residual and Hoop Stresses and Rolling Bearing Fatigue Life

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2015-01-01

    Rolling-element bearings operated at high speed or high vibration may require a tight interference fit between the bore of the bearing and shaft to prevent rotation of the bearing bore around the shaft and fretting damage at the interfaces. Previous work showed that the hoop stresses resulting from tight interference fits can reduce bearing lives by as much as 65 percent. Where tight interference fits are required, case-carburized steel such as AISI 9310 or M50 NiL is often used because the compressive residual stresses inhibit subsurface crack formation and the ductile core inhibits inner-ring fracture. The presence of compressive residual stress and its combination with hoop stress also modifies the Hertz stress-life relation. This paper analyzes the beneficial effect of residual stresses on rolling-element bearing fatigue life in the presence of high hoop stresses for three bearing steels. These additional stresses were superimposed on Hertzian principal stresses to calculate the inner-race maximum shearing stress and the resulting fatigue life of the bearing. The load-life exponent p and Hertz stress-life exponent n increase in the presence of compressive residual stress, which yields increased life, particularly at lower stress levels. The Zaretsky life equation is described and is shown to predict longer bearing lives and greater load- and stress-life exponents, which better predicts observed life of bearings made from vacuum-processed steel.

  3. Assessment of Bending Fatigue Strength of Crankshaft Sections with Consideration of Quenching Residual Stress

    NASA Astrophysics Data System (ADS)

    Qin, W. J.; Dong, C.; Li, X.

    2016-03-01

    High-cycle bending fatigue is the primary failure mode of crankshafts in engines. Compressive residual stresses are often introduced by induction quenching to improve the fatigue strength of crankshafts. The residual stresses, which are commonly obtained by numerical methods, such as the finite element method (FEM), should be included in fatigue failure analysis to predict the fatigue strength of crankshafts accurately. In this study, the simulation method and theory of quenching process are presented and applied to investigate the residual stresses of a diesel engine crankshaft. The coupling calculation of temperature, microstructure, and stress fields of the crankshaft section is conducted by FEM. Then, the fatigue strength of the crankshaft section is analytically assessed by Susmel and Lazzarin's criterion based on the critical plane approach that superimposes the residual stresses onto the bending stresses. The resonant bending fatigue tests of the crankshaft sections are conducted, and the tests and analytical assessments yield consistent results.

  4. Residual stress analysis of multilayer environmental barrier coatings.

    SciTech Connect

    Harder, B.; Almer, J.; Weyant, C.; Lee, K.; Faber, K.; Northwestern Univ.; Rolls-Royce Corp.

    2009-02-01

    Silicon-based ceramics (SiC, Si{sub 3}N{sub 4}) are promising materials systems for high-temperature structural applications in gas turbine engines. However, the silica layer that forms on these materials is susceptible to attack from water vapor present in combustion environments. To protect against this degradation, environmental barrier coatings (EBCs) have been developed to shield the underlying substrate and prevent degradation. Here we report on elastic and thermal properties, as well as internal stresses of candidate multilayer coatings, as measured in situ using microfocused high-energy X-rays in a transmission diffraction geometry. Doped aluminosilicate coatings were investigated for their stability on a SiC/SiC melt-infiltrated substrate. The coatings consisted of a Ba{sub 1-x}Sr{sub x}Al{sub 2}Si{sub 2}O{sub 8} topcoat with a mullite or mullite+SrAl{sub 2}Si{sub 2}O{sub 8} interlayer, and a silicon bond coat. A numerical model was used to compare the stress results with an ideal coating system. Experiments were carried out on as-sprayed and heat-treated samples in order to analyze the strain and phase evolution as a function of multilayer depth and temperature. The phase transformation of the topcoat promoted healing of cracks in the EBC and reduced stresses in the underlying layers and the addition of SAS to the interlayer reduced stresses in thermally cycled coatings, but did not stop cracks from forming.

  5. Effects of initial crystal size of diamond powder on surface residual stress and morphology in polycrystalline diamond (PCD) layer

    NASA Astrophysics Data System (ADS)

    Jia, HongSheng; Jia, XiaoPeng; Xu, Yue; Wan, LianRu; Jie, KaiKai; Ma, HongAn

    2011-01-01

    Polycrystalline diamond compacts (PDC) were synthesized using diamond powder of average crystal size 3-20 μm by the Ni70Mn25Co5 alloy infiltration technique at high temperature and high pressure (HPHT). The surface residual stress of polycrystalline diamond (PCD) layer was measured using micro-Raman spectroscopy with hydrostatic stress model and X-ray diffraction (XRD). Measurements of the stress levels of PCDs show that the residual compressive stresses range from 0.12 to 0.22 GPa, which increase with the crystal size of diamond. Scanning electron microscopy (SEM) was used to observe the morphology of initial diamond grains and PCD cross-section. The results indicate that PCD has a dense and interlaced microstructure with diamond-diamond (D-D) direct bonding. And the smaller the crystal size of diamond, the better the growth of diamond direct bonding and the smaller the binder metal between diamond boundaries will be.

  6. X-ray study of residual stresses in narrow groove TIG weldments. Final technical report, September 1979-March 1984

    SciTech Connect

    Ruud, C.O.; Pangborn, R.N.; Snoha, D.J.

    1985-01-01

    The residual stresses measured in this project in the plane of the plate rolling surface, in the heat-affected zone, adjacent and in a direction normal to the weld fusion line, are greater than those in a direction parallel to the weld fusion line. This is in contradiction to the observation that in single-pass welds the parallel stresses are greater. The maximum residual stresses observed in the weldment studied were nearly or at the yield strength; this stress level is comparable with that shown in welds from thin plates, but no greater; and was at the weld fusion line, or toe, of the weld. A double peak in the plots of stresses normal to the weld line on traverses normal to the weld on the rolled surface of the original plate was attributed to hardenability variation caused by the thermal cycling during multi-pass welding. The stress field of the narrow groove weldment is less extensive than what was predicted for V groove. Stress relief due to cutting the weldment through a plane normal to the weld line caused relief as far as 40% of the plate thickness. The weld repair caused severe perturbations to residual stress symmetry of the weldment.

  7. Whole field curvature and residual stress determination of silicon wafers by reflectometry

    NASA Astrophysics Data System (ADS)

    Ng, Chi Seng; Asundi, Anand K.

    2011-10-01

    Reflectometry, a simple whole-field curvature measurement system using a novel computer aided phase shift reflection grating method has been improved to certain extend. The similar system was developed from our earlier works on Computer Aided Moiré Methods and Novel Techniques in Reflection Moiré, Experimental Mechanics (1994) in which novel structured light approach was shown for surface slope and curvature measurement. This method uses similar technology but coupled with a novel phase shift system to accurately measure surface profile, slope and curvature. In our previous paper, "Stress Measurement of thin wafer using Reflection Grating Method", the surface curvature and residual stresses were evaluated using the versatility of the proposed system.. The curvature of wafers due to the deposition of backside metallization was evaluated and compared with a commercially stress measurement system from KLA-Tencor. In this paper, some aspects of the work are extended. Our proposed system is calibrated using a reference flat mirror and spherical mirror certified by Zygo Corporation. The mirrors together with the camera calibration toolbox allow the system to acquire measurement accuracy that is demanded by semiconductor industry. Finally, the results obtained from Reflectometry are compared and contrast with results from KLA Tencor System.

  8. X-Ray Diffraction Analysis of Residual Stress in Thin Polycrystalline Anatase Films and Elastic Anisotropy of Anatase

    NASA Astrophysics Data System (ADS)

    Matěj, Z.; Kužel, R.; Nichtová, L.

    2011-11-01

    The importance of residual stress in anatase thin films for their photo-induced hydrophilicity was proved recently. Detailed X-ray diffraction (XRD) studies of residual stresses in titanium dioxide films are presented here. Measurements including multiple hkl reflections on several series of these films revealed the presence of tensile stresses in the films that were obtained by crystallization from amorphous state. Significant anisotropy of the strain was also found and compared with that of anatase, resulting from its theoretically calculated single-crystal elastic constants. The XRD data support the experimental evidence of the hypothesis that the [00 l] axis is the elastically soft anatase direction, whereas the directions in the [ h00] × [ hk0] plane are elastically stiff. This is in agreement with the anisotropy predicted by single-crystal elastic constants that are obtained from ab-initio calculations. Residual stress analysis for materials with tetragonal symmetry is described and the theory is used to analyze the data. The anisotropy is very different from that for the rutile phase, and the experimental results agree well with the values calculated for anatase. A simplified method of XRD residual stress analysis in thin anatase films by total pattern fitting (TPF) is also presented. Tensile stresses are formed during the crystallization process and increase rapidly with reduced film thickness. They inhibit crystallization, which is then very slow in the thinnest films.

  9. Reactivation of posttraumatic stress in male disaster survivors: the role of residual symptoms.

    PubMed

    Boe, Hans Jakob; Holgersen, Katrine H; Holen, Are

    2010-05-01

    The aim of this study was to establish the relative distribution of resilient, remitted, chronic and reactivated posttraumatic stress disorder (PTSD) in a population of survivors from a major civilian disaster. Residual PTSD symptoms were explored to identify predictors of future reactivation. Symptoms were measured by the Impact of Event Scale (IES) 5.5 months, 14 months and 5 years after the disaster. Forty-eight survivors (79%) were interviewed after 27 years. PTSD status was determined by using the Structural Clinical Interview for DSM-IV axis I Disorders (SCID-I). The distributions were: 58.3% resilient, 14.6% remitted, 8.3% chronic, and 18.8% reactivated PTSD. Number of residual symptoms from intrusion and avoidance 14 months and 5 years past trauma predicted later reactivation. Intrusion symptoms in general, and sleep related intrusions in particular, were the most consistent predictors deserving special attention. PMID:20207518

  10. Compressional residual stress in Bastogne boudins revealed by synchrotron X-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Kunz, Martin; Li, Yao; Zepeda-Alarcon, Eloisa; Sintubin, Manuel; Wenk, Hans-Rudolf

    2016-06-01

    Lattice distortions in crystals can be mapped at the micron scale using synchrotron X-ray Laue microdiffraction (μXRD). From lattice distortions the shape and orientation of the elastic strain tensor can be derived and interpreted in terms of residual stress. Here we apply the new method to vein quartz from the original boudinage locality at Bastogne, Belgium. A long-standing debate surrounds the kinematics of the Bastogne boudins. The μXRD measurements reveal a shortening residual elastic strain, perpendicular to the vein wall, corroborating the model that the Bastogne boudins formed by layer-parallel shortening and not by layer-parallel extension, as is in the geological community generally inferred by the process of boudinage.

  11. Status report. Characterization of Weld Residual Stresses on a Full-Diameter SNF Interim Storage Canister Mockup.

    SciTech Connect

    Enos, David; Bryan, Charles R.

    2015-08-01

    This report documents the mockup specifications and manufacturing processes; the initial cutting of the mockup into three cylindrical pieces for testing and the measured strain changes that occurred during the cutting process; and the planned weld residual stress characterization activities and the status of those activities.

  12. Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

    SciTech Connect

    Beckermann, Christoph; Carlson, Kent

    2011-07-22

    Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting's overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions of

  13. Residual Stress of Multilayer Ceramic Capacitors with Ni-Electrodes (Ni-MLCCs)

    NASA Astrophysics Data System (ADS)

    Nakano, Yukie; Nomura, Takeshi; Takenaka, Tadashi

    2003-09-01

    The residual stress of multilayer ceramic capacitors (MLCCs) has been studied. The capacitance decreased significantly under external compressive stress applied to MLCCs in the thickness direction, on the other hand, the capacitance increased under external stress in the width direction. These capacitance changes depended on the number of dielectric layers in MLCCs. The compressive residual stress at the surface of MLCCs has been shown by X-ray diffraction (XRD) analysis. The stress increased with the number of dielectric layers in MLCCs. Moreover the tensile stress was confirmed in the thickness direction of MLCCs by XRD analysis also. Therefore the dependence of electrical characteristics dependence on the number of dielectric layers, i.e., apparent dielectric constant, temperature dependence of capacitance, and aging deterioration can be explained by the residual stress.

  14. Ground Motion Prediction Equations Empowered by Stress Drop Measurement

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Oth, A.

    2015-12-01

    Significant variation of stress drop is a crucial issue for ground motion prediction equations and probabilistic seismic hazard assessment, since only a few ground motion prediction equations take into account stress drop. In addition to average and sigma studies of stress drop and ground motion prediction equations (e.g., Cotton et al., 2013; Baltay and Hanks, 2014), we explore 1-to-1 relationship for each earthquake between stress drop and between-event residual of a ground motion prediction equation. We used the stress drop dataset of Oth (2013) for Japanese crustal earthquakes ranging 0.1 to 100 MPa and K-NET/KiK-net ground motion dataset against for several ground motion prediction equations with volcanic front treatment. Between-event residuals for ground accelerations and velocities are generally coincident with stress drop, as investigated by seismic intensity measures of Oth et al. (2015). Moreover, we found faster attenuation of ground acceleration and velocities for large stress drop events for the similar fault distance range and focal depth. It may suggest an alternative parameterization of stress drop to control attenuation distance rate for ground motion prediction equations. We also investigate 1-to-1 relationship and sigma for regional/national-scale stress drop variation and current national-scale ground motion equations.

  15. Roller Burnishing - A Cold Working Tool to Reduce Weld Induced Residual Stress

    SciTech Connect

    John Martin

    2002-02-19

    The possibility of stress corrosion cracking (SCC) in regions of tensile residual stress introduced by weld deposited material has been a concern where environmental effects can reduce component life. Roller burnishing, a form of mechanical cold-working, has been considered as a means of providing for residual stress state improvements. This paper provides a computational evaluation of the roller burnishing process to address the permanent deformation needed to introduce a desirable residual stress state. The analysis uses a series of incrementally applied pressure loadings and finite element methodology to simulate the behavior of a roller burnishing tool. Various magnitudes of applied pressure loadings coupled with different size plates and boundary conditions are examined to assess the degree and depth of the residual compressive stress state after cold working. Both kinematic and isotropic hardening laws are evaluated.

  16. Automation of a neutron diffractometer for analysis of residual stress inside complex engineering components

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; James, J. A.; Fitzpatrick, M. E.; Tanguy, A.

    2010-06-01

    Residual stress measurement using neutron diffraction is becoming an increasingly important tool in engineering stress analysis. To this effect, a new generation of dedicated engineering strain instruments are being built at neutron sources, offering considerable improvements in both counting time and spatial resolution. Alongside these improvements, measurements in complex geometry prototype components are increasingly in demand. As a result, there is a strong drive towards integrated sample positioning systems that allow for simplified setup and operating of experiments on components with complex geometries. The present study details work carried out at the ENGIN-X instrument at the UK’s ISIS pulsed neutron source, on measurements in a prototype metal matrix composite (MMC) aircraft wheel, forged from a billet produced through a powder-metallurgy route. The measurement was designed to obtain the macrostress and misfit stresses developed in the matrix and in the reinforcement phase in the wheel during fabrication. The study also demonstrates the use of the SScanSS software for experimental design and implementation, which was developed to complement the advances in the instrumentation of new strain mapping diffractometers. SScanSS simplifies the precise spatial location of the measuring gauge volume inside such complex components.

  17. Estimating residual stress, curvature and boundary compliance of doubly clamped MEMS from their vibration response

    NASA Astrophysics Data System (ADS)

    Tung, Ryan C.; Garg, Anurag; Kovacs, Andrew; Peroulis, Dimitrios; Raman, Arvind

    2013-04-01

    Structural parameters of doubly clamped microfabricated beams such as initial curvature, boundary compliance, thickness and mean residual stress are often critical to the performance of microelectromechanical systems (MEMS) and need to be estimated as a part of quality control of the microfabrication process. However, these parameters couple and influence many metrics of device response and thus are very difficult to disentangle and estimate using conventional methods such as the M-test, static mechanical tests, pull-in measurements or dynamic mechanical tests. Here we present a simple, non-destructive experimental method to extract these parameters based on the non-contact measurement of the natural frequencies of the lowest few eigenmodes of the microfabricated beam, and knowledge of Young's modulus and plan dimensions of the beam alone. The method exploits the fact that certain eigenmodes are insensitive to some of these structural parameters which enable a convenient decoupling and estimation of the parameters. As a result, the method does not require complicated finite element analysis, is insensitive to the gap height and introduces no contact wear or dielectric charging effects. Experiments are performed using laser Doppler vibrometry to measure the natural frequencies of doubly clamped, nickel, RF-MEMS capacitive switches and the method is applied to extract the residual stress, beam thickness, boundary compliance and post-release curvature.

  18. Texturing and residual stress in metals as a result of sliding

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1974-01-01

    Pole figures of the texturing produced by friction in the alloys Cu - 10 at. % Sn, Cu - 10 at. % Si, 440 C stainless steel, and AISI 52100 bearing steel were obtained with an energy-dispersive X-ray diffractometer. While the texturing behavior of these alloys is generally similar to that of pure metals, the 52100 steel and the Cu5Si phase of Cu - 10 at. % Si show no texturing at the loads and speeds used in this experiment. Photographic methods were used in an attempt to measure the uniform residual stress in the wear tracks produced on some pure metals. The stress in copper and iron was, however, below the limit of detectability - about 4.3 x 10 to the 7th power N/sq m (6000 psi). Line broadening under all test conditions in the case of copper and at high load and speed conditions in iron is attributed, at least in part, to the reduction of crystallite size and, perhaps, to nonuniform residual stress, as well.

  19. Effects of surface preparation on pitting resistance, residual stress, and stress corrosion cracking in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Rhouma, A. Ben; Sidhom, H.; Braham, C.; Lédion, J.; Fitzpatrick, M. E.

    2001-10-01

    Surface finishing treatments such as shot blasting and wire brushing can be beneficial in improving the integrity of machined surfaces of austenitic stainless steels. These operations optimize in-service properties such as resistance to pitting corrosion and stress corrosion cracking (SCC). In this study, ground steel surfaces were subjected to a series of sand blasting and wire brushing treatments. The surfaces were then characterized by their hardness, surface residual stress state, and resistance to stress corrosion and pitting corrosion. Some samples were selected for depth profiling of residual stress. It is found that surface hardening and the generation of near-surface compressive residual stress are the benefits that can be introduced by sand blasting and brushing operations.

  20. Simplified micromechanical equations for thermal residual stress analysis of coated fiber composites

    NASA Technical Reports Server (NTRS)

    Naik, R. A.

    1991-01-01

    The fabrication of metal matrix composites poses unique problems to the materials engineer. The large thermal expansion coefficient (CTE) mismatch between the fiber and matrix leads to high tensile residual stresses at the fiber/matrix (F/M) interface which could lead to premature matrix cracking during cooldown. Fiber coatings could be used to reduce thermal residual stresses. A simple closed form analysis, based on a three phase composite cylinder model, was developed to calculate thermal residual stresses in a fiber/interphase/matrix system. Parametric studies showed that the tensile thermal residual stresses at the F/M interface were very sensitive to the CTE and thickness of the interphase layer. The modulus of the layer had only a moderate effect on tensile residual stresses. For a silicon carbide titanium aluminide composite, the tangential stresses were 20 to 30 pct. larger than the axial stresses, over a wide range of interphase layer properties, indicating a tendency to form radial matrix cracks during cooldown. Guidelines for the selection of appropriate material properties of the fiber coating were also derived in order to minimize thermal residual stresses in the matrix during fabrication.

  1. Prediction of Residual Stress Distributions in Welded Sections of P92 Pipes with Small Diameter and Thick Wall based on 3D Finite Element Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Gong, Jianming; Zhao, Yanping; Wang, Yanfei

    2015-05-01

    This study used ABAQUS finite element (FE) software to investigate the residual stress distributions of P92 welded pipes in both the as-weld and post weld heat treated (PWHT) condition. Sequential coupling quasi-static thermo-mechanical in conjunction with moving double ellipsoidal heat source and an element add/remove technique to simulate deposition of new weld material, are combined in the 3D FE analysis. To validate the simulation results, the residual stresses in axial direction at the surface of pipe were measured by X-ray diffraction technique and compared with the results of FE analysis. Detailed characteristic distributions of the residual stresses are discussed. Results show that the FE model can predict the residual stress distributions satisfactorily. Highest residual stresses on the outer surface are found in the last weld bead to be deposited. And the highest tensile residual stress for the full welded section take place in heat affected zone (HAZ) near the middle thickness. Larger residual sstress can be found around the welding start point along the pipe circumference. Comparison of heat treated specimen and untreated specimen illustrates that PWHT has a strong effect on the residual stress field.

  2. Measuring residual accelerations in the Spacelab environment

    NASA Technical Reports Server (NTRS)

    Witherow, William K.

    1991-01-01

    A triglycine sulfate (TGS) crystal growth experiment carried out in Spacelab 3 flown onboard the Shuttle orbiter in 1985 is described. The TGS experiment was aimed at examining diffusion limited crystal growth by minimizing convection in the microgravity environment of the Spacelab. During the experiment tiny crystals were found floating free in the growth solution. Since the free crystals were in a viscous fluid, the 'noise' accelerations of the Shuttle were damped out. This made it possible to measure the constant gravitational acceleration by tracking the positions of these crystals. The velocities and accelerations obtained by these measurements are presented.

  3. Enhancement of residual stress by electromagnetic fluctuations: A quasi-linear study

    NASA Astrophysics Data System (ADS)

    Kaang, Helen H.; Jhang, Hogun; Singh, R.; Kim, Juhyung; Kim, S. S.

    2016-05-01

    A study is conducted on the impact of electromagnetic (EM) fluctuations on residual Reynolds stress in the context of the quasi-linear theory. We employ a fluid formulation describing EM ion temperature gradient turbulence. Analyses show that finite plasma β (=plasma thermal energy/magnetic energy) significantly increases the residual stress, potentially leading to the strong enhancement of flow generation in high β plasmas. We identify that this strong increase of residual stress originates from the reinforcement of radial ⟨ k ∥ ⟩ (=spectrally averaged parallel wavenumber) asymmetry due to the deformation of eigenfunctions near a rational surface.

  4. Measurement and control for mechanical compressive stress

    NASA Astrophysics Data System (ADS)

    Li, Qing; Ye, Guang; Pan, Lan; Wu, Xiushan

    2001-12-01

    At present, the indirect method is applied to measuring and controlling mechanical compressive stress, which is the measurement and control of rotating torque of screw with torque transducer during screw revolving. Because the friction coefficient between every screw-cap and washer, of screw-thread is different, the compressive stress of every screw may is different when the machinery is equipped. Therefore, the accurate measurement and control of mechanical compressive stress is realized by the direct measurement of mechanical compressive stress. The author introduces the research of contrast between compressive stress and rotating torque in the paper. The structure and work principle of a special washer type transducer is discussed emphatically. The special instrument cooperates with the washer type transducer for measuring and controlling mechanical compressive stress. The control tactics based on the rate of compressive stress is put to realize accurate control of mechanical compressive stress.

  5. Residual Stress Relaxation and Stiffness-Confinement Effects in Polymer Films: Characterization by Non-Contact Ellipsometry and Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Askar, Shadid; Torkelson, John

    2015-03-01

    The relaxation of residual stresses in spin-coated polymer films is characterized using two optical techniques: ellipsometry and fluorescence. Both techniques show that residual stresses relax over hours at several tens of degrees above the film glass transition temperature (Tg). Ellipsometry shows that thickness can increase or decrease during residual stress relaxation depending on thermal history of the film. However, the presence or relaxation of stresses has no measurable effect on Tg as measured by ellipsometry. We have adapted the well-known sensitivity of the pyrene dye fluorescence spectral shape to local environment polarity in order to characterize stress relaxation and to monitor stiffness-confinement effects. The spectral shape of the pyrene fluorescence spectrum shows similar stress relaxation regardless of whether relaxation is accompanied by increases or decreases in film thickness. Fluorescence also indicates that single-layer polystyrene films supported on silica stiffen with decreasing nanoscale thickness. For the first time, stiffness gradients as a function of distance from interfaces are demonstrated using pyrene label fluorescence in conjunction with multilayer films.

  6. Stress among charge nurses: tool development and stress measurement.

    PubMed

    Admi, Hanna; Moshe-Eilon, Yael

    2010-01-01

    The aim of this study was to develop and implement a tool for measuring the role stress of charge nurses. Tools are lacking regarding measurement of nursing role stressors, particularly for charge nurses. Based on focus groups and in-depth interviews with charge nurses within a large tertiary hospital, a charge nurse stress questionnaire was developed which measures six factors of stress: authority-responsibility conflict, patient-nurse interaction, deficient resources, managerial decision making, role conflict, and overload. The prominent stressors on charge nurses were specific to the role. Mean levels of stress were significantly higher for nurses who attended post-graduate clinical courses than for those who did not. The mean level of stress was higher for department nurse managers than for nurses without a managerial position. This tool was designed to measure charge nurse stress demonstrates reliability, and highlights the specific stressors demanded by the role. Preparation and ongoing support for fulfilling this position are recommended. PMID:20672537

  7. Residual stress in laser welded dissimilar steel tube-to-tube joints

    SciTech Connect

    Sun, Zheng . Lab. of Production Engineering)

    1993-09-01

    Austenitic-ferritic dissimilar steel joints are widely used in power generation systems. Their utilization has proved to be efficient in terms of satisfactory properties and the economics. These types of joints have usually been produced using conventional welding processes, such as tungsten inert gas (TIG) welding. With the rapid development of high power lasers, laser welding has received considerable attention. Laser welding offers many advantages over conventional welding processes, e.g. low heat input, small heat-affected zone (HAZ), small distortion, and welding in an exact and reproducible manner. Residual stress distribution in laser welds may also differ from those made by conventional welding processes due to its special features. Residual stress, particularly tensile residual stress in the weld, can be very important factor in controlling the quality and service life of the welded structure. The formation of tensile residual stress in the weld may result in the initiation of fatigue cracking, stress corrosion cracking or other types of fractures. It is useful, therefore, to understand the distribution of residual stress in austenitic-ferritic laser welds, and thus evaluate the quality of the joints. Although residual stress distribution in the welded joints has been extensively investigated, little data are available for the residual stress distribution in laser welds. The aim of the work was to examine residual stress distribution along laser welds of dissimilar steel tube-to-tube joints, which were made by both autogeneous welding and welding with filler wire. The results were also compared with the joints made by plasma arc and TIG welding.

  8. Optimizing amorphous indium zinc oxide film growth for low residual stress and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Sigdel, A. K.; Gennett, T.; Berry, J. J.; Perkins, J. D.; Ginley, D. S.; Packard, C. E.

    2013-10-01

    With recent advances in flexible electronics, there is a growing need for transparent conductors with optimum conductivity tailored to the application and nearly zero residual stress to ensure mechanical reliability. Within amorphous transparent conducting oxide (TCO) systems, a variety of sputter growth parameters have been shown to separately impact film stress and optoelectronic properties due to the complex nature of the deposition process. We apply a statistical design of experiments (DOE) approach to identify growth parameter-material property relationships in amorphous indium zinc oxide (a-IZO) thin films and observed large, compressive residual stresses in films grown under conditions typically used for the deposition of highly conductive samples. Power, growth pressure, oxygen partial pressure, and RF power ratio (RF/(RF + DC)) were varied according to a full-factorial test matrix and each film was characterized. The resulting regression model and analysis of variance (ANOVA) revealed significant contributions to the residual stress from individual growth parameters as well as interactions of different growth parameters, but no conditions were found within the initial growth space that simultaneously produced low residual stress and high electrical conductivity. Extrapolation of the model results to lower oxygen partial pressures, combined with prior knowledge of conductivity-growth parameter relationships in the IZO system, allowed the selection of two promising growth conditions that were both empirically verified to achieve nearly zero residual stress and electrical conductivities >1480 S/cm. This work shows that a-IZO can be simultaneously optimized for high conductivity and low residual stress.

  9. Prediction of Residual Stresses and Distortion in Quenched Extruded Shapes Using Generalized Plane Strain Theory

    NASA Astrophysics Data System (ADS)

    Cherukuri, Harish P.; Ulysse, Patrick; Smelser, Ronald E.; Subramanian, Kannan; Kotaru, Deepti

    2010-06-01

    Rapid quenching of aluminum extrusions often results in residual stresses and distortion. The out-of-plane normal component of the residual stress is typically very large and results in undesirable bending (bowing) of the extruded shape. Three-dimensional models to predict the residual stresses and bending of extruded thin-walled shapes are difficult to implement since the wall-thicknesses are often very small compared with the axial dimensions. In this paper, a generalized plane-strain model is presented to predict the residual stresses and distortion. For illusrative purposes of the model, a Z-shaped extrusion is chosen. The model predicts the bowing of the extruded shape along with the in-plane and out-of-plane stress components. An internal state-variable model is used for the constitutive description. The residual stresses and distortion are studied for cold and warm water quenching and three different cases of spray quenching. The numerical results indicate that cold water quenching and the two spray quenching cases with the higher discharge rates lead to significantly larger residual stresses compared to the remaining two cases. For each case, the out-of-plane bows of the extruded shapes are also shown to be significant.

  10. Neutron and x-ray scattering studies of the metallurgical condition and residual stresses in Weldalite welds

    SciTech Connect

    Spooner, S.; Pardue, E.B.S.

    1995-12-31

    Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.

  11. On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.; Destrade, M.; Gower, A. L.

    2016-04-01

    Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials.

  12. Residual stress characteristics of butt-welded flange by finite element analysis

    NASA Astrophysics Data System (ADS)

    Song, Yong-Lun; Yang, Xiao-Hong; Ran, Guo-Wei; Xiao, Tian-Jiao; Yan, Si-Bo

    2011-06-01

    Finite element simulation is utilized in an aluminum alloy 2014 butt-welded flange under AC Tungsten Inert Gas (AC-TIG) welding condition. The simulated results are in good agreement with the residual stress for the plate test using the actual welding parameters. Furthermore, characteristics of residual stress could be investigated in detail in several aspects, such as the welding structures, the welding sequences, the time intervals, preheating, and repair weld. The intermittent welding may be more convenient and advantageous for the practical applications to reduce the stress, and the local repair welding may cause more stress within the repairing region obviously.

  13. On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter.

    PubMed

    Ciarletta, P; Destrade, M; Gower, A L

    2016-01-01

    Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials. PMID:27113413

  14. On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter

    PubMed Central

    Ciarletta, P.; Destrade, M.; Gower, A. L.

    2016-01-01

    Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials. PMID:27113413

  15. Simplified micromechanical equations for thermal residual stress analysis of coated fiber composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1992-01-01

    The fabrication of metal matrix composites poses unique problems to the materials engineer. The large thermal expansion coefficient mismatch between the fiber and matrix leads to high tensile residual stresses at the fiber/matrix interface which could lead to premature matrix cracking during cooldown. Fiber coating could be used to reduce thermal residual stresses. A simple closed-form analysis, based on a three-phase composite cylinder model, was developed to calculate thermal residual stresses in a fiber/interface/matrix system. Guidelines, in the form of simple equations, for the selection of appropriate material properties of the fiber coating, were also derived to minimize thermal residual stresses in the matrix during fabrication.

  16. Calculation of residual stresses induced during laser quench-hardening of steel

    SciTech Connect

    Shishkovskii, I.V.

    1992-06-01

    We present a theoretical and numerical analysis of the quasi-stationary uncoupled problem of thermoelastic-plasticity with the goal of estimating the amount of residual stress in steel after laser quench-hardening. 18 refs., 3 figs.

  17. Dispersion of Rayleigh waves in titanium alloy resulting from inhomogeneous residual stress induced by low plasticity burnishing

    NASA Astrophysics Data System (ADS)

    Man, C.-S.; Koo, L.; Shepard, M. J.

    2002-05-01

    We explore the possibility of using the dispersion of Rayleigh waves for nondestructive inspection of the layer of inhomogeneous residual stress induced by low plasticity burnishing (LPB) on Ti-6Al-4V samples, which inherit mirror-smooth surfaces from the LPB treatment. Our findings suggest that, while the acoustoelastic effect is very small in Ti-6Al-4V, the magnitude of the stress gradient involved still leads to a measurable Rayleigh-wave dispersion, from which information on the stress present could be inferred.

  18. Detection and measurement of organic lampricide residues

    USGS Publications Warehouse

    Daniels, Stacy L.; Kempe, Lloyd L.; Billy, Thomas J.; Beeton, Alfred M.

    1965-01-01

    The selective lampricide, 3-trifluoromethyl-4-nitrophenol (TFM), and its synergist, 5,2'-dichloro-4'-nitrosalicylanilide (DCN), are separable from natural waters by anion exchange. The adsorbed compounds can then be recovered from the resin as concentrates by elution with selective solvent mixtures. Measurements of the amounts of lampricides in the final concentrates can be made colorimetrically at 395 mI? for TFM and at 530 mI? for the safranin complex of DCN. TFM has also been separated for quantitative determination from homogenates of whole fish. The fish is first macerated in a blender and then hydrolyzed in hot, 3 N hydrochloric acid. The amount of background color, due to certain components of the fish in the hydrolysate, is reduced by one or a combination of three methods: (1) a series of three extractions with ether, methylene chloride, and benzene; (2) cation exchange followed by methylene chloride extraction; or (3) ether extraction followed by anion exchange and subsequent desorption with amyl acetate-acetic acid.

  19. Factors Influencing Residual Stresses in Yttria Stabilized Zirconia Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    McGrann, Roy T. R.; Rybicki, Edmund F.; Shadley, John R.; Brindley, William J.

    1997-01-01

    To improve gas turbine and diesel engine performance using thermal barrier coatings (TBC's) requires an understanding of the factors that influence the in-service behavior of thermal barrier coatings. One of the many factors related to coating performance is the state of stress in the coating. The total stress state is composed of the stresses due to the in-service loading history and the residual stresses. Residual stresses have been shown to affect TBC life, the bond strength of thermal spray coatings, and the fatigue life of tungsten carbide coatings. Residual stresses are first introduced in TBC's by the spraying process due to elevated temperatures during processing and the difference in coefficients of thermal expansion of the top coat, bond coat, and substrate. Later, the residual stresses can be changed by the in-service temperature history due to a number of time and temperature dependent mechanisms, such as oxidation, creep, and sintering. Silica content has also been shown to affect sintering and the cyclic life of thermal barrier coatings. Thus, it is important to understand how the spraying process, the in-service thermal cycles, and the silica content can create and alter residual stresses in thermal barrier coatings.

  20. Residual stresses in oxide scale formed on Fe-17Cr stainless steel

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xiao, Ji; Prud'homme, Nathalie; Chen, Zhe; Ji, Vincent

    2014-10-01

    The purpose of this work was to investigate residual stresses in the oxide scale formed on ferritic stainless steel, which is proposed to be used as interconnector in the planar solid oxide fuel cells (SOFCs). The oxidation of the alloy has been conducted at 700 °C, 800 °C and 900 °C for 12-96 h by thermal gravimetric analysis (TGA) system. The oxide surface morphology, cross-section microstructure and the chemical composition of the oxide scale were studied after oxidation, and the residual stresses distribution of the oxide scale were determined at room temperature. It has been found that the oxide scale composed of an inner Cr2O3 layer and an outer Mn1.5Cr1.5O4 spinel layer, the residual stresses in both oxide layers are compressive and the growth stresses plays an important role. The competition of the stresses generation and relaxation during oxidation and cooling affects the residual stresses level. The evolution of residual stresses in the two layers is different according to the oxidation temperature, and the stresses in the two layers are interactional.

  1. Residual waste volume measurement for Hanford underground storage tanks

    SciTech Connect

    Berglin, E.J.

    1996-08-21

    The Acquire Commercial Technology for Retrieval program seeks commercial solutions to measure any waste residual (i.e., heel)left after waste retrieval operations of underground radioactive storage tanks. The technology identified should operate in a range of waste depth thickness of 0 - 6 inches. This report provides a description of the need, requirements, and constraints for the residual waste volume measurement system; describes a logical approach to measuring waste volume; provides a brief review and assessment of available technologies; and outlines a set of integrated tests that will evaluate the performance of candidate technologies.

  2. Effect of Plastic Pre-straining on Residual Stress and Composition Profiles in Low-Temperature Surface-Hardened Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bottoli, Federico; Christiansen, Thomas L.; Winther, Grethe; Somers, Marcel A. J.

    2016-08-01

    The present work deals with the evaluation of the residual stress profiles in expanded austenite by applying grazing incidence X-ray diffraction (GI-XRD) combined with successive sublayer removal. Annealed and deformed ( ɛ eq=0.5) samples of stable stainless steel EN 1.4369 were nitrided or nitrocarburized. The residual stress profiles resulting from the thermochemical low-temperature surface treatment were measured. The results indicate high-residual compressive stresses of several GPa's in the nitrided region, while lower-compressive stresses are produced in the carburized case. Plastic deformation in the steel prior to thermochemical treatment has a hardly measurable influence on the nitrogen-rich zone, while it has a measurable effect on the stresses and depth of the carbon-rich zone.

  3. Assessment of Residual Stresses in 3013 Inner and Outer Containers and Teardrop Samples

    SciTech Connect

    Stroud, Mary Ann; Prime, Michael Bruce; Veirs, Douglas Kirk; Berg, John M.; Clausen, Bjorn; Worl, Laura Ann; DeWald, Adrian T.

    2015-12-08

    This report is an assessment performed by LANL that examines packaging for plutonium-bearing materials and the resilience of its design. This report discusses residual stresses in the 3013 outer, the SRS/Hanford and RFETS/LLNL inner containers, and teardrop samples used in studies to assess the potential for SCC in 3013 containers. Residual tensile stresses in the heat affected zones of the closure welds are of particular concern.

  4. Creation Of The Residual Stress By Influence Of Wear Of Cutting Tool And Their Analysis

    NASA Astrophysics Data System (ADS)

    Kordík, Marek; Čilliková, Mária; Mrazik, Jozef; Martinček, Juraj; Janota, Miroslav; Nicielnik, Henryk

    2015-12-01

    The aim of this paper is analysis of turned bearing ring made of material 14109 (DIN 100Cr6) without heat treatment. For the analysis a mechanical destructive method was chosen. Analysis focused on existence and character of residual stresses after turning operation of bearing ring by tool with different level of wear. The experiment reveals the relationships between residual stress creation and cutting tool wear.

  5. Determination of residual stresses by local annealing to laser speckle pattern interferometry

    SciTech Connect

    Pechersky, M.; Vikram, C.S.

    1997-05-01

    One of the most common methods of experimentally determining residual stresses is Blind Hole Drilling (BHD). A new method which is a thermo-optical analog to BHD is being developed. This method uses local heating to anneal a tiny spot and uses laser speckle interferometry to measure the strain that results. This strain is used to determine the state of stress prior to heating. The peak temperatures are on the order of 200 Celsius so that for most metals, there will be no changes in phase or other material properties except for a slight reduction in yield stress. Preliminary experiments with type 304 stainless steel were performed using resistance heating. The experimental results were in excellent agreement with finite element model predictions of the process. Subsequently, the resistance heating was replaced with laser heating. The heat input (22.5 Watt peak) from a small sealed radio frequency excited Carbon Dioxide laser was used. In order to both control the heating temperature and efficiently couple the infrared photons from the laser into the test specimen, a substance known as Liquid Temperature Indicating Paint was used. Without this substance the laser power would be so large as to make this approach impractical. Furthermore the measurement and control for the heat input would be very complicated. Using this laser heating approach was successful in obtaining similar results to those obtained in other work. Since this laser based technique is a thermo-optical analog to blind hole drilling a simple stress model is required to interpret the measured results. This simple stress model is presented. As in BHD, the simple model must be modified by empirical coefficients to be useful. These empirical coefficients are determined by experimentation and/or numerical analysis

  6. Finite-element analysis of a magnetic sensor to detect permeability changes due to residual stresses in ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Govindaraju, Madhav R.; Katragadda, Gopichand; Wallace, John L.

    1998-03-01

    High strength steel alloys (such as 300 M) used in naval aircraft engine and landing gear components are subjected to cyclic loading in service and found to be highly susceptible to fatigue cracking. There is a critical need for nondestructive evaluation techniques which can detect both cracking and potential crack nucleation sites within these components. An innovative electromagnetic technology called the stress induced-magnetic-anisotropy (SMA) technique has been proposed to be used to detect and evaluate residual stresses. SMA measures residual stresses by sensing the changes in magnetic flux induced in directions parallel and perpendicular to the stress. A novel probe and instrumentation is being developed to simultaneously detect both subsurface residual stresses and stress-induced cracking in coated and uncoated ferromagnetic structures. Finite element analysis has been used to determine the distribution of magnetic flux density and inductance of the probe under varying AC fields. Using ANSYSTM EMAG, the effect of varying frequency of the excitation field, permeability and dimensions of the core have been analyzed. The paper describes how finite element analysis can be used in design and development of the probe and in understanding its behavior.

  7. Influence of Reel Lay on Residual Stress and Ultimate Bearing Capacity of Pipe

    NASA Astrophysics Data System (ADS)

    Liao, Hongqian; Wang, Liquan

    Reel lay is a fast and cost-effective way to install subsea pipelines. During reel lay, pipe's repeated plastic bending produces residual stress, which has influence on pipe's ultimate bearing capacity. First, the deformation of pipe in reel lay is analyzed, and the cyclic bending stages are simplified for convenience of theoretical research. Based on the finite element method (FEM), the Ramberg-Osgood model is adopted to describe material's mechanical property with kinematic hardening rule, and five bending stages are simulated. Further, the influence of material parameters and geometry parameters on pipe's residual stress is studied. Finally, the effect of residual stress on pipe's external pressure bearing capacity and tensile capacity is analyzed. Some important conclusions can be drawn: (1) the influence of diameter-thick ratio on residual stress is small, and material parameters' effect on the residual stress is large; (2) the influence of residual stress on pipe's external pressure bearing capacity is small, but its influence on tensile capacity is large.

  8. Verification of residual stresses in flash-butt-weld rails using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Tawfik, David; Kirstein, Oliver; Mutton, Peter John; Chiu, Wing Kong

    2006-11-01

    Residual stresses developed during flash-butt welding may play a crucial role in prolonging the fatigue life of the welded tracks under service loading conditions. The finished welds typically exhibit high levels of tensile residual stresses in the web region of the weld. Moreover, the surface condition of the web may contain shear drag or other defects resulting from the shearing process which may lead to the initiation and propagation of fatigue cracks in a horizontal split web failure mode under high axle loads. However, a comprehensive understanding into the residual stress behaviour throughout the complex weld geometry remains unclear and is considered necessary to establish the correct localised post-weld heat treatment modifications intended to lower tensile residual stresses. This investigation used the neutron diffraction technique to analyse residual stresses in an AS60 flash-butt-welded rail cooled under normal operating conditions. The findings will ultimately contribute to developing modifications to the flash-butt-welding procedure to lower tensile residual stresses which may then improve rail performance under high axle load.

  9. Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Rong, Xin; Wang, Xinqiang; Chen, Guang; Pan, Jianhai; Wang, Ping; Liu, Huapeng; Xu, Fujun; Tan, Pingheng; Shen, Bo

    2016-05-01

    Residual stress in AlN films grown by molecular beam epitaxy (MBE) has been studied by Raman scattering spectroscopy. A strain-free Raman frequency and a biaxial stress coefficient for E2(high) mode are experimentally determined to be 657.8 ± 0.3 cm-1 and 2.4 ± 0.2 cm-1 / GPa, respectively. By using these parameters, the residual stress of a series of AlN layers grown under different buffer layer conditions has been investigated. The residual compressive stress is found to be obviously decreased by increasing the Al/N beam flux ratio of the buffer layer, indicating the generation of tensile stress due to stronger coalescence of AlN grains, as also confirmed by the in-situ reflection high energy electron diffraction (RHEED) monitoring observation. The stronger coalescence does lead to improved quality of AlN films as expected.

  10. Effects of material non-linearity on the residual stresses in a dendritic silicon crystal ribbon

    NASA Technical Reports Server (NTRS)

    Ray, Sujit K.; Utku, Senol

    1990-01-01

    Thermal stresses developed in a dendritic silicon crystal ribbon have been shown to cause plastic deformation and residual stresses in the ribbon. This paper presents an implementation of a numerical model proposed for thermoelastoplastic behavior of a material. The model has been used to study the effects of plasticity of silicon on the residual stresses. The material properties required to implement this model are all assumed, and the response of the material to the variations in these assumed parameters of the constitutive law and in the finite element mesh is investigated. The steady state growth process is observed to be periodic with nonzero residual stresses. Numerical difficulties are also encountered in the computer solution process, resulting in sharp jumps and large oscillations in the stress responses.

  11. Numerical Analysis of Residual Stress for Copper Base Brazed Stainless Steel Plate-Fin Structure

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoyun; Ling, Xiang

    2010-07-01

    Copper base stainless steel plate-fin structure has been widely used as a heat exchanger in many fields. The nonlinear thermal reaction on the residual stress in brazing process of the plate-fin structure was studied in this paper. A finite element model (FEM) was proposed to simulate the heat transfer and the sequential residual stress generated in the plate-fin and filler metals based on thermal elastic-plastic theory. By the stress distribution in four paths marked in the structure obtained from FEM results, it is found that the maximum residual tensile stress occurs in the brazed joint next to the plate side and a crack would initiate in this region. Also, the first principle stresses of reference nodes were calculated and the conclusion is consistent with the simulation results. These results would provide some constructive instructions in the practical brazing procedure.

  12. INTERFACE RESIDUAL STRESSES IN DENTAL ZIRCONIA USING LAUE MICRO-DIFFRACTION

    SciTech Connect

    Bale, H. A.; Tamura, N.; Coelho, P.G.; Hanan, J. C.

    2009-01-01

    Due to their aesthetic value and high compressive strength, dentists have recently employed ceramics for restoration materials. Among the ceramic materials, zirconia provides high toughness and crack resistant characteristics. Residual stresses develop in processing due to factors including grain anisotropy and thermal coefficient mismatch. In the present study, polychromatic X-ray (Laue) micro-diffraction provided grain orientation and residual stresses on a clinically relevant zirconia model ceramic disk. A 0.5 mm x 0.024 mm region on zirconia was examined on a 500 nm scale for residual stresses using a focused poly-chromatic synchrotron X-ray beam. Large stresses ranging from - to + 1GPa were observed at some grains. On average, the method suggests a relatively small compressive stress at the surface between 47 and 75 MPa depending on direction.

  13. Development of process to control residual stress distribution of butt weld joint of cylinder

    SciTech Connect

    Nayama, Michisuke; Sakamoto, Naruo; Akitomo, Norio; Toyoda, Masao

    1995-12-31

    The authors develop new process to control residual stress distribution of butt weld joint of cylinder. This process, which is heating circularly at both side of butt weld joint and letting cool, can reduce tensile residual stress on inner surface near weld joint by operation from only outside of cylinder and its required temperature rise of this process is lower than ordinary PWHT (Post Weld Heat Treatment) process. This paper describes the procedure and conditions of the process named ``both side heating`` by authors. The appropriate range of process conditions to get sufficient effect is confirmed by FEM stress history analysis and experiment in this paper. Experiments show that the inner residual stress near weld is reduced to compression from over yield stress at as weld condition in austenitic stainless steel pipe to pipe joints, pipe to elbow joints and pipe to valve joint after application of the process.

  14. Sonographic measurement versus mapping for determination of residual ridge width.

    PubMed

    Traxler, M; Ulm, C; Solar, P; Lill, W

    1992-03-01

    To achieve long-term success of dental implants, evaluation of the dimensions of the resorbing alveolar process must be accurate because an implant should be surrounded by at least 1 mm of bone. Estimating the thickness of bone is more difficult because the mucosal contour can mask the actual dimension of the residual ridge. With ultrasound, it is possible to analyze and visualize the diameter of maxillary or mandibular residual ridges. Data obtained from ultrasound measurement of residual ridges were compared with the data from ridge mapping with the Wilson bone caliper and the Spoerlein caliper. The ultrasound measurement produced nearly the same data at all measurement points as ridge mapping. Ultrasound also provides exact information about the location of the mental foramen and the maxillary sinus. By using all three methods the initial stage of implant treatment can be planned. PMID:1507101

  15. Measurement of Residual Flexibility for Substructures Having Prominent Flexible Interfaces

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Bookout, Paul S.

    1994-01-01

    Verification of a dynamic model of a constrained structure requires a modal survey test of the physical structure and subsequent modification of the model to obtain the best agreement possible with test data. Constrained-boundary or fixed-base testing has historically been the most common approach for verifying constrained mathematical models, since the boundary conditions of the test article are designed to match the actual constraints in service. However, there are difficulties involved with fixed-base testing, in some cases making the approach impractical. It is not possible to conduct a truly fixed-base test due to coupling between the test article and the fixture. In addition, it is often difficult to accurately simulate the actual boundary constraints, and the cost of designing and constructing the fixture may be prohibitive. For use when fixed-base testing proves impractical or undesirable, alternate free-boundary test methods have been investigated, including the residual flexibility technique. The residual flexibility approach has been treated analytically in considerable detail and has had limited frequency response measurements for the method. This concern is well-justified for a number of reasons. First, residual flexibilities are very small numbers, typically on the order of 1.0E-6 in/lb for translational diagonal terms, and orders of magnitude smaller for off-diagonal values. This poses difficulty in obtaining accurate and noise-free measurements, especially for points removed from the excitation source. A second difficulty encountered in residual measurements lies in obtaining a clean residual function in the process of subtracting synthesized modal data from a measured response function. Inaccuracies occur since modes are not subtracted exactly, but only to the accuracy of the curve fits for each mode; these errors are compounded with increasing distance from the excitation point. In this paper, the residual flexibility method is applied to a simple

  16. Computational model for residual stresses in a clad plate and clad fracture specimens

    SciTech Connect

    Rybicki, E.F.; Stonesifer, R.B.

    1986-10-01

    This report contains the results from computed residual stresses for three stainless steel clad plate configurations. Each simulates a condition of interest to a study on the effect of surface cracks in the clad layer of reactor pressure vessels. The configurations analyzed were the as-received 118-mm thick clad plate, a 32-mm thick specimen with a full-thickness of cladding weld metal, and a 32-mm thick specimen with a half-thickness of clad layer. The most accurate predictions of the available experimental results were made using the properties of 19Cr-9Ni-Mo-W material. The analytical model assumes that the stresses at the initial condition of 538/sup 0/C for the stress relief anneal are zero. Plastic strains develop during cooling and all subsequent conditions such as machining or temperature changes cause the cladding residual stresses to decrease. In parting-out of specimens from the initial 118-mm thick clad plate, the resulting residual stresses in the clad layer depend upon the sequence of metal removal. If excess base metal is removed first and then somes cladding subsequently removed, the residual stresses in the clad layer are significantly reduced. On the other hand, partial removal of cladding first results in additional plastic deformation in the clad layer and the retention of residual stresses near the material yield strength at the completion of the machining operation.

  17. Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6

    NASA Astrophysics Data System (ADS)

    Salimianrizi, A.; Foroozmehr, E.; Badrossamay, M.; Farrokhpour, H.

    2016-02-01

    The purpose of this study is to investigate the effects of Laser Shock Peening (LSP) on Al 6061-T6. The confined LSP regime using Nd: YAG laser with 1200 mJ of energy per pulse and 8 ns of pulse width were applied. The treated specimens were evaluated by means of surface integrity with optical microscopy, scanning electron microscope, microhardness, surface roughness and induced residual stress using an X-ray diffraction method. Results showed that by the use of LSP, compressive residual stress could effectively be induced on the surface of treated material. It was also revealed that the hardened depth of the material, up to a maximum depth of 1875 μm, could be achieved due to work hardening and grain refinement. In addition, surface roughness measurements showed that the LSP could deteriorate surface quality depending on the LSP parameters. The influences of beam overlap rates, number of laser shots and scanning pattern on microhardness as well as surface roughness are discussed.

  18. Thickness dependence of Young's modulus and residual stress of sputtered aluminum nitride thin films

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Bittner, A.; Schmid, U.

    2014-11-01

    Aluminum nitride thin films are commonly used as active layer in micro-/nanomachined devices due to their piezoelectric properties. In order to predict the performance of advanced device architectures, careful modelling and simulation using techniques such as finite element analysis are of the utmost importance. An accurate knowledge of the corresponding thin film material properties is therefore required. This work focuses on the mechanical properties residual stress and Young's modulus over a wide thickness range from 100 to 1200 nm. The load-deflection technique is used to measure the bending curve of a circumferentially clamped, circular aluminum nitride diaphragm under a uniformly distributed pressure load. The bending curves are analyzed using an advanced analytical approach rather than commonly used models for load-deflection methods, thus resulting in a higher accuracy. It is found that the Young's modulus is nearly independent of film thickness, whereas the tensile residual stress exhibits a maximum at a thickness of about 600 nm. A thorough discussion of possible error sources is presented and approaches to minimize their impact are discussed.

  19. Physically-based constitutive modelling of residual stress development in welding of aluminium alloy 2024

    SciTech Connect

    Preston, R.V.; Shercliff, H.R. . E-mail: hrs@eng.cam.ac.uk; Withers, P.J.; Smith, S.

    2004-10-04

    A finite element model has been developed to predict the evolution of residual stress and distortion which takes into account the history-dependence of the yield stress-temperature response of heat-treatable aluminium alloys during welding. The model was applied to TIG welding of 2024-T3 aluminium alloy, and the residual strain predictions validated using high resolution X-ray synchrotron diffraction. The goal was to capture the influence of the permanent evolution of the microstructure during the thermal cycle with a straightforward numerical procedure, while retaining a sound physical basis. Hardness and resistivity measurements after isothermal hold-and-quench experiments were used to identify salient temperatures for zero, partial and full dissolution of the initial hardening precipitates, and the extent of softening - both immediately after welding, and after natural ageing. Based on these data, a numerical procedure for weld modelling was proposed for tracking the different yield responses during heating and cooling based on the peak temperature reached locally. This history-dependent model was superior to a conventional model in predicting the peak tensile strains, but otherwise the effect of temperature history was weak for 2024-T3. Predictions of the hardness profile immediately after welding compared with the post-weld naturally aged hardness provided insight into the competition between dissolution and coarsening of the precipitates in the heat-affected zone.

  20. Predictive modeling and multi-objective optimization of machining-induced residual stresses: Investigation of machining parameter effects

    NASA Astrophysics Data System (ADS)

    Ulutan, Durul

    2013-01-01

    In the aerospace industry, titanium and nickel-based alloys are frequently used for critical structural components, especially due to their higher strength at both low and high temperatures, and higher wear and chemical degradation resistance. However, because of their unfavorable thermal properties, deformation and friction-induced microstructural changes prevent the end products from having good surface integrity properties. In addition to surface roughness, microhardness changes, and microstructural alterations, the machining-induced residual stress profiles of titanium and nickel-based alloys contribute in the surface integrity of these products. Therefore, it is essential to create a comprehensive method that predicts the residual stress outcomes of machining processes, and understand how machining parameters (cutting speed, uncut chip thickness, depth of cut, etc.) or tool parameters (tool rake angle, cutting edge radius, tool material/coating, etc.) affect the machining-induced residual stresses. Since experiments involve a certain amount of error in measurements, physics-based simulation experiments should also involve an uncertainty in the predicted values, and a rich set of simulation experiments are utilized to create expected value and variance for predictions. As the first part of this research, a method to determine the friction coefficients during machining from practical experiments was introduced. Using these friction coefficients, finite element-based simulation experiments were utilized to determine flow stress characteristics of materials and then to predict the machining-induced forces and residual stresses, and the results were validated using the experimental findings. A sensitivity analysis on the numerical parameters was conducted to understand the effect of changing physical and numerical parameters, increasing the confidence on the selected parameters, and the effect of machining parameters on machining-induced forces and residual

  1. Uncertainties of DS86 and prospects for residual radioactivity measurement.

    PubMed

    Shizuma, K; Hoshi, M; Hasai, H

    1999-12-01

    Residual radioactivity data of 152Eu, 60Co and 36Cl have been accumulated and it has been revealed in the thermal neutron region that a systematic discrepancy exists between the measured data and activation calculation based on the DS86 neutrons in Hiroshima. Recently 63Ni produced in copper samples by the fast neutron reaction 63Cu(n,p)63Ni has been of interest for evaluation of fast neutrons. Reevaluation of atomic-bomb neutrons and prospects based on residual activity measurements have been discussed. PMID:10805002

  2. The Measurement of Stress in Nonvisual Travel.

    ERIC Educational Resources Information Center

    Ponchillia, Paul E.; And Others

    1984-01-01

    Measurement of stress in nonvisual travel was attempted with both an electromyograph and a galvonic skin response unit in four travel situations. Results revealed significantly greater stress response when unexpected contact with objects was made than with expected contacts and street crossings. Instructors' intervention also increased stress.…

  3. Onsager's symmetry relation and the residual parallel Reynolds stress in a magnetized plasma with electrostatic turbulence

    SciTech Connect

    Zuo, Yang Wang, Shaojie

    2014-09-15

    The physics of the residual parallel Reynolds stress in a rotating plasma with electrostatic turbulence is explicitly identified by using the transport formulation of the gyrokinetic turbulence. It is clarified that the residual stress consists of four terms, among which are the cross terms due to the pressure gradient and the temperature gradient and the terms related to the turbulent acceleration impulse and the turbulent heating rate. The last two terms are identified for the first time, and are shown to cause analogous residual term in the heat flux. Meanwhile, the transport matrix reveals diffusion in the phase space. The transport matrix is demonstrated to satisfy the Onsager's symmetry relation.

  4. Residual Stresses in Friction-Stir-Welded 2195 and 7075 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Hatamleh, Omar; Rivero, Iris V.; Maredia, Arif

    2008-12-01

    Surface residual stresses (RSs) were characterized along friction-stir-welded 2195 and 7075 aluminum alloy (AA) plates. The surface measurements were obtained through X-ray diffraction (XRD) at five different locations along the weld. Each location consisted of several regions across the welded plate including the weld nugget, thermomechanically affected zone (TMAZ), heat-affected zone (HAZ), and base material. Measurements revealed that RSs were not uniform along the welded plate, with the highest RSs obtained on the middle of the plate. The RSs across the weld were also asymmetric relative to the weld centerline, with RSs as high as 231 MPa in the TMAZ for the retreating side of the weld.

  5. Iterative Inversion Method for Eddy Current Evaluation of Near-Surface Residual Stress Profile in Surface-Treated Metals

    SciTech Connect

    Abu-Nabah, Bassam A.; Nagy, Peter B.

    2007-03-21

    Because of their frequency-dependent penetration depth, eddy current measurements are capable of mapping the near-surface depth profile of the electric conductivity. This technique can be used to nondestructively characterize the subsurface residual stress distribution in certain types of shot-peened metals, e.g., in nickel-base superalloys. To predict the depth-dependent, but frequency-independent, intrinsic electric conductivity from the frequency-dependent apparent eddy current conductivity (AECC), a highly convergent iterative inversion procedure is presented. The proposed technique exploits three specific features of the subsurface electric conductivity variation caused by near-surface residual stresses in shot-peened metals. First, compressive residual stresses are limited to a shallow surface region of depth much less than typical probe coil diameters. Second, the change in electric conductivity due to residual stresses is always very small, typically less than 1%. Third, the electric conductivity profile is fairly smooth and continuous. The accuracy of the proposed iterative inversion procedure is one order of magnitude better than that of the previously developed simpler method (J. Appl. Phys. 96, 1257 2004)

  6. Inversion Procedure for Eddy Current Profiling of the Near-Surface Residual Stress in Shot-Peened Metals

    SciTech Connect

    Yu, F.; Nagy, P.B.

    2005-04-09

    Because of their frequency-dependent penetration depth, eddy current measurements are capable of mapping the near-surface depth profile of the electrical conductivity. This technique can be used to nondestructively characterize the subsurface residual stress distribution in certain types of shot-peened metals, e.g., in nickel-base superalloys. For quantitative evaluation of the experimental results, analytical and computational techniques are needed to solve the direct and inverse problems, i.e., to predict the frequency-dependent apparent eddy current conductivity from the depth profile of the frequency-independent intrinsic electrical conductivity of the specimen and vice versa. Simple analytical approximations are presented for both the direct and inverse eddy current problems by exploiting two specific features of the electrical conductivity variation caused by near-surface residual stresses in shot-peened metals. First, compressive residual stresses are limited to a shallow surface region of depth much less than typical probe coil diameters. Second, the change in electrical conductivity due to residual stresses is always very small, typically less than 1%. The proposed approximations are verified by numerical comparison to much more complicated numerical solutions.

  7. Modeling of Residual Stresses and Property Distributions in Friction Stir Welds of Aluminum Alloy 6061-T6

    SciTech Connect

    Feng, Zhili; David, Stan A; Wang, Xun-Li; Sklad, Philip S

    2007-01-01

    An integrated thermal-metallurgical-mechanical model is used to analyze and provide insights into the formation of the residual stress and the changes in microstructure and property of Al6061-T6 friction stir welds. The simulations were conducted by means of a three-dimensional finite element model that accounts for the phenomena of frictional heating, weld microstructure and strength changes due to dissolution and reprecipitation of the hardening precipitate particles, and the mechanical workpiece/tool contact during the friction stir welding (FSW) process. The model predictions were confirmed by experimental measurement data from previous studies. For the friction stir welds investigated, it was found that the residual stress distribution is strongly dependent on the welding process parameters and the degree of material softening caused by welding. The recovery of material strength from natural aging does not increase the residual stress in the weld. The failure of friction stir weld under tensile load is controlled by the combination of the reduction in strength and the residual stresses in the heat affected zone (HAZ).

  8. A three-phase cylinder model for residual and transformational stresses in SMA composites

    SciTech Connect

    Berman, J.B.; White, S.R.

    1994-12-31

    SMA composites are a class of smart materials in which shape memory alloy (SMA) actuators are embedded in a polymer matrix composite. The difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. Similarly, the SMA transformations from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/epoxy interfacial debonding. In this study the residual and transformational stresses are investigated for an SMA wire embedded in a graphite/epoxy composite. A three phase micromechanical model is developed. The SMA wire is assumed to behave as a thermoelastic material. Nitinol{trademark} SMA austenitic and martensitic transformations are modeled using linear piecewise interpolation of the experimental data. The interphase is modeled as a thermoelastic polymer. A transversely isotropic thermoelastic composite is used for the outer phase. Stress-free conditions are assumed immediately before cool down from the cure temperature. The effect of SMA and coating properties on residual and transformational stresses are evaluated. A decrease in stresses at the composite/coating interface is predicted through the use of thick, compliant coatings. Reducing the recovery strain and moving the transformation to higher temperatures are also effective in reducing residual stresses.

  9. Effects of Cryogenic Treatment on the Residual Stress and Mechanical Properties of an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Chen, Po; Malone, Tina; Bod, Robert; Torres, Pablo

    2000-01-01

    Investigators at Marshall Space Flight Center (MSFC) are studying the potential benefits of cryogenic treatment for aerospace Aluminum (Al) alloys. This paper reports the effects of cryogenic treatment on residual stress, tensile strength, hardness, fatigue life, and stress corrosion cracking (SCC) resistance.

  10. Effects of Cryogenic Treatment on the Residual Stress and Mechanical Properties of an Aerospace Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    Chen, P.; Malone, T.; Bond, R.; Torres, P.

    2001-01-01

    Investigators at Marshall Space Flight Center (MSFC) are studying the potential benefits of cryogenic treatment for aerospace Aluminum (Al) alloys. This paper reports the effects of cryogenic treatment on residual stress, tensile strength, hardness, fatigue life, and stress corrosion cracking (SCC) resistance.

  11. Analytical extraction of residual stresses and gradients in MEMS structures with application to CMOS-layered materials

    NASA Astrophysics Data System (ADS)

    Fachin, F.; Nikles, S. A.; Dugundji, J.; Wardle, B. L.

    2011-09-01

    Accurate thin-film characterization is a key requirement in the MEMS industry. Residual stresses determine both the final shape and the functionality of released micromachined structures, and should therefore be accurately assessed. To date, a number of techniques to characterize thin-film materials have been developed, from substrate curvature measurement to methods that exploit the post-release deformation of test structures. These techniques have some major drawbacks, from high implementation costs to accuracy limitations due to improper boundary condition modeling. Here, we present a new technique for the characterization of multilayered, composite MEMS structures that uses easily accessible experimental information on the post-release deformation of microbridges only, with no need for multiple beam lengths. The method is based on an analytical solution of the (post-)buckling problem of microbridges, including the effect of residual stresses (both mean and gradient) and non-ideal clamping (boundary flexibility). The method allows simultaneous characterization of both the mean and the gradient residual stress components, as well as the effective boundary condition associated with the fabrication process, yielding approximately one order of magnitude improvement in resolution compared to extant methods using the same type and number of test structures. The higher resolution is largely attributable to proper accounting for boundary flexibility by our method, with the boundary condition for the structures in this work being ~90% as stiff in bending relative to the commonly assumed perfectly clamped condition. Additional enhancement can be achieved with post-release deformation measurements of simple cantilevers in addition to the microbridges. The method is useful as it ensures very low stress extraction uncertainty using a limited number of microbridge test structures, and it is transferrable to package-stress characterization. The analytical approach can also be

  12. Residual Stress Determination in Thermally Sprayed Coatings – A Comparison of Curvature Models and X-Ray Techniques

    SciTech Connect

    T.C. Totemeier; J.K. Wright

    2006-03-01

    Residual stresses were calculated from the curvature of coating-substrate coupons using three different models: a simple two-beam elastic model; the Tsui-Clyne progressive deposition model; and the Tsui-Clyne progressive deposition model with substrate plasticity. The coatings studied were metallic and prepared by high-velocity oxy-fuel (HVOF) thermal spraying. The calculated stresses were compared to those measured on the same coupons using x-ray diffraction (XRD) techniques. Coating surface stresses calculated using the two-beam elastic model disagreed with those measured using XRD for coupons with significant curvature. Trends in residual stresses (with varying coating and substrate thickness, substrate material, and HVOF spray particle velocity) predicted by the elastic and elastic-plastic versions of the Tsui-Clyne progressive deposition model agreed with the trends measured by XRD. The magnitudes of stresses calculated using the Tsui-Clyne model agreed with the XRD measurements for coatings sprayed at low particle velocities but were significantly more compressive for coatings sprayed at higher velocities. Accounting for substrate plasticity in the Tsui-Clyne model improved the agreement with the XRD results, but only slightly.

  13. Effect of electrode force condition on nugget diameter and residual stress in resistance spot welded high-strength steel sheets

    NASA Astrophysics Data System (ADS)

    Iyota, M.; Mikami, Y.; Hashimoto, T.; Taniguchi, K.; Ikeda, R.; Mochizuki, M.

    2012-08-01

    This study examines the effect of the electrode force condition on the nugget diameter and residual stress in spot welded high-strength steel sheets. Numerical simulations of spot welding were performed to examine the nugget diameter and residual stress. The results indicate that adjusting the force profile changes the current density and stress state at the spot welds. Therefore, choosing an appropriate force profile extends the nugget diameter and reduces the residual stress.

  14. Properties of the Residual Stress of the Temporally Filtered Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Pruett, C. D.; Gatski, T. B.; Grosch, C. E.; Thacker, W. D.

    2002-01-01

    The development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, is of current interest. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. Causal time-domain filters, parameterized by a temporal filter width 0 less than Delta less than infinity, are considered. For several reasons, the differential forms of such filters are preferred to their corresponding integral forms; among these, storage requirements for differential forms are typically much less than for integral forms and, for some filters, are independent of Delta. The behavior of the residual stress in the limits of both vanishing and in infinite filter widths is examined. It is shown analytically that, in the limit Delta to 0, the residual stress vanishes, in which case the Navier-Stokes equations are recovered from the temporally filtered equations. Alternately, in the limit Delta to infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits of filter width is further validated by numerical simulations of the temporally filtered forced, viscous Burger's equation. Finally, finite filter widths are also considered, and a priori analyses of temporal similarity and temporal approximate deconvolution models of the residual stress are conducted.

  15. Raman stress sensor for localized stress measurements in composite laminates

    NASA Astrophysics Data System (ADS)

    Arjyal, Bish; Galiotis, Costas

    1995-09-01

    A new stress/strain sensor for localized measurements in polymer based composites, has been developed and tested. The stress/strain dependent property is the frequency of the atomic vibrations of reinforcing fibers which can be proved with laser Raman spectroscopy. Measurements can be conducted in reinforcing fibers near the surface of laminates. For measurements in the bulk of composites, the exciting laser light has to be transported to the reinforcing fibers via an embedded fiber optic cable. The backscattered light is transmitted through the same fiber optic and is sent to the Raman spectrometer for analysis. The effect of the direction of the fiber optic cable with respect to the axis of the reinforcing fibers is examined. Finally, the relationships between the local fiber stress or strain obtained from the Raman sensor and the far field stress or strain measured conventionally, are established.

  16. Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears

    SciTech Connect

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2011-04-15

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and

  17. Distortion and Residual Stress Control in Integrally Stiffened Structure Produced by Direct Metal Deposition

    NASA Technical Reports Server (NTRS)

    Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.

    2007-01-01

    2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.

  18. Study on residual stresses in ultrasonic torsional vibration assisted micro-milling

    NASA Astrophysics Data System (ADS)

    Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing

    2010-10-01

    It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.

  19. An improved algorithm for McDowell's analytical model of residual stress

    NASA Astrophysics Data System (ADS)

    Qi, Zhaoxu; Li, Bin; Xiong, Liangshan

    2014-06-01

    The analytical model for two-dimensional elastoplastic rolling/sliding contact proposed by McDowell is an important tool for predicting residual stress in rolling/sliding processes. In application of the model, a problem of low predicting precision near the surface layer of the component is found. According to the volumeconstancy of plastic deformation, an improved algorithm for McDowell's model is proposed in order to improve its predicting accuracy of the surface residual stress. In the algorithm, a relationship between three normal stresses perpendicular to each other at any point within the component is derived, and the relationship is applied to McDowell's model. Meanwhile, an unnecessary hypothesis proposed by McDowell can be eliminated to make the model more reasonable. The simulation results show that the surface residual stress predicted by modified method is much closer to the FEM results than the results predicted by McDowell's model under the same simulation conditions.

  20. A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress

    SciTech Connect

    Ko, S. H. Jhang, Hogun; Singh, R.

    2015-08-15

    We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions is shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.

  1. An Empirical Case for Residual Measures of Status Inconsistency Effects.

    ERIC Educational Resources Information Center

    Brod, Rodney L.; Lutz, Gene M.

    Properly manipulated residuals resulting from "status predicting status" regressions constitute a precise and unique measurement of status inconsistency without the definitional and methodological problems and limitations of simple and simultaneous cross-classification techniques associated with the typical "dummy variable regression" approach.…

  2. PESTICIDE SURFACE RESIDUE MEASUREMENTS BY A PRESS SAMPLER

    EPA Science Inventory

    Pesticides on household surfaces are a source of exposure to children. Accurate measurements of residues on surfaces are needed to determine amounts available for transfer to foods and other objects handled or eaten by a child. Wiping the surface with a solvent has been the acc...

  3. Long-Term Stability of Residual Stress Improvement by Water Jet Peening Considering Working Processes.

    PubMed

    Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2013-06-01

    To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was

  4. Dependence of thermal residual stress on temperature in a SiC particle-reinforced 6061Al alloy

    NASA Astrophysics Data System (ADS)

    Li, H.; Wang, D. Z.; Li, J. B.; Wang, Z. G.; Chen, C. R.

    1998-07-01

    The thermal stresses (TS) in the matrix of a SiC p /6061Al composite during thermal cycling were measured by X-ray diffraction. Also, the TS during thermal cycling and residual stress distribution (RSD) at room temperature in the two phases of composite were calculated by finite element modeling (FEM). The measured and calculated results indicated that the closed stress-temperature loop was formed during thermal cycling. The stress state in the matrix changed from tension to compression during heating and from compression to tension during cooling. Plastic deformation took place in the matrix of the composite during thermal cycling. The general change trend of TS with temperature during thermal cycling was in agreement between the experiment and calculation.

  5. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    NASA Astrophysics Data System (ADS)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-07-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  6. Residual Stress in Brazing of Submicron Al2O3 to WC-Co

    NASA Astrophysics Data System (ADS)

    Grunder, T.; Piquerez, A.; Bach, M.; Mille, P.

    2016-06-01

    This study evaluated the residual stresses induced by brazing and grinding submicron Al2O3, using different methods. Energy dispersive x-ray spectrometry analysis (EDX) of 72Ag-Cu filler and filler/WC-Co interface showed evidence of atomic diffusion and possible formation of titanium oxide layers between the joint and the bonding materials. An analytical model supported by the finite element method (FEM) based on strain determination due to the difference in variation of thermal expansion was used to assess the stress distribution at the coupling interface and in bulk materials. The model took into account the evolution of the Young's modulus and of the thermal expansion with temperature. The model could be used to follow strain and stress evolutions of the bonded materials during the cooling cycle. The maximum stress rose above -300 MPa at the center of the 100 × 100 × 3 mm ceramic plates. The residual stresses on the external surface of ceramic were investigated by x-ray diffraction (XRD) and indentation fracture method (IFM). After brazing and grinding the plate, the principal stresses were 128.1 and 94.9 MPa, and the shear stress was -20.1 MPa. Microscopic examination revealed grain pull-out promoted by the global residual stresses induced by the brazing and grinding processes. The surface stresses evaluated by the different methods were reasonably correlated.

  7. Infrared Spectroscopy of Explosives Residues: Measurement Techniques and Spectral Analysis

    SciTech Connect

    Phillips, Mark C.; Bernacki, Bruce E.

    2015-03-11

    Infrared laser spectroscopy of explosives is a promising technique for standoff and non-contact detection applications. However, the interpretation of spectra obtained in typical standoff measurement configurations presents numerous challenges. Understanding the variability in observed spectra from explosives residues and particles is crucial for design and implementation of detection algorithms with high detection confidence and low false alarm probability. We discuss a series of infrared spectroscopic techniques applied toward measuring and interpreting the reflectance spectra obtained from explosives particles and residues. These techniques utilize the high spectral radiance, broad tuning range, rapid wavelength tuning, high scan reproducibility, and low noise of an external cavity quantum cascade laser (ECQCL) system developed at Pacific Northwest National Laboratory. The ECQCL source permits measurements in configurations which would be either impractical or overly time-consuming with broadband, incoherent infrared sources, and enables a combination of rapid measurement speed and high detection sensitivity. The spectroscopic methods employed include standoff hyperspectral reflectance imaging, quantitative measurements of diffuse reflectance spectra, reflection-absorption infrared spectroscopy, microscopic imaging and spectroscopy, and nano-scale imaging and spectroscopy. Measurements of explosives particles and residues reveal important factors affecting observed reflectance spectra, including measurement geometry, substrate on which the explosives are deposited, and morphological effects such as particle shape, size, orientation, and crystal structure.

  8. Forging And Milling Contribution On Residual Stresses For A Textured Biphasic Titanium Alloy

    SciTech Connect

    Deleuze, C.; Fabre, A.; Barrallier, L.; Molinas, O.

    2011-01-17

    Ti-10V-2Fe-3Al is a biphasic titanium alloy ({alpha}+{beta}) used in aeronautical applications for its mechanical properties, such as its yield strength of 1200 MPa and it weighs 40% less than steel. This alloy is particularly useful for vital parts with complex geometry, because of its high forging capability. In order to predict the capability for fatigue lifetime, the designers need to know the residual stresses. X-Ray diffraction is the main experimental technique used to determine residual stresses on the surface. In this case, stress levels are primarily influenced by the complex forging and milling process. On this alloy in particular, it may be difficult to characterize stress due to modification of the microstructure close to the surface. Results obtained by x-ray analysis depend on the correct definition of the shape of the diffraction peaks. The more precisely defined the position of the peak, the more accurately the stresses are evaluated. This paper presents a method to detect if residual stresses can be characterized by x-ray diffraction. The characterization of hardness seems to be a relevant technique to quickly analyze the capability of x-ray diffraction to determine residual stresses.

  9. Atomistic modelling of residual stress at UO2 surfaces.

    PubMed

    Arayro, Jack; Tréglia, Guy; Ribeiro, Fabienne

    2016-01-13

    Modelling oxide surface behaviour is of both technological and fundamental interest. In particular, in the case of the UO2 system, which is of major importance in the nuclear industry, it is essential to account for the link between microstructure and macroscopic mechanical properties. Indeed micromechanical models at the mesoscale need to be supplied by the energetic and stress data calculated at the nanoscale. In this framework, we present a theoretical study, coupling an analytical model and thermostatistical simulation to investigate the modifications induced by the presence of a surface regarding atomic relaxation and energetic and stress profiles. In particular, we show that the surface effective thickness as well as the stress profile, which are required by micromechanical approaches, are strongly anisotropic. PMID:26648246

  10. On the Feasibility of Eddy Current Characterization of the Near-Surface Residual Stress Distribution in Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Blodgett, Mark P.; Nagy, Peter B.

    2004-02-01

    In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small (˜1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique "window of opportunity" for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation.

  11. On the Feasibility of Eddy Current Characterization of the Near-Surface Residual Stress Distribution in Nickel-Base Superalloys

    SciTech Connect

    Blodgett, Mark P.; Nagy, Peter B.

    2004-02-26

    In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small ({approx}1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique 'window of opportunity' for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation.

  12. Experimental Measurement of In Situ Stress

    NASA Astrophysics Data System (ADS)

    Tibbo, Maria; Milkereit, Bernd; Nasseri, Farzine; Schmitt, Douglas; Young, Paul

    2016-04-01

    The World Stress Map data is determined by stress indicators including earthquake focal mechanisms, in situ measurement in mining, oil and gas boreholes as well as the borehole cores, and geologic data. Unfortunately, these measurements are not only infrequent but sometimes infeasible, and do not provide nearly enough data points with high accuracy to correctly infer stress fields in deep mines around the world. Improvements in stress measurements of Earth's crust is fundamental to several industries such as oil and gas, mining, nuclear waste management, and enhanced geothermal systems. Quantifying the state of stress and the geophysical properties of different rock types is a major complication in geophysical monitoring of deep mines. Most stress measurement techniques involve either the boreholes or their cores, however these measurements usually only give stress along one axis, not the complete stress tensor. The goal of this project is to investigate a new method of acquiring a complete stress tensor of the in situ stress in the Earth's crust. This project is part of a comprehensive, exploration geophysical study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, and focuses on two boreholes located in this mine. These boreholes are approximately 400 m long with NQ diameters and are located at depths of about 1300 - 1600 m and 1700 - 2000 m. Two borehole logging surveys were performed on both boreholes, October 2013 and July 2015, in order to perform a time-lapse analysis of the geophysical changes in the mine. These multi-parameter surveys include caliper, full waveform sonic, televiewer, chargeability (IP), and resistivity. Laboratory experiments have been performed on borehole core samples of varying geologies from each borehole. These experiments have measured the geophysical properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. The apparatus' used for this project are geophysical imaging cells capable

  13. Homework Stress: Construct Validation of a Measure

    ERIC Educational Resources Information Center

    Katz, Idit; Buzukashvili, Tamara; Feingold, Liat

    2012-01-01

    This article presents 2 studies aimed at validating a measure of stress experienced by children and parents around the issue of homework, applying Benson's program of validation (Benson, 1998). Study 1 provides external validity of the measure by supporting hypothesized relations between stress around homework and students' and parents' positive…

  14. Measurement of probability distributions for internal stresses in dislocated crystals

    SciTech Connect

    Wilkinson, Angus J.; Tarleton, Edmund; Vilalta-Clemente, Arantxa; Collins, David M.; Jiang, Jun; Britton, T. Benjamin

    2014-11-03

    Here, we analyse residual stress distributions obtained from various crystal systems using high resolution electron backscatter diffraction (EBSD) measurements. Histograms showing stress probability distributions exhibit tails extending to very high stress levels. We demonstrate that these extreme stress values are consistent with the functional form that should be expected for dislocated crystals. Analysis initially developed by Groma and co-workers for X-ray line profile analysis and based on the so-called “restricted second moment of the probability distribution” can be used to estimate the total dislocation density. The generality of the results are illustrated by application to three quite different systems, namely, face centred cubic Cu deformed in uniaxial tension, a body centred cubic steel deformed to larger strain by cold rolling, and hexagonal InAlN layers grown on misfitting sapphire and silicon carbide substrates.

  15. Measurement and computation of thermal stresses in injection molding of amorphous and crystalline polymers

    NASA Astrophysics Data System (ADS)

    Farhoudi, Yalda

    1998-12-01

    An integrated experimental and theoretical study of the residual thermal stresses has been carried out. The final stress profiles along the thickness were measured in an amorphous and a semi-crystalline injection molded polymer using the layer removal technique. The two materials exhibited drastically distinct residual profiles. Furthermore, processing parameters such as melt and coolant temperatures, pressure history, and mold thickness were found to modify the profiles. In order to elucidate the findings, two models were derived. The two-dimensional free mold shrinkage model was developed to provide a rapid estimation of thermal stresses and the main features of their profile. A more complex model was developed by integrating the stress analysis with the simulation of the complete injection molding cycle by McKam. This model accounts for the fountain flow effect, the crystallization, and the PVT behavior of the material. With the help of the model predictions, explanations were provided for the occurrence of various regions in the residual stress profiles. Transitions or reversal of the regions under variable conditions or material properties were observed to be mainly determined by the ratio of the thermal to the pressure effects. Using these concepts, practical conclusions were drawn for controlling the residual stresses. As an alternative for optimization of injection molding with respect to residual stresses, inverse methods were developed to calculate the pressure history or the initial temperature distribution required to produce a prescribed residual stress distribution. These methods were tested using direct solutions with added errors and experimental stress data.

  16. Residual stress induced wetting variation on electric brush-plated Cu film

    NASA Astrophysics Data System (ADS)

    Meng, Ke-Ke; Jiang, Yue; Jiang, Zhong-Hao; Lian, Jian-She; Jiang, Qing

    2014-03-01

    Nanocrystalline Cu film with a mirror surface finishing is prepared by the electric brush-plating technique. The as-prepared Cu film exhibits a superhydrophilic behavior with an apparent water contact angle smaller than 10°. A subsequent increase in the water contact angle and a final wetting transition from inherent hydrophilicity with water contact angle smaller than 90° to apparent hydrophobicity with water contact angle larger than 90° are observed when the Cu film is subjected to natural aging. Analysis based on the measurement of hardness with nanoindentation and the theory of the bond-order-length-strength correlation reveals that this wetting variation on the Cu film is attributed to the relaxation of residual stress generated during brush-plating deposition and a surface hydrophobization role associated with the broken bond polarization induced by surface nanostructure.

  17. REVIEW ARTICLE: Determination of residual stresses in materials and industrial components by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Albertini, Gianni; Bruno, Giovanni; Carradò, Adele; Fiori, Fabrizio; Rogante, Massimo; Rustichelli, Franco

    1999-03-01

    We present a review of the determination of residual stresses in materials and components of industrial interest by using the non-destructive technique of neutron diffraction. The fundamental aspects are discussed, together with a brief description of the experimental facilities. Several experimental results are then reported, particularly concerning applications to materials and components for power plants (CrMo steel, AISI304 stainless steel and 2.25Cr1Mo ferritic steel), aerospace and automotive technology (Al alloys, metal matrix composites, nickel superalloy gas-turbine components) and fusion-reactor technology (AISI316L for the first wall). A few thermomechanical treatments are considered, such as welding, cold-expanded holes, thermoelastic coupling and thermal and mechanical fatigue. Moreover, a few applications to general industrial problems are shown, namely brazed ceramic-steel components, coatings and fatigue-cracked samples. In some cases, experimental results are compared with numerical models or results from x-ray diffraction measurements.

  18. Characterisation of Residual Stresses Generated by Laser Shock Peening by Neutron and Synchrotron Diffraction

    NASA Astrophysics Data System (ADS)

    Evans, Alexander Dominic; King, Andrew; Pirling, Thilo; Peyre, Patrice; Withers, Phillip John

    The fatigue behaviour of engineering alloys can be significantly improved through the application of mechanical surface treatments. These processes generate significant compressive residual stresses near surface by inhomogeneous plastic deformation. In the case of mechanical surface treatments such as laser shock peening, certain burnishing and rolling techniques and ultrasonic impact treatment (UIT), the compressive residual stress layer can extend to a depth of the order of millimeters, with balancing tensile stresses located deeper. Techniques to characterise the residual stresses generated by such mechanical surface treatments non-destructively are mainly limited to diffraction methods using penetrating neutron and synchrotron X-ray radiations. The application of these radiation sources is illustrated here by the characterisation of residual strain distributions in a two types of specimens treated with laser shock peening (LSP). Analyses of diffraction peak broadening provide qualitative information concerning the depth to which the plastic deformation of the treatments extends. Two case studies of laser shock peening of titanium and aluminium alloys is presented to demonstrate the capabilities of neutron and synchrotron diffraction techniques in the field of residual stress characterisation of surface engineered material non-destructively.

  19. A Method to Estimate Residual Stress in Austenitic Stainless Steel Using a Microindentation Test

    NASA Astrophysics Data System (ADS)

    Yonezu, Akio; Kusano, Ryota; Hiyoshi, Tomohiro; Chen, Xi

    2015-01-01

    This study proposed a method to evaluate the residual stress and plastic strain of an austenitic stainless steel using a microindentation test. The austenitic stainless steel SUS316L obeys the Ludwick's work hardening law and is subjected to in-plane equi-biaxial residual stress. A numerical experiment with the finite element method (FEM) was carried out to simulate an indentation test for SUS316L having various plastic strains (pre-strains) and residual stresses. It was found that the indentation force increased with increasing pre-strain as well as with compressive residual stress. Next, a parametric FEM study by changing both residual stress σres and pre-strain ɛpre was conducted to deduce the relationship between the indentation curve and the parameters ɛpre and σres (which were employed for the FEM study). This relationship can be expressed by a dimensionless function with simple formulae. Thus, the present method can estimate both ɛpre and σres, when a single indentation test is applied to SUS316L.

  20. Nonlinear elastic properties of materials with residual stresses

    NASA Astrophysics Data System (ADS)

    Korobov, A.; Romanov, A.; Morozov, A.

    2012-12-01

    The non-linear elastic properties of rock samples and metal samples of microcrystalline aluminium alloy were studied using NRUS method. The residual shear strains were initially introduced in metal samples. In these samples the effect of slow dynamics was also investigated. Based on the analysis of experimental results it was concluded: the effect of slow dynamics, observed in the experiment, can not be explained solely by thermoelastic effects, but it is associated, in our opinion, with the slow relaxation of the internal structure of the samples.

  1. Determination of the residual stress in a centrifuge bowl by neutron diffraction

    NASA Astrophysics Data System (ADS)

    Albertini, G.; Giuliani, A.; Lin Peng, R.; Manescu, A.; Ponzetti, A.

    An experimental study of the stress field in centrifuges for food processing and for agricultural applications was undertaken. The model, the dimensions and the material of the sample are those of the most recent line of production of the Nuova M.A.I.P. company. The rotor is also one of the largest rotors produced by that firm. The residual strains and stresses were determined by using neutron-diffraction techniques before centrifugation and after centrifugation, to evaluate the evolution of stress induced by centrifuging. The upper part of the rotating bowl is investigated, where the highest stress field during centrifugation is theoretically forecast to occur. A data elaboration aiming at avoiding systematic errors leads to the conclusion that no appreciable residual stress is induced by centrifugation.

  2. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  3. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    SciTech Connect

    Saigal, A.; Leisk, G.G.; Hubbard, C.R.; Misture, S.T.; Wang, X.L.

    1996-04-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  4. Ultrasonic measurement of stress in railroad wheels and in long lengths of welded rail

    NASA Technical Reports Server (NTRS)

    Clotfelter, W. N.; Risch, E. R.

    1974-01-01

    The failure of high speed emergency braking is discussed for railroad wheels and track. It is shown that high compressive residual stresses exist in the rims of new wheels which generate excessive heat, reducing the stress levels. Thermal stresses that build up in continuous lengths of welded track are reported and nondestructive methods of measuring stresses in thick steel are presented for identification, replacement, or adjustment before hazardous failures occur.

  5. Elastoplastic analysis of process induced residual stresses in thermally sprayed coatings

    SciTech Connect

    Chen Yongxiong; Liang Xiubing; Liu Yan; Xu Binshi

    2010-07-15

    The residual stresses induced from thermal spraying process have been extensively investigated in previous studies. However, most of such works were focused on the elastic deformation range. In this paper, an elastoplastic model for predicting the residual stresses in thermally sprayed coatings was developed, in which two main contributions were considered, namely the deposition induced stress and that due to differential thermal contraction between the substrate and coating during cooling. The deposition induced stress was analyzed based on the assumption that the coating is formed layer-by-layer, and then a misfit strain is accommodated within the multilayer structure after the addition of each layer (plastic deformation is induced consequently). From a knowledge of specimen dimensions, processing temperatures, and material properties, residual stress distributions within the structure can be determined by implementing the model with a simple computer program. A case study for the plasma sprayed NiCoCrAlY on Inconel 718 system was performed finally. Besides some similar phenomena observed from the present study as compared with previous elastic model reported in literature, the elastoplastic model also provides some interesting features for prediction of the residual stresses.

  6. Analyses of Failure Mechanisms and Residual Stresses in Graphite/Polyimide Composites Subjected to Shear Dominated Biaxial Loads

    NASA Technical Reports Server (NTRS)

    Kumosa, M.; Predecki, P. K.; Armentrout, D.; Benedikt, B.; Rupnowski, P.; Gentz, M.; Kumosa, L.; Sutter, J. K.

    2002-01-01

    This research contributes to the understanding of macro- and micro-failure mechanisms in woven fabric polyimide matrix composites based on medium and high modulus graphite fibers tested under biaxial, shear dominated stress conditions over a temperature range of -50 C to 315 C. The goal of this research is also to provide a testing methodology for determining residual stress distributions in unidirectional, cross/ply and fabric graphite/polyimide composites using the concept of embedded metallic inclusions and X-ray diffraction (XRD) measurements.

  7. The Effect of Weld Residual Stress on Life of Used Nuclear Fuel Dry Storage Canisters

    SciTech Connect

    Ronald G. Ballinger; Sara E. Ferry; Bradley P. Black; Sebastien P. Teysseyre

    2013-08-01

    With the elimination of Yucca Mountain as the long-term storage facility for spent nuclear fuel in the United States, a number of other storage options are being explored. Currently, used fuel is stored in dry-storage cask systems constructed of steel and concrete. It is likely that used fuel will continue to be stored at existing open-air storage sites for up to 100 years. This raises the possibility that the storage casks will be exposed to a salt-containing environment for the duration of their time in interim storage. Austenitic stainless steels, which are used to construct the canisters, are susceptible to stress corrosion cracking (SCC) in chloride-containing environments if a continuous aqueous film can be maintained on the surface and the material is under stress. Because steel sensitization in the canister welds is typically avoided by avoiding post-weld heat treatments, high residual stresses are present in the welds. While the environment history will play a key role in establishing the chemical conditions for cracking, weld residual stresses will have a strong influence on both crack initiation and propagation. It is often assumed for modeling purposes that weld residual stresses are tensile, high and constant through the weld. However, due to the strong dependence of crack growth rate on stress, this assumption may be overly conservative. In particular, the residual stresses become negative (compressive) at certain points in the weld. The ultimate goal of this research project is to develop a probabilistic model with quantified uncertainties for SCC failure in the dry storage casks. In this paper, the results of a study of the residual stresses, and their postulated effects on SCC behavior, in actual canister welds are presented. Progress on the development of the model is reported.

  8. Criterion validation of a stress measure: the Stress Overload Scale.

    PubMed

    Amirkhan, James H; Urizar, Guido G; Clark, Sarah

    2015-09-01

    Validating stress scales poses problems beyond those of other psychological measures. Here, 3 studies were conducted to address those problems and assess the criterion validity of scores from a new theory-derived measure, the Stress Overload Scale (SOS; Amirkhan, 2012). In Study 1, the SOS was tested for its ability to predict postsemester illness in a sample of college students (n = 127). Even with precautions to minimize criterion contamination, scores were found to predict health problems in the month following a final exam on all of 5 different criteria. In Study 2, a community sample (n = 231) was used to test the SOS' ability to differentiate people in stressful circumstances from those in more relaxed contexts. SOS scores demonstrated excellent sensitivity (96%) and specificity (100%) in this general population application. In Study 3, the SOS was tested for its ability to differentiate salivary cortisol responses to a laboratory stressor in a group of pregnant women (n = 40). High scores were found to be associated with a blunted cortisol response, which is indicative of HPA-axis overload and typical of persons suffering chronic stress and stress-related pathology. Across all 3 studies, despite variations in the stressor, criterion, population, and methods, SOS scores emerged as valid indicators of stress. However, each study also introduced new problems that beg additional corrective steps in future stress-scale validity tests. These strategies, and the SOS' utility as a research and diagnostic tool in varied applications and populations, are discussed. PMID:25642927

  9. Characterization of residual stresses in heat treated Ti-6Al-4V forgings by machining induced distortion

    NASA Astrophysics Data System (ADS)

    Regener, B.; Krempaszky, C.; Werner, E.

    2010-06-01

    To provide a solid base for improved material exploitation in dimensioning calculations it is necessary to determine the stress state in the part prior to service loading. In order to achieve higher material strength at elevated temperatures, the surface temperature gradient with respect to time has to be sufficiently high during heat treatment. This results in non-negligable residual stresses that can reduce the allowable load level upon which yielding occurs. For titanium alloys there are two common heat treatments, namely solution treatment and mill annealing. The latter one is the method of choice within the presented project. Mill annealing is utilized in order to significantly reduce the residual stresses in the parts without loosing much of the improved strength at elevated temperatures. Quantification of residual stresses is done by solving an inverse problem. From the measurement of distortion, induced by dividing the investigated part, the residual stress state can be calculated via analytical modeling or correlation with finite element models. To assure a minimum perturbation of the residual stress state during specimen production, dividing of the part is accomplished by electric discharge machining. The parts of interest are v-shaped prisms with a length of approximatly 450 mm and a thickness in the cross sectional area from about 20 mm to 45 mm. Figure 1(a) shows the forged part and 1(b) the dimensions of the cross section in millimeters as well as the material properties considered in the finite element model. The heat exchange between the part and the environment is modelled as heat transfer by convection superimposed with heat radiation. Since the parts are exposed to air during forging and heat treatment, the surface develops a strongly adhesive oxide layer, the so called alpha-case. After forging the parts are cooled in air and heat treated at a temperature of 720° C for a duration of 120 min. Subsequent air cooling and removing the alpha-case by

  10. Bi-Metallic Composite Structures With Designed Internal Residual Stress Field

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.

    2014-01-01

    Shape memory alloys (SMA) have a unique ability to recover small amounts of plastic strain through a temperature induced phase change. For these materials, mechanical displacement can be accomplished by heating the structure to induce a phase change, through which some of the plastic strain previously introduced to the structure can be reversed. This paper introduces a concept whereby an SMA phase is incorporated into a conventional alloy matrix in a co-continuous reticulated arrangement forming a bi-metallic composite structure. Through memory activation of the mechanically constrained SMA phase, a controlled residual stress field is developed in the interior of the structure. The presented experimental data show that the memory activation of the SMA composite component significantly changes the residual stress distribution in the overall structure. Designing the structural arrangement of the two phases to produce a controlled residual stress field could be used to create structures that have much improved durability and damage tolerance properties.

  11. Near-Surface Residual Stress Assessment in Inhomogeneous Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Yu, F.; Nagy, P. B.

    2006-03-01

    Recently, it has been shown that shot-peened nickel-base superalloys exhibit an approximately 1% increase in apparent eddy current conductivity at high inspection frequencies, which can be exploited for nondestructive subsurface residual stress assessment. Unfortunately, microstructural inhomogeneity in certain as-forged and precipitation hardened nickel-base superalloys, like Waspaloy, can lead to significantly larger electrical conductivity variations of as much as 4-6%. This intrinsic conductivity variation adversely affects the accuracy of residual stress evaluation in shot-peened and subsequently thermal-relaxed specimens, but does not completely prevent it. Experimental results are presented to demonstrate that the conductivity variation resulting from volumetric inhomogeneities in as-forged engine alloys do not display significant frequency dependence. This characteristic independence of frequency can be exploited to distinguish these inhomogeneities from near-surface residual stress and cold work effects caused by surface treatment, which, in contrast, are strongly frequency-dependent.

  12. Near-Surface Residual Stress Assessment in Inhomogeneous Nickel-Base Superalloys

    SciTech Connect

    Yu, F.; Nagy, P. B.

    2006-03-06

    Recently, it has been shown that shot-peened nickel-base superalloys exhibit an approximately 1% increase in apparent eddy current conductivity at high inspection frequencies, which can be exploited for nondestructive subsurface residual stress assessment. Unfortunately, microstructural inhomogeneity in certain as-forged and precipitation hardened nickel-base superalloys, like Waspaloy, can lead to significantly larger electrical conductivity variations of as much as 4-6%. This intrinsic conductivity variation adversely affects the accuracy of residual stress evaluation in shot-peened and subsequently thermal-relaxed specimens, but does not completely prevent it. Experimental results are presented to demonstrate that the conductivity variation resulting from volumetric inhomogeneities in as-forged engine alloys do not display significant frequency dependence. This characteristic independence of frequency can be exploited to distinguish these inhomogeneities from near-surface residual stress and cold work effects caused by surface treatment, which, in contrast, are strongly frequency-dependent.

  13. Evaluation on double-wall-tube residual stress distribution of sodium-heated steam generator by neutron diffraction and numerical analysis

    SciTech Connect

    Kisohara, N.; Suzuki, H.; Akita, K.; Kasahara, N.

    2012-07-01

    A double-wall-tube is nominated for the steam generator heat transfer tube of future sodium fast reactors (SFRs) in Japan, to decrease the possibility of sodium/water reaction. The double-wall-tube consists of an inner tube and an outer tube, and they are mechanically contacted to keep the heat transfer of the interface between the inner and outer tubes by their residual stress. During long term SG operation, the contact stress at the interface gradually falls down due to stress relaxation. This phenomenon might increase the thermal resistance of the interface and degrade the tube heat transfer performance. The contact stress relaxation can be predicted by numerical analysis, and the analysis requires the data of the initial residual stress distributions in the tubes. However, unclear initial residual stress distributions prevent precious relaxation evaluation. In order to resolve this issue, a neutron diffraction method was employed to reveal the tri-axial (radius, hoop and longitudinal) initial residual stress distributions in the double-wall-tube. Strain gauges also were used to evaluate the contact stress. The measurement results were analyzed using a JAEA's structural computer code to determine the initial residual stress distributions. Based on the stress distributions, the structural computer code has predicted the transition of the relaxation and the decrease of the contact stress. The radial and longitudinal temperature distributions in the tubes were input to the structural analysis model. Since the radial thermal expansion difference between the inner (colder) and outer (hotter) tube reduces the contact stress and the tube inside steam pressure contributes to increasing it, the analytical model also took these effects into consideration. It has been conduced that the inner and outer tubes are contacted with sufficient stresses during the plant life time, and that effective heat transfer degradation dose not occur in the double-wall-tube SG. (authors)

  14. Cauchy's stress theorem for stresses represented by measures

    NASA Astrophysics Data System (ADS)

    Šilhavý, M.

    2008-05-01

    A version of Cauchy’s stress theorem is given in which the stress describing the system of forces in a continuous body is represented by a tensor valued measure with weak divergence a vector valued measure. The system of forces is formalized in the notion of an unbounded Cauchy flux generalizing the bounded Cauchy flux by Gurtin and Martins (Arch Ration Mech Anal 60:305-324, 1976). The main result of the paper says that unbounded Cauchy fluxes are in one-to-one correspondence with tensor valued measures with weak divergence a vector valued measure. Unavoidably, the force transmitted by a surface generally cannot be defined for all surfaces but only for almost every translation of the surface. Also conditions are given guaranteeing that the transmitted force is represented by a measure. These results are proved by using a new homotopy formula for tensor valued measure with weak divergence a vector valued measure.

  15. Residual Stress Analysis of Overspeeded Disk with Central Hole by X-ray Diffraction

    NASA Technical Reports Server (NTRS)

    Good, James N

    1948-01-01

    An X-ray - diffraction analysis of residual surface stresses after plastic strain was introduced in a parallel-sided 3S-O aluminum disk with a central hole by two types of centrifugal overspeed is reported. Both tangential and radial stresses were generally tensile with large local variations near the hole where surface stresses may have been partly superficial. These stresses were both tensile and compressive dependent on the distance from the disk center when mass compression was effected near the hole.

  16. Residual stresses and phase transformations in Ytterbium silicate environmental barrier coatings

    NASA Astrophysics Data System (ADS)

    Stolzenburg, Fabian

    Due to their high melting temperature, low density, and good thermomechanical stability, silicon-based ceramics (SiC, Si3N4) are some of the most promising materials systems for high temperature structural applications in gas turbine engines. However, their silica surface layer reacts with water vapor contained in combustion environments. The resulting hydroxide layer volatilizes, leading to component recession. Environmental barrier coatings (EBCs) have been developed to shield the substrate from degradation. Next generation coatings for silicon-based ceramics based on ytterbium silicates have shown a promising combination of very low and good thermomechanical properties. The focus of this thesis is threefold: In the first part, phase transformations in plasma sprayed ytterbium silicates were investigated. Plasma sprayed materials are known to contain large amounts of amorphous material. Phase changes during the conversion from amorphous to crystalline materials were investigated as they have been known to lead to failure in many coatings. The second part of this work focused on measuring residual stresses in multilayer EBCs using synchrotron X-ray diffraction (XRD). Strains were resolved spatially, with probe sizes as small as 20 um. Stresses were calculated using mechanical properties of ytterbium silicates, determined with in-situ loading and heating experiments. In-situ and ex-situ heating experiments allowed for the study of changes in stress states that occur in these EBC materials during heating and cooling cycles. Lastly, the interaction of ytterbium silicates with low-melting environmental calcium-magnesium-aluminosilicate (CMAS) glasses was studied. Synchrotron XRD was used to study the influence of CMAS on the stress state in the coating, X-ray computed tomography was used to provide 3D images of coatings, and EDS and TEM analysis were used to study the interactions at the CMAS/ytterbium silicate interface in detail.

  17. Fluorine Implantation and Residual Stresses in Polysilicon Films

    NASA Technical Reports Server (NTRS)

    Lowery, Lynn; Zschack, Paul; Angelis, Robert De

    1994-01-01

    As microelectronic device dimensions are reduced below one micron, the hot carrier effect is a major barrier to continued scaling and VLSI reliability. Several reports have shown that fluorine diffusion into the device gate greatly enhances the resistance to hot carriers. There has been some disagreement as to the mechanism of influence; however, several reports have suggested that the polysilicon is physically modified by the fluorine implant and that the beneficial effects are at least in part due to stress relaxation in the polysilicon.

  18. Residual stress induced crystalline to amorphous phase transformation in Nb2O5 quantum dots

    NASA Astrophysics Data System (ADS)

    Dhawan, Sahil; Dhawan, Tanuj; Vedeshwar, Agnikumar G.

    2014-07-01

    Nb2O5 quantum dots (QDs) were grown using a simple technique of vacuum thermal evaporation. QDs were found to be crystalline in nature by selected area electron diffraction (SAED) in TEM. Samples with thickness up to 20 nm did not show any significant residual strain. Residual stress effect on band gap of crystalline Nb2O5 was studied for films thicker than 20 nm. Residual strain was determined using SAED of the films with reference to powder X-ray diffraction (XRD). Films thicker than 45 nm become amorphous as analyzed by both SAED and XRD. The optical absorption of films in the range 25-60 nm indicates significantly varying optical band gap of films. The varying band gap with film thickness scales linearly very well with the variation of residual stress with film thickness. The residual stress dependence of band gap of crystalline films yields stress free band gap as 3.37 eV with pressure coefficient of band gap (∂Eg/∂P)T = -29.3 meV/GPa. From this study, the crystalline to amorphous transformation in tetragonal form of M-Nb2O5 has been determined to be at about 14 GPa. Both pressure coefficient of band gap and crystalline to amorphous transition for tetragonal M-Nb2O5 have been determined for the first time in the literature.

  19. Electrical measurements as stress-strain monitors

    USGS Publications Warehouse

    Madden, T. R.

    1979-01-01

    Many of the measurements of phyiscal properties being made in earthquake prediction studies are based on the premise that these properties are influenced by stresses and strains, especially so near the failure point. Electrical properties of rocks are controlled by the fluid in the pores and cracks in the rocks. Because these regions are most influenced by stresses, one should expect electrical measurements to be sensitive measures of changing stresses and strains. Nevertheless, the strain changes we are dealing with are very small, and, consequently, we need very sensitive instruments to detect them.  

  20. Cantilever measurements of surface stress, surface reconstruction, film stress and magnetoelastic stress of monolayers

    PubMed Central

    Sander, Dirk; Tian, Zhen; Kirschner, Jürgen

    2008-01-01

    We review the application of cantilever-based stress measurements in surface science and magnetism. The application of thin (thickness appr. 0.1 mm) single crystalline substrates as cantilevers has been used successfully to measure adsorbate-induced surface stress changes, lattice misfit induced film stress, and magneto-elastic stress of ferromagnetic monolayers. Surface stress changes as small as 0.01 N/m can be readily measured, and this translates into a sensitivity for adsorbate-coverage well below 0.01 of one layer. Stress as large as several GPa, beyond the elasticity limits of high strength materials, is measured, and it is ascribed to the lattice misfit between film and substrate. Our results point at the intimate relation between surface stress and surface reconstruction, stress-induced structural changes in epitaxially strained films, and strain-induced modifications of the magneto-elastic coupling in ferromagnetic monolayers.

  1. Concurrent tailoring of fabrication process and interphase layer to reduce residual stresses in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.; Morel, M.

    1991-01-01

    A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.

  2. Determination of the residual stress-crack opening relationship of SFRC flexural members

    NASA Astrophysics Data System (ADS)

    Kaklauskas, Gintaris; Gribniak, Viktor; Meskenas, Adas; Rimkus, Arvydas; Kaklauskas, Arturas; Kupliauskas, Rimantas

    2013-10-01

    Steel fibre reinforced concrete (SFRC) has become widespread material in building areas such as underground shotcrete structures or industrial floors. However, due to the absence of universally accepted guidelines for SFRC, application fields of this material are still limited. This paper deals with assessment of the residual stresses of tensile SFRC. An adequate method for determination of residual stress-crack opening relation, based on test data of three-point bending beams is proposed. To verify the analysis results a numerical modelling is utilized employing a nonlinear finite element analysis program. Simulated load-crack width curves were compared with the experimental data validating adequacy of the proposed model.

  3. Fiber-matrix interface effects in the presence of thermally induced residual stresses

    SciTech Connect

    Nimmer, R.P. )

    1990-01-01

    The mechanics of transversely loaded high-temperature composites with a thermally induced residual stress field and a vanishingly weak fiber-matrix interface strength was investigated using two analytical models. In particular, the effects of several physical properties defining the performance of the constituent fiber, matrix, and interface are examined relative to their effect on composite's behavior. Both models demonstrate that, if there is a thermally induced residual stress field in the composite, the initial transverse modulus for the composite will be the same regardless of whether there is a well-bonded or an unbonded interface. 10 refs.

  4. Optical properties and residual stress in Nb-Si composite films prepared by magnetron cosputtering.

    PubMed

    Tang, Chien-Jen; Porter, Glen Andrew; Jaing, Cheng-Chung; Tsai, Fang-Ming

    2015-02-01

    This paper investigates Nb-Si metal composite films with various proportions of niobium in comparison to pure Nb films. Films were prepared by two-target RF-DC magnetron cosputtering deposition. The optical properties and residual stress were analyzed. A composition of Nb(0.74)Si(0.26) was chosen toward the design and fabrication of solar absorbing coatings having a high absorption in a broad wavelength range, a low residual stress, and suitable optical constants. The layer thicknesses and absorption characteristics of the Nb-Si composite films adhere more closely to the design than other coatings made of dielectric film materials. PMID:25967812

  5. Residual stresses and microstructure of H13 steel formed by combining two different direct fabrication methods

    SciTech Connect

    Maziasz, P.J.; Payzant, E.A.; Schlienger, M.E.; McHugh, K.M.

    1998-10-13

    Direct fabrication (DF) of tool and die steels by rapid solidification techniques can produce near-net-shape parts and components with unique properties, and without the distortions caused by conventional normalizing and tempering heat-treatments. When combined with sophisticated 3-dimensional computer control to build complex solid metallic shapes, one has the capability of using DF for rapid prototyping. Spray forming using a circular converging/diverging atomizer is a DF process being developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for rapid manufacturing of tool and die steels like H-13. Laser Engineered Net Shaping (LENS{trademark}) is a DF process being developed at Sandia National laboratory (SNL). LENS involves laser-processing fine powder metal sprays into complex, fully-dense 3-dimensional shapes with fine-detail control that would allow rapid prototyping of tools or dies. One logical combination of the two processes is to combine spray forming to replicate most of the die surface and backing, and then t o build other die-surface fine-features with LENS. Premium H-13 steel was used because it belongs to the widely used group of hot-work steels that have good resistance to heat, pressure and abrasion for metal-forging and aluminum die-casting applications. The microstructure and residual stresses that exist across the interface of a composite metal produced by these two DF methods are critical parameters in producing crack-free components with functional properties. The purpose of this work is to combine unique neutron-diffraction facilities at the Oak Ridge National Laboratory (ORNL) for measuring bulk residual stresses with these two different DF processes to characterize LENS deposits of H-13 steel made on a spray-formed base of that same steel.

  6. Residual Stresses Due to Circumferential Girth Welding of Austenitic Stainless Steel Pipes

    NASA Astrophysics Data System (ADS)

    Tarak, Farzan

    Welding, as a joining method in fabrication of engineering products and structural elements, has a direct influence on thermo-mechanical behavior of components in numerous structural applications. Since these thermo-mechanical behaviors have a major role in the life of welding components, predicting thermo-mechanical effects of welding is a major factor in designing of welding components. One of the major of these effects is generation of residual stresses due to welding. These residual stresses are not the causes of failure in the components solely, but they will add to external loads and stresses in operating time. Since, experimental methods are time consuming and expensive, computational simulation of welding process is an effective method to calculate these residual stresses. This investigation focuses on the evaluation of residual stresses and distortions due to circumferential girth welding of austenitic stainless steel pipes using the commercial finite element software ESI Visual-Environment and SYSWELDRTM to simulate welding process. Of particular importance is the comparison of results from three different types of mechanics models: 1) Axisymmetric, 2) Shell, and 3) Full 3-D.

  7. Interplay Between Residual Stresses, Microstructure, Process Variables and Engine Block Casting Integrity

    NASA Astrophysics Data System (ADS)

    Lombardi, Anthony; D'Elia, Francesco; Ravindran, Comondore; Sediako, Dimitry; Murty, B. S.; MacKay, Robert

    2012-12-01

    The replacement of nodular cast iron with 319 type aluminum (Al) alloys in gasoline engine blocks is an example of the shift towards the use of lighter alloys in the automotive industry. However, excessive residual stress along the cylinder bore may lead to bore distortion, significantly reducing engine operating efficiency. In the current study, microstructure, mechanical properties and residual stress were characterized along the cylinder bridge of engine blocks following thermal sand reclamation (TSR), T7 heat treatment, and service testing of the casting. Neutron diffraction was effectively used to quantify the residual stress along both the Al cylinder bridge and the adjacent gray cast iron cylinder liners in the hoop, radial, and axial orientations with respect to the cylinder axis. The results suggest that an increase in cooling rate along the cylinder caused a significant refinement in microstructure at the bottom of the cylinder. In turn, this suggested an increase in alloy strength at the bottom of the cylinder relative to the top. This increased strength at the bottom of the cylinder likely reduced the susceptibility of the cylinder to rapid relief of residual stress at elevated temperature. In contrast, the coarse microstructure at the top of the cylinder likely triggered stress relief at an elevated temperature.

  8. Internal Crack Propagation in a Continuously Cast Austenitic Stainless Steel Analyzed by Actual Residual Stress Tensor Distributions

    NASA Astrophysics Data System (ADS)

    Saito, Youichi; Tanaka, Shun-Ichiro

    2016-04-01

    Initiation, propagation, and termination of internal cracks in a continuously cast austenitic stainless steel has been investigated with emphasis on stress loading of the solidified shell during casting. Cracks were formed at the center of the slab, parallel to the width of the cast, and were observed near the narrow faces. Optimized two-dimensional X-ray diffraction method was employed to measure residual stress tensor distributions around the cracks in the as-cast slab with coarse and strongly preferentially oriented grains. The tensor distributions had a sharp peak, as high as 430 MPa, at the crack end neighboring the columnar grains. On the other hand, lower values were measured at the crack end neighboring the equiaxed grains, where the local temperatures were higher during solidification. The true residual stress distributions were determined by evaluating the longitudinal elastic constant for each measured position, resulting in more accurate stress values than before. Electron probe micro-analysis at the terminal crack position showed that Ni, Ti, and Si were concentrated at the boundaries of the equiaxed grains, where the tensile strength was estimated to be lower than at the primary grains. A model of the crack formation and engineering recommendations to reduce crack formation are proposed.

  9. Optical properties and residual stress in group III-V nitride films

    NASA Astrophysics Data System (ADS)

    Edwards, Nora Virginia

    We report spectroscopic ellipsometry (SE), reflectance difference/anisotropy (RD/RA) and low-temperature reflectance data on epitaxial GaN thin-film samples covering the widest range of tensile and compressive stress (-3.8 to 3.5 kbar) thus far. SE allows us to assess the preparation of smooth and abrupt GaN surfaces by chemical treatments in real time above the bandedge, and, coupled with the reflectance data, the Edn/dE contribution to dispersion below the bandedge, which is important for laser action. The reflectance data in the vicinity of the fundamental absorption edge explicitly show the nonlinear behavior of the B-A and C-A splittings vs. the energy of the A exciton. Lineshape ambiguities that hindered previous interpretations have been resolved with reciprocal space analysis, allowing us to obtain band parameters such as Deltasbso = 17.0 ± 1 meV and DeltasbCF = 9.8 ± 1 meV with increased confidence. Deviations from the observed nonlinear behavior are interpreted as originating from the anisotropic relaxation of in-plane residual stress, as supported by preliminary RD/RA data. To make preliminary correlations between these fundamental optical, physical and electronic properties we also report trends in residual stress as a function of film thickness, growth temperature and substrate orientation for GaN/ AlN/ 6H-SiC heterostructures. In an effort to control such processes, we have developed a method to modulate the strain state (normally >2 kbar, tensile) of moderately thick (˜2mum) GaN based structures grown on 6H-SiC to a range of compressive stresses (0 to -2kbar) by the introduction of a strain mediating layer above the standard high temperature AlN buffer layer. The strain characteristics of subsequently deposited nitride layers can be modulated by changing the growth parameters of this layer. This is achieved by use of in-situ techniques during crystal growth without degrading the structural and optical properties of the deposited layers. Analogous

  10. Measuring work stress among correctional staff: a Rasch measurement approach.

    PubMed

    Higgins, George E; Tewksbury, Richard; Denney, Andrew

    2012-01-01

    Today, the amount of stress the correctional staff endures at work is an important issue. Research has addressed this issue, but has yielded no consensus as to a properly calibrated measure of perceptions of work stress for correctional staff. Using data from a non-random sample of correctional staff (n = 228), the Rasch model was used to assess whether a specific measure of work stress would fit the model. Results show that three items rather than six items accurately represented correctional staff perceptions of work stress. PMID:23270982

  11. Modeling of residual stress mitigation in austenitic stainless steel pipe girth weldment

    SciTech Connect

    Li, M.; Atteridge, D.G.; Anderson, W.E.; West, S.L.

    1994-03-01

    This study provides numerical procedures to model 40-cm-diameter, schedule 40, Type 304L stainless steel pipe girth welding and a newly proposed post-weld treatment. The treatment can be used to accomplish the goal of imparting compressive residual stresses at the inner surface of a pipe girth weldment to prevent/retard the intergranular stress corrosion cracking (IGSCC) of the piping system in nuclear reactors. This new post-weld treatment for mitigating residual stresses is cooling stress improvement (CSI). The concept of CSI is to establish and maintain a certain temperature gradient across the pipe wall thickness to change the final stress state. Thus, this process involves sub-zero low temperature cooling of the inner pipe surface of a completed girth weldment, while simultaneously keeping the outer pipe surface at a slightly elevated temperature with the help of a certain heating method. Analyses to obtain quantitative results on pipe girth welding and CSI by using a thermo-elastic-plastic finite element model are described in this paper. Results demonstrate the potential effectiveness of CSI for introducing compressive residual stresses to prevent/retard IGSCC. Because of the symmetric nature of CSI, it shows great potential for industrial application.

  12. Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators

    NASA Astrophysics Data System (ADS)

    Guan, Shan; Nelson, Bradley J.

    2005-04-01

    A new technique for electrodeposition of CoNiMnP hard magnetic thin films is developed to provide thin films with low residual stress and magnetic properties useful for MEMS applications. Processing parameters including applied current density, film thickness, pH and temperature of the electrolyte are regulated in order to reduce residual stress of the film. In addition, a hybrid residual stress reliever composed of sodium saccharine and a rare-earth salts mixture of Ce 2(SO 4) 3 and Nd 2(SO 4) 3 is created to further reduce the residual stress, eliminate microcracks and improve surface morphology of the film. The effects of residual stress on the magnetic properties of electrodeposited CoNiMnP hard magnetic films such as coercivity, saturation and residual magnetization are reported in this paper.

  13. Fiber Creep Evaluation by Stress Relaxation Measurements

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Dicarlo, James A.; Wagner, Timothy

    1991-01-01

    A simple bend stress relaxation (BSR) test has been used to measure the creep related properties of a chemically vapor-deposited SiC fiber. Time, temperature, and strain dependent BSR data were analyzed to ascertain the ability of the stress relaxation results to predict tensile creep as a function of the same parameters. The predictions compared very well to actual creep data obtained by axial measurements, indicating that the BSR test could be used for determining both creep and stress relaxation of polycrystalline ceramic fibers under tensile loading.

  14. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-08-01

    Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.

  15. Infrared birefringence imaging of residual stress and bulk defects in multicrystalline silicon

    SciTech Connect

    Ganapati, Vidya; Schoenfelder, Stephan; Castellanos, Sergio; Oener, Sebastian; Koepge, Ringo; Sampson, Aaron; Marcus, Matthew A.; Lai, Barry; Morhenn, Humphrey; Hahn, Giso; Bagdahn, Joerg; Buonassisi1, Tonio

    2010-05-05

    This manuscript concerns the application of infrared birefringence imaging (IBI) to quantify macroscopic and microscopic internal stresses in multicrystalline silicon (mc-Si) solar cell materials. We review progress to date, and advance four closely related topics. (1) We present a method to decouple macroscopic thermally-induced residual stresses and microscopic bulk defect related stresses. In contrast to previous reports, thermally-induced residual stresses in wafer-sized samples are generally found to be less than 5 MPa, while defect-related stresses can be several times larger. (2) We describe the unique IR birefringence signatures, including stress magnitudes and directions, of common microdefects in mc-Si solar cell materials including: {beta}-SiC and {beta}-Si{sub 3}N{sub 4} microdefects, twin bands, nontwin grain boundaries, and dislocation bands. In certain defects, local stresses up to 40 MPa can be present. (3) We relate observed stresses to other topics of interest in solar cell manufacturing, including transition metal precipitation, wafer mechanical strength, and minority carrier lifetime. (4) We discuss the potential of IBI as a quality-control technique in industrial solar cell manufacturing.

  16. Strengthening, Crack Arrest And Multiple Cracking In Brittle Materials Using Residual Stresses.

    DOEpatents

    Green, David J.; Sglavo, Vincenzo M.; Tandon, Rajan

    2003-02-11

    Embodiments include a method for forming a glass which displays visible cracking prior to failure when subjected to predetermined stress level that is greater than a predetermined minimum stress level and less than a failure stress level. The method includes determining a critical flaw size in the glass and introducing a residual stress profile to the glass so that a plurality of visible cracks are formed prior to failure when the glass is subjected to a stress that is greater than the minimum stress level and lower than the critical stress. One method for forming the residual stress profile includes performing a first ion exchange so that a first plurality of ions of a first element in the glass are exchanged with a second plurality of ions of a second element that have a larger volume than the first ions. A second ion exchange is also performed so that a plurality of the second ions in the glass are exchanged back to ions of the first element.

  17. Study of Welding Distortion and Residual Stress Considering Nonlinear Yield Stress Curves and Multi-constraint Equations

    NASA Astrophysics Data System (ADS)

    Rong, Youmin; Zhang, Guojun; Huang, Yu

    2016-08-01

    Inherent strain analysis has been successfully applied to predict welding deformations of large-scale structural components, while thermal-elastic-plastic finite element method is rarely used for its disadvantages of long calculation period and large storage space. In this paper, a hybrid model considering nonlinear yield stress curves and multi-constraint equations to thermal-elastic-plastic analysis is further proposed to predict welding distortions and residual stresses of large-scale structures. For welding T-joint structural steel S355JR by metal active gas welding, the published experiment results of temperature and displacement fields are applied to illustrate the credibility of the proposed integration model. By comparing numerical results of four different cases with the experiment results, it is verified that prediction precision of welding deformations and residual stresses is apparently improved considering the power-law hardening model, and computational time is also obviously shortened about 30.14% using multi-constraint equations. On the whole, the proposed hybrid method can be further used to precisely and efficiently predict welding deformations and residual stresses of large-scale structures.

  18. Nondestructive evaluation of residual stress in low-carbon steel

    NASA Technical Reports Server (NTRS)

    Salama, K.

    1984-01-01

    The effects of the preferred orientation on the temperature dependence of ultrasonic velocity in low carbon steels are investigated. The sensitivity of the acousto-elastic constant to changes in microstructure is assessed as well as the possibility of determining some mechanical properties of a material by measuring the acousto-elastic constant.

  19. Yield stress measurements using novel squeezing flows

    NASA Astrophysics Data System (ADS)

    Ward, Daniel

    Techniques for measuring the yield stress of materials are numerous, but often plagued with difficulties and uncertainties in measurement. The primary methods include shear rheometry and, more recently, squeezing flow. Shear rheometry requires care on the part of the experimentalist to generate uniform flow fields and avoid shear banding or wall slip which may interfere with measurements. Squeezing flow tests are often performed with poorly controlled boundary conditions creating complicated flow fields. Further, the effects of the experimental modifications made to produce these boundary conditions in measurements are often not investigated and simply ignored. The main objective of this study was to develop a novel measuring technique to study the yield stress behavior of a model material, Carbopol. First attempts were made towards a novel lubricant injection squeezing (LIS) flow technique based on the continuous lubricated squeezing flow (CLSF) setup, as well as a novel lubricant film squeezing (LFS) technique which will allow measurement of the yield stress without the complicated treatment of either the sample or experimental setup required by currently favored methods. The novel techniques were developed and validated by direct comparison with shear measurements, the current gold standard for determining yield stress. Common squeezing techniques for characterizing yield stress fluids were also compared and found to be inadequate and inconsistent when compared to the shear measurements. The results from this study showed that the LIS and LFS methods are able to qualitatively determine a yield stress, but further investigation is required before they can be achieve their full potential as viable methods for determine yield stress.

  20. Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2011-04-01

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium E ×B velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or "profile shear" in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) E ×B and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a "null" toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the E ×B shear and parallel velocity (Coriolis force) pinching components from the larger "diffusive" parallel velocity shear driven component and