SEQUENTIAL TESTING OF MEASUREMENT ERRORS IN INTER-RATER RELIABILITY STUDIES
Jin, Mei; Liu, Aiyi; Chen, Zhen; Li, Zhaohai
2014-01-01
Inter-rater reliability is usually assessed by means of the intraclass correlation coefficient. Using two-way analysis of variance to model raters and subjects as random effects, we derive group sequential testing procedures for the design and analysis of reliability studies in which multiple raters evaluate multiple subjects. Compared with the conventional fixed sample procedures, the group sequential test has smaller average sample number. The performance of the proposed technique is examined using simulation studies and critical values are tabulated for a range of two-stage design parameters. The methods are exemplified using data from the Physician Reliability Study for diagnosis of endometriosis. PMID:25525316
ERIC Educational Resources Information Center
Kachchaf, Rachel; Solano-Flores, Guillermo
2012-01-01
We examined how rater language background affects the scoring of short-answer, open-ended test items in the assessment of English language learners (ELLs). Four native English and four native Spanish-speaking certified bilingual teachers scored 107 responses of fourth- and fifth-grade Spanish-speaking ELLs to mathematics items administered in…
How Good Are Our Raters? Rater Errors in Clinical Skills Assessment
ERIC Educational Resources Information Center
Iramaneerat, Cherdsak; Yudkowsky, Rachel
2006-01-01
A multi-faceted Rasch measurement (MFRM) model was used to analyze a clinical skills assessment of 173 fourth-year medical students in a Midwestern medical school to investigate four types of rater errors: leniency, inconsistency, halo, and restriction of range. Each student performed six clinical tasks with six standardized patients (SPs), who…
Examining rating quality in writing assessment: rater agreement, error, and accuracy.
Wind, Stefanie A; Engelhard, George
2012-01-01
The use of performance assessments in which human raters evaluate student achievement has become increasingly prevalent in high-stakes assessment systems such as those associated with recent policy initiatives (e.g., Race to the Top). In this study, indices of rating quality are compared between two measurement perspectives. Within the context of a large-scale writing assessment, this study focuses on the alignment between indices of rater agreement, error, and accuracy based on traditional and Rasch measurement theory perspectives. Major empirical findings suggest that Rasch-based indices of model-data fit for ratings provide information about raters that is comparable to direct measures of accuracy. The use of easily obtained approximations of direct accuracy measures holds significant implications for monitoring rating quality in large-scale rater-mediated performance assessments. PMID:23270978
ERIC Educational Resources Information Center
Raymond, Mark R.; Harik, Polina; Clauser, Brian E.
2011-01-01
Prior research indicates that the overall reliability of performance ratings can be improved by using ordinary least squares (OLS) regression to adjust for rater effects. The present investigation extends previous work by evaluating the impact of OLS adjustment on standard errors of measurement ("SEM") at specific score levels. In addition, a…
Do Raters Demonstrate Halo Error When Scoring a Series of Responses?
ERIC Educational Resources Information Center
Ridge, Kirk
This study investigated whether raters in two different training groups would demonstrate halo error when each rater scored all five responses to five different mathematics performance-based items from each student. One group of 20 raters was trained by an experienced scoring director with item-specific scoring rubrics and the opportunity to…
Examining Rater Errors in the Assessment of Written Composition with a Many-Faceted Rasch Model.
ERIC Educational Resources Information Center
Engelhard, George, Jr.
1994-01-01
Rater errors (rater severity, halo effect, central tendency, and restriction of range) are described, and criteria are presented for evaluating rating quality based on a many-faceted Rasch (FACETS) model. Ratings of 264 compositions from the Eighth Grade Writing Test in Georgia by 15 raters illustrate the discussion. (SLD)
ERIC Educational Resources Information Center
Sheehan, Dwayne P.; Lafave, Mark R.; Katz, Larry
2011-01-01
This study was designed to test the intra- and inter-rater reliability of the University of North Carolina's Balance Error Scoring System in 9- and 10-year-old children. Additionally, a modified version of the Balance Error Scoring System was tested to determine if it was more sensitive in this population ("raw scores"). Forty-six normally…
Longitudinal Rater Modeling with Splines
ERIC Educational Resources Information Center
Dobria, Lidia
2011-01-01
Performance assessments rely on the expert judgment of raters for the measurement of the quality of responses, and raters unavoidably introduce error in the scoring process. Defined as the tendency of a rater to assign higher or lower ratings, on average, than those assigned by other raters, even after accounting for differences in examinee…
Agreement Measure Comparisons between Two Independent Sets of Raters.
ERIC Educational Resources Information Center
Berry, Kenneth J.; Mielke, Paul W., Jr.
1997-01-01
Describes a FORTRAN software program that calculates the probability of an observed difference between agreement measures obtained from two independent sets of raters. An example illustrates the use of the DIFFER program in evaluating undergraduate essays. (Author/SLD)
Lang, W Steve; Wilkerson, Judy R; Rea, Dorothy C; Quinn, David; Batchelder, Heather L; Englehart, Dierdre S; Jennings, Kelly J
2014-01-01
The purpose of this study was to examine the extent to which raters' subjectivity impacts measures of teacher dispositions using the Dispositions Assessments Aligned with Teacher Standards (DAATS) battery. This is an important component of the collection of evidence of validity and reliability of inferences made using the scale. It also provides needed support for the use of subjective affective measures in teacher training and other professional preparation programs, since these measures are often feared to be unreliable because of rater effect. It demonstrates the advantages of using the Multi-Faceted Rasch Model as a better alternative to the typical methods used in preparation programs, such as Cohen's Kappa. DAATS instruments require subjective scoring using a six-point rating scale derived from the affective taxonomy as defined by Krathwohl, Bloom, and Masia (1956). Rater effect is a serious challenge and can worsen or drift over time. Errors in rater judgment can impact the accuracy of ratings, and these effects are common, but can be lessened through training of raters and monitoring of their efforts. This effort uses the multifaceted Rasch measurement models (MFRM) to detect and understand the nature of these effects. PMID:24992248
Measuring the Joint Agreement between Multiple Raters and a Standard.
ERIC Educational Resources Information Center
Berry, Kenneth J.; Mielke, Paul W., Jr.
1997-01-01
A FORTRAN subroutine is presented to calculate a generalized measure of agreement between multiple raters and a set of correct responses at any level of measurement and among multiple responses, along with the associated probability value, under the null hypothesis. (Author)
Measuring Essay Assessment: Intra-Rater and Inter-Rater Reliability
ERIC Educational Resources Information Center
Kayapinar, Ulas
2014-01-01
Problem Statement: There have been many attempts to research the effective assessment of writing ability, and many proposals for how this might be done. In this sense, rater reliability plays a crucial role for making vital decisions about testees in different turning points of both educational and professional life. Intra-rater and inter-rater…
Kappa coefficient: a popular measure of rater agreement
TANG, Wan; HU, Jun; ZHANG, Hui; WU, Pan; HE, Hua
2015-01-01
Summary In mental health and psychosocial studies it is often necessary to report on the between-rater agreement of measures used in the study. This paper discusses the concept of agreement, highlighting its fundamental difference from correlation. Several examples demonstrate how to compute the kappa coefficient – a popular statistic for measuring agreement – both by hand and by using statistical software packages such as SAS and SPSS. Real study data are used to illustrate how to use and interpret this coefficient in clinical research and practice. The article concludes with a discussion of the limitations of the coefficient. PMID:25852260
Kappa coefficient: a popular measure of rater agreement.
Tang, Wan; Hu, Jun; Zhang, Hui; Wu, Pan; He, Hua
2015-02-25
In mental health and psychosocial studies it is often necessary to report on the between-rater agreement of measures used in the study. This paper discusses the concept of agreement, highlighting its fundamental difference from correlation. Several examples demonstrate how to compute the kappa coefficient - a popular statistic for measuring agreement - both by hand and by using statistical software packages such as SAS and SPSS. Real study data are used to illustrate how to use and interpret this coefficient in clinical research and practice. The article concludes with a discussion of the limitations of the coefficient. PMID:25852260
Intra and inter-rater reliability study of pelvic floor muscle dynamometric measurements
Martinho, Natalia M.; Marques, Joseane; Silva, Valéria R.; Silva, Silvia L. A.; Carvalho, Leonardo C.; Botelho, Simone
2015-01-01
OBJECTIVE: The aim of this study was to evaluate the intra and inter-rater reliability of pelvic floor muscle (PFM) dynamometric measurements for maximum and average strengths, as well as endurance. METHOD: A convenience sample of 18 nulliparous women, without any urogynecological complaints, aged between 19 and 31 (mean age of 25.4±3.9) participated in this study. They were evaluated using a pelvic floor dynamometer based on load cell technology. The dynamometric evaluations were repeated in three successive sessions: two on the same day with a rest period of 30 minutes between them, and the third on the following day. All participants were evaluated twice in each session; first by examiner 1 followed by examiner 2. The vaginal dynamometry data were analyzed using three parameters: maximum strength, average strength, and endurance. The Intraclass Correlation Coefficient (ICC) was applied to estimate the PFM dynamometric measurement reliability, considering a good level as being above 0.75. RESULTS: The intra and inter-raters' analyses showed good reliability for maximum strength (ICCintra-rater1=0.96, ICCintra-rater2=0.95, and ICCinter-rater=0.96), average strength (ICCintra-rater1=0.96, ICCintra-rater2=0.94, and ICCinter-rater=0.97), and endurance (ICCintra-rater1=0.88, ICCintra-rater2=0.86, and ICCinter-rater=0.92) dynamometric measurements. CONCLUSIONS: The PFM dynamometric measurements showed good intra- and inter-rater reliability for maximum strength, average strength and endurance, which demonstrates that this is a reliable device that can be used in clinical practice. PMID:25993624
A Simulation Study of Rater Agreement Measures with 2x2 Contingency Tables
ERIC Educational Resources Information Center
Ato, Manuel; Lopez, Juan Jose; Benavente, Ana
2011-01-01
A comparison between six rater agreement measures obtained using three different approaches was achieved by means of a simulation study. Rater coefficients suggested by Bennet's [sigma] (1954), Scott's [pi] (1955), Cohen's [kappa] (1960) and Gwet's [gamma] (2008) were selected to represent the classical, descriptive approach, [alpha] agreement…
Yoo, Won-Gyu
2016-07-01
[Purpose] This study investigated intra-rater reliability when using a tympanic thermometer under different self-measurement conditions. [Subjects and Methods] Ten males participated. Intra-rater reliability was assessed by comparing the values under three conditions of measurement using a tympanic thermometer. Intraclass correlation coefficients were used to assess intra-rater reliability. [Results] According to the intraclass correlation coefficient analysis, reliability could be ranked according to the conditions of measurement. [Conclusion] The results showed that self-measurement of body temperature is more precise when combined with common sense and basic education about the anatomy of the eardrum. PMID:27512269
Yoo, Won-gyu
2016-01-01
[Purpose] This study investigated intra-rater reliability when using a tympanic thermometer under different self-measurement conditions. [Subjects and Methods] Ten males participated. Intra-rater reliability was assessed by comparing the values under three conditions of measurement using a tympanic thermometer. Intraclass correlation coefficients were used to assess intra-rater reliability. [Results] According to the intraclass correlation coefficient analysis, reliability could be ranked according to the conditions of measurement. [Conclusion] The results showed that self-measurement of body temperature is more precise when combined with common sense and basic education about the anatomy of the eardrum. PMID:27512269
Analysis of Rater Severity on Written Expression Exam Using Many Faceted Rasch Measurement
ERIC Educational Resources Information Center
Prieto, Gerardo; Nieto, Eloísa
2014-01-01
This paper describes how a Many Faceted Rasch Measurement (MFRM) approach can be applied to performance assessment focusing on rater analysis. The article provides an introduction to MFRM, a description of MFRM analysis procedures, and an example to illustrate how to examine the effects of various sources of variability on test takers'…
NASA Astrophysics Data System (ADS)
Henderson, Robert K.
1999-12-01
It is widely accepted in the electronics industry that measurement gauge error variation should be no larger than 10% of the related specification window. In a previous paper, 'What Amount of Measurement Error is Too Much?', the author used a framework from the process industries to evaluate the impact of measurement error variation in terms of both customer and supplier risk (i.e., Non-conformance and Yield Loss). Application of this framework in its simplest form suggested that in many circumstances the 10% criterion might be more stringent than is reasonably necessary. This paper reviews the framework and results of the earlier work, then examines some of the possible extensions to this framework suggested in that paper, including variance component models and sampling plans applicable in the photomask and semiconductor businesses. The potential impact of imperfect process control practices will be examined as well.
Noninvariant Measurement in Rater-Mediated Assessments of Teaching Quality
ERIC Educational Resources Information Center
Kelcey, Ben
2014-01-01
Valid and reliable measurement of teaching is essential to evaluating and improving teacher effectiveness and advancing large-scale policy-relevant research in education (Raudenbush & Sadoff, 2008). One increasingly common component of teaching evaluations is the direct observation of teachers in their classrooms. Classroom observations have…
Measuring Rater Reliability on a Special Education Observation Tool
ERIC Educational Resources Information Center
Semmelroth, Carrie Lisa; Johnson, Evelyn
2014-01-01
This study used generalizability theory to measure reliability on the Recognizing Effective Special Education Teachers (RESET) observation tool designed to evaluate special education teacher effectiveness. At the time of this study, the RESET tool included three evidence-based instructional practices (direct, explicit instruction; whole-group…
ERIC Educational Resources Information Center
Johnson, David; VanBrackle, Lewis
2012-01-01
Raters of Georgia's (USA) state-mandated college-level writing exam, which is intended to ensure a minimal university-level writing competency, are trained to grade holistically when assessing these exams. A guiding principle in holistic grading is to not focus exclusively on any one aspect of writing but rather to give equal weight to style,…
Compact disk error measurements
NASA Technical Reports Server (NTRS)
Howe, D.; Harriman, K.; Tehranchi, B.
1993-01-01
The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.
Measuring the Pain Area: An Intra- and Inter-Rater Reliability Study Using Image Analysis Software.
Dos Reis, Felipe Jose Jandre; de Barros E Silva, Veronica; de Lucena, Raphaela Nunes; Mendes Cardoso, Bruno Alexandre; Nogueira, Leandro Calazans
2016-01-01
Pain drawings have frequently been used for clinical information and research. The aim of this study was to investigate intra- and inter-rater reliability of area measurements performed on pain drawings. Our secondary objective was to verify the reliability when using computers with different screen sizes, both with and without mouse hardware. Pain drawings were completed by patients with chronic neck pain or neck-shoulder-arm pain. Four independent examiners participated in the study. Examiners A and B used the same computer with a 16-inch screen and wired mouse hardware. Examiner C used a notebook with a 16-inch screen and no mouse hardware, and Examiner D used a computer with an 11.6-inch screen and a wireless mouse. Image measurements were obtained using GIMP and NIH ImageJ computer programs. The length of all the images was measured using GIMP software to a set scale in ImageJ. Thus, each marked area was encircled and the total surface area (cm(2) ) was calculated for each pain drawing measurement. A total of 117 areas were identified and 52 pain drawings were analyzed. The intrarater reliability between all examiners was high (ICC = 0.989). The inter-rater reliability was also high. No significant differences were observed when using different screen sizes or when using or not using the mouse hardware. This suggests that the precision of these measurements is acceptable for the use of this method as a measurement tool in clinical practice and research. PMID:25490926
Measurement Errors in Organizational Surveys.
ERIC Educational Resources Information Center
Dutka, Solomon; Frankel, Lester R.
1993-01-01
Describes three classes of measurement techniques: (1) interviewing methods; (2) record retrieval procedures; and (3) observation methods. Discusses primary reasons for measurement error. Concludes that, although measurement error can be defined and controlled for, there are other design factors that also must be considered. (CFR)
The Effects of Rater Training on Inter-Rater Agreement
ERIC Educational Resources Information Center
Pufpaff, Lisa A.; Clarke, Laura; Jones, Ruth E.
2015-01-01
This paper addresses the effects of rater training on the rubric-based scoring of three preservice teacher candidate performance assessments. This project sought to evaluate the consistency of ratings assigned to student learning outcome measures being used for program accreditation and to explore the need for rater training in order to increase…
Human errors and measurement uncertainty
NASA Astrophysics Data System (ADS)
Kuselman, Ilya; Pennecchi, Francesca
2015-04-01
Evaluating the residual risk of human errors in a measurement and testing laboratory, remaining after the error reduction by the laboratory quality system, and quantifying the consequences of this risk for the quality of the measurement/test results are discussed based on expert judgments and Monte Carlo simulations. A procedure for evaluation of the contribution of the residual risk to the measurement uncertainty budget is proposed. Examples are provided using earlier published sets of expert judgments on human errors in pH measurement of groundwater, elemental analysis of geological samples by inductively coupled plasma mass spectrometry, and multi-residue analysis of pesticides in fruits and vegetables. The human error contribution to the measurement uncertainty budget in the examples was not negligible, yet also not dominant. This was assessed as a good risk management result.
ERIC Educational Resources Information Center
Murphy, Daniel L.; Beretvas, S. Natasha
2015-01-01
This study examines the use of cross-classified random effects models (CCrem) and cross-classified multiple membership random effects models (CCMMrem) to model rater bias and estimate teacher effectiveness. Effect estimates are compared using CTT versus item response theory (IRT) scaling methods and three models (i.e., conventional multilevel…
ERIC Educational Resources Information Center
Nolan, R. O.; And Others
The Final Report, Volume 1, covers research results of the Michigan State University Driver Performance Measurement Project. This volume (Volume 2) constitutes a guide for training observers/raters in the driver performance measurement procedures developed in this research by MSU. The guide includes a training course plan and content materials…
2014-01-01
Background Concurrent validity and intra-rater reliability using a customized Android phone application to measure cervical-spine range-of-motion (ROM) has not been previously validated against a gold-standard three-dimensional motion analysis (3DMA) system. Findings Twenty-one healthy individuals (age:31 ± 9.1 years, male:11) participated, with 16 re-examined for intra-rater reliability 1–7 days later. An Android phone was fixed on a helmet, which was then securely fastened on the participant’s head. Cervical-spine ROM in flexion, extension, lateral flexion and rotation were performed in sitting with concurrent measurements obtained from both a 3DMA system and the phone. The phone demonstrated moderate to excellent (ICC = 0.53-0.98, Spearman ρ = 0.52-0.98) concurrent validity for ROM measurements in cervical flexion, extension, lateral-flexion and rotation. However, cervical rotation demonstrated both proportional and fixed bias. Excellent intra-rater reliability was demonstrated for cervical flexion, extension and lateral flexion (ICC = 0.82-0.90), but poor for right- and left-rotation (ICC = 0.05-0.33) using the phone. Possible reasons for the outcome are that flexion, extension and lateral-flexion measurements are detected by gravity-dependent accelerometers while rotation measurements are detected by the magnetometer which can be adversely affected by surrounding magnetic fields. Conclusion The results of this study demonstrate that the tested Android phone application is valid and reliable to measure ROM of the cervical-spine in flexion, extension and lateral-flexion but not in rotation likely due to magnetic interference. The clinical implication of this study is that therapists should be mindful of the plane of measurement when using the Android phone to measure ROM of the cervical-spine. PMID:24742001
A Family of Rater Accuracy Models.
Wolfe, Edward W; Jiao, Hong; Song, Tian
2015-01-01
Engelhard (1996) proposed a rater accuracy model (RAM) as a means of evaluating rater accuracy in rating data, but very little research exists to determine the efficacy of that model. The RAM requires a transformation of the raw score data to accuracy measures by comparing rater-assigned scores to true scores. Indices computed based on raw scores also exist for measuring rater effects, but these indices ignore deviations of rater-assigned scores from true scores. This paper demonstrates the efficacy of two versions of the RAM (based on dichotomized and polytomized deviations of rater-assigned scores from true scores) to two versions of raw score rater effect models (i.e., a Rasch partial credit model, PCM, and a Rasch rating scale model, RSM). Simulated data are used to demonstrate the efficacy with which these four models detect and differentiate three rater effects: severity, centrality, and inaccuracy. Results indicate that the RAMs are able to detect, but not differentiate, rater severity and inaccuracy, but not rater centrality. The PCM and RSM, on the other hand, are able to both detect and differentiate all three of these rater effects. However, the RSM and PCM do not take into account true scores and may, therefore, be misleading when pervasive trends exist in the rater-assigned data. PMID:26075664
2010-01-01
Background The COSMIN checklist is a tool for evaluating the methodological quality of studies on measurement properties of health-related patient-reported outcomes. The aim of this study is to determine the inter-rater agreement and reliability of each item score of the COSMIN checklist (n = 114). Methods 75 articles evaluating measurement properties were randomly selected from the bibliographic database compiled by the Patient-Reported Outcome Measurement Group, Oxford, UK. Raters were asked to assess the methodological quality of three articles, using the COSMIN checklist. In a one-way design, percentage agreement and intraclass kappa coefficients or quadratic-weighted kappa coefficients were calculated for each item. Results 88 raters participated. Of the 75 selected articles, 26 articles were rated by four to six participants, and 49 by two or three participants. Overall, percentage agreement was appropriate (68% was above 80% agreement), and the kappa coefficients for the COSMIN items were low (61% was below 0.40, 6% was above 0.75). Reasons for low inter-rater agreement were need for subjective judgement, and accustom to different standards, terminology and definitions. Conclusions Results indicated that raters often choose the same response option, but that it is difficult on item level to distinguish between articles. When using the COSMIN checklist in a systematic review, we recommend getting some training and experience, completing it by two independent raters, and reaching consensus on one final rating. Instructions for using the checklist are improved. PMID:20860789
Measurement error in geometric morphometrics.
Fruciano, Carmelo
2016-06-01
Geometric morphometrics-a set of methods for the statistical analysis of shape once saluted as a revolutionary advancement in the analysis of morphology -is now mature and routinely used in ecology and evolution. However, a factor often disregarded in empirical studies is the presence and the extent of measurement error. This is potentially a very serious issue because random measurement error can inflate the amount of variance and, since many statistical analyses are based on the amount of "explained" relative to "residual" variance, can result in loss of statistical power. On the other hand, systematic bias can affect statistical analyses by biasing the results (i.e. variation due to bias is incorporated in the analysis and treated as biologically-meaningful variation). Here, I briefly review common sources of error in geometric morphometrics. I then review the most commonly used methods to measure and account for both random and non-random measurement error, providing a worked example using a real dataset. PMID:27038025
Mitchell, Sandra A.; Jacobsohn, David; Thormann Powers, Kimberly E.; Carpenter, Paul A.; Flowers, Mary E.D.; Cowen, Edward W.; Schubert, Mark; Turner, Maria; Lee, Stephanie J.; Martin, Paul; Bishop, Michael R.; Baird, Kristin; Bolaños-Meade, Javier; Boyd, Kevin; Fall-Dickson, Jane M.; Gerber, Lynn H.; Guadagnini, Jean-Pierre; Imanguli, Matin; Krumlauf, Michael C.; Lawley, Leslie; Li, Li; Reeve, Bryce B.; Clayton, Janine Austin; Vogelsang, Georgia B.; Pavletic, Steven Z.
2011-01-01
The lack of standardized criteria for measuring therapeutic response is a major obstacle to the development of new therapeutic agents for chronic graft-versus-host disease (cGVHD). National Institutes of Health (NIH) consensus criteria for evaluating therapeutic response were published in 2006. We report the results of four consecutive pilot trials evaluating the feasibility and estimating the inter-rater reliability and minimum detectable change of these response criteria. Hematology-oncology clinicians with limited experience in applying the NIH cGVHD response criteria (n=34), participated in a 2.5 hour training session on response evaluation in cGVHD. Feasibility and inter-rater reliability between subspecialty cGVHD experts and this panel of clinician raters were examined in a sample of 25 children and adults with cGVHD. The minimum detectable change was calculated using the standard error of measurement. Clinicians’ impressions of the brief training session, the photo atlas, and the response criteria documentation tools were generally favorable. Performing and documenting the full set of response evaluations required a median of 21 minutes (range 12 to 60 minutes) per rater. The Schirmer tear test required the greatest time of any single test (median 9 minutes). Overall, inter-rater agreement for skin and oral manifestations was modest, however, in the third and fourth trials, the agreement between clinicians and experts for all dimensions except movable sclerosis approached satisfactory values. In the final two trials, the threshold for defining change exceeding measurement error was 19–22% body surface area (BSA) for erythema, 18–26% BSA for movable sclerosis, 17–21% BSA for nonmovable sclerosis, and 2.1–2.6 points on the 15 point NIH Oral cGHVD scale. Agreement between clinician-expert pairs was moderate to substantial for the measures of functional capacity and for the gastrointestinal and global cGVHD rating scales. These results suggest that
Biomechanical measures in participants with shoulder pain: Intra-rater reliability.
Michener, Lori A; Elmore, Kevin A; Darter, Benjamin J; Timmons, Mark K
2016-04-01
Biomechanical measures are used to characterize the mechanisms of treatment for shoulder pain. The objective was to characterize test-retest reliability and measurement error of shoulder surface electromyographic(sEMG) and kinematic measures. Individuals(n = 12) with subacromial pain syndrome were tested at 2 visits. Five repetitions of shoulder scapular plane elevation were performed while collecting sEMG of the upper trapezius(UT), middle trapezius(MT), lower trapezius(LT), serratus anterior(SA) middle-deltoid, and infraspinatus muscles during ascending and descending phases. Simultaneously, electromagnetic sensors measured 3-dimensional kinematics of scapular internal/external rotation, upward/downward rotation, posterior/anterior tilt, and clavicular elevation/depression and clavicular protraction/retraction. Kinematic and sEMG variables were reduced for the total phase of ascending and descending elevation (30°-120°, 120°-30°), at 30° intervals for sEMG, and at every 30° discrete kinematic angle. The intraclass correlation coefficients(ICC) ranged from 0.08 to 0.99 for sEMG and 0.23-0.95 for kinematics. Correspondingly, the standard error of the measurement(SEM) and minimal detectable change(MDC) for sEMG measures varied from 2.3% to 103.8% of a reference contraction(REF-contraction). For kinematics, the SEM and MDC varied from 1.4° to 5.9°. Between-day reliability was good to very good, except for scapular internal/external rotation kinematics, and sEMG for the LT, UT, and SA. sEMG error values were highest (>25%REF-contraction) for most of the LT, UT, and SA variables. Kinematic error values indicate changes or differences of 2°-3° are meaningful, except for upward/downward rotation and internal/external rotation with MDCs of 4°-6°. Generally, data from the total phase of movement had better reliability and lower error than the data from sEMG interval or kinematic discrete angles. PMID:26578162
Measuring Test Measurement Error: A General Approach
ERIC Educational Resources Information Center
Boyd, Donald; Lankford, Hamilton; Loeb, Susanna; Wyckoff, James
2013-01-01
Test-based accountability as well as value-added asessments and much experimental and quasi-experimental research in education rely on achievement tests to measure student skills and knowledge. Yet, we know little regarding fundamental properties of these tests, an important example being the extent of measurement error and its implications for…
A Generalization of Cohen's Kappa Agreement Measure to Interval Measurement and Multiple Raters.
ERIC Educational Resources Information Center
Berry, Kenneth J.; Mielke, Paul W., Jr.
1988-01-01
Cohen's kappa statistic is frequently used to measure agreement between two observers using categorical polytomies. Cohen's statistic is: shown to be inherently multivariate in nature; expanded to analyze ordinal and interval data; and extended to over two observers. A non-asymptotic test of significance is provided for the generalized statistic.…
How Well Do Raters Agree on the Development Stage of Caenorhabditis elegans?
Ferguson, Annabel A.; Bilonick, Richard A.; Buchanich, Jeanine M.; Marsh, Gary M.; Fisher, Alfred L.
2015-01-01
The assessment of inter-rater reliability is a topic that is infrequently addressed in Caenorhabditis elegans research, despite the existence of sophisticated statistical methods and the strong interest in the field in obtaining reliable and accurate data. This study applies statistical modeling as a robust means of analyzing the performance of worm researchers measuring the stage of worm development in terms of the two independent factors that comprise “agreement”, which are (1) accuracy, representing trueness, a lack of systematic differences, or lack of bias, and (2) precision, representing reliability or the extent to which random differences are small. In our study, multiple raters assessed the same sample of worms to determine the developmental stage of each animal, and we collected data linking each scorer with their assessment for each worm. To describe the agreement of the raters, we developed a structural equation model with latent variables and thresholds, which assumes that all the raters are jointly scoring each worm. This common factor model separately quantifies the two aspects of agreement. The stage-specific thresholds examine accuracy and characterize the relative biases of each rater during the scoring process. The factor loadings for each rater examine the precision and characterizes the random error of the rater. Within our group, we found that the overall agreement was good, while certain adjustments in particular raters would have decreased systematic differences. Hence, the use of developmental stage as an experimental outcome can be both accurate and precise. PMID:26172989
ERIC Educational Resources Information Center
Bock, Douglas G.; And Others
1984-01-01
This study (1) demonstrates the negative impact of profanity in a public speech and (2) sheds light on the conceptualization of the term "rating error." Implications for classroom teaching are discussed. (PD)
Better Stability with Measurement Errors
NASA Astrophysics Data System (ADS)
Argun, Aykut; Volpe, Giovanni
2016-06-01
Often it is desirable to stabilize a system around an optimal state. This can be effectively accomplished using feedback control, where the system deviation from the desired state is measured in order to determine the magnitude of the restoring force to be applied. Contrary to conventional wisdom, i.e. that a more precise measurement is expected to improve the system stability, here we demonstrate that a certain degree of measurement error can improve the system stability. We exemplify the implications of this finding with numerical examples drawn from various fields, such as the operation of a temperature controller, the confinement of a microscopic particle, the localization of a target by a microswimmer, and the control of a population.
Better Stability with Measurement Errors
NASA Astrophysics Data System (ADS)
Argun, Aykut; Volpe, Giovanni
2016-04-01
Often it is desirable to stabilize a system around an optimal state. This can be effectively accomplished using feedback control, where the system deviation from the desired state is measured in order to determine the magnitude of the restoring force to be applied. Contrary to conventional wisdom, i.e. that a more precise measurement is expected to improve the system stability, here we demonstrate that a certain degree of measurement error can improve the system stability. We exemplify the implications of this finding with numerical examples drawn from various fields, such as the operation of a temperature controller, the confinement of a microscopic particle, the localization of a target by a microswimmer, and the control of a population.
Waugh, Shirley Moore; Bergquist-Beringer, Sandra
2016-06-01
In this descriptive multi-site study, we examined inter-rater agreement on 11 National Database of Nursing Quality Indicators(®) (NDNQI(®) ) pressure ulcer (PrU) risk and prevention measures. One hundred twenty raters at 36 hospitals captured data from 1,637 patient records. At each hospital, agreement between the most experienced rater and each other team rater was calculated for each measure. In the ratings studied, 528 patients were rated as "at risk" for PrU and, therefore, were included in calculations of agreement for the prevention measures. Prevalence-adjusted kappa (PAK) was used to interpret inter-rater agreement because prevalence of single responses was high. The PAK values for eight measures indicated "substantial" to "near perfect" agreement between most experienced and other team raters: Skin assessment on admission (.977, 95% CI [.966-.989]), PrU risk assessment on admission (.978, 95% CI [.964-.993]), Time since last risk assessment (.790, 95% CI [.729-.852]), Risk assessment method (.997, 95% CI [.991-1.0]), Risk status (.877, 95% CI [.838-.917]), Any prevention (.856, 95% CI [.76-.943]), Skin assessment (.956, 95% CI [.904-1.0]), and Pressure-redistribution surface use (.839, 95% CI [.763-.916]). For three intervention measures, PAK values fell below the recommended value of ≥.610: Routine repositioning (.577, 95% CI [.494-.661]), Nutritional support (.500, 95% CI [.418-.581]), and Moisture management (.556, 95% CI [.469-.643]). Areas of disagreement were identified. Findings provide support for the reliability of 8 of the 11 measures. Further clarification of data collection procedures is needed to improve reliability for the less reliable measures. © 2016 Wiley Periodicals, Inc. PMID:27038340
Comparison of Models and Indices for Detecting Rater Centrality.
Wolfe, Edward W; Song, Tian
2015-01-01
To date, much of the research concerning rater effects has focused on rater severity/leniency. Consequently, other potentially important rater effects have largely ignored by those conducting operational scoring projects. This simulation study compares four rater centrality indices (rater fit, residual-expected correlations, rater slope, and rater threshold variance) in terms of their Type I and Type II error rates under varying levels of centrality magnitude, centrality pervasiveness, and rating scale construction when each of four latent trait models is fitted to the simulated data (Rasch rating scale and partial credit models and the generalized rating scale and partial credit models). Results indicate that the residual-expected correlation may be most appropriately sensitive to rater centrality under most conditions. PMID:26753219
ERIC Educational Resources Information Center
Douglas, Scott Roy
2015-01-01
Independent confirmation that vocabulary in use unfolds across levels of performance as expected can contribute to a more complete understanding of validity in standardized English language tests. This study examined the relationship between Lexical Frequency Profiling (LFP) measures and rater judgements of test-takers' overall levels of…
Tuvblad, Catherine; Bezdjian, Serena; Raine, Adrian; Baker, Laura A.
2014-01-01
No study has yet examined the genetic and environmental influences on psychopathic personality across different raters and method of assessment. Participants were part of a community sample of male and female twins born between 1990 and 1995. The Child Psychopathy Scale (CPS) and the Antisocial Process Screening Device (APSD) were administered to the twins and their parents when the twins were 14 to 15 years old. The Psychopathy Checklist: Youth Version (PCL:YV) was administered and scored by trained testers. Results showed that a one-factor common pathway model was the best fit for the data. Genetic influences explained 69% of the variance in the latent psychopathic personality factor, while non-shared environmental influences explained 31%. Measurement-specific genetic effects accounted for between 9% and 35% of the total variance in each of the measures, except for PCL:YV where all genetic influences were in common with the other measures. Measure-specific non-shared environmental influences were found for all measures, explaining between 17% and 56% of the variance. These findings provide further evidence of the heritability in psychopathic personality among adolescents, although these effects vary across the way in which these traits are measured, in terms of both informant and instrument used. PMID:24796343
Impact of Measurement Error on Synchrophasor Applications
Liu, Yilu; Gracia, Jose R.; Ewing, Paul D.; Zhao, Jiecheng; Tan, Jin; Wu, Ling; Zhan, Lingwei
2015-07-01
Phasor measurement units (PMUs), a type of synchrophasor, are powerful diagnostic tools that can help avert catastrophic failures in the power grid. Because of this, PMU measurement errors are particularly worrisome. This report examines the internal and external factors contributing to PMU phase angle and frequency measurement errors and gives a reasonable explanation for them. It also analyzes the impact of those measurement errors on several synchrophasor applications: event location detection, oscillation detection, islanding detection, and dynamic line rating. The primary finding is that dynamic line rating is more likely to be influenced by measurement error. Other findings include the possibility of reporting nonoscillatory activity as an oscillation as the result of error, failing to detect oscillations submerged by error, and the unlikely impact of error on event location and islanding detection.
Schless, Simon-Henri; Desloovere, Kaat; Aertbeliën, Erwin; Molenaers, Guy; Huenaerts, Catherine; Bar-On, Lynn
2015-01-01
Aim Despite the impact of spasticity, there is a lack of objective, clinically reliable and valid tools for its assessment. This study aims to evaluate the reliability of various performance- and spasticity-related parameters collected with a manually controlled instrumented spasticity assessment in four lower limb muscles in children with cerebral palsy (CP). Method The lateral gastrocnemius, medial hamstrings, rectus femoris and hip adductors of 12 children with spastic CP (12.8 years, ±4.13 years, bilateral/unilateral involvement n=7/5) were passively stretched in the sagittal plane at incremental velocities. Muscle activity, joint motion, and torque were synchronously recorded using electromyography, inertial sensors, and a force/torque load-cell. Reliability was assessed on three levels: (1) intra- and (2) inter-rater within session, and (3) intra-rater between session. Results Parameters were found to be reliable in all three analyses, with 90% containing intra-class correlation coefficients >0.6, and 70% of standard error of measurement values <20% of the mean values. The most reliable analysis was intra-rater within session, followed by intra-rater between session, and then inter-rater within session. The Adds evaluation had a slightly lower level of reliability than that of the other muscles. Conclusions Limited intrinsic/extrinsic errors were introduced by repeated stretch repetitions. The parameters were more reliable when the same rater, rather than different raters performed the evaluation. Standardisation and training should be further improved to reduce extrinsic error when different raters perform the measurement. Errors were also muscle specific, or related to the measurement set-up. They need to be accounted for, in particular when assessing pre-post interventions or longitudinal follow-up. The parameters of the instrumented spasticity assessment demonstrate a wide range of applications for both research and clinical environments in the
Conditional Standard Error of Measurement in Prediction.
ERIC Educational Resources Information Center
Woodruff, David
1990-01-01
A method of estimating conditional standard error of measurement at specific score/ability levels is described that avoids theoretical problems identified for previous methods. The method focuses on variance of observed scores conditional on a fixed value of an observed parallel measurement, decomposing these variances into true and error parts.…
ERIC Educational Resources Information Center
Kahraman, Nilufer; Brown, Crystal B.
2015-01-01
Psychometric models based on structural equation modeling framework are commonly used in many multiple-choice test settings to assess measurement invariance of test items across examinee subpopulations. The premise of the current article is that they may also be useful in the context of performance assessment tests to test measurement invariance…
Minimizing noise-temperature measurement errors
NASA Technical Reports Server (NTRS)
Stelzried, C. T.
1992-01-01
An analysis of noise-temperature measurement errors of low-noise amplifiers was performed. Results of this analysis can be used to optimize measurement schemes for minimum errors. For the cases evaluated, the effective noise temperature (Te) of a Ka-band maser can be measured most accurately by switching between an ambient and a 2-K cooled load without an isolation attenuator. A measurement accuracy of 0.3 K was obtained for this example.
Honing in on the Social Phenotype in Williams Syndrome Using Multiple Measures and Multiple Raters
ERIC Educational Resources Information Center
Klein-Tasman, Bonita P.; Li-Barber, Kirsten T.; Magargee, Erin T.
2011-01-01
The behavioral phenotype of Williams syndrome (WS) is characterized by difficulties with establishment and maintenance of friendships despite high levels of interest in social interaction. Here, parents and teachers rated 84 children with WS ages 4-16 years using two commonly-used measures assessing aspects of social functioning: the Social Skills…
Connors, Brenda L.; Rende, Richard; Colton, Timothy J.
2014-01-01
The unique yield of collecting observational data on human movement has received increasing attention in a number of domains, including the study of decision-making style. As such, interest has grown in the nuances of core methodological issues, including the best ways of assessing inter-rater reliability. In this paper we focus on one key topic – the distinction between establishing reliability for the patterning of behaviors as opposed to the computation of raw counts – and suggest that reliability for each be compared empirically rather than determined a priori. We illustrate by assessing inter-rater reliability for key outcome measures derived from movement pattern analysis (MPA), an observational methodology that records body movements as indicators of decision-making style with demonstrated predictive validity. While reliability ranged from moderate to good for raw counts of behaviors reflecting each of two Overall Factors generated within MPA (Assertion and Perspective), inter-rater reliability for patterning (proportional indicators of each factor) was significantly higher and excellent (ICC = 0.89). Furthermore, patterning, as compared to raw counts, provided better prediction of observable decision-making process assessed in the laboratory. These analyses support the utility of using an empirical approach to inform the consideration of measuring patterning versus discrete behavioral counts of behaviors when determining inter-rater reliability of observable behavior. They also speak to the substantial reliability that may be achieved via application of theoretically grounded observational systems such as MPA that reveal thinking and action motivations via visible movement patterns. PMID:24999336
Honing in on the Social Phenotype in Williams Syndrome Using Multiple Measures and Multiple Raters
Li-Barber, Kirsten T.; Magargee, Erin T.
2010-01-01
The behavioral phenotype of Williams syndrome (WS) is characterized by difficulties with establishment and maintenance of friendships despite high levels of interest in social interaction. Here, parents and teachers rated 84 children with WS ages 4–16 years using two commonly-used measures assessing aspects of social functioning: the Social Skills Rating System and the Social Responsiveness Scale. Mean prosocial functioning fell in the low average to average range, whereas social reciprocity was perceived to be an area of significant difficulty for many children. Concordance between parent and teacher ratings was high. Patterns of social functioning are discussed. Findings highlight the importance of parsing the construct of social skills to gain a nuanced understanding of the social phenotype in WS. PMID:20614173
ERIC Educational Resources Information Center
Schuster, Christof
2004-01-01
This article presents a formula for weighted kappa in terms of rater means, rater variances, and the rater covariance that is particularly helpful in emphasizing that weighted kappa is an absolute agreement measure in the sense that it is sensitive to differences in rater's marginal distributions. Specifically, rater mean differences will decrease…
Protecting weak measurements against systematic errors
NASA Astrophysics Data System (ADS)
Pang, Shengshi; Alonso, Jose Raul Gonzalez; Brun, Todd A.; Jordan, Andrew N.
2016-07-01
In this work, we consider the systematic error of quantum metrology by weak measurements under decoherence. We derive the systematic error of maximum likelihood estimation in general to the first-order approximation of a small deviation in the probability distribution and study the robustness of standard weak measurement and postselected weak measurements against systematic errors. We show that, with a large weak value, the systematic error of a postselected weak measurement when the probe undergoes decoherence can be significantly lower than that of a standard weak measurement. This indicates another advantage of weak-value amplification in improving the performance of parameter estimation. We illustrate the results by an exact numerical simulation of decoherence arising from a bosonic mode and compare it to the first-order analytical result we obtain.
Measuring Cyclic Error in Laser Heterodyne Interferometers
NASA Technical Reports Server (NTRS)
Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter
2010-01-01
An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-
Gear Transmission Error Measurement System Made Operational
NASA Technical Reports Server (NTRS)
Oswald, Fred B.
2002-01-01
A system directly measuring the transmission error between the meshing spur or helical gears was installed at the NASA Glenn Research Center and made operational in August 2001. This system employs light beams directed by lenses and prisms through gratings mounted on the two gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. The device is capable of resolution better than 0.1 mm (one thousandth the thickness of a human hair). The measured transmission error can be displayed in a "map" that shows how the transmission error varies with the gear rotation or it can be converted to spectra to show the components at the meshing frequencies. Accurate transmission error data will help researchers better understand the mechanisms that cause gear noise and vibration and will lead to The Design Unit at the University of Newcastle in England specifically designed the new system for NASA. It is the only device in the United States that can measure dynamic transmission error at high rotational speeds. The new system will be used to develop new techniques to reduce dynamic transmission error along with the resulting noise and vibration of aeronautical transmissions.
Reducing Measurement Error in Student Achievement Estimation
ERIC Educational Resources Information Center
Battauz, Michela; Bellio, Ruggero; Gori, Enrico
2008-01-01
The achievement level is a variable measured with error, that can be estimated by means of the Rasch model. Teacher grades also measure the achievement level but they are expressed on a different scale. This paper proposes a method for combining these two scores to obtain a synthetic measure of the achievement level based on the theory developed…
Measurement error analysis of taxi meter
NASA Astrophysics Data System (ADS)
He, Hong; Li, Dan; Li, Hang; Zhang, Da-Jian; Hou, Ming-Feng; Zhang, Shi-pu
2011-12-01
The error test of the taximeter is divided into two aspects: (1) the test about time error of the taximeter (2) distance test about the usage error of the machine. The paper first gives the working principle of the meter and the principle of error verification device. Based on JJG517 - 2009 "Taximeter Verification Regulation ", the paper focuses on analyzing the machine error and test error of taxi meter. And the detect methods of time error and distance error are discussed as well. In the same conditions, standard uncertainty components (Class A) are evaluated, while in different conditions, standard uncertainty components (Class B) are also evaluated and measured repeatedly. By the comparison and analysis of the results, the meter accords with JJG517-2009, "Taximeter Verification Regulation ", thereby it improves the accuracy and efficiency largely. In actual situation, the meter not only makes up the lack of accuracy, but also makes sure the deal between drivers and passengers fair. Absolutely it enriches the value of the taxi as a way of transportation.
Technical approaches for measurement of human errors
NASA Technical Reports Server (NTRS)
Clement, W. F.; Heffley, R. K.; Jewell, W. F.; Mcruer, D. T.
1980-01-01
Human error is a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents. The technical details of a variety of proven approaches for the measurement of human errors in the context of the national airspace system are presented. Unobtrusive measurements suitable for cockpit operations and procedures in part of full mission simulation are emphasized. Procedure, system performance, and human operator centered measurements are discussed as they apply to the manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations.
Neutron multiplication error in TRU waste measurements
Veilleux, John; Stanfield, Sean B; Wachter, Joe; Ceo, Bob
2009-01-01
Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are
Measurement System Characterization in the Presence of Measurement Errors
NASA Technical Reports Server (NTRS)
Commo, Sean A.
2012-01-01
In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.
Multiple Indicators, Multiple Causes Measurement Error Models
Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.
2014-01-01
Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535
Multiple indicators, multiple causes measurement error models.
Tekwe, Carmen D; Carter, Randy L; Cullings, Harry M; Carroll, Raymond J
2014-11-10
Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methods for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535
Algorithmic Error Correction of Impedance Measuring Sensors
Starostenko, Oleg; Alarcon-Aquino, Vicente; Hernandez, Wilmar; Sergiyenko, Oleg; Tyrsa, Vira
2009-01-01
This paper describes novel design concepts and some advanced techniques proposed for increasing the accuracy of low cost impedance measuring devices without reduction of operational speed. The proposed structural method for algorithmic error correction and iterating correction method provide linearization of transfer functions of the measuring sensor and signal conditioning converter, which contribute the principal additive and relative measurement errors. Some measuring systems have been implemented in order to estimate in practice the performance of the proposed methods. Particularly, a measuring system for analysis of C-V, G-V characteristics has been designed and constructed. It has been tested during technological process control of charge-coupled device CCD manufacturing. The obtained results are discussed in order to define a reasonable range of applied methods, their utility, and performance. PMID:22303177
Sources of Error in UV Radiation Measurements
Larason, Thomas C.; Cromer, Christopher L.
2001-01-01
Increasing commercial, scientific, and technical applications involving ultraviolet (UV) radiation have led to the demand for improved understanding of the performance of instrumentation used to measure this radiation. There has been an effort by manufacturers of UV measuring devices (meters) to produce simple, optically filtered sensor systems to accomplish the varied measurement needs. We address common sources of measurement errors using these meters. The uncertainty in the calibration of the instrument depends on the response of the UV meter to the spectrum of the sources used and its similarity to the spectrum of the quantity to be measured. In addition, large errors can occur due to out-of-band, non-linear, and non-ideal geometric or spatial response of the UV meters. Finally, in many applications, how well the response of the UV meter approximates the presumed action spectrum needs to be understood for optimal use of the meters.
New Gear Transmission Error Measurement System Designed
NASA Technical Reports Server (NTRS)
Oswald, Fred B.
2001-01-01
The prime source of vibration and noise in a gear system is the transmission error between the meshing gears. Transmission error is caused by manufacturing inaccuracy, mounting errors, and elastic deflections under load. Gear designers often attempt to compensate for transmission error by modifying gear teeth. This is done traditionally by a rough "rule of thumb" or more recently under the guidance of an analytical code. In order for a designer to have confidence in a code, the code must be validated through experiment. NASA Glenn Research Center contracted with the Design Unit of the University of Newcastle in England for a system to measure the transmission error of spur and helical test gears in the NASA Gear Noise Rig. The new system measures transmission error optically by means of light beams directed by lenses and prisms through gratings mounted on the gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. A photodetector circuit converts the light to an analog electrical signal. To increase accuracy and reduce "noise" due to transverse vibration, there are parallel light paths at the top and bottom of the gears. The two signals are subtracted via differential amplifiers in the electronics package. The output of the system is 40 mV/mm, giving a resolution in the time domain of better than 0.1 mm, and discrimination in the frequency domain of better than 0.01 mm. The new system will be used to validate gear analytical codes and to investigate mechanisms that produce vibration and noise in parallel axis gears.
Improving Localization Accuracy: Successive Measurements Error Modeling
Abu Ali, Najah; Abu-Elkheir, Mervat
2015-01-01
Vehicle self-localization is an essential requirement for many of the safety applications envisioned for vehicular networks. The mathematical models used in current vehicular localization schemes focus on modeling the localization error itself, and overlook the potential correlation between successive localization measurement errors. In this paper, we first investigate the existence of correlation between successive positioning measurements, and then incorporate this correlation into the modeling positioning error. We use the Yule Walker equations to determine the degree of correlation between a vehicle’s future position and its past positions, and then propose a p-order Gauss–Markov model to predict the future position of a vehicle from its past p positions. We investigate the existence of correlation for two datasets representing the mobility traces of two vehicles over a period of time. We prove the existence of correlation between successive measurements in the two datasets, and show that the time correlation between measurements can have a value up to four minutes. Through simulations, we validate the robustness of our model and show that it is possible to use the first-order Gauss–Markov model, which has the least complexity, and still maintain an accurate estimation of a vehicle’s future location over time using only its current position. Our model can assist in providing better modeling of positioning errors and can be used as a prediction tool to improve the performance of classical localization algorithms such as the Kalman filter. PMID:26140345
Relationships of Measurement Error and Prediction Error in Observed-Score Regression
ERIC Educational Resources Information Center
Moses, Tim
2012-01-01
The focus of this paper is assessing the impact of measurement errors on the prediction error of an observed-score regression. Measures are presented and described for decomposing the linear regression's prediction error variance into parts attributable to the true score variance and the error variances of the dependent variable and the predictor…
Generalized Geometric Error Correction in Coordinate Measurement
NASA Astrophysics Data System (ADS)
Hermann, Gyula
Software compensation of geometric errors in coordinate measuring is hot subject because it results the decrease of manufacturing costs. The paper gives a summary of the results and achievements of earlier works on the subject. In order to improve these results a method is adapted to capture simultaneously the new coordinate frames in order use exact transformation values at discrete points of the measuring volume. The interpolation techniques published in the literature have the draw back that they could not maintain the orthogonality of the rotational part of the transformation matrices. The paper gives a technique, based on quaternions, which avoid this problem and leads to better results.
A Comparison of Assessment Methods and Raters in Product Creativity
ERIC Educational Resources Information Center
Lu, Chia-Chen; Luh, Ding-Bang
2012-01-01
Although previous studies have attempted to use different experiences of raters to rate product creativity by adopting the Consensus Assessment Method (CAT) approach, the validity of replacing CAT with another measurement tool has not been adequately tested. This study aimed to compare raters with different levels of experience (expert ves.…
Rater Effects in Clinical Performance Ratings of Surgery Residents
ERIC Educational Resources Information Center
Iramaneerat, Cherdsak; Myford, Carol M.
2006-01-01
A multi-faceted Rasch measurement (MFRM) approach was used to analyze clinical performance ratings of 24 first-year residents in one surgery residency program in Thailand to investigate three types of rater effects: leniency, rater inconsistency, and restriction of range. Faculty from 14 surgical services rated the clinical performance of…
Laser measurement and analysis of reposition error in polishing systems
NASA Astrophysics Data System (ADS)
Liu, Weisen; Wang, Junhua; Xu, Min; He, Xiaoying
2015-10-01
In this paper, robotic reposition error measurement method based on laser interference remote positioning is presented, the geometric error is analyzed in the polishing system based on robot and the mathematical model of the tilt error is presented. Studies show that less than 1 mm error is mainly caused by the tilt error with small incident angle. Marking spot position with interference fringe enhances greatly the error measurement precision, the measurement precision of tilt error can reach 5 um. Measurement results show that reposition error of the polishing system is mainly from the tilt error caused by the motor A, repositioning precision is greatly increased after polishing system improvement. The measurement method has important applications in the actual error measurement with low cost, simple operation.
[Therapeutic errors and dose measuring devices].
García-Tornel, S; Torrent, M L; Sentís, J; Estella, G; Estruch, M A
1982-06-01
In order to investigate the possibilities of therapeutical error in syrups administration, authors have measured the capacity of 158 home spoons (x +/- SD). They classified spoons in four groups: group I (table spoons), 49 units (11.65 +/- 2.10 cc); group II (tea spoons), 41 units (4.70+/-1.04 cc); group III (coffee spoons), 41 units (2.60 +/- 0.59 cc), and group IV (miscellaneous), 27 units. They have compared the first three groups with theoreticals values of 15, 5 and 2.5 cc, respectively, ensuring, in the first group, significant statistical differences. In this way, they analyzed information that paediatricians receive from "vademecums", which they usually consult and have studied two points: If syrup has a meter or not, and if it indicates drug concentration or not. Only a 18% of the syrups have a meter and about 88% of the drugs indicate their concentration (mg/cc). They conclude that to prevent errors of dosage, the pharmacological industry must include meters in their products. If they haven't the safest thing is to use syringes. PMID:7125401
Rater Effects: Ego Engagement in Rater Decision-Making
ERIC Educational Resources Information Center
Wiseman, Cynthia S.
2012-01-01
The decision-making behaviors of 8 raters when scoring 39 persuasive and 39 narrative essays written by second language learners were examined, first using Rasch analysis and then, through think aloud protocols. Results based on Rasch analysis and think aloud protocols recorded by raters as they were scoring holistically and analytically suggested…
Inter-rater and intra-rater reliability of the Bahasa Melayu version of Rose Angina Questionnaire.
Hassan, N B; Choudhury, S R; Naing, L; Conroy, R M; Rahman, A R A
2007-01-01
The objective of the study is to translate the Rose Questionnaire (RQ) into a Bahasa Melayu version and adapt it cross-culturally, and to measure its inter-rater and intrarater reliability. This cross sectional study was conducted in the respondents' homes or workplaces in Kelantan, Malaysia. One hundred respondents aged 30 and above with different socio-demographic status were interviewed for face validity. For each inter-rater and intra-rater reliability, a sample of 150 respondents was interviewed. Inter-rater and intra-rater reliabilities were assessed by Cohen's kappa. The overall inter-rater agreements by the five pair of interviewers at point one and two were 0.86, and intrarater reliability by the five interviewers on the seven-item questionnaire at poinone and two was 0.88, as measured by kappa coefficient. The translated Malay version of RQ demonstrated an almost perfect inter-rater and intra-rater reliability and further validation such as sensitivity and specificity analysis of this translated questionnaire is highly recommended. PMID:18333302
ERIC Educational Resources Information Center
Gyagenda, Ismail S.; Engelhard, George, Jr.
The purpose of this study was to describe the Rasch model for measurement and apply the model to examine the relationship between raters, domains of written compositions, and student writing ability. Twenty raters were randomly selected from a group of 87 operational raters contracted to rate essays as part of the 1993 field test of the Georgia…
Yan, Ying; Yi, Grace Y
2016-07-01
Covariate measurement error occurs commonly in survival analysis. Under the proportional hazards model, measurement error effects have been well studied, and various inference methods have been developed to correct for error effects under such a model. In contrast, error-contaminated survival data under the additive hazards model have received relatively less attention. In this paper, we investigate this problem by exploring measurement error effects on parameter estimation and the change of the hazard function. New insights of measurement error effects are revealed, as opposed to well-documented results for the Cox proportional hazards model. We propose a class of bias correction estimators that embraces certain existing estimators as special cases. In addition, we exploit the regression calibration method to reduce measurement error effects. Theoretical results for the developed methods are established, and numerical assessments are conducted to illustrate the finite sample performance of our methods. PMID:26328545
Measuring Systematic Error with Curve Fits
ERIC Educational Resources Information Center
Rupright, Mark E.
2011-01-01
Systematic errors are often unavoidable in the introductory physics laboratory. As has been demonstrated in many papers in this journal, such errors can present a fundamental problem for data analysis, particularly when comparing the data to a given model. In this paper I give three examples in which my students use popular curve-fitting software…
Error analysis and data reduction for interferometric surface measurements
NASA Astrophysics Data System (ADS)
Zhou, Ping
High-precision optical systems are generally tested using interferometry, since it often is the only way to achieve the desired measurement precision and accuracy. Interferometers can generally measure a surface to an accuracy of one hundredth of a wave. In order to achieve an accuracy to the next order of magnitude, one thousandth of a wave, each error source in the measurement must be characterized and calibrated. Errors in interferometric measurements are classified into random errors and systematic errors. An approach to estimate random errors in the measurement is provided, based on the variation in the data. Systematic errors, such as retrace error, imaging distortion, and error due to diffraction effects, are also studied in this dissertation. Methods to estimate the first order geometric error and errors due to diffraction effects are presented. Interferometer phase modulation transfer function (MTF) is another intrinsic error. The phase MTF of an infrared interferometer is measured with a phase Siemens star, and a Wiener filter is designed to recover the middle spatial frequency information. Map registration is required when there are two maps tested in different systems and one of these two maps needs to be subtracted from the other. Incorrect mapping causes wavefront errors. A smoothing filter method is presented which can reduce the sensitivity to registration error and improve the overall measurement accuracy. Interferometric optical testing with computer-generated holograms (CGH) is widely used for measuring aspheric surfaces. The accuracy of the drawn pattern on a hologram decides the accuracy of the measurement. Uncertainties in the CGH manufacturing process introduce errors in holograms and then the generated wavefront. An optimal design of the CGH is provided which can reduce the sensitivity to fabrication errors and give good diffraction efficiency for both chrome-on-glass and phase etched CGHs.
The Relative Error Magnitude in Three Measures of Change.
ERIC Educational Resources Information Center
Zimmerman, Donald W.; Williams, Richard H.
1982-01-01
Formulas for the standard error of measurement of three measures of change (simple differences; residualized difference scores; and a measure introduced by Tucker, Damarin, and Messick) are derived. A practical guide for determining the relative error of the three measures is developed. (Author/JKS)
Rapid mapping of volumetric machine errors using distance measurements
Krulewich, D.A.
1998-04-01
This paper describes a relatively inexpensive, fast, and easy to execute approach to maping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) models the relationship between volumetric error and the current state of the machine, (2) acquiring error data based on distance measurements throughout the work volume; and (3)fitting the error model using the nonlinear equation for the distance. The error model is formulated from the kinematic relationship among the six degrees of freedom of error an each moving axis. Expressing each parametric error as function of position each is combined to predict the error between the functional point and workpiece, also as a function of position. A series of distances between several fixed base locations and various functional points in the work volume is measured using a Laser Ball Bar (LBB). Each measured distance is a non-linear function dependent on the commanded location of the machine, the machine error, and the location of the base locations. Using the error model, the non-linear equation is solved producing a fit for the error model Also note that, given approximate distances between each pair of base locations, the exact base locations in the machine coordinate system determined during the non-linear filling procedure. Furthermore, with the use of 2048 more than three base locations, bias error in the measuring instrument can be removed The volumetric errors of three-axis commercial machining center have been mapped using this procedure. In this study, only errors associated with the nominal position of the machine were considered Other errors such as thermally induced and load induced errors were not considered although the mathematical model has the ability to account for these errors. Due to the proprietary nature of the projects we are
ERIC Educational Resources Information Center
Srsen, Katja Groleger; Vidmar, Gaj; Pikl, Masa; Vrecar, Irena; Burja, Cirila; Krusec, Klavdija
2012-01-01
The Halliwick concept is widely used in different settings to promote joyful movement in water and swimming. To assess the swimming skills and progression of an individual swimmer, a valid and reliable measure should be used. The Halliwick-concept-based Swimming with Independent Measure (SWIM) was introduced for this purpose. We aimed to determine…
MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS.
CARDONA,J.; PEGGS,S.; PILAT,R.; PTITSYN,V.
2004-07-05
The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model.
Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?
NASA Technical Reports Server (NTRS)
Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan
2013-01-01
The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.
Measurement of errors in clinical laboratories.
Agarwal, Rachna
2013-07-01
Laboratories have a major impact on patient safety as 80-90 % of all the diagnosis are made on the basis of laboratory tests. Laboratory errors have a reported frequency of 0.012-0.6 % of all test results. Patient safety is a managerial issue which can be enhanced by implementing active system to identify and monitor quality failures. This can be facilitated by reactive method which includes incident reporting followed by root cause analysis. This leads to identification and correction of weaknesses in policies and procedures in the system. Another way is proactive method like Failure Mode and Effect Analysis. In this focus is on entire examination process, anticipating major adverse events and pre-emptively prevent them from occurring. It is used for prospective risk analysis of high-risk processes to reduce the chance of errors in the laboratory and other patient care areas. PMID:24426216
Miller, Amy H; Cummings, Nydia; Tomlinson, Jamie
2013-01-01
Teaching evidence-based practice (EBP) skills is a core component in the education of health care professionals. Methods to assess individual student development of these skills are not well studied. The purpose of this study was to estimate the standard error of measurement (SEM) and minimal detectable change (MDC) for the modified Fresno Test (MFT) of Competence in EBP in first-year physical therapy students. Using a test-retest design, the MFT was administered two times to 35 participating first-year physical therapy students. Tests were scored by two trained physical therapist educators. Mean test scores clustered near the middle of the 232 point scoring range, 107 points (SD 14.9) and 103 points (SD 18.9). Inter-rater reliability [ICC (2, 1)] for scorers was 0.83 (95%CI 0.74-0.96). Intra-rater reliability was 0.85 (95%CI 0.60-0.97) and 0.94 (95%CI 0.86-0.99). Test-retest reliability [ICC (2, 1)] was 0.46 (95%CI 0.16-0.69), with a calculated SEM of 11 points, a confidence in a single measurement of 18.2 points, and MDC90 (90% confidence) of 25.7 points. Knowledge about estimates of SEM and MDC for specific student populations is important to assess change in individual student performance on the modified FT. PMID:24013248
Mode error analysis of impedance measurement using twin wires
NASA Astrophysics Data System (ADS)
Huang, Liang-Sheng; Yoshiro, Irie; Liu, Yu-Dong; Wang, Sheng
2015-03-01
Both longitudinal and transverse coupling impedance for some critical components need to be measured for accelerator design. The twin wires method is widely used to measure longitudinal and transverse impedance on the bench. A mode error is induced when the twin wires method is used with a two-port network analyzer. Here, the mode error is analyzed theoretically and an example analysis is given. Moreover, the mode error in the measurement is a few percent when a hybrid with no less than 25 dB isolation and a splitter with no less than 20 dB magnitude error are used. Supported by Natural Science Foundation of China (11175193, 11275221)
Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint
Stynes, J. K.; Ihas, B.
2012-04-01
The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.
Virtual Raters for Reproducible and Objective Assessments in Radiology.
Kleesiek, Jens; Petersen, Jens; Döring, Markus; Maier-Hein, Klaus; Köthe, Ullrich; Wick, Wolfgang; Hamprecht, Fred A; Bendszus, Martin; Biller, Armin
2016-01-01
Volumetric measurements in radiologic images are important for monitoring tumor growth and treatment response. To make these more reproducible and objective we introduce the concept of virtual raters (VRs). A virtual rater is obtained by combining knowledge of machine-learning algorithms trained with past annotations of multiple human raters with the instantaneous rating of one human expert. Thus, he is virtually guided by several experts. To evaluate the approach we perform experiments with multi-channel magnetic resonance imaging (MRI) data sets. Next to gross tumor volume (GTV) we also investigate subcategories like edema, contrast-enhancing and non-enhancing tumor. The first data set consists of N = 71 longitudinal follow-up scans of 15 patients suffering from glioblastoma (GB). The second data set comprises N = 30 scans of low- and high-grade gliomas. For comparison we computed Pearson Correlation, Intra-class Correlation Coefficient (ICC) and Dice score. Virtual raters always lead to an improvement w.r.t. inter- and intra-rater agreement. Comparing the 2D Response Assessment in Neuro-Oncology (RANO) measurements to the volumetric measurements of the virtual raters results in one-third of the cases in a deviating rating. Hence, we believe that our approach will have an impact on the evaluation of clinical studies as well as on routine imaging diagnostics. PMID:27118379
Virtual Raters for Reproducible and Objective Assessments in Radiology
Kleesiek, Jens; Petersen, Jens; Döring, Markus; Maier-Hein, Klaus; Köthe, Ullrich; Wick, Wolfgang; Hamprecht, Fred A.; Bendszus, Martin; Biller, Armin
2016-01-01
Volumetric measurements in radiologic images are important for monitoring tumor growth and treatment response. To make these more reproducible and objective we introduce the concept of virtual raters (VRs). A virtual rater is obtained by combining knowledge of machine-learning algorithms trained with past annotations of multiple human raters with the instantaneous rating of one human expert. Thus, he is virtually guided by several experts. To evaluate the approach we perform experiments with multi-channel magnetic resonance imaging (MRI) data sets. Next to gross tumor volume (GTV) we also investigate subcategories like edema, contrast-enhancing and non-enhancing tumor. The first data set consists of N = 71 longitudinal follow-up scans of 15 patients suffering from glioblastoma (GB). The second data set comprises N = 30 scans of low- and high-grade gliomas. For comparison we computed Pearson Correlation, Intra-class Correlation Coefficient (ICC) and Dice score. Virtual raters always lead to an improvement w.r.t. inter- and intra-rater agreement. Comparing the 2D Response Assessment in Neuro-Oncology (RANO) measurements to the volumetric measurements of the virtual raters results in one-third of the cases in a deviating rating. Hence, we believe that our approach will have an impact on the evaluation of clinical studies as well as on routine imaging diagnostics. PMID:27118379
Pressure Change Measurement Leak Testing Errors
Pryor, Jeff M; Walker, William C
2014-01-01
A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.
Temperature error in radiation thermometry caused by emissivity and reflectance measurement error.
Corwin, R R; Rodenburghii, A
1994-04-01
A general expression for the temperature error caused by emissivity uncertainty is developed, and it is concluded that lower-wavelength systems provide significantly less temperature error. A technique to measure the normal emissivity is proposed that uses a normally incident light beam and an aperture to collect a portion of the energy reflected from the surface and to measure essentially both the specular component and the biangular reflectance at the edge of the aperture. The theoretical results show that the aperture size need not be substantial to provide reasonably low temperature errors for a broad class of materials and surface reflectance conditions. PMID:20885529
Body Shape Preferences: Associations with Rater Body Shape and Sociosexuality
Price, Michael E.; Pound, Nicholas; Dunn, James; Hopkins, Sian; Kang, Jinsheng
2013-01-01
There is accumulating evidence of condition-dependent mate choice in many species, that is, individual preferences varying in strength according to the condition of the chooser. In humans, for example, people with more attractive faces/bodies, and who are higher in sociosexuality, exhibit stronger preferences for attractive traits in opposite-sex faces/bodies. However, previous studies have tended to use only relatively simple, isolated measures of rater attractiveness. Here we use 3D body scanning technology to examine associations between strength of rater preferences for attractive traits in opposite-sex bodies, and raters’ body shape, self-perceived attractiveness, and sociosexuality. For 118 raters and 80 stimuli models, we used a 3D scanner to extract body measurements associated with attractiveness (male waist-chest ratio [WCR], female waist-hip ratio [WHR], and volume-height index [VHI] in both sexes) and also measured rater self-perceived attractiveness and sociosexuality. As expected, WHR and VHI were important predictors of female body attractiveness, while WCR and VHI were important predictors of male body attractiveness. Results indicated that male rater sociosexuality scores were positively associated with strength of preference for attractive (low) VHI and attractive (low) WHR in female bodies. Moreover, male rater self-perceived attractiveness was positively associated with strength of preference for low VHI in female bodies. The only evidence of condition-dependent preferences in females was a positive association between attractive VHI in female raters and preferences for attractive (low) WCR in male bodies. No other significant associations were observed in either sex between aspects of rater body shape and strength of preferences for attractive opposite-sex body traits. These results suggest that among male raters, rater self-perceived attractiveness and sociosexuality are important predictors of preference strength for attractive opposite
Using neural nets to measure ocular refractive errors: a proposal
NASA Astrophysics Data System (ADS)
Netto, Antonio V.; Ferreira de Oliveira, Maria C.
2002-12-01
We propose the development of a functional system for diagnosing and measuring ocular refractive errors in the human eye (astigmatism, hypermetropia and myopia) by automatically analyzing images of the human ocular globe acquired with the Hartmann-Schack (HS) technique. HS images are to be input into a system capable of recognizing the presence of a refractive error and outputting a measure of such an error. The system should pre-process and image supplied by the acquisition technique and then use artificial neural networks combined with fuzzy logic to extract the necessary information and output an automated diagnosis of the refractive errors that may be present in the ocular globe under exam.
Phase error compensation methods for high-accuracy profile measurement
NASA Astrophysics Data System (ADS)
Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Zhang, Zonghua; Jiang, Hao; Yin, Yongkai; Huang, Shujun
2016-04-01
In a phase-shifting algorithm-based fringe projection profilometry, the nonlinear intensity response, called the gamma effect, of the projector-camera setup is a major source of error in phase retrieval. This paper proposes two novel, accurate approaches to realize both active and passive phase error compensation based on a universal phase error model which is suitable for a arbitrary phase-shifting step. The experimental results on phase error compensation and profile measurement of standard components verified the validity and accuracy of the two proposed approaches which are robust when faced with changeable measurement conditions.
Measurement error in biomarkers: sources, assessment, and impact on studies.
White, Emily
2011-01-01
Measurement error in a biomarker refers to the error of a biomarker measure applied in a specific way to a specific population, versus the true (etiologic) exposure. In epidemiologic studies, this error includes not only laboratory error, but also errors (variations) introduced during specimen collection and storage, and due to day-to-day, month-to-month, and year-to-year within-subject variability of the biomarker. Validity and reliability studies that aim to assess the degree of biomarker error for use of a specific biomarker in epidemiologic studies must be properly designed to measure all of these sources of error. Validity studies compare the biomarker to be used in an epidemiologic study to a perfect measure in a group of subjects. The parameters used to quantify the error in a binary marker are sensitivity and specificity. For continuous biomarkers, the parameters used are bias (the mean difference between the biomarker and the true exposure) and the validity coefficient (correlation of the biomarker with the true exposure). Often a perfect measure of the exposure is not available, so reliability (repeatability) studies are conducted. These are analysed using kappa for binary biomarkers and the intraclass correlation coefficient for continuous biomarkers. Equations are given which use these parameters from validity or reliability studies to estimate the impact of nondifferential biomarker measurement error on the risk ratio in an epidemiologic study that will use the biomarker. Under nondifferential error, the attenuation of the risk ratio is towards the null and is often quite substantial, even for reasonably accurate biomarker measures. Differential biomarker error between cases and controls can bias the risk ratio in any direction and completely invalidate an epidemiologic study. PMID:22997860
The error analysis and online measurement of linear slide motion error in machine tools
NASA Astrophysics Data System (ADS)
Su, H.; Hong, M. S.; Li, Z. J.; Wei, Y. L.; Xiong, S. B.
2002-06-01
A new accurate two-probe time domain method is put forward to measure the straight-going component motion error in machine tools. The characteristics of non-periodic and non-closing in the straightness profile error are liable to bring about higher-order harmonic component distortion in the measurement results. However, this distortion can be avoided by the new accurate two-probe time domain method through the symmetry continuation algorithm, uniformity and least squares method. The harmonic suppression is analysed in detail through modern control theory. Both the straight-going component motion error in machine tools and the profile error in a workpiece that is manufactured on this machine can be measured at the same time. All of this information is available to diagnose the origin of faults in machine tools. The analysis result is proved to be correct through experiment.
System Measures Errors Between Time-Code Signals
NASA Technical Reports Server (NTRS)
Cree, David; Venkatesh, C. N.
1993-01-01
System measures timing errors between signals produced by three asynchronous time-code generators. Errors between 1-second clock pulses resolved to 2 microseconds. Basic principle of computation of timing errors as follows: central processing unit in microcontroller constantly monitors time data received from time-code generators for changes in 1-second time-code intervals. In response to any such change, microprocessor buffers count of 16-bit internal timer.
Contouring error compensation on a micro coordinate measuring machine
NASA Astrophysics Data System (ADS)
Fan, Kuang-Chao; Wang, Hung-Yu; Ye, Jyun-Kuan
2011-12-01
In recent years, three-dimensional measurements of nano-technology researches have received a great attention in the world. Based on the high accuracy demand, the error compensation of measurement machine is very important. In this study, a high precision Micro-CMM (coordinate measuring machine) has been developed which is composed of a coplanar stage for reducing the Abbé error in the vertical direction, the linear diffraction grating interferometer (LDGI) as the position feedback sensor in nanometer resolution, and ultrasonic motors for position control. This paper presents the error compensation strategy including "Home accuracy" and "Position accuracy" in both axes. For the home error compensation, we utilize a commercial DVD pick-up head and its S-curve principle to accurately search the origin of each axis. For the positioning error compensation, the absolute positions relative to the home are calibrated by laser interferometer and the error budget table is stored for feed forward error compensation. Contouring error can thus be compensated if both the compensation of both X and Y positioning errors are applied. Experiments show the contouring accuracy can be controlled to within 50nm after compensation.
Rater agreement of visual lameness assessment in horses during lungeing
Hammarberg, M.; Egenvall, A.; Pfau, T.
2015-01-01
Summary Reasons for performing study Lungeing is an important part of lameness examinations as the circular path may accentuate low‐grade lameness. Movement asymmetries related to the circular path, to compensatory movements and to pain make the lameness evaluation complex. Scientific studies have shown high inter‐rater variation when assessing lameness during straight line movement. Objectives The aim was to estimate inter‐ and intra‐rater agreement of equine veterinarians evaluating lameness from videos of sound and lame horses during lungeing and to investigate the influence of veterinarians’ experience and the objective degree of movement asymmetry on rater agreement. Study design Cross‐sectional observational study. Methods Video recordings and quantitative gait analysis with inertial sensors were performed in 23 riding horses of various breeds. The horses were examined at trot on a straight line and during lungeing on soft or hard surfaces in both directions. One video sequence was recorded per condition and the horses were classified as forelimb lame, hindlimb lame or sound from objective straight line symmetry measurements. Equine veterinarians (n = 86), including 43 with >5 years of orthopaedic experience, participated in a web‐based survey and were asked to identify the lamest limb on 60 videos, including 10 repeats. The agreements between (inter‐rater) and within (intra‐rater) veterinarians were analysed with κ statistics (Fleiss, Cohen). Results Inter‐rater agreement κ was 0.31 (0.38/0.25 for experienced/less experienced) and higher for forelimb (0.33) than for hindlimb lameness (0.11) or soundness (0.08) evaluation. Median intra‐rater agreement κ was 0.57. Conclusions Inter‐rater agreement was poor for less experienced raters, and for all raters when evaluating hindlimb lameness. Since identification of the lame limb/limbs is a prerequisite for successful diagnosis, treatment and recovery, the high inter‐rater variation
Conditional Standard Errors of Measurement for Composite Scores Using IRT
ERIC Educational Resources Information Center
Kolen, Michael J.; Wang, Tianyou; Lee, Won-Chan
2012-01-01
Composite scores are often formed from test scores on educational achievement test batteries to provide a single index of achievement over two or more content areas or two or more item types on that test. Composite scores are subject to measurement error, and as with scores on individual tests, the amount of error variability typically depends on…
Investigation of Measurement Errors in Doppler Global Velocimetry
NASA Technical Reports Server (NTRS)
Meyers, James F.; Lee, Joseph W.
1999-01-01
While the initial development phase of Doppler Global Velocimetry (DGV) has been successfully completed, there remains a critical next phase to be conducted, namely the determination of an error budget to provide quantitative bounds for measurements obtained by this technology. This paper describes a laboratory investigation that consisted of a detailed interrogation of potential error sources to determine their contribution to the overall DGV error budget. A few sources of error were obvious; e.g., iodine vapor adsorption lines, optical systems, and camera characteristics. However, additional non-obvious sources were also discovered; e.g., laser frequency and single-frequency stability, media scattering characteristics, and interference fringes. This paper describes each identified error source, its effect on the overall error budget, and where possible, corrective procedures to reduce or eliminate its effect.
Non-Gaussian Error Distributions of LMC Distance Moduli Measurements
NASA Astrophysics Data System (ADS)
Crandall, Sara; Ratra, Bharat
2015-12-01
We construct error distributions for a compilation of 232 Large Magellanic Cloud (LMC) distance moduli values from de Grijs et al. that give an LMC distance modulus of (m - M)0 = 18.49 ± 0.13 mag (median and 1σ symmetrized error). Central estimates found from weighted mean and median statistics are used to construct the error distributions. The weighted mean error distribution is non-Gaussian—flatter and broader than Gaussian—with more (less) probability in the tails (center) than is predicted by a Gaussian distribution; this could be the consequence of unaccounted-for systematic uncertainties. The median statistics error distribution, which does not make use of the individual measurement errors, is also non-Gaussian—more peaked than Gaussian—with less (more) probability in the tails (center) than is predicted by a Gaussian distribution; this could be the consequence of publication bias and/or the non-independence of the measurements. We also construct the error distributions of 247 SMC distance moduli values from de Grijs & Bono. We find a central estimate of {(m-M)}0=18.94+/- 0.14 mag (median and 1σ symmetrized error), and similar probabilities for the error distributions.
Aliasing errors in measurements of beam position and ellipticity
NASA Astrophysics Data System (ADS)
Ekdahl, Carl
2005-09-01
Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.
Effects of a rater training on rating accuracy in a physical examination skills assessment
Weitz, Gunther; Vinzentius, Christian; Twesten, Christoph; Lehnert, Hendrik; Bonnemeier, Hendrik; König, Inke R.
2014-01-01
Background: The accuracy and reproducibility of medical skills assessment is generally low. Rater training has little or no effect. Our knowledge in this field, however, relies on studies involving video ratings of overall clinical performances. We hypothesised that a rater training focussing on the frame of reference could improve accuracy in grading the curricular assessment of a highly standardised physical head-to-toe examination. Methods: Twenty-one raters assessed the performance of 242 third-year medical students. Eleven raters had been randomly assigned to undergo a brief frame-of-reference training a few days before the assessment. 218 encounters were successfully recorded on video and re-assessed independently by three additional observers. Accuracy was defined as the concordance between the raters' grade and the median of the observers' grade. After the assessment, both students and raters filled in a questionnaire about their views on the assessment. Results: Rater training did not have a measurable influence on accuracy. However, trained raters rated significantly more stringently than untrained raters, and their overall stringency was closer to the stringency of the observers. The questionnaire indicated a higher awareness of the halo effect in the trained raters group. Although the self-assessment of the students mirrored the assessment of the raters in both groups, the students assessed by trained raters felt more discontent with their grade. Conclusions: While training had some marginal effects, it failed to have an impact on the individual accuracy. These results in real-life encounters are consistent with previous studies on rater training using video assessments of clinical performances. The high degree of standardisation in this study was not suitable to harmonize the trained raters’ grading. The data support the notion that the process of appraising medical performance is highly individual. A frame-of-reference training as applied does not
Error tolerance of topological codes with independent bit-flip and measurement errors
NASA Astrophysics Data System (ADS)
Andrist, Ruben S.; Katzgraber, Helmut G.; Bombin, H.; Martin-Delgado, M. A.
2016-07-01
Topological quantum error correction codes are currently among the most promising candidates for efficiently dealing with the decoherence effects inherently present in quantum devices. Numerically, their theoretical error threshold can be calculated by mapping the underlying quantum problem to a related classical statistical-mechanical spin system with quenched disorder. Here, we present results for the general fault-tolerant regime, where we consider both qubit and measurement errors. However, unlike in previous studies, here we vary the strength of the different error sources independently. Our results highlight peculiar differences between toric and color codes. This study complements previous results published in New J. Phys. 13, 083006 (2011), 10.1088/1367-2630/13/8/083006.
Temperature measurement error simulation of the pure rotational Raman lidar
NASA Astrophysics Data System (ADS)
Jia, Jingyu; Huang, Yong; Wang, Zhirui; Yi, Fan; Shen, Jianglin; Jia, Xiaoxing; Chen, Huabin; Yang, Chuan; Zhang, Mingyang
2015-11-01
Temperature represents the atmospheric thermodynamic state. Measure the atmospheric temperature accurately and precisely is very important to understand the physics of the atmospheric process. Lidar has some advantages in the atmospheric temperature measurement. Based on the lidar equation and the theory of pure rotational Raman (PRR), we've simulated the temperature measurement errors of the double-grating-polychromator (DGP) based PRR lidar. First of all, without considering the attenuation terms of the atmospheric transmittance and the range in the lidar equation, we've simulated the temperature measurement errors which are influenced by the beam splitting system parameters, such as the center wavelength, the receiving bandwidth and the atmospheric temperature. We analyzed three types of the temperature measurement errors in theory. We've proposed several design methods for the beam splitting system to reduce the temperature measurement errors. Secondly, we simulated the temperature measurement error profiles by the lidar equation. As the lidar power-aperture product is determined, the main target of our lidar system is to reduce the statistical and the leakage errors.
Measuring worst-case errors in a robot workcell
Simon, R.W.; Brost, R.C.; Kholwadwala, D.K.
1997-10-01
Errors in model parameters, sensing, and control are inevitably present in real robot systems. These errors must be considered in order to automatically plan robust solutions to many manipulation tasks. Lozano-Perez, Mason, and Taylor proposed a formal method for synthesizing robust actions in the presence of uncertainty; this method has been extended by several subsequent researchers. All of these results presume the existence of worst-case error bounds that describe the maximum possible deviation between the robot`s model of the world and reality. This paper examines the problem of measuring these error bounds for a real robot workcell. These measurements are difficult, because of the desire to completely contain all possible deviations while avoiding bounds that are overly conservative. The authors present a detailed description of a series of experiments that characterize and quantify the possible errors in visual sensing and motion control for a robot workcell equipped with standard industrial robot hardware. In addition to providing a means for measuring these specific errors, these experiments shed light on the general problem of measuring worst-case errors.
Aerial measurement error with a dot planimeter: Some experimental estimates
NASA Technical Reports Server (NTRS)
Yuill, R. S.
1971-01-01
A shape analysis is presented which utilizes a computer to simulate a multiplicity of dot grids mathematically. Results indicate that the number of dots placed over an area to be measured provides the entire correlation with accuracy of measurement, the indices of shape being of little significance. Equations and graphs are provided from which the average expected error, and the maximum range of error, for various numbers of dot points can be read.
Space acceleration measurement system triaxial sensor head error budget
NASA Astrophysics Data System (ADS)
Thomas, John E.; Peters, Rex B.; Finley, Brian D.
1992-01-01
The objective of the Space Acceleration Measurement System (SAMS) is to measure and record the microgravity environment for a given experiment aboard the Space Shuttle. To accomplish this, SAMS uses remote triaxial sensor heads (TSH) that can be mounted directly on or near an experiment. The errors of the TSH are reduced by calibrating it before and after each flight. The associated error budget for the calibration procedure is discussed here.
Identification and Minimization of Errors in Doppler Global Velocimetry Measurements
NASA Technical Reports Server (NTRS)
Meyers, James F.; Lee, Joseph W.
2000-01-01
A systematic laboratory investigation was conducted to identify potential measurement error sources in Doppler Global Velocimetry technology. Once identified, methods were developed to eliminate or at least minimize the effects of these errors. The areas considered included the Iodine vapor cell, optical alignment, scattered light characteristics, noise sources, and the laser. Upon completion the demonstrated measurement uncertainty was reduced to 0.5 m/sec.
Comparing Measurement Error between Two Different Methods of Measurement of Various Magnitudes
ERIC Educational Resources Information Center
Zavorsky, Gerald S.
2010-01-01
Measurement error is a common problem in several fields of research such as medicine, physiology, and exercise science. The standard deviation of repeated measurements on the same person is the measurement error. One way of presenting measurement error is called the repeatability, which is 2.77 multiplied by the within subject standard deviation.…
Examination of Rater Training Effect and Rater Eligibility in L2 Performance Assessment
ERIC Educational Resources Information Center
Kondo, Yusuke
2010-01-01
The purposes of this study were to investigate the effects of rater training in an L2 performance assessment and to examine the eligibility of L2 users of English as raters in L2 performance assessment. Rater training was conducted in order for raters to clearly understand the criteria, the evaluation items, and the evaluation procedure. In this…
Measurement error caused by spatial misalignment in environmental epidemiology
Gryparis, Alexandros; Paciorek, Christopher J.; Zeka, Ariana; Schwartz, Joel; Coull, Brent A.
2009-01-01
In many environmental epidemiology studies, the locations and/or times of exposure measurements and health assessments do not match. In such settings, health effects analyses often use the predictions from an exposure model as a covariate in a regression model. Such exposure predictions contain some measurement error as the predicted values do not equal the true exposures. We provide a framework for spatial measurement error modeling, showing that smoothing induces a Berkson-type measurement error with nondiagonal error structure. From this viewpoint, we review the existing approaches to estimation in a linear regression health model, including direct use of the spatial predictions and exposure simulation, and explore some modified approaches, including Bayesian models and out-of-sample regression calibration, motivated by measurement error principles. We then extend this work to the generalized linear model framework for health outcomes. Based on analytical considerations and simulation results, we compare the performance of all these approaches under several spatial models for exposure. Our comparisons underscore several important points. First, exposure simulation can perform very poorly under certain realistic scenarios. Second, the relative performance of the different methods depends on the nature of the underlying exposure surface. Third, traditional measurement error concepts can help to explain the relative practical performance of the different methods. We apply the methods to data on the association between levels of particulate matter and birth weight in the greater Boston area. PMID:18927119
Methods to Assess Measurement Error in Questionnaires of Sedentary Behavior
Sampson, Joshua N; Matthews, Charles E; Freedman, Laurence; Carroll, Raymond J.; Kipnis, Victor
2015-01-01
Sedentary behavior has already been associated with mortality, cardiovascular disease, and cancer. Questionnaires are an affordable tool for measuring sedentary behavior in large epidemiological studies. Here, we introduce and evaluate two statistical methods for quantifying measurement error in questionnaires. Accurate estimates are needed for assessing questionnaire quality. The two methods would be applied to validation studies that measure a sedentary behavior by both questionnaire and accelerometer on multiple days. The first method fits a reduced model by assuming the accelerometer is without error, while the second method fits a more complete model that allows both measures to have error. Because accelerometers tend to be highly accurate, we show that ignoring the accelerometer’s measurement error, can result in more accurate estimates of measurement error in some scenarios. In this manuscript, we derive asymptotic approximations for the Mean-Squared Error of the estimated parameters from both methods, evaluate their dependence on study design and behavior characteristics, and offer an R package so investigators can make an informed choice between the two methods. We demonstrate the difference between the two methods in a recent validation study comparing Previous Day Recalls (PDR) to an accelerometer-based ActivPal. PMID:27340315
Error-tradeoff and error-disturbance relations for incompatible quantum measurements.
Branciard, Cyril
2013-04-23
Heisenberg's uncertainty principle is one of the main tenets of quantum theory. Nevertheless, and despite its fundamental importance for our understanding of quantum foundations, there has been some confusion in its interpretation: Although Heisenberg's first argument was that the measurement of one observable on a quantum state necessarily disturbs another incompatible observable, standard uncertainty relations typically bound the indeterminacy of the outcomes when either one or the other observable is measured. In this paper, we quantify precisely Heisenberg's intuition. Even if two incompatible observables cannot be measured together, one can still approximate their joint measurement, at the price of introducing some errors with respect to the ideal measurement of each of them. We present a tight relation characterizing the optimal tradeoff between the error on one observable vs. the error on the other. As a particular case, our approach allows us to characterize the disturbance of an observable induced by the approximate measurement of another one; we also derive a stronger error-disturbance relation for this scenario. PMID:23564344
How Do Raters Judge Spoken Vocabulary?
ERIC Educational Resources Information Center
Li, Hui
2016-01-01
The aim of the study was to investigate how raters come to their decisions when judging spoken vocabulary. Segmental rating was introduced to quantify raters' decision-making process. It is hoped that this simulated study brings fresh insight to future methodological considerations with spoken data. Twenty trainee raters assessed five Chinese…
Errors Associated with the Direct Measurement of Radionuclides in Wounds
Hickman, D P
2006-03-02
Work in radiation areas can occasionally result in accidental wounds containing radioactive materials. When a wound is incurred within a radiological area, the presence of radioactivity in the wound needs to be confirmed to determine if additional remedial action needs to be taken. Commonly used radiation area monitoring equipment is poorly suited for measurement of radioactive material buried within the tissue of the wound. The Lawrence Livermore National Laboratory (LLNL) In Vivo Measurement Facility has constructed a portable wound counter that provides sufficient detection of radioactivity in wounds as shown in Fig. 1. The LLNL wound measurement system is specifically designed to measure low energy photons that are emitted from uranium and transuranium radionuclides. The portable wound counting system uses a 2.5cm diameter by 1mm thick NaI(Tl) detector. The detector is connected to a Canberra NaI InSpector{trademark}. The InSpector interfaces with an IBM ThinkPad laptop computer, which operates under Genie 2000 software. The wound counting system is maintained and used at the LLNL In Vivo Measurement Facility. The hardware is designed to be portable and is occasionally deployed to respond to the LLNL Health Services facility or local hospitals for examination of personnel that may have radioactive materials within a wound. The typical detection levels in using the LLNL portable wound counter in a low background area is 0.4 nCi to 0.6 nCi assuming a near zero mass source. This paper documents the systematic errors associated with in vivo measurement of radioactive materials buried within wounds using the LLNL portable wound measurement system. These errors are divided into two basic categories, calibration errors and in vivo wound measurement errors. Within these categories, there are errors associated with particle self-absorption of photons, overlying tissue thickness, source distribution within the wound, and count errors. These errors have been examined and
Detection and Classification of Measurement Errors in Bioimpedance Spectroscopy
Gil-Pita, Roberto
2016-01-01
Bioimpedance spectroscopy (BIS) measurement errors may be caused by parasitic stray capacitance, impedance mismatch, cross-talking or their very likely combination. An accurate detection and identification is of extreme importance for further analysis because in some cases and for some applications, certain measurement artifacts can be corrected, minimized or even avoided. In this paper we present a robust method to detect the presence of measurement artifacts and identify what kind of measurement error is present in BIS measurements. The method is based on supervised machine learning and uses a novel set of generalist features for measurement characterization in different immittance planes. Experimental validation has been carried out using a database of complex spectra BIS measurements obtained from different BIS applications and containing six different types of errors, as well as error-free measurements. The method obtained a low classification error (0.33%) and has shown good generalization. Since both the features and the classification schema are relatively simple, the implementation of this pre-processing task in the current hardware of bioimpedance spectrometers is possible. PMID:27362862
Detection and Classification of Measurement Errors in Bioimpedance Spectroscopy.
Ayllón, David; Gil-Pita, Roberto; Seoane, Fernando
2016-01-01
Bioimpedance spectroscopy (BIS) measurement errors may be caused by parasitic stray capacitance, impedance mismatch, cross-talking or their very likely combination. An accurate detection and identification is of extreme importance for further analysis because in some cases and for some applications, certain measurement artifacts can be corrected, minimized or even avoided. In this paper we present a robust method to detect the presence of measurement artifacts and identify what kind of measurement error is present in BIS measurements. The method is based on supervised machine learning and uses a novel set of generalist features for measurement characterization in different immittance planes. Experimental validation has been carried out using a database of complex spectra BIS measurements obtained from different BIS applications and containing six different types of errors, as well as error-free measurements. The method obtained a low classification error (0.33%) and has shown good generalization. Since both the features and the classification schema are relatively simple, the implementation of this pre-processing task in the current hardware of bioimpedance spectrometers is possible. PMID:27362862
Measurement uncertainty evaluation of conicity error inspected on CMM
NASA Astrophysics Data System (ADS)
Wang, Dongxia; Song, Aiguo; Wen, Xiulan; Xu, Youxiong; Qiao, Guifang
2016-01-01
The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performance. According to the new generation geometrical product specification(GPS), the error and its measurement uncertainty should be evaluated together. The mathematical model of the minimum zone conicity error is established and an improved immune evolutionary algorithm(IIEA) is proposed to search for the conicity error. In the IIEA, initial antibodies are firstly generated by using quasi-random sequences and two kinds of affinities are calculated. Then, each antibody clone is generated and they are self-adaptively mutated so as to maintain diversity. Similar antibody is suppressed and new random antibody is generated. Because the mathematical model of conicity error is strongly nonlinear and the input quantities are not independent, it is difficult to use Guide to the expression of uncertainty in the measurement(GUM) method to evaluate measurement uncertainty. Adaptive Monte Carlo method(AMCM) is proposed to estimate measurement uncertainty in which the number of Monte Carlo trials is selected adaptively and the quality of the numerical results is directly controlled. The cone parts was machined on lathe CK6140 and measured on Miracle NC 454 Coordinate Measuring Machine(CMM). The experiment results confirm that the proposed method not only can search for the approximate solution of the minimum zone conicity error(MZCE) rapidly and precisely, but also can evaluate measurement uncertainty and give control variables with an expected numerical tolerance. The conicity errors computed by the proposed method are 20%-40% less than those computed by NC454 CMM software and the evaluation accuracy improves significantly.
Laser tracker error determination using a network measurement
NASA Astrophysics Data System (ADS)
Hughes, Ben; Forbes, Alistair; Lewis, Andrew; Sun, Wenjuan; Veal, Dan; Nasr, Karim
2011-04-01
We report on a fast, easily implemented method to determine all the geometrical alignment errors of a laser tracker, to high precision. The technique requires no specialist equipment and can be performed in less than an hour. The technique is based on the determination of parameters of a geometric model of the laser tracker, using measurements of a set of fixed target locations, from multiple locations of the tracker. After fitting of the model parameters to the observed data, the model can be used to perform error correction of the raw laser tracker data or to derive correction parameters in the format of the tracker manufacturer's internal error map. In addition to determination of the model parameters, the method also determines the uncertainties and correlations associated with the parameters. We have tested the technique on a commercial laser tracker in the following way. We disabled the tracker's internal error compensation, and used a five-position, fifteen-target network to estimate all the geometric errors of the instrument. Using the error map generated from this network test, the tracker was able to pass a full performance validation test, conducted according to a recognized specification standard (ASME B89.4.19-2006). We conclude that the error correction determined from the network test is as effective as the manufacturer's own error correction methodologies.
Errors and correction of precipitation measurements in China
NASA Astrophysics Data System (ADS)
Ren, Zhihua; Li, Mingqin
2007-05-01
In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the “horizontal precipitation gauge” was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper. A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible.
Harris-Hayes, Marcie; Commean, Paul K.; Patterson, Jacqueline D.; Clohisy, John C.; Hillen, Travis J.
2014-01-01
The objective of this study was to develop comprehensive and reliable radiation-free methods to quantify femoral and acetabular morphology using magnetic resonance imaging (MRI). Thirty-two hips [16 subjects, 6 with intra-articular hip disorder (IAHD); 10 controls] were included. A 1.5-T magnetic resonance system was used to obtain three-dimensional fat-suppressed gradient-echo images at the pelvis and distal femora. After acquisition, pelvic images were post-processed to correct for coronal, axial and sagittal rotation. Measurements performed included acetabular version (AV), femoral version (FV), lateral center-edge angle (LCEA), femoral neck angle (FNA) and alpha angle (AA) at 3, 2, 1 and 12 a.m. Two experienced raters, a musculoskeletal radiologist and an orthopedic physical therapist, and a novice rater, a research assistant, completed reliability testing. Raters measured all hips twice with minimum 2 weeks between sessions. Intra-class Correlation Coefficients (ICCs) were used to determine rater reliability; standard error of measurements was reported to estimate the reasonable limits of the expected error in the different raters’ scores. Inter-rater reliability was good to excellent for all raters for AV, FV, FNA and LCEA (ICCs: 0.82–0.98); good to excellent between experienced raters (ICCs: 0.78–0.86) and poor to good between novice and experienced raters (ICCs: 0.23–0.78) for AA. Intra-rater reliability was good to excellent for all raters for AV, FV and FNA (ICCs: 0.93–0.99); for one experienced and novice rater for LCEA (ICCs: 0.84–0.89); moderate to excellent for the experienced raters for AA (ICCs: 0.72-0.89). Intra-rater reliability was poor for the second experienced rater for LCEA (ICC: 0.56), due to a single measurement error and for the novice rater for AA (ICCs: 0.17–0.38). We described MRI methods to comprehensively assess femoral and acetabular morphology. Measurements such as AV, FV and FNA and the LCEA can be made reliably by
Poulos, Natalie S.; Pasch, Keryn E.
2015-01-01
Few studies of the food environment have collected primary data, and even fewer have reported reliability of the tool used. This study focused on the development of an innovative electronic data collection tool used to document outdoor food and beverage (FB) advertising and establishments near 43 middle and high schools in the Outdoor MEDIA Study. Tool development used GIS based mapping, an electronic data collection form on handheld devices, and an easily adaptable interface to efficiently collect primary data within the food environment. For the reliability study, two teams of data collectors documented all FB advertising and establishments within one half-mile of six middle schools. Inter-rater reliability was calculated overall and by advertisement or establishment category using percent agreement. A total of 824 advertisements (n=233), establishment advertisements (n=499), and establishments (n=92) were documented (range=8–229 per school). Overall inter-rater reliability of the developed tool ranged from 69–89% for advertisements and establishments. Results suggest that the developed tool is highly reliable and effective for documenting the outdoor FB environment. PMID:26022774
Poulos, Natalie S; Pasch, Keryn E
2015-07-01
Few studies of the food environment have collected primary data, and even fewer have reported reliability of the tool used. This study focused on the development of an innovative electronic data collection tool used to document outdoor food and beverage (FB) advertising and establishments near 43 middle and high schools in the Outdoor MEDIA Study. Tool development used GIS based mapping, an electronic data collection form on handheld devices, and an easily adaptable interface to efficiently collect primary data within the food environment. For the reliability study, two teams of data collectors documented all FB advertising and establishments within one half-mile of six middle schools. Inter-rater reliability was calculated overall and by advertisement or establishment category using percent agreement. A total of 824 advertisements (n=233), establishment advertisements (n=499), and establishments (n=92) were documented (range=8-229 per school). Overall inter-rater reliability of the developed tool ranged from 69-89% for advertisements and establishments. Results suggest that the developed tool is highly reliable and effective for documenting the outdoor FB environment. PMID:26022774
Angular bias errors in three-component laser velocimeter measurements
Chen, C.Y.; Kim, P.J.; Walker, D.T.
1996-09-01
For three-component laser velocimeter systems, the change in projected area of the coincident measurement volume for different flow directions will introduce an angular bias in naturally sampled data. In this study, the effect of turbulence level and orientation of the measurement volumes on angular bias errors was examined. The operation of a typical three-component laser velocimeter was simulated using a Monte Carlo technique. Results for the specific configuration examined show that for turbulence levels less than 10% no significant bias errors in the mean velocities will occur and errors in the root-mean-square (r.m.s.) velocities will be less than 3% for all orientations. For turbulence levels less than 30%, component mean velocity bias errors less than 5% of the mean velocity vector magnitude can be attained with proper orientation of the measurement volume; however, the r.m.s. velocities may be in error as much as 10%. For turbulence levels above 50%, there is no orientation which will yield accurate estimates of all three mean velocities; component mean velocity errors as large as 15% of the mean velocity vector magnitude may be encountered.
Multiscale measurement error models for aggregated small area health data.
Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Carroll, Rachel; Watjou, Kevin
2016-08-01
Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed. One of the main goals in aggregated health data is to investigate the relationship between predictors and an outcome at different geographical levels. In this paper, we extend multiscale models to examine whether a predictor effect at a finer level hold true at a coarser level. To adjust for predictor uncertainty due to aggregation, we applied measurement error models in the framework of multiscale approach. To assess the benefit of using multiscale measurement error models, we compare the performance of multiscale models with and without measurement error in both real and simulated data. We found that ignoring the measurement error in multiscale models underestimates the regression coefficient, while it overestimates the variance of the spatially structured random effect. On the other hand, accounting for the measurement error in multiscale models provides a better model fit and unbiased parameter estimates. PMID:27566773
A new indirect measure of diffusion model error
Kumar, A.; Morel, J. E.; Adams, M. L.
2013-07-01
We define a new indirect measure of the diffusion model error called the diffusion model error source. When this model error source is added to the diffusion equation, the transport solution for the angular-integrated intensity is obtained. This source represents a means by which a transport code can be used to generate information relating to the adequacy of diffusion theory for any given problem without actually solving the diffusion equation. The generation of this source does not relate in any way to acceleration of the iterative convergence of transport solutions. Perhaps the most well-known indirect measure of the diffusion model error is the variable-Eddington tensor. This tensor provides a great deal of information about the angular dependence of the angular intensity solution, but it is not always simple to interpret. In contrast, our diffusion model error source is a scalar that is conceptually easy to understand. In addition to defining the diffusion model error source analytically, we show how to generate this source numerically relative to the S{sub n} radiative transfer equations with linear-discontinuous spatial discretization. This numerical source is computationally tested and shown to reproduce the Sn solution for a Marshak-wave problem. (authors)
Error Evaluation of Methyl Bromide Aerodynamic Flux Measurements
Majewski, M.S.
1997-01-01
Methyl bromide volatilization fluxes were calculated for a tarped and a nontarped field using 2 and 4 hour sampling periods. These field measurements were averaged in 8, 12, and 24 hour increments to simulate longer sampling periods. The daily flux profiles were progressively smoothed and the cumulative volatility losses increased by 20 to 30% with each longer sampling period. Error associated with the original flux measurements was determined from linear regressions of measured wind speed and air concentration as a function of height, and averaged approximately 50%. The high errors resulted from long application times, which resulted in a nonuniform source strength; and variable tarp permeability, which is influenced by temperature, moisture, and thickness. The increase in cumulative volatilization losses that resulted from longer sampling periods were within the experimental error of the flux determination method.
Objective and Subjective Refractive Error Measurements in Monkeys
Hung, Li-Fang; Ramamirtham, Ramkumar; Wensveen, Janice M.; Harwerth, Ronald S.; Smith, Earl L.
2011-01-01
Purpose To better understand the functional significance of refractive-error measures obtained using common objective methods in laboratory animals, we compared objective and subjective measures of refractive error in adolescent rhesus monkeys. Methods The subjects were 20 adolescent monkeys. Spherical-equivalent spectacle-plane refractive corrections were measured by retinoscopy and autorefraction while the animals were cyclopleged and anesthetized. The eye’s axial dimensions were measured by A-Scan ultrasonography. Subjective measures of the eye’s refractive state, with and without cycloplegia, were obtained using psychophysical methods. Specifically, we measured spatial contrast sensitivity as a function of spectacle lens power for relatively high spatial frequency gratings. The lens power that produced the highest contrast sensitivity was taken as the subjective refraction. Results Retinoscopy and autorefraction consistently yielded higher amounts of hyperopia relative to subjective measurements obtained with or without cycloplegia. The subjective refractions were not affected by cycloplegia and on average were 1.42 ± 0.61 D and 1.24 ± 0.62 D less hyperopic than the retinoscopy and autorefraction measurements, respectively. Repeating the retinoscopy and subjective measurements through 3 mm artificial pupils produced similar differences. Conclusions The results show that commonly used objective methods for assessing refractive errors in monkeys significantly overestimate the degree of hyperopia. It is likely that multiple factors contributed to the hyperopic bias associated with these objective measurements. However, the magnitude of the hyperopic bias was in general agreement with the “small-eye artifact” of retinoscopy. PMID:22198796
Non-Gaussian error distribution of 7Li abundance measurements
NASA Astrophysics Data System (ADS)
Crandall, Sara; Houston, Stephen; Ratra, Bharat
2015-07-01
We construct the error distribution of 7Li abundance measurements for 66 observations (with error bars) used by Spite et al. (2012) that give A(Li) = 2.21 ± 0.065 (median and 1σ symmetrized error). This error distribution is somewhat non-Gaussian, with larger probability in the tails than is predicted by a Gaussian distribution. The 95.4% confidence limits are 3.0σ in terms of the quoted errors. We fit the data to four commonly used distributions: Gaussian, Cauchy, Student’s t and double exponential with the center of the distribution found with both weighted mean and median statistics. It is reasonably well described by a widened n = 8 Student’s t distribution. Assuming Gaussianity, the observed A(Li) is 6.5σ away from that expected from standard Big Bang Nucleosynthesis (BBN) given the Planck observations. Accounting for the non-Gaussianity of the observed A(Li) error distribution reduces the discrepancy to 4.9σ, which is still significant.
Cumulative Measurement Errors for Dynamic Testing of Space Flight Hardware
NASA Technical Reports Server (NTRS)
Winnitoy, Susan
2012-01-01
measurements during hardware motion and contact. While performing dynamic testing of an active docking system, researchers found that the data from the motion platform, test hardware and two external measurement systems exhibited frame offsets and rotational errors. While the errors were relatively small when considering the motion scale overall, they substantially exceeded the individual accuracies for each component. After evaluating both the static and dynamic measurements, researchers found that the static measurements introduced significantly more error into the system than the dynamic measurements even though, in theory, the static measurement errors should be smaller than the dynamic. In several cases, the magnitude of the errors varied widely for the static measurements. Upon further investigation, researchers found the larger errors to be a consequence of hardware alignment issues, frame location and measurement technique whereas the smaller errors were dependent on the number of measurement points. This paper details and quantifies the individual and cumulative errors of the docking system and describes methods for reducing the overall measurement error. The overall quality of the dynamic docking tests for flight hardware verification was improved by implementing these error reductions.
Wave-front measurement errors from restricted concentric subdomains.
Goldberg, K A; Geary, K
2001-09-01
In interferometry and optical testing, system wave-front measurements that are analyzed on a restricted subdomain of the full pupil can include predictable systematic errors. In nearly all cases, the measured rms wave-front error and the magnitudes of the individual aberration polynomial coefficients underestimate the wave-front error magnitudes present in the full-pupil domain. We present an analytic method to determine the relationships between the coefficients of aberration polynomials defined on the full-pupil domain and those defined on a restricted concentric subdomain. In this way, systematic wave-front measurement errors introduced by subregion selection are investigated. Using vector and matrix representations for the wave-front aberration coefficients, we generalize the method to the study of arbitrary input wave fronts and subdomain sizes. While wave-front measurements on a restricted subdomain are insufficient for predicting the wave front of the full-pupil domain, studying the relationship between known full-pupil wave fronts and subdomain wave fronts allows us to set subdomain size limits for arbitrary measurement fidelity. PMID:11551047
Optimal measurement strategies for effective suppression of drift errors.
Yashchuk, Valeriy V
2009-11-01
Drifting of experimental setups with change in temperature or other environmental conditions is the limiting factor of many, if not all, precision measurements. The measurement error due to a drift is, in some sense, in-between random noise and systematic error. In the general case, the error contribution of a drift cannot be averaged out using a number of measurements identically carried out over a reasonable time. In contrast to systematic errors, drifts are usually not stable enough for a precise calibration. Here a rather general method for effective suppression of the spurious effects caused by slow drifts in a large variety of instruments and experimental setups is described. An analytical derivation of an identity, describing the optimal measurement strategies suitable for suppressing the contribution of a slow drift described with a certain order polynomial function, is presented. A recursion rule as well as a general mathematical proof of the identity is given. The effectiveness of the discussed method is illustrated with an application of the derived optimal scanning strategies to precise surface slope measurements with a surface profiler. PMID:19947751
Optimal measurement strategies for effective suppression of drift errors
Yashchuk, Valeriy V.
2009-04-16
Drifting of experimental set-ups with change of temperature or other environmental conditions is the limiting factor of many, if not all, precision measurements. The measurement error due to a drift is, in some sense, in-between random noise and systematic error. In the general case, the error contribution of a drift cannot be averaged out using a number of measurements identically carried out over a reasonable time. In contrast to systematic errors, drifts are usually not stable enough for a precise calibration. Here a rather general method for effective suppression of the spurious effects caused by slow drifts in a large variety of instruments and experimental set-ups is described. An analytical derivation of an identity, describing the optimal measurement strategies suitable for suppressing the contribution of a slow drift described with a certain order polynomial function, is presented. A recursion rule as well as a general mathematical proof of the identity is given. The effectiveness of the discussed method is illustrated with an application of the derived optimal scanning strategies to precise surface slope measurements with a surface profiler.
A Surgery Oral Examination: Interrater Agreement and the Influence of Rater Characteristics.
ERIC Educational Resources Information Center
Burchard, Kenneth W.; And Others
1995-01-01
A study measured interrater reliability among 140 United States and Canadian surgery exam raters and the influences of age, years in practice, and experience as an examiner on individual scores. Results indicate three aspects of examinee performance influenced scores: verbal style, dress, and content of answers. No rater characteristic…
A Bayesian Approach to Ranking and Rater Evaluation: An Application to Grant Reviews
ERIC Educational Resources Information Center
Cao, Jing; Stokes, S. Lynne; Zhang, Song
2010-01-01
We develop a Bayesian hierarchical model for the analysis of ordinal data from multirater ranking studies. The model for a rater's score includes four latent factors: one is a latent item trait determining the true order of items and the other three are the rater's performance characteristics, including bias, discrimination, and measurement error…
Fairus, Fariza Zainudin; Joseph, Leonard Henry; Omar, Baharudin; Ahmad, Johan; Sulaiman, Riza
2016-01-01
Background The understanding of vertical ground reaction force (VGRF) during walking and half-squatting is necessary and commonly utilised during the rehabilitation period. The purpose of this study was to establish measurement reproducibility of VGRF that reports the minimal detectable changes (MDC) during walking and half-squatting activity among healthy male adults. Methods 14 male adults of average age, 24.88 (5.24) years old, were enlisted in this study. The VGRF was assessed using the force plates which were embedded into a customised walking platform. Participants were required to carry out three trials of gait and half-squat. Each participant completed the two measurements within a day, approximately four hours apart. Results Measurements of VGRF between sessions presented an excellent VGRF data for walking (ICC Left = 0.88, ICC Right = 0.89). High reliability of VGRF was also noted during the half-squat activity (ICC Left = 0.95, ICC Right = 0.90). The standard errors of measurement (SEM) of VGRF during the walking and half-squat activity are less than 8.35 Nm/kg and 4.67 Nm/kg for the gait and half-squat task respectively. Conclusion The equipment set-up and measurement procedure used to quantify VGRF during walking and half-squatting among healthy males displayed excellent reliability. Researcher should consider using this method to measure the VGRF during functional performance assessment. PMID:27547111
Estimation of discretization errors in contact pressure measurements.
Fregly, Benjamin J; Sawyer, W Gregory
2003-04-01
Contact pressure measurements in total knee replacements are often made using a discrete sensor such as the Tekscan K-Scan sensor. However, no method currently exists for predicting the magnitude of sensor discretization errors in contact force, peak pressure, average pressure, and contact area, making it difficult to evaluate the accuracy of such measurements. This study identifies a non-dimensional area variable, defined as the ratio of the number of perimeter elements to the total number of elements with pressure, which can be used to predict these errors. The variable was evaluated by simulating discrete pressure sensors subjected to Hertzian and uniform pressure distributions with two different calibration procedures. The simulations systematically varied the size of the sensor elements, the contact ellipse aspect ratio, and the ellipse's location on the sensor grid. In addition, contact pressure measurements made with a K-Scan sensor on four different total knee designs were used to evaluate the magnitude of discretization errors under practical conditions. The simulations predicted a strong power law relationship (r(2)>0.89) between worst-case discretization errors and the proposed non-dimensional area variable. In the total knee experiments, predicted discretization errors were on the order of 1-4% for contact force and peak pressure and 3-9% for average pressure and contact area. These errors are comparable to those arising from inserting a sensor into the joint space or truncating pressures with pressure sensitive film. The reported power law regression coefficients provide a simple way to estimate the accuracy of experimental measurements made with discrete pressure sensors when the contact patch is approximately elliptical. PMID:12600352
The effect of measurement error on surveillance metrics
Weaver, Brian Phillip; Hamada, Michael S.
2012-04-24
The purpose of this manuscript is to describe different simulation studies that CCS-6 has performed for the purpose of understanding the effects of measurement error on the surveillance metrics. We assume that the measured items come from a larger population of items. We denote the random variable associate with an item's value of an attribute of interest as X and that X {approx} N({mu}, {sigma}{sup 2}). This distribution represents the variability in the population of interest and we wish to make inference on the parameters {mu} and {sigma} or on some function of these parameters. When an item X is selected from the larger population, a measurement is made on some attribute of it. This measurement is made with error and the true value of X is not observed. The rest of this section presents simulation results for different measurement cases encountered.
Three Approximations of Standard Error of Measurement: An Empirical Approach.
ERIC Educational Resources Information Center
Garvin, Alfred D.
Three successively simpler formulas for approximating the standard error of measurement were derived by applying successively more simplifying assumptions to the standard formula based on the standard deviation and the Kuder-Richardson formula 20 estimate of reliability. The accuracy of each of these three formulas, with respect to the standard…
GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 2: SUBSAMPLING ERROR MEASUREMENTS
Sampling can be a significant source of error in the measurement process. The characterization and cleanup of hazardous waste sites require data that meet site-specific levels of acceptable quality if scientifically supportable decisions are to be made. In support of this effort,...
Nonparametric Item Response Curve Estimation with Correction for Measurement Error
ERIC Educational Resources Information Center
Guo, Hongwen; Sinharay, Sandip
2011-01-01
Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…
Bayesian conformity assessment in presence of systematic measurement errors
NASA Astrophysics Data System (ADS)
Carobbi, Carlo; Pennecchi, Francesca
2016-04-01
Conformity assessment of the distribution of the values of a quantity is investigated by using a Bayesian approach. The effect of systematic, non-negligible measurement errors is taken into account. The analysis is general, in the sense that the probability distribution of the quantity can be of any kind, that is even different from the ubiquitous normal distribution, and the measurement model function, linking the measurand with the observable and non-observable influence quantities, can be non-linear. Further, any joint probability density function can be used to model the available knowledge about the systematic errors. It is demonstrated that the result of the Bayesian analysis here developed reduces to the standard result (obtained through a frequentistic approach) when the systematic measurement errors are negligible. A consolidated frequentistic extension of such standard result, aimed at including the effect of a systematic measurement error, is directly compared with the Bayesian result, whose superiority is demonstrated. Application of the results here obtained to the derivation of the operating characteristic curves used for sampling plans for inspection by variables is also introduced.
Gómez-Cabello, Alba; Vicente-Rodríguez, Germán; Albers, Ulrike; Mata, Esmeralda; Rodriguez-Marroyo, Jose A.; Olivares, Pedro R.; Gusi, Narcis; Villa, Gerardo; Aznar, Susana; Gonzalez-Gross, Marcela; Casajús, Jose A.; Ara, Ignacio
2012-01-01
Background The elderly EXERNET multi-centre study aims to collect normative anthropometric data for old functionally independent adults living in Spain. Purpose To describe the standardization process and reliability of the anthropometric measurements carried out in the pilot study and during the final workshop, examining both intra- and inter-rater errors for measurements. Materials and Methods A total of 98 elderly from five different regions participated in the intra-rater error assessment, and 10 different seniors living in the city of Toledo (Spain) participated in the inter-rater assessment. We examined both intra- and inter-rater errors for heights and circumferences. Results For height, intra-rater technical errors of measurement (TEMs) were smaller than 0.25 cm. For circumferences and knee height, TEMs were smaller than 1 cm, except for waist circumference in the city of Cáceres. Reliability for heights and circumferences was greater than 98% in all cases. Inter-rater TEMs were 0.61 cm for height, 0.75 cm for knee-height and ranged between 2.70 and 3.09 cm for the circumferences measured. Inter-rater reliabilities for anthropometric measurements were always higher than 90%. Conclusion The harmonization process, including the workshop and pilot study, guarantee the quality of the anthropometric measurements in the elderly EXERNET multi-centre study. High reliability and low TEM may be expected when assessing anthropometry in elderly population. PMID:22860013
Comparing measurement errors for formants in synthetic and natural vowels.
Shadle, Christine H; Nam, Hosung; Whalen, D H
2016-02-01
The measurement of formant frequencies of vowels is among the most common measurements in speech studies, but measurements are known to be biased by the particular fundamental frequency (F0) exciting the formants. Approaches to reducing the errors were assessed in two experiments. In the first, synthetic vowels were constructed with five different first formant (F1) values and nine different F0 values; formant bandwidths, and higher formant frequencies, were constant. Input formant values were compared to manual measurements and automatic measures using the linear prediction coding-Burg algorithm, linear prediction closed-phase covariance, the weighted linear prediction-attenuated main excitation (WLP-AME) algorithm [Alku, Pohjalainen, Vainio, Laukkanen, and Story (2013). J. Acoust. Soc. Am. 134(2), 1295-1313], spectra smoothed cepstrally and by averaging repeated discrete Fourier transforms. Formants were also measured manually from pruned reassigned spectrograms (RSs) [Fulop (2011). Speech Spectrum Analysis (Springer, Berlin)]. All but WLP-AME and RS had large errors in the direction of the strongest harmonic; the smallest errors occur with WLP-AME and RS. In the second experiment, these methods were used on vowels in isolated words spoken by four speakers. Results for the natural speech show that F0 bias affects all automatic methods, including WLP-AME; only the formants measured manually from RS appeared to be accurate. In addition, RS coped better with weaker formants and glottal fry. PMID:26936555
Inter-tester Agreement in Refractive Error Measurements
Huang, Jiayan; Maguire, Maureen G.; Ciner, Elise; Kulp, Marjean T.; Quinn, Graham E.; Orel-Bixler, Deborah; Cyert, Lynn A.; Moore, Bruce; Ying, Gui-Shuang
2014-01-01
Purpose To determine the inter-tester agreement of refractive error measurements between lay and nurse screeners using the Retinomax Autorefractor (Retinomax) and the SureSight Vision Screener (SureSight). Methods Trained lay and nurse screeners measured refractive error in 1452 preschoolers (3- to 5-years old) using the Retinomax and the SureSight in a random order for screeners and instruments. Inter-tester agreement between lay and nurse screeners was assessed for sphere, cylinder and spherical equivalent (SE) using the mean difference and the 95% limits of agreement. The mean inter-tester difference (lay minus nurse) was compared between groups defined based on child’s age, cycloplegic refractive error, and the reading’s confidence number using analysis of variance. The limits of agreement were compared between groups using the Brown-Forsythe test. Inter-eye correlation was accounted for in all analyses. Results The mean inter-tester differences (95% limits of agreement) were −0.04 (−1.63, 1.54) Diopter (D) sphere, 0.00 (−0.52, 0.51) D cylinder, and −0.04 (1.65, 1.56) D SE for the Retinomax; and 0.05 (−1.48, 1.58) D sphere, 0.01 (−0.58, 0.60) D cylinder, and 0.06 (−1.45, 1.57) D SE for the SureSight. For either instrument, the mean inter-tester differences in sphere and SE did not differ by the child’s age, cycloplegic refractive error, or the reading’s confidence number. However, for both instruments, the limits of agreement were wider when eyes had significant refractive error or the reading’s confidence number was below the manufacturer’s recommended value. Conclusions Among Head Start preschool children, trained lay and nurse screeners agree well in measuring refractive error using the Retinomax or the SureSight. Both instruments had similar inter-tester agreement in refractive error measurements independent of the child’s age. Significant refractive error and a reading with low confidence number were associated with worse inter
Error Correction for Foot Clearance in Real-Time Measurement
NASA Astrophysics Data System (ADS)
Wahab, Y.; Bakar, N. A.; Mazalan, M.
2014-04-01
Mobility performance level, fall related injuries, unrevealed disease and aging stage can be detected through examination of gait pattern. The gait pattern is normally directly related to the lower limb performance condition in addition to other significant factors. For that reason, the foot is the most important part for gait analysis in-situ measurement system and thus directly affects the gait pattern. This paper reviews the development of ultrasonic system with error correction using inertial measurement unit for gait analysis in real life measurement of foot clearance. This paper begins with the related literature where the necessity of measurement is introduced. Follow by the methodology section, problem and solution. Next, this paper explains the experimental setup for the error correction using the proposed instrumentation, results and discussion. Finally, this paper shares the planned future works.
Errors in ellipsometry measurements made with a photoelastic modulator
Modine, F.A.; Jellison, G.E. Jr; Gruzalski, G.R.
1983-07-01
The equations governing ellipsometry measurements made with a photoelastic modulator are presented in a simple but general form. These equations are used to study the propagation of both systematic and random errors, and an assessment of the accuracy of the ellipsometer is made. A basis is provided for choosing among various ellipsommeter configurations, measurement procedures, and methods of data analysis. Several new insights into the performance of this type of ellipsometer are supplied.
Effects of measurement errors on microwave antenna holography
NASA Technical Reports Server (NTRS)
Rochblatt, David J.; Rahmat-Samii, Yahya
1991-01-01
The effects of measurement errors appearing during the implementation of the microwave holographic technique are investigated in detail, and many representative results are presented based on computer simulations. The numerical results are tailored for cases applicable to the utilization of the holographic technique for the NASA's Deep Space Network antennas, although the methodology of analysis is applicable to any antenna. Many system measurement topics are presented and summarized.
Estimation of coherent error sources from stabilizer measurements
NASA Astrophysics Data System (ADS)
Orsucci, Davide; Tiersch, Markus; Briegel, Hans J.
2016-04-01
In the context of measurement-based quantum computation a way of maintaining the coherence of a graph state is to measure its stabilizer operators. Aside from performing quantum error correction, it is possible to exploit the information gained from these measurements to characterize and then counteract a coherent source of errors; that is, to determine all the parameters of an error channel that applies a fixed—but unknown—unitary operation to the physical qubits. Such a channel is generated, e.g., by local stray fields that act on the qubits. We study the case in which each qubit of a given graph state may see a different error channel and we focus on channels given by a rotation on the Bloch sphere around either the x ̂, the y ̂, or the z ̂ axis, for which analytical results can be given in a compact form. The possibility of reconstructing the channels at all qubits depends nontrivially on the topology of the graph state. We prove via perturbation methods that the reconstruction process is robust and supplement the analytic results with numerical evidence.
Rating Written Performance: What Do Raters Do and Why?
ERIC Educational Resources Information Center
Kuiken, Folkert; Vedder, Ineke
2014-01-01
This study investigates the relationship in L2 writing between raters' judgments of communicative adequacy and linguistic complexity by means of six-point Likert scales, and general measures of linguistic performance. The participants were 39 learners of Italian and 32 of Dutch, who wrote two short argumentative essays. The same writing tasks…
A Hierarchical Rater Model for Constructed Responses, with a Signal Detection Rater Model
ERIC Educational Resources Information Center
DeCarlo, Lawrence T.; Kim, YoungKoung; Johnson, Matthew S.
2011-01-01
The hierarchical rater model (HRM) recognizes the hierarchical structure of data that arises when raters score constructed response items. In this approach, raters' scores are not viewed as being direct indicators of examinee proficiency but rather as indicators of essay quality; the (latent categorical) quality of an examinee's essay in turn…
Weight-Based Classification of Raters and Rater Cognition in an EFL Speaking Test
ERIC Educational Resources Information Center
Cai, Hongwen
2015-01-01
This study is an attempt to classify raters according to their weighting patterns and explore systematic differences between rater types in the rating process. In the context of an EFL speaking test, 126 raters were classified into three types--form-oriented, balanced, and content-oriented--through cluster analyses of their weighting patterns…
Variance Estimation of Nominal-Scale Inter-Rater Reliability with Random Selection of Raters
ERIC Educational Resources Information Center
Gwet, Kilem Li
2008-01-01
Most inter-rater reliability studies using nominal scales suggest the existence of two populations of inference: the population of subjects (collection of objects or persons to be rated) and that of raters. Consequently, the sampling variance of the inter-rater reliability coefficient can be seen as a result of the combined effect of the sampling…
Effects of Marking Method and Rater Experience on ESL Essay Scores and Rater Performance
ERIC Educational Resources Information Center
Barkaoui, Khaled
2011-01-01
This study examined the effects of marking method and rater experience on ESL (English as a Second Language) essay test scores and rater performance. Each of 31 novice and 29 experienced raters rated a sample of ESL essays both holistically and analytically. Essay scores were analysed using a multi-faceted Rasch model to compare test-takers'…
Surface measurement errors using commercial scanning white light interferometers
NASA Astrophysics Data System (ADS)
Gao, F.; Leach, R. K.; Petzing, J.; Coupland, J. M.
2008-01-01
This paper examines the performance of commercial scanning white light interferometers in a range of measurement tasks. A step height artefact is used to investigate the response of the instruments at a discontinuity, while gratings with sinusoidal and rectangular profiles are used to investigate the effects of surface gradient and spatial frequency. Results are compared with measurements made with tapping mode atomic force microscopy and discrepancies are discussed with reference to error mechanisms put forward in the published literature. As expected, it is found that most instruments report errors when used in regions close to a discontinuity or those with a surface gradient that is large compared to the acceptance angle of the objective lens. Amongst other findings, however, we report systematic errors that are observed when the surface gradient is considerably smaller. Although these errors are typically less than the mean wavelength, they are significant compared to the vertical resolution of the instrument and indicate that current scanning white light interferometers should be used with some caution if sub-wavelength accuracy is required.
Error and uncertainty in Raman thermal conductivity measurements
Thomas Edwin Beechem; Yates, Luke; Graham, Samuel
2015-04-22
We investigated error and uncertainty in Raman thermal conductivity measurements via finite element based numerical simulation of two geometries often employed -- Joule-heating of a wire and laser-heating of a suspended wafer. Using this methodology, the accuracy and precision of the Raman-derived thermal conductivity are shown to depend on (1) assumptions within the analytical model used in the deduction of thermal conductivity, (2) uncertainty in the quantification of heat flux and temperature, and (3) the evolution of thermomechanical stress during testing. Apart from the influence of stress, errors of 5% coupled with uncertainties of ±15% are achievable for most materials under conditions typical of Raman thermometry experiments. Error can increase to >20%, however, for materials having highly temperature dependent thermal conductivities or, in some materials, when thermomechanical stress develops concurrent with the heating. A dimensionless parameter -- termed the Raman stress factor -- is derived to identify when stress effects will induce large levels of error. Together, the results compare the utility of Raman based conductivity measurements relative to more established techniques while at the same time identifying situations where its use is most efficacious.
Error and uncertainty in Raman thermal conductivity measurements
Thomas Edwin Beechem; Yates, Luke; Graham, Samuel
2015-04-22
We investigated error and uncertainty in Raman thermal conductivity measurements via finite element based numerical simulation of two geometries often employed -- Joule-heating of a wire and laser-heating of a suspended wafer. Using this methodology, the accuracy and precision of the Raman-derived thermal conductivity are shown to depend on (1) assumptions within the analytical model used in the deduction of thermal conductivity, (2) uncertainty in the quantification of heat flux and temperature, and (3) the evolution of thermomechanical stress during testing. Apart from the influence of stress, errors of 5% coupled with uncertainties of ±15% are achievable for most materialsmore » under conditions typical of Raman thermometry experiments. Error can increase to >20%, however, for materials having highly temperature dependent thermal conductivities or, in some materials, when thermomechanical stress develops concurrent with the heating. A dimensionless parameter -- termed the Raman stress factor -- is derived to identify when stress effects will induce large levels of error. Together, the results compare the utility of Raman based conductivity measurements relative to more established techniques while at the same time identifying situations where its use is most efficacious.« less
Reducing Errors by Use of Redundancy in Gravity Measurements
NASA Technical Reports Server (NTRS)
Kulikov, Igor; Zak, Michail
2004-01-01
A methodology for improving gravity-gradient measurement data exploits the constraints imposed upon the components of the gravity-gradient tensor by the conditions of integrability needed for reconstruction of the gravitational potential. These constraints are derived from the basic equation for the gravitational potential and from mathematical identities that apply to the gravitational potential and its partial derivatives with respect to spatial coordinates. Consider the gravitational potential in a Cartesian coordinate system {x1,x2,x3}. If one measures all the components of the gravity-gradient tensor at all points of interest within a region of space in which one seeks to characterize the gravitational field, one obtains redundant information. One could utilize the constraints to select a minimum (that is, nonredundant) set of measurements from which the gravitational potential could be reconstructed. Alternatively, one could exploit the redundancy to reduce errors from noisy measurements. A convenient example is that of the selection of a minimum set of measurements to characterize the gravitational field at n3 points (where n is an integer) in a cube. Without the benefit of such a selection, it would be necessary to make 9n3 measurements because the gravitygradient tensor has 9 components at each point. The problem of utilizing the redundancy to reduce errors in noisy measurements is an optimization problem: Given a set of noisy values of the components of the gravity-gradient tensor at the measurement points, one seeks a set of corrected values - a set that is optimum in that it minimizes some measure of error (e.g., the sum of squares of the differences between the corrected and noisy measurement values) while taking account of the fact that the constraints must apply to the exact values. The problem as thus posed leads to a vector equation that can be solved to obtain the corrected values.
Sedrez, Juliana A.; Candotti, Cláudia T.; Rosa, Maria I. Z.; Medeiros, Fernanda S.; Marques, Mariana T.; Loss, Jefferson F.
2016-01-01
Introduction: The early evaluation of the spine in children is desirable because it is at this stage of development that the greatest changes in the body structures occur. Objective: To determine the test-retest, intra- and inter-rater reliability of the Flexicurve instrument for the evaluation of spinal curvatures in children. Method: Forty children ranging from 5 to 15 years of age were evaluated by two independent evaluators using the Flexicurve to model the spine. The agreement was evaluated using Intraclass Correlation Coefficients (ICC), Standard Error of the Measurement (SEM), and Minimal Detectable Change (MDC). Results: In relation to thoracic kyphosis, the Flexicurve was shown to have excellent correlation in terms of test-retest reliability (ICC2,2=0.87) and moderate correlation in terms of intra-(ICC2,2=0.68) and inter-rater reliability (ICC2,2=0.72). In relation to lumbar lordosis, it was shown to have moderate correlation in terms of test-retest reliability (ICC2,2=0.66) and intra- (ICC2,2=0.50) and inter-rater reliability (ICC=0.56). Conclusion: This evaluation of the reliability of the Flexicurve allows its use in school screening. However, to monitor spinal curvatures in the sagittal plane in children, complementary clinical measures are necessary. Further studies are required to investigate the concurrent validity of the instrument in order to identify its diagnostic capacity. PMID:26786078
Paulsen, Robert; Gallu, Tommaso; Gilkey, David; Reiser, Raoul; Murgia, Lelia; Rosecrance, John
2015-11-01
The purpose of this study was to characterize the inter-rater reliability of two physical exposure assessment methods of the upper extremity, the Strain Index (SI) and Occupational Repetitive Actions (OCRA) Checklist. These methods are commonly used in occupational health studies and by occupational health practitioners. Seven raters used the SI and OCRA Checklist to assess task-level physical exposures to the upper extremity of workers performing 21 cheese manufacturing tasks. Inter-rater reliability was characterized using a single-measure, agreement-based intraclass correlation coefficient (ICC). Inter-rater reliability of SI assessments was moderate to good (ICC = 0.59, 95% CI: 0.45-0.73), a similar finding to prior studies. Inter-rater reliability of OCRA Checklist assessments was excellent (ICC = 0.80, 95% CI: 0.70-0.89). Task complexity had a small, but non-significant, effect on inter-rater reliability SI and OCRA Checklist scores. Both the SI and OCRA Checklist assessments possess adequate inter-rater reliability for the purposes of occupational health research and practice. The OCRA Checklist inter-rater reliability scores were among the highest reported in the literature for semi-quantitative physical exposure assessment tools of the upper extremity. The OCRA Checklist however, required more training time and time to conduct the risk assessments compared to the SI. PMID:26154218
Systematic errors in precipitation measurements with different rain gauge sensors
NASA Astrophysics Data System (ADS)
Sungmin, O.; Foelsche, Ulrich
2015-04-01
Ground-level rain gauges provide the most direct measurement of precipitation and therefore such precipitation measurement datasets are often utilized for the evaluation of precipitation estimates via remote sensing and in climate model simulations. However, measured precipitation by means of national standard gauge networks is constrained by their spatial density. For this reason, in order to accurately measure precipitation it is of essential importance to understand the performance and reliability of rain gauges. This study is aimed to assess the systematic errors between measurements taken with different rain gauge sensors. We will mainly address extreme precipitation events as these are connected with high uncertainties in the measurements. Precipitation datasets for the study are available from WegenerNet, a dense network of 151 meteorological stations within an area of about 20 km × 15 km centred near the city of Feldbach in the southeast of Austria. The WegenerNet has a horizontal resolution of about 1.4-km and employs 'tripping bucket' rain gauges for precipitation measurements with three different types of sensors; a reference station provides measurements from all types of sensors. The results will illustrate systematic errors via the comparison of the precipitation datasets gained with different types of sensors. The analyses will be carried out by direct comparison between the datasets from the reference station. In addition, the dependence of the systematic errors on meteorological conditions, e.g. precipitation intensity and wind speed, will be investigated to assess the feasibility of applying the WegenerNet datasets for the study of extreme precipitation events. The study can be regarded as a pre-processing research to further studies in hydro-meteorological applications, which require high-resolution precipitation datasets, such as satellite/radar-derived precipitation validation and hydrodynamic modelling.
Minimax Mean-Squared Error Location Estimation Using TOA Measurements
NASA Astrophysics Data System (ADS)
Shen, Chih-Chang; Chang, Ann-Chen
This letter deals with mobile location estimation based on a minimax mean-squared error (MSE) algorithm using time-of-arrival (TOA) measurements for mitigating the nonline-of-sight (NLOS) effects in cellular systems. Simulation results are provided for illustrating the minimax MSE estimator yields good performance than the other least squares and weighted least squares estimators under relatively low signal-to-noise ratio and moderately NLOS conditions.
Detecting correlated errors in state-preparation-and-measurement tomography
NASA Astrophysics Data System (ADS)
Jackson, Christopher; van Enk, S. J.
2015-10-01
Whereas in standard quantum-state tomography one estimates an unknown state by performing various measurements with known devices, and whereas in detector tomography one estimates the positive-operator-valued-measurement elements of a measurement device by subjecting to it various known states, we consider here the case of SPAM (state preparation and measurement) tomography where neither the states nor the measurement device are assumed known. For d -dimensional systems measured by d -outcome detectors, we find there are at most d2(d2-1 ) "gauge" parameters that can never be determined by any such experiment, irrespective of the number of unknown states and unknown devices. For the case d =2 we find gauge-invariant quantities that can be accessed directly experimentally and that can be used to detect and describe SPAM errors. In particular, we identify conditions whose violations detect the presence of correlations between SPAM errors. From the perspective of SPAM tomography, standard quantum-state tomography and detector tomography are protocols that fix the gauge parameters through the assumption that some set of fiducial measurements is known or that some set of fiducial states is known, respectively.
PROCESSING AND ANALYSIS OF THE MEASURED ALIGNMENT ERRORS FOR RHIC.
PILAT,F.; HEMMER,M.; PTITSIN,V.; TEPIKIAN,S.; TRBOJEVIC,D.
1999-03-29
All elements of the Relativistic Heavy Ion Collider (RHIC) have been installed in ideal survey locations, which are defined as the optimum locations of the fiducials with respect to the positions generated by the design. The alignment process included the presurvey of all elements which could affect the beams. During this procedure a special attention was paid to the precise determination of the quadrupole centers as well as the roll angles of the quadrupoles and dipoles. After installation the machine has been surveyed and the resulting as-built measured position of the fiducials have been stored and structured in the survey database. We describe how the alignment errors, inferred by comparison of ideal and as-built data, have been processed and analyzed by including them in the RHIC modeling software. The RHIC model, which also includes individual measured errors for all magnets in the machine and is automatically generated from databases, allows the study of the impact of the measured alignment errors on the machine.
Effects of Assigning Raters to Items
ERIC Educational Resources Information Center
Sykes, Robert C.; Ito, Kyoko; Wang, Zhen
2008-01-01
Student responses to a large number of constructed response items in three Math and three Reading tests were scored on two occasions using three ways of assigning raters: single reader scoring, a different reader for each response (item-specific), and three readers each scoring a rater item block (RIB) containing approximately one-third of a…
Agreement between Two Independent Groups of Raters
ERIC Educational Resources Information Center
Vanbelle, Sophie; Albert, Adelin
2009-01-01
We propose a coefficient of agreement to assess the degree of concordance between two independent groups of raters classifying items on a nominal scale. This coefficient, defined on a population-based model, extends the classical Cohen's kappa coefficient for quantifying agreement between two raters. Weighted and intraclass versions of the…
ERIC Educational Resources Information Center
Battauz, Michela; Bellio, Ruggero
2011-01-01
This paper proposes a structural analysis for generalized linear models when some explanatory variables are measured with error and the measurement error variance is a function of the true variables. The focus is on latent variables investigated on the basis of questionnaires and estimated using item response theory models. Latent variable…
Correlates of Halo Error in Teacher Evaluation.
ERIC Educational Resources Information Center
Moritsch, Brian G.; Suter, W. Newton
1988-01-01
An analysis of 300 undergraduate psychology student ratings of teachers was undertaken to assess the magnitude of halo error and a variety of rater, ratee, and course characteristics. The raters' halo errors were significantly related to student effort in the course, previous experience with the instructor, and class level. (TJH)
Uncertainty in measurement and total error - are they so incompatible?
Farrance, Ian; Badrick, Tony; Sikaris, Kenneth A
2016-08-01
There appears to be a growing debate with regard to the use of "Westgard style" total error and "GUM style" uncertainty in measurement. Some may argue that the two approaches are irreconcilable. The recent appearance of an article "Quality goals at the crossroads: growing, going, or gone" on the well-regarded Westgard Internet site requires some comment. In particular, a number of assertions which relate to ISO 15189 and uncertainty in measurement appear misleading. An alternate view of the key issues raised by Westergard may serve to guide and enlighten others who may accept such statements at face value. PMID:27227711
Considering Measurement Model Parameter Errors in Static and Dynamic Systems
NASA Astrophysics Data System (ADS)
Woodbury, Drew P.; Majji, Manoranjan; Junkins, John L.
2011-07-01
In static systems, state values are estimated using traditional least squares techniques based on a redundant set of measurements. Inaccuracies in measurement model parameter estimates can lead to significant errors in the state estimates. This paper describes a technique that considers these parameters in a modified least squares framework. It is also shown that this framework leads to the minimum variance solution. Both batch and sequential (recursive) least squares methods are described. One static system and one dynamic system are used as examples to show the benefits of the consider least squares methodology.
Error reduction techniques for measuring long synchrotron mirrors
Irick, S.
1998-07-01
Many instruments and techniques are used for measuring long mirror surfaces. A Fizeau interferometer may be used to measure mirrors much longer than the interferometer aperture size by using grazing incidence at the mirror surface and analyzing the light reflected from a flat end mirror. Advantages of this technique are data acquisition speed and use of a common instrument. Disadvantages are reduced sampling interval, uncertainty of tangential position, and sagittal/tangential aspect ratio other than unity. Also, deep aspheric surfaces cannot be measured on a Fizeau interferometer without a specially made fringe nulling holographic plate. Other scanning instruments have been developed for measuring height, slope, or curvature profiles of the surface, but lack accuracy for very long scans required for X-ray synchrotron mirrors. The Long Trace Profiler (LTP) was developed specifically for long x-ray mirror measurement, and still outperforms other instruments, especially for aspheres. Thus, this paper focuses on error reduction techniques for the LTP.
Factors Affecting Blood Glucose Monitoring: Sources of Errors in Measurement
Ginsberg, Barry H.
2009-01-01
Glucose monitoring has become an integral part of diabetes care but has some limitations in accuracy. Accuracy may be limited due to strip manufacturing variances, strip storage, and aging. They may also be due to limitations on the environment such as temperature or altitude or to patient factors such as improper coding, incorrect hand washing, altered hematocrit, or naturally occurring interfering substances. Finally, exogenous interfering substances may contribute errors to the system evaluation of blood glucose. In this review, I discuss the measurement of error in blood glucose, the sources of error, and their mechanism and potential solutions to improve accuracy in the hands of the patient. I also discuss the clinical measurement of system accuracy and methods of judging the suitability of clinical trials and finally some methods of overcoming the inaccuracies. I have included comments about additional information or education that could be done today by manufacturers in the appropriate sections. Areas that require additional work are discussed in the final section. PMID:20144340
Error analysis and modeling for the time grating length measurement system
NASA Astrophysics Data System (ADS)
Gao, Zhonghua; Fen, Jiqin; Zheng, Fangyan; Chen, Ziran; Peng, Donglin; Liu, Xiaokang
2013-10-01
Through analyzing errors of the length measurement system in which a linear time grating was the principal measuring component, we found that the study on the error law was very important to reduce system errors and optimize the system structure. Mainly error sources in the length measuring system, including the time grating sensor, slide way, and cantilever, were studied; and therefore total errors were obtained. Meanwhile we erected the mathematic model of errors of the length measurement system. Using the error model, we calibrated system errors being in the length measurement system. Also, we developed a set of experimental devices in which a laser interferometer was used to calibrate the length measurement system errors. After error calibrating, the accuracy of the measurement system was improved from original 36um/m to 14um/m. The fact that experiment results are consistent with the simulation results shows that the error mathematic model is suitable for the length measuring system.
Improving optical bench radius measurements using stage error motion data
Schmitz, Tony L.; Gardner, Neil; Vaughn, Matthew; Medicus, Kate; Davies, Angela
2008-12-20
We describe the application of a vector-based radius approach to optical bench radius measurements in the presence of imperfect stage motions. In this approach, the radius is defined using a vector equation and homogeneous transformation matrix formulism. This is in contrast to the typical technique, where the displacement between the confocal and cat's eye null positions alone is used to determine the test optic radius. An important aspect of the vector-based radius definition is the intrinsic correction for measurement biases, such as straightness errors in the stage motion and cosine misalignment between the stage and displacement gauge axis, which lead to an artificially small radius value if the traditional approach is employed. Measurement techniques and results are provided for the stage error motions, which are then combined with the setup geometry through the analysis to determine the radius of curvature for a spherical artifact. Comparisons are shown between the new vector-based radius calculation, traditional radius computation, and a low uncertainty mechanical measurement. Additionally, the measurement uncertainty for the vector-based approach is determined using Monte Carlo simulation and compared to experimental results.
Propagation of Radiosonde Pressure Sensor Errors to Ozonesonde Measurements
NASA Technical Reports Server (NTRS)
Stauffer, R. M.; Morris, G.A.; Thompson, A. M.; Joseph, E.; Coetzee, G. J. R.; Nalli, N. R.
2014-01-01
Several previous studies highlight pressure (or equivalently, pressure altitude) discrepancies between the radiosonde pressure sensor and that derived from a GPS flown with the radiosonde. The offsets vary during the ascent both in absolute and percent pressure differences. To investigate this problem further, a total of 731 radiosonde-ozonesonde launches from the Southern Hemisphere subtropics to Northern mid-latitudes are considered, with launches between 2005 - 2013 from both longer-term and campaign-based intensive stations. Five series of radiosondes from two manufacturers (International Met Systems: iMet, iMet-P, iMet-S, and Vaisala: RS80-15N and RS92-SGP) are analyzed to determine the magnitude of the pressure offset. Additionally, electrochemical concentration cell (ECC) ozonesondes from three manufacturers (Science Pump Corporation; SPC and ENSCI-Droplet Measurement Technologies; DMT) are analyzed to quantify the effects these offsets have on the calculation of ECC ozone (O3) mixing ratio profiles (O3MR) from the ozonesonde-measured partial pressure. Approximately half of all offsets are 0.6 hPa in the free troposphere, with nearly a third 1.0 hPa at 26 km, where the 1.0 hPa error represents 5 persent of the total atmospheric pressure. Pressure offsets have negligible effects on O3MR below 20 km (96 percent of launches lie within 5 percent O3MR error at 20 km). Ozone mixing ratio errors above 10 hPa (30 km), can approach greater than 10 percent ( 25 percent of launches that reach 30 km exceed this threshold). These errors cause disagreement between the integrated ozonesonde-only column O3 from the GPS and radiosonde pressure profile by an average of +6.5 DU. Comparisons of total column O3 between the GPS and radiosonde pressure profiles yield average differences of +1.1 DU when the O3 is integrated to burst with addition of the McPeters and Labow (2012) above-burst O3 column climatology. Total column differences are reduced to an average of -0.5 DU when
Propagation of radiosonde pressure sensor errors to ozonesonde measurements
NASA Astrophysics Data System (ADS)
Stauffer, R. M.; Morris, G. A.; Thompson, A. M.; Joseph, E.; Coetzee, G. J. R.; Nalli, N. R.
2014-01-01
Several previous studies highlight pressure (or equivalently, pressure altitude) discrepancies between the radiosonde pressure sensor and that derived from a GPS flown with the radiosonde. The offsets vary during the ascent both in absolute and percent pressure differences. To investigate this problem further, a total of 731 radiosonde/ozonesonde launches from the Southern Hemisphere subtropics to northern mid-latitudes are considered, with launches between 2005 and 2013 from both longer term and campaign-based intensive stations. Five series of radiosondes from two manufacturers (International Met Systems: iMet, iMet-P, iMet-S, and Vaisala: RS80-15N and RS92-SGP) are analyzed to determine the magnitude of the pressure offset. Additionally, electrochemical concentration cell (ECC) ozonesondes from three manufacturers (Science Pump Corporation; SPC and ENSCI/Droplet Measurement Technologies; DMT) are analyzed to quantify the effects these offsets have on the calculation of ECC ozone (O3) mixing ratio profiles (O3MR) from the ozonesonde-measured partial pressure. Approximately half of all offsets are > ±0.6 hPa in the free troposphere, with nearly a third > ±1.0 hPa at 26 km, where the 1.0 hPa error represents ~ 5% of the total atmospheric pressure. Pressure offsets have negligible effects on O3MR below 20 km (96% of launches lie within ±5% O3MR error at 20 km). Ozone mixing ratio errors above 10 hPa (~ 30 km), can approach greater than ±10% (> 25% of launches that reach 30 km exceed this threshold). These errors cause disagreement between the integrated ozonesonde-only column O3 from the GPS and radiosonde pressure profile by an average of +6.5 DU. Comparisons of total column O3 between the GPS and radiosonde pressure profiles yield average differences of +1.1 DU when the O3 is integrated to burst with addition of the McPeters and Labow (2012) above-burst O3 column climatology. Total column differences are reduced to an average of -0.5 DU when the O3 profile is
Data Reconciliation and Gross Error Detection: A Filtered Measurement Test
Himour, Y.
2008-06-12
Measured process data commonly contain inaccuracies because the measurements are obtained using imperfect instruments. As well as random errors one can expect systematic bias caused by miscalibrated instruments or outliers caused by process peaks such as sudden power fluctuations. Data reconciliation is the adjustment of a set of process data based on a model of the process so that the derived estimates conform to natural laws. In this paper, we will explore a predictor-corrector filter based on data reconciliation, and then a modified version of the measurement test is combined with the studied filter to detect probable outliers that can affect process measurements. The strategy presented is tested using dynamic simulation of an inverted pendulum.
Analysis of Spherical Form Errors to Coordinate Measuring Machine Data
NASA Astrophysics Data System (ADS)
Chen, Mu-Chen
Coordinates measuring machines (CMMs) are commonly utilized to take measurement data from manufactured surfaces for inspection purposes. The measurement data are then used to evaluate the geometric form errors associated with the surface. Traditionally, the evaluation of spherical form errors involves an optimization process of fitting a substitute sphere to the sampled points. This paper proposes the computational strategies for sphericity with respect to ASME Y14.5M-1994 standard. The proposed methods consider the trade-off between the accuracy of sphericity and the efficiency of inspection. Two approaches of computational metrology based on genetic algorithms (GAs) are proposed to explore the optimality of sphericity measurements and the sphericity feasibility analysis, respectively. The proposed algorithms are verified by using several CMM data sets. Observing from the computational results, the proposed algorithms are practical for on-line implementation to the sphericity evaluation. Using the GA-based computational techniques, the accuracy of sphericity assessment and the efficiency of sphericity feasibility analysis are agreeable.
Patient motion tracking in the presence of measurement errors.
Haidegger, Tamás; Benyó, Zoltán; Kazanzides, Peter
2009-01-01
The primary aim of computer-integrated surgical systems is to provide physicians with superior surgical tools for better patient outcome. Robotic technology is capable of both minimally invasive surgery and microsurgery, offering remarkable advantages for the surgeon and the patient. Current systems allow for sub-millimeter intraoperative spatial positioning, however certain limitations still remain. Measurement noise and unintended changes in the operating room environment can result in major errors. Positioning errors are a significant danger to patients in procedures involving robots and other automated devices. We have developed a new robotic system at the Johns Hopkins University to support cranial drilling in neurosurgery procedures. The robot provides advanced visualization and safety features. The generic algorithm described in this paper allows for automated compensation of patient motion through optical tracking and Kalman filtering. When applied to the neurosurgery setup, preliminary results show that it is possible to identify patient motion within 700 ms, and apply the appropriate compensation with an average of 1.24 mm positioning error after 2 s of setup time. PMID:19964394
Lidar Uncertainty Measurement Experiment (LUMEX) - Understanding Sampling Errors
NASA Astrophysics Data System (ADS)
Choukulkar, A.; Brewer, W. A.; Banta, R. M.; Hardesty, M.; Pichugina, Y.; Senff, Christoph; Sandberg, S.; Weickmann, A.; Carroll, B.; Delgado, R.; Muschinski, A.
2016-06-01
Coherent Doppler LIDAR (Light Detection and Ranging) has been widely used to provide measurements of several boundary layer parameters such as profiles of wind speed, wind direction, vertical velocity statistics, mixing layer heights and turbulent kinetic energy (TKE). An important aspect of providing this wide range of meteorological data is to properly characterize the uncertainty associated with these measurements. With the above intent in mind, the Lidar Uncertainty Measurement Experiment (LUMEX) was conducted at Erie, Colorado during the period June 23rd to July 13th, 2014. The major goals of this experiment were the following:
This experiment brought together 5 Doppler lidars, both commercial and research grade, for a period of three weeks for a comprehensive intercomparison study. The Doppler lidars were deployed at the Boulder Atmospheric Observatory (BAO) site in Erie, site of a 300 m meteorological tower. This tower was instrumented with six sonic anemometers at levels from 50 m to 300 m with 50 m vertical spacing. A brief overview of the experiment outline and deployment will be presented. Results from the sampling error analysis and its implications on scanning strategy will be discussed.
Propagation of radiosonde pressure sensor errors to ozonesonde measurements
NASA Astrophysics Data System (ADS)
Stauffer, R. M.; Morris, G. A.; Thompson, A. M.; Joseph, E.; Coetzee, G. J. R.
2013-08-01
Several previous studies highlight pressure (or equivalently, pressure altitude) discrepancies between the radiosonde pressure sensor and that derived from a GPS flown with the radiosonde. The offsets vary during the ascent both in absolute and percent pressure differences. To investigate this, a total of 501 radiosonde/ozonesonde launches from the Southern Hemisphere subtropics to northern mid-latitudes are considered, with launches between 2006-2013 from both historical and campaign-based intensive stations. Three types of electrochemical concentration cell (ECC) ozonesonde manufacturers (Science Pump Corporation; SPC and ENSCI/Droplet Measurement Technologies; DMT) and five series of radiosondes from two manufacturers (International Met Systems: iMet, iMet-P, iMet-S, and Vaisala: RS80 and RS92) are analyzed to determine the magnitude of the pressure offset and the effects these offsets have on the calculation of ECC ozone (O3) mixing ratio profiles (O3MR) from the ozonesonde-measured partial pressure. Approximately half of all offsets are > ±0.7 hPa in the free troposphere, with nearly a quarter > ±1.0 hPa at 26 km, where the 1.0 hPa error represents ~5% of the total atmospheric pressure. Pressure offsets have negligible effects on O3MR below 20 km (98% of launches lie within ±5% O3MR error at 20 km). Ozone mixing ratio errors in the 7-15 hPa layer (29-32 km), a region critical for detection of long-term O3 trends, can approach greater than ±10% (>25% of launches that reach 30 km exceed this threshold). Comparisons of total column O3 yield average differences of +1.6 DU (-1.1 to +4.9 DU 10th to 90th percentiles) when the O3 is integrated to burst with addition of the McPeters and Labow (2012) above-burst O3 column climatology. Total column differences are reduced to an average of +0.1 DU (-1.1 to +2.2 DU) when the O3 profile is integrated to 10 hPa with subsequent addition of the O3 climatology above 10 hPa. The RS92 radiosondes are clearly distinguishable
Inter- and intra-rater reliability of the GAITRite system among individuals with sub-acute stroke.
Wong, Jennifer S; Jasani, Hardika; Poon, Vivien; Inness, Elizabeth L; McIlroy, William E; Mansfield, Avril
2014-01-01
Technology-based assessment tools with semi-automated processing, such as pressure-sensitive mats used for gait assessment, may be considered to be objective; therefore it may be assumed that rater reliability is not a concern. However, user input is often required and rater reliability must be determined. The purpose of this study was to assess the inter- and intra-rater reliability of spatial and temporal characteristics of gait in stroke patients using the GAITRite system. Forty-six individuals with stroke attending in-patient rehabilitation walked across the pressure-sensitive mat 2-4 times at preferred walking speeds, with or without a gait aid. Five raters independently processed gait data. Three raters re-processed the data after a delay of at least one month. The intraclass correlation coefficients (ICC) and 95% confidence intervals of the ICC were determined for velocity, step time, step length, and step width. Inter-rater reliability for velocity, step time, and step length were high (ICC>0.90). Intra-rater reliability was generally greater than inter-rater reliability (from 0.81 to >0.99 for inter-rater versus 0.77 to >0.99 for intra-rater reliability). Overall, this study suggests that GAITRite is a reliable assessment tool; however, there still remains subjectivity in processing the data, resulting in no patients with perfect agreement between raters. Additional logic checking within the processing software or standardization of training could help to reduce potential errors in processing. PMID:24630463
A Bayesian Measurment Error Model for Misaligned Radiographic Data
Lennox, Kristin P.; Glascoe, Lee G.
2013-09-06
An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error in addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.
A Bayesian Measurment Error Model for Misaligned Radiographic Data
Lennox, Kristin P.; Glascoe, Lee G.
2013-09-06
An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less
Measurements of Aperture Averaging on Bit-Error-Rate
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Andrews, Larry C.; Phillips, Ronald L.; Nelson, Richard A.; Ferrell, Bobby A.; Borbath, Michael R.; Galus, Darren J.; Chin, Peter G.; Harris, William G.; Marin, Jose A.; Burdge, Geoffrey L.; Wayne, David; Pescatore, Robert
2005-01-01
We report on measurements made at the Shuttle Landing Facility (SLF) runway at Kennedy Space Center of receiver aperture averaging effects on a propagating optical Gaussian beam wave over a propagation path of 1,000 in. A commercially available instrument with both transmit and receive apertures was used to transmit a modulated laser beam operating at 1550 nm through a transmit aperture of 2.54 cm. An identical model of the same instrument was used as a receiver with a single aperture that was varied in size up to 20 cm to measure the effect of receiver aperture averaging on Bit Error Rate. Simultaneous measurements were also made with a scintillometer instrument and local weather station instruments to characterize atmospheric conditions along the propagation path during the experiments.
NASA Astrophysics Data System (ADS)
Song, Qing; Zhang, Chunsong; Huang, Jiayong; Wu, Di; Liu, Jing
2009-11-01
The error source of the external diameter measurement system based on the double optical path parallel light projection method are the non-parallelism of the double optical path, aberration distortion of the projection lens, the edge of the projection profile of the cylinder which is affected by aperture size of the illuminating beam, light intensity variation and the counting error in the circuit. The screw pair drive is applied to achieve the up-and-down movement in the system. The precision of up-and-down movement mainly lies on the Abbe Error which is caused by the offset between the centerline and the mobile line of the capacitive-gate ruler, the heeling error of the guide mechanism, and the error which is caused by the dilatometric change of parts resulted from the temperature change. Rotary mechanism is achieved by stepper motor and gear drive. The precision of the rotary mechanism is determined by the stepping angle error of the stepper motor, the gear transmission error, and the heeling error of the piston relative to the rotation axis. The method of error modification is putting a component in the optical path to get the error curve, which is then used in the point-by-point modification by software compensation.
Rater Wealth Predicts Perceptions of Outgroup Competence
Chan, Wayne; McCrae, Robert R.; Rogers, Darrin L.; Weimer, Amy A.; Greenberg, David M.; Terracciano, Antonio
2011-01-01
National income has a pervasive influence on the perception of ingroup stereotypes, with high status and wealthy targets perceived as more competent. In two studies we investigated the degree to which economic wealth of raters related to perceptions of outgroup competence. Raters’ economic wealth predicted trait ratings when 1) raters in 48 other cultures rated Americans’ competence and 2) Mexican Americans rated Anglo Americans’ competence. Rater wealth also predicted ratings of interpersonal warmth on the culture level. In conclusion, raters’ economic wealth, either nationally or individually, is significantly associated with perception of outgroup members, supporting the notion that ingroup conditions or stereotypes function as frames of reference in evaluating outgroup traits. PMID:22379232
Effects of measurement error on estimating biological half-life
Caudill, S.P.; Pirkle, J.L.; Michalek, J.E. )
1992-10-01
Direct computation of the observed biological half-life of a toxic compound in a person can lead to an undefined estimate when subsequent concentration measurements are greater than or equal to previous measurements. The likelihood of such an occurrence depends upon the length of time between measurements and the variance (intra-subject biological and inter-sample analytical) associated with the measurements. If the compound is lipophilic the subject's percentage of body fat at the times of measurement can also affect this likelihood. We present formulas for computing a model-predicted half-life estimate and its variance; and we derive expressions for the effect of sample size, measurement error, time between measurements, and any relevant covariates on the variability in model-predicted half-life estimates. We also use statistical modeling to estimate the probability of obtaining an undefined half-life estimate and to compute the expected number of undefined half-life estimates for a sample from a study population. Finally, we illustrate our methods using data from a study of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure among 36 members of Operation Ranch Hand, the Air Force unit responsible for the aerial spraying of Agent Orange in Vietnam.
Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.
2014-01-01
This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.
Sampling errors in the measurement of rain and hail parameters
NASA Technical Reports Server (NTRS)
Gertzman, H. S.; Atlas, D.
1977-01-01
Attention is given to a general derivation of the fractional standard deviation (FSD) of any integrated property X such that X(D) = cD to the n. This work extends that of Joss and Waldvogel (1969). The equation is applicable to measuring integrated properties of cloud, rain or hail populations (such as water content, precipitation rate, kinetic energy, or radar reflectivity) which are subject to statistical sampling errors due to the Poisson distributed fluctuations of particles sampled in each particle size interval and the weighted sum of the associated variances in proportion to their contribution to the integral parameter to be measured. Universal curves are presented which are applicable to the exponential size distribution permitting FSD estimation of any parameters from n = 0 to n = 6. The equations and curves also permit corrections for finite upper limits in the size spectrum and a realistic fall speed law.
Errors in Potassium Measurement: A Laboratory Perspective for the Clinician
Asirvatham, Jaya R; Moses, Viju; Bjornson, Loring
2013-01-01
Errors in potassium measurement can cause pseudohyperkalemia, where serum potassium is falsely elevated. Usually, these are recognized either by the laboratory or the clinician. However, the same factors that cause pseudohyperkalemia can mask hypokalemia by pushing measured values into the reference interval. These cases require a high-index of suspicion by the clinician as they cannot be easily identified in the laboratory. This article discusses the causes and mechanisms of spuriously elevated potassium, and current recommendations to minimize those factors. “Reverse” pseudohyperkalemia and the role of correction factors are also discussed. Relevant articles were identified by a literature search performed on PubMed using the terms “pseudohyperkalemia,” “reverse pseudohyperkalemia,” “factitious hyperkalemia,” “spurious hyperkalemia,” and “masked hypokalemia.” PMID:23724399
Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.
2014-01-01
This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.
Characterization of measurement error sources in Doppler global velocimetry
NASA Astrophysics Data System (ADS)
Meyers, James F.; Lee, Joseph W.; Schwartz, Richard J.
2001-04-01
Doppler global velocimetry uses the absorption characteristics of iodine vapour to provide instantaneous three-component measurements of flow velocity within a plane defined by a laser light sheet. Although the technology is straightforward, its utilization as a flow diagnostics tool requires hardening of the optical system and careful attention to detail during data acquisition and processing if routine use in wind tunnel applications is to be achieved. A development programme that reaches these goals is presented. Theoretical and experimental investigations were conducted on each technology element to determine methods that increase measurement accuracy and repeatability. Enhancements resulting from these investigations included methods to ensure iodine vapour calibration stability, single frequency operation of the laser and image alignment to sub-pixel accuracies. Methods were also developed to improve system calibration, and eliminate spatial variations of optical frequency in the laser output, spatial variations in optical transmissivity and perspective and optical distortions in the data images. Each of these enhancements is described and experimental examples given to illustrate the improved measurement performance obtained by the enhancement. The culmination of this investigation was the measured velocity profile of a rotating wheel resulting in a 1.75% error in the mean with a standard deviation of 0.5 m s-1. Comparing measurements of a jet flow with corresponding Pitot measurements validated the use of these methods for flow field applications.
Characterization of Measurement Error Sources in Doppler Global Velocimetry
NASA Technical Reports Server (NTRS)
Meyers, James F.; Lee, Joseph W.; Schwartz, Richard J.
2001-01-01
Doppler global velocimetry uses the absorption characteristics of iodine vapor to provide instantaneous three-component measurements of flow velocity within a plane defined by a laser light sheet. Although the technology is straightforward, its utilization as a flow diagnostics tool requires hardening of the optical system and careful attention to detail during data acquisition and processing if routine use in wind tunnel applications is to be achieved. A development program that reaches these goals is presented. Theoretical and experimental investigations were conducted on each technology element to determine methods that increase measurement accuracy and repeatability. Enhancements resulting from these investigations included methods to ensure iodine vapor calibration stability, single frequency operation of the laser and image alignment to sub-pixel accuracies. Methods were also developed to improve system calibration, and eliminate spatial variations of optical frequency in the laser output, spatial variations in optical transmissivity and perspective and optical distortions in the data images. Each of these enhancements is described and experimental examples given to illustrate the improved measurement performance obtained by the enhancement. The culmination of this investigation was the measured velocity profile of a rotating wheel resulting in a 1.75% error in the mean with a standard deviation of 0.5 m/s. Comparing measurements of a jet flow with corresponding Pitot measurements validated the use of these methods for flow field applications.
Effects of measurement error on horizontal hydraulic gradient estimates.
Devlin, J F; McElwee, C D
2007-01-01
During the design of a natural gradient tracer experiment, it was noticed that the hydraulic gradient was too small to measure reliably on an approximately 500-m(2) site. Additional wells were installed to increase the monitored area to 26,500 m(2), and wells were instrumented with pressure transducers. The resulting monitoring system was capable of measuring heads with a precision of +/-1.3 x 10(-2) m. This measurement error was incorporated into Monte Carlo calculations, in which only hydraulic head values were varied between realizations. The standard deviation in the estimated gradient and the flow direction angle from the x-axis (east direction) were calculated. The data yielded an average hydraulic gradient of 4.5 x 10(-4)+/-25% with a flow direction of 56 degrees southeast +/-18 degrees, with the variations representing 1 standard deviation. Further Monte Carlo calculations investigated the effects of number of wells, aspect ratio of the monitored area, and the size of the monitored area on the previously mentioned uncertainties. The exercise showed that monitored areas must exceed a size determined by the magnitude of the measurement error if meaningful gradient estimates and flow directions are to be obtained. The aspect ratio of the monitored zone should be as close to 1 as possible, although departures as great as 0.5 to 2 did not degrade the quality of the data unduly. Numbers of wells beyond three to five provided little advantage. These conclusions were supported for the general case with a preliminary theoretical analysis. PMID:17257340
Anderson, K.K.
1994-05-01
Measurement error modeling is a statistical approach to the estimation of unknown model parameters which takes into account the measurement errors in all of the data. Approaches which ignore the measurement errors in so-called independent variables may yield inferior estimates of unknown model parameters. At the same time, experiment-wide variables (such as physical constants) are often treated as known without error, when in fact they were produced from prior experiments. Realistic assessments of the associated uncertainties in the experiment-wide variables can be utilized to improve the estimation of unknown model parameters. A maximum likelihood approach to incorporate measurements of experiment-wide variables and their associated uncertainties is presented here. An iterative algorithm is presented which yields estimates of unknown model parameters and their estimated covariance matrix. Further, the algorithm can be used to assess the sensitivity of the estimates and their estimated covariance matrix to the given experiment-wide variables and their associated uncertainties.
Hosseinifar, Mohammad; Akbari, Asghar; Ghiasi, Fateme
2015-01-01
Introduction: Rehabilitative Ultrasound Imaging (RUSI) must be valuable method for research and rehabilitation. So, the reliability of its measurements must be determined. The purpose of this study was to evaluate the intra-rater reliability of RUSI for measurement of multifidus (MF) muscles cross section areas (CSAs), bladder wall diameter, and thickness of MF muscles between 2 sessions in healthy subjects. Method: Fifteen healthy subjects through simple non-probability sampling participated in this single-group repeated-measures reliability study. MF muscles thickness at rest and during contraction, MF muscles CSAs at rest, and bladder diameters at rest and during pelvic floor muscles (PFM) contraction were measured through RUSI. Pearson’s correlation coefficient test was used to determine intra-rater reliability of variables. Finding: The results showed that intra-class correlation Coefficient (ICCs) values with 95% confidence interval (CI) and the standard error of the measurement (SEM) were good to excellent agreement for a single investigator between measurement occasions. The intra-rater reliability for the bladder wall displacement was high (ICCs for rest and PFM contraction state: 0.96 and 0.95 respectively), for the MF muscles CSAs at the L4 level was good to high (ICCs 0.75 and 0.91 for right (Rt) and left (Lt) side respectively), and for the thickness of MF muscles at two levels, at rest and during two tasks was moderate to high (ICCs: 0.64 to 0.87). Conclusion: The Trans-Abdominal (TA) method of RUSI is a reliable method to quantify the PFM contraction in healthy subjects. Also, the RUSI is a reliable method to measure the MF muscles CSAs, the MF muscles thickness at rest and during functional tasks in healthy subjects. PMID:26153153
On modeling animal movements using Brownian motion with measurement error.
Pozdnyakov, Vladimir; Meyer, Thomas; Wang, Yu-Bo; Yan, Jun
2014-02-01
Modeling animal movements with Brownian motion (or more generally by a Gaussian process) has a long tradition in ecological studies. The recent Brownian bridge movement model (BBMM), which incorporates measurement errors, has been quickly adopted by ecologists because of its simplicity and tractability. We discuss some nontrivial properties of the discrete-time stochastic process that results from observing a Brownian motion with added normal noise at discrete times. In particular, we demonstrate that the observed sequence of random variables is not Markov. Consequently the expected occupation time between two successively observed locations does not depend on just those two observations; the whole path must be taken into account. Nonetheless, the exact likelihood function of the observed time series remains tractable; it requires only sparse matrix computations. The likelihood-based estimation procedure is described in detail and compared to the BBMM estimation. PMID:24669719
Horizon sensor errors calculated by computer models compared with errors measured in orbit
NASA Technical Reports Server (NTRS)
Ward, K. A.; Hogan, R.; Andary, J.
1982-01-01
Using a computer program to model the earth's horizon and to duplicate the signal processing procedure employed by the ESA (Earth Sensor Assembly), errors due to radiance variation have been computed for a particular time of the year. Errors actually occurring in flight at the same time of year are inferred from integrated rate gyro data for a satellite of the TIROS series of NASA weather satellites (NOAA-A). The predicted performance is compared with actual flight history.
Horizon Sensor Errors Calculated By Computer Models Compared With Errors Measured In Orbit
NASA Astrophysics Data System (ADS)
Ward, Kenneth A.; Hogan, Roger; Andary, James
1982-06-01
Using a computer program to model the earth's horizon and to duplicate the signal processing procedure employed by the ESA (Earth Sensor Assembly), errors due to radiance variation have been computed for a particular time of the year. Errors actually occurring in flight at the same time of year are inferred from integrated rate gyro data for a satellite of the TIROS series of NASA weather satellites (NOAA-7). The k)recLicted performance is compared with actual flight history.
Exploring Measurement Error with Cookies: A Real and Virtual Approach via Interactive Excel
ERIC Educational Resources Information Center
Sinex, Scott A; Gage, Barbara A.; Beck, Peggy J.
2007-01-01
A simple, guided-inquiry investigation using stacked sandwich cookies is employed to develop a simple linear mathematical model and to explore measurement error by incorporating errors as part of the investigation. Both random and systematic errors are presented. The model and errors are then investigated further by engaging with an interactive…
Age Matters, and so May Raters: Rater Differences in the Assessment of Foreign Accents
ERIC Educational Resources Information Center
Huang, Becky H.; Jun, Sun-Ah
2015-01-01
Research on the age of learning effect on second language learners' foreign accents utilizes human judgments to determine speech production outcomes. Inferences drawn from analyses of these ratings are then used to inform theories. The present study focuses on rater differences in the age of learning effect research. Three groups of raters who…
Three-way partitioning of sea surface temperature measurement error
NASA Technical Reports Server (NTRS)
Chelton, D.
1983-01-01
Given any set of three 2 degree binned anomaly sea surface temperature (SST) data sets by three different sensors, estimates of the mean square error of each sensor estimate is made. The above formalism performed on every possible triplet of sensors. A separate table of error estimates is then constructed for each sensor.
Accuracy and Repeatability of Refractive Error Measurements by Photorefractometry
Rajavi, Zhale; Sabbaghi, Hamideh; Baghini, Ahmad Shojaei; Yaseri, Mehdi; Sheibani, Koroush; Norouzi, Ghazal
2015-01-01
Purpose: To determine the accuracy of photorefraction and autorefraction as compared to cycloautorefraction and to detect the repeatability of photorefraction. Methods: This diagnostic study included the right eyes of 86 children aged 7-12 years. Refractive status was measured using photorefraction (PlusoptiX SO4, GmbH, Nürnberg, Germany) and autorefraction (Topcon RM800, USA) with and without cycloplegia. Photorefraction for each eye was performed three times to assess repeatability. Results: The overall agreement between photorefraction and cycloautorefraction was over 81% for all refractive errors. Photorefractometry had acceptable sensitivity and specificity for myopia and astigmatism. There was no statistically significant difference considering myopia and astigmatism in all comparisons, while the difference was significant for hyperopia using both amblyogenic (P = 0.006) and nonamblyogenic criteria (P = 0.001). A myopic shift of 1.21 diopter (D) and 1.58 D occurred with photorefraction in nonamblyogenic and amblyogenic hyperopia, respectively. Using revised cut-off points of + 1.12 D and + 2.6 D instead of + 2.00 D and + 3.50 D improved the sensitivity of photorefractometry to 84.62% and 69.23%, respectively. The repeatability of photorefraction for measurement of myopia, astigmatism and hyperopia was acceptable (intra-cluster correlation [ICC]: 0.98, 0.94 and 0.77, respectively). Autorefraction results were significantly different from cycloautorefraction in hyperopia (P < 0.0001), but comparable in myopia and astigmatism. Also, noncycloglegic autorefraction results were similar to photorefraction in this study. Conclusion: Although photorefraction was accurate for measurement of myopia and astigmatism, its sensitivity for hyperopia was low which could be improved by considering revised cut-off points. Considering cut-off points, photorefraction can be used as a screening method. PMID:26730305
Predictors of Measurement Error in Energy Intake During Pregnancy
Nowicki, Eric; Siega-Riz, Anna-Maria; Herring, Amy; He, Ka; Stuebe, Alison; Olshan, Andy
2011-01-01
Nutrition plays a critical role in maternal and fetal health; however, research on error in the measurement of energy intake during pregnancy is limited. The authors analyzed data on 998 women living in central North Carolina with singleton pregnancies during 2001–2005. Second-trimester diet was assessed by food frequency questionnaire. Estimated energy requirements were calculated using Institute of Medicine prediction equations, with adjustment for energy costs during the second trimester. Implausible values for daily energy intake were determined using confidence limits of agreement for energy intake/estimated energy requirements. Prevalences of low energy reporting (LER) and high energy reporting (HER) were 32.8% and 12.9%, respectively. In a multivariable analysis, pregravid body mass index was related to both LER and HER; LER was higher in both overweight (odds ratio = 1.96, 95% confidence interval: 1.26, 3.02; P = 0.031) and obese (odds ratio = 3.29, 95% confidence interval: 2.33, 4.65; P < 0.001) women than in normal-weight counterparts. Other predictors of LER included marriage and higher levels of physical activity. HER was higher among subjects who were underweight, African-American, and less educated and subjects who had higher depressive symptom scores. LER and HER are prevalent during pregnancy. Identifying their predictors may improve data collection and analytic methods for reducing systematic bias in the study of diet and reproductive outcomes. PMID:21273398
Large-scale spatial angle measurement and the pointing error analysis
NASA Astrophysics Data System (ADS)
Xiao, Wen-jian; Chen, Zhi-bin; Ma, Dong-xi; Zhang, Yong; Liu, Xian-hong; Qin, Meng-ze
2016-05-01
A large-scale spatial angle measurement method is proposed based on inertial reference. Common measurement reference is established in inertial space, and the spatial vector coordinates of each measured axis in inertial space are measured by using autocollimation tracking and inertial measurement technology. According to the spatial coordinates of each test vector axis, the measurement of large-scale spatial angle is easily realized. The pointing error of tracking device based on the two mirrors in the measurement system is studied, and the influence of different installation errors to the pointing error is analyzed. This research can lay a foundation for error allocation, calibration and compensation for the measurement system.
Implications of Three Causal Models for the Measurement of Halo Error.
ERIC Educational Resources Information Center
Fisicaro, Sebastiano A.; Lance, Charles E.
1990-01-01
Three conceptual definitions of halo error are reviewed in the context of causal models of halo error. A corrected correlational measurement of halo error is derived, and the traditional and corrected measures are compared empirically for a 1986 study of 52 undergraduate students' ratings of a lecturer's performance. (SLD)
Examining rating scales using Rasch and Mokken models for rater-mediated assessments.
Wind, Stephanie A
2014-01-01
A variety of methods for evaluating the psychometric quality of rater-mediated assessments have been proposed, including rater effects based on latent trait models (e.g., Engelhard, 2013; Wolfe, 2009). Although information about rater effects contributes to the interpretation and use of rater-assigned scores, it is also important to consider ratings in terms of the structure of the rating scale on which scores are assigned. Further, concern with the validity of rater-assigned scores necessitates investigation of these quality control indices within student subgroups, such as gender, language, and race/ethnicity groups. Using a set of guidelines for evaluating the interpretation and use of rating scales adapted from Linacre (1999, 2004), this study demonstrates methods that can be used to examine rating scale functioning within and across student subgroups with indicators from Rasch measurement theory (Rasch, 1960) and Mokken scale analysis (Mokken, 1971). Specifically, this study illustrates indices of rating scale effectiveness based on Rasch models and models adapted from Mokken scaling, and considers whether the two approaches to evaluating the interpretation and use of rating scales lead to comparable conclusions within the context of a large-scale rater-mediated writing assessment. Major findings suggest that indices of rating scale effectiveness based on a parametric and nonparametric approach provide related, but slightly different, information about the structure of rating scales. Implications for research, theory, and practice are discussed. PMID:24950531
NASA Astrophysics Data System (ADS)
Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.
2014-08-01
The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations. In this paper, we aimed to (i) characterize and illustrate in two-dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a "virtual mission" for a 300 km reach of the central Amazon (Solimões) River at its confluence with the Purus River, using a hydraulic model to provide water surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. We thereby obtained water surface elevation measurements for the Amazon mainstem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths of greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-section averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1% average overall error in discharge, respectively.
Worster, Andrew; Kulasegaram, Kulamakan; Carpenter, Christopher R.; Vallera, Teresa; Upadhye, Suneel; Sherbino, Jonathan; Haynes, R. Brian
2011-01-01
Background Studies published in general and specialty medical journals have the potential to improve emergency medicine (EM) practice, but there can be delayed awareness of this evidence because emergency physicians (EPs) are unlikely to read most of these journals. Also, not all published studies are intended for or ready for clinical practice application. The authors developed “Best Evidence in Emergency Medicine” (BEEM) to ameliorate these problems by searching for, identifying, appraising, and translating potentially practice-changing studies for EPs. An initial step in the BEEM process is the BEEM rater scale, a novel tool for EPs to collectively evaluate the relative clinical relevance of EM-related studies found in more than 120 journals. The BEEM rater process was designed to serve as a clinical relevance filter to identify those studies with the greatest potential to affect EM practice. Therefore, only those studies identified by BEEM raters as having the highest clinical relevance are selected for the subsequent critical appraisal process and, if found methodologically sound, are promoted as the best evidence in EM. Objectives The primary objective was to measure inter-rater reliability (IRR) of the BEEM rater scale. Secondary objectives were to determine the minimum number of EP raters needed for the BEEM rater scale to achieve acceptable reliability and to compare performance of the scale against a previously published evidence rating system, the McMaster Online Rating of Evidence (MORE), in an EP population. Methods The authors electronically distributed the title, conclusion, and a PubMed link for 23 recently published studies related to EM to a volunteer group of 134 EPs. The volunteers answered two demographic questions and rated the articles using one of two randomly assigned seven-point Likert scales, the BEEM rater scale (n = 68) or the MORE scale (n = 66), over two separate administrations. The IRR of each scale was measured using
Colloquium: Quantum root-mean-square error and measurement uncertainty relations
NASA Astrophysics Data System (ADS)
Busch, Paul; Lahti, Pekka; Werner, Reinhard F.
2014-10-01
Recent years have witnessed a controversy over Heisenberg's famous error-disturbance relation. Here the conflict is resolved by way of an analysis of the possible conceptualizations of measurement error and disturbance in quantum mechanics. Two approaches to adapting the classic notion of root-mean-square error to quantum measurements are discussed. One is based on the concept of a noise operator; its natural operational content is that of a mean deviation of the values of two observables measured jointly, and thus its applicability is limited to cases where such joint measurements are available. The second error measure quantifies the differences between two probability distributions obtained in separate runs of measurements and is of unrestricted applicability. We show that there are no nontrivial unconditional joint-measurement bounds for state-dependent errors in the conceptual framework discussed here, while Heisenberg-type measurement uncertainty relations for state-independent errors have been proven.
Du, Zhengchun; Wu, Zhaoyong; Yang, Jianguo
2016-01-01
The use of three-dimensional (3D) data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS). First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS. PMID:27213385
A heteroscedastic measurement error model for method comparison data with replicate measurements.
Nawarathna, Lakshika S; Choudhary, Pankaj K
2015-03-30
Measurement error models offer a flexible framework for modeling data collected in studies comparing methods of quantitative measurement. These models generally make two simplifying assumptions: (i) the measurements are homoscedastic, and (ii) the unobservable true values of the methods are linearly related. One or both of these assumptions may be violated in practice. In particular, error variabilities of the methods may depend on the magnitude of measurement, or the true values may be nonlinearly related. Data with these features call for a heteroscedastic measurement error model that allows nonlinear relationships in the true values. We present such a model for the case when the measurements are replicated, discuss its fitting, and explain how to evaluate similarity of measurement methods and agreement between them, which are two common goals of data analysis, under this model. Model fitting involves dealing with lack of a closed form for the likelihood function. We consider estimation methods that approximate either the likelihood or the model to yield approximate maximum likelihood estimates. The fitting methods are evaluated in a simulation study. The proposed methodology is used to analyze a cholesterol dataset. PMID:25614299
Du, Zhengchun; Wu, Zhaoyong; Yang, Jianguo
2016-01-01
The use of three-dimensional (3D) data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS). First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS. PMID:27213385
Measurement of four-degree-of-freedom error motions based on non-diffracting beam
NASA Astrophysics Data System (ADS)
Zhai, Zhongsheng; Lv, Qinghua; Wang, Xuanze; Shang, Yiyuan; Yang, Liangen; Kuang, Zheng; Bennett, Peter
2016-05-01
A measuring method for the determination of error motions of linear stages based on non-diffracting beams (NDB) is presented. A right-angle prism and a beam splitter are adopted as the measuring head, which is fixed on the moving stage in order to sense the straightness and angular errors. Two CCDs are used to capture the NDB patterns that are carrying the errors. Four different types error s, the vertical straightness error and three rotational errors (the pitch, roll and yaw errors), can be separated and distinguished through theoretical analysis of the shift in the centre positions in the two cameras. Simulation results show that the proposed method using NDB can measure four-degrees-of-freedom errors for the linear stage.
Tilt error in cryospheric surface radiation measurements at high latitudes: a model study
NASA Astrophysics Data System (ADS)
Bogren, W. S.; Burkhart, J. F.; Kylling, A.
2015-08-01
We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in-situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response foreoptic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can respectively introduce up to 2.6, 7.7, and 12.8 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo.
Neutron-induced soft error rate measurements in semiconductor memories
NASA Astrophysics Data System (ADS)
Ünlü, Kenan; Narayanan, Vijaykrishnan; Çetiner, Sacit M.; Degalahal, Vijay; Irwin, Mary J.
2007-08-01
Soft error rate (SER) testing of devices have been performed using the neutron beam at the Radiation Science and Engineering Center at Penn State University. The soft error susceptibility for different memory chips working at different technology nodes and operating voltages is determined. The effect of 10B on SER as an in situ excess charge source is observed. The effect of higher-energy neutrons on circuit operation will be published later. Penn State Breazeale Nuclear Reactor was used as the neutron source in the experiments. The high neutron flux allows for accelerated testing of the SER phenomenon. The experiments and analyses have been performed only on soft errors due to thermal neutrons. Various memory chips manufactured by different vendors were tested at various supply voltages and reactor power levels. The effect of 10B reaction caused by thermal neutron absorption on SER is discussed.
The impact of response measurement error on the analysis of designed experiments
Anderson-Cook, Christine Michaela; Hamada, Michael Scott; Burr, Thomas Lee
2015-12-21
This study considers the analysis of designed experiments when there is measurement error in the true response or so-called response measurement error. We consider both additive and multiplicative response measurement errors. Through a simulation study, we investigate the impact of ignoring the response measurement error in the analysis, that is, by using a standard analysis based on t-tests. In addition, we examine the role of repeat measurements in improving the quality of estimation and prediction in the presence of response measurement error. We also study a Bayesian approach that accounts for the response measurement error directly through the specification ofmore » the model, and allows including additional information about variability in the analysis. We consider the impact on power, prediction, and optimization. Copyright © 2015 John Wiley & Sons, Ltd.« less
The impact of response measurement error on the analysis of designed experiments
Anderson-Cook, Christine Michaela; Hamada, Michael Scott; Burr, Thomas Lee
2015-12-21
This study considers the analysis of designed experiments when there is measurement error in the true response or so-called response measurement error. We consider both additive and multiplicative response measurement errors. Through a simulation study, we investigate the impact of ignoring the response measurement error in the analysis, that is, by using a standard analysis based on t-tests. In addition, we examine the role of repeat measurements in improving the quality of estimation and prediction in the presence of response measurement error. We also study a Bayesian approach that accounts for the response measurement error directly through the specification of the model, and allows including additional information about variability in the analysis. We consider the impact on power, prediction, and optimization. Copyright © 2015 John Wiley & Sons, Ltd.
Direct Behavior Rating: Considerations for Rater Accuracy
ERIC Educational Resources Information Center
Harrison, Sayward E.; Riley-Tillman, T. Chris; Chafouleas, Sandra M.
2014-01-01
Direct behavior rating (DBR) offers users a flexible, feasible method for the collection of behavioral data. Previous research has supported the validity of using DBR to rate three target behaviors: academic engagement, disruptive behavior, and compliance. However, the effect of the base rate of behavior on rater accuracy has not been established.…
NASA Astrophysics Data System (ADS)
Zhao, Xiaolong; Yang, Li
2015-10-01
Based on the theory of infrared radiation and of the infrared thermography, the mathematical correction model of the infrared radiation temperature measurement of semitransparent object is developed taking account by the effects of the atmosphere, surroundings, radiation of transmissivity and many other factors. The effects of the emissivity, transmissivity and measurement error are analysed on temperature measurement error of the infrared thermography. The measurement error of semitransparent object are compared with that of opaque object. The countermeasures to reduce the measurement error are also discussed.
Total error vs. measurement uncertainty: revolution or evolution?
Oosterhuis, Wytze P; Theodorsson, Elvar
2016-02-01
The first strategic EFLM conference "Defining analytical performance goals, 15 years after the Stockholm Conference" was held in the autumn of 2014 in Milan. It maintained the Stockholm 1999 hierarchy of performance goals but rearranged them and established five task and finish groups to work on topics related to analytical performance goals including one on the "total error" theory. Jim Westgard recently wrote a comprehensive overview of performance goals and of the total error theory critical of the results and intentions of the Milan 2014 conference. The "total error" theory originated by Jim Westgard and co-workers has a dominating influence on the theory and practice of clinical chemistry but is not accepted in other fields of metrology. The generally accepted uncertainty theory, however, suffers from complex mathematics and conceived impracticability in clinical chemistry. The pros and cons of the total error theory need to be debated, making way for methods that can incorporate all relevant causes of uncertainty when making medical diagnoses and monitoring treatment effects. This development should preferably proceed not as a revolution but as an evolution. PMID:26540227
Canonical Correlation Analysis that Incorporates Measurement and Sampling Error Considerations.
ERIC Educational Resources Information Center
Thompson, Bruce; Daniel, Larry
Multivariate methods are being used with increasing frequency in educational research because these methods control "experimentwise" error rate inflation, and because the methods best honor the nature of the reality to which the researcher wishes to generalize. This paper: explains the basic logic of canonical analysis; illustrates that canonical…
Errors of Measurement and Standard Setting in Mastery Testing.
ERIC Educational Resources Information Center
Kane, Michael; Wilson, Jennifer
This paper evaluates the magnitude of the total error in estimates of the difference between an examinee's domain score and the cutoff score. An observed score based on a random sample of items from the domain, and an estimated cutoff score derived from a judgmental standard setting procedure are assumed. The work of Brennan and Lockwood (1980) is…
ERIC Educational Resources Information Center
Shear, Benjamin R.; Zumbo, Bruno D.
2013-01-01
Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…
Rater Cognition Research: Some Possible Directions for the Future
ERIC Educational Resources Information Center
Myford, Carol M.
2012-01-01
Over the last several decades, researchers have studied many and varied aspects of rater cognition. Those interested in pursuing basic research have focused on gaining an understanding of raters' thought processes as they score different types of performances and products, striving to understand how raters' mental representations and the cognitive…
Automated Essay Scoring With e-rater[R] V.2
ERIC Educational Resources Information Center
Attali, Yigal; Burstein, Jill
2006-01-01
E-rater[R] has been used by the Educational Testing Service for automated essay scoring since 1999. This paper describes a new version of e-rater (V.2) that is different from other automated essay scoring systems in several important respects. The main innovations of e-rater V.2 are a small, intuitive, and meaningful set of features used for…
An Investigation of Rater Cognition in the Assessment of Projects
ERIC Educational Resources Information Center
Crisp, Victoria
2012-01-01
In the United Kingdom, the majority of national assessments involve human raters. The processes by which raters determine the scores to award are central to the assessment process and affect the extent to which valid inferences can be made from assessment outcomes. Thus, understanding rater cognition has become a growing area of research in the…
Training the Raters: A Key to Effective Performance Appraisal.
ERIC Educational Resources Information Center
Martin, David C.; Bartol, Kathryn M.
1986-01-01
Although appropriate rater behaviors are critical to the success of any performance appraisal system, raters frequently receive little or no training regarding how to carry out their role successfully. This article outlines the major elements that should be included in an effective rater training program. Suggested training approaches and the need…
Cognitive Representations in Raters' Assessment of Teacher Portfolios
ERIC Educational Resources Information Center
van der Schaaf, Marieke; Stokking, Karel; Verloop, Nico
2005-01-01
Portfolios are frequently used to assess teachers' competences. In portfolio assessment, the issue of rater reliability is a notorious problem. To improve the quality of assessments insight into raters' judgment processes is crucial. Using a mixed quantitative and qualitative approach we studied cognitive processes underlying raters' judgments and…
La Haye, R.J.
1997-02-01
The existing theoretical and experimental basis for predicting the levels of resonant static error field at different components m,n that stop plasma rotation and produce a locked mode is reviewed. For ITER ohmic discharges, the slow rotation of the very large plasma is predicted to incur a locked mode (and subsequent disastrous large magnetic islands) at a simultaneous weighted error field ({Sigma}{sub 1}{sup 3}w{sub m1}B{sup 2}{sub rm1}){sup {1/2}}/B{sub T} {ge} 1.9 x 10{sup -5}. Here the weights w{sub m1} are empirically determined from measurements on DIII-D to be w{sub 11} = 0. 2, w{sub 21} = 1.0, and w{sub 31} = 0. 8 and point out the relative importance of different error field components. This could be greatly obviated by application of counter injected neutral beams (which adds fluid flow to the natural ohmic electron drift). The addition of 5 MW of 1 MeV beams at 45{degrees} injection would increase the error field limit by a factor of 5; 13 MW would produce a factor of 10 improvement. Co-injection beams would also be effective but not as much as counter-injection as the co direction opposes the intrinsic rotation while the counter direction adds to it. A means for measuring individual PF and TF coil total axisymmetric field error to less than 1 in 10,000 is described. This would allow alignment of coils to mm accuracy and with correction coils make possible the very low levels of error field needed.
(Sample) Size Matters: Defining Error in Planktic Foraminiferal Isotope Measurement
NASA Astrophysics Data System (ADS)
Lowery, C.; Fraass, A. J.
2015-12-01
Planktic foraminifera have been used as carriers of stable isotopic signals since the pioneering work of Urey and Emiliani. In those heady days, instrumental limitations required hundreds of individual foraminiferal tests to return a usable value. This had the fortunate side-effect of smoothing any seasonal to decadal changes within the planktic foram population, which generally turns over monthly, removing that potential noise from each sample. With the advent of more sensitive mass spectrometers, smaller sample sizes have now become standard. This has been a tremendous advantage, allowing longer time series with the same investment of time and energy. Unfortunately, the use of smaller numbers of individuals to generate a data point has lessened the amount of time averaging in the isotopic analysis and decreased precision in paleoceanographic datasets. With fewer individuals per sample, the differences between individual specimens will result in larger variation, and therefore error, and less precise values for each sample. Unfortunately, most workers (the authors included) do not make a habit of reporting the error associated with their sample size. We have created an open-source model in R to quantify the effect of sample sizes under various realistic and highly modifiable parameters (calcification depth, diagenesis in a subset of the population, improper identification, vital effects, mass, etc.). For example, a sample in which only 1 in 10 specimens is diagenetically altered can be off by >0.3‰ δ18O VPDB or ~1°C. Additionally, and perhaps more importantly, we show that under unrealistically ideal conditions (perfect preservation, etc.) it takes ~5 individuals from the mixed-layer to achieve an error of less than 0.1‰. Including just the unavoidable vital effects inflates that number to ~10 individuals to achieve ~0.1‰. Combining these errors with the typical machine error inherent in mass spectrometers make this a vital consideration moving forward.
Oremus, Carolina; Hall, Geoffrey B C; McKinnon, Margaret C
2012-01-01
Introduction Quality assessment of included studies is an important component of systematic reviews. Objective The authors investigated inter-rater and test–retest reliability for quality assessments conducted by inexperienced student raters. Design Student raters received a training session on quality assessment using the Jadad Scale for randomised controlled trials and the Newcastle–Ottawa Scale (NOS) for observational studies. Raters were randomly assigned into five pairs and they each independently rated the quality of 13–20 articles. These articles were drawn from a pool of 78 papers examining cognitive impairment following electroconvulsive therapy to treat major depressive disorder. The articles were randomly distributed to the raters. Two months later, each rater re-assessed the quality of half of their assigned articles. Setting McMaster Integrative Neuroscience Discovery and Study Program. Participants 10 students taking McMaster Integrative Neuroscience Discovery and Study Program courses. Main outcome measures The authors measured inter-rater reliability using κ and the intraclass correlation coefficient type 2,1 or ICC(2,1). The authors measured test–retest reliability using ICC(2,1). Results Inter-rater reliability varied by scale question. For the six-item Jadad Scale, question-specific κs ranged from 0.13 (95% CI −0.11 to 0.37) to 0.56 (95% CI 0.29 to 0.83). The ranges were −0.14 (95% CI −0.28 to 0.00) to 0.39 (95% CI −0.02 to 0.81) for the NOS cohort and −0.20 (95% CI −0.49 to 0.09) to 1.00 (95% CI 1.00 to 1.00) for the NOS case–control. For overall scores on the six-item Jadad Scale, ICC(2,1)s for inter-rater and test–retest reliability (accounting for systematic differences between raters) were 0.32 (95% CI 0.08 to 0.52) and 0.55 (95% CI 0.41 to 0.67), respectively. Corresponding ICC(2,1)s for the NOS cohort were −0.19 (95% CI −0.67 to 0.35) and 0.62 (95% CI 0.25 to 0.83), and for the NOS case–control, the ICC(2
NASA Astrophysics Data System (ADS)
Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.
2015-04-01
The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross
Steinsvåg, Kjersti; Bråtveit, Magne; Moen, Bente E; Kromhout, Hans
2007-01-01
Objectives To evaluate the reliability of an expert team assessing exposure to carcinogens in the offshore petroleum industry and to study how the information provided influenced the agreement among raters. Methods Eight experts individually assessed the likelihood of exposure for combinations of 17 carcinogens, 27 job categories and four time periods (1970–1979, 1980–1989, 1990–1999 and 2000–2005). Each rater assessed 1836 combinations based on summary documents on carcinogenic agents, which included descriptions of sources of exposure and products, descriptions of work processes carried out within the different job categories, and monitoring data. Inter‐rater agreement was calculated using Cohen's kappa index and single and average score intraclass correlation coefficients (ICC) (ICC(2,1) and ICC(2,8), respectively). Differences in inter‐rater agreement for time periods, raters, International Agency for Research on Cancer groups and the amount of information provided were consequently studied. Results Overall, 18% of the combinations were denoted as possible exposure, and 14% scored probable exposure. Stratified by the 17 carcinogenic agents, the probable exposure prevalence ranged from 3.8% for refractory ceramic fibres to 30% for crude oil. Overall mean kappa was 0.42 (ICC(2,1) = 0.62 and ICC(2,8) = 0.93). Providing limited quantitative measurement data was associated with less agreement than for equally well described carcinogens without sampling data. Conclusion The overall κ and single‐score ICC indicate that the raters agree on exposure estimates well above the chance level. The levels of inter‐rater agreement were higher than in other comparable studies. The average score ICC indicates reliable mean estimates and implies that sufficient raters were involved. The raters seemed to have enough documentation on which to base their estimates, but provision of limited monitoring data leads to more incongruence among raters. Having real
An Empirical Study of the Relative Error Magnitude in Three Measures of Change.
ERIC Educational Resources Information Center
Williams, Richard H.; And Others
1984-01-01
This paper describes the procedures and results of two studies designed to yield empirical comparisons of the error magnitude in three change measures: the simple gain score, the residualized difference score, and the base free measure (Tucker et al). Residualized scores possessed smaller standard errors of measurement. (Author/BS)
Error analysis of rigid body posture measurement system based on circular feature points
NASA Astrophysics Data System (ADS)
Huo, Ju; Cui, Jishan; Yang, Ning
2015-02-01
For monocular vision pose parameters determine the problem, feature-based target feature points on the plane quadrilateral, an improved two-stage iterative algorithm is proposed to improve the optimization of rigid body posture measurement calculating model. Monocular vision rigid body posture measurement system is designed; experimentally in each coordinate system determined coordinate a unified method to unify the each feature point measure coordinates; theoretical analysis sources of error from rigid body posture measurement system simulation experiments. Combined with the actual experimental analysis system under the condition of simulation error of pose accuracy of measurement, gives the comprehensive error of measurement system, for improving measurement precision of certain theoretical guiding significance.
Rater Characteristics and Rater Bias: Implications for Training.
ERIC Educational Resources Information Center
Lumley, Tom; McNamara, T. F.
Recent developments in multi-faceted Rasch measurement (Linacre, 1989) have made possible new kinds of investigations of aspects of performance assessments. Bias analysis, interactions between elements of any facet, can also be analyzed, which permits investigation of the way a particular aspect of the test situation may elicit a consistently…
Mishra, Vipanchi; Roch, Sylvia G
2013-01-01
Much of the prior research investigating the influence of cultural values on performance ratings has focused either on conducting cross-national comparisons among raters or using cultural level individualism/collectivism scales to measure the effects of cultural values on performance ratings. Recent research has shown that there is considerable within country variation in cultural values, i.e. people in one country can be more individualistic or collectivistic in nature. Taking the latter perspective, the present study used Markus and Kitayama's (1991) conceptualization of independent and interdependent self-construals as measures of individual variations in cultural values to investigate within culture variations in performance ratings. Results suggest that rater self-construal has a significant influence on overall performance evaluations; specifically, raters with a highly interdependent self-construal tend to show a preference for interdependent ratees, whereas raters high on independent self-construal do not show a preference for specific type of ratees when making overall performance evaluations. Although rater self-construal significantly influenced overall performance evaluations, no such effects were observed for specific dimension ratings. Implications of these results for performance appraisal research and practice are discussed. PMID:23885636
Compensation method for the alignment angle error of a gear axis in profile deviation measurement
NASA Astrophysics Data System (ADS)
Fang, Suping; Liu, Yongsheng; Wang, Huiyi; Taguchi, Tetsuya; Takeda, Ryuhei
2013-05-01
In the precision measurement of involute helical gears, the alignment angle error of a gear axis, which was caused by the assembly error of a gear measuring machine, will affect the measurement accuracy of profile deviation. A model of the involute helical gear is established under the condition that the alignment angle error of the gear axis exists. Based on the measurement theory of profile deviation, without changing the initial measurement method and data process of the gear measuring machine, a compensation method is proposed for the alignment angle error of the gear axis that is included in profile deviation measurement results. Using this method, the alignment angle error of the gear axis can be compensated for precisely. Some experiments that compare the residual alignment angle error of a gear axis after compensation for the initial alignment angle error were performed to verify the accuracy and feasibility of this method. Experimental results show that the residual alignment angle error of a gear axis included in the profile deviation measurement results is decreased by more than 85% after compensation, and this compensation method significantly improves the measurement accuracy of the profile deviation of involute helical gear.
Analysis of measured data of human body based on error correcting frequency
NASA Astrophysics Data System (ADS)
Jin, Aiyan; Peipei, Gao; Shang, Xiaomei
2014-04-01
Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.
Detecting bit-flip errors in a logical qubit using stabilizer measurements
Ristè, D.; Poletto, S.; Huang, M.-Z.; Bruno, A.; Vesterinen, V.; Saira, O.-P.; DiCarlo, L.
2015-01-01
Quantum data are susceptible to decoherence induced by the environment and to errors in the hardware processing it. A future fault-tolerant quantum computer will use quantum error correction to actively protect against both. In the smallest error correction codes, the information in one logical qubit is encoded in a two-dimensional subspace of a larger Hilbert space of multiple physical qubits. For each code, a set of non-demolition multi-qubit measurements, termed stabilizers, can discretize and signal physical qubit errors without collapsing the encoded information. Here using a five-qubit superconducting processor, we realize the two parity measurements comprising the stabilizers of the three-qubit repetition code protecting one logical qubit from physical bit-flip errors. While increased physical qubit coherence times and shorter quantum error correction blocks are required to actively safeguard the quantum information, this demonstration is a critical step towards larger codes based on multiple parity measurements. PMID:25923318
Error analysis in the measurement of average power with application to switching controllers
NASA Technical Reports Server (NTRS)
Maisel, J. E.
1979-01-01
The behavior of the power measurement error due to the frequency responses of first order transfer functions between the input sinusoidal voltage, input sinusoidal current and the signal multiplier was studied. It was concluded that this measurement error can be minimized if the frequency responses of the first order transfer functions are identical.
ERIC Educational Resources Information Center
Kim, ChangHwan; Tamborini, Christopher R.
2012-01-01
Few studies have considered how earnings inequality estimates may be affected by measurement error in self-reported earnings in surveys. Utilizing restricted-use data that links workers in the Survey of Income and Program Participation with their W-2 earnings records, we examine the effect of measurement error on estimates of racial earnings…